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ABSTRACT 

Sample Entropy examines changes in the normal 

distribution of network traffic to identify anomalies.  

Normalized Information examines the overall probability 

distribution in a data set. Random Forests is a supervised 

learning algorithm which is efficient at classifying 

highly-imbalanced data.  Anomalies are exceedingly rare 

compared to the overall volume of network traffic.  The 

combination of these methods enables low-bandwidth 

anomalies to easily be identified in high-bandwidth network 

traffic. Using only low-dimensional network information 

allows for near real-time identification of anomalies.  The 

data set was collected from 1999 DARPA intrusion detection 

evaluation data set.  The experiments compare a baseline f-

score to the observed entropy and normalized information of 

the network.    Anomalies that are disguised in network 

flow analysis were detected.  Random Forests prove to be 

capable of classifying anomalies using the sample entropy 

and normalized information. Our experiment divided the data 

set into five-minute time slices and found that sample 

entropy and normalized information metrics were successful 

in classifying bad traffic with a recall of .99 and a f-

score .50 which was 185% better than our baseline.    
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I. INTRODUCTION 

A. PROLOGUE 

In this chapter we will introduce the reader of a new 

approach in classifying low volume anomalies in network 

traffic.  In addition, we will continue with discussion of 

Sample Entropy and Normalized Information.  We will then 

provide a brief description of our hypothesis.   We will 

continue with discussion of how we tested our hypothesis 

using the Random Forest Algorithm.  We will conclude with a 

synopsis of the remaining chapters of this thesis. 

B. BACKGROUND 

Sample Entropy examines changes in the normal 

distribution of network traffic to identify anomalies.  

Normalized Information examines the overall probability 

distribution in a data set. Random Forests is a supervised 

learning algorithm which is efficient at classifying 

highly-imbalanced data.  Anomalies are exceedingly rare 

compared to the overall volume of network traffic. 

C. HYPOTHESIS 

Our hypothesis is that the combination of Sample 

Entropy and Normalized Information will enable low-

bandwidth anomalies to be identified in high-bandwidth 

network traffic. We anticipate that by only using low-

dimensional network information it may in the future be 

able to allow for near real-time identification of 

anomalies.  The data set the hypothesis was tested against 

was the 1999 DARPA intrusion detection evaluation data set.  

The experiments compared a baseline f-score to the observed 

entropy and normalized information of the network.       
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The Random-Forest algorithm is an unsupervised 

machine-learning algorithm which has proven capable at 

classifying highly-imbalanced data sets, but not in the 

field of intrusion detection.  Our experiments will address 

whether the combinations of sample entropy and/or 

normalized information processed by a Random-Forest 

algorithm are capable, and the degree of capability in 

identifying low-bandwidth anomalies.  These anomalies often 

avoid detection by standard anomaly-based intrusion 

detection systems. 

D. ORGANIZATION OF THIS DOCUMENT 

The remainder of this thesis is organized as follows.  

Chapter II will discuss intrusion detection systems, a few 

common anomalies, different machine-learning algorithms, 

and Stealth Watch an anomaly-based intrusion detection 

system.   Chapter III will describe the design of the 

experiment and gathering of a data set needed to test our 

hypothesis.  Chapter IV will analyze and discuss the 

results of the experiments. Chapter V offers conclusions 

and recommendations for future work and the Appendix 

contains the code used to transform the original data into 

a suitable format for the experiments.     
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II. BACKGROUND  

A. INTRUSION DETECTION 

An intrusion to a computer or computer network is 

defined by [Canavan. 2001] as “an unauthorized attempt or 

achievement to access, alter, render unavailable, or 

destroy information on a system or the system itself.”   

Network administrators were previously able to review 

various logs on a daily basis to check for intrusion 

attempts.  However, given the growth of the Internet and 

the volume of traffic now being generated on a networK-

means waiting for daily checks is too late. Another 

approach is required.  

Intrusion Detection Systems (IDSs) began as research 

projects for the US government in the early 1980’s.  In, 

1980 James Anderson published the first paper in which he 

describes an effort to improve the computer security 

auditing and surveillance of a network.  In his 

paper,[Anderson. 1980] the threat was broken into four 

categories:  

1. External Penetration   

An individual from outside the organization attempting 

to gain access to computer network resources; also an 

employee who has physical access but is not an authorized 

computer user. 

2. Internal Penetration 

Anderson breaks this type of penetration into three 

subgroups. He claims that this variant of threat is more 

prevalent than an external threat. 

a. Masquerader 

This is a user who has gained a proper user 

identification and a corresponding password.    Locating 
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this type of user can be attempted by looking at audit 

records for deviations from normal activity for a given 

user. 

b. Legitimate User   

Misuse of authorized access to the computer 

network. This might be reveled in an audit log if the user 

is accessing data for which they do not have authorization.   

Once again, a normal profile of user activity on the 

computer system is required to locate anomalies. 

c. Clandestine User 

 This is a user who can obtain administrator 

control of a computer and delete or alter the audit trail.  

Here having a reference model of the operating system with 

which to compare the current state of the machine is key to 

detection.  Storing audit records in central location not 

on the local machine is another approach which makes hiding 

the activity of a clandestine user much more 

difficult.[Anderson. 1980] 

B. TYPES OF INTRUSION DETECTION SYSTEMS 

Unlike a firewall, intrusion detection systems do not 

block unauthorized packets based on a rule set.   An IDS 

instead analyzes the packet header and packet content and 

makes a determination of legitimacy.  If a packet is deemed 

malicious an alert is generated, allowing a system 

administrator to examine the packet. 

Intrusion Detection Systems come in two basic types: 

host-based and network-based.  The following two sections 

describe these two types in general terms. 

1. Network-based Intrusion Detection 

Network-based intrusion detection systems (NIDS) 

analyze network packets, compare packet structure to know 
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malware patterns, search an internal rule set, then make a 

determination of misuse, and if necessary generate an alarm 

which is reported to a centralized location.  A NIDS has 

several advantages.  It is effective at detecting outsiders 

attempting to penetrate the network, one or at most a few 

sensors are all that is required to provide coverage for 

the entire network, and since the NIDS is listening for all 

network traffic, it is positioned to detect attacks 

directed at any host on the network.  A NIDS, if configured 

appropriately also has the potential to stop an attack 

prior to reaching the hosts.  A NIDS generally runs on a 

specially built machine so it does not degrade the 

computing resources of individual systems.  NIDS have two 

approaches they use to classify an intrusion. 

a. Signature-based IDS 

This system matches a know signature or pattern 

that was generated by the IDS vendor.  The rule set is 

stored locally in every instance of the IDS.  It is also 

commonly referred to as rule-based intrusion detection 

(RBID).  When a new attack pattern has been observed it is 

analyzed and a new rule is generated by the vendor. The 

vendor notifies customers that an “update” is available so 

their instance can have the most current rule set.  Most 

vendors sell systems which can be configured to 

automatically check with the vendor for updates and 

automatically install them. This method ensures the IDS 

always has the vendors most current rule set and a network 

administrator does not have to spend the time to check on a 

daily basis.     

b. Anomaly-based IDS 

In 1987, Denning [Denning. 1987] described a 

model for a real-time intrusion detection system which 
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built on Anderson’s work.  Her hypothesis was that security 

violations in the network could be discovered by searching 

for abnormal patterns of use in the system.  The model 

created a profile based on statistical metrics for every 

subject in the system and compares the baseline profile to 

current activity searching for deviations from the profile.   

Anomaly-detection defined by Bace is “using statistical 

techniques to find patterns of activity that appear to be 

abnormal.”[Bace. 2001]  These patterns of activity are 

evaluated for possible signs of malicious activity. While 

these systems have great potential to defend against new or 

unknown attacks, determining what traffic is abnormal is 

still a great challenge.  In 2000, Lancope Corporation 

released StealthWatch, one of the first anomaly-based IDS. 

[Lancope. 2006]  

2. Host-based Intrusion Detection systems (HIDS) 

A host-based IDS is designed to monitor and analyze 

data that originates on the individual system on which if 

installed. HIDS are particularly effective at detecting 

misuse of the system by an authorized user.[Proctor. 2001] 

HIDS have several different sources of data available on 

the host, system logs, audit logs, listing of active 

processes, keystroke monitoring, and packet throughput.  

There are several advantages to HIDS including: 

• Actual results of an attack or user misuse of 
system are available.  

• Less reliance on a set of rules. 
• Higher likelihood of detecting an unknown attack. 
• Insiders knowing they are being monitored are 

less likely to misuse the system. 
• No additional hardware requirement. 
• Encrypted network traffic is accessible for 

analyzing.  
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HIDS by themselves have numerous disadvantages.  The 

most critical is that  a HIDS can have a significant 

performance impact on the host. If the host is compromised 

the system logs, if stored locally, are subject to 

manipulation. Some attacks, like a buffer overflow, are not 

likely to be logged.  Finally, if the system is compromised 

the monitoring can be terminated or nullified. [Crothers. 

2003] Therefore, good-quality audit sources are critical.  

These logs should be created by a trusted source, be of 

sufficient detail to recreate every event, and stored off-

host to protect their integrity.[Proctor. 2001] 

Both network-based IDS and HIDS have advantages and 

drawbacks to specific attack methods but together they 

create a much more effective network defense than either 

alone.  Some examples of malicious activity likely to be 

found in a current network that NIDS and HIDS can help 

discover and prevent is presented in the next section. 

C. MALICIOUS ACTIVITY 

Malicious activity can be defined as an intentional 

attempt to bypass computer security measures in some 

fashion.  [Crothers. 2003]  Users may attempt to download 

music files from a common peer to peer files sharing system 

like KaZaA in violation of company policy.  They may 

install an internet shareware game on their computer which 

has a network scanner embedded inside of it.  A user could 

open an attachment from an unknown user asking the user to 

“click”, which, while displaying the funny video, enables a 

worm to be loaded into the local system.  In the following 

section worms network scanners, peer-to-peer software and 

network scanners will be described.  
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1. Worm 

A worm is a self replicating computer program that is 

self-contained and does not need any other software program 

to replicate.  The name “worm” comes from The Shockware 

Rider, a science fiction novel written by John Brunner in 

1975. The first worm on a worldwide network was the 

Christmas Tree Worm released in December 1987, which spread 

across IBM’s network and BITNET. [Erbschloe. 2005] The 

power of the worm was such both networks were severely 

affected.   A worm has four primary qualities: a 

propagation mechanism, transport an executable piece of 

code, identify additional machines vulnerable to the worm 

and various means to attempt to avoid detection.  This 

combination of attributes makes a worm appealing to 

malicious users.   

 2. Peer-to-Peer   

These are programs that allow you to connect to other 

users to share files, instant message other users text, 

voice messages or files, and conduct distributed 

processing, which utilizes the unused computing power on 

your local computer to create huge computing power 

capacity.  They also allow you to create a network to 

upload and download material; this is often music, video 

and games.  This ability to upload and download material is 

of great concern to network security personnel.  Files that 

are downloaded can contain additional content; this content 

can be spyware, viruses, Trojan horses, or worms.  Once the 

file is downloaded the system can then be exploited and 

serve as a zombie or malware server to spread malicious 

code inside the local area network.  These applications 

also allow others to receive access and place files on your 
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local machine without your knowledge.  Continuously 

scanning the network for any signs of peer to peer activity 

can help eliminate a common attack vector for malware.  One 

of the more dangerous types of malware that is now 

exploiting peer to peer systems are worms, I will give an 

example of one recently identified worm in the next 

section. 

3. Service Discovery 

This is an attempt by an unauthorized user or piece of 

software to discover what applications or computers exist 

in your network. This informs the attacker which computers 

are turned on and what ports they are listening for network 

traffic on.  Service discovery is utilized by all levels of 

hackers. SuperScan by FoundStone and Nmap by Insecure are 

two popular tools for service discovery.  Network security 

personnel should be concerned if this type of activity is 

detected on the network.  Scanning is an indicator that 

service discovery is or has taken place and the attacker 

can now craft an exploit specifically designed to exploit 

vulnerabilities found in your network.     

D. MACHINE-LEARNING ALGORITHMS 

There are several machine-learning algorithms that 

have been created to attempt to find patterns and anomalies 

in data sets.  The following sections will describe a few 

of them in detail. 

1. CART 

The classification and regression tree (CART) is a 

general framework in which for a given set of data can be 

broken into smaller subsets determined by category labels.  

Each split is designed to select the best label to split 

upon with the goal of creating a subset of data with the 

exact same categorical values.  Data subsets that are not 
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pure are called nodes, and splitting continues until a data 

set ideally contains only the same categorical values. This 

subset is deemed “pure” and splitting is halted on the 

given subset of data.  The subset is also classified as a 

leaf of the tree.  In highly variable data, a floor can be 

set on the splitting function based on the observations in 

a node, this prevents an expanse of leafs with only one 

observation. [Duda. 2001] 

2. K-MEANS 

The K-means algorithm was introduced by 1982. [Lloyd. 

1982] It remains quite popular due to its simplicity and 

speed.  The K-means procedure works as follows. Given a set 

of n size data points, partition the data points in k 

clusters based on local search.  A random set of initial k 

cluster centers is chosen. Each point is assigned to the 

closest cluster center determined by minimizing the sum of 

Euclidean distance of its features.  The centers of the 

clusters are recomputed based on the new set of data points 

in the given cluster.  The procedure is repeated until all 

points are assigned to the cluster that minimizes is 

Euclidean distance.  The clusters with their data points 

are then returned from the procedure.[Arthur, et al. 2006] 

3. Hierarchical Agglomerative Algorithm  

The hierarchical agglomerative procedure clusters data 

points as follows.  Given n data points, assign each to its 

own cluster.  The procedure then searches the space for the 

two clusters having minimum Euclidean distance between the 

vectors.    The procedure continues until all clusters have 

been joined into one cluster containing all data points.  

Alternatively, you can force a floor on the number of 

clusters. [Lakhina, et al. 2005] 
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4. Random Forests 

Classification accuracy has seen large improvements by 

growing a number of trees and having them vote for the most 

popular class.  Random vectors are used to govern the 

growth of individual trees.  Breiman demonstrated an early 

form of this method in 1996 with his introduction of 

bagging.[Breiman. 1996] In bagging, trees are grown from 

the training set by taking random examples from the set.  

Dietterich and Breiman continued to refine the randomness 

in [Dietterich. 1998]and [Breiman. 1998].  Ho proposed 

using “the random subspace” method to take a random subset 

of features to grow individual trees, [Ho. 1998]  because 

Random Forests are used extensively in our experiments, we 

will describe them more below. 

a. Formal Definition 

Random Forests were formally defined in 2001 as:  

A classifier consisting of a collection of tree-structured 

classifiers {h( x, Θk ), k=1,…} where the {Θk} are 

independent identically distributed random vectors and each 

tree casts a unit vote for the most popular class at input 

x. [Breiman. 2001] The random vector is defined as Θ.  The 

nature and dimensionality of Θ depends on its use in tree 

construction. 

b. Overfitting 

Breiman proves with Theorem 1.2 in [Breiman. 

2001] that if you have a large number of trees, the Strong 

Law of Large Numbers and the tree structure will ensure 

that Random Forests will not overfit as additional trees 

are added, rather the additional trees limit the value of 

the generalization error.  
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5. Random Forests vs. Adaboost 

Research into Random Forests explored various methods 

to lower the generalization error.[Dietterich. 

1998][Breiman. 1998, Freund, et al. 1996] [Bauer, et al. 

1999]   

Adaboost was the benchmark to compare any 

implementation of a Random Forest.  Breiman worked to 

improve accuracy by injecting randomness to minimize the 

correlation p while maintaining strength.  Breiman’s class 

of random trees had five promising characteristics: 

• Accuracy equal or better to Adaboost 

• Robust handling of outliers and noise 

• Faster than bagging or boosting 

• Provides internal estimates of error, strength, 

correlation and variable importance 

• Simple and easily parallelizable  

a. Empirical Experiments 

Breiman conducted several experiments using 16 

data sets from the University of California Irvine 

repository.   Breiman compared two means of growing Random 

Forests, in both a random 10% of the data was set aside.  A 

Random Forest was grown to a size of 100 trees, where F is 

the number of inputs to split on. The experiments were run 

twice, once with F=1 and the second time with F equal to 

the result of equation (1.1), where M is the number of 

inputs. 

2int(log 1)F M= +       (1.1) 

Each method was run 100 times and the test-set errors 

were averaged.  For a fair comparison the same procedure 
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was used to separate the data and 50 trees were combined 

for the Adaboost runs.   Breiman’s results showed that 

Random Forest using a random input(Forest-RI) selection 

were comparable to Adaboost with the added advantage of 

being much faster.  A Forest-RI took four minutes to 

execute where Adaboost took approximately three hours. 

Breiman modified the random input concept by 

defining more features by taking random linear combinations 

of a subset of the input variables. This version of the 

Random Forest was called Forest-RC. Forest-RC did better 

compared to Adaboost than Forest-RI.   

b. Noise 

Additional experiments to determine how sensitive 

Random Forests were to mislabeled data, aka “noise”, when 

compared to Adaboost.   Adaboost had a sharp decrease in 

classification with 5% noise, while for both Random Forests 

procedures noise had only minor changes.    

c. Conclusions 

Breiman demonstrated in 2001 that Random Forests 

are an effective tool in predication.  Overfitting is not 

an issue.  Breiman’s results demonstrated Random Forests 

are at least as accurate as other machine-learning 

algorithms.  Another advantage of Random Forests is that 

the training set is not altered throughout the procedure as 

is the case with bagging and boosting.[Breiman. 2001] 

E. CHOOSING A MACHINE-LEARNING ALGORITHM 

Caruana and Niculescu-Mizil in 2006, completed a 

comprehensive empirical study on learning algorithms. This 

was the first large scale comparison since King conducted 

the STATLOG study in 1995.    They examined 10 supervised 
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learning methods compared them with 8 different performance 

metrics.  The results are detailed in Table 1.  

 

Table 1 Normalized scores of each learning algorithm 
by problem(averaged over eight metrics) (From Ref. 

[Caruana, et al. 2006]) 

 

 Uncalibrated Random Forests performed best at the 

precision/recall break even point and accuracy metrics and 

across three of the data sets.  Calibration of a Random 

Forest only provided a small improvement.  [Caruana, et al. 

2006]  In 2004, Random Forests were used in classifying 

data sets with highly-imbalanced classes.  Often the 

interest is in ensuring correct classification of the 

“rare” class.  The way the Random Forest classifier works 

is to assign a weight to each class, with the rare class 

given the larger weight.    Weighting occurs twice, once 

for weighting where to split and then in the terminal node.  
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The classification for each node is voted upon in a 

“weighted majority vote.” The number of cases in the node 

is multiplied by the weight given to the class of the case 

and the node is classified by taking the higher weight 

class.  Random Forests proved to be more robust than CART 

4.5, Neural Nets or SHRINK in classifying highly-imbalanced 

data sets. [Chen, et al. 2004]   Therefore, Random Forest 

algorithm as implemented by Breiman and Cutler in the 

Salford Systems Random Forest v1.0 package will be used to 

classify anomalies in our experiment.   

F. RELATED WORK 

The following section will discuss related work that 

has been done in the problem area of anomaly-detection and 

classification with intrusion detection. 

The majority of recent approaches to classify 

anomalies from network traffic information have focused on 

the changes in volume of network traffic as a key 

metric.[Duan, et al. 2005, Hong Han, et al. 2002, 

Jaroszewicz, et al. 2005, Jian Yin, et al. 2004, Julisch, 

et al. 2002, Khanna, et al. 2006]  However, as seen in 

Table 2, anomalies also impact the traffic-feature 

distributions in differing ways.   
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Table 2 Qualitative effects on traffic feature 
distributions by differing anomaly types. (From Ref.  

[Lakhina, et al. 2005]) 

 

There are several types of anomalies that have very 

little impact on the volume of network traffic and thus can 

escape a volume approach to anomaly-detection.  Therefore a 

different approach must be undertaken to locate low volume 

anomalies in network traffic.  [Lakhina, et al. 2005]  

Lakhina’s hypothesis was that anomalies induce a change in 

the OD flow.  A worm will skew distribution for the 

destination addresses, and a skewed distribution for the 

target port the worm is scanning. 

Several machine-learning algorithm approaches have 

been utilized in classifying anomalies in network traffic, 

but Random Forests have not been thoroughly studied for 

their effectiveness in classifying anomalies. [Yang, et al. 

2004, Zhao Junzhong, et al. 2002, Ren, et al. 2004, Chavan, 

et al. 2004, Colombe, et al. 2004]  Random Forests have 

been very successful in other domains in classifying 
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highly-imbalanced data.  [Chen, et al. 2004, Ham, et al. 

2005, Jian Xue, et al. 2006] 

This paper will use the definition from  [Lakhina, et 

al. 2004] to describe traffic features.  A traffic feature 

is a field in the header of a packet.  Four fields from the 

header will be used to identify anomalies: source address 

denoted (sIP), destination address denoted (dIP), source 

port denoted (sPort), and destination port denoted (pPort).   

  A method to measure the uncertainty of a given 

discrete event occurring based on a set of observed 

distributions was first described in 1949.[Shannon, et al. 

1949]  This metric as  described is known as sample 

entropy.  Starting with a discrete set of symbols {s1, s2 … 

sn} with associated probabilities Pi,  the entropy of the 

discrete distribution is a measure of randomness in the 

sequence of symbols drawn from it is shown in equation 

(1.2). 

2 
1

  log
n

ii
i

Sample Entropy P P
=

= −∑      (1.2) 

  

The value of sample entropy lies in the range (0,log2 

n).  Note, entropy does not depend on the symbols 

themselves, just on their probabilities.  With a given 

number of symbols s, the uniform distribution in which 

every symbol is equally likely to appear, is the maximum 

entropy distribution  and  H= log2m.  Minimum entropy 

distribution occurs when distribution is totally 

concentrated, here the metric takes on a value of H = 0. 

[Duda. 2001] 
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Sample entropy can be used to estimate the actual 

entropy of the random behavior of 1999 DARPA data set.  

This paper will not assume to capture the actual randomness 

behavior of all five weeks of the 1999 DARPA data traffic. 

Rather we will use sample entropy as a metric to capture 

the frequency tendency of the distribution of only the 

observed data set.   

In this thesis, sample entropy is computed from 

feature distributions gathered from probe counts.  Sample 

entropy’s range of values depends on the number of distinct 

values seen in the observed data set. 

We also calculate another metric which we call 

Normalized Information, from equations (1.3) and (1.4). 

Information is calculated by finding the data set frequency 

distribution for a feature.  Let Pi be the probability of a 

feature occurring in the overall data set.  The value of 

information in a five-minute time slice is normalized by 

the average number of bytes per packet in a given time 

slice as see in equation (1.4).  

 

2 
1

  log
n

i
i

Infomation P
=

= −∑        (1.3) 

   
    

InformationNormalized Information
Avg Num Bytes Per Packet

=   (1.4) 

 

 G. CHAPTER SUMMARY 

In summary, this chapter described, at a high level,  

differing ways to intrude into a computer network and 

systems designed to detect that behavior.  In addition, 

three types of malicious activity were described.  Four 
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machine-learning algorithms were introduced with the Random 

Forest algorithm covered in greater detail.  The reasons 

for choosing the Random Forest algorithm as our classifier 

was also discussed. Finally, sample entropy and normalized 

information were defined. 
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III.  DESIGN OF EXPERIMENT 

In the last chapter we described the several malicious 

attacks and various machine-learning algorithms.  In this 

chapter, we will describe how we generate a matrix of 

vectors for each data set.  We then describe how we used 

this labeled data to run a series of Random Forest 

experiments with the goal of predicting classification 

labels from the predictor vectors. 

A. EXPERIMENTAL OVERVIEW 

Machine-learning algorithms have been utilized in 

anomaly-detection experiments.  However, prior to May of 

2006, there had not been any published results using Random 

Forests.  Since the ratio of attack traffic to normal 

traffic is highly-imbalanced, we selected the Random Forest 

algorithm.   

The remainder of this chapter details the data set, 

code used transform the data set, software packages used in 

conducting the experiments, and problems encountered in 

conduct of the experiment.     

B. DATA SET 

To run our experiments we used traffic generated by 

the MIT Lincoln Labs as part of the DARPA 1999 IDS 

evaluation. [Zissman. 2002] The evaluation has five weeks 

of traffic, divided into two sections.  The first portion 

of the evaluation is three weeks of training data.  Only 

the second week of this data contained attacks. The second 

portion of the evaluation is two weeks of test data. Each 

week of data had five days of traffic.  Traffic was 

collected at two points in the network, inside and outside 

the boundary router.  Data collection began approximately 
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8am each day and stopped at 6am the following day this 

means each block of traffic contained approximately 22 

hours of traffic.  The simulation was then shut down for 

maintenance and restarted at 8am for the next day’s data 

block.    

Collected Data 

We took the inside and outside tcpdump data from 

second week of training data and the first week of test 

data for our experimental data.  There was an error on the 

second day of test week when the network traffic sniffer 

did not collect inside traffic. The first day of the second 

week of test data was used to ensure that there was five 

days of traffic from both the training and test data for 

evaluation. 

C. TRANSFORMING THE DATA 

The DARPA data contained full Ethernet packets.  To 

run the experiments, we needed to extract six features from 

each packet: timestamp, source IP address, destination IP 

address, source port number, destination port number, and 

number of bytes in the packet. All code used to transform 

the data can be found in Appendix A. 

1. Sampling 

To simulate sampling from live traffic only every 

tenth packet was chosen for the experimental data set. 

Sampling was conducted separately on the inside and outside 

tcpdump files.  This sampling was done with Sampler.java. 

2. Extracting Features from Full Packet Data 

We explored various means for extracting the six 

features from a packet.  Network traffic viewers like 

Wireshark and Tcpdump were tested for ability to extract 

the features and were found to be excellent on filtering on 

the information match of a particular feature.  This 
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products could not just extract information from an 

identified feature in the packet, therefore another tool 

was required.  Additional research located SiLK: The 

Analyst’s Suite. [SourceForge. 2006]  This suite was 

created by Carnegie Mellon University’s Computer Emergency 

Response Team (CERT) to examine traffic throughout a 

network, observe malicious activity, trace server behavior 

and other analytical tools.  [SourceForge. 2006]The SiLK 

software package currently only works on LINUX type 

operating systems.  We utilized three analytical tools to 

extract the features from the tcpdump data files. 

a. Converting TCPDUMP to SiLK files 

We had to first convert the data from Tcpdump 

file format into a SiLK flow record.  SiLK flow records 

collapse fragmented packets into one flow record.  This 

allows for addition of OSI layer four information to the 

flows.  We used the rwptoflow utility to make the 

conversion.  Figure 1  shows the command line used to 

transform a file into a SiLK flow record.  

 

 

 
 

Figure 1. Rwptoflow file conversion 
 

b. Extracting Features from a SiLK File 

Once we had the data in a SiLK file, we were able 

to employ the rwcut to print selected fields to a new file.  

We used the –delimited option to utilize a comma to 

separate output files and the -fields option to select the 

fields to be sent to the output file.  Figure 2 provides an 

example of the command. 
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Figure 2. Rwcut command to extract selected fields to a 
designated output file 

 

The data was now in a flat file, with each field 

separated by commas, and had only one packet per line. The 

last field also has a comma after it to allow for ease of 

reordering fields if necessary.  Figure 3 shows one line of 

output ordered per the rwcut utility: Source IP, 

Destination address, Source Port, Destination Port, number 

of bytes in the packet, and the start time of the packet. 

Time is formatted with 24 hour numbering and the time zone 

is Greenwich Time. 

 

 
Figure 3. Extracted data fields 

 
3. Calculating Aggregate Data for a Given Five-

minute Time Slice 

a. Sorting the Data by Time 

We now had the data in separate flat files and 

needed to combine them into one large file ordered by their 

timestamp.  We used the DOS copy command to append the 

files into one large file.  We created two small Perl 

programs called Reorder.pl and Sorter.pl to reorder the 

fields with the timestamp first, this allows the Sort.pl to 

sort the data on that field  and output the data back into 

the same file in ascending order. 
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b. Placing Packets in Five-minute Time Slices 

We utilized a Perl package called Date::Calc 

which allows for comparison of two dates.  The package 

contains a Delta function to determine the difference 

between two times.  We decided to split our data into five-

minute time slices to allow for comparison to related work. 

We created an array of arrays, each array contained five-

minutes worth of packets. We used Entropy_Info.pl to do 

this comparison.    Figure 4 illustrates the average number 

of packets calculated per time slice. 

 
Figure 4. Average Number of Packets per Time Slice 
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c. Overall Probability Distribution 

We created a hash table for Source IP, 

Destination address, Source Port, Destination Port.  We 

also counted the total number of packets in the file.   We 

are able to determine for each unique key in the hash 

table, the number of counts for that key and the overall 

probability for the key in the distribution.  The key is 

associated with the overall probability and they are  

written to a new hash table.  We used Entropy_Info.pl to do 

this comparison.    

d. Five-minute Time Slice Information  

We examine each five-minute slice of traffic for 

each of the four features.  For each unique instance of a 

feature, we find the log2 of that instance’s probability 

from the overall distribution calculated earlier and sum 

them for the overall information contained in the five-

minute time slice.  We used Entropy_Info.pl to do this 

comparison.   

e. Normalizing Information 

Since the number of packets in each time slice 

varied greatly we needed to normalize the information by 

dividing each raw feature value by the number of packets in 

a time slice.  This calculation was done using Excel.  

f. Five-minute Time Slice Entropy  

We examine each five-minute slide of traffic for 

each of the four features.  For each unique instance of a 

feature, we calculate the instance’s probability from the 

five-minute probability distribution.  This probability is 

multiplied by the log2 of the probability and summed for the 

entropy of the five-minute time slice.  We used 

Entropy_Info.pl to perform the calculations.   
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g. Average Number of Bytes per Packet in a 
Five-minute Time Slice 

We calculated the average number of bytes in the 

time slice by determining the total number of bytes in a 

time slice and simply dividing by total number of packets 

in a time slice.  We used Bytes.pl to extract total number 

of bytes per time slice and imported that data into the 

Excel spreadsheet containing the other data  

D. RANDOM FORESTS 

This section will describe the basic setup of Salford 

Systems implementation of Random Forests (RF).  A trial 

version of this software package is available for 30 days.  

1. Variable Selection 

We loaded our data in a CSV format.  Figure 5 shows 

the initial menu after the data is loaded.  We would select 

the four predictor variables and a target variable.  The 

target variable will be what the RF attempts to classify 

based off of the predicator variables. 
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Figure 5. Random Forest Variable Selection 

 
2. Testing 

One of the major advantages of RF is it does not 

modify the original data set.  RF by default uses  

Out-of-Bag data for testing.  It does this by pulling out 

approximately one-third of the data for self-testing.  This 

is an extension of cross-validation which is repeated 

several hundred times.  This ensures a high reliability. 

Figure 6 shows how the weights of each class can be 

modified.  Figure 7 shows how you can modify the testing 

process if desired.  

If classifying one class is important, weighting for that 

class can be specified orders of magnitude higher than 

other classes.   
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Figure 6. Weighting Choices for training and testing 
 
 
 

  
 

Figure 7. Options for Testing the Forest 
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3. Random Forest Tree Choices 

The next screen allows the tester to choose the number 
of trees to be grown, number of predictors for a node, the 
size of the bootstrap sample. Figure 8 shows this clearly.  
The manual recommends that the number of predicators for 
each node should be the square root of the total number of 
predictors. 

  

  

Figure 8. Options for Testing the Forest 

 

3. Experiment Parameters 

Several experiments were run on four combinations of 

the data sets.  The four data sets are as follows: 

Normalized Information, Sample Entropy, Normalized 

Information and Sample Entropy, and Normalized Information 

with Sample Entropy and average number of bytes per packet 

which we defined in Chapter II. 
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a. Variables  

All available predicators in each data were 

utilized.  Classification was always the target variable. 

b. Model Adjustments  

Each of the following parameters in the model 

were adjusted independently: The number of trees to be 

built was varied from 100, 250, 500 and 1000.  For each 

size of the forest, class weights were adjusted between 

balanced classes and weighting attack traffic to 10, 100, 

and 1000.  The weight of normal traffic was kept constant 

at 1. 

E. PROBLEMS DISCOVERED IN CONDUCT OF THE EXPERIMENTS  

There were a few unexpected problems that occurred 

while we conducted these experiments that should be noted. 

1. DARPA 1999 Training Data 

The week two training data which contains the attack 

sequences only lists the starting times for the attacks.  

In the test data the duration of attacks were also 

recorded.  This proved to be significant as several attacks 

spanned greater than 10 minutes.  This meant that one of 

these attacks must result in multiple five-minute time 

slices being treated as containing attack traffic.  

Therefore the second week of training data was not utilized 

in obtaining our experimental results. 

2. Stealth Watch 

Data was initially collected from the Naval 

Postgraduate School’s network.  Stealth Watch stores probes 

for 30 days, which would allow for a robust data set.  A 

careful examination of the probe data set showed that only 

highly suspicious probes were present in the data set.  

Using this data would not provide the correct balance of 

normal to attack packets 
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3. Wire Shark 

A second attempt was made to collect raw packets from 

the Naval Postgraduate School’s network utilizing Wire 

Shark, the packet sniffer formally known as Ethereal, in 

this attempt seven days of traffic would be collected and 

attack traffic would be identified after the fact utilizing 

Snort and Stealth Watch.  One second of network traffic 

sampled at 2:30 pm on a weekday generated a file two Mega 

Bytes in size.  There was sufficient space on the campus 

storage area network to store the files until they could be 

reduced using the SiLK suite.  However, Wire Shark was 

generating temporary files on the collection server and 

within minutes would consume all free disk space available 

and crash the service. Limiting packet captures to 68 bytes 

increased the time to service failure but not enough to 

make it a viable approach for large amounts of traffic.  

Using multiple files was also attempted without success.  

The first file would write correctly and then the service 

would crash when attempting to write to the second file.  

F.  CHAPTER SUMMARY 

In summary, this chapter described the experiment’s 

data set, how the data set was transformed, the parameters 

for the experiment runs and ended with a discussion of 

problems encountered in conducting the experiment.     
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IV. DATA RESULTS AND EVALUATION 

In the last chapter, we described the experiment 

design.  In this chapter, we will describe the results of 

the series of Random Forest experiments. 

A. BASELINE: CALL-ALL-BAD 

In all the experiments present in this chapter, the 

baseline used is Call-all-bad.  We use the f-score equation 

(1.5) rather than harmonic mean equation (1.6) to evaluate 

our results. We assumed an algorithm that labels all 

observations as a bad. Precision is calculated simply as 

the proportion of actual bads in the dataset.  Recall will 

always be 1. 

2
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The baseline results are conservative since the recall 

score is 1, which will increase the baseline f-score.  The 

key point is that the recall is not at the expense of 

precision.  If it were, then the f-score being, a special 

case of the harmonic mean would be lower.  To show this, 

first compute the f-score with p=.6 and r=.6.  You can see 

the answer is .6, identical to the arithmetic mean.  

However if you adjust your algorithm such that recall is 

increased to 1 while precision is lowered to .1, the 

harmonic mean is lower than the arithmetic mean.  That is, 

the arithmetic mean would be .55, while the f-score would 

be .181.[Martell. 2005] 
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1. 1999 DARPA Week Two Test Baseline   

There are 1099 good observations and 202 bad 

observations in the data set.  This generates a precision 

of .155 and a recall of 1 resulting in a f-score  baseline 

of .27. 

A. NORMALIZED INFORMATION EXPERIMENTS 

In this section we present the results of our 

experiments using normalized information.  This section is 

divided into balanced and unbalanced experiments.  The 

balanced experiments attempt to maximize precision and 

recall for both good and bad, while unbalanced experiments 

try to maximize recall at the expense of precision.  The 

unbalanced experiments were done because for defense 

purposes, we are far more concerned that all bad 

observations are captured.  A result of this weighting is 

that some good observations will be included in the bad 

classification observations.   

1. Balanced Experiments 

The results of the balanced experiments are given in 

Table 3.  All the experiments are versions of Random 

Forests with the differences being in the number of trees 

used. 
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  Normalized Information Balanced 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.68 0.70 0.69 257% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.66 0.74 0.70 260% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.67 0.71 0.69 257% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.66 0.72 0.69 256% 

 
Table 3 Precision, Recall, and F-Score Results for 

Balanced Weighting on the Normalized Information  
Data Set 

 
2. Unbalanced Experiments 

The results of the unbalanced experiments are given in 

Tables 4-6.  All the experiments are versions of Random 

Forests with the differences in the number of trees used. 

 

  Normalized Information Bad Weight 10 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.58 0.80 0.67 251% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.58 0.82 0.68 252% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.58 0.82 0.68 252% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.58 0.83 0.68 253% 

 

  Table 4 Precision, Recall, and F-Score Results for Bad 
Weighted 10 on the Normalized Information Data Set 
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  Normalized Information Bad Weight 100 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.42 0.94 0.58 216% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.38 0.96 0.54 201% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.38 0.96 0.55 203% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.38 0.96 0.55 204% 

 

  Table 5 Precision, Recall, and F-Score Results for Bad 
Weighted 100 on the Normalized Information Data Set 

 
 

 
  Normalized Information Bad Weight 1000 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.41 0.96 0.57 213% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.36 0.97 0.52 195% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.34 0.99 0.51 189% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.32 0.99 0.49 181% 

 

  Table 6 Precision, Recall, and F-Score Results for Bad 
Weighted 1000 on the Normalized Information Data Set 

 
3. Results 

It is interesting that the 1000 tree unbalanced data 

with bad weighted at 10 experiment run was able to increase 

the recall by .07 while only reducing precision by .08 as 

compared to the 250 trees balanced data run resulting in a 
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f-score decrease of only .02.  It also was interesting in 

that there was a clear recall increase by continually 

weighting bad heavier, so that at 500 trees with a bad 

weight of 1000 experiment run, a recall of .99 was 

achieved, at a of cost of precision dropping to .34 for a 

f-score of .51.  We also note that growing the Random 

Forest to 1000 trees could hurt the precision in certain 

runs of the experiment.     

B. SAMPLE ENTROPY 

In this section we present the results of our 

experiments using sample entropy.  As before, this section 

is divided into balanced and unbalanced experiments  

1. Balanced Experiments 

The results of the balanced experiments are given in 

Table 7.  All the experiments are versions of Random 

Forests with the differences being in the number of trees 

used. 

 

  Sample Entropy Balanced 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.63 0.65 0.64 239% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.65 0.67 0.66 246% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.65 0.67 0.66 247% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.65 0.67 0.66 246% 

 

Table 7 Precision, Recall, and F-Score Results for 
Balanced Weighting on the Sample Entropy Data Set 
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2. Unbalanced Experiments 

The results of the unbalanced experiments are given in 

Tables 8-10.  All the experiments are versions of Random 

Forests with the differences being in the number of trees 

used. 

 

  Sample Entropy Bad Weight 10 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.54 0.78 0.64 239% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.54 0.80 0.64 239% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.53 0.82 0.64 239% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.53 0.81 0.64 238% 

 

  Table 8 Precision, Recall, and F-Score Results for Bad  
Weight 10 on the Sample Entropy Data Set 

 
 
 

  Sample Entropy Bad Weight 100 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.37 0.93 0.53 195% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.34 0.94 0.50 186% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.35 0.96 0.52 192% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.35 0.96 0.51 190% 

 

  Table 9 Precision, Recall, and F-Score Results for Bad  
Weight 100 on the Sample Entropy Data Set 
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  Sample Entropy Bad Weight 1000 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.38 0.94 0.54 202% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.34 0.97 0.50 187% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.32 0.98 0.48 179% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.32 0.98 0.49 181% 

 

  Table 10 Precision, Recall, and F-Score Results for 
Bad  Weight 1000 on the Sample Entropy Data Set 

 
3. Results 

These results were interesting in that growing forests 

from a size of 100 to 1000 only increased the recall from 

.03 to .05 for a given weight factor.  In this series of 

runs, the best achieved was a .98 by weighting bad to 1000, 

this resulted in a precision of .32 for a f-score of .49.  

C. NORMALIZED INFORMATION AND SAMPLE ENTROPY  

In this section we present the results of our 

experiments using normalized information and sample 

entropy.  As before, this section is divided into balanced 

and unbalanced experiments.    

1. Balanced Experiments 

The results of the balanced experiments are given in 

Table 11.  All the experiments are versions of Random 

Forests with the differences being in the number of trees 

used. 
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  Normalized Information + Sample Entropy Balanced 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.64 0.73 0.68 255% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.64 0.77 0.70 261% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.64 0.76 0.69 259% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.64 0.78 0.70 260% 

 

Table 11 Precision, Recall, and F-Score Results for   

 Balanced Weighting on the Normalized Information and 
Sample Entropy Data Set 

 
2. Unbalanced Experiments 

The results of the unbalanced experiments are given in 

Tables 12-14.  All the experiments are versions of Random 

Forests with the differences being in the number of trees 

used. 

  Normalized Information + Sample Entropy Bad Weight 10 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.56 0.89 0.68 254% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.53 0.89 0.67 248% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.54 0.91 0.67 251% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.53 0.91 0.67 249% 

 

  Table 12 Precision, Recall, and F-Score Results for 

  Bad Weight 10 on the Normalized Information and Sample 
Entropy Data Set 
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  Normalized Information + Sample Entropy Bad Weight 100 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.42 0.94 0.58 216% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.38 0.98 0.55 205% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.39 0.98 0.56 207% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.39 0.97 0.55 205% 

 

Table 13 Precision, Recall, and F-Score Results for   
Bad Weight 100 on the Normalized Information and Sample 

Entropy Data Set 

 

 

 

  Normalized Information + Sample Entropy Bad Weight 1000 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
100 Trees 0.42 0.95 0.59 218% 
          
Call-all-Bad 0.16 1.00 0.27   
250 Trees 0.37 0.97 0.54 199% 
          
Call-all-Bad 0.16 1.00 0.27   
500 Trees 0.33 0.98 0.50 185% 
          
Call-all-Bad 0.16 1.00 0.27   
1000 Trees 0.30 0.99 0.47 173% 

 

  Table 14 Precision, Recall, and F-Score Results for 
Bad Weight 1000 on the Normalized Information and 

Sample Entropy Data Set 
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3. Results 

It was interesting that for the balanced weighting 

there was no statistical gain in growing the forest larger 

than 250 trees. It was also interesting that with a bad 

weight of 100 a recall of .98 and a precision of .39 

resulting in a f-score of .56 was achievable at 500 trees.   

Recall was able to see a gain of .04 at 500 trees while 

only causing a reduction in the by .02 compared to the 100 

tree f-score.   

D. NORMALIZED INFORMATION, SAMPLE ENTROPY AND AVERAGE 
BYTES PER PACKET 

In this section we present the results of our 

experiments as seen in Table 15 using normalized 

information, sample entropy and average bytes per packet.       

1. 500 Tree Experiments 

 

  Normalized Information + Sample Entropy + Avg Bytes 500 Trees 
  Precision Recall F-Score  Increase over Baseline 
Call-all-Bad 0.16 1.00 0.27   
Balanced 0.62 0.79 0.69 257% 
          
Call-all-Bad 0.16 1.00 0.27   
Bad Wgt 10 0.52 0.92 0.66 247% 
          
Call-all-Bad 0.16 1.00 0.27   
Bad Wgt 100 0.38 0.97 0.55 204% 
          
Call-all-Bad 0.16 1.00 0.27   
Bad Wgt 1000 0.33 0.99 0.50 185% 

Table 15 Precision, Recall, and F-Score Results for 
500 Trees with all Weightings  on the Normalized 
Information, Sample Entropy and Average Bytes per 

Packet  Data Set 
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2. Results 

Since the previous three sets of experiments showed 

very minor gains by going beyond 500 trees, we decided to 

run this series of experiments at 500 trees.  This run of 

experiments was not expected to show better results than 

the earlier data sets and was run only because the data was 

available.  It was very interesting that it was possible to 

achieve a recall of .99 with a bad weighting of 1000,  

precision however, was only .33 resulting in a f-score of 

.50. 

E. EVALUATION OF OVERALL RESULTS 

Overall we found it very interesting that the worst f-

score result was a .47 from the Normalized Information and 

Sample Entropy 1000 trees bad weight of 1000 run.  This 

result still beat the baseline f-score by 173%.  However, 

more importantly with this f-score, recall was .99, this 

metric is the focus for intrusion detection. 

We also found it puzzling that the Normalized 

Information  metric independently could achieve a higher 

recall than Sample Entropy.  Further work is needed to 

analyze this result. 

A extremely good result was the ability to obtain a 

recall of .96 with only a Random Forest of 100 trees.  This 

result came from the Normalized Information with a bad 

weight of 1000.  This result can be run on a laptop running 

a 2GHz Pentium4 processor with 384MB of RAM in under 30 

seconds.  It shows the possibility of conducting near real-

time analysis of traffic and locating attack traffic that 

is getting past a rule-based intrusion detection system.    
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F. CHAPTER SUMMARY  

In summary, this chapter detailed the results from 

utilizing the four different combinations of variables 

varying the number of trees grown and the weight of the bad 

data.  In the next chapter, we will discuss our conclusions 

and layout possible future work.     
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V. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

Random Forests were able to classify anomalies in the 

1999 DARPA data set.  Using only six features from the 

TCP/IP header data, Random Forests could identify over 99% 

of five-minute time slices containing attack traffic.  This 

recall comes at a significant reduction in the overall f-

score dropping it from .65 to .34.  However, this is a 

worthwhile trade off since in intrusion detection the goal  

is to ensure all attack traffic is captured. 

We conclude that the distribution of packet features 

(IP addresses and ports) reveals the presence of a wide 

range of attack traffic.  Sample entropy and normalized 

information are capable automatic classification of 

anomalies via unsupervised learning.  

B. FUTURE WORK 

 A goal of this thesis was to determine the 

effectiveness of Random Forests in classifying anomalies in 

network traffic.  Therefore, future work should include 

testing Random Forests on additional intrusion detection 

data sets.  There is only the DARPA data set from 1998 and 

1999 currently available for scientific researchers to run 

experiments. It would be interesting to test on the Abilene 

and Geant Data sets to determine the effectiveness of 

Random Forests on that data set.1 

 A huge boon to the intrusion detection scientific 

community would be to develop and make available a labeled 

data set from the Naval Postgraduate School Network.      

                     
1 Computer Science, Boston University 111 Cummington Street, Boston, 

MA 02215 | Telephone 617 353 8919 | E-mail cs@bu.edu  
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We also believe it would be interesting to transform 

the 1999 DARPA data set using the subspace method and 

Multi-way method combining all vectors into one to allow 

for a truer comparison to the results of [Lakhina, et al. 

2005]. 

Another idea would be compare the results of Random 

Forests to the K-means algorithm.  Unfortunately in our 

experiments, the K-means results did not cluster the data 

set sufficiently to allow for a scientific comparison.   

The data sets should be run on other implementations of the 

K-means algorithm to confirm these results.   

Finally, we identify issues that could aid in the 

advancement of intrusion detection research:  

1. Develop a more efficient way of automatically 

consolidating, transforming, and analyzing extracted data.  

One possible approach would be to combine the various 

programs written for this thesis into one program which 

would automatically generate files for Random Forest to 

classify.   Random Forest algorithm as implemented by 

Salford Systems is capable of running batch jobs.  The 

automatically generated files could be a run by a batch job 

and labeled as good or bad.  This would allow a network 

analyst to focus on labeled bad traffic.   

2. Explore the importance of the predictor 

variables, and discover if the predictors are constant 

across the four data sets.  Our experiments indicated that 

the source port was the key predictor of bad traffic and 

that the destination port was relatively unimportant.  

Evaluating these variables with principle component 

analysis could provide further insight into these findings.   
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3. Develop a prototype classifier to take sample 

entropy from near real-time traffic.  This could be 

designed to work with a hard or sliding five minute window.  

The time-slices would then be automatically processed and 

run as a batch job by the Random Forest algorithm, which 

would label the time-slice as good or bad. The results of 

the Random Forest would generate alerts for bad traffic.   

4.  In parallel to the prototype classifier run a 

standard rule-based IDS like Snort.  The snort alerts could 

be correlated with alerts from the Random Forest classifier 

and items with a low correlation would be flagged for human 

examination.  The low correlation might indicate bad 

traffic that evaded Snort.  
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APPENDIX A. GENERATED CODE 

A. SAMPLER.JAVA 

import java.io.*; 

import java.math.*; 
import javax.swing.*; 
import java.lang.Integer.*; 
/** 
* Written by Bret Hyla 
* extracts 1  in 10 lines from a text file. 
* Sept 2006 NPS 
 */ 
public class Sampler { 

public int counter =0; 

public Sampler () { 

 } 
public static void main(String args[]) 

  { Sampler run= new Sampler(); 
   int i=0; 
   int count=0; 
     try {  
BufferedReader reader = new BufferedReader(new 
FileReader(“FullDataSet.txt”)); 

try { 

BufferedWriter writer = new BufferedWriter(new 
FileWriter(“SampledDataSet.txt”)); 

while (true){ 

String test =reader.readLine(); 

if (test==null){ 

writer.close(); 
break; 

      } 
while( i<10){ 
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test =reader.readLine(); 

i=i+1; 

   } 
if (test==null){ 
writer.close(); 

         
break; 

      } 
writer.write(test); 

writer.newLine(); 

count++; 
i=0; 

  } 
writer.close(); 

}  catch(IOException ex) {  //2 

  ex.printStackTrace();    //2 
  } //2 
  reader.close(); 

} catch (IOException ex) {  //2 

  ex.printStackTrace();    //2 
  } //2 
 } 
} 
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B. SORTER.PL 

# works with following format on CL sorter.pl followed by 
filename 

# file is sorted on first element, if tie then second etc 

# base file came from 
http://www.developertutorials.com/tutorials/cgi-perl/perl-
sorting-050423/page1.html 

# Bret Hyla  
# NPS  
 
open(SORT,”>bytes_sorted.txt”); 
my @words=<>; 
  
foreach(sort @words) { 
print SORT ; 
} 
close SORT; 

 

C. REORDER.PL 

# The print SOURCESORTED line can contain any 

# of the variables listed in the while loop. 
# The order can be modified simply by choosing 
# the variable to be put first.  
# Bret Hyla September 2006 
 
open(FILE, “allsampleddata.txt”); 
open(SOURCESORTED, “>bytes.txt”); 
while (<FILE>) { 

$line=$_; 

($sIP, $dIP, $sPort, $dPort, $bytes, $time, $comma)= 

(split /,/,$line); 

print SOURCESORTED “$time,$bytes \n”; 

 }  
  
close FILE; 

close SOURCESORTED; 
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D. BYTES.PL 

# This program finds the average number of bytes in 

# a 5 minute time slice referred to here as chunk. 
# This code is not part of the overall main program as 
# we decided after the first data sets were created to 
# see if adding the average size of bytes per packet  
# would increase the classification rate 
# Bret Hyla September 2006 

 
open(FILE, “bytes_sorted.txt”); 
open(BYTES, “>bytes_in_chunk.txt”); 
 
use Date::Calc qw(:all); 

# Set a base date to do the timestamp comparison, it #should 
be the first timestamp in sorted file from oldest #to 
newest. 

$yr=”1999”; $mon=”03”;$day= “08”; $hr=”13”; $min=”00”; 
$sec=”00”; 

$chunk=0; 
$good=0; 
$bytes_inchunk=0; 
 
while (<FILE>) { 

$line=$_; 
($date,$bytes)=(split /,/,$line); 

$bytes_inchunk=$bytes_inchunk+$bytes; 

$newtime=$date;  
$newtime=~ (s/T/:/);  
($yr2,$mon2,$day2,$hr2,$min2,$sec2) = (split 
/[\/:]/,$newtime); 

($D_y,$D_m,$D_d,$Dh,$Dm,$Ds) = 
Delta_YMDHMS($yr,$mon,$day,$hr,$min,$sec, 

$yr2,$mon2,$day2, $hr2,$min2,$sec2); 

push  @AoA, [ ($chunk, $sIP, $dIP, $sPort, $dPort,$good) ]; 

 
#looks at the delta in the two packet time stamps and if 
#condition is met creates a new chunk 

if ($Dm>4 or $D_m>0 or $D_d>0 or $Dh>0) { 

  $yr=$yr2;   $mon=$mon2; 
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  $day=$day2;   $hr=$hr2; 
  $min=$min2;   $sec=$sec2; 
   
  $chunk++; 
  print BYTES”$chunk, $bytes_inchunk \n”; 
  $bytes_inchunk=0; 
 } 
   

} #while 

close FILE; 

 

 

E. TEST_TRAIN.PL 

# This program splits the first file into two files 

# These files contain 80% and 20% of the original file. 

# Warning, if you have already sorted the data be sure you  

# have your classification groups as the primary key.  

open(FILE, “Info_normalized_entropy_2ndweekv2_sorted.csv”); 
open(TEST, “>test.txt”); 
open(TRAIN,”>train.txt”); 
  
$chunk=0; 
print”$chunk is 0”; 
 
while (<FILE>) { 

$line=$_; 
#print” chunk is $chunk\n”;   

print TRAIN”$line”; 
$chunk++; 
 

if ($chunk>4){ 

print TEST”$line”; 
$chunk=0; 
print” chunk is $chunk\n”;  

 } 
 } 
close FILE; 

close TEST; 
close TRAIN; 
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F. ENTROPY_INFORMATION.PL   

open(FILE, “sorted.txt”); 
# several sections of code were based on tutorials found at 
#http://perldoc.perl.org/perllol.html 
 
use Date::Calc qw(:all); 

#initial a base date to do the timestamp comparison, it 
#should be the first timestamp in sorted file from oldest 
#to newest. 

# Bret Hyla September 2006 NPS 

$yr=”1999”; $mon=”03”; $day = “08”; $hr=”13”; $min=”00”; 
$sec=”00”; 

$chunk=0; 
$good=0; 
while (<FILE>) { 

$line=$_; 

($date,$sIP, $dIP, $sPort, $dPort,$comma)=(split /,/,$line); 

$g++; 

$sIPhashinfo{$sIP}++;  $dIPhashinfo{$dIP}++; 
$sPorthashinfo{$sPort}++; $dPorthashinfo{$dPort}++; 

$newtime=$date;  
$newtime=~ (s/T/:/);  
($yr2,$mon2,$day2,$hr2,$min2,$sec2) = (split 
/[\/:]/,$newtime); 

($D_y,$D_m,$D_d,$Dh,$Dm,$Ds) = 
Delta_YMDHMS($yr,$mon,$day,$hr,$min,$sec, 

$yr2,$mon2,$day2, $hr2,$min2,$sec2); 

push  @AoA, [ ($chunk, $sIP, $dIP, $sPort, $dPort,$good) ]; 

 

#looks at the delta in the two packet time stamps and if 
#condition is met creates new chunk 

 

if ($Dm>4 or $D_m>0 or $D_d>0 or $Dh>0) { 

  $yr=$yr2;   $mon=$mon2; 
  $day=$day2;   $hr=$hr2; 
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  $min=$min2;   $sec=$sec2; 
 
  $chunk++; 
 } 
   

} #while 

close FILE; 

 

# function to find unique source ips and their prob across 
#all data  

foreach $keyinfo (keys %sIPhashinfo) { 
$p++; 
$valueinfo =$sIPhashinfo{$keyinfo}; 
$probinfo=$valueinfo/$g; 
$probinfo{$keyinfo}=$valueinfo/$g; 

   
}  

print “num source unique ip keys $p \n”; 

# function to find unique dest ips and their prob across 
#all data  

foreach $key2info (keys %dIPhashinfo) { 
$q++; 
$value2info 
=$dIPhashinfo{$key2info}; 
$prob2info{$key2info}=$value2
info/$g; 

}  
 

print “num dest ip unique keys $p \n”; 

# function to find unique source ports and their prob 
#across all data  

foreach $key3info (keys %sPorthashinfo) { 
$r++; 
$value3info =$sPorthashinfo{$key3info}; 
$prob3info=$value3info/$g; 
$prob3info{$key3info}=$value3info/$g; 
}   

print “num source port unique keys $r \n”; 

# function to find unique dest ports and their prob across  
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# all data  

foreach $key4info (keys %dPorthashinfo) { 
$s++; 
$value4info 
=$dPorthashinfo{$key4info}; 
$prob4info=$value4info/$g; 
$prob4info{$key4info}=$value4
info/$g; 

 
}  
print “num dest port unique keys $s \n”; 
print” total lines read is $g”; 
 
open (INFO,”>info.txt”); 
open (ENTROPY, “>entropy.txt”); 

$prior=0; 

for  $i (0.. $#AoA) { 

if ($prior != $AoA[$i][0]){ 

#    print “\nNew Prior: $prior\n\n”; 
  
   foreach $key (keys %sIPhash) { 
  $value =$sIPhash{$key}; 
  $prob=$value/$t; 
#  $sum = $sum +$prob; 
  $entropyeach=-1*( $prob* log($prob) ); 
   $infoeach = -1* log($probinfo{$key}); 
#  print “     info is $infoeach\n”; 
  $totalinfo = $totalinfo + $infoeach; 
  $totalentropy= $entropyeach +$totalentropy; 
 }  

foreach $key2 (keys%dIPhash) { 
$value2 =$dIPhash{$key2}; 
$prob2=$value2/$t; 

#  $sum2 = $sum2 +$prob2; 
  $entropyeach2=-1*( $prob2* log($prob2) ); 
   $infoeach2 = -1* log($prob2info{$key2} ); 
  $totalinfo2 = $totalinfo2 + $infoeach2; 
  $totalentropy2=$entropyeach2 +$totalentropy2; 
 } 

foreach $key3 (keys%sPorthash) { 
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$value3 =$sPorthash{$key3}; 
$prob3=$value3/$t; 

#  $sum3 = $sum3 +$prob3; 
  $entropyeach3=-1*($prob3* log($prob3) ); 
   $infoeach3 = -1* log($prob3info{$key3}); 
  $totalinfo3 = $totalinfo3 + $infoeach3; 
  $totalentropy3=$entropyeach3 +$totalentropy3; 
 } 

foreach $key4 (keys%dPorthash) { 

$value4 =$dPorthash{$key4}; 
$prob4=$value4/$t; 

#  $sum4 = $sum4 +$prob4; 
  $entropyeach4=-1*( $prob* log($prob4) ); 
   $infoeach4 = -1* log($prob4info{$key4}); 
  $totalinfo4 = $totalinfo + $infoeach4; 
  $totalentropy4=$entropyeach4 +$totalentropy4; 
 } 
 
print ENTROPY “$prior,$t, 
$totalentropy,$totalentropy2,$totalentropy3,$totalentropy4\n
”; 

print INFO “$prior,$t, $totalinfo,$totalinfo2,$totalinfo3, 
$totalinfo4\n”; 

$prior= $AoA[$i][0]; 

# clearing all variables for the next time slice 

$t=0; 
undef $sum; undef $key; undef $prob ; 
undef $entropyeach; undef $infoeach; 
undef $totalinfo;  undef $totalentropy; 
undef $sum2; undef $key2; undef $prob2; 
undef $entropyeach2; undef $infoeach2; undef $totalinfo2; 
undef $totalentropy2; undef $sum3; undef $key3;  

undef $prob3; undef $entropyeach3; undef  $infoeach3; 
undef  $totalinfo3; undef $totalentropy3; 
undef $sum4; undef $key4; undef $prob4;  
undef $entropyeach4; undef $infoeach4; undef $totalinfo4; 
undef $totalentropy4; undef %sIPhash; undef %dIPhash;  

undef  %sPorthash; undef %dPorthash;   
} # if ($prior != $AoA[$i][0]) 
   
    $t++; 
   
  $srIP= $AoA[$i][1]; 
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  $sIPhash{$srIP}++; 
   
 # print “ count after t++ $t”; 
 # print” $t”; 
       
   $dtIP= $AoA[$i][2]; 
  $dIPhash{$dtIP}++; 
  
  $srPort= $AoA[$i][3]; 
  $sPorthash{$srPort}++; 
   
    $dtPort= $AoA[$i][4]; 
  $dPorthash{$dtPort}++; 
    
     
   }     #  for  $i (0.. $#AoA) brace 
  
  
close ENTROPY; 
close INFO; 
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