
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-09

Sample entropy and random forests a

methodology for anomaly-based intrusion

detection and classification of low-bandwidth

malware attacks

Hyla, Bret M.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2633

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

 SAMPLE ENTROPY AND RANDOM FORESTS: A
METHODOLOGY FOR ANOMALY-BASED INTRUSION
DETECTION AND CLASSIFICATION OF LOW-

BANDWIDTH MALWARE ATTACKS.

by

Bret M. Hyla

September 2006

 Thesis Co-Advisors: Craig Martell
 Kevin Squire

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Sample Entropy and Random Forests: A
Methodology for Anomaly-based Intrusion Detection and
Classification of Low-bandwidth Malware Attacks.
6. AUTHOR(S)
Bret M. Hyla

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words) Sample Entropy examines changes in the normal
distribution of network traffic to identify anomalies. Normalized Information
examines the overall probability distribution in a data set. Random Forests is
a supervised learning algorithm which is efficient at classifying highly-
imbalanced data. Anomalies are exceedingly rare compared to the overall volume
of network traffic. The combination of these methods enables low-bandwidth
anomalies to easily be identified in high-bandwidth network traffic. Using only
low-dimensional network information allows for near real-time identification of
anomalies. The data set was collected from 1999 DARPA intrusion detection
evaluation data set. The experiments compare a baseline f-score to the
observed entropy and normalized information of the network. Anomalies that
are disguised in network flow analysis were detected. Random Forests prove to
be capable of classifying anomalies using the sample entropy and normalized
information. Our experiment divided the data set into five-minute time slices
and found that sample entropy and normalized information metrics were
successful in classifying bad traffic with a recall of .99 and a f-score .50
which was 185% better than our baseline.

15. NUMBER OF
PAGES 81

14. SUBJECT TERMS Anomaly Detection, Data Mining, Intrusion
Detection, Malicious Anomalies, Random Forests, Machine
Learning, DARPA IDE

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SAMPLE ENTROPY AND RANDOM FORESTS: A METHODOLOGY FOR
ANOMALY-BASED INTRUSION DETECTION AND CLASSIFICATION OF

LOW-BANDWIDTH MALWARE ATTACKS.

Bret M Hyla
Captain, United States Marine Corps
B.B.S., Texas A & M University, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2006

Author: Bret M. Hyla

Approved by: Craig Martell
Thesis Co-Advisor

 Kevin Squire
Thesis Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Sample Entropy examines changes in the normal

distribution of network traffic to identify anomalies.

Normalized Information examines the overall probability

distribution in a data set. Random Forests is a supervised

learning algorithm which is efficient at classifying

highly-imbalanced data. Anomalies are exceedingly rare

compared to the overall volume of network traffic. The

combination of these methods enables low-bandwidth

anomalies to easily be identified in high-bandwidth network

traffic. Using only low-dimensional network information

allows for near real-time identification of anomalies. The

data set was collected from 1999 DARPA intrusion detection

evaluation data set. The experiments compare a baseline f-

score to the observed entropy and normalized information of

the network. Anomalies that are disguised in network

flow analysis were detected. Random Forests prove to be

capable of classifying anomalies using the sample entropy

and normalized information. Our experiment divided the data

set into five-minute time slices and found that sample

entropy and normalized information metrics were successful

in classifying bad traffic with a recall of .99 and a f-

score .50 which was 185% better than our baseline.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PROLOGUE ...1
B. BACKGROUND ...1
C. HYPOTHESIS ...1
D. ORGANIZATION OF THIS DOCUMENT2

II. BACKGROUND ..3
A. INTRUSION DETECTION3

1. External penetration3
2. Internal penetration3

a. Masquerader3
b. Legitimate User4
c. Clandestine User4

B. TYPES OF INTRUSION DETECTION SYSTEMS4
1. Network-based Intrusion Detection4

a. Signature-based IDS5
b. Anomaly-based IDS5

2. Host-based Intrusion Detection systems
(HIDS) ..6

C. MALICIOUS ACTIVITY7
1. Worm ..8
2. Peer-to-Peer8
3. Service Discovery9

D. MACHINE-LEARNING ALGORITHMS9
1. CART ..9
2. K-MEANS10
3. Hierarchical Agglomerative Algorithm10
4. Random Forests11

a. Formal Definition11
b. Overfitting11

5. Random Forests vs. Adaboost12
a. Empirical Experiments12
b. Noise13
c. Conclusions13

E. CHOOSING A MACHINE-LEARNING ALGORITHM13
F. RELATED WORK15
G. CHAPTER SUMMARY18

III. DESIGN OF EXPERIMENT21
A. EXPERIMENTAL OVERVIEW21
B. DATA SET ..21

Collected Data22
C. TRANSFORMING THE DATA22

1. Sampling22

 viii

2. Extracting Features from Full Packet Data22
a. Converting TCPDUMP to SiLK files23
b. Extracting Features from a SiLK File23

3. Calculating Aggregate Data for a Given Five-
minute Time Slice24
a. Sorting the Data by Time24
b. Placing Packets in Five-minute Time

Slices25
c. Overall Probability Distribution26
d. Five-minute Time Slice Information26
e. Normalizing Information26
f. Five-minute Time Slice Entropy26
g. Average Number of Bytes per Packet in a

Five-minute Time Slice27
D. RANDOM FORESTS27

1. Variable Selection27
2. Testing28
3. Random Forest Tree Choices30
3. Experiment Parameters30

a. Variables31
b. Model Adjustments31

E. PROBLEMS DISCOVERED IN CONDUCT OF THE EXPERIMENTS .31
1. DARPA 1999 Training Data31
2. Stealth Watch31
3. Wire Shark32

F. CHAPTER SUMMARY32
IV. DATA RESULTS AND EVALUATION33

A. BASELINE: CALL-ALL-BAD33
1. 1999 DARPA Week Two Test Baseline34

A. NORMALIZED INFORMATION EXPERIMENTS34
1. Balanced Experiments34
2. Unbalanced Experiments35
3. Results36

B. SAMPLE ENTROPY37
1. Balanced Experiments37
2. Unbalanced Experiments38
3. Results39

C. NORMALIZED INFORMATION AND SAMPLE ENTROPY39
1. Balanced Experiments39
2. Unbalanced Experiments40
3. Results42

D. NORMALIZED INFORMATION, SAMPLE ENTROPY AND
AVERAGE BYTES PER PACKET42
1. 500 Tree Experiments42
2. Results43

E. EVALUATION OF OVERALL RESULTS43

 ix

F. CHAPTER SUMMARY44
V. CONCLUSION AND FUTURE WORK45

A. CONCLUSION ..45
B. FUTURE WORK45

APPENDIX A. GENERATED CODE49
A. SAMPLER.JAVA49
B. SORTER.PL ...51
C. REORDER.PL ..51
D. BYTES.PL ..52
E. TEST_TRAIN.PL53
F. ENTROPY_INFORMATION.PL54

LIST OF REFERENCES ..59
INITIAL DISTRIBUTION LIST63

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Rwptoflow file conversion.......................23
Figure 2. Rwcut command to extract selected fields to a

designated output file..........................24
Figure 3. Extracted data fields...........................24
Figure 4. Average Number of Packets per Time Slice........25
Figure 5. Random Forest Variable Selection................28
Figure 6. Weighting Choices for training and testing......29
Figure 7. Options for Testing the Forest..................29
Figure 8. Options for Testing the Forest..................30

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Normalized scores of each learning algorithm by
problem(averaged over eight metrics) (From Ref.
[Caruana, et al. 2006])........................14

Table 2. Qualitative effects on traffic feature
distributions by differing anomaly types. (From
Ref. [Lakhina, et al. 2005])..................16

Table 3. Precision, Recall, and F-Score Results for
Balanced Weighting on the Normalized
Information Data Set............................35

Table 4. Precision, Recall, and F-Score Results for Bad
Weighted 10 on the Normalized Information Data
Set...35

Table 5. Precision, Recall, and F-Score Results for Bad
Weighted 100 on the Normalized Information Data
Set...36

Table 6. Precision, Recall, and F-Score Results for Bad
Weighted 1000 on the Normalized Information
Data Set..36

Table 7. Precision, Recall, and F-Score Results for
Balanced Weighting on the Sample Entropy Data
Set...37

Table 8. Precision, Recall, and F-Score Results for Bad
Weight 10 on the Sample Entropy Data Set........38

Table 9. Precision, Recall, and F-Score Results for Bad
Weight 100 on the Sample Entropy Data Set.......38

Table 10. Precision, Recall, and F-Score Results for Bad
Weight 100 on the Sample Entropy Data Set.......39

Table 11. Precision, Recall, and F-Score Results for
Balanced Weighting on the Normalized
Information and Sample Entropy Data Set.........40

Table 12. Precision, Recall, and F-Score Results for Bad
Weight 10 on the Normalized Information and
Sample Entropy Data Set.........................40

Table 13. Precision, Recall, and F-Score Results for Bad
Weight 100 on the Normalized Information and
Sample Entropy Data Set.........................41

Table 14. Precision, Recall, and F-Score Results for Bad
Weight 1000 on the Normalized Information and
Sample Entropy Data Set.........................41

Table 15. Precision, Recall, and F-Score Results for 500
Trees with all Weightings on the Normalized
Information, Sample Entropy and Average Bytes
per Packet Data Set............................42

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my thanks and appreciation to

several individuals, without which this thesis would not

have been possible.

I would like to first thank my wife, Marci, children

Blake and Genevieve whose willingness to sacrifice enabled

the completion of the thesis. With whom I was blessed to be

able to spend the past two years growing together as a

stronger family.

I would like to thank my advisor team of Dr. Craig

Martell and Dr. Kevin Squire, whose suggestions and

feedback during the writing process proved invaluable.

I would like to thank Dr. Lynn Whitaker whose

assistance with the Clementine software package was key.

I would like to thank PO2 Stephan Self from the Naval

Network Security Group for all his effort in attempting to

find a way to utilize live network traffic for this thesis.

Lastly I want to thank Joe Raetano and Don Carter who

assisted in locating and generating a workable filter to

extract features from the full data packet and the rest of

my computer science cohort for the great times and

willingness to aid a fellow student in learning troublesome

concepts.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROLOGUE

In this chapter we will introduce the reader of a new

approach in classifying low volume anomalies in network

traffic. In addition, we will continue with discussion of

Sample Entropy and Normalized Information. We will then

provide a brief description of our hypothesis. We will

continue with discussion of how we tested our hypothesis

using the Random Forest Algorithm. We will conclude with a

synopsis of the remaining chapters of this thesis.

B. BACKGROUND

Sample Entropy examines changes in the normal

distribution of network traffic to identify anomalies.

Normalized Information examines the overall probability

distribution in a data set. Random Forests is a supervised

learning algorithm which is efficient at classifying

highly-imbalanced data. Anomalies are exceedingly rare

compared to the overall volume of network traffic.

C. HYPOTHESIS

Our hypothesis is that the combination of Sample

Entropy and Normalized Information will enable low-

bandwidth anomalies to be identified in high-bandwidth

network traffic. We anticipate that by only using low-

dimensional network information it may in the future be

able to allow for near real-time identification of

anomalies. The data set the hypothesis was tested against

was the 1999 DARPA intrusion detection evaluation data set.

The experiments compared a baseline f-score to the observed

entropy and normalized information of the network.

2

The Random-Forest algorithm is an unsupervised

machine-learning algorithm which has proven capable at

classifying highly-imbalanced data sets, but not in the

field of intrusion detection. Our experiments will address

whether the combinations of sample entropy and/or

normalized information processed by a Random-Forest

algorithm are capable, and the degree of capability in

identifying low-bandwidth anomalies. These anomalies often

avoid detection by standard anomaly-based intrusion

detection systems.

D. ORGANIZATION OF THIS DOCUMENT

The remainder of this thesis is organized as follows.

Chapter II will discuss intrusion detection systems, a few

common anomalies, different machine-learning algorithms,

and Stealth Watch an anomaly-based intrusion detection

system. Chapter III will describe the design of the

experiment and gathering of a data set needed to test our

hypothesis. Chapter IV will analyze and discuss the

results of the experiments. Chapter V offers conclusions

and recommendations for future work and the Appendix

contains the code used to transform the original data into

a suitable format for the experiments.

3

II. BACKGROUND

A. INTRUSION DETECTION

An intrusion to a computer or computer network is

defined by [Canavan. 2001] as “an unauthorized attempt or

achievement to access, alter, render unavailable, or

destroy information on a system or the system itself.”

Network administrators were previously able to review

various logs on a daily basis to check for intrusion

attempts. However, given the growth of the Internet and

the volume of traffic now being generated on a networK-

means waiting for daily checks is too late. Another

approach is required.

Intrusion Detection Systems (IDSs) began as research

projects for the US government in the early 1980’s. In,

1980 James Anderson published the first paper in which he

describes an effort to improve the computer security

auditing and surveillance of a network. In his

paper,[Anderson. 1980] the threat was broken into four

categories:

1. External Penetration

An individual from outside the organization attempting

to gain access to computer network resources; also an

employee who has physical access but is not an authorized

computer user.

2. Internal Penetration

Anderson breaks this type of penetration into three

subgroups. He claims that this variant of threat is more

prevalent than an external threat.

a. Masquerader

This is a user who has gained a proper user

identification and a corresponding password. Locating

4

this type of user can be attempted by looking at audit

records for deviations from normal activity for a given

user.

b. Legitimate User

Misuse of authorized access to the computer

network. This might be reveled in an audit log if the user

is accessing data for which they do not have authorization.

Once again, a normal profile of user activity on the

computer system is required to locate anomalies.

c. Clandestine User

 This is a user who can obtain administrator

control of a computer and delete or alter the audit trail.

Here having a reference model of the operating system with

which to compare the current state of the machine is key to

detection. Storing audit records in central location not

on the local machine is another approach which makes hiding

the activity of a clandestine user much more

difficult.[Anderson. 1980]

B. TYPES OF INTRUSION DETECTION SYSTEMS

Unlike a firewall, intrusion detection systems do not

block unauthorized packets based on a rule set. An IDS

instead analyzes the packet header and packet content and

makes a determination of legitimacy. If a packet is deemed

malicious an alert is generated, allowing a system

administrator to examine the packet.

Intrusion Detection Systems come in two basic types:

host-based and network-based. The following two sections

describe these two types in general terms.

1. Network-based Intrusion Detection

Network-based intrusion detection systems (NIDS)

analyze network packets, compare packet structure to know

5

malware patterns, search an internal rule set, then make a

determination of misuse, and if necessary generate an alarm

which is reported to a centralized location. A NIDS has

several advantages. It is effective at detecting outsiders

attempting to penetrate the network, one or at most a few

sensors are all that is required to provide coverage for

the entire network, and since the NIDS is listening for all

network traffic, it is positioned to detect attacks

directed at any host on the network. A NIDS, if configured

appropriately also has the potential to stop an attack

prior to reaching the hosts. A NIDS generally runs on a

specially built machine so it does not degrade the

computing resources of individual systems. NIDS have two

approaches they use to classify an intrusion.

a. Signature-based IDS

This system matches a know signature or pattern

that was generated by the IDS vendor. The rule set is

stored locally in every instance of the IDS. It is also

commonly referred to as rule-based intrusion detection

(RBID). When a new attack pattern has been observed it is

analyzed and a new rule is generated by the vendor. The

vendor notifies customers that an “update” is available so

their instance can have the most current rule set. Most

vendors sell systems which can be configured to

automatically check with the vendor for updates and

automatically install them. This method ensures the IDS

always has the vendors most current rule set and a network

administrator does not have to spend the time to check on a

daily basis.

b. Anomaly-based IDS

In 1987, Denning [Denning. 1987] described a

model for a real-time intrusion detection system which

6

built on Anderson’s work. Her hypothesis was that security

violations in the network could be discovered by searching

for abnormal patterns of use in the system. The model

created a profile based on statistical metrics for every

subject in the system and compares the baseline profile to

current activity searching for deviations from the profile.

Anomaly-detection defined by Bace is “using statistical

techniques to find patterns of activity that appear to be

abnormal.”[Bace. 2001] These patterns of activity are

evaluated for possible signs of malicious activity. While

these systems have great potential to defend against new or

unknown attacks, determining what traffic is abnormal is

still a great challenge. In 2000, Lancope Corporation

released StealthWatch, one of the first anomaly-based IDS.

[Lancope. 2006]

2. Host-based Intrusion Detection systems (HIDS)

A host-based IDS is designed to monitor and analyze

data that originates on the individual system on which if

installed. HIDS are particularly effective at detecting

misuse of the system by an authorized user.[Proctor. 2001]

HIDS have several different sources of data available on

the host, system logs, audit logs, listing of active

processes, keystroke monitoring, and packet throughput.

There are several advantages to HIDS including:

• Actual results of an attack or user misuse of
system are available.

• Less reliance on a set of rules.
• Higher likelihood of detecting an unknown attack.
• Insiders knowing they are being monitored are

less likely to misuse the system.
• No additional hardware requirement.
• Encrypted network traffic is accessible for

analyzing.

7

HIDS by themselves have numerous disadvantages. The

most critical is that a HIDS can have a significant

performance impact on the host. If the host is compromised

the system logs, if stored locally, are subject to

manipulation. Some attacks, like a buffer overflow, are not

likely to be logged. Finally, if the system is compromised

the monitoring can be terminated or nullified. [Crothers.

2003] Therefore, good-quality audit sources are critical.

These logs should be created by a trusted source, be of

sufficient detail to recreate every event, and stored off-

host to protect their integrity.[Proctor. 2001]

Both network-based IDS and HIDS have advantages and

drawbacks to specific attack methods but together they

create a much more effective network defense than either

alone. Some examples of malicious activity likely to be

found in a current network that NIDS and HIDS can help

discover and prevent is presented in the next section.

C. MALICIOUS ACTIVITY

Malicious activity can be defined as an intentional

attempt to bypass computer security measures in some

fashion. [Crothers. 2003] Users may attempt to download

music files from a common peer to peer files sharing system

like KaZaA in violation of company policy. They may

install an internet shareware game on their computer which

has a network scanner embedded inside of it. A user could

open an attachment from an unknown user asking the user to

“click”, which, while displaying the funny video, enables a

worm to be loaded into the local system. In the following

section worms network scanners, peer-to-peer software and

network scanners will be described.

8

1. Worm

A worm is a self replicating computer program that is

self-contained and does not need any other software program

to replicate. The name “worm” comes from The Shockware

Rider, a science fiction novel written by John Brunner in

1975. The first worm on a worldwide network was the

Christmas Tree Worm released in December 1987, which spread

across IBM’s network and BITNET. [Erbschloe. 2005] The

power of the worm was such both networks were severely

affected. A worm has four primary qualities: a

propagation mechanism, transport an executable piece of

code, identify additional machines vulnerable to the worm

and various means to attempt to avoid detection. This

combination of attributes makes a worm appealing to

malicious users.

 2. Peer-to-Peer

These are programs that allow you to connect to other

users to share files, instant message other users text,

voice messages or files, and conduct distributed

processing, which utilizes the unused computing power on

your local computer to create huge computing power

capacity. They also allow you to create a network to

upload and download material; this is often music, video

and games. This ability to upload and download material is

of great concern to network security personnel. Files that

are downloaded can contain additional content; this content

can be spyware, viruses, Trojan horses, or worms. Once the

file is downloaded the system can then be exploited and

serve as a zombie or malware server to spread malicious

code inside the local area network. These applications

also allow others to receive access and place files on your

9

local machine without your knowledge. Continuously

scanning the network for any signs of peer to peer activity

can help eliminate a common attack vector for malware. One

of the more dangerous types of malware that is now

exploiting peer to peer systems are worms, I will give an

example of one recently identified worm in the next

section.

3. Service Discovery

This is an attempt by an unauthorized user or piece of

software to discover what applications or computers exist

in your network. This informs the attacker which computers

are turned on and what ports they are listening for network

traffic on. Service discovery is utilized by all levels of

hackers. SuperScan by FoundStone and Nmap by Insecure are

two popular tools for service discovery. Network security

personnel should be concerned if this type of activity is

detected on the network. Scanning is an indicator that

service discovery is or has taken place and the attacker

can now craft an exploit specifically designed to exploit

vulnerabilities found in your network.

D. MACHINE-LEARNING ALGORITHMS

There are several machine-learning algorithms that

have been created to attempt to find patterns and anomalies

in data sets. The following sections will describe a few

of them in detail.

1. CART

The classification and regression tree (CART) is a

general framework in which for a given set of data can be

broken into smaller subsets determined by category labels.

Each split is designed to select the best label to split

upon with the goal of creating a subset of data with the

exact same categorical values. Data subsets that are not

10

pure are called nodes, and splitting continues until a data

set ideally contains only the same categorical values. This

subset is deemed “pure” and splitting is halted on the

given subset of data. The subset is also classified as a

leaf of the tree. In highly variable data, a floor can be

set on the splitting function based on the observations in

a node, this prevents an expanse of leafs with only one

observation. [Duda. 2001]

2. K-MEANS

The K-means algorithm was introduced by 1982. [Lloyd.

1982] It remains quite popular due to its simplicity and

speed. The K-means procedure works as follows. Given a set

of n size data points, partition the data points in k

clusters based on local search. A random set of initial k

cluster centers is chosen. Each point is assigned to the

closest cluster center determined by minimizing the sum of

Euclidean distance of its features. The centers of the

clusters are recomputed based on the new set of data points

in the given cluster. The procedure is repeated until all

points are assigned to the cluster that minimizes is

Euclidean distance. The clusters with their data points

are then returned from the procedure.[Arthur, et al. 2006]

3. Hierarchical Agglomerative Algorithm

The hierarchical agglomerative procedure clusters data

points as follows. Given n data points, assign each to its

own cluster. The procedure then searches the space for the

two clusters having minimum Euclidean distance between the

vectors. The procedure continues until all clusters have

been joined into one cluster containing all data points.

Alternatively, you can force a floor on the number of

clusters. [Lakhina, et al. 2005]

11

4. Random Forests

Classification accuracy has seen large improvements by

growing a number of trees and having them vote for the most

popular class. Random vectors are used to govern the

growth of individual trees. Breiman demonstrated an early

form of this method in 1996 with his introduction of

bagging.[Breiman. 1996] In bagging, trees are grown from

the training set by taking random examples from the set.

Dietterich and Breiman continued to refine the randomness

in [Dietterich. 1998]and [Breiman. 1998]. Ho proposed

using “the random subspace” method to take a random subset

of features to grow individual trees, [Ho. 1998] because

Random Forests are used extensively in our experiments, we

will describe them more below.

a. Formal Definition

Random Forests were formally defined in 2001 as:

A classifier consisting of a collection of tree-structured

classifiers {h(x, Θk), k=1,…} where the {Θk} are

independent identically distributed random vectors and each

tree casts a unit vote for the most popular class at input

x. [Breiman. 2001] The random vector is defined as Θ. The

nature and dimensionality of Θ depends on its use in tree

construction.

b. Overfitting

Breiman proves with Theorem 1.2 in [Breiman.

2001] that if you have a large number of trees, the Strong

Law of Large Numbers and the tree structure will ensure

that Random Forests will not overfit as additional trees

are added, rather the additional trees limit the value of

the generalization error.

12

5. Random Forests vs. Adaboost

Research into Random Forests explored various methods

to lower the generalization error.[Dietterich.

1998][Breiman. 1998, Freund, et al. 1996] [Bauer, et al.

1999]

Adaboost was the benchmark to compare any

implementation of a Random Forest. Breiman worked to

improve accuracy by injecting randomness to minimize the

correlation p while maintaining strength. Breiman’s class

of random trees had five promising characteristics:

• Accuracy equal or better to Adaboost

• Robust handling of outliers and noise

• Faster than bagging or boosting

• Provides internal estimates of error, strength,

correlation and variable importance

• Simple and easily parallelizable

a. Empirical Experiments

Breiman conducted several experiments using 16

data sets from the University of California Irvine

repository. Breiman compared two means of growing Random

Forests, in both a random 10% of the data was set aside. A

Random Forest was grown to a size of 100 trees, where F is

the number of inputs to split on. The experiments were run

twice, once with F=1 and the second time with F equal to

the result of equation (1.1), where M is the number of

inputs.

2int(log 1)F M= + (1.1)

Each method was run 100 times and the test-set errors

were averaged. For a fair comparison the same procedure

13

was used to separate the data and 50 trees were combined

for the Adaboost runs. Breiman’s results showed that

Random Forest using a random input(Forest-RI) selection

were comparable to Adaboost with the added advantage of

being much faster. A Forest-RI took four minutes to

execute where Adaboost took approximately three hours.

Breiman modified the random input concept by

defining more features by taking random linear combinations

of a subset of the input variables. This version of the

Random Forest was called Forest-RC. Forest-RC did better

compared to Adaboost than Forest-RI.

b. Noise

Additional experiments to determine how sensitive

Random Forests were to mislabeled data, aka “noise”, when

compared to Adaboost. Adaboost had a sharp decrease in

classification with 5% noise, while for both Random Forests

procedures noise had only minor changes.

c. Conclusions

Breiman demonstrated in 2001 that Random Forests

are an effective tool in predication. Overfitting is not

an issue. Breiman’s results demonstrated Random Forests

are at least as accurate as other machine-learning

algorithms. Another advantage of Random Forests is that

the training set is not altered throughout the procedure as

is the case with bagging and boosting.[Breiman. 2001]

E. CHOOSING A MACHINE-LEARNING ALGORITHM

Caruana and Niculescu-Mizil in 2006, completed a

comprehensive empirical study on learning algorithms. This

was the first large scale comparison since King conducted

the STATLOG study in 1995. They examined 10 supervised

14

learning methods compared them with 8 different performance

metrics. The results are detailed in Table 1.

Table 1 Normalized scores of each learning algorithm
by problem(averaged over eight metrics) (From Ref.

[Caruana, et al. 2006])

 Uncalibrated Random Forests performed best at the

precision/recall break even point and accuracy metrics and

across three of the data sets. Calibration of a Random

Forest only provided a small improvement. [Caruana, et al.

2006] In 2004, Random Forests were used in classifying

data sets with highly-imbalanced classes. Often the

interest is in ensuring correct classification of the

“rare” class. The way the Random Forest classifier works

is to assign a weight to each class, with the rare class

given the larger weight. Weighting occurs twice, once

for weighting where to split and then in the terminal node.

15

The classification for each node is voted upon in a

“weighted majority vote.” The number of cases in the node

is multiplied by the weight given to the class of the case

and the node is classified by taking the higher weight

class. Random Forests proved to be more robust than CART

4.5, Neural Nets or SHRINK in classifying highly-imbalanced

data sets. [Chen, et al. 2004] Therefore, Random Forest

algorithm as implemented by Breiman and Cutler in the

Salford Systems Random Forest v1.0 package will be used to

classify anomalies in our experiment.

F. RELATED WORK

The following section will discuss related work that

has been done in the problem area of anomaly-detection and

classification with intrusion detection.

The majority of recent approaches to classify

anomalies from network traffic information have focused on

the changes in volume of network traffic as a key

metric.[Duan, et al. 2005, Hong Han, et al. 2002,

Jaroszewicz, et al. 2005, Jian Yin, et al. 2004, Julisch,

et al. 2002, Khanna, et al. 2006] However, as seen in

Table 2, anomalies also impact the traffic-feature

distributions in differing ways.

16

Table 2 Qualitative effects on traffic feature
distributions by differing anomaly types. (From Ref.

[Lakhina, et al. 2005])

There are several types of anomalies that have very

little impact on the volume of network traffic and thus can

escape a volume approach to anomaly-detection. Therefore a

different approach must be undertaken to locate low volume

anomalies in network traffic. [Lakhina, et al. 2005]

Lakhina’s hypothesis was that anomalies induce a change in

the OD flow. A worm will skew distribution for the

destination addresses, and a skewed distribution for the

target port the worm is scanning.

Several machine-learning algorithm approaches have

been utilized in classifying anomalies in network traffic,

but Random Forests have not been thoroughly studied for

their effectiveness in classifying anomalies. [Yang, et al.

2004, Zhao Junzhong, et al. 2002, Ren, et al. 2004, Chavan,

et al. 2004, Colombe, et al. 2004] Random Forests have

been very successful in other domains in classifying

17

highly-imbalanced data. [Chen, et al. 2004, Ham, et al.

2005, Jian Xue, et al. 2006]

This paper will use the definition from [Lakhina, et

al. 2004] to describe traffic features. A traffic feature

is a field in the header of a packet. Four fields from the

header will be used to identify anomalies: source address

denoted (sIP), destination address denoted (dIP), source

port denoted (sPort), and destination port denoted (pPort).

 A method to measure the uncertainty of a given

discrete event occurring based on a set of observed

distributions was first described in 1949.[Shannon, et al.

1949] This metric as described is known as sample

entropy. Starting with a discrete set of symbols {s1, s2 …

sn} with associated probabilities Pi, the entropy of the

discrete distribution is a measure of randomness in the

sequence of symbols drawn from it is shown in equation

(1.2).

2
1

 log
n

ii
i

Sample Entropy P P
=

= −∑ (1.2)

The value of sample entropy lies in the range (0,log2

n). Note, entropy does not depend on the symbols

themselves, just on their probabilities. With a given

number of symbols s, the uniform distribution in which

every symbol is equally likely to appear, is the maximum

entropy distribution and H= log2m. Minimum entropy

distribution occurs when distribution is totally

concentrated, here the metric takes on a value of H = 0.

[Duda. 2001]

18

Sample entropy can be used to estimate the actual

entropy of the random behavior of 1999 DARPA data set.

This paper will not assume to capture the actual randomness

behavior of all five weeks of the 1999 DARPA data traffic.

Rather we will use sample entropy as a metric to capture

the frequency tendency of the distribution of only the

observed data set.

In this thesis, sample entropy is computed from

feature distributions gathered from probe counts. Sample

entropy’s range of values depends on the number of distinct

values seen in the observed data set.

We also calculate another metric which we call

Normalized Information, from equations (1.3) and (1.4).

Information is calculated by finding the data set frequency

distribution for a feature. Let Pi be the probability of a

feature occurring in the overall data set. The value of

information in a five-minute time slice is normalized by

the average number of bytes per packet in a given time

slice as see in equation (1.4).

2
1

 log
n

i
i

Infomation P
=

= −∑ (1.3)

InformationNormalized Information
Avg Num Bytes Per Packet

= (1.4)

 G. CHAPTER SUMMARY

In summary, this chapter described, at a high level,

differing ways to intrude into a computer network and

systems designed to detect that behavior. In addition,

three types of malicious activity were described. Four

19

machine-learning algorithms were introduced with the Random

Forest algorithm covered in greater detail. The reasons

for choosing the Random Forest algorithm as our classifier

was also discussed. Finally, sample entropy and normalized

information were defined.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. DESIGN OF EXPERIMENT

In the last chapter we described the several malicious

attacks and various machine-learning algorithms. In this

chapter, we will describe how we generate a matrix of

vectors for each data set. We then describe how we used

this labeled data to run a series of Random Forest

experiments with the goal of predicting classification

labels from the predictor vectors.

A. EXPERIMENTAL OVERVIEW

Machine-learning algorithms have been utilized in

anomaly-detection experiments. However, prior to May of

2006, there had not been any published results using Random

Forests. Since the ratio of attack traffic to normal

traffic is highly-imbalanced, we selected the Random Forest

algorithm.

The remainder of this chapter details the data set,

code used transform the data set, software packages used in

conducting the experiments, and problems encountered in

conduct of the experiment.

B. DATA SET

To run our experiments we used traffic generated by

the MIT Lincoln Labs as part of the DARPA 1999 IDS

evaluation. [Zissman. 2002] The evaluation has five weeks

of traffic, divided into two sections. The first portion

of the evaluation is three weeks of training data. Only

the second week of this data contained attacks. The second

portion of the evaluation is two weeks of test data. Each

week of data had five days of traffic. Traffic was

collected at two points in the network, inside and outside

the boundary router. Data collection began approximately

22

8am each day and stopped at 6am the following day this

means each block of traffic contained approximately 22

hours of traffic. The simulation was then shut down for

maintenance and restarted at 8am for the next day’s data

block.

Collected Data

We took the inside and outside tcpdump data from

second week of training data and the first week of test

data for our experimental data. There was an error on the

second day of test week when the network traffic sniffer

did not collect inside traffic. The first day of the second

week of test data was used to ensure that there was five

days of traffic from both the training and test data for

evaluation.

C. TRANSFORMING THE DATA

The DARPA data contained full Ethernet packets. To

run the experiments, we needed to extract six features from

each packet: timestamp, source IP address, destination IP

address, source port number, destination port number, and

number of bytes in the packet. All code used to transform

the data can be found in Appendix A.

1. Sampling

To simulate sampling from live traffic only every

tenth packet was chosen for the experimental data set.

Sampling was conducted separately on the inside and outside

tcpdump files. This sampling was done with Sampler.java.

2. Extracting Features from Full Packet Data

We explored various means for extracting the six

features from a packet. Network traffic viewers like

Wireshark and Tcpdump were tested for ability to extract

the features and were found to be excellent on filtering on

the information match of a particular feature. This

23

products could not just extract information from an

identified feature in the packet, therefore another tool

was required. Additional research located SiLK: The

Analyst’s Suite. [SourceForge. 2006] This suite was

created by Carnegie Mellon University’s Computer Emergency

Response Team (CERT) to examine traffic throughout a

network, observe malicious activity, trace server behavior

and other analytical tools. [SourceForge. 2006]The SiLK

software package currently only works on LINUX type

operating systems. We utilized three analytical tools to

extract the features from the tcpdump data files.

a. Converting TCPDUMP to SiLK files

We had to first convert the data from Tcpdump

file format into a SiLK flow record. SiLK flow records

collapse fragmented packets into one flow record. This

allows for addition of OSI layer four information to the

flows. We used the rwptoflow utility to make the

conversion. Figure 1 shows the command line used to

transform a file into a SiLK flow record.

Figure 1. Rwptoflow file conversion

b. Extracting Features from a SiLK File

Once we had the data in a SiLK file, we were able

to employ the rwcut to print selected fields to a new file.

We used the –delimited option to utilize a comma to

separate output files and the -fields option to select the

fields to be sent to the output file. Figure 2 provides an

example of the command.

24

Figure 2. Rwcut command to extract selected fields to a
designated output file

The data was now in a flat file, with each field

separated by commas, and had only one packet per line. The

last field also has a comma after it to allow for ease of

reordering fields if necessary. Figure 3 shows one line of

output ordered per the rwcut utility: Source IP,

Destination address, Source Port, Destination Port, number

of bytes in the packet, and the start time of the packet.

Time is formatted with 24 hour numbering and the time zone

is Greenwich Time.

Figure 3. Extracted data fields

3. Calculating Aggregate Data for a Given Five-

minute Time Slice

a. Sorting the Data by Time

We now had the data in separate flat files and

needed to combine them into one large file ordered by their

timestamp. We used the DOS copy command to append the

files into one large file. We created two small Perl

programs called Reorder.pl and Sorter.pl to reorder the

fields with the timestamp first, this allows the Sort.pl to

sort the data on that field and output the data back into

the same file in ascending order.

25

b. Placing Packets in Five-minute Time Slices

We utilized a Perl package called Date::Calc

which allows for comparison of two dates. The package

contains a Delta function to determine the difference

between two times. We decided to split our data into five-

minute time slices to allow for comparison to related work.

We created an array of arrays, each array contained five-

minutes worth of packets. We used Entropy_Info.pl to do

this comparison. Figure 4 illustrates the average number

of packets calculated per time slice.

Figure 4. Average Number of Packets per Time Slice

26

c. Overall Probability Distribution

We created a hash table for Source IP,

Destination address, Source Port, Destination Port. We

also counted the total number of packets in the file. We

are able to determine for each unique key in the hash

table, the number of counts for that key and the overall

probability for the key in the distribution. The key is

associated with the overall probability and they are

written to a new hash table. We used Entropy_Info.pl to do

this comparison.

d. Five-minute Time Slice Information

We examine each five-minute slice of traffic for

each of the four features. For each unique instance of a

feature, we find the log2 of that instance’s probability

from the overall distribution calculated earlier and sum

them for the overall information contained in the five-

minute time slice. We used Entropy_Info.pl to do this

comparison.

e. Normalizing Information

Since the number of packets in each time slice

varied greatly we needed to normalize the information by

dividing each raw feature value by the number of packets in

a time slice. This calculation was done using Excel.

f. Five-minute Time Slice Entropy

We examine each five-minute slide of traffic for

each of the four features. For each unique instance of a

feature, we calculate the instance’s probability from the

five-minute probability distribution. This probability is

multiplied by the log2 of the probability and summed for the

entropy of the five-minute time slice. We used

Entropy_Info.pl to perform the calculations.

27

g. Average Number of Bytes per Packet in a
Five-minute Time Slice

We calculated the average number of bytes in the

time slice by determining the total number of bytes in a

time slice and simply dividing by total number of packets

in a time slice. We used Bytes.pl to extract total number

of bytes per time slice and imported that data into the

Excel spreadsheet containing the other data

D. RANDOM FORESTS

This section will describe the basic setup of Salford

Systems implementation of Random Forests (RF). A trial

version of this software package is available for 30 days.

1. Variable Selection

We loaded our data in a CSV format. Figure 5 shows

the initial menu after the data is loaded. We would select

the four predictor variables and a target variable. The

target variable will be what the RF attempts to classify

based off of the predicator variables.

28

Figure 5. Random Forest Variable Selection

2. Testing

One of the major advantages of RF is it does not

modify the original data set. RF by default uses

Out-of-Bag data for testing. It does this by pulling out

approximately one-third of the data for self-testing. This

is an extension of cross-validation which is repeated

several hundred times. This ensures a high reliability.

Figure 6 shows how the weights of each class can be

modified. Figure 7 shows how you can modify the testing

process if desired.

If classifying one class is important, weighting for that

class can be specified orders of magnitude higher than

other classes.

29

Figure 6. Weighting Choices for training and testing

Figure 7. Options for Testing the Forest

30

3. Random Forest Tree Choices

The next screen allows the tester to choose the number
of trees to be grown, number of predictors for a node, the
size of the bootstrap sample. Figure 8 shows this clearly.
The manual recommends that the number of predicators for
each node should be the square root of the total number of
predictors.

Figure 8. Options for Testing the Forest

3. Experiment Parameters

Several experiments were run on four combinations of

the data sets. The four data sets are as follows:

Normalized Information, Sample Entropy, Normalized

Information and Sample Entropy, and Normalized Information

with Sample Entropy and average number of bytes per packet

which we defined in Chapter II.

31

a. Variables

All available predicators in each data were

utilized. Classification was always the target variable.

b. Model Adjustments

Each of the following parameters in the model

were adjusted independently: The number of trees to be

built was varied from 100, 250, 500 and 1000. For each

size of the forest, class weights were adjusted between

balanced classes and weighting attack traffic to 10, 100,

and 1000. The weight of normal traffic was kept constant

at 1.

E. PROBLEMS DISCOVERED IN CONDUCT OF THE EXPERIMENTS

There were a few unexpected problems that occurred

while we conducted these experiments that should be noted.

1. DARPA 1999 Training Data

The week two training data which contains the attack

sequences only lists the starting times for the attacks.

In the test data the duration of attacks were also

recorded. This proved to be significant as several attacks

spanned greater than 10 minutes. This meant that one of

these attacks must result in multiple five-minute time

slices being treated as containing attack traffic.

Therefore the second week of training data was not utilized

in obtaining our experimental results.

2. Stealth Watch

Data was initially collected from the Naval

Postgraduate School’s network. Stealth Watch stores probes

for 30 days, which would allow for a robust data set. A

careful examination of the probe data set showed that only

highly suspicious probes were present in the data set.

Using this data would not provide the correct balance of

normal to attack packets

32

3. Wire Shark

A second attempt was made to collect raw packets from

the Naval Postgraduate School’s network utilizing Wire

Shark, the packet sniffer formally known as Ethereal, in

this attempt seven days of traffic would be collected and

attack traffic would be identified after the fact utilizing

Snort and Stealth Watch. One second of network traffic

sampled at 2:30 pm on a weekday generated a file two Mega

Bytes in size. There was sufficient space on the campus

storage area network to store the files until they could be

reduced using the SiLK suite. However, Wire Shark was

generating temporary files on the collection server and

within minutes would consume all free disk space available

and crash the service. Limiting packet captures to 68 bytes

increased the time to service failure but not enough to

make it a viable approach for large amounts of traffic.

Using multiple files was also attempted without success.

The first file would write correctly and then the service

would crash when attempting to write to the second file.

F. CHAPTER SUMMARY

In summary, this chapter described the experiment’s

data set, how the data set was transformed, the parameters

for the experiment runs and ended with a discussion of

problems encountered in conducting the experiment.

33

IV. DATA RESULTS AND EVALUATION

In the last chapter, we described the experiment

design. In this chapter, we will describe the results of

the series of Random Forest experiments.

A. BASELINE: CALL-ALL-BAD

In all the experiments present in this chapter, the

baseline used is Call-all-bad. We use the f-score equation

(1.5) rather than harmonic mean equation (1.6) to evaluate

our results. We assumed an algorithm that labels all

observations as a bad. Precision is calculated simply as

the proportion of actual bads in the dataset. Recall will

always be 1.

2
1 1F Score

P R

− =
+

 (1.5)

1

 1n

i i

nHarmonic Mean

x=

=
∑

 (1.6)

The baseline results are conservative since the recall

score is 1, which will increase the baseline f-score. The

key point is that the recall is not at the expense of

precision. If it were, then the f-score being, a special

case of the harmonic mean would be lower. To show this,

first compute the f-score with p=.6 and r=.6. You can see

the answer is .6, identical to the arithmetic mean.

However if you adjust your algorithm such that recall is

increased to 1 while precision is lowered to .1, the

harmonic mean is lower than the arithmetic mean. That is,

the arithmetic mean would be .55, while the f-score would

be .181.[Martell. 2005]

34

1. 1999 DARPA Week Two Test Baseline

There are 1099 good observations and 202 bad

observations in the data set. This generates a precision

of .155 and a recall of 1 resulting in a f-score baseline

of .27.

A. NORMALIZED INFORMATION EXPERIMENTS

In this section we present the results of our

experiments using normalized information. This section is

divided into balanced and unbalanced experiments. The

balanced experiments attempt to maximize precision and

recall for both good and bad, while unbalanced experiments

try to maximize recall at the expense of precision. The

unbalanced experiments were done because for defense

purposes, we are far more concerned that all bad

observations are captured. A result of this weighting is

that some good observations will be included in the bad

classification observations.

1. Balanced Experiments

The results of the balanced experiments are given in

Table 3. All the experiments are versions of Random

Forests with the differences being in the number of trees

used.

35

 Normalized Information Balanced
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.68 0.70 0.69 257%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.66 0.74 0.70 260%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.67 0.71 0.69 257%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.66 0.72 0.69 256%

Table 3 Precision, Recall, and F-Score Results for

Balanced Weighting on the Normalized Information
Data Set

2. Unbalanced Experiments

The results of the unbalanced experiments are given in

Tables 4-6. All the experiments are versions of Random

Forests with the differences in the number of trees used.

 Normalized Information Bad Weight 10
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.58 0.80 0.67 251%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.58 0.82 0.68 252%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.58 0.82 0.68 252%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.58 0.83 0.68 253%

 Table 4 Precision, Recall, and F-Score Results for Bad
Weighted 10 on the Normalized Information Data Set

36

 Normalized Information Bad Weight 100
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.42 0.94 0.58 216%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.38 0.96 0.54 201%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.38 0.96 0.55 203%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.38 0.96 0.55 204%

 Table 5 Precision, Recall, and F-Score Results for Bad
Weighted 100 on the Normalized Information Data Set

 Normalized Information Bad Weight 1000
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.41 0.96 0.57 213%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.36 0.97 0.52 195%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.34 0.99 0.51 189%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.32 0.99 0.49 181%

 Table 6 Precision, Recall, and F-Score Results for Bad
Weighted 1000 on the Normalized Information Data Set

3. Results

It is interesting that the 1000 tree unbalanced data

with bad weighted at 10 experiment run was able to increase

the recall by .07 while only reducing precision by .08 as

compared to the 250 trees balanced data run resulting in a

37

f-score decrease of only .02. It also was interesting in

that there was a clear recall increase by continually

weighting bad heavier, so that at 500 trees with a bad

weight of 1000 experiment run, a recall of .99 was

achieved, at a of cost of precision dropping to .34 for a

f-score of .51. We also note that growing the Random

Forest to 1000 trees could hurt the precision in certain

runs of the experiment.

B. SAMPLE ENTROPY

In this section we present the results of our

experiments using sample entropy. As before, this section

is divided into balanced and unbalanced experiments

1. Balanced Experiments

The results of the balanced experiments are given in

Table 7. All the experiments are versions of Random

Forests with the differences being in the number of trees

used.

 Sample Entropy Balanced
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.63 0.65 0.64 239%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.65 0.67 0.66 246%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.65 0.67 0.66 247%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.65 0.67 0.66 246%

Table 7 Precision, Recall, and F-Score Results for
Balanced Weighting on the Sample Entropy Data Set

38

2. Unbalanced Experiments

The results of the unbalanced experiments are given in

Tables 8-10. All the experiments are versions of Random

Forests with the differences being in the number of trees

used.

 Sample Entropy Bad Weight 10
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.54 0.78 0.64 239%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.54 0.80 0.64 239%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.53 0.82 0.64 239%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.53 0.81 0.64 238%

 Table 8 Precision, Recall, and F-Score Results for Bad
Weight 10 on the Sample Entropy Data Set

 Sample Entropy Bad Weight 100
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.37 0.93 0.53 195%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.34 0.94 0.50 186%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.35 0.96 0.52 192%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.35 0.96 0.51 190%

 Table 9 Precision, Recall, and F-Score Results for Bad
Weight 100 on the Sample Entropy Data Set

39

 Sample Entropy Bad Weight 1000
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.38 0.94 0.54 202%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.34 0.97 0.50 187%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.32 0.98 0.48 179%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.32 0.98 0.49 181%

 Table 10 Precision, Recall, and F-Score Results for
Bad Weight 1000 on the Sample Entropy Data Set

3. Results

These results were interesting in that growing forests

from a size of 100 to 1000 only increased the recall from

.03 to .05 for a given weight factor. In this series of

runs, the best achieved was a .98 by weighting bad to 1000,

this resulted in a precision of .32 for a f-score of .49.

C. NORMALIZED INFORMATION AND SAMPLE ENTROPY

In this section we present the results of our

experiments using normalized information and sample

entropy. As before, this section is divided into balanced

and unbalanced experiments.

1. Balanced Experiments

The results of the balanced experiments are given in

Table 11. All the experiments are versions of Random

Forests with the differences being in the number of trees

used.

40

 Normalized Information + Sample Entropy Balanced
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.64 0.73 0.68 255%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.64 0.77 0.70 261%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.64 0.76 0.69 259%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.64 0.78 0.70 260%

Table 11 Precision, Recall, and F-Score Results for

 Balanced Weighting on the Normalized Information and
Sample Entropy Data Set

2. Unbalanced Experiments

The results of the unbalanced experiments are given in

Tables 12-14. All the experiments are versions of Random

Forests with the differences being in the number of trees

used.

 Normalized Information + Sample Entropy Bad Weight 10
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.56 0.89 0.68 254%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.53 0.89 0.67 248%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.54 0.91 0.67 251%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.53 0.91 0.67 249%

 Table 12 Precision, Recall, and F-Score Results for

 Bad Weight 10 on the Normalized Information and Sample
Entropy Data Set

41

 Normalized Information + Sample Entropy Bad Weight 100
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.42 0.94 0.58 216%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.38 0.98 0.55 205%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.39 0.98 0.56 207%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.39 0.97 0.55 205%

Table 13 Precision, Recall, and F-Score Results for
Bad Weight 100 on the Normalized Information and Sample

Entropy Data Set

 Normalized Information + Sample Entropy Bad Weight 1000
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
100 Trees 0.42 0.95 0.59 218%

Call-all-Bad 0.16 1.00 0.27
250 Trees 0.37 0.97 0.54 199%

Call-all-Bad 0.16 1.00 0.27
500 Trees 0.33 0.98 0.50 185%

Call-all-Bad 0.16 1.00 0.27
1000 Trees 0.30 0.99 0.47 173%

 Table 14 Precision, Recall, and F-Score Results for
Bad Weight 1000 on the Normalized Information and

Sample Entropy Data Set

42

3. Results

It was interesting that for the balanced weighting

there was no statistical gain in growing the forest larger

than 250 trees. It was also interesting that with a bad

weight of 100 a recall of .98 and a precision of .39

resulting in a f-score of .56 was achievable at 500 trees.

Recall was able to see a gain of .04 at 500 trees while

only causing a reduction in the by .02 compared to the 100

tree f-score.

D. NORMALIZED INFORMATION, SAMPLE ENTROPY AND AVERAGE
BYTES PER PACKET

In this section we present the results of our

experiments as seen in Table 15 using normalized

information, sample entropy and average bytes per packet.

1. 500 Tree Experiments

 Normalized Information + Sample Entropy + Avg Bytes 500 Trees
 Precision Recall F-Score Increase over Baseline
Call-all-Bad 0.16 1.00 0.27
Balanced 0.62 0.79 0.69 257%

Call-all-Bad 0.16 1.00 0.27
Bad Wgt 10 0.52 0.92 0.66 247%

Call-all-Bad 0.16 1.00 0.27
Bad Wgt 100 0.38 0.97 0.55 204%

Call-all-Bad 0.16 1.00 0.27
Bad Wgt 1000 0.33 0.99 0.50 185%

Table 15 Precision, Recall, and F-Score Results for
500 Trees with all Weightings on the Normalized
Information, Sample Entropy and Average Bytes per

Packet Data Set

43

2. Results

Since the previous three sets of experiments showed

very minor gains by going beyond 500 trees, we decided to

run this series of experiments at 500 trees. This run of

experiments was not expected to show better results than

the earlier data sets and was run only because the data was

available. It was very interesting that it was possible to

achieve a recall of .99 with a bad weighting of 1000,

precision however, was only .33 resulting in a f-score of

.50.

E. EVALUATION OF OVERALL RESULTS

Overall we found it very interesting that the worst f-

score result was a .47 from the Normalized Information and

Sample Entropy 1000 trees bad weight of 1000 run. This

result still beat the baseline f-score by 173%. However,

more importantly with this f-score, recall was .99, this

metric is the focus for intrusion detection.

We also found it puzzling that the Normalized

Information metric independently could achieve a higher

recall than Sample Entropy. Further work is needed to

analyze this result.

A extremely good result was the ability to obtain a

recall of .96 with only a Random Forest of 100 trees. This

result came from the Normalized Information with a bad

weight of 1000. This result can be run on a laptop running

a 2GHz Pentium4 processor with 384MB of RAM in under 30

seconds. It shows the possibility of conducting near real-

time analysis of traffic and locating attack traffic that

is getting past a rule-based intrusion detection system.

44

F. CHAPTER SUMMARY

In summary, this chapter detailed the results from

utilizing the four different combinations of variables

varying the number of trees grown and the weight of the bad

data. In the next chapter, we will discuss our conclusions

and layout possible future work.

45

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

Random Forests were able to classify anomalies in the

1999 DARPA data set. Using only six features from the

TCP/IP header data, Random Forests could identify over 99%

of five-minute time slices containing attack traffic. This

recall comes at a significant reduction in the overall f-

score dropping it from .65 to .34. However, this is a

worthwhile trade off since in intrusion detection the goal

is to ensure all attack traffic is captured.

We conclude that the distribution of packet features

(IP addresses and ports) reveals the presence of a wide

range of attack traffic. Sample entropy and normalized

information are capable automatic classification of

anomalies via unsupervised learning.

B. FUTURE WORK

 A goal of this thesis was to determine the

effectiveness of Random Forests in classifying anomalies in

network traffic. Therefore, future work should include

testing Random Forests on additional intrusion detection

data sets. There is only the DARPA data set from 1998 and

1999 currently available for scientific researchers to run

experiments. It would be interesting to test on the Abilene

and Geant Data sets to determine the effectiveness of

Random Forests on that data set.1

 A huge boon to the intrusion detection scientific

community would be to develop and make available a labeled

data set from the Naval Postgraduate School Network.

1 Computer Science, Boston University 111 Cummington Street, Boston,

MA 02215 | Telephone 617 353 8919 | E-mail cs@bu.edu

46

We also believe it would be interesting to transform

the 1999 DARPA data set using the subspace method and

Multi-way method combining all vectors into one to allow

for a truer comparison to the results of [Lakhina, et al.

2005].

Another idea would be compare the results of Random

Forests to the K-means algorithm. Unfortunately in our

experiments, the K-means results did not cluster the data

set sufficiently to allow for a scientific comparison.

The data sets should be run on other implementations of the

K-means algorithm to confirm these results.

Finally, we identify issues that could aid in the

advancement of intrusion detection research:

1. Develop a more efficient way of automatically

consolidating, transforming, and analyzing extracted data.

One possible approach would be to combine the various

programs written for this thesis into one program which

would automatically generate files for Random Forest to

classify. Random Forest algorithm as implemented by

Salford Systems is capable of running batch jobs. The

automatically generated files could be a run by a batch job

and labeled as good or bad. This would allow a network

analyst to focus on labeled bad traffic.

2. Explore the importance of the predictor

variables, and discover if the predictors are constant

across the four data sets. Our experiments indicated that

the source port was the key predictor of bad traffic and

that the destination port was relatively unimportant.

Evaluating these variables with principle component

analysis could provide further insight into these findings.

47

3. Develop a prototype classifier to take sample

entropy from near real-time traffic. This could be

designed to work with a hard or sliding five minute window.

The time-slices would then be automatically processed and

run as a batch job by the Random Forest algorithm, which

would label the time-slice as good or bad. The results of

the Random Forest would generate alerts for bad traffic.

4. In parallel to the prototype classifier run a

standard rule-based IDS like Snort. The snort alerts could

be correlated with alerts from the Random Forest classifier

and items with a low correlation would be flagged for human

examination. The low correlation might indicate bad

traffic that evaded Snort.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

APPENDIX A. GENERATED CODE

A. SAMPLER.JAVA

import java.io.*;

import java.math.*;
import javax.swing.*;
import java.lang.Integer.*;
/**
* Written by Bret Hyla
* extracts 1 in 10 lines from a text file.
* Sept 2006 NPS
 */
public class Sampler {

public int counter =0;

public Sampler () {

 }
public static void main(String args[])

 { Sampler run= new Sampler();
 int i=0;
 int count=0;
 try {
BufferedReader reader = new BufferedReader(new
FileReader(“FullDataSet.txt”));

try {

BufferedWriter writer = new BufferedWriter(new
FileWriter(“SampledDataSet.txt”));

while (true){

String test =reader.readLine();

if (test==null){

writer.close();
break;

 }
while(i<10){

50

test =reader.readLine();

i=i+1;

 }
if (test==null){
writer.close();

break;

 }
writer.write(test);

writer.newLine();

count++;
i=0;

 }
writer.close();

} catch(IOException ex) { //2

 ex.printStackTrace(); //2
 } //2
 reader.close();

} catch (IOException ex) { //2

 ex.printStackTrace(); //2
 } //2
 }
}

51

B. SORTER.PL

works with following format on CL sorter.pl followed by
filename

file is sorted on first element, if tie then second etc

base file came from
http://www.developertutorials.com/tutorials/cgi-perl/perl-
sorting-050423/page1.html

Bret Hyla
NPS

open(SORT,”>bytes_sorted.txt”);
my @words=<>;

foreach(sort @words) {
print SORT ;
}
close SORT;

C. REORDER.PL

The print SOURCESORTED line can contain any

of the variables listed in the while loop.
The order can be modified simply by choosing
the variable to be put first.
Bret Hyla September 2006

open(FILE, “allsampleddata.txt”);
open(SOURCESORTED, “>bytes.txt”);
while (<FILE>) {

$line=$_;

($sIP, $dIP, $sPort, $dPort, $bytes, $time, $comma)=

(split /,/,$line);

print SOURCESORTED “$time,$bytes \n”;

 }

close FILE;

close SOURCESORTED;

52

D. BYTES.PL

This program finds the average number of bytes in

a 5 minute time slice referred to here as chunk.
This code is not part of the overall main program as
we decided after the first data sets were created to
see if adding the average size of bytes per packet
would increase the classification rate
Bret Hyla September 2006

open(FILE, “bytes_sorted.txt”);
open(BYTES, “>bytes_in_chunk.txt”);

use Date::Calc qw(:all);

Set a base date to do the timestamp comparison, it #should
be the first timestamp in sorted file from oldest #to
newest.

$yr=”1999”; $mon=”03”;$day= “08”; $hr=”13”; $min=”00”;
$sec=”00”;

$chunk=0;
$good=0;
$bytes_inchunk=0;

while (<FILE>) {

$line=$_;
($date,$bytes)=(split /,/,$line);

$bytes_inchunk=$bytes_inchunk+$bytes;

$newtime=$date;
$newtime=~ (s/T/:/);
($yr2,$mon2,$day2,$hr2,$min2,$sec2) = (split
/[\/:]/,$newtime);

($D_y,$D_m,$D_d,$Dh,$Dm,$Ds) =
Delta_YMDHMS($yr,$mon,$day,$hr,$min,$sec,

$yr2,$mon2,$day2, $hr2,$min2,$sec2);

push @AoA, [($chunk, $sIP, $dIP, $sPort, $dPort,$good)];

#looks at the delta in the two packet time stamps and if
#condition is met creates a new chunk

if ($Dm>4 or $D_m>0 or $D_d>0 or $Dh>0) {

 $yr=$yr2; $mon=$mon2;

53

 $day=$day2; $hr=$hr2;
 $min=$min2; $sec=$sec2;

 $chunk++;
 print BYTES”$chunk, $bytes_inchunk \n”;
 $bytes_inchunk=0;
 }

} #while

close FILE;

E. TEST_TRAIN.PL

This program splits the first file into two files

These files contain 80% and 20% of the original file.

Warning, if you have already sorted the data be sure you

have your classification groups as the primary key.

open(FILE, “Info_normalized_entropy_2ndweekv2_sorted.csv”);
open(TEST, “>test.txt”);
open(TRAIN,”>train.txt”);

$chunk=0;
print”$chunk is 0”;

while (<FILE>) {

$line=$_;
#print” chunk is $chunk\n”;

print TRAIN”$line”;
$chunk++;

if ($chunk>4){

print TEST”$line”;
$chunk=0;
print” chunk is $chunk\n”;

 }
 }
close FILE;

close TEST;
close TRAIN;

54

F. ENTROPY_INFORMATION.PL

open(FILE, “sorted.txt”);
several sections of code were based on tutorials found at
#http://perldoc.perl.org/perllol.html

use Date::Calc qw(:all);

#initial a base date to do the timestamp comparison, it
#should be the first timestamp in sorted file from oldest
#to newest.

Bret Hyla September 2006 NPS

$yr=”1999”; $mon=”03”; $day = “08”; $hr=”13”; $min=”00”;
$sec=”00”;

$chunk=0;
$good=0;
while (<FILE>) {

$line=$_;

($date,$sIP, $dIP, $sPort, $dPort,$comma)=(split /,/,$line);

$g++;

$sIPhashinfo{$sIP}++; $dIPhashinfo{$dIP}++;
$sPorthashinfo{$sPort}++; $dPorthashinfo{$dPort}++;

$newtime=$date;
$newtime=~ (s/T/:/);
($yr2,$mon2,$day2,$hr2,$min2,$sec2) = (split
/[\/:]/,$newtime);

($D_y,$D_m,$D_d,$Dh,$Dm,$Ds) =
Delta_YMDHMS($yr,$mon,$day,$hr,$min,$sec,

$yr2,$mon2,$day2, $hr2,$min2,$sec2);

push @AoA, [($chunk, $sIP, $dIP, $sPort, $dPort,$good)];

#looks at the delta in the two packet time stamps and if
#condition is met creates new chunk

if ($Dm>4 or $D_m>0 or $D_d>0 or $Dh>0) {

 $yr=$yr2; $mon=$mon2;
 $day=$day2; $hr=$hr2;

55

 $min=$min2; $sec=$sec2;

 $chunk++;
 }

} #while

close FILE;

function to find unique source ips and their prob across
#all data

foreach $keyinfo (keys %sIPhashinfo) {
$p++;
$valueinfo =$sIPhashinfo{$keyinfo};
$probinfo=$valueinfo/$g;
$probinfo{$keyinfo}=$valueinfo/$g;

}

print “num source unique ip keys $p \n”;

function to find unique dest ips and their prob across
#all data

foreach $key2info (keys %dIPhashinfo) {
$q++;
$value2info
=$dIPhashinfo{$key2info};
$prob2info{$key2info}=$value2
info/$g;

}

print “num dest ip unique keys $p \n”;

function to find unique source ports and their prob
#across all data

foreach $key3info (keys %sPorthashinfo) {
$r++;
$value3info =$sPorthashinfo{$key3info};
$prob3info=$value3info/$g;
$prob3info{$key3info}=$value3info/$g;
}

print “num source port unique keys $r \n”;

function to find unique dest ports and their prob across

56

all data

foreach $key4info (keys %dPorthashinfo) {
$s++;
$value4info
=$dPorthashinfo{$key4info};
$prob4info=$value4info/$g;
$prob4info{$key4info}=$value4
info/$g;

}
print “num dest port unique keys $s \n”;
print” total lines read is $g”;

open (INFO,”>info.txt”);
open (ENTROPY, “>entropy.txt”);

$prior=0;

for $i (0.. $#AoA) {

if ($prior != $AoA[$i][0]){

print “\nNew Prior: $prior\n\n”;

 foreach $key (keys %sIPhash) {
 $value =$sIPhash{$key};
 $prob=$value/$t;
$sum = $sum +$prob;
 $entropyeach=-1*($prob* log($prob));
 $infoeach = -1* log($probinfo{$key});
print “ info is $infoeach\n”;
 $totalinfo = $totalinfo + $infoeach;
 $totalentropy= $entropyeach +$totalentropy;
 }

foreach $key2 (keys%dIPhash) {
$value2 =$dIPhash{$key2};
$prob2=$value2/$t;

$sum2 = $sum2 +$prob2;
 $entropyeach2=-1*($prob2* log($prob2));
 $infoeach2 = -1* log($prob2info{$key2});
 $totalinfo2 = $totalinfo2 + $infoeach2;
 $totalentropy2=$entropyeach2 +$totalentropy2;
 }

foreach $key3 (keys%sPorthash) {

57

$value3 =$sPorthash{$key3};
$prob3=$value3/$t;

$sum3 = $sum3 +$prob3;
 $entropyeach3=-1*($prob3* log($prob3));
 $infoeach3 = -1* log($prob3info{$key3});
 $totalinfo3 = $totalinfo3 + $infoeach3;
 $totalentropy3=$entropyeach3 +$totalentropy3;
 }

foreach $key4 (keys%dPorthash) {

$value4 =$dPorthash{$key4};
$prob4=$value4/$t;

$sum4 = $sum4 +$prob4;
 $entropyeach4=-1*($prob* log($prob4));
 $infoeach4 = -1* log($prob4info{$key4});
 $totalinfo4 = $totalinfo + $infoeach4;
 $totalentropy4=$entropyeach4 +$totalentropy4;
 }

print ENTROPY “$prior,$t,
$totalentropy,$totalentropy2,$totalentropy3,$totalentropy4\n
”;

print INFO “$prior,$t, $totalinfo,$totalinfo2,$totalinfo3,
$totalinfo4\n”;

$prior= $AoA[$i][0];

clearing all variables for the next time slice

$t=0;
undef $sum; undef $key; undef $prob ;
undef $entropyeach; undef $infoeach;
undef $totalinfo; undef $totalentropy;
undef $sum2; undef $key2; undef $prob2;
undef $entropyeach2; undef $infoeach2; undef $totalinfo2;
undef $totalentropy2; undef $sum3; undef $key3;

undef $prob3; undef $entropyeach3; undef $infoeach3;
undef $totalinfo3; undef $totalentropy3;
undef $sum4; undef $key4; undef $prob4;
undef $entropyeach4; undef $infoeach4; undef $totalinfo4;
undef $totalentropy4; undef %sIPhash; undef %dIPhash;

undef %sPorthash; undef %dPorthash;
} # if ($prior != $AoA[$i][0])

 $t++;

 $srIP= $AoA[$i][1];

58

 $sIPhash{$srIP}++;

 # print “ count after t++ $t”;
 # print” $t”;

 $dtIP= $AoA[$i][2];
 $dIPhash{$dtIP}++;

 $srPort= $AoA[$i][3];
 $sPorthash{$srPort}++;

 $dtPort= $AoA[$i][4];
 $dPorthash{$dtPort}++;

 } # for $i (0.. $#AoA) brace

close ENTROPY;
close INFO;

59

LIST OF REFERENCES

ANDERSON, J. 1980. Computer Security Threat Monitoring
and Surveillance. 1-56.

ARTHUR, D. AND VASSILVITSKII, S. 2006. How slow is the

k-means method? In SCG '06: Proceedings of the twenty-
second annual symposium on Computational geometry, Sedona,
Arizona, USA, ACM Press, New York, NY, USA, 144-153.

BACE, R.G. 2001. Intrusion detection systems. 43.

BAUER, E. AND KOHAVI, R. 1999. An Empirical Comparison

of Voting Classification Algorithms: Bagging, Boosting, and
Variants. Machine Learning 36, 105-139.

BREIMAN, L. 1996. Bagging Predictors. Machine Learning

26, 123-140.

BREIMAN, L. 1998. Using adaptive bagging to debias

regressions. 547, Statistics Department, University of
California, Berkeley

BREIMAN, L. 2001. Random Forests. Statistics

Department, University of California, Berkeley

CANAVAN, J.E. 2001. Fundamentals of network security.

319.

CARUANA, R. AND NICULESCU-MIZIL, A. 2006. An empirical

comparison of supervised learning algorithms. In ICML '06:
Proceedings of the 23rd international conference on Machine
learning, Pittsburgh, Pennsylvania, ACM Press, 161-168.

CHAVAN, S., SHAH, K., DAVE, N., MUKHERJEE, S.,
ABRAHAM, A. AND SANYAL, S. 2004. Adaptive neuro-fuzzy
intrusion detection systems. Proceedings International
Conference on Information Technology: Coding and Computing,
2004..ITCC 2004., 70-74 Vol.1.

CHEN, C., LIAW, A. AND BREIMAN, L. 2004. Using Random
Forest to Learn Imbalanced Data. 666, Statistics
Department, University of California, Berkeley

60

COLOMBE, J.B. AND STEPHENS, G. 2004. Statistical
profiling and visualization for detection of malicious
insider attacks on computer networks. In VizSEC/DMSEC '04:
Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, Washington DC, USA, ACM
Press, , 138-142.

CROTHERS, T., MCSE. 2003. Implementing intrusion
detection systems : a hands-on guide for securing the
network. 316.

DENNING, D.E. 1987. An intrusion-detection model. 13,

222-232.

DIETTERICH, T. 1998. An Experimental Comparison of

Three Methods for Constructing Ensembles of Decision Trees:
Bagging, Boosting and Randomization. Machine Learning 28,
22.

DUAN, Q., HU, C. AND WEI, H. 2005. Enhancing network

intrusion detection systems with interval methods.
Proceedings of the 2005 ACM symposium on Applied computing
1444-1448.

DUDA, R.O. 2001. Pattern classification. 654.

ERBSCHLOE, M. 2005. Trojans, worms, and spyware : a

computer security professional's guide to malicious code.
212.

FREUND, Y. AND SCHAPIRE, R. 1996. Experiments with a

new boosting algorithm. In Machine Learning: Proceedings of
the Thirteenth International Conference, 148-156.

HAM, J., YANGCHI CHEN, CRAWFORD, M.M. AND GHOSH, J.

2005. Investigation of the random forest framework for
classification of hyperspectral data. Geoscience and Remote
Sensing, IEEE Transactions on 43, 492-501.

HO, T.K. 1998. The random subspace method for

constructing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20, 832-844.

61

HONG HAN, XIN-LIANG LU AND LI-YONG REN. 2002. Using
data mining to discover signatures in network-based
intrusion detection. Proceedings, 2002 International
Conference on Machine Learning and Cybernetics , 13-17
vol.1.

JAROSZEWICZ, S. AND SCHEFFER, T. 2005. Fast discovery
of unexpected patterns in data, relative to a Bayesian
network. Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data
mining 118-127.

JIAN XUE AND YUNXIN ZHAO. 2006. Random Forests-Based

Confidence Annotation Using Novel Features from Confusion
Network. Proceedings.2006 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2006.ICASSP 2006,
I-1149; I-1152.

JIAN YIN, GANG ZHANG, YI-QUN CHEN AND XIAN-LI FAN.
2004. Multi-events analysis for anomaly intrusion
detection. Proceedings of 2004 International Conference on
Machine Learning and Cybernetics, 1298-1303 vol.2.

JULISCH, K. AND DACIER, M. 2002. Mining intrusion
detection alarms for actionable knowledge. Proceedings of
the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining 366-375.

KHANNA, R. AND LIU, H. 2006. System approach to

intrusion detection using hidden Markov model. In IWCMC
'06: Proceeding of the 2006 international conference on
Communications and mobile computing, Vancouver, British
Columbia, Canada, ACM Press, , 349-354.

LAKHINA, A., CROVELLA, M. AND DIOT, C. 2004.
Characterization of network-wide anomalies in traffic
flows. In IMC '04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, Taormina, Sicily,
Italy, ACM Press, New York, NY, USA, 201-206.

LAKHINA, A., CROVELLA, M. AND DIOT, C. 2005. Mining
anomalies using traffic feature distributions. Proceedings
of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications
217-228.

LANCOPE. 2006. Lancope's StealthWatch. 2006, 12.

62

LLOYD, S.P. 1982. Least Squares Quantization in PCM.
IEEE Trans. Information Theory 28, 129-137.

MARTELL, C. 2005. Form: An Experiment in the

Annotation of the Kinematics of Gesture. 1-245.

PROCTOR, P.E. 2001. Practical intrusion detection

handbook. 359.

REN, D., RAHAL, I., PERRIZO, W. AND SCOTT, K. 2004. A

vertical distance-based outlier detection method with local
pruning. In CIKM '04: Proceedings of the thirteenth ACM
international conference on Information and knowledge
management, Washington, D.C., USA, ACM Press, , 279-284.

SHANNON, C. AND WEAVER, W. 1949. Comprehensive
statement. The Mathematical Theory of Communication

SOURCEFORGE. 2006. SiLK Analysis Suite. 2006,

YANG, D., HU, C. AND CHEN, Y. 2004. A framework of

cooperating intrusion detection based on clustering
analysis and expert system. Proceedings of the 3rd
international conference on Information security 150-154.

ZHAO JUNZHONG AND HUANG HOUKUAN. 2002. An evolving

intrusion detection system based on natural immune system.
TENCON '02.Proceedings.2002 IEEE Region 10 Conference on
Computers, Communications, Control and Power Engineering ,
129-132 vol.1.

ZISSMAN, M. 2002. 1999 DARPA IDE Week 4 Test Data.
2006,

63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative

Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46

Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code
C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn:
Operations Officer)
Camp Pendleton, California

