Smithsonian Contributions to Knowledge.

OBSERVATIONS

ON

TERRESTRIAL MAGNETISM

AND ON THE

DEVIATIONS OF THE COMPASSES

OF THE UNITED STATES IRON CLAD MONADNOCK DURING HER CRUISE FROM PHILADELPHIA

TO SAN FRANCISCO, IN 1865 AND 1866.

 $\mathbf{B}\mathbf{Y}$

WM. HARKNESS, M.D., professor of mathematics, united states navy.

WASHINGTON CITY:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
[APRIL, 1873.]

OBSERVATIONS

ON

TERRESTRIAL MAGNETISM

AND ON THE

DEVIATIONS OF THE COMPASSES

OF THE UNITED STATES IRON CLAD MONADNOCK DURING HER CRUISE FROM PHILADELPHIA

TO SAN FRANCISCO, IN 1865 AND 1866.

ΒŸ

WM. HARKNESS, M.D., PROFESSOR OF MATHEMATICS, UNITED STATES NAVX.

[ACCEPTED FOR PUBLICATION, SEPTEMBER, 1871.]

INTRODUCTORY NOTE.

This paper was originally an official report presented to the Navy Department by Professor Harkness; but, as that department made no use of it, the National Academy of Sciences, in August, 1867, passed a resolution asking for the manuscript. This request was complied with; and, an abstract of the paper having been read to the Academy in April, 1869, it was referred to a commission consisting of the President of the Academy, Professors J. H. C. Coffin, and F. Rogers, in accordance with whose recommendation it is now published by the Smithsonian Institution.

Joseph Henry, Secretary S. I.

TABLE OF CONTENTS.

				:	SECTIO	ON I.						
				1	NTRODU	CTION.						
												PAGE
Introductory re	marks		•		•	•		•	•	•	. •	1.
Plan of observa	tion			•	•	•	•	•	•		•	1
Instruments em	ployed	•	•			•	•	•	٠	•	•	2
					SECTIO	NII						
					PTIONS O							
Philadelphia				2010101	110110	e sini.						4
Gosport	•	•	•	•	•	•	•	•	•	•	•	4
St. Thomas	•	•	•	•	•	• .	•	, •	•	•	•	5
Isle Royal	•	•	•	•	•	• .	•	•	•	•	•	5
Ceara .	•	•	• .	•	. •	•	•	•	•	•	•	5
Pernambuco	•	•	•	•	•	•	•	•	•	•	•	6
	•	•	• •	•	•	•	٠	•	•		•	
	•	•	•	•	•	•	. •	•	•	•	•	6
Rio Janeiro	•	•	, •	•	•	•	•	•	•	•	•	6
Monte Video	•	•	•	•	•	•	•	•	•	•	•	7
Sandy Point	•	•	•	•	•	•	•	•		٠	•	8
Valparaiso	•	•	. •	•	• *	•	•	٠	•	•	•	9
Callao .	•	•	•	•	•	•	•	•	•	•	•	9
Payta .	•	•	•	•	•	• '	•	•	• .	•	•	10
Panama.	•	•	٠	•	•	•	•	•	•	•	٠	10
Acapulco	•	•	•	•	•	•	a	•	•	•	•	11
Magdalena Bay		•	•	•	•	•	•	•	•	•	•	11
San Francisco	•	•	•	•	•	•	•	•	•		•	12
				\mathbf{S}	ECTIO	N III.						
			AS	TRONO	MICAL O	BSERVA'	TIONS.					
General remarks	\$		•						•	•		13
Observations of	the sur	for	latitude					•	٠			13
Observations of							•					14
Mode of determ	ining ti	rue b	earings				,		•			26
Observations of				minati	on of tri	ie beari	ngs					28
Triangulation at						_	,	_				32
Table of observe									•			34
Errors of pocket			r. Fletch	er. No	. 906	-	-		-	•		35
Chronometer con				,		•	· .	•	•		. 0	36
True bearings of				· nuth m	arks	•	•		•		•	36
		u.so	w. waiii	111		•		•	•	(iii)	

SECTION IV.

OBSERVATIONS ON TERRESTRIAL MAGNETISM.

								PAGI
Description of the portable declinometer, D. 2	22				•			37
Description of the transit theodolite .	•					•		37
General remarks on the methods of using the	instrum	ents			•			38
Mode of determining absolute declinations			•	•	•			38
Mode of making observations of vibrations					•			42
Mode of making observations of deflections	•			•	•			44
Mode of calculating horizontal force .	•			•				45
Determination of constants peculiar to the por	rtable de	eclinom	eter, 1	O. 22				
Temperature coefficients of magnets	•		•			•		50
Value of magnet scales	•				•			50
Moment of inertia of the magnet, C. 32	•	•	•	•				51
The constant P				•				58
Magnetic moment of the magnet C. 32.	•							55
Mode of making observations of inclination	•	•						56
Mode of computing the vertical and total force	e .		•	•				60
Abstract of observations for magnetic declinat		ination						60
Final values of the magnetic elements at each				•				61
Observations of magnetic declination .								62
Observations of magnetic inclination .				,				. 75
Horizontal intensity. Observations of vibrat	ions							101
Horizontal intensity. Observations of deflect								110
•			•		•			
SE	CTION	V.						
	011011	••						
OBSERVATIONS ON T	HE MAGN	ETISM	OF TH	E SHIP.				
Description of the Monadnock		•						119
Positions of the compasses					•			120
Mode of swinging the ship				•				120
Corrections peculiar to the After Binnacle and	l After I	Ritchie	Comp	asses				121
Officers who observed the compasses .			•					122
Mode of measuring magnetic force on board s	hip			•				122
Mathematical theory of the deviations of the	compass							123
Correction of observed deviations for constant		•			•	•		129
Observations for determining the deviations of	f the Ac	lmiralt	y Stai	ndard Co	mpass	•		133
Observations for determining the deviations of	f the Af	ter Bin	nacle	Compass	3.			140
Observations for determining the deviations of								147
Observations for determining the deviations of	the Af	ter Azi	muth	Compass				154
Observations for determining the deviations of								160
Observations for determining the deviations of				_				167
Observations for determining the deviations of				-				174
Mode of computing the coefficients A_1 , B_1 , C_1 ,								181
Values of these coefficients for each compass a								182
Probable errors of the values of the coefficien								184
					-	•		
Computation of the constants A_1 , $\frac{c}{\lambda}$, $\frac{P}{\lambda}$, $\frac{\Delta P}{\lambda}$	$\lambda \lambda \overline{\lambda}$, and	λ, 10	or each c	ompass	•	•	185
Values of the coefficients A, B, E, E, f	for each	compas	ss at e	ach stati	on			191
Table showing the values of the constants A_1						and	(F.,	
for each compass	**/	λ λ΄	λ΄	λ λ΄	λ΄ ,		٠,	193
101 OHOH COMPANDS	•		•		•			100

	PAGE
Computation of the coefficients U, B, C, D, E, for each compass at each station, from the	ıe
constants, A_1 , $\frac{c}{\lambda}$, $\frac{P}{\lambda}$, $\frac{\Delta P}{\lambda}$, $\frac{f}{\lambda}$, $\frac{Q}{\lambda}$, $\frac{\Delta Q}{\lambda}$, ∞ , and \mathfrak{E} .	. 193
Comparison of the coefficients thus computed with those found directly from the observation	ıs
at each station	. 196
Resulting probable errors	. 198
Does the theory accurately represent the semi-circular deviation?	. 199
Tables showing the most important features of the deviations of each compass during th	e
cruise	. 199
Hard and soft iron forces	. 201
Magnetic moment of magnets used for measuring horizontal force on board ship .	. 202
Observations for absolute force at the Admiralty Standard Compass	. 205
Observations for absolute force at the After Azimuth Compass	. 206
Values of λ	. 207
Values of g, h, k, R and ΔR , for the Admiralty Standard and After Azimuth Compasses	. 207
Values of a, b, e, and d, for the Admiralty Standard and After Azimuth Compasses .	. 209
General equations for the determination of the deviations of the Admiralty Standard Compassion	ss 210
General equations for the determination of the deviations of the After Azimuth Compass	. 211
Variations of the hard iron force, during the cruise, at the Admiralty Standard and After	er
Azimuth Compasses	. 211
Computation of the coefficients A_1 , B_1 , C_4 , D_4 , E_4 , for each compass, at places where the	ıe
deviations were observed on less than thirty-two points	. 211
Recapitulation of results	. 219
Final conclusions	. 220

REPORT ON MAGNETIC OBSERVATIONS.

SECTION I.

INTRODUCTION.

On the fifth of October, 1865, I was ordered to the U. S. Iron-clad Monad-nock¹ for the purpose of making observations on the action of her compasses during the cruise which she was about to undertake from Philadelphia to San Francisco, by way of the Straits of Magellan. She was then fitting out at the Philadelphia Navy Yard, and the work on her was so far advanced that it was expected she would sail in about two weeks. As the department had not previously intimated its intention of assigning me to this duty, and as everything relating to the number and kind of observations to be made, and the instruments required, was left entirely to my own discretion, it will be seen that the time available for making plans and collecting the necessary apparatus was very limited.

The plan of observation ultimately adopted was that at every port in which we remained for more than twenty-four hours the following operations should be gone through with. 1st. The ship should be swung, and as her head pointed successively to each of the thirty-two true magnetic points, the reading of every compass on board should be recorded for each point. 2d. That at such of the compasses as were so situated as to render it possible, the horizontal force and inclination should be determined. 3d. The position of the dividing line between the north and south polarity should be traced on each turret. 4th. The magnetic declination, inclination, and horizontal force should be determined on shore. While at sea it was intended to observe the declination—and consequently the deviation—and horizontal force daily, by means of the standard compass; but this turned out to be impracticable, because the only place in the ship where it was possible to mount that instrument was on top of the after pilot-house; a situation

¹ The Monadnock is a double-turreted vessel of the monitor type. During the cruise in question, Lieutenant Commander Francis M. Bunce, U.S.N., was her captain, and she was attached to the squadron commanded by Commodore (now Rear-Admiral) John Rogers, U.S.N., at whose special request I was detailed by the Navy Department to make the observations which are the subject of this paper.

where no binnacle could be put, and where the compass was nearly on a level with the top of the smoke-stack. Thus, while at sea, the position occupied by it was almost constantly enveloped in smoke and gas, rendering it absolutely necessary, whenever we left port, to dismount the instrument in order to preserve it from injury.

Owing to the very short time at my disposal previous to sailing, there was great difficulty in providing proper instruments, but I succeeded in obtaining all that were absolutely necessary. The following is a list of them:

- r Portable Declinometer and stand.
- r Five-inch Altitude and Azimuth Instrument.
- I Dip Circle, with two needles, each three and a half inches long.
- 1 Pair of eight-inch Bar Magnets.
- r Pair of eleven-inch Bar Magnets.
- 2 Admiralty Standard Compasses, with stands and deflectors.
- 1 Burt's Solar Compass and stand.
- 1 Prismatic Sextant of six inches radius.
- 1 Mercurial Artificial Horizon.
- 1 Pocket Chronometer, Fletcher, No. 906.
- 1 Silver Comparing Watch.
- 2 Pocket Thermometers.
- 2 Pocket Compasses.
- 2 Magnetic Needles, not mounted, each 2.75 inches long, and 0.33 of an inch broad.
- 1 Fifty feet Chesterman's Patent Tape Line.
- I Case of Drawing Instruments.
- I Gunter's Scale, two feet long.

The portable declinometer belonged to the U.S. Coast Survey, and was kindly lent by Prof. J. E. Hilgard.

The small unmounted magnetic needles were intended to be used for measuring the relative horizontal force on shore and at each of the compasses on board ship. For this purpose it was proposed to vibrate one of them on shore, and then taking it on board ship to the compass at which it was desired to measure the relative horizontal force, to remove the compass card from the centre-point, and putting the small needle in its place, vibrate it again. Unfortunately the small needles were not finished till just before we left Philadelphia, and there was no opportunity of trying them till after we were at sea, when, to my great regret, it was found that the jewels were so small that they would not fit on the centre-point of any compass on board, thus rendering them entirely useless. Under the circumstances, for horizontal force on board ship it was necessary to rely entirely upon measures made with the deflectors belonging to the Admiralty standard compasses—a method certainly not so convenient, and, owing to the constant swinging of the ship when at anchor, probably not so accurate as counting the vibrations of a small needle.

The observations on terrestrial magnetism, and for latitude, time, and true bearings, were all made by myself and recorded by Mr. Corrin F. Smith, who was captain's clerk on the Monadnock, and acted as my assistant when I was observing. My best thanks are due to him for the efficient manner in which he performed his duties, sometimes under circumstances of very considerable physical discomfort.

The reductions and discussions in this report have been made by me, so that I am personally responsible, not only for the general plan of the work, but for every figure contained in it. All the results have been very carefully checked, and it is hoped no material error will be found in them; still, absolute accuracy is scarcely to be expected in any work involving so many figures, the more especially as much of it has been done during moments snatched from other and more pressing professional duties.

The observations naturally divide themselves into three classes: 1st. Those relating to astronomy. 2d. Those relating to terrestrial magnetism. 3d. Those relating to the magnetism of the ship. As that is the order in which they must necessarily be reduced, they will be so treated of in the subsequent sections of this report.

SECTION II.

DESCRIPTIONS OF STATIONS.

Unless otherwise stated, the assumed positions of light-houses, forts, etc., have been taken from the English Admiralty Charts, or from the English Admiralty List of Lights, the latest editions obtainable in 1865 being employed. The longitudes are counted from the meridian of Greenwich.

The method used in testing a station for local attraction by means of fore and back sights with a compass, was as follows: The compass was set up at the station, and the bearing of a point distant one hundred yards, or more, was observed. Then the compass was transferred to that point, and the bearing of the station was observed. These two bearings should evidently differ from each other by 180°; if they did not, it was certain that local attraction existed at one or both of the points, and a new station was sought for. This process is almost certain to detect any strictly local magnetic attraction, but it will not suffice to demonstrate the existence of an abnormal state of the magnetic elements extending over a large territory.

PHILADELPHIA, Pa. The magnetic observations were made at a spot on the east bank of the Delaware river, about twenty feet from the water's edge. It is nearly southeast from the U.S. Navy Yard, from which it is distant about three-quarters of a mile. The soil is a dark—nearly black—earth, which appears to have been deposited by the river. The approximate position of the station was

Gosport, Va. The magnetic observations were made on a white sandy beach, on the west bank of the Elizabeth river, about thirty feet from the water's edge. From the place where the instruments stood, the flagstaff in the U.S. Navy Yard bore due north by compass, and was distant about half a mile.

Assuming the position of the flagstaff to be lat. 36° 49′ 32″ N., long. 5^h 5^m 9^s.8 W., as stated by the authorities at the Navy Yard, the position of the spot occupied by the instruments is approximately

The ship was swung at the compass station in Hampton Roads, on November 1st, 1865, in the usual manner. Her position at the time was lat. 36° 58′ N., long. 76° 20′ W. Joint XII on the after turnet was 14.4 inches to port.

St. Thomas, West Indies. The ship was swung in this harbor, on November 18th, 1865, in the usual manner. Her position at the time was lat. 18° 19′ N., long. 64° 56′ W. Joint XII on the after turret was 14.4 inches to port.

The observations on shore were made in Long Bay, at a spot about thirty feet from the water's edge, on a gravelly beach, to the eastward of the town. From the place where the instruments stood the true bearing of Fort Cowell, at the entrance to the harbor, is S. 34° 50′ W., and it is distant about one mile.

Assuming the position of Fort Christian to be lat. 18° 20′ 27″ N., long. 4^h 19^m 42^s.7 W., then, according to the English Admiralty Chart, the position of the spot where the instruments were set up is

ISLE ROYAL, Salute Islands. An attempt was made to swing the ship here, on November 30th, 1865, in the usual manner, but it failed on account of the continual rain which shut off the view of the distant azimuth mark. The position of the ship at the time was lat. 5° 17′ N., long. 52° 33′ W. Joint XII on the after turret was 0.6 of an inch to starboard.

The magnetic and astronomical observations on shore were made on the south-west side of the island, at a spot from which the corner made by the southeast and southwest faces of the government coal sheds bears N. 64° W. (true), and is distant one hundred and thirty-two feet. The place was examined carefully for local attraction by taking fore and back sights with a compass, but none could be detected. The position occupied by the instruments is in

The latitude was determined from a single set of circummeridian altitudes of the sun observed by me, and the longitude was taken from the French chart.

Ceara, Brazil. An attempt was made to swing the ship here, on December 19th, 1865, in the usual manner, but although a very favorable opportunity was chosen, she could only be made to turn through ten points. Her position at the time was lat. 3° 44′ S., long. 38° 34′ W. Joint XII on the after turret was 0.6 of an inch to starboard. The wind, current, and sea are so strong here that vessels at anchor in the roads always ride with their heads nearly in the same direction, never swinging more than about three points.

At this place there is no harbor whatever, merely an open roadstead. A heavy surf is constantly running on the beach, and as there are almost no facilities for landing in small boats, getting the instruments on shore involved a good deal of trouble and some risk. However, I succeeded in landing them safely, and obtained a very good set of observations on the white sand beach at a spot about one hundred and fifty feet from the water's edge, and from which the true bearing of the southeast corner of the custom-house on the wharf is N. 53° 19′ W., and its distance two hundred feet. From the same spot the true bearing of

Point Macoripe Light-house is N. 75° 38' E. The position occupied by the instruments is in

The latitude was deduced from my own observations, and the longitude was taken from the list of geographical positions given in Raper's Navigation.

Pernambuco, *Brazil*. The ship was not swung in this port because there was not room to do it in the position where she took her coal, and as she only remained in the harbor twenty-four hours, there was not time to take up another position in order to swing.

The magnetic and astronomical observations on shore were made on the white sand beach, at a spot from which the true bearing of the salient angle of the southeast bastion of Fort Brum is N. 15° 46′ W., and its distance four hundred and thirty feet.

Assuming the position of the light-house, near to Fort Picao, to be lat. 8° 3′ 42″ S., long. 2^h 19^m 26^s.8 W., as it is given in the English Admiralty List of Lights, edition of 1866, then, according to the English Admiralty Chart, the position occupied by the instruments is in

Bahia, *Brazil*. The ship was swung in this harbor, on December 30th, 1865, in the usual manner. Her position at the time was lat. 12° 59′ S., long. 38° 31′ W. Joint XII on the after turret was 0.6 of an inch to starboard.

The magnetic and astronomical observations of December 27th were made at a spot, one hundred and fifty feet from the water's edge, situated in a cocoanut grove on the beach about half-way between Monserat Point and Fort Victoria. The soil is a coarse white sand. It was not possible to get any bearings which would define the exact position, but the above directions are sufficient to enable any one to find the place very nearly.

Assuming the position of Fort St. Antonio Light to be lat. 13° 0′ 55″ S., long. 2^h 34^m 6^s.9 W., then, according to the English Admiralty Chart, the position occupied by the instruments is in

RIO JANEIRO, *Brazil*. The ship was swung in this harbor, on January 10th, 1866, in the usual manner; but, owing to a strong wind which was blowing at the time, it was not possible to get her through more than seventeen points. Her position was lat. 22° 54′ S., long. 43° 9′ W. Joint XII on the after turret was 0.8 of an inch to port.

During the whole week we were at Rio there was not one clear day. Consequently it was extremely difficult to make astronomical observations, and it was only by patiently watching for the sun and seizing the opportunities when it was

momentarily visible through breaks in the clouds, that the few sights necessary in order to complete the magnetic observations were obtained.

With a single exception, all the magnetic and astronomical observations were made at a spot from which the true bearing of the entrance on the north face of Fort Caraguata (erroneously spelled Gravata on the English charts) is S. 70° W., and its distance fifty-five feet. There were no guns in the fort at the time. The surrounding country is very hilly, the bare, coarse, granite rocks cropping out everywhere from the hill-sides, but in the more level places they are thinly covered with earth. Assuming the position of Fort Villegagnon to be lat. 22° 54′ 42″ S., long. 2^h 52^m 36^s .0 W., then, according to the English Admiralty Chart, the position occupied by the instruments is in

The exception referred to above is some observations of the sun for time, made on January 9th. They were got on Rat Island, the spot where naval officers usually go to rate their chronometers when lying in this harbor. Assuming the position of Fort Villegagnon as above, then, according to the English Admiralty Chart, the position of Rat Island is

Monte Video, *Uruguay*. The ship was swung in this harbor, on January 24th, 1866, in the usual manner. We first attempted to get her around about 1 P. M., but owing to the force of the wind and tide we only obtained ten points, viz., those from E. by S. to S. S. W. Just at sunset we tried it again, and succeeded in getting the remainder of the circle. It was nearly dark when we finished, but as the distant object used for an azimuth mark shone plainly against the sky, there was sufficient light to see pretty distinctly when it was in range with the sights of the compass.

The readings of part of the circle on the After Ritchie compass were lost, owing to the failure of daylight and delay in procuring a lantern. The officer who usually read the After Azimuth compass was on shore at the time, and the duty of making the observations at that instrument was assigned to another, but it turned out that he did not understand how to read an azimuth compass, and his observations were worthless.

While we were lying at Monte Video the tide was very irregular. Most of the time the ship only swung to it about 90°, but two or three times she swung 180°. At the time we swung her to obtain the deviation of the compasses her position was lat. 34° 55′ S., long. 56° 13′ W., and joint XII on the after turret was 4.5 inches to port.

The greater part of the magnetic observations on shore were made on January 18th, at a station on the ground occupied by Tomkinson's slaughtering establishment. The instruments were set up at a spot where there are four large umbu trees standing in a line. The exact position may be recovered by means of the following true bearings. The corner made by the south and west sides of the dwelling-house

bears N. 39° E., and is distant about one hundred feet. The light-house on the Mount, on the west side of the harbor, bears N. 59° 0′ W. The water's edge is distant from the station about four hundred feet. The soil is a thin stratum of very poor earth, covering a greenish-colored slaty rock, which crops out in many places. Assuming the position of the light-house on the Mount to be lat. 34° 53′ 15″ S., long. 3^h 44^m 59°.0 W., then, according to the English Admiralty Charts, the position occupied by the instruments is in

As a check, some magnetic observations were made, on January 19th, at a station from which the true bearing of the light-house on the Mount is N. 89° 41′ W., and the true bearing of the light on the Cathedral is S. 17° 42′ W. Assuming the position of the light-house to be as stated above, and the light on the cathedral to be in lat. 34° 54′ 20″ S., long. 3° 44° 50°.0 W., as given in the English Admiralty List of Lights in South America, edition of 1865, the geographical position of this station was

It will be observed that the difference of longitude between the lights on the Mount and on the cathedral, as deduced from the Admiralty List cited above, cannot be made to agree with the positions given on the English Admiralty Chart.

On January 24th some observations for time were made on Rat Island. Assuming the position of the light-house on the Mount to be as stated above, then, according to the English Admiralty Chart, the position of the station on Rat Island was

Sandy Point, Straits of Magellan. The ship was swung in this harbor, on February 10th, 1866, in the usual manner. Her position at the time was lat. 53° 11′ S., long. 70° 55′ W. Joint XII on the after turret was 4.5 inches to port. While we were lying here the ship was perfectly free to swing to the tide, but she generally turned through an arc of only about ninety degrees, namely, from W.N.W. to N.N.E.

The observations on shore were made in the meadow, between the settlement and the beach, at a spot from which the true bearing of the flagstaff was N. 47° 8′ W., and its distance about eight hundred feet. The soil is sandy, and there is no rock anywhere near. The place was examined for local attraction by taking fore and back sights with a compass, but nothing of the kind could be detected.

Assuming the position of the flagstaff to be lat. 53° 10′ 15″ S., long. 4° 43° 36°.0 W., as given on the English Admiralty Chart, edition of 1861, the position occupied by the instruments is in

Valparaiso, Chile. The ship was swung in this harbor, on April 4th, 1866, in the usual manner. Her position at the time was lat. 33° 2′ S., long. 71° 38′ W. Joint XII on the after turret was 4.25 inches to port. While we were lying at Valparaiso the ship was perfectly free to swing to the tide, and she turned in all directions.

The observations taken on shore March 2d were made on the south end of the white sand beach at the Estero de Quilpue, at a spot about two hundred and fifty feet from the rocks. Assuming the position of Fort San Antonio to be lat. 33° 1′ 53″ S., long. 4^h 46^m 46^s.0 W., then, according to the English Admiralty Chart, the position of this station was approximately

Lat.
$$33^{\circ}$$
 1'.4 S. Long. 4^{h} 46^{m} 31^{s} W.

The observations of March 19th, and all taken subsequently to that date, were made at a spot distant about six hundred and fifty feet, nearly true north, from the most northern of the custom-houses. The instruments were set up, near to the water's edge, on the public road which here runs along under a high bank of rock. The true bearing of the flagstaff at Fort San Antonio, on the top of the hill, was S. 31° 45′ W., and its estimated distance was seven hundred feet. Assuming the position of the fort to be as stated above, the position occupied by the instruments is in

Both this station and that of March 2d were carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

In adopting 4^h 46^m 46^s.0 as the longitude of Fort San Antonio, I have followed Raper, but this value is doubtless too large. Capt. Jas. M. Gilliss, U. S. N., from a series of occultations and moon culminations, observed during the years 1850–51–52, determined the longitude of the Observatory on the hill of Santa Lucia, in Santiago, to be 4^h 42^m 33^s.8. Dr. Moesta, from subsequent observations up to the year 1862, corrected this value to 4^h 42^m 33^s.0. Capt. Gilliss, by means of the electric telegraph, found the difference of longitude between the Observatory at Santiago and Mr. Mouatt's Observatory at Valparaiso to be 3^m 56^s.5. Hence, adopting Dr. Moesta's value of the longitude of Santiago, we have

as the longitude of Mr. Mouatt's Observatory; but I have been unable to find any description of its position, and consequently cannot refer this longitude to Fort San Antonio.

Findlay, in his "Directory to the South Pacific Ocean," edition of 1863, gives for the longitude of Fort San Antonio 4^h 46^m 28^s.8, and quotes Dr. Moesta as the authority. The Connaissance des Temps, for the year 1868, on the same authority-gives 4^h 46^m 27^s.5 for the same position. Which of the two values is nearest correct I am unable to say.

Callao, *Peru*. The ship was swung in this harbor, on April 29th, 1866, in the usual manner. Her position at the time was lat. 12° 3′ S., long. 77° 14′ W. Joint 2 December, 1871.

XII on the after turret was 5.5 inches to port. While we were lying at Callao the ship was perfectly free to swing to the tide, but the wind and current were so strong that she did not do so, but always lay with her head pointing in a southerly direction.

The observations taken on shore, April 26th, were made on the northeast side of San Lorenzo Island, about two and a half miles southeast of the light-house. The island is a mass of hills, rising to an elevation of more than a thousand feet, composed of loose friable rock which seems to be of volcanic origin, and which is constantly disintegrating into a fine yellow sand. The place selected for making the observations is at the foot of a gorge where there is a beach, about a quarter of a mile long, of the yellow sand mentioned above. On the beach stand a number of fishermen's huts, and a few steps back, at the foot of the gorge, stands a large, square, two-story house. The spot where the instruments stood is on the southeast end of the beach, a little beyond the fishermen's huts, and just above high-water mark. Assuming the position of the light-house to be lat. 12° 4′ 0″ S., long. 5^h 9^m 18^s.0 W., the position occupied by the instruments is in

The place was carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

Payta, Peru. We remained in this port only from 2^h 30^m P. M. of May 6th, 1866, till 6^h P. M. of May 7th, and there was neither time nor opportunity to swing the ship. However, a complete set of magnetic observations were made on shore at a station on the beach four-tenths of a mile northwest of the large iron building which stands just back from the mole, and is used by the government as a custom-house, etc. As nearly as could be determined from angles carefully measured, and plotted on the English Admiralty Chart, this station is identical with the one occupied by the officers of H. B. M. surveying vessel "Beagle," in the year 1836, when making their observations for determining the position of Payta. According to their determinations it is in

the longitude depending upon the position of the northeast bastion at Panama, New Granada, which is taken to be 5^h 18^m 4^s.6 W.

The instruments were set up, just above high-water mark, on the gray sand beach, about fifty feet back from which the land rises into bluffs, two hundred feet high, composed of a hard yellow earth, alternating with sedimentary rocks. The station was carefully examined for local attraction, by taking fore and back sights with a compass, but none could be detected.

Panama, New Granada. The ship was swung in this roadstead, on May 20th, 1866, in the usual manner. Her position at the time was lat. 8° 55′ N., long. 79° 30′ W. Joint XII on the after turret was 5.5 inches to port. While we were lying here the ship was swinging freely in all directions to the wind and tide.

The observations taken on shore, May 14th, were made on the northern side of Flamenco Island, to the westward of a small cocoanut grove, and northeast of the Naval Cemetery. The instruments were set up about ten feet north of the most western of the ruins which are to be found there. The island is rocky, but at this station the rocks are covered with earth. The spot was carefully tested for local attraction by taking fore and back sights with a compass, but none could be detected.

If we assume the position of the northeast bastion at Panama to be lat. 8° 56′ 56″ N., long. 5^h 18^m 4^s.6 W., as given by Capt. H. Kellet, R. N., then, according to the English Admiralty Chart, the position occupied by the instruments is in

Acapulco, *Mexico*. The ship was swung in this harbor, on June 1st, 1866, in the usual manner. Her position at the time was lat. 16° 50′ N., long. 99° 52′ W. Joint XII on the after turret was 5.5 inches to port. During the three days we were lying at Acapulco the ship was swinging freely to the wind and tide.

At the extreme south end of St. Lucia Bay, in this harbor, are two cocoanut groves, the most western of the two containing the graves of a number of our naval officers. The western end of the eastern grove is the place where the observations taken on shore, on May 30th, were made. The trees come almost close down to high-water mark, and the soil is a gray sand. The instruments were set up about forty feet from high-water mark, at a spot from which the true bearing of the gate of Fort St. Diego is N. 6° 22′ E.

If we assume the position of this gate to be lat. 16° 50′ 56″ N., long. 6^h 39^m 29^s.0 W., as given on the English Admiralty Chart, then, according to that chart, the position occupied by the instruments is in

MAGDALENA BAY, Lower California. An attempt was made to swing the ship in this bay, on June 9th, 1866, in the usual manner, but owing to a very stiff breeze which was blowing at the time, she could only be turned through fourteen points. Her position was lat. 24° 38′ N., long. 112° 6′ W. Joint XII on the after turret was 5.5 inches to port. During the three days that we lay in this bay the wind was so strong that the ship did not swing to the tide, but rode with her head constantly to the west.

As it is difficult to describe the land-marks here, the most convenient way of giving positions will be to refer them to the English Admiralty Chart, the position formerly occupied by Capt. Sir Edw. Belcher's observatory being taken to be lat. 24° 38′ 18″ N., long. 7^h 28^m 25^s.4 W., as given on the chart.

On June 8th a landing was effected at a spot on the beach, about a mile south of the position of Capt. Belcher's observatory, for the purpose of making a set of magnetic observations; but, after getting a time sight, it was found that there was a great deal of local attraction, nearly all the stones on the beach being magnetic, and consequently it was useless to attempt anything there. The approximate position of this spot is

On June 9th, after going to the extreme northern end of the bay, and pulling a short distance up a creek, a place was found which, upon careful examination by taking fore and back sights with a compass, seemed to be entirely free from all local attraction. The land there is composed of fine white-sand hillocks, which are constantly being shifted by the wind, and are so loose that a man will sink half-way to his knees in walking over them. The only place where the surface was sufficiently solid to admit of the instruments being set up was below high-water mark, where the sand was wet. A complete set of magnetic observations were made there, which, however, were not as satisfactory as could have been wished, owing to the magnets being disturbed by a stiff breeze which shook the instruments, and from which there was no shelter. The position of this station was

It was on the east side of the creek (on its left-hand bank), at a place where there is a sharp bend in its course, and can easily be found by plotting the position, given above, on the chart.

SAN DIEGO BAY, California. We were only in this harbor from 11 A.M. of June 15th, 1866, till 11 A.M. of June 16th, and there was no time to swing the ship. However, during the afternoon of the 15th a complete and very satisfactory set of magnetic observations were made on shore at a spot on the beach near the extreme southern end of the slightly rising ground at La Playa. The instruments were set up just above high-water mark, and nearly due east of the U.S. Coast Survey Astronomical Station. The true bearing of the light-house on Point Loma was S. 3° 56′ W., and its distance exactly two statute miles in a direct line. The spot was tested for local attraction by taking fore and back sights with a compass, but none could be detected.

The position of the station, according to the U.S. Coast Survey Chart, was

SAN FRANCISCO, California. The ship was swung in this harbor, on June 23d, 1866, in the usual manner. Her position at the time was lat. 37° 48′ N., long. 122° 22′ W. Joint XII on the after turret was 5.3 inches to port. While we were lying here the ship was swinging freely to the wind and tide.

The observations taken on shore June 26th were made on the sand beach in a cove on the east side of Yerba Buena Island, the instruments being set up just at high-water mark, and about one hundred and fifty feet north of a long pier which runs out over a mud flat. The place was tested for local attraction by taking fore and back sights with a compass, but none could be detected.

According to the U.S. Coast Survey Chart the position of this station was

SECTION III.

ASTRONOMICAL OBSERVATIONS.

The observations contained in this section were all made on the sun, and are for the determination of latitude, local time, and true bearings. The instruments used were a prismatic sextant of six inches radius, by Pistor and Martins; a mercurial artificial horizon; and a pocket mean time chronometer, by Fletcher, marked number 906.

The index correction of the sextant was usually obtained by measuring the diameter of the sun, both on and off the arc. For determining the density of the atmosphere thermometers with Fahrenheit scales, and a mercurial barometer graduated to English inches, were employed.

The refractions have been computed by means of Bessel's tables, as given in Loomis' "Practical Astronomy;" from which book the tabular parts of the reductions to the meridian have also been taken. The necessary fundamental data have been obtained from the American Nautical Almanac.

Observations of circummeridian altitudes of the sun for latitude were made in sets of twelve, so arranged as to eliminate both the sun's semi-diameter, and all errors depending on the roof of the artificial horizon.

Circummeridian Altitudes of the Sun for Latitude, observed at the south front of Fort Christian, St. Thomas, November 17th, 1865.

IOh	55 ^m o ^s 55 48 56 14 57 3	105°	14' 15 16 18	20" 20 50	20	359°		Index (10" 10 40	correct	ion.	15' 16	50" 10 20
11	0 31		2 I 2 2	40 20		35	11	20.0		0	16	6.7
	1 33 2 9 2 46 3 28 3 59	104	18 18 18 18	20 25 50 55	} 2 <u>⊙</u>	00	Ex.	rrection ther. ther.	83° 86)	·	•
	4 29]	18	40			Bar	•	30.	16 ir	iches	• "
	Mean of chr	onometer t	imes	•		•			II^h	o^m	2 ⁸ .	0
	Chronometer	slow of lo	ocal n	nean ti	ime	•	•		0	40	47.3	3
	Equation of	time .	•			•	•		+	14	47.	τ
	Local appare	nt time .			•	•			II	55	36.4	-
	Mean of obs	erved doub	le alt	titudes	•	•	•		104°	48′	19".	2
	Index correc	tion		•	•	•	.•		+	16	16.7	7
	Apparent alti	tude of su	n's ce	entre	•	•	•		52	32	18.0)
	Refraction.	•	•	•	•	•	•	•		0	42.	ſ

Parallax			•	•		·+ °°	o ′	5"·3
Reduction to meridian			•			.+	I	19.4
Sun's declination .	•	•				19	6	59.1
Latitude				_	_	. т8°	20'	o" N.

Circummeridian Altitudes of the Sun for Latitude, observed at Isle Royal, Salute Islands, November 28th, 1865.

IOh	13 ^m 57 ^s . 14 35.5 15 9.5	125°	50' 49 49	30" 30	20		359°	11' 1	dex corr o" o	o° 1	
	15 52 16 24.5 17 1.5 17 38	126	49 48 48 52	20 50 40 10		,	359		o tion = +	0 I	
	18 14.5 20 17 21 9 31 46.5 32 30		51 48 46 30 26	10 20 10 0	$\left.\begin{array}{c} 2\overline{\bigcirc} \end{array}\right.$			Ex. the At. the Bar.	er. 91 r. 85	0	nches.
	Mean of chro Chronometer			oán t	·		•	•			37 ^s ·9
	Equation of the					•	•	•	. I	30 11	19.4 42.6
	Local apparen			•		•		·	. 12	1	39.9
	Mean of obse								. 1260	15'	
	Index correcti	ion .		•				•	.+	16	25.0
	Apparent altitu	ude of sun'	s cer	itre	•	•	•	•	. 63	16	10.0
	Refraction.	•	•	7	•		•	•	.—	0	27.1
	Parallax .	• •	•	•	•	•	•	•	.+	0	3.9
	Reduction to		•	•	•	•	•	•	.+	2	35· 7
	Sun's declinat	ion .	•	•	•		•	•	21	24	8.5
	Latitude .					_			. 5°	17'	20" N.

Observations for time were usually made in such a manner as to eliminate both the sun's semi-diameter and all errors which might be produced by the roof of the artificial horizon. For full details of the method see page 33 of the "Reports on Observations of the Total Eclipse of the Sun, August 7, 1869," published by the U. S. Naval Observatory, Washington.

The reduction of the observations for time has been effected by means of the following formulæ:

$$a = \frac{A + \omega}{2} - r + p$$

$$S = \frac{a + d + \phi}{2}$$

$$\sin \frac{1}{2}t = \sqrt{\sin (S - a) \cos S \sec \phi \csc d}$$

$$dt = t + \tau - T$$

T = mean of observed chronometer times.

A = mean of observed double altitudes.

 $\omega = index$ correction.

r =refraction.

p = parallax.

a = true geocentric altitude of sun's centre.

d = sun's polar distance, measured from the elevated pole.

 ϕ = latitude of place where observation is made.

t = hour angle at the pole.

 $\tau = \text{equation of time.}$

dt = correction of chronometer to reduce the reading of its face to local mean time.

Double Altitudes of the Sun, for Time, observed at the flagstaff in the Navy-yard at Portsmouth, Va., October 29th, 1865.

```
27'
                                  38
52
                                                                      Index correction,
                                  49
                                        30
52 22
53 56.5
54 47
55 50
56 25
56 57.5
57 59.5
58 32.5
                                                  2\overline{\bigcirc}
                           50
                                   7
                                        40
     56.5
                                                                          = + 15' 42''
                                        50
                                 17
                           50 32
49 47
                                        20
                                        0
                                 57
6
                                        20
                                        20
                                                  20
                                  24
                                        50
                                        30
     13.5
                                        50
```

Ex. ther. 50°. At. ther. 92°. Bar. 30.40 inches. Sun's declination — 13° 35′ 16″ Refraction = -125''Parallax = +8Latitude + 36 49 32 Mean of observed double altitudes 7' 27" 6^m 40^s.8 Local apparent time . . . Equation of time 16 10.6 . Local mean time 8 50 30.2 Mean of chronometer times 55 11.3 Chronometer fast of local mean time . Longitude west 9.8 5

Double Altitudes of the Sun for Time, observed at the flagstaff in the Navy-yard at Portsmouth, Va., October 29th, 1865.

Chronometer slow of Greenwich mean time

Ex. ther. 55° At. ther. 79 Bar. 30.36 inches. Refraction =-170''.1 Sun's declination -13° 40' 42''.0 Parallax =+8.0 Latitude +36 49 32.

Mean of observed double altitudes . . , . . 39° 16′ 23''.3 Local apparent time 3^{h} 27^{m} $51^{s}.9$

Equation of time					•	•			o^{h}	16 ^m	11 ⁸ .6
Local mean time		• 1	•	•			•	•	3	11	40.3
Mean of chronome											
Chronometer fast of	of loca	l mean	time	•		•	•		0	4	40.I
Longitude west .	•	•			•				5	5	9.8
Chronometer slow											

Double Altitudes of the Sun for Time, observed at Fort Christian, St. Thomas, West Indies, November 13th, 1865.

Double Altitudes of the Sun for Time, observed at Isle Royal, Salute Islands, November 28th, 1865.

					•	•		•		•
8 ^h	47 ^m 58 ^s 48 35 49 8 49 58 50 31 50 56.5	110 9 5 20 35 3 45 5 52 5	20" 50 0 80 50 50	<u> </u>	359°				on. 0 15' 16 16	50" 0
	51 44.5 52 39.5 53 13.5	40	0 0 0	ร	359	10			16	0.0
	53 47 54 19 54 53·5	113 0	0 20				Correct	10n =-	 16′	31".6
	Ex. ther. 93° Refraction = — Parallax = +	- 36". 3	t. ther.	Sun			Bar. ion —		' 3o"	.3
	Mean of observed Local apparent tin Equation of time Local mean time	ne	•					111° 3. 10 ^h 3 - 1 10 2	3 ^m 31 ¹	8.8 .8
	Mean of chronon	neter times	•	•				8 5		

Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December 13th, 1865.

Iħ	15 ^m	138.5		63°		o″)]	ndex	correc	tion.		
	16	58.5 41		62	40 20	0	} 2⊙	359	° 11′	0"	1	o°	16'	o"
	17	3.5			10	0	1		10	50	-			10
	17	26		62	0	0	J		10	40				0
	18	43		62	30	0)	-						
	19	5			20	0		359	10	50.0	,	0	16	3.3
	19	26.5			10	0	20							
	19	50		62	0	0	_		Co	orrecti	on =	+16′	33'	'·3
	20	11.5	1	61	50	0)							
	Ex.	ther.	84°			At.	ther.	82°		В	ar. 30	05 i1	iche	s.
	Ref	raction	_ = -	– 89".	5			Sun's de	eclina	tion	23	12	4"	.0
		allax		-	_								•	
	Me	an of c	bserve	ed dot	ıble a	ıltituo	les .	•		•	. 629	18′	o"	.0
	Mea	an of c	hrono	meter	times	s			•		. Ih	17 ⁿ	57 ^s	.8
	Eat	ation o	of time									•	20	

Reducing this observation with latitude = -3° 43′ 15″, we find the chronometer 2^{h} 26^{m} 29^{s} .6 slow of local mean time. Reducing it with latitude = -3° 44′ 15″, we find the chronometer 2^{h} 26^{m} 32^{s} .0 slow of local mean time.

Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December 14th, 1865.

```
2m 08.5
                     30'
                          o''
                                                Index correction.
2 24.5
                     40
                          0
2
                                        359° 10′
                                                 30"
                                                           o° 16′ 10″
  49
                          0
   12.5
                100
                      0
                          0
                                                  40
                                                                  20
   36
                     10
                          .0
    9
                                        359 10 36.7
                                                           0 16 16.7
   32.5
   57·5
21.5
                     30
                                             Correction =+16' 33".3
                     40
   45.5
                          At. ther. 82°
Ex. ther. 81°
                                                   Bar. 30.12 inches.
Refraction = -45''.9
                                   Sun's declination — 23° 14′ 46″.2
            = + 5.6
Parallax
Mean of observed double altitudes .
                                                     . 100° 10′ 0″.0
Mean of chronometer times
                           •
Equation of time
                                                             4 59.5
```

Reducing this observation with latitude = -3° 43′ 15″, we find the chronometer 2^{h} 26^{m} 33^{s} .7 slow of local mean time. Reducing it with latitude = -3° 44′ 15″, we find the chronometer 2^{h} 26^{m} 30^{s} .9 slow of local mean time.

Double Altitudes of the Sun for Time, observed at Ceara, Brazil, December 14th, 1865.

Reducing this observation with latitude = -3° 43′ 15″, we find the chronometer 2^{h} 26^m 30^s.7 slow of local mean time. Reducing it with latitude = -3° 44′ 15″, we find the chronometer 2^{h} 26^m 33^s.1 slow of local mean time.

In order to determine both the latitude of Ceara and the error of the chronometer from the three observations which have just been given, we proceed as follows:

Comparing the error obtained on the afternoon of December 13th, with that obtained on the afternoon of December 14th, we find that the chronometer was losing 1.17 seconds per day; and this rate is independent of any small change in the adopted value of the latitude.

By means of this rate, reducing all the observed chronometer errors to 2^h 26^m P. M. December 14th, and then plotting them according to Sumner's method, we get for the place of observation

and for the chronometer,

Double Altitudes of the Sun for Time, observed at Pernambuco, Brazil, December 23d, 1865.

Mean of chronometer times		•	7 ^h	31 ^m 57 ^s ·5
Chronometer slow of local mean time .	•		2	36 34.8
Longitude west		•	2	19 28.2
Chronometer slow of Greenwich mean time				

Double Altitudes of the Sun for Time, observed at Bahia, Brazil, December 27th, 1865.

6h 52m 10s	98° 30′ 40	o")	Index co	rrection.
52 31.5 52 54.5	40 50	0 \ 20	Index co: 359° 10′ 40″ 50	0 10 10
54 32 54 53·5	98 30	0)		
55 16.5	40 50	° ∫ 2 <u>∪</u>	359 10 45.0 Correction =	+16' 35".0
Ex. ther. 88°		At. ther.	H	Bar.
Refraction = -	45 ["] ·9		Sun's declination	23° 19′ 33″.8
Parallax $= +$	5.7		Latitude	<u>— 12 56 55.</u>
Mean of observed		ltitudes .	• • •	. 98° 40′ 0″.0

Chronometer slow of Greenwich mean time . . . 4 56 7.3

Double Altitudes of the Sun for Time, observed at the Light-house in Fort St. Antonio, Bahia, Brazil,

December 29th, 1865.

					,	, ,		
8 ^h 14 ^m	46 ^s .5] 134°	50'	. o")		Index	correction.
15	10	135	0	0	l			
15	31		10	0	20	359°	10′ 50″	o° 16′ o″
15	56		20	Ó		•••	50	10
16	19.5	1	30	0	j		40	10
17	17.5	134	50	0	ĺ			
17	44	135	ŏ	0	j	359	10 46.7	0 16 6.7
ıš	7		10	0	<u>}</u> 2 <u>O</u>		•	•
18	31.5		20	0]		Correcti	on $=+16' 33''.3$
18	54		30	0	j			
Ex.	ther.	84°		At.	ther.		Bar.	
Ref	raction	= _ 22".1			S	ın's de	clination	- 23° 13′ 31″.1
						atitude		
Par	allax	= + 3.3			1.	antude		-13 o 55.
Mea	an of ob	served doub	le al	titude	s .		•	. 135° 10′ 0″.0
Too	al annai	rent time .						. 10 ^h 36 ^m 25 ^s .7
1.00	ar appai	ciii tiilic .	•	•	•	•	• •	. 10 30 25.7

Double Altitudes of the Sun for Time, observed at Rio Janeiro, Brazil, January 9th, 1866.

5 ^h 13 ^m 17 ^s	47° 40	o")				Index co	orrecti	ion.	
13 39	50		20	359°	10'	40") c	° 16	o"
14 3.5	48 c		20			30	Ì	15	50
14 26.5	10	~							
15 43 16 8	47 40	1		3 59	10	35.0	0	15	55.0
16 29	48 0	· >	2⊙		Co	rrection	=+1	r6′ /	15".0
16 53	10	1			00	110001011			73 .0
V	•								
Ex. ther. 74	•	At. th		77°			29.9		
Refraction =	= - 123".2.		S	un's dec	clinat	ion —	22°	6′ 2	:4".6
Parallax =	= + 7.9		I	_atitude		-	22 5	4	5.
Mean of obse	wyad daubla	altitudos					47°	/	o" o
	_			•	•				
Local apparer				•	•		. 7 ^h		
Equation of ti			•	•	•		+	7	23.8
Local mean ti	ime .		•	•	•		7	18	43.3
Mean of chro	nometer tim	es .	•				5	15	4.9
Chronometer	slow of loca	ıl mean t	ime		•		. 2	3	38.4
Longitude wes	st					•	2	52	30.7
Chronometer	slow of Gre	enwich n	nean t	ime			4	56	9.1

Double Altitudes of the Sun for Time, observed at Rat Island, harbor of Rio Janeiro, January 9th, 1866.

Index correction.

32.8

37.9

10.7

3

2 52

o"

108°

Chronometer slow of local mean time

Chronometer slow of Greenwich mean time

Longitude west.

· •, · • • •

7^h 27^m

OS

Double Altitudes of the Sun for Time, observed at Monte Video, Uruguay, January 18th, 1866.

Ex. ther. 76°	At. ther	· 7 9	0		E	Bar.	30.0	02 in	ches.
Refraction $= -130''.2$		St	ın's d	leclin	ation	 2	30°	2 6′	55".2
Parallax $= + 8.0$		L	atitud	e		- 3	34	53	39
Mean of observed double							_	_	-
Local apparent time .		•	•		•	•	5 ^h	3^{m}	5 ^s . 2
Equation of time .									
Local mean time .									
Mean of chronometer time	es .	•		•			4	2	29.6
Chronometer slow of local	l mean tir	ne					1	ΙI	27.0
Longitude west							3	44	55.8
Chronometer slow of Gree	enwich m	ean ti	me	•	•	•	4	56	2 2. 8

Double Altitudes of the Sun for Time, observed on Rat Island, harbor of Monte Video, Uruguay, January 24th, 1866.

Double Altitudes of the Sun, for Time, observed at Sandy Point, in the Straits of Magellan, February 7th, 1866.

3 44

90°

2⁸.2

. Ioh

56

52.9

Longitude west .

Chronometer slow of Greenwich mean time

Mean of observed double altitudes

Local apparent time . . .

Equation of time

9 ^h 59 ^m 24 ^s ·5	90° 30′	o")	Index co	rrection.
1 1	40 50	°	359° 10′ 20″	o° 15′ 40″ 50
1 49·5 2 37·5	91 0	0	30 35	50 35
4 39·5 5 27·5 6 18.5	90 30 40		359 10 28.3	0 15 41.7
6 18.5 7 9 7 58.5	91 0 10	0 20	Correction	= + 16' 55''.0
Ex. ther. 52°	10	At. ther. 70°	Bar.	30.04 inches.
Refraction = -			Sun's declination —	

Local mean time
Double Altitudes of the Sun for Time, observed near Valparaiso, Chile, March 2d, 1866. 3^h 50^m $15^s.5$ 62° $0'$ $0''$ Index correction. 50° 39.5 61° 50°
Ex. ther. 67° At. ther. Bar. Refraction $= -92''.4$ Sun's declination -7° 1' $53''$ Parallax $= +7.4$ Latitude -33 1.4
Mean of observed double altitudes , 61° 42′ 30″.0 Local apparent time . 3h 49m 44s.3 Equation of time . + 12 17.9 Local mean time . 4 2 2.2 Mean of chronometer times . 3 52 15.8 Chronometer slow of local mean time . 0 9 46.4 Longitude west . 4 46 31 Chronometer slow of Greenwich mean time . 4 56 17.4
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, March 29th, 1866. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ex. ther. 71° At. ther. 69° Bar. 30.23 inches. Refraction = $-75''$. Sun's declination + 3° $31'$ $38''$ Parallax = $+6.9$ Latitude -33 1 47
Mean of observed double altitudes 73° 15' 0".0 Local apparent time 2^{h} 43 ^m 52 ^s .0 Equation of time + 4 47.0 Local mean time 2 48 39.0 Mean of chronometer times 2 39 12.2 Chronometer slow of local mean time 0 9 26.8 Longitude west 4 46 45.7 Chronometer slow of Greenwich mean time 4 56 12.5
Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April 7th, 1866. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ex. ther. 67°	At	t. ther	. 6	55°		I	Bar.	30.	17 i1	iches.
Refraction $= -69''.8$				Sun's	decli	nation	+	6°	53 [′]	28".6
Parallax $= + 6.7$				Latit	ude		- ;	33	1	47
Mean of observed double	altitu	des						77°	45′	0″.0
Local apparent time .				. •	•	•		9^{h}	46°	198.6
Equation of time .							.+	•	2	8.9
Local mean time .								9	48	28.5
Mean of chronometer time	es	•		•		•		9	39	5.2
Chronometer slow of local	l mea	ın tim	e	•	•	•		0	9	23.3
Longitude west								4	46	$45 \cdot 7$
Chronometer slow of Gree	enwic	h mea	an	time		•		4	56	9.0
while Altitudes of the Court for	. Ti.			71 a d isa	Valha	uaioo	Chil	. 1.	hari T	m ≠

Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April 7th, 1866.

$$9^h$$
 43^m
 $15^s.5$
 79°
 30°
 $0''$
 $2\overline{\bigcirc}$
 Index correction

 45
 0.5
 80
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Double Altitudes of the Sun for Time, observed in Valparaiso, Chile, April 14th, 1866.

3 ^h 50 ^m 20 ^s ·5 51 1.5 51 39 53 7	36° 30′ 0″ 15 0 0 0 36 30 0		Index corr 10' 40" 40 45	o° 14′ 50″ 45 50
53 46 54 24.5	0 0	$\begin{cases} 2\overline{\odot} & \overline{} \\ 359 & \end{array}$	10 41.6 Correction =	0 14 48.3 + 17' 15".0

Ex. ther. 65° Refraction = $-170''$.3 Parallax = $+8.1$	At.	ther.	Sun's	declina 1de		Bar. 30 + 9° - 33	33'	33".6
Mean of observed double	altitud	les .		•	•	. 36	° 15′	0″.0
Local apparent time .	•				•	• 4	^h 3 ^m	13 ⁸ .2
Equation of time .						. +	0	11.6
Local mean time .				•		. 4	3	24.8
Mean of chronometer time	S			•		. 3	52	23.1
Chronometer slow of local	mear	ı time		•		. 0	II	1.7
Longitude west						. 4	46	45.7
Chronometer slow of Gree	enwicl	n meai	n time	•		. 4	57	47.4

Double Altitudes of the Sun for Time, observed on the Island of San Lorenzo, near Callao, Peru,

		April	26 <i>th</i> , 1866	•		
11 ^h 17 ^m 45 ^s 18 52 20 3 22 46 24 2 25 18	123°	15 0 } 2 30 0 }	359° 	11 10.0	correction. $\begin{array}{c c} & \circ & 1 \\ $	15' 0"
Ex. ther. Refraction Parallax	80° $1 = -29''.2$ $1 = +4.0$	At. the	Sun's d	-	Bar. + 13° 35' 12 5	18" 14
Local app Equation of Local mea Mean of of Chronomo Longitude Chronomo	chronometer to the chronometer slow of Grandes of the Samuel Control of the chronometer to the chronometer t	imes cal mean times reenwich mean for Time o' o'' 15 o $\left\{\begin{array}{ccc} 2\sqrt{3} & 0 \\ 3 & 0 \end{array}\right\}$	ean time $0.0000000000000000000000000000000000$	at Payta, Index of 11' 30" 25 25 11 26.7	. 11 1 11 2 . 0 1 . 5 . 4 5 . 4 5 . 2 . 2 . 3 . 4 5 . 4 5 . 4 5 . 4 5 . 5 . 6 15	2 ^m 33 ^s .0 2 18.8 0 14.2 1 27.7 1 13.5 9 9.1 7 55.6 th, 1866.
Parallax Mean of o	= -90''.7 $= + 7.3$ bbserved doublarent time .	le altitudes • •	Sun's d Latitude	I eclination e	. 62° 1; . 8 ^h 1;	inches.

Double Altitudes of the Sun for Time, observed on Flamenco Island, Panama Bay, May 14th, 1866.

Chronometer slow of Greenwich mean time . . . 4 57 40.1

. . 5 24 22.0

Longitude west

= + 5.7

Parallax

α.
*·5
3. I
.4
7.3
.9
.8
ŀ.9
3

Double Altitudes of the Sun for Time, observed at Acapulco, Mexico, May 30th, 1866.

10 ^h 25 ^m 36 ^s	89° o'	o")	Index cor	rection.
26 5.5	15	o } 2 0	359° 11′ 10″	o° 15′ o″
26 38.5	30	o) -	0	14 40
27 49.5	89 0	o)	20	15 0
28 22	15	o } 2 <u>0</u>		<u> </u>
28 54	30	o)	359 11 10.0	0 14 53.3
			Correction =	+ 16' 58".3

Ex. ther. 89° Refraction = $-54''$. Parallax = $+6.0$	5		. ther.	Sun'	s decl	Ba ination		° 48	7"
Mean of observed dou	ble	altitı	ıdes			•	89°	15'	0″.0
Local apparent time .									
Equation of time .									
Local mean time .			•		•	• .	8	45	52.0

Double Altitudes of the Sun for Time, observed in Magdalena Bay, Lower California, June 8th, 1866.

Ex. ther. 69°	At. ther.	70°	Bar. 30.02 inches.
Refraction $= -46'' \cdot 4$		Sun's declination	$+22^{\circ}53'42''$
Parallax $= + 5.4$		Latitude	+ 24 38

Mean of observed do	uble	altitud	les		•			. r	oo°	30'	0″.0
Local apparent time									$2^{\rm h}$	53^{m}	42 ⁸ ·3
Equation of time											
Local mean time						•		• ,	2	52	27.8
Mean of chronometer	r tim	es	•			•	•	•	5	22	32.2
Chronometer fast of	local	mean	time			•	•	•	2	30	4.4
Longitude west .											
Chronometer slow of	Gre	enwic	h mea	an tin	ne		•	•	4	58	19.6

4 February, 1872.

Double Altitudes of the Sun for Time, observed at La Playa, San Diego Bay, California, June 15th, 1866.

5 ^h	17 16 17 51.5 19 10 112	2° 30′ 15 0		20		359°		Index 30" 35 20			ion. ° 14	50" 30 50
	19 46 20 21.5	0	o o .	20	·	359	11 Corr	28.3 ection	ı	0 + 1		43.3
	Ex. ther. 71° Refraction = -37 Parallax = +4	" •4	At.	ther.		un's d	leclin	Ba ation	+	230	20′	
	Mean of observed do	ouble a	ltitud	les					. 1	I 2°	15'	0″.0
	Local apparent time	•	•							2^{h}	$27^{\rm m}$	47 ^s ⋅3
	Equation of time				•				. +		0	11.3
	Local mean time					•				2	27	58.6
	Mean of chronomete	r times	5							5	18	31.1
	Chronometer fast of	local 1	nean	time	•					2	50	32.5
	Longitude west .									7	48	52.6
	Chronometer slow of	Green	nwicl	n mea	n tim	e				4	58	20. I

Double Altitudes of the Sun for Time, observed on Yerba Buena Island, San Francisco Bay, California, June 26th, 1866.

4^{h}	16 ^m 40 ^s .5 75° 15'	o")				dex o	corre			
	17 18 30	0 {20		359°	11'	30"		o°	14'	30″
	17 55.5 45	(ه				35				50
	19 18.5 75 15	0)				25				50
	19 54.5 20 30 45	0 \ 20	-	250		30.0			т 1	42.2
	20 30 45	0)		359		rectio				43.3
					COL	lectio	11	+ 1	0 5	3 • 4
	Ex. ther. 67°	At. ther.				Bar				
	Refraction = $-72''.5$		Sı	ın's d	eclin	ation	+	23°	22"	7''
	Parallax $= + 6.6$			atitude				37		
	,						•	J 1	.,-	7-
	Mean of observed double al	titudes				•	. 7	′5° 3	30′	0".0
	Local apparent time	•						8^{h}	2 ^m !	58 ^s .4
	Equation of time	•	•				.+		2	29.6
	Local mean time	•	•					8	5	28.0
	Mean of chronometer times	•						4 1	8	36.2
	Chronometer fast of local m	ean time						8 1	13	8.2
	Longitude west		•					8	9	22.6
	Chronometer fast of Greenw							0	-	45.6
									-	-

The chronometer used in making this observation was T. S. and J. D. Negus' No. 1287.

True bearings were determined by measuring with a sextant the angle between the sun's limb and some well-defined terrestrial object, the time being noted at the instant the angle was observed. If the terrestrial object was much elevated above the horizon its angular altitude was also measured. Knowing the latitude of the place of observation, the local time, and the sun's declination, the sun's zenith distance and true bearing were calculated. Then, having the zenith distance of the sun, the zenith distance of the terrestrial object, and the measured angle between the sun and the terrestrial object, the horizontal angle between them

was computed, and applying it to the sun's true bearing the true bearing of the terrestrial object at once became known.

The formulæ employed were as follows. Let

T = mean of observed chronometer times.

dt = correction of chronometer to reduce the reading of its face to local mean time.

 $\tau = equation of time.$

t = sun's hour angle, or the apparent time.

 Ω = mean of observed angular distances between the sun's limb and the terrestrial object.

 $\omega = index$ correction of sextant.

s = sun's semi-diameter.

a = apparent zenith distance of sun's centre.

b = zenith distance of terrestrial object.

c = true angular distance between the sun's centre and the terrestrial object.

C = horizontal angle included between the sun's centre and the terrestrial object.

 ϕ = latitude of the place of observation.

A = azimuth, or true bearing, of sun's centre.

 ζ = true zenith distance of sun's centre.

 $\delta = \text{sun's declination.}$

r = refraction due to apparent altitude of sun's limb.

B =true bearing of terrestrial object.

Then we have

$$t = T + dt + \tau$$

$$\tan M = \frac{\tan \delta}{\cos t}$$

$$\tan A = \frac{\tan t \cos M}{\sin (\phi - M)}$$

$$\tan \zeta = \frac{\tan (\phi - M)}{\cos A}$$

where A is to be taken greater or less than 180°, according as t is greater or less than 180°.

$$a = \zeta - r$$
$$c = \Omega + \omega + s$$

If b is exactly 90° , we have

$$\cos C = \frac{\cos c}{\sin a}$$

But if b is either greater or less than 90° , we have

$$S = \frac{a+b+c}{2}$$

$$\tan \frac{1}{2} C = \sqrt{\frac{\sin (S-a)\sin (S-b)}{\sin S\sin (S-c)}}$$

Finally

$$B = A \pm C$$

In a few instances true bearings were obtained by observing the sun when its apparent elevation above the horizon was equal to its diameter. In that case

$$\zeta = 90^{\circ}$$

$$\cos A = \frac{\sin \delta}{\cos \phi}$$

 $\zeta=90^\circ$ and then $\cos A=\frac{\sin \delta}{\cos \phi}$ in which the azimuth will be north or south of the prime vertical according as the sun's declination is north or south.

Observations of the Sun, made October 31st, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Hampton Roads, Va.

		IO ^h	10 ^m 11 12 14 14	50 ⁸ 45 15 0					12		20' 38 45 4 8
T Chronometer fast		ľo O	12	42 50		Ω ω			12	7 ·	47 16
τ		+	16	16		s			ł		16
Apparent time		10	24	8		с			12	8	19
t			23°			ζ			5	5 .	59
$\delta \ \phi \ M$		-	36	16 58		r	,				1 58
$\Phi \longrightarrow M$			52	33 31		<i>b</i> n <i>C</i>	early		9	8 :	26
True bearing of su	ın .					•			S. 28°	21′	E.
∠ Seminary to sun .				•	•	•			138	26	
∠ Seminary to Rip R	aps.		•	•		•	•	•	62	44	
∠ Rip Raps to tree.	•		•	•	•	•	•	•	114	37	
True bearing of tr	ee .				٠	•	•	•	S. 10	34	W.

Observations of the Sun, made November 18th, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at St. Thomas, West Indies.

	8	5 ^s 15 45 15 45		34° 13′ 15 10 12 12
T Chronometer slow $ au$		47	Ω ω s	34 12 + 16 + 16
Apparent time	.8 o	24	С	34 44
$egin{array}{c} t \ \delta \ \phi \ M \ \phi M \end{array}$	— 19 18 — 34	20	ζ r a b nearly C	69 48 - 2 69 46 90 28 52
True bearing of st Z Sun to Peak .	ın			S. 60° 27′ E. 28 52
True bearing of P	eak	•	• •	S. 31 35 E.

Observations of the Sun, made Novem er 28th, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Isle Royal, Salute Islands.

	6 ^h 27 ^m 5 ^s 28 59 31 8		74° 50′ 46 40
T_{C1}	6 29 4	Ω	74 45
Chronometer slow	1 30 19 + 11 45	ω S	+ 17 + 16
Apparent time	8 11 8	с	75 18
t	57° 13′	ζ r	62 4
$oldsymbol{\delta} \ oldsymbol{\phi} \ M$	- 21 22 5 17	a b nearly	62 2
$\phi - M$	$-35 5^{2} 41 9$	C	90 73 18
True bearing of su	n		. S. 62° 24′ E.
∠ Sun to Nob .	• • •	• • •	73 18
True bearing of N	ob		S. 10 54 W.

Observations of the Sun, made December 12th, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Ceara, Brazil.

True bearing of Li	ght-hous	se .							N.	82	7 E
∠ Light-house to Lar	itern .	•		•	•	•	•	•		77	0
∠ Lantern to sun		•		•	•	•	•	•		87	56
True bearing of su	ın .	•		•		•	•		S.	67°	3' V
$\phi - M$		77	42		1	C		ł		87	56
M		- 3 -81	25			b ne	arly			90	
$\Phi \ M$			43		1	a				84	46
δ		- 23	8			r					4 18
t		86°	18'			ζ				85	4
Apparent time	5	45	12		=	С	٠.	=		87	56
7	+	5	47		-	s		-		+	16
Chronometer slow	2	26	32			ω				+	16
T	3	12	53			Ω				87	24
		14	32		_			_			21
	Ü	13	0								22
	$3^{\rm h}$	II^{m}	. 8	3						87°	30'

Observations of the Sun, made December 29th, 1865, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Bahia, Brazil.

When the sun's true zenith distance was about 90°, the angle between its nearest limb and a conspicuous tree was measured and found to be 31° 38′, the tree being to the right of the sun.

	$\phi = -12^{\circ} 59'$						$\delta = -$	- 23	° 12′	
	True bearing of sun		•			•	•	•	S. 66°	9′ W.
L	Sun to tree		•				•		31	38
	Sun's semi-diameter						•			16
	True bearing of tree	•	•	•	•		•	•	N. 81	57 W.

Observations of the Sun, made January 7th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Rio Janeiro, Brazil.

	5 ^h	51 ^m	40 ⁸				112° 2
	5	53	30 ^s 45				7
		55	0				12
T	5	53	25		Ω		112 15
Chronometer slow	2	3	32		ω		+ 17
τ		6	36		s		
Apparent time	7	50	21		с		112 32
t		62°	25'		ζ		57 9
δ		22	22		r		— I
$\stackrel{ extstyle \phi}{M}$		22	54	l	a		57 8
		4 I	38		b C		85 16
$\phi - M$	l	18	44	-	L		120 45
True bearing of su	ın .			•	•	•	. S. 77° 21' E.
∠ Sun to Corcovado							. 120 45
∠ Corcovado to buil	ding .		•	•		. •	. 83 8
True bearing of b	uilding	•	•	•	٠	•	. N. 53 28 W.

Observations of the Sun, made January 23d, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Monte Video, Uruguay.

Near sunset, when the true zenith distance of the sun was about 90°, the angle between its nearest limb and the Light-house on the Mount, on the west side of the harbor, was measured. The uncorrected reading of the sextant was 69° 40′, and the sun was to the left of the Light-house.

Observations of the Sun, made February 9th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Sandy Point, in the Straits of Magellan.

	1		1		1
	9 ^h	13 ^m 57 ^s 15 19 16 40			119° 15′ 32 42
7	9	15 19	Ω		119 30
Chronometer slow	0	12 48	ω		+ 17
t		14 30	s		+ 16
Apparent time	9	13 37	С		120 3
t		41° 36′	ζ		50 32
δ	· —	14 37	r		I
ф.		53 11	a		50 31
$oldsymbol{M}$		19 14	<i>b</i>		89 34
$\phi - M$		33 57	C		130 54
True bearing of st	ın .				. N. 56° 20' E.
∠ Mount St. Felipe	to sun.			•	. 130 54
True bearing of M	Iount St.	Felipe .		•	. S. 7 14 W.

Observations of the Sun, made April 2d, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Valparaiso, Chile.

	5 ^h	10 ^m 11 12	5 ⁸ 20 10			,	110° 20′ 35 42
T Chronometer slow $ au$	5 0	11 9 3	12 25 32		Ω ω s		110 32 + 17
Apparent time	5	17	5		с		110 49
t δ φ M φ — M	<u>-</u> + -	79° 5 33 25 58	16' 7 2 40 42		ζ r a b ne. C	arly	83 52 8 83 44 90 110 56
True bearing of su Sun to Point.	n .	•	•	•			. N. 79° 49′ W.
True bearing of Po	oint .	•	•	•	•	•	N. 31 7 E.

Observations of the Sun, made April 27th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at Callao, Peru.

	7 ^h	o ^m 2 3	30 ⁸ 20 50					1000	50' 55	
T Chronometer fast $ au$	7 0 +	2 I I 2	13 1 27		Ω ω s			100	55 17 —	_
Apparent time	6	53	39		c			101	12	
t δ φ M φ—M	+	76° 13 12 46 58	35' 51 3 44 47		ζ r a b nea C	arly		80 90 101	12 5 7	•
True bearing of su	in .	•	•	•	•	•	•	N. 73°	26′	E.
∠ Sun to flagstaff∠ Flagstaff to Light-	· · · house .		•	•		•	•	101 88	34	
True bearing of L	ight-hous	е.	•		•	•	•	S. 83	21	w.

Observations of the Sun, made May 13th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship in Panama Bay, New Granada.

	6 ^h 17 ^m 3 ^s 18 15		86° 56′ 58
T Chronometer fast $ au$	6 17 39	Ω	86 57
	0 20 17	ω	+ 17
	+ 3 53	s	—
Apparent time(P.M.)	6 і і5	C	87 14
t	90° 19′	ζ	86 54
δ	18 31	r	— 14
Φ	8 55	a	86 40
M	89 3	b nearly	90
Φ — M	— 80 8	C	86 14

										49′ W.
7	Peak to sun ·	•	•	•	•	•	•	•	87	14
	True bearing of Peak	•		•	•	•	•		S. 20	57 W.

Observations to determine the true bearing of the object used as an azimuth mark in swinging the ship in the harbor of Acapulco, Mexico.

When determining the magnetic declination with the portable declinometer, on May 30th, 1866, an observation of the sun with the theodolite gave N. 6° 22′ E. as the true bearing of the gate of Fort St. Diego from the shore station. We then have

True bearing from station to Fort ∠ Monadnock to Fort			
True bearing from station to Monadnock	•	•	N. 20 32 V
True bearing from Monadnock to station			•
∠ Clump to station	•	•	. 87 45
True bearing of clump	•		. N. 71 43 E

Observations of the Sun, made June 9th, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship in Magdalena Bay, Lower California.

Owing to a combination of unfortunate circumstances, the only available method of determining a true bearing was by observing with the solar compass, set up on the quarterdeck of the ship. In that way I found

True bearing of Peak S. 46° 30' E. which can only be considered as a near approximation to the truth.

Observations of the Sun, made June 23d, 1866, to determine the true bearing of the object used as an azimuth mark in swinging the ship at San Francisco, California.

	7 ^h 5 ^m 17 ^s 6 52 7 55		92° 22′ 39 43
T Chronometer fast $ au$	7 6 41 0 3 12 — 1 51	Ω ω s	9 ² 35 + 17 —
Apparent time	7 1 38	<i>c</i>	92 52
$egin{array}{c} t \ \delta \ \phi \ M \ \phi -\!$	- 74 35' 23 26 37 48 58 30 - 20 42	ς r a b C	64 8
True bearing of st ∠ Red Rock to sun	in		. N. 79° 26′ E. . 93 16
True bearing of R	ked Rock		N. 13 50 W.

The following triangulation was made for the purpose of determining the geographical position of some points in and about Ceara, Brazil. The angles were observed on December 14th, 15th, and 16th, 1865. Those between the Powhattan,

Monadnock, and Custom-house were not measured simultaneously, and as the two ships were riding at anchor with a considerable amount of chain out, it is probable that they shifted their positions after the angle at the Powhattan was measured, and before the angles at the Monadnock and Custom-house were taken. This will account for the excess of the sum of the three angles over 180°.

In the accompanying sketch the different points are designated as follows:

A =Point Macoripie Light-house.

B = Northeast corner of Custom-house on the wharf.

C = U.S. Iron-clad Monadnock.

D = U. S. Sloop of War Powhattan.

E = most southern of the two steeples on the Church of the Conception.

F = most southern of the two steeples on St. Joseph's Church.

M = Magnetic and Astronomical Station of December 13th and 14th.

The observed angles were as follows:

Angles at B.

Angles at C.

Angles at C.

Angles at D.

D to
$$A = 55^{\circ}$$
 12'

D to $C = 84$ 17

F to $C = 73$ 12

E to $C = 125$ 6

E to $F = 52$ 15

A to $E = 95$ 6

Angles at D.

Angles at D.

A to $B = 101^{\circ}$ 35'

B to $C = 25$ 13

A to $C = 126$ 49

From these we obtain the following corrected

Angles at B.	Angles at C.	Angles at D .
\underline{A} to $\underline{E} = 95^{\circ}$ II'	$D \text{ to } B = 70^{\circ} 58$	A to $B = 101^{\circ} 36'$
E to F = 52 9	D to A = 36 I4	B to C = 24 57
. 3	1 .	
0.0	E to P = 20 48	
E to F = 52 - 9 $F to C = 73 - 14$ $C to D = 84 - 5$ $D to A = 55 - 21$ $5 March, 1872.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D to C = 24 5

The Powhattan fired a salute, and, from the mean of seven observations, the interval between the flash and report, noted at B, was 6.55 seconds. External thermometer 86°. Hence the distance from B to D was 7526 feet.

Distance from B to M = 200 feet.

Azimuth from M to $A = N.75^{\circ} 38' E$.

Angle $A M B = 128^{\circ} 57'$.

From these data we find the distances between the several points as follows:

Assuming the position of M to be

Lat.
$$3^{\circ}$$
 $43'$ $59''.\circ$ S. Long. 2^{h} 34^{m} $6^{s}.\circ\circ$ W.

we get finally

Station.	Latitude.	Longitude,
B	3° 43′ 57″.8 S.	2 ^h 34 ^m 6 ^s .11 W.
E	3 44 12.0	2 34 5.97
F	3 44 15.9	2 34 7.25
A	3 43 13.3	2 33 54.10

For convenience of reference the results of the observations contained in this section, together with the chronometer comparisons made during the cruise, are here collected and appended.

Observed Latitudes.

Name of station.						Latitı	ıde.	
Fort Christian, St. Thomas Isle Royal, Salute Islands Magnetic Station, Ceara, Brazil Custom-house, "".	•	•	•	•	5	20' 17 43	29 59	N. N. S. S.
Church of the Conception, Ceara, St. Joseph's Church, "Point Macoripie Light-house,"	Bra	zil :	•	•	3 3 3 3	43 44 44 43	12	s. s. s.

Errors of Pocket Chronometer, Fletcher, No. 906.

Stati	on.	Date.		r on Local an Time.		or on Greenwich Mean Time.
Portsmouth, Va. Portsmouth, Va. St. Thomas Isle Royal . Ceara Pernambuco Bahia. Bahia. Rio Janeiro Rio Janeiro Monte Video Monte Video Sandy Point Valparaiso Valparaiso Valparaiso Valparaiso Valparaiso Callao Payta Panama Acapulco Magdalena Bay San Diego .		 ber 13, " 28, " ber 14, " 23, " 27, " 29, " y 9, 1866 " 18, " 24, "	Oh 4	418.1 fast 40.1 '' 43.6 slow 19.4 '' 32.5 '' 34.8 '' 38.4 '' 32.8 '' 26.5 '' 48.1 '' 46.4 '' 26.8 '' 23.3 '' 1.7 '' 13.5 fast 41.9 '' 16.9 '' 22.2 '' 4.4 '' 32.5 ''	4 4 4 4	om 28*.7 slow 0 29.7 " 0 26.3 " 0 30.8 " 0 38.5 " 56 3.0 " 56 10.5 " 56 10.7 " 56 22.8 " 56 19.4 " 56 12.5 " 56 12.5 " 56 9.6 " 57 47.4 " 57 55.6 " 57 44.9 " 58 7.2 " 58 19.6 " 58 20.1 "

This chronometer (Fletcher, 906) was habitually carried in my pocket. It was accidentally allowed to run down on the night of December 17th and 18th, 1865, and after remaining stopped twelve hours was wound and compared. Some time between 5^h P. M. of April 13th and 3^h P. M. of April 14th, 1866, it stopped for about 1^m 37^s, but started again of itself. On June 20th, 1866, when its face showed 6^h 45^m P. M. it stopped without any apparent cause, and, as it would not run again, it became useless.

In observing at San Francisco the box chronometer T. S. and J. D. Negus, No. 1287 was used. The observations on June 26th, 1866, showed it to be

8^h 13^m 8^s.2 fast of local mean time;

and

0^h 3^m 45^s.6 fast of Greenwich mean time.

Chronometer Comparisons.

Date.		Fletcher, 906.	T. S. and J. D. Negus, 1317.	T. S. and J. D 1287.	
October 29, 1865		7 ^h 39 ^m 56 ^s 8 A. M.	I 2 ^h 44 ^m 0 ^s .0		
October 29, "			7 33 0.0		
October 31, "		12 8 48.2 "	5 13 0.0		
November 3, "			9 22 0.0		
November 13, "		8 21 4.8 A. M.	1 26 0.0		
November 13, "			I 28 0.0	1 ^h 16 ^m	23 ⁸ .5
November 17, "	•, • •	12 18 46.0 "	5 24 0.0		
November 28, "		6 55 10.8 "	12 I 0.0		
November 28, "		6 =6 =60 66		11 50	0.0
November 28, "	· · · ·	2 39 9.8 P. M.	7 45 0.0		
December 14, "		6 29 23.0 A. M.	11 36 0.0		
December 14, "		6 0 ((11 25	0.0
December 14, "		12 43 22.5 P. M.	5 50 0.0	Ü	
December 16, "		8 54 16.0 A. M.	2 I 0.0		
December 16, "		8 56 15.2 "		1 51	0.0
December 18, "		9 44 42.8 P. M.	2 47 0.0	J .	
December 23, "		8 7 28.0 A. M.	I 10 0.0		
December 23, "		8 8 32.5 "		12 59	0.0
December 29, "		6 22 59.2 "	11 26 0.0	0,	
December 29, "		6 24 9.0 "		11 15	0.0
January 9, 1866		6 46 21.8 "	11 50 0.0	3	
January 9, "		6 46 43.2 "	l	11 38	0.0
January 24, "		12 41 4.0 P. M.	5 46 0.0		
January 24, "		12 41 50.8 "		5 34	0.0
April 14, "		4 16 24.4 "	9 29 0.0	3 0.	
May 7, "		11 34 26.4 A. M.	4 49 0.0		
May 14, "		12 2 49.6 P. M.	5 18 0.0		
May 30, "		11 55 13.2 A. M.	5 12 0.0		
June 8, "		6 28 24.8 P. M.	11 46 0.0		
June 15, "		12 0 46.8 A. M.	5 19 0.0		
June 26, "			6 34 0.0 P.M.	6 17	0.2

Table showing the True Bearings of the various objects used as azimuth marks in swinging the U.S. Iron-clad Monadnock during her cruise from Philadelphia to San Francisco in 1865 and 1866.

	St	ation.			-			True bearing.
Hampton Roads St. Thomas	, Va		•	•	•.	•	•	S. 10° 34′ W. S. 31 35 E.
Isle Royal, Salu	·. Fe To	· lands			•	•	•	S. 31 35 E. S. 10 54 W.
Ceara	. 13		•	•		•		N. 82 7 E.
Bahia							.	N. 81 57 W.
Rio Janeiro .								N. 53 28 W.
Monte Video .								N. 77 52 W.
Sandy Point .				•				S. 7 14 W.
Valparaiso .	,					•		N. 31 7 E.
Callao	,			•			.	S. 83 21 W.
Panama Bay .							.	S. 20 57 W.
Acapulco					•			N. 71 43 E.
Magdalena Bay.							.	S. 46 30 E.
San Francisco Ba	ay		• .	•	•	•	. 1	N. 13 50 W.

SECTION IV.

OBSERVATIONS ON TERRESTRIAL MAGNETISM.

The observations of magnetic declination and force were made by means of the same instruments—a portable declinometer, and a transit theodolite.

The Declinometer, kindly lent by the U.S. Coast Survey, and marked D. 22, was originally constructed by Jones, of London, but had been altered in many particulars so as to make it more convenient for field use. It was provided with two collimator magnets which were hollow cylinders of steel, each 0.70 of an inch in external diameter, and 0.58 of an inch in internal diameter. One of them, marked C. 32, was 3.92 inches long; while the other, marked S. 8, was 3.25 inches long. Each of these magnets carried in its south end a lens; and in its north end, at the solar focus of the lens just mentioned, a piece of plane glass on which was cut a scale of equal parts containing one hundred and seventy divisions, each division being equal to 0.00255 of an inch. Both magnets were provided with light sliding brass rings which were intended to be used for keeping them horizontal under great changes of magnetic declination, but the slight play which the magnets had in the stirrup was found quite sufficient for that purpose, and the rings were never employed. The same suspension was used during the whole of the observations. It consisted originally of six parallel fibres of unspun silk, each about nine inches long; but at Callao one of the fibres was accidentally broken, and after that the remaining five were used. The torsion circle, which formed part of the suspension apparatus, was 0.88 of an inch in diameter, divided to every three degrees, and read by means of a vernier to single degrees.

The Transit Theodolite, which perhaps might be more correctly called an altitude and azimuth instrument, was provided with a horizontal and a vertical circle, each five inches in diameter, and each reading by means of two opposite verniers to thirty seconds. The telescope had an object-glass with a clear aperture of one inch, and a focal length of about nine inches. It was provided with two eye-pieces; a direct one magnifying about twenty times, which was employed in almost all the observations; and a diagonal one of lower power, which was sometimes used for objects near the zenith. Both these eye-pieces had colored glasses for observing the sun. The system of wires in the focus of the object-glass was a simple rectangular cross, one wire being vertical, the other horizontal.

For the sake of convenience in setting up the instruments, and also for the perfect security which it affords against changes in the angular value of the divisions of the magnet scales depending upon changes in the distance between them and

the telescope, a special table was provided, which was mounted upon a tripod stand, and which carried both the declinometer and theodolite in a fixed and invariable position relatively to each other—the object-glass of the telescope being about three inches from the south end of the magnet.

Pocket Chronometer, Fletcher, No. 906, was always used to note time. Its errors have been already given in detail in Section III.

General remarks on the method of using the instruments. When observations were to be made the tripod stand was set up, and the table, having been placed upon it, was approximately levelled by the eye, and set, by means of a pocket compass, so that its longest side was nearly in the magnetic meridian, the end destined to carry the declinometer being to the north. In packing the declinometer for travelling, the glass suspension tube was never unscrewed from the magnet-box, but when the collimator magnet was lifted from the stirrup a cylinder of wood of the same size was at once substituted, and two pieces of wood, provided for the purpose, were slipped in, one from each side of the magnet-box. These pieces of wood completely filled up the box, and at the same time held the wooden cylinder securely between them in such a manner that it could neither break the suspension fibres, nor allow them to twist in the slightest. With this packing, after the suspension fibres were once thoroughly freed from torsion, they remained so, and it was not necessary to examine them whenever the instrument was used, but only at considerable intervals, thus saving much time in the field. The brass carriers for the deflecting magnet having been screwed, one on each end of the wooden bar, and the bar in its turn having been screwed to the bottom of the magnet-box, the declinometer was placed upon the table in such a position that its three levelling screws fitted into the cavities provided for Then the packing blocks were taken out of the magnet-box, their reception. and the wooden cylinder having been removed from the stirrup, the collimator magnet was put in its place, and left free to assume its proper direction. The magnet-box was next levelled. For that purpose the suspension fibres were used as a plumb line, and the box was assumed to be level when they were seen to hang in the axis of the suspension tube throughout its whole length. Finally, the magnet was made to hang nearly level by moving it a little endwise in its stirrup; its scale was placed horizontal, with the figures erect; it was shaded from the direct rays of the sun by covering the glass top of the box; the mirror was screwed to the back of the box and adjusted so as to illuminate the magnet scale properly; and a thermometer was placed inside the magnet-box. The theodolite was next placed in its proper position on the other end of the table and levelled; particular care being taken that the horizontal axis of the telescope was truly level—especially if the altitude of the sun was considerable. The telescope having been turned towards the magnet and adjusted so as to obtain distinct vision of its scale, the horizontal circle was firmly clamped in such a position that the vertical wire in the field of the telescope cut the magnet scale as nearly as possible at the magnetic axis. By means of the vertical circle the optical axis of the telescope was then placed truly level, and the final adjustment of the magnet for horizontality was

made by shifting it endwise in its stirrup till the scale was seen in the field of the telescope parallel to, and just in contact with, the horizontal wire.

When making my first observations considerable difficulty was experienced in getting a proper illumination of the magnet scale, but after some practice the following perfectly satisfactory plan was adopted. In cloudy weather the light of a white cloud was reflected into the magnet by means of the concave mirror. In clear weather the light of the blue sky, reflected from the mirror, was not sufficient, and it would not do to throw in the direct rays of the sun because of their heating power, which would certainly have led to the use of a wrong value of the magnetic moment; because the magnet would have been at a higher temperature than that shown by the thermometer in the box. Under these circumstances, in place of the mirror a piece of perfectly white paper was substituted, and the direct rays of the sun being allowed to fall upon it, it afforded a beautiful illumination of the magnet scale.

The copper damper, provided to slip into the magnet-box for the purpose of quieting the vibrations of the magnet, was never used. As the observations were all made in the open air, and as there was frequently wind enough to cause the instruments to vibrate perceptibly, the magnets seldom or never came to a state of absolute rest. Hence, the plan adopted to secure accurate readings of the scales was as follows. A screw-driver was slightly magnetized, and by approaching its south pole for an instant towards the south pole of the vibrating magnet, at a time when the magnet was moving towards the screw-driver, the arc of vibration was readily made quite small. Then, placing my eye to the telescope, I read off, and called out to my assistant, the scale reading at the instant the magnet attained the limit of its excursion in the eastern direction, and again when it attained the limit in a western direction—in other words, the greatest and least readings of the scale were noted. Five complete vibrations were generally observed, thus giving three eastern and three western readings, and the mean of the six was assumed to be the reading which would have been obtained if the magnet had been in a state of perfect rest.

In order to preserve the magnetism of the collimator magnets, they were always packed in a vertical position, with that pole downwards which would be lowest in a dipping needle.

Absolute Declinations were observed as follows: The instruments having been set up and adjusted in the manner already explained, the long magnet, C. 32, was suspended in the magnet-box, the telescope pointed nearly to its magnetic axis, and the horizontal circle of the theodolite firmly clamped. Then, 1°. The horizontal limb of the theodolite was read. 2°. The magnet scale being erect—that is, the figures upon it being right side up—the point upon it cut by the vertical wire of the telescope was observed. 3°. The telescope remaining as before, the magnet scale was inverted—that is, the magnet was turned on its axis through 180°, so that the figures upon its scale were seen inverted—and the point upon it cut by the vertical wire was again noted. 4°. The horizontal circle was unclamped, a colored glass placed upon the eye-piece, and the telescope pointed so that its vertical wire was just in advance of the first limb of the sun. Then the horizontal circle

was clamped, the time of transit of the sun's first limb over the vertical wire noted, and the horizontal circle read. 5°. If the observation was made at a time of day when the sun's azimuth was changing tolerably rapidly, the telescope was not moved in azimuth at all, but, the reading of the horizontal circle remaining precisely as before, the sun was followed by moving the telescope in altitude, and the transit of its second limb was waited for and noted. If, however, the sun was changing its altitude much more rapidly than its azimuth then, in order to save time, the horizontal circle was unclamped, the telescope moved till its vertical wire was just in advance of the sun's second limb, the horizontal circle clamped, the time of transit of the sun's second limb over the vertical wire noted, and the horizontal circle read. 6°. The telescope of the theodolite was reversed in its Y's. 7°. The transit of the sun's first limb over the vertical wire was observed, and the horizontal circle read. 8°. The transit of the sun's second limb over the vertical wire was observed, and the horizontal circle read. 9°. The colored glass was removed from the eye-piece of the telescope, and a reading of the magnet scale (which was still inverted) was taken. 10°. The magnet was revolved on its axis through 180°, so as to place the scale erect, and another reading of the scale was taken. 11°. The horizontal circle was read.

Immediately before, and immediately after, going through with the operations just described, the telescope should be pointed to some well-defined distant object, and the reading of the horizontal circle noted. By so doing a check is afforded against any accidental shift of the horizontal circle; and if the same station is occupied at another time, absolute declinations may be determined without again referring to the sun, thus rendering it possible to observe during cloudy weather.

In the instruments under consideration the reading of the horizontal circle of the theodolite increases from left to right; and in both the magnets, C. 32 and S. 8, when the scale is erect an increase of scale reading indicates a motion of the north end of the magnet towards the east.

Let

 ρ = reading of magnet, scale erect.

 $\rho' = \text{reading of magnet, scale inverted.}$

R' = reading of horizontal circle of theodolite at the time the readings ρ and ρ' were observed.

d = value, in minutes of arc, of one division of the magnet scale.

R'' = reading of horizontal circle of the theodolite at the time of transit of sun's first limb over the vertical wire.

R''' = reading of horizontal circle of the theodolite at the time of transit of sun's second limb over the vertical wire.

 α = observed chronometer time of transit of sun's first limb over the vertical wire.

 α' = observed chronometer time of transit of sun's second limb over the vertical wire.

dt =correction of chronometer to reduce the reading of its face to local mean time.

 $\tau = \text{equation of time.}$

t = the sun's hour angle at the pole.

 ϕ = latitude of the place of observation; positive when north of the equator.

A = azimuth of sun's centre at the time of its transit over the vertical wire: the azimuth being counted from the south around by the west.

 $\delta = \text{sun's declination}$; positive when north.

Then we have

$$t = \frac{\alpha + \alpha'}{2} + dt + \tau$$

$$\tan M = \frac{\tan \delta}{\cos t}$$

$$\tan A = \frac{\tan t \cos M}{\sin (\phi - M)}$$

where A is to be taken greater or less than 180° according as t is greater or less than 180° .

Magnetic declination =
$$R' + \frac{d}{2}(\rho - \rho') + A - 180^{\circ} - \frac{R'' + R'''}{2}$$

in which the declination is east if its sign is positive; west if its sign is negative.

The reading of the magnetic axis of the magnet is

$$\frac{1}{2}(\rho+\rho')$$

which we will designate by c. It should be constant. Then, if at any station the magnet has only been observed with its scale erect, if c is known the observation may be reduced by the formula

Magnetic declination =
$$R' + d(\rho - c) + A - 180^{\circ} - \frac{R'' + R'''}{2}$$

The following example shows fully the form employed in recording and reducing the observations.

Magnetic Declination.

Station, Acapulco, Mexico. Date, May 30, 1866. Portable Declinometer, D. 22. Magnet C. 32.

Observer, WM. HARKNESS.

	Circle re	adings.	Reading of r	magnet.
	Vernier	12° 23′ 30″	(1) Scale erect (2) Scale inverted	78 ^d .o 80.3
direct.			$(1) - (2) = \Delta$	- 2.3
cope d	}		Transit of	sun's
Telescope	Vernier Vernier	75° 25′ 30″ 74 55 3°	ıst limb 2d limb	8 ^h 14 ^m 28 ^s 15 28
	Mean	75 10 30	Mean	8 14 58.0

	Circle rea	dings.	Transit of s	sun's
	Vernier Vernier	75° 36′ °′′ 75 6 3°	1st limb 2d limb	8 ^h 17 ^m 29 ^s 18 38
rersed.	Mean	75 21 15	Mean	8 18 3.5
ope rev			Reading of m	nagnet.
Telescope reversed.	Vernier	12° 28′ 0″	(1) Scale inverted (2) Scale erect	81 ^d ·3 77·2
			$(2) - (1) = \Delta$	— 4·I

Value of one division of magnet scale = 2.349.

The telescope is direct when the vertical circle is on the left-hand side.

These observations were made *before* noon, and time was noted by chronometer *Fletcher*, 906, which was 1^h 41^m 22^s.2 fast of local mean time.

At the time the azimuth was observed, the reading of the horizontal circle, telescope direct, to distant referring mark was 10° 23′ 30″.

	Telescope direct.	Telescope reversed.
Equation of time	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 ^h 2 ^m 47 ^s ·I 5 20 31.6 80° 7′ 54″ + 21 47 19
Tan δ Sec t	9.60177 0.80111	9.60178 0.76602
Tan M	0.40288	0.36780
$\stackrel{ ext{$\phi$}}{\mathcal{M}}$	+ 16° 50′ 3″ + 68 25 21	+ 16° 5°′ 3″ + 66 47 35
$(\phi - M)$	<u>— 51 35 18</u>	-49 57 32
Tan t	0.79562 9.56557 0.10592	0.75955 9.59556 0.11600
Tan A	0.46711	0.47111
Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division Sun's azimuth	12° 23'.5 — 2.7 251 9.9	12° 28.′0 — 4.8 251 19.6
Sum	263 30.7 255 10.5	263 42.8 255 21.3
Magnetic declination	8 20.2 E.	8 21.5 E.

Observations of Vibrations were made as follows: The instrument having been set up and adjusted in the manner already explained, the long magnet, C. 32, was

suspended in the magnet-box; and the telescope having been pointed so that its vertical wire cut the magnet scale approximately at the magnetic axis, the horizontal limb of the theodolite was firmly clamped. Then, 1°. By quickly approaching and withdrawing the magnetised screw-driver the magnet was caused to vibrate horizontally through an arc extending to about twenty scale divisions on each side of the magnetic axis—that is, through a total arc of about 1° 34'. The semi-arc of vibration being only 47, no correction to the observed time of vibration was ever required on that account. 2°. My assistant having taken the chronometer, I placed my eye to the telescope, and at the instant the 80th division of the scale (which was very near the magnetic axis) crossed the vertical wire I cried "time," and my assistant noted the minute, second, and fraction of a second indicated by the chronometer. Still keeping my eye at the telescope, I counted the transits of the 80th division over the wire, calling the one at which time was noted 0, the next 1, the next 2, and so on up to the 10th, when I again cried "time," and my assistant once more noted the minute, second, and fraction of a second indicated by the chronometer. The difference of these two chronometer times gave a value for the time of ten vibrations of the magnet which was correct within about half a second. However, to guard against mistakes, the process was always repeated a second or third time. 3°. The temperature indicated by the thermometer in the magnet-box was noted; and then putting my eye to the telescope, I read the scale at the instant the magnet attained the eastern extremity, and again when it attained the western extremity, of its arc of vibration. These were the "extreme scale readings." 4°. The chronometer employed was a pocket one, beating five times in two seconds. Taking it in my hand, I commenced counting its beats at some multiple of ten seconds. Then, holding it to my ear and still mentally counting the beats, I put my eye to the telescope and noted the beat, and fraction of a beat, at which the 80th scale division crossed the vertical wire. For example, suppose the beat was taken up at the instant the chronometer indicated 10^h 2^m 10^s, and counting the first succeeding beat 1, the next 2, and so on, suppose that the 80th division crossed the wire exactly at the 14th beat. Then, as 14.0 beats are equal to 5.6 seconds, the time of transit of the 80th scale division was 10^h 2^m 15^s.6. The time of transit thus obtained was recorded as the 0 vibration. Adding to it the time of making ten vibrations—before determined—the approximate time when the 10th vibration would be completed became known. Taking up the beat of the chronometer at the nearest even ten seconds before that time, I put my eye to the telescope and observed the time of transit of the 80th division at the completion of the 10th vibration. In the same manner the time of completing the 20th, 30th, 40th, 50th, 100th, 150th, 160th, 170th, 180th, 190th, and 200th vibration was observed. Subtracting the time of completing the 0 vibration from the 150th, the 10th from the 160th, &c., there result six values of the time of making one hundred and fifty vibrations, from the mean of which a very accurate value of the time of making one vibration is obtained. It will not escape notice that when observing in the manner just described there is no risk of making a mistake of one vibration, because the magnet must, at all subsequent transits, be moving in the same direction as at the first transit, while in order to make a mistake of one vibration it would be necessary that it should be moving in the opposite direction. 5°. The extreme scale readings attained by the magnet at the eastern and western extremities of its arc of vibration were again observed; and then the thermometer in the magnet-box was read. 6°. The necessary observations for determining the coefficient of torsion of the suspension fibres were made. When the instrument was properly adjusted for observation the torsion circle always read 300°. With it remaining at that reading the arc of vibration of the magnet was reduced to four or five scale divisions (by means of the magnetized screw-driver) and then the scale was read. Next the torsion circle was turned backward one-quarter of a revolution, so as to make it indicate 210°, and the scale was again read. After that, the torsion circle was turned forward half a revolution (passing through the point 300°), so as to make it indicate 30°, and the scale was read. Finally, the torsion circle was turned backward one-quarter of a revolution, so as to make it indicate 300°, and the scale was once more read. Subtracting the second scale reading from the first, the second from the third, and the fourth from the third, gave three differences, which were added together and divided by four. The result was the number of scale divisions through which the magnet was deflected by a twist of ninety degrees in the suspension fibres.

Observations of Deflections were made as follows: The instruments having been set up and adjusted in the manner already explained, the short magnet, S. 8, was suspended in the magnet-box, and the telescope having been pointed so that its vertical wire cut the magnet scale approximately at its central division (not necessarily the magnetic axis) the horizontal limb of the theodolite was clamped firmly. Then, 1°. The time was noted. 2°. The thermometer inside the magnet-box was read. 3°. The long magnet C. 32 (which we will now call the deflecting magnet) was placed on the deflecting bar support, with its axis east and west, its centre on a level with and at a distance of two feet to the west of the suspended magnet, and its north end west; the vibrations of the suspended magnet were reduced to four or five scale divisions, by means of the magnetised screw-driver, and then its scale was read. 4°. The deflecting magnet (remaining in the same place on the deflecting bar support as before) was reversed end for end, so as to bring its north end east, and the scale of the suspended magnet was read. 5°. The reversals were repeated twice more, so as to give in all two scale readings with the north end of the deflecting magnet to the west, and two scale readings with it to the east. The mean of the two scale readings obtained with the north end of the deflecting magnet west, were subtracted from the mean of the two scale readings obtained with its north end east. The difference was twice the value of the angle of deflection, as resulting from observations made with the deflecting magnet west of the suspended magnet. 6°. The deflecting magnet was lifted from the deflecting bar support to the west, and placed on that to the east, of the suspended magnet; its distance from the suspended magnet being still two feet, and its north end being to the east, the scale of the suspended magnet, was read. 7°. The deflecting magnet (remaining in the same place on the eastern deflecting bar support) was reversed end for end, so as to bring its north end west, and the scale of the suspended magnet was read. 8°. The reversals were repeated twice more, so to give in all two

scale readings with the north end of the deflecting magnet to the east, and two scale readings with it to the west. From the mean of the two scale readings obtained with the north end of the deflecting magnet east, the mean of the two scale readings obtained with its north end west were subtracted. The difference was twice the value of the angle of deflection, as resulting from observations made with the deflecting magnet east of the suspended magnet. The mean between this result and that obtained from the observations with the deflecting magnet west of the suspended magnet, was adopted as the true value of twice the angle of deflection, with the deflecting magnet at a distance of two feet from the suspended magnet. 9°. The thermometer inside the magnet-box was read. 10°. The time was noted. 11°. All the observations just described were repeated with the deflecting magnet at a distance of two and a half feet from the suspended magnet. 12°. The torsion of the suspension fibres was determined, precisely as described under the head of "observations of vibrations."

Horizontal Force was calculated from the observations of vibrations and deflections by the following formulæ:

- $T_0 =$ observed time of one vibration of the magnet.
- T' = time of vibration, corrected for rate of chronometer and arc of vibration.
- T = time of vibration, corrected for rate of chronometer, arc of vibration, torsion force of the suspending thread, temperature, and induction.
- s = daily rate of chronometer. + when gaining, when losing.
- $\alpha, \alpha' =$ semiarc of vibration, at the beginning and end of the observation, expressed in parts of radius.
 - $\frac{H}{F}$ = ratio of the force of torsion of the suspending thread to the magnetic directive force.
 - q = coefficient of the decrease of the magnetic moment of the magnet produced by an increase of temperature of 1° Fah. (This is not constant for all temperatures, and the correction is more exactly expressed by a formula of the form—correction to $t' = q(t'-t) + q'(t'-t)^2$, where t' is the observed temperature, and t an adopted standard temperature.)
 - K = moment of inertia of the magnet, including its suspending stirrup and other appendages. (This is constant for the same magnet and suspension, but varies slightly with the temperature, owing to the expansion of the materials.)
 - $\pi = \text{gatio of the circumference}$ of a circle to its diameter = 3.14159.
 - μ = coefficient of increase in the magnetic moment of the magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement.
 - r_0 = apparent distance between the centres of the deflecting and suspended magnets in the observations of deflections.
 - r = the same distance corrected for error of graduation and temperature. $(r = r_0 [1 + 0.00001(t' 62^\circ)] + \text{correction for scale error.})$
 - d = value, in minutes of arc, of one division of the magnet scale.
 - $u_0 =$ observed angle of deflection, in scale divisions.

u = angle of deflection, corrected for torsion force of the suspending thread.

P = a constant depending upon the distribution of magnetism in the deflecting and suspended magnets.

m = magnetic moment of the deflecting or vibrating magnet.

X = horizontal component of the earth's magnetic force.

 $\frac{m'}{\overline{X'}}$ = value of $\frac{m}{\overline{X}}$ before the application of the correction $\left(1 - \frac{P}{r^2}\right)$

$$\left(1 + \frac{H}{F}\right) = \frac{5400 + v}{5400}$$

where v = the angle, expressed in minutes of arc, through which the suspended magnet is deflected by a twist of 90° in the suspension thread.

$$T' = T_0 \left(1 - \frac{s}{86400} \right) \left(1 - \frac{a a'}{16} \right)$$

$$T^2 = T'^2 \left\{ 1 + \frac{H}{F} \right\} \left\{ 1 - (t' - t)q \right\} \left\{ 1 + \mu \frac{X'}{m'} \right\}$$

$$mX = \frac{\pi^2 K}{T^2}$$

$$u = du_0 \left(1 + \frac{H}{F} \right)$$

$$\frac{m'}{X'} = \frac{1}{2} r^3 \tan u$$

$$\frac{m}{X} = \frac{m'}{X'} \left(1 - \frac{P}{r^2} \right)$$

$$m = \sqrt{mX \frac{m}{X}}$$

$$X = \frac{mX}{m}$$

In order to facilitate the finding of log. $\tan u$, in the reduction of observations of deflection, the following table has been prepared. With the argument log. u (u being expressed in minutes of arc) it gives the quantity (log. $\tan u - \log u$), or, in other words, the quantity which it is necessary to add to $\log u$ in order to obtain log. $\tan u$. The arrangement of the table is such that the quantity (log. $\tan u - \log u$) is to be added to the log. u on the same line with it, or to any other $\log u$ less than the one on the line next below. For example, if it were required to find log. $\tan u$ corresponding to any $\log u$ from 8.0000 to 1.4340, it would only be necessary to add 6.46373 to the given $\log u$.

Log. u.	Log. $\tan u$ — Log. u .	Log. u.	Log. $\tan u - \text{Log. } u$.
8.0000	6.46373	2.1159	6.46394
1.4341	6.46374	2.1261	6.46395
1.5957	6.46375	2.1358	6.46396
1.6874	6.46376	2.1452	6.46397
1.7517	6.46377	2.1541	6.46398
1.8014	6.46378	2.1626	6.46399
1.8414	6.46379	2.1708	6.46400
1.8756	6.46380	2.1787	6.4640 1
1.9047	6.46381	2.1864	6.46402
1.9310	6.46382	2.1937	6.46403
1.9538	6.46383	2.2008	6.46404
1.9750	6.46384	2.2079	6.46405
1.9934	6.46385	2.2146	6.46406
2.0111	6.46386	2.2209	6.46407
2.0274	6.46387	2.2271	6.46408
2.0426	6.46388	2.2332	6.46409
2.0565	6.46389	2.2393	6.46410
2.0700	6.46390	2.2453	6.46411
2.0824	6.46391	2.2509	6.46412
2.0941	6.46392	2.2565	6.46413
2.1055	6.46393		

The following are specimens of the forms employed in recording and reducing the observations of vibrations and deflections.

HORIZONTAL INTENSITY.

 $Observations\ of\ Vibrations.$

Station, Acapulco, Mexico. Date, May 30th, 1866. Magnet C. 32. Inertia ring No. Chron. Fletcher 906, rate, 18.38 losing on mean time.

Number of vibrations.	Time.	Temp.	Extreme scale readings.	Time of 150 vibrations.
0 10 20 30 40 50 100 150 160 170 180 190	8h 32 ^m 3 ^s .8 8 32 57.0 8 33 50.6 8 34 43.9 8 35 37.0 8 36 30.6 8 40 57.2 8 45 23.4 8 46 17.2 8 47 10.2 8 48 3.7 8 48 57.0 8 49 50.5	87°	57 ^d .8 102 ^d .	13 ^m 19 ^s .6 13 20.2 13 19.6 13 19.8 13 20.0
	Means,	89.0		13 19.85

Coefficient of torsion. Value of one scale div. = 2'.349

Tor. cir.	Scale.	Diff's.		
300° 30 210 300	80 ^d .1 83.5 76.7 80.1	3 ^d ·4 6.8 3·4		
Mean = $v = 3.40$				

$$v = 8'.0$$

 $5400' + v'$
 $5400 (ar. co.)$
 $r + \frac{H}{F}$

Log's.
3·733°4 6.26761
0.00065

HORIZONTAL INTENSITY. Calculation.

$$T^{\,2} = T^{\prime \,2} \left(r \, + \frac{H}{F} \right) \; \left(r \, - (t^\prime - t) \; q \right) \label{eq:T2}$$

Observed time of 150 vibrations = $799^{8}.85$ Time of one vibration = 5.332Correction for rate = .0005.332

		Log's.
q	T'	0.72689
t'-t $+4.3$	T'2	1.45378
(t'-t)q	$I + \frac{H}{F}$	65
$\mathbf{I} - (\mathbf{t}' - \mathbf{t})\mathbf{q}$	$\mathbf{I} - (\mathbf{t}' - \mathbf{t}) \mathbf{q}$	9.99962
$mX = \frac{\pi^2 K}{T^2}$	Τ² π²Κ	1.45405 2.17768
· · · · · · · · · · · · · · · · · · ·	mX m	0.72363 9.83487 _e
	7.740 = X	0.88876

* Ob's of defl'n. Date. May 30th, 1866.

8.94854 $\overline{\overset{X}{m}X}$ 0.72363 9.67217 9.83608 m^2

The chronometer used in this observation was $\mathbf{1^h}$ $4\mathbf{1^m}$ $22^s.2$ fast of local mean time.

HORIZONTAL INTENSITY.

Observations of Deflections.

Station, Acapulco, Mexico. Date, May 30th, 1866. Mag. C. 32 deflecting. Mag. S. 8 suspended. Observer, Wm. HARKNESS.

Magnet,	North		me. M. m.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	7	22	86°	53 ^d ·9 107.0 53·9 107.0	53 ^d ·9 107.0	53 ^d . 1	0.30103
East.	E. W. E. W.	7	32	84	107.5 53.5 107.7 53.8	107.6 53.6	54.0	= 2.0 ft. log. =
Me	ans,			85.0		2u ^d	53.53	. F4

Tors. cir.	Scale.	Diff's.		Log's.
300° 30 210 300	80 ^d ·4 83.6 76.7 80.4	3 ^d ·2 6·9 3·7	$\frac{1}{2}^{d} = I'4I75 \cdot \cdot$	1.72876 0.15152 7 9
Ŋ	Iean =	v = 3.45	Sum Tan u u'	1.88107 6.46380
v = 9'.85400' +	· v′	Logs 3.73318	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	8.34487 0.90309 9.69897
5400 (a 1 -	$+\frac{H}{F}$	0.00079	$rac{\mathrm{m'}}{\mathrm{X'}}$	8.94693
			$\frac{\mathrm{m}}{\mathrm{X}}$	8.94861

HORIZONTAL INTENSITY.

Observations of Deflections.

Station, Acapulco, Mexico. Date, May 30th, 1866. Mag. C. 32 deflecting. Mag. S. 8 suspended. Observer, Wm. Harkness.

				WW. HARK					
Magnet.	North end.	Time. A. M. h. m.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.		
West.	W. E. W. E.	7 32	84°	66 ^d .9 94.1 66.9 94.2	66 ^d .9 94.2	27 ^d ·3	= 0.39794		
East.	E. W. E. W.	7 40	85	94·4 66.8 94·4 66.8	94·4 66.8	27.6	= 2.5 ft. log. = 0.39794		
М	eans,		84.5		2u ^d	27.45	~		
	Log's.								
				$\frac{1}{2}^{d} = 1'.41$	$175 \cdot \cdot \cdot \cdot \cdot \cdot \frac{20}{F}$	0.1	3 ⁸ 54 5 1 52 79		
Sum 1.59085 Tan u 6.46374									
	Tan u 8.05459 r ³ 1.19382 1/2 9.69897								
					$\frac{\mathbf{m'}}{\mathbf{X'}}$		4738		
pril. 187			.	erinansia (miningan)	X	8.9	4846		

⁷ April, 1872.

The constants, peculiar to the portable declinometer D 22, were obtained as follows:

The Temperature Coefficients of the magnets were furnished by Mr. Chas. A. Schott, of the U. S. Coast Survey. They had been used with the instrument for some years, and I had no opportunity to redetermine them. They are as follows:

For the magnet C 32
$$q = 0.00020$$

" " S 8 $q = 0.00027$

In reducing the observations a correction was always applied to the magnetic moment of the magnet C 32 to reduce it to what it would have been if C 32 had had the same temperature as S 8. Hence, the temperature coefficient of C 32 was the only one used, and in order to facilitate its application the following table was computed which furnishes the value of $\log [1 - (t'-t)q]$ with the argument (t'-t).

Correction of Magnet C. 32 for Temperature

(t'—t)	Log. $[\mathbf{I}-(t'-t)q]$	(t't)	Log. $[\mathbf{I}-(t'-t)q]$		
+ 1°	9.99991	— 1°	0.00009		
+ 2	9.99983	— 2	0.00017	P. 1	Ρ.
+ 3	9.99974	— 3	0.00026	0.1	т
+ 4	9.99965	 4.	0.00035	0.2	1 2
+ 5	9-99957	5	0.00043	0.4	3 4
+ 6	9.99948	- 6	0.00052	0.6 0.7	4 5 6
+ 7	9.99939	- 7	0.00061	0.8	7 8
+ 8	9.99930	8	0.00069	, 0. 9	
+ 9	9.99922	— 9	0.00078		
+10	9.99913	-10	0.00087		

The Value of One Division of the Magnet Scale was determined for each magnet in the following manner: The instruments having been set up and adjusted as usual, the magnet was suspended in the magnet-box, and the packing blocks (before described as being used to prevent the suspension fibres from being twisted when the instrument was packed for travelling) were inserted in such a manner as to hold it perfectly steady. Then, the magnet scale being horizontal, the vertical wire of the theodolite telescope was made to coincide with any convenient scale division, and the horizontal circle of the theodolite was read. Next, the vertical wire was made to coincide with some other scale division, and the circle was again read. The difference of the two circle readings, divided by the difference of the two scale readings, gave the angular value of one scale division.

The following are the observations in detail for each magnet:

Magnet C. 32.

Date.	Circle Readings.	Differences.	Scale Readings.	Diff's.	Value of I Scale Division.
Nov. 16, 1865 Nov. 16, 1865	4° 5′ 15″ 0 11 45	3° 53′ 3°″	50 ^d .0	100 ^d .0	2'.335
Nov. 16, 1865 Nov. 16, 1865	0 11 45	3 55 0	50.0 150.0	100.0	2.350
Nov. 16, 1865 Nov. 16, 1865	3 7 45 1 10 15	I 57 30	75.0 125.0	50.0	2.350
Nov. 16, 1865 Nov. 16, 1865	3 7 45 1 10 15	1 57 30	75.0 125.0	50.0	2.350
Jan. 18, 1866 Jan. 18, 1866	5 36 15 1 40 30	3 55 45	50.0 150.0	100.0	2.357
Jan. 18, 1866 Jan. 18, 1866	4 37 0 2 39 30	1 57 30	75.0 125.0	50.0	2.350

Hence for the magnet C 32, we have 1 scale division = $2'.349 \pm 0'.0020$.

Magnet S. 8.

		_			
Date.	Circle Readings.	Differences.	Scale Readings.	Diff's.	Value of I Scale Division.
Nov. 16, 1865 Nov. 16, 1865	4° 9′ 45″ 359 26 3 °	4° 43′ 15′	50 ^d .0	100 ^d .0	2'.833
Nov. 16, 1865 Nov. 16, 1865	4 9 45 359 26 30	4 43 15	50.0 150.0	100.0	2.832
Nov. 16, 1865 Nov. 16, 1865	2 58 45 0 37 0	2 21 45	75.0 125.0	50.0	2.835
Nov. 16, 1865 Nov. 16, 1865	2 59 0	2 21 30	75.0 125.0	50.0	2.830
Jan. 18, 1866 Jan. 18, 1866	5 36 30 0 52 15	4 44 15	50.0 150.0	100.0	2.842
Jan. 18, 1866 Jan. 18, 1866	4 25 30 2 3 30	2 22 0	75.0 125.0	50.0	2.840

Hence, for the magnet S 8, we have $\mathbf{1}$ scale division = $2'.835 \pm 0'.0013$.

The Moment of Inertia, and its Temperature Coefficient, of the Magnet C 32, was determined as follows: Let,

- K_{τ} = moment of inertia of the magnet, including its suspending stirrup and other appendages, at the temperature τ .
- ΔK = change in the value of K corresponding to a change of temperature of 1° Fah. in the magnet.
- K'_{τ} = moment of inertia of the inertia ring, at the temperature τ .
 - d_i = internal diameter of the inertia ring, expressed in feet, at the temperature τ_0 .
- $d_e = \text{external diameter of the inertia ring, expressed in feet, at the temperature } \tau_0$.
- ε = coefficient of expansion for a change of temperature of 1° Fah. in the metal composing the inertia ring.
- W = weight of the inertia ring expressed in grains.

t =time in which the magnet makes one vibration at the temperature τ_0 (corrected for chronometer rate, arc of vibration, and torsion.)

t' = time in which the magnet, loaded with the inertia ring, makes one vibration at the temperature τ_0 (corrected for chronometer rate, arc of vibration, and torsion)

Then

$$K'_{\tau} = W[1 + 2\varepsilon(\tau - \tau_0)] \left\{ \frac{d_i^2 + d_e^2}{8} \right\}$$
 $K_{\tau} = K'_{\tau_0} \left(\frac{t^2}{t'^2 - t^2} \right) + \Delta K(\tau - \tau_0)$

The inertia ring used in making my observations was of bronze. Mr. Joseph Saxton, Assistant Superintendent of the Office of Weights and Measures, very obligingly measured and weighed it, with the following result:

Internal diameter = 2.385 inches = 0.19875 foot External diameter = 2.947 inches = 0.24558 foot Weight = 798.72 grains

the temperature of the ring being 74° Fah.

Hence, assuming the coefficient of expansion for an increase of temperature of 1° Fah. in the metal of this ring to be 0.0000105, we find by the formula given above

$$K'_{\tau} = 9.9601 + (\tau - 50^{\circ}) \ 0.000209$$

or

Log.
$$K'_{\tau} = 0.99827 + (\tau - 50^{\circ}) \ 0.0000091$$

The following table contains all the times of vibration which were observed for the purpose of determining the moment of inertia of the magnet, together with the computation of the corresponding values of log. K from them. The value of t' was always observed either immediately before, or immediately after, the corresponding value of t which was to be used with it. This was done in order to have the temperature in both cases as nearly as possible the same, so that the correction necessary to reduce t' to the same temperature as t was always very small. Then having a sufficient number of values of K, obtained from observations made at widely different temperatures, the value of ΔK was easily found.

Date.	т	Log. t/2	Log. 12	Log. (t'^2-t^2)	$\log \left(\frac{t^2}{t^{2}-t^2}\right)$	Log. K'_{τ}	Log. K_{τ}
Oct. 28, 1865 Nov. 16, 1865 Nov. 28, 1865 Dec. 13, 1865 Dec. 27, 1865 Jan. 18, 1866 March 19, 1866 April 11, 1866 May 30, 1866 Nov. 2, 1866 Nov. 2, 1866 Nov. 2, 1866	73.0 87.7 90.0 89.5 98.0 87.2 76.2 74.0 84.7 70.0 53.5	1.88210 1.72767 1.72835 1.74459 1.76681 1.77770 1.75849 1.75824 1.67351 1.90424 1.90391 1.92843	1.66424 1.50891 1.51108 1.52673 1.54810 1.55921 1.54101 1.54019 1.45405 1.68479 1.68450 1.70989	1.47811 1.32504 1.32345 1.34060 1.36412 1.37467 1.35391 1.35454 1.27196 1.50268 1.50229 1.52548	0.18613 0.18385 0.18763 0.18613 0.18398 0.18458 0.18710 0.18565 0.18209 0.18211 0.18221	0.99849 0.99862 0.99864 0.99872 0.99861 0.99851 0.99850 0.99859 0.99846 0.99846	1.18462 1.18247 1.18627 1.18477 1.18270 1.18315 1.18561 1.18415 1.18068 1.18057 1.18067
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	79.5						1.18320

Let K_0 represent the mean of all the logarithms of K in the above table; then $K_0 = 1.18320$

at a temperature of 79°.5. Now, assuming

Log.
$$K_{\tau} = K_{0} + (\tau - 79^{\circ}.5) \Delta K$$

we have

$$0 = K_0 - \log K_\tau + (\tau - 79^{\circ}.5) \Delta K$$

and each value of log. K_{τ} , given in the table above, will furnish one equation of condition for the determination of ΔK , as follows: the absolute terms being in units of the fifth place of decimals.

From these equations of condition we obtain, by the method of least squares, the normal equation

$$0 = -5856.2 + 1646.0 \Delta K$$

whence

Log.
$$\Delta K = 0.55119$$

 $\Delta K = +3.56$

and finally

Log.
$$K_{\tau} = 1.18320 + (\tau - 79^{\circ}.5) \ 0.0000356 \pm 0.000368$$

or

$$K_{\tau} = 15.248 + (\tau - 79^{\circ}.5) \ 0.00125 \pm 0.0129$$

Hence we have

$$\pi^2 K_{\tau} = 150.49 + (\tau - 79^{\circ}.5) \ 0.01234$$

or

Log.
$$\pi^2 K_{\tau} = 2.17750 + (\tau - 79^{\circ}.5) \ 0.0000356$$

In order to facilitate the reduction of the observations of vibrations, the following table has been computed from the formula last given. It furnishes the value of $\log \pi^2 K_{\tau}$ to the argument τ .

-			
4	$\operatorname{Log.} \pi^2 K_{\tau}$	P.	P.
50°	2.17645	ı°	4
60	2.17681	3	7 11 14
70	2.17716	4 5 6	18 21
80	2.17752	7 8	25 28
90	2.17787	9	32
100	2.17823		

The Constant P, depending upon the distribution of the magnetism in the magnets C 32 and S 8, was determined by means of the formula

$$P = \frac{A - A'}{\frac{A}{x^2} - \frac{A'}{x'^2}}$$

where

 $A = \text{value of } \frac{m'}{X'}$ determined from an observation of deflection with the deflecting magnet at the distance r from the suspended magnet.

A' =value of $\frac{m}{X'}$ determined from an observation of deflection with the deflecting magnet at the distance r' from the suspended magnet.

The following table contains all the observed values of A and A', together with the computation of the corresponding values of P. The values of A were obtained from deflections at a distance of 2.0 feet: those of A' from deflections at a distance of 2.5 feet.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
November 13, 1865 9.0084 9.0094 6.3881n 8.4063 8.2135 7.9608 8.4274n 0.0268 November 16, 1865 9.0087 9.0088 5.1491n 8.4067 8.2120 7.9629 7.1863n 0.0015 November 28, 1865 9.0068 9.0078 6.3989n 8.4047 8.2120 7.9591 8.4398n 0.0015 December 13, 1865 9.0234 9.0175 7.1527 8.4213 8.2216 7.9879 9.1649 +0.1462 December 23, 1865 9.0295 9.0317 6.7332n 8.4274 8.2358 7.9798 8.7534n 0.00567 December 27, 1865 9.0421 9.0413 6.3230 8.4400 8.2454 7.9978 8.3252 +0.0211 January 6, 1866 9.0628 9.0633 6.0587n 8.4608 8.2674 8.0163 8.0424n 0.0110 January 18, 1866 9.0531 9.0536 6.1399n 8.4511 8.2578 8.0064 8.1335n 0.0136 February 7, 1866 9.0486 9.0495 6.3751n 8.4465 8.2536 8.0012 8.3739n 0.0237 March 2, 1866 9.0328 9.0339 6.4250n 8.4308 8.2380 7.9852 8.4398n 0.0237 March 29, 1866 9.0347 9.0347 4.8740 8.4326 8.2388 7.9890 6.8850 +0.0008 April 7, 1866 9.0356 9.0360 5.9257 8.4336 8.2414 7.9899 8.1652n 0.0087 April 13, 1866 9.0356 9.0368 6.7852n 8.4336 8.2401 7.9893 7.9402n 0.0087 April 26, 1866 8.9902 8.9896 6.1515 8.4382 8.1937 7.9456 8.2059 +0.0161 May 7, 1866 8.9902 8.9896 6.1515 8.3882 8.1937 7.9456 8.2059 +0.0161 May 7, 1866 8.9968 8.9746 6.7188n 8.3659 8.1745 7.9178 8.8010n 0.0097 June 9, 1866 8.9468 8.9472 5.8890n 8.3448 8.1513 7.9004 7.9886n 0.0097 June 9, 1866 8.9468 8.9472 5.8890n 8.3754 8.1858 7.9241 9.0427n 0.01103	Date.	Log. A Lo	og. A' Log. $(A-A')$	Log. $\frac{A}{r^2}$	$\log \frac{A'}{r'^2}$	$\begin{pmatrix} \text{Log.} \\ \left(\frac{A}{r^2} - \frac{A'}{r'}\right) \end{pmatrix}$	Log. P	P
June 15, 1866 9.0376 9.0346 6.8666 8.4355 8.2387 7.9970 8.8697 +0.0741 June 26, 1866 9.0810 9.0826 6.6509n 8.4790 8.2868 8.0324 8.6185n -0.0415 November 1, 1866 9.1991 9.1972 6.8414 8.5971 8.4014 8.1568 8.6847 +0.0484	November 13, 1865 November 16, 1865 November 28, 1865 December 23, 1865 December 27, 1865 January 6, 1866 January 18, 1866 February 7, 1866 March 2, 1866 March 19, 1866 March 29, 1866 April 11, 1866 April 11, 1866 April 13, 1866 April 26, 1866 May 7, 1866 May 7, 1866 May 14, 1866 May 30, 1866 June 9, 1866 June 9, 1866 June 15, 1866 June 26, 1866	9.0084 9. 9.0087 9. 9.0068 9. 9.0234 9. 9.0295 9. 9.0421 9. 9.0531 9. 9.0486 9. 9.0328 9. 9.0350 9. 9.0347 9. 9.0356 9. 9.0356 9. 9.0356 9. 8.9902 8. 8.9680 8. 8.9468 8. 8.9468 8. 8.9468 8.	.0094	8.4063 8.4067 8.4047 8.4213 8.4274 8.4400 8.4608 8.4511 8.4465 8.4330 8.4326 8.4336 8.4336 8.4336 8.4323 8.3859 8.3659 8.3447 8.3448 8.3754 8.4355 8.4790	8.2135 8.2129 8.2120 8.2216 8.2358 8.2454 8.2674 8.2578 8.2536 8.2380 8.2383 8.2414 8.2401 8.2409 8.1937 8.1745 8.1585 8.1513 8.1858 8.2387	7.9608 7.9629 7.9591 7.9879 7.9798 8.0163 8.0064 8.0012 7.9852 7.9907 7.9899 7.9899 7.9893 7.9842 7.9456 7.9178 7.8872 7.9004 7.9241 7.9970 8.0324	8.4274n 7.1863n 8.4398n 9.1649 8.7534n 8.3252 8.0424n 8.1335n 8.3739n 8.4398n 8.3199 6.8850 8.1652n 7.9402n 8.2059 8.8010n 9.3058n 7.9886n 9.0427n 8.8697 8.6185n	0.0268 0.00150.0275 +0.14620.0567 +0.02110.0110 0.0136 0.02370.0275 +0.0209 +0.00632 +0.01610.0632 0.2022 0.00970.1103 +0.0741

The indiscriminate mean of all the observations gives

$$P = -0.0166 \pm 0.0088$$

But Peirce's criterion for the rejection of doubtful observations throws out those of December 13 and May 14. Accordingly, excluding them, and taking the mean of all the others, there results

$$P = -0.0155 \pm 0.0057$$

and that value I have adopted. Hence, for r = 2.0 feet, we have

$$Log. \left(1 - \frac{P}{r^2}\right) = 0.00168$$

and for r = 2.5 feet

$$Log. \left(1 - \frac{P}{r^2}\right) = 0.00108$$

The Magnetic Moment of the Magnet C 32 was computed as follows: Observations of deflection were always taken at two different distances, viz., at 2.0 feet and at 2.5 feet. In general, the two values of $\frac{m}{X}$ thus obtained differed slightly from each other, and the mean of the two was assumed to be correct. This mean was combined with the value of mX, obtained from a set of vibrations observed on the same day, and thus m was determined. In no case was more than one set of observations of deflections taken on any single day, but in a few instances several sets of observations of vibrations were made. Under such circumstances, the mean of all the observed values of mX was combined with the mean of the two values of $\frac{m}{X}$, and thus a single value of m was deduced.

Let

 m_{τ} = observed value of the magnetic moment at the temperature τ .

 $m = \text{value of } m_{\tau} \text{ after being multiplied by } [1 + (\tau - 75^{\circ}.8) q], \text{ or, in other words,}$ after being reduced to the temperature 75°.8 Fah.

 $m_0 =$ mean of all the observed values of m.

 α = daily decrease in the value of log. m, expressed in units of the fifth decimal place.

d = time in days at which m is taken; d being counted from March 7th, 1866. The following table contains all the observed values of log. m_{τ} , together with the computation from them of the final values of the same quantity. The column headed "days" gives the time in days counted from October 24th, 1865.

Date.	τ Log. n	$^{2}\tau$ \[\text{I-cg.} \tag{Log.} \ \[\text{1+}(\tau-75^{\circ}.8)q \]	Log. m	Days.	Concluded Log. m	Concluded Log. $m_{\boldsymbol{\tau}}$
October 24, 1865 October 30, 1865 November 13, 1865 November 16, 1865 November 28, 1865 December 13, 1865	57.5 9.841 58.7 9.841 85.5 9.839 87.7 9.839 90.0 9.837 89.5 9.836	39 9.99851 0.00082 51 0.00104 73 0.00121 0.00117	9.83989 9.83990 9.83990 9.84055 9.83894 9.83762	0 6 20 23 35 50	9.83990 9.83979 9.83951 9.83945 9.83922 9.83893	9.84149 9.84128 9.83869 9.83841 9.83801 9.83776
December 23, 1865 December 27, 1865 January 6, 1866 January 18, 1866 February 7, 1866	87.2 9.837 98.0 9.836 74.2 9.839 87.2 9.836 69.5 9.837	0.00191 0.99986 0.00100	9.83868 9.83846 9.83901 9.83766 9.83728	60 64 74 86 106	9.83873 9.83865 9.83846 9.83823 9.83784	9.83773 9.83674 9.83860 9.83723 9.83839
March 2, 1866 March 19, 1866 March 29, 1866 April 7, 1866 April 11, 1866	69.7 9.838 76.2 9.836 68.2 9.837 67.0 9.838 74.0 9.837	0.00004 0.99934 0.999923	9.83778 9.83622 9.83714 9.83784 9.83700	129 146 156 165	9.83739 9.83706 9.83686 9.83669 9.83661	9.83792 9.83702 9.83752 9.83746 9.83677
April 13, 1866 April 26, 1866 May 7, 1866 May 14, 1866	65.7 9.837 79.2 9.836 77.0 9.836 82.2 9.834	9.99912 0.00030 0.0009 0.00056	9.83623 9.83656 9.83679 9.83504	171 184 195 202	9.83657 9.83632 9.83610 9.83596	9.83745 9.83602 9.83601 9.83540
May 30, 1866 June 9, 1866 June 15, 1866 June 26, 1866 November 1, 1866	84.7 9.8360 65.0 9.8360 71.0 9.8349 63.0 9.8352 66.2 9.8333	52 9.99906 93 9.99958 48 9.99889	9.83680 9.83568 9.83451 9.83437 9.83242	218 228 234 245 373	9.83565 9.83546 9.83534 9.83513 9.83263	9.83487 9.83640 9.85576 9.83624 9.83347
Means	75.8		9.83729	154		

The mean of the quantities in the column headed τ is 75°.8. Accordingly, adding log. $[1+(\tau-75^{\circ}.8)q]$ to each log. m_{τ} , we obtain the values of log. m given in the table. Taking the mean of these values, and also the mean of the numbers in the column "days," we find that at 134 days, which corresponds to March 7th, 1866, the value of log. m was $9.83729 = \log m_0$. Then, assuming

Log.
$$m = \log m_0 - \alpha d$$

we have

$$0 = 9.83729 - \log_{10} m - ad$$

and each value of log. m furnishes an equation of condition for the determination of α , as follows.

By the method of least squares we obtain the normal equation

$$0 = -397497 + 203965 \alpha$$

Solving, we get

$$a = +1.9488$$

Hence

Log.
$$m = 9.83729 - 0.0000195 d \pm 0.000090$$

or

$$m = 0.68753 - 0.0000310 d \pm 0.000144$$

From the first of these expressions the quantities in the column "concluded \log . m" were computed.

If, in the expression for $\log m$, given above, we introduce the correction for temperature, we obtain

Log.
$$m_{\tau} = 9.83729 - 0.0000195 d - 0.000087 (\tau - 75^{\circ}.8)$$

by means of which the quantities in the column "concluded log. m_{τ} " were computed.

The probable error of a single observed value of log. m is ± 0.000452 , and of a single observed value of m it is ± 0.000719 .

Observations of Inclination were all made with a dip circle by Henry Barrow & Co., of London. It was provided with two needles, marked A 1 and A 2, each 3.5 inches long, and having axles 0.016 of an inch in diameter. The distance between the agate planes on which they rested was 0.74 of an inch. By means of two microscopes, one opposite each end of the needle—each of which, assuming distinct vision to be obtained at a distance of ten inches, magnified 18 diameters—the inclination of the needle was referred to, and read off upon a vertical circle six inches in diameter, divided to half degrees, and reading by means of two verniers to single minutes. The pointing of the microscopes to the ends of the needle was

effected by means of a clamp and tangent screw. The horizontal circle of the instrument was four inches in diameter, divided to half degrees, and reading by means of one vernier to single minutes. It was provided with a clamp, but no tangent screw.

Readings of the position of the dipping needle were made as follows: In the field of view of each microscope was a plate of glass upon which was engraved three fine parallel lines, the middle one being intended to represent one of the two extremities of a diameter passing through a vertical circle described about the prolongation of the axle of the needle. The north microscope having been turned till the centre line in its field of view coincided with the north end of the needle, the vernier belonging to that microscope was read off, and recorded as the reading of the north end of the needle. Then the south microscope was turned till the centre line in its field of view coincided with the south end of the needle, and the vernier belonging to that microscope was read off, and recorded as the reading of the south end of the needle. In order to distinguish between the two microscopes the letter N was scratched upon one of them, and that one was always, in all positions of the instrument, used to read the north end of the needle.

The instrument having been set up and levelled, before beginning to observe it was necessary to place the plane of the vertical circle in the magnetic meridian. At a few of the earlier stations this was accomplished as follows: The needle was placed on the agate planes, with the side on which the letters were marked facing the microscopes. Then 1°. The microscopes having been turned till they were nearly in a vertical line, the vernier of the lower one was set to 90° 0′, and the vertical circle was moved in azimuth—so that its face (by which is meant the side on which the microscopes were) was south—till the lower end of the needle was bisected by the middle line in the lower microscope; the Y's were raised and lowered gently, and if the bisection of the needle was altered, it was corrected by turning the circle in azimuth. Then the horizontal circle was clamped and read off; and this reading was called A. 2°. The vernier of the upper microscope was set to 90° 0', and the horizontal circle having been unclamped, the vertical circle was moved in azimuth—its face still remaining south—till the upper end of the needle was bisected by the middle line in the upper microscope; the Y's were raised and lowered gently, and if the bisection of the needle was altered, it was corrected by turning the circle in azimuth. Then the horizontal circle was clamped and read off, and this reading was called B. 3°. The horizontal circle was unclamped, and turned in azimuth 180°, so as to bring the face of the instrument to the north, and then the 1° and 2° processes just described were repeated; thus giving two more readings of the horizontal circle, which were called C and D. Then

$$\frac{A+B+C+D}{4} = E$$

where E is the division of the horizontal circle at which it was necessary to set the vernier in order that the plane of the vertical circle might be at right angles to 8 April, 1872.

the magnetic meridian. Therefore the vernier was set at $90^{\circ} + E$, and the plane of the vertical circle coincided with the magnetic meridian. However, it soon became evident that this process consumed too much time, and the following, which is quite as accurate and much more expeditious, was adopted: A fine line was marked permanently upon the top of the instrument parallel to the plane of the vertical circle; then, after the instrument had been levelled, but before the dipping needle had been placed upon the agate planes, a pocket compass, with a needle about one and a half inches long, was placed with its centre upon the fine line, and the vertical circle was turned in azimuth till the compass needle and line were parallel to each other. That being the case, the plane of the vertical circle was known to be in the magnetic meridian, and the horizontal circle was clamped and read off.

The following is the method which was adopted in making observations of dip: 1°. The agate planes, and those parts of the axle of the needle which would rest upon them, were carefully wiped with a piece of chamois leather (I have since seen reason to believe that a piece of cork would have answered the purpose better), and then the instrument was set up, levelled, and the plane of the vertical circle placed in the magnetic meridian by the process before described. 2°. The needle was secured upon a block, provided for the purpose, and magnetised by means of a pair of eight-inch bar magnets, in such a manner that its marked end acquired north polarity. It was considered to be saturated with magnetism when the bar magnets had been drawn from its centre to its extremities six times, the process being performed upon both of its sides, and then it was removed from the block and placed in position upon the agate planes, with its face (by which is meant that side upon which the letters were marked) towards the east. 3°. The plane of the vertical circle being in the magnetic meridian, with the face of the instrument towards the east, and the needle in position upon the agate planes, with its face also towards the east, the north and south ends of the needle were read. Let these readings be designated respectively as ϕ' and ϕ'' . The needle was reversed upon the agate planes, so as to bring its face towards the west, and its north and south ends were read. Let these readings be designated respectively ϕ''' and $\phi^{I'}$. 5°. The horizontal circle was unclamped, the vertical circle turned in azimuth 180°, so as to bring its face towards the west, and the horizontal circle again clamped. The face of the needle now being towards the east, its north and south ends were read. Let these readings be designated respectively as ϕ^{ν} and $\phi^{\nu i}$. 6° . The needle was reversed upon the agate planes, so as to bring its face towards the west, and its north and south ends were read. Let these readings be designated respectively as ϕ^{vii} and ϕ^{viii} . 7°. The time was noted, and then the needle, having been removed from the agate planes, was placed upon the block provided for the purpose, and remagnetised in such a manner that its marked end acquired south polarity; after which it was again placed in position upon the agate planes, with its face towards the west, and its north and south ends were read. Let these readings be designated respectively as ψ' and ψ'' . 8°. The needle was reversed upon the agate planes, so as to bring its face towards the east, and its north and south ends were read. Let these readings be designated respectively as ψ''' and ψ^{IV} . 9°. The horizontal circle was unclamped, the vertical circle turned in azimuth 180°,

so as to bring its face to the east, and the horizontal circle again clamped. The face of the needle now being towards the west, its north and south ends were read. Let these readings be designated respectively as ψ^{ν} and $\psi^{\nu i}$. 10°. The needle was reversed upon the agate planes, so as to bring its face towards the east, and its north and south ends were read. Let these readings be designated respectively as $\psi^{\nu ii}$ and $\psi^{\nu iii}$.

At the first few stations each of the readings ϕ' , ϕ'' , ϕ''' , ϕ'''' , ψ'' , ψ'' , ψ''' , ψ''' , ψ''' , was repeated three times, the Y's being raised and lowered again between each repetition; but after some experience I became convinced that the increase of accuracy obtained by three repetitions, over that obtained by a single careful reading, was not sufficient to warrant the greatly increased expenditure of time, and accordingly the repetitions were abandoned.

The needle A 2 proved to be well balanced, and the observations made with it were therefore reduced by the usual formula, namely

$$\frac{\phi' + \phi'' + \phi''' + \phi^{iv} + \phi^{v} + \phi^{v} + \phi^{v}i + \phi^{v}ii + \phi^{v}ii}{8} = \alpha$$

$$\frac{\psi' + \psi'' + \psi''' + \psi^{iv} + \psi^{v} + \psi^{v}i + \psi^{v}ii + \psi^{v}ii}{8} = \beta$$

$$\theta = \frac{\alpha + \beta}{2}$$

where θ is the magnetic inclination or dip.

The needle A 1 proved not to be well balanced, which was shown by the great difference between the values of α and β obtained with it in low magnetic latitudes; although they agreed well enough at places where the dip was large. An examination of all the observations showed that in every case

$$\frac{\phi' + \phi'' + \phi^{v} + \phi^{v}}{4} = \frac{\phi''' + \phi^{v}'' + \phi^{v}''' + \phi^{v}''' + \phi^{v}'''}{4}$$

and

$$\frac{\psi + \psi'' + \psi^{v} + \psi^{vi}}{4} = \frac{\psi''' + \psi^{iv} + \psi^{vii} + \psi^{viii}}{4}$$

at least within about one degree. It therefore followed that, although the centre of gravity of the needle did not lie in its axle, it did lie somewhere in the line joining the two extremities of the needle and passing through its axle. In such cases we have

$$\tan \theta = \frac{\tan \alpha + \tan \beta}{2}$$

and by that formula all the observations made with this needle were reduced.

At St. Thomas some observations of dip were made with the plane of the vertical circle out of the magnetic meridian. They were reduced by the formula

$$\tan \theta = \tan \theta' \cos \alpha$$

where θ is the true dip, and θ' the dip observed with the vertical circle in a plane whose azimuth, measured from the magnetic meridian, was α .

The values of the Vertical and Total Force have been computed from the horizontal force and inclination by the formulæ

$$Z = X \tan \theta$$
$$R = X \sec \theta$$

where

X = horizontal component of the earth's magnetic force.

Z = vertical component of the earth's magnetic force.

R =total magnetic intensity.

 $\theta =$ magnetic inclination.

All values of force are expressed in English units; namely, in terms of grains, feet, and seconds. If it is desired to have them in metric units, expressed in terms of milligrams, millimeters, and seconds, they must be multiplied by 0.46108.

The observations of magnetic declination, inclination, and force are given in full at the end of this section, but for convenience of reference the following abstract of them is inserted here.

			Inclin	nation.	$\log \frac{m}{X}$			X=
Station.	Date.	Declination.	Needle A. 1.	Needle A.2.	$X = \frac{1}{X}$	Log. mX	Temp.	Hor. Force
Philadelphia, Pa. Gosport, Va. Gosport, Va. St. Thomas, St. Thomas,	Oct. 24, 1865 Oct. 28, 1865 Oct. 30, 1865 Nov. 13, 1865 Nov. 16, 1865	2° 37′.8 W. 0 39.6 E.	+69° 21' +49 36 +49 39		9.22363 9.16787 9.01026 9.01014	0.45934 0.51303 0.51492 0.66791 0.66888	57.5 73.0 58.7 85.5 87.7	4.148 4.709 4.717 6.749 6.768
Salute Islands, Ceara, Pernambuco, Bahia, Rio Janeiro,	Nov. 28, 1865 Dec. 13, 1865 Dec. 23, 1865 Dec. 27, 1865 Jan. 6, 1866	o 3.8 W. 8 28.8 W. 10 59.6 W. 7 56.6 W.	+34 27 +21 26 +12 6 +4 31 -11 48	+34 42 +21 20 +12 10 +4 17 -11 46	9.00868 9.02178 9.03195 9.04305 9.06444	0.66679 0.65112 0.64340 0.63005 0.61386	90.0 89.5 87.2 98.0 74.2	6.742 6.507 6.392 6.213 5.960
Rio Janeiro, Monte Video, Monte Video, Monte Video, Sandy Point,	Jan. 9, 1866 Jan. 18, 1866 Jan. 18, 1866 Jan. 19, 1866 Feb. 7, 1866	2 41.8 W. 9 16.6 E. 9 25.0 E. 21 52.0 E.	—31 11 —54 52	-30 58 -31 8 -55 2	9.05476 9.05044	0.61205 0.61892 0.61822 0.61754 0.62523	80.5 87.2 87.2 89.5 69.5	5.944 6.049 6.039 6.033 6.121
Valparaiso, Valparaiso, Valparaiso, Valparaiso, Valparaiso,	March 2, 1866 March 19, 1866 March 29, 1866 March 29, 1866 April 7, 1866	15 54.3 E. 15 36.6 E. 15 54.8 E. 15 49.4 E.	-34 50 -35 28 -35 34 -35 26	$ \begin{array}{c cccc} -35 & 7 \\ -35 & 28 \\ -35 & 27 \\ & & \\ -35 & 23 \end{array} $	9.03474 9.03599 9.03607 9.03837	0.64188 0.63637 0.64126 0.63782 0.63885	69.7 76.2 68.2 68.2 67.0	6.367 6.300 6.364 6.314 6.330
Valparaiso, Valparaiso, Valparaiso, Callao, Payta,	April 11, 1866 April 11, 1866 April 13, 1866 April 26, 1866 May 7, 1866	15 57.6 E. 15 53.9 E. 10 29.6 E. 8 53.0 E.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} -35 & 36 \\ & \dots \\ -35 & 12 \\ & -6 & 29 \\ & +4 & 47 \end{array} $	9.03720 9.03692 8.99132 8.97055	0.63697 0.63725 0.63730 0.68120 0.70285	74.0 74.0 65.7 79.2 77.0	6.312 6.317 6.307 7.001 7.359
Panama Bay, Acapulco, Acapulco, Magdalena Bay, Magdalena Bay,	May 14, 1866 May 30, 1866 May 30, 1866 June 9, 1866 June 9, 1866	5 55.8 E. 8 20.8 E. 8 23.6 E. 10 40.5 E.	+32 5 +39 49 +48 41	+31 47 +39 58 +48 22	8.95196 8.94841 8.98098	0.71700 0.72363 0.69240 0.69211	82.2 84.7 65.0 65.0	7.614 7.740 7.178 7.173
San Diego Bay, San Francisco Bay, Washington, D. C. Washington, D. C.	June 15, 1866 June 26, 1866 Nov. 1, 1866 May 6, 1867	13 9.4 E. 16 25.5 E. 2 44.2 W.	+57 51 +62 13 +71 51 +71 55	$\begin{vmatrix} +57 & 56 \\ +62 & 31 \\ +72 & 13 \\ +72 & 5 \end{vmatrix}$	9.03746 9.08320 9.19956	0.63241 0.58777 0.46695	71.0 63.0 66.2	6.26 1 5.643 4.300

Taking the means we obtain the final values of the magnetic elements at each station, as follows:

Station.	La	titud	le.	Longitude	West.	I	Date.		De	clination.	No. of Obs.	Inclina	ution.	No. of Obs.	Horizontal Force.	No. of Obs.	Vertical Force.	Total Force,
Philadelphia, Pa	39°	56	'N.	75°	7'	Oct.	24,	1865	0	,		o	,		4.148	1		
Gosport	36	49	N.	76	17	Oct.	29,	1865	2	37.8 W.	1	+69	38	2	4.713	2	12.696	13.542
St. Thomas	18	20	N.	64	55	Nov.	14,	1865	0	39.6 E.	I	+49	38	4	6.758	2	7.950	10.434
Salute Islands	5	17	N.	52	33	Nov.	28,	1865	0	3.8 W.	1	+34	35	2	6.742	1	4.648	8.189
Ceara	3	44	s.	38	31	Dec.	13,	1865	8	28.8 W.	1	+21	23	2	6.507	1	2.548	6.988
Pernambuco	8	4	s.	34	52	Dec.		1865	1	59.6 W.	I	+12	8	2	6.392	I	1.374	6.538
Bahia	12	57	s.	38	30	Dec.	27,	1865	7	56.6 W.	I	+ 4	24	2	6.213	1	0.478	6.231
Rio Janeiro	22	54	S.	43	8	Jan.	8,	1866	2	41.8 W.	1	11	47	2	5.952	2	1.242	6.080
Monte Video	34	53	s.	56	13	Jan.	18,	1 866	9	20.8 E.	2	31	6	3	6.040	3	3.644	7.054
Sandy Point	53	10	s.	70	54	Feb.	7,	1 866	21	52.0 E.	1	54	57	2	6.121	I	8.725	10.658
Valparaiso	33	2	s.	71	41	March	29,	1866	15	51.1 E.	6	-35	23	12	6.326	8	4.493	7.759
Callao	12	5	s.	77	17	April	26,	1866	10	29.6 E.	1	6	28	2	7.001	1	0.794	7.046
Payta	5	6	s.	8r	6	May	7,	1866	8	53.0 E.	1	+ 4	58	2	7.359	1	0.640	7.387
Panama Bay	8	54	N.	79	30	May	14,	1866	5	55.8 E.	1	+31	56	2	7.614	1	4.745	8.972
Acapulco	16	50	N.	99	52	May	30,	1866	8	22.2 E.	2	+39	54	2	7.740	1	6.472	10.089
Magdalena Bay				1	•	June				40.5 E.	I	' '	32	2	7.176 6.261		1	10.837
San Diego Bay				117		June	-	1866		9.4 E.	I	+57	54	1 1				11.782
San Francisco				122		June		1866		25.5 E.	I	+62	22	2	5.643		10.779	•
Washington	38	54	IV.	77	3	Nov.	Ι	1900	2	44.2 W.	I	+72	2	[2]	4.300	I	13.200	13.940

OBSERVATIONS OF MAGNETIC DECLINATION.

Magnetic Declination. Gosport, Va. October 30, 1865.

	Circle Re	eadings.		Reading	of Mag	net.		
Pierre	Vernier	359° 59′	15"	(1) Scale erect (2) Scale invert	 ed .	81 ^d .7 76.5		
irect.				$(1)-(2)=\Delta$		+ 5.2		
pe D				Transit	ı's			
Telescope Direct.	Vernier Vernier			ıst limb 2d limb	IOh	40 ^m 6 ^s . 2 42 27.0		
	Mean	162 12	45	Mean	10	41 16.6		
d.	Vernier Vernier			ıst limb 2d limb	IOh	44 ^m 48 ^s .0 47 8.8		
verse	Mean	163° 34′ 4	15"	Mean	10	45 58.4		
pe Re				Reading of Magnet.				
Telescope Reversed.	Vernier			(1) Scale inverte (2) Scale erect				
•				$(2)-(1)=\Delta$		+29.3		
				Telescope Direct.	Teles	cope Reverse		
Equation for the state of the	on of time		:	16 ^m 13 ^s .7 —16° 47′ 28″ —13 56 36				
$\Delta \times \frac{1}{2}$	reading to magnet. scale divisionzimuth		•	359° 59′.2 + 6.1 339 29.6		· · · · · · · · · · · · · · · · · · ·		
Sum 180° +	circle reading to su	n		339 34·9 342 12.7				
Magne	tic declination .		•	2 37.8 W.				

These observations were made before noon. Chronometer $o^h 4^m 4o^s.2$ fast of local mean time.

Circle Readings. Circle Readings. 359° 59′		November 16, 1865. Reading of Magnet.	Magnet. Sod. 3 Sod.	Salute Isla Circle Readings. Vernier Sum Sacale division Sum S	Lings. o 11/ o 228 16 15 229° 48′ 15	Reading of Magnet. Reading of Magnet. (1) Scale erect (2) Scale inverted 12 23	of Magnet. 79 ^{4.2} 79.3 of Sun's of Sun's 12 23 40.7 12 23 40.7 12 23 40.7 12 31 12.7 of Magnet. And Magnet. 11 11 40.6 -21 25 6 0 14.5 -4.6 49 45.0
Magnetic declination		37.4 E.	1 1	Magnetic declination .			
These observations were made before noon. Chronometer o ^h 40 ^m 45 ^s .4 slow of local me	is were m	These observations were made before noon. Chronometer o ^h 40 ^m 45°.4 slow of local mean time.		These	These observations were made after noon. Chronometer I ^h 30 ^m 19 ^s .4 slow of local 1	These observations were made after noon. Chronometer 1 ^h 30 ^m 19 ^s .4 slow of local mean time.	ne.

64							\mathbf{R}	ΕP	o R	то	N						
	f Magnet.	80d.8 	69:1 +	of Sun's	7 ^h 19 ^m 35 ^s 20 55	7 20 15.0			of Magnet.		•	Telescope Reversed.					em the collimation
Mber 23, 1865.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\triangle\ldots$	Transit of	1st limb	Mean	1st limb	Mean	Reading o	(1) Scale inverted . (2) Scale erect	$\left (z) - (1) = \Delta \dots \right $	Telescope Direct.	Om 318.5 30° 39′ 40″ 23 26 32	2° 37′.0 + 4.0 301 11.5	303 52.5 314 52.1	10 59.6 W.	l prior to beginning the time.
MAGNETIC DECLINATION. Pernambuco, December 23, 1865.	eadings.	2° 37' 0"			135 15 30 134 28 45	134 52 7									un		ere made before noon, and pric 34°.8 slow of local mean time.
Pe	Circle Readings.	Vernier			Vernier	Mean	Vernier	Mean		Vernier			Equation of time.	Circle reading to magnet A X I scale division . Sun's azimuth	Sum	Magnetic declination .	These observations were made before noon, and prior to beginning them the collimation was adjusted. Chronometer 2 ^h 36 ^m 34 ^s .8 slow of local mean time.
		.1	Direc	obe]	Teleso		. b	AGI.SC	Я эс	Lelescol	,		Eq.	Circ Sun	Sun 180	Mag	Chr
	gnet.	79 ^d .6	+ 1.1	Sun's	h 42m os 44 · o	43 0.0	h 47 ^m os 48 o	47 30.0	Magnet.	. 824.2 . 76.1	. — 6.1	Telescope Reversed	5 ^m 10 ⁸ .2 -64° 48′ 4″ -23 12 12	1° 15'.5 — 7.2 66 8.9	67 17.2 75 46.1	8 28.9 W.	
on. 1865.	Reading of Magnet.	Scale erect Scale inverted	∆ ==	Transit of Su	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ab In		Reading of Ma	(1) Scale inverted (2) Scale erect	$(I) = \triangle \cdots$	Telescope Direct. Tele	5 ^m 10 ⁸ .3 0 40' 36" +	1° 10′.5 + 1.3 6° 0.4	7 12.2 41.0	8 28.8 W.	fter noon. of local mean time.
LINATI		(I) Sc (2) Sc	(1) - (2)		rst limb. 2d limb.	Mean.	rst limb.	Mean.		(I) Sca (2) Sca	(z) - (1) =	Teleso	+ 63° -23	- 99	67 75		ide a
MAGNETIC DECLINATION. Ceara, December 13, 1865.	eadings.	1° 10′ 30″ (1) Sc (2) Sc	— (I)		255 56 45 rst lin 25 15 2d lin	255 41 o Mean	255° 27' 0" 1st lin 256 5 15 2d lin	255 46 8 Mean		I 15 30 (2) Sc	(z)	Teleso	+ 1			•	observations were made a ometer 2 ^h 26 ^m 32 ^s .1 slow
MAGNETIC DECLINATI Ceara, December 13,	Circle Readings.	30" (1)	- (1)		56 45 25 15	41 0	27' o'' 5 15	46 8		30		Teleso	Equation of time	Circle reading to magnet	Sun	Magnetic declination	These observations were made after noon. Chronometer 2 ^h 26 ^m 32 ^s .1 slow of local mean time.

		79 ^d .8 78.2	+ 1.6		sor 1	39.0	50s 50	20.0		78 ^d .3 79.8	+ 1.5	Reversed.	m 238.4 / 15" 31	0.8.9.	4 2	41.8 W.	
	Reading of Magnet.	::	:	of Sun's	4h 52m 55	4 53	4 ^h 56 ^m 57	4 57	Reading of Magnet.		<u> </u>	Telescope Reversed.	7m -76° 36′ -22 6	2° 37′.0 + 1.8 286 16.6	288 55.4 291 37.2	2 41.	
LINATION. lary 9, 1866.	Reading	(1) Scale erect	$(1)-(2)=\triangle \dots$	Transit of	1st limb2d limb.	Mean	1st limb	Mean	Reading	(1) Scale inverted (2) Scale erect	$\left (z) - (1) = \Delta \dots \right $	Telescope Direct.	7" 23°.4 -77° 31′ 30″ -22° 6° 32	2° 36'.7 + 1.9 286 33.1	289 11.7 291 53.4	2 41.7 W.	These observations were made before noon.
MAGNETIC DECLINATION. Rio Janeiro, January 9, 1866.	adings.	2° 36′ 45″			111 42 30 112 4 15	111 53 23	111° 56′ 30″ ₂ 0 111° 18° 0	111 37 15		2 37 0					m	•	These observations were made before noon.
	Circle Readings.	Vernier	2211/0	- ador	Teleso Vernier	Mean	Vernier	Mean	ar ada	Telesco			Equation of time.	Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division . Sun's azimuth	Sum	Magnetic declination .	These
	Magnet.	77 ^d .5 80.7	3:2	Sun's	6h 28m 19s 30 28	6 29 23.5	6h 36m 38s 37 37	6 37 7.5	Magnet.	80 ^d .8	— 3.3	Telescope Reversed.	1m 26 ⁸ .9 1 1 1 26 ⁸ .9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3° 32′.0 290 14.9	293 43.0 301 40.0	7 57.0 W.	-
Magnetic Declination. Bahia, December 27, 1865.	Reading of Magnet.	(1) Scale erect (2) Scale inverted	$(1)-(2)=\triangle\ldots$	Transit of	1st limb	Mean	1st limb	Mean	Reading of	(1) Scale inverted (2) Scale erect	$(z)-(1)=\Delta\ldots$	Telescope Direct.	I ^m 26 ^s .8 — 47° 29′ 0′′ — 23 19 36	3° 32'.7 — 3.8 290 2.3	293 31.2 301 27.5	7 56.3 W.	de before noon.
	eadings.	3° 32′ 45″			12I 48 45 6 15	121 27 30	122° 2′ 30″ 121 17 30	121 40 0		3 32 0							These observations were made before noon.
	Circle Readings	Vernier			Vernier	Mean	Vernier	Mean	•	Vernier:			Equation of time	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum	Magnetic declination	These
.	9 14		. 2. ∪ire	cobe	sələT		.pəs	Zever	I ədc	ossələT			Equat	Circle Sun's	Sum 180°.	Magn	

LINATION. lary 19, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\Delta \dots \dots$	Transit of Sun's	1st limb 3^h 3^{8m} 8^s 2d limb 42 51	Mean	1st limb 3 ^h 44 ^m 40 ^s 2d limb 49 19	Mean 3 46 59.5	Reading of Magnet.	(1) Scale inverted 814.6 (2) Scale erect 76.7	$(2)-(1)=\triangle \cdots \cdots$	Telescope Direct. Telescope Reversed.	11m 9s.5 + 70° 13′ 30″ + 71° 50′ 58″ - 20 14 31 - 20 14 28	2° 34'.9 - 3.2 83 23.3 82 32.9	85 55.0 85 1.6 76 30.5 75 36.0	9 24.5 E. 9 25.6 E.	These observations were made after noon. Chronometer 1 ^h 11 ^m 34°.0 slow of local mean time.
MAGNETIC DECLINATION. Monte Video, January 19, 1866.	eadings.	2° 34' 52"				256 30 30		255° 36′ 0″		2 34 30					un		These observations were made after noon. Chronometer 1 ^h 11 ^m 34 ^s .o slow of local n
Z	Circle Readings.	Vernier			Vernier	Mean	Vernier	Mean		Vernier			Equation of time.	Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division . Sun's azimuth	Sum	Magnetic declination	These
		[obe:	Teleso	25			 H 9d	Telesco	ı	rsed.	51°.8 Eq. 55" t. 44	O 400	3. 18		
	net.	0.6 <i>t</i>	+ 0.1	s,	¹ I9 ^m I5 ^s 23 44	21 29.5	26m 3s 30 30	28 16.5	net.	78 ⁴ .5 79.6	+	Telescope Reversed.	10 ^m 12' 26	2° 10′.7 + 1.3 7 1.5	9 13.5 9 55.2	9 18.3 E.	
	Reading of Magnet.	• •		Transit of Sun's	- · · · · · · · · · · · · · · · · · · ·	4	- 4 _p		of Magnet.			Teleso	+ 82°	2 77	79		time.
LINATION. ary 18, 1866.	Reading	(1) Scale erect	$(1)-(2)=\Delta$	Transi	1st limb	Mean	1st limb	Mean	Reading of	(1) Scale inverted (2) Scale erect	$(z)-(1)=\Delta$	Telescope Direct.	10m 51s.7 +80° 31' 12'' -20 26 47	2° 10'.7 + 0.1 77 53.6	80 4.4 70 49.5	9 14.9 E.	le after noon. low of local mean time.
Magnetic Declination. Monte Video, January 18, 18	dings.	2° 10′ 45″			The state of the s	250 49 30		249° 55′ 15′′	-	2 10 45							These observations were made after noon. Chronometer I ^h 11 ^m 27°, o slow of local n
M	Circle Readings.	Vernier	. ,		Vernier	Mean	Vernier	Mean		Vernier			Equation of time	Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division Sun's azimuth	Sum	Magnetic declination	These Chrono
		ť.	Direc	ədoc	sələT		.bə	evers	De B	Telesco			Equal	Circle Sun's	Sum 180°	Magr	

	MAGNETIC DECLINATION. Sandy Point, February 7, 18	ELINATION. ruary 7, 1866.				MAGNETIC DECLINATION. Valparaiso, March 2, 1866	LINATION. ch 2, 1866.	
Circle Readings.	eadings.	Reading of Magnet.	Magnet.		Circle Readings	adings.	Reading of Magnet.	f Magnet.
Vernier	2° 54' 45"	(1) Scale erect (2) Scale inverted.	794.8	Vernier	ier	4° 13′ 0′′	(1) Scale erect (2) Scale inverted	71 ^d .1 87.3
Direc		$(1)-(2)=\Delta\ldots$	+ I.3	Direct			$(\mathbf{I}) - (z) = \Delta \dots$	
cobe		Transit of	s,uns J	obe]			Transit of	of Sun's
Vernier		1st limb	10 ^h 53 ^m 10 ^s 55 31	Telesc Vernier	er		1st limb	4h 28m 50s 32 51.5
Mean	6 44 15	Mean	10 54 20.5	Mean .		264 44 0	Mean	4 30 50.7
Vernier		rst limb	10h 58m 53° 11 1 12	Vernier Vernier	er et		1st limb	4 ^h 35 ^m 0 ⁸ .5 39 9.0
Mean	4° 38′ 0″	Mean	II 0 2.5	evers.		263° 47′ 30″	Mean	4 37 4.7
J obe		Reading of	Magnet.	Я əq			Reading of	of Magnet.
Vernier	2 54 IS	(1) Scale inverted . (2) Scale erect	77 ⁴ .9 80.9	Telesco Vernier	er	4 5 30	(1) Scale inverted . (2) Scale erect	85 ^d .3
		$(2)-(1)=\Delta\ldots$	+ 3.0				$(z)-(1)=\Delta\ldots$	
		Telescope Direct.	Telescope Reversed.				Telescope Direct.	Telescope Reversed.
Equation of time		14 ^m 25 ^s .6 -16° 49' 15'' -15 13 36	. 14m 25°.6 15° 23′ 45″ 15 13 31	Equation of time t	of time.		+ 67° 4′ 55″ - 7 I IS	12m 17s.4 + 68° 38′ 25″ - 7 I 10
Circle reading to magnet \(\times \frac{1}{2} \) scale division . Sun's azimuth		2° 54'.7 + 1.5 2° 38.2	2° 54'.2 + 3.5 203 34.1	Circle reading to ma	Circle reading to magnet Δ × ½ scale division . Sun's azimuth		4° 13'.0 — 19.0 96 44.8	4° 5′.5 — 14.0 95 49.9
Sum	un	208 34.4 186 44.2	206 31.8 184 38.0	Sum . 180° + circ	Sum		100 38.8 84 44.0	1
Magnetic declination		21 50.2 E.	21 53.8 E.	Magnetic declination	leclination .		.15 54.8 E.	15 53.9 E.
Thes Chro Magr	These observations were made before noon. Chronometer o ^h 12 ^m 48°.1 slow of local me Magnet rendered quite unsteady by the win	ade before noon. slow of local mean time. teady by the wind.	1e.		These	These observations were made after noon. Chronometer o ^h 9 ^m 46 ^s 4 slow of local m	These observations were made after noon. Chronometer o ^h 9 ^m 46 ^s 4 slow of local mean time.	

	net.	80d.2 78.1	+ 2.1	s,	2h IOm 58s I3 46	2 12 22.0	2 ^h 16 ^m 13 ^s 19 o	2 17 36.5	net.	85 ^d .8 72.3	-13.5	Telescope Reversed.	5° 34′ 0″ 3 31 17	15° 42′.5 - 15.9 3° 23.9	58.5	15 52.0 E.	
INATION. 1 29, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\triangle\ldots\ldots$	Transit of Sun's	ıst limb	Mean	ıst limb	Mean	Reading of Magnet.	(1) Scale inverted (2) Scale erect	$(2)-(1)=\Delta\ldots\ldots$	Telescope Direct. Teles	+34° 15′ 22″ +35° +3 31 11 +3	15° 11′.5 + 2.5 131 44.0	146 58.0 145 131 0.5 129	15 57.5 E.	e after noon. w of local mean time.
MAGNETIC DECLINATION. Valparaiso, March 29, 186	adings.	15° 11′ 30′′				311 0 30		309° 58′ 30″]	l	I5 42 30 (•	These observations were made after noon. Chronometer o ^h g ^m 26 ^s .8 slow of local mean time.
	Circle Readings.	Vernier			Vernier	Mean	Vernier	Mean		Vernier			Equation of time. t .	Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division . Sun's azimuth .	Sum 180° + circle reading to sun	Magnetic declination .	These
				 	Teleso	7.	- Pə	STOVĐ	 	Telesco		sed.	Eq. 7.	O 400	w H	2	i.
	jt.	82ª.4 76.2	+ 6.2		20 ^m 49 ^s 24 14.5	22 31.7			;;			Telescope Reversed.	·				ollimatio
	f Magne		•	of Sun's	зъ	3			f Magnet.		•	Telesco					rror of c
Magnetic Declination. alparaiso, March 19, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\Delta\ldots$	Transit of	1st limb	Mean	1st limb	Mean	Reading of	(1) Scale inverted . (2) Scale erect	$(2)-(1)=\Delta$	Telescope Direct.	7 ^m 50 ⁸ .3 + 51° 2′ 55″ - 0 23 16	12° 49′.2 + 7.3 113 25.7	126 22.2 110 45.6	15 36.6 E.	been corrected for error of collimation.
ic Deci		15,,		1		36	-		l							•	, and have nean time
Magneric Decli Valparaiso, March	gs.	12° 49′				290 45											ufter noon of local r
Ns V	Circle Readings.	:			• •	· ·	• •	:		•				et	· uns o	•	e made a
	Circl	Vernier			Vernier Vernier	Mean	Vernier Vernier	Mean		Vernier			Equation of time .	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum	Magnetic declination	These observations were made after noon, and have been Chronometer o^h g^m 30^s .3 slow of local mean time.
		•1	bəriU	obe]	Telesc		-pə	evers	pe R	Telesco			Equat \$\frac{\xi}{\sigma}\$.	Circle	Sum 180°-	Magn	These

Circle R	MAGNETIC DECLINATION. Valparaiso, April 7, 1866 Circle Readings.	SCLINATION. oril 7, 1866. Reading of Magnet.	f Magnet.		MA Valp Circle Readings.	MAGNETIC DECLINATION. Valparaiso, April 11, 1866.	il 11, 1866. Reading of Magnet.	f Magnet.
Vernier	20° 11′ 30″	(1) Scale erect (2) Scale inverted .	79 ⁴ .4	•	Vernier	20° 45′ 0″	(1) Scale erect	764.5
		$(1)-(2)=\Delta\ldots$	1 0.5	рэті П			$(1)-(2)=\Delta\ldots$	
		Transit of	of Sun's	obe]			Transit of	of Sun's
Vernier	·	1st limb	8h 16m 21s 19 35	Teleso	Vernier Vernier		st limb	2h 28m 53s 31 42
Mean	0 98 99	Mean	8 17 58.0		Mean	315 7 30	Mean	2 30 17.5
Vernier		1st limb	8h 21m 38s 24 51	•pe	Vernier		1st limb	2h 33m 38s 36 29
:	65° 36′ 0″	Mean	8 23 14.5	evers	Mean	314° 3′ 30″	Mean	2 35 3.5
		Reading of Magnet.	f Magnet.	be B	-		Reading of Magnet.	f Magnet.
Vernier	20 12 30	(1) Scale inverted . (2) Scale erect	81d.8	Telesco	Vernier	20 44 30	(1) Scale inverted . (2) Scale erect	81 ^d .8
		$(z)-(1)=\Delta\ldots$	5.3				$(2)-(1)=\Delta\ldots$	- 5.2
		Telescope Direct.	Telescope Reversed.		·		Telescope Direct.	Telescope Reversed.
Equation of time		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Equa	Equation of time.		Om 59°.0 + 39° 40′ 6″ + 8 27 2	om 595.0 + 40° 51′ 36″ + 8 27 7
Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division . Sun's azimuth		20° 11′.5 — 0.6 242 16.0	20° 12′.5 — 6.2 241 17.7	Circl AX Sun's	Circle reading to magnet Δ × ½ scale division . Sun's azimuth		20° 45′.0 — 6.2 I3° 26.7	20° 44′.5 — 6.1 129 22.3
Sum . 180° + circle reading to sun		262 26.9 246 36.0	261 24.0 245 36.0	Sum 180°	Sum		151 5.5 135 7.5	150 0.7 134 3.5
Magnetic declination	•	15 50.9 E.	15 48.0 E.	Magn	Magnetic declination .		15 58.0 E.	1 2
These	These observations were made befor Chronometer 0^h 9^m 23^s .6 slow of 1	These observations were made before noon. Chronometer oh 9m 23°.6 slow of local mean time.	ie.	Thes a Chro	These observations were made after noon, and prior to taking them the telescope was adjusted for collimation. Chronometer oh 9m 215.9 slow of local mean time.	ade after noon, and I	prior to taking them them.	ne telescope was

INATION. .pril 26, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\triangle \cdots + 3.4$	Transit of Sun's	1st limb 1^h 37^m 26^s 2d limb 40^{-23}	Mean	1st limb 1h 42m 10s 2d limb 45 11	Mean	Reading of Magnet.	(1) Scale inverted 57 ^d .o 100.5	$(2)-(1)=\triangle \dots \dots + 43.5$	Telescope Direct, Telescope Reversed,	2m 198.8 + 22° 30′ 12″ + 23° 41′ 43″ + 13 37 9 + 13 37 12	23° 13'.5 22° 26'.0 + 4.0 + 51.1 136 50.9	161 38.6 160 8.0 151 9.0 149 38.5	10 29.6 E. 10 29.5 E.	e after noon. st of local mean time.
MAGNETIC DECLINATION. San Lorenzo Island, April 26, 1866.	Circle Readings.	23° 13′ 30″			1	331 9 o		329° 38′ 30″	1	22 26 0					· · · · · · · · · uns		These observations were made after noon. Chronometer O ^h II ^m 13°.5 fast of local mean time.
Sa	Circle R	Vernier	Direc	cobe	Teleso Vernier	Mean	Vernier	Mean	 be к	Telesco Vernier			Equation of time. t .	Circle reading to magnet $\Delta \times \frac{1}{2}$ scale division . Sun's azimuth	Sum	Magnetic declination	Thes
	Reading of Magnet.	80 ^d .4	+ 2.5	Transit of Sun's	2h 31m 18s 34 58	2 33 8.0						Telescope Reversed.					ation correct.
sclination. ril 13, 1866.	Reading o	(1) Scale erect	$(1)-(2)=\Delta \dots$	Transit	1st limb	Mean	1st limb	Mean	Reading of Magnet.	(1) Scale inverted . (2) Scale erect	$(2)-(1)=\Delta$	Telescope Direct.	$0^{\text{m}} 27^{\text{s}}.6$ + $40^{\circ} 30' 27''$ + 9 10 46	20° 37′.0 + 2.9 130 15.2	150 55.1 135 1.2	15 53.9 E.	hrough clouds; collimation correct. an time,
MAGNETIC DECLINATION. Valparaiso, April 13, 1866	Circle Readings.	. 20° 37′ 0″		-	315 6 30 314 56 0	. 315 I IS	#* .	•		•							These observations were made after noon, through Chronometer o ^d 9 ^m 21 ⁸ .4 slow of local mean time
	Circle	Vernier	Dire	cobe	Vernier	Mean	Vernier	Mean	ope I	Ternier			Equation of time	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum 180° + circle reading to sun	Magnetic declination	These observations Chronometer o ^b 9 ^m

Incompared of particular of the control of the cont

These observations were made before noon. Chronometer ob 20m 169.9 fast of local mean time.

These observations were made before noon. Chronometer of 26m 41s,9 fast of local mean time.

	gnet.	784.4	. — I.4	m's	7h 58m Is 58 54	7 58 27.5	8h om 55s 1 58	8 I 26.5	gnet.	. 82d.8 . 75.2	. — 7.6	Telescope Reversed.	3 ^m 53 ⁸ .1 + 63° 44' 19" + 18 38 58	II° 33′.0 — 8.9 253 32.6	264 56.7 259 I.O.	5 55.7 E.
866.	of Ma	::	:	Transit of Sun's					of Ma		:	Tele	+	2	0 0	
Magnetic Declination. Flamenco Island, Panama Bay, May 14, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\triangle$	Transi	1st limb	Mean	1st limb	Mean	Reading of Magnet.	(1) Scale inverted (2) Scale erect	$(z)-(1)=\triangle$	Telescope Direct.	3m 53°.1 -64° 29′ 4″ +18 38 56	11° 25′.5 — 1.6 253 32.1	264 56.0 259 0.0	5 56.0 E.
ис D е		30″			0 0	0	,,0	0		0					• •	•
AGNET and, P	100	110 25			3 18 3 42	0	79° 19′ 78° 43	1 6		1 33						
M co Isl	eading				79	79	7.7	79		II				• • •,	uns .	•
lamen	Circle Readings.				: :	•		•		•				magnet on	ding to	ion .
Ħ		ier			ier	u	ier	u		ier			of time	ding to le divisi auth	rcle rea	declinat
		Vernier			Vernier Vernier	Mean	Vernier Vernier	Mean		Vernier			Equation of time.	Circle reading to magnet \(\delta \times \frac{1}{2} \) scale division . Sun's azimuth .	Sum	Magnetic declination
		•1	Direct	obe	reles		.bə	GVETS	be K	Telesco	<u> </u>		*, E	.g ⊿g.	Su 18	ğ
	et.	79 ^d .6 78.9	+ 0.7	Ø	35 ^m 58 ^s 37 I2	36 35.0	39 ^m 10 ^s 40 6	39 38.0	et.	80d.1 78.1	- 2.0	Telescope Reversed.	3 ^m 37 ^s .9 51' 30'' 50 3	52'.5 - 2.3 43.1	33.3	54.8 E.
	f Magn		:	s,unS Jc	7^{h}	7	T^{h}	7	f Magnet.	: :	:	Telesco	- 70° + 16	12°	263 254	∞
ion. 6.	Reading of Magnet.	(1) Scale erect (2) Scale inverted.	$(z) = \triangle \dots$	Transit of	ab		1b da	:	Reading of	(1) Scale inverted .(2) Scale erect	$(I) = \Delta \cdot \cdot \cdot$	Telescope Direct.	o 37' 15'' 50 I	° 49′.0 + o.8 51.6	41.4 50.2	51.2 E.
7, 186		(I) So (2) So	(I)		ıst limb 2d limb	Mean	ıst limb 2d limb	Mean		(I) Sc (2) Sc	(2) —	Teles	$\frac{-71^{\circ}}{+16}$	12°	263 254	∞
Magnetic Declination. Payta, May 7, 1866.		//0			30	15.	30'' 30	30		30					• •	•
AGNET Payta,	ió	12° 49′			35	50	25' 51	38		52						
M	eading	12	· · · · · · · · · · · · · · · · · · ·		74 75	74	74°	74		12						•
	Circle Readings.	•				:	· · · · · · · · · · · · · · · · · · ·	:		•				nagnet in .	ing to si	· uc
		nier			nier	n	nier	u		Vernier			f time	ling to n e divisio uth	cle readi	leclinati
		Vernier			Vernier Vernier	Mean .	Vernier Vernier	Mean					Equation of time	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum	Magnetic declination
l]	,ì.	Бітес	eobe	Teles		.bə	GVETS	De B	Telesco			Ed ~	S. C.	Sum 180°	اق

Reading of Magnet. Circle Readings. Reading of Magnet.	784.0	= \(\tau \cdot \c	Transit of Sun's P. Transit of Sun's	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 14 58.0 Mean	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 18 3.5 Wean Mean		81 ^d .3 81 ^d .3 Vernier (1) Magne (2) Scale		Direct. Telescope Reversed. Telescope Direct. Telescope Direct. Telescope Reversed.	7 18 +21 47 19 +21 47 19	3.5 12° 28'.0 Circle reading to magnet	263 42.8 Sum	8 21.6 E.	
Reading of Magnet.	Scale erectScale inverted	$-(z) = \triangle \dots$	Transit of Sun's	imb8h	1	imb8h	∞ :	of	(1) Scale inverted (2) Scale erect	$-(1) = \triangle \dots$	Telescope Direct. Telescope	+ 21		263 30.7 263 255 10.5 255		ú r
eadings.	12° 23′ 30″			75 25 30 74 55 30	75 10 30	75° 36′ 0′′ 6 30	75 21 15		12 28 0					• •	•	
Circle Ro	Vernier			Vernier	Mean	Vernier	Mean		Vernier			uation of time	cle reading to magnet	n '9 + circle reading to sur	gnetic declination	Ë
	Circle Readings.	Circle Readings. Reading of Magnet. T84.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect 80.3 (2) Scale inverted 2.3 (1) Circle Readings. Reading of Magnet. (1) Circle Reading of Magnet. (1) Scale erect (1) Scale erect (1) Scale erect</td><td>Circle Readings. Reading of Magnet. Vernier</td><td>Circle Readings. Reading of Magnet. Circle Readings. Circle Readings. Circle Readings. Reading of Magnet. (1) Scale erect</td><td>Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect 78⁴.0 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3</td><td>Vernier Circle Readings. Reading of Magnet. Preading of Magnet. Reading of Magnet. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect. 784.0 Vernier 12° 27′ 30″ (1) Scale erect. 78.3 12° 27′ 30″ (1) Scale erect. 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′</td><td>Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect. 78³ 0 40° 0 (1) C2 = A · · · · · · · · · · · · · · · · · ·</td><td>Circle Readings. Reading of Magnet. Reading o</td><td>Circle Readings. Reading of Magnet. 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Circle Readings. Reading of Magnet. 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Vernier 75 25 30 1st limb 8 14 58.0 Wernier Wernier Wernier Wernier Wernier Tist limb Reading of Magnet. Rea</td><td> Vernier 12° 23′ 30″ (1) Scale erect 18° 35 </td><td> The Readings Reading of Magnet Reading of Magnet Reading of Magnetic axis Transit of San's Trans</td><td> Vernier 12° 23' 30'' (1) Scale erect. 12° 27' 30'' (2) Scale inverted 80 3 14" 28' 14" 28' 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15</td><td> 12° 23′ 30″ (1) Scale evect. 18° 40° 11° 21° 30″ (2) Scale inverted 8° 30° (2) Scale inverted 8° 3 15° 21° 30″ (2) Scale evect. 18° 30″ (2) Scale inverted 8° 30° 15° 11° 20″ (2) Scale evect. 15° 23° 30″ (1) — (2) = 4 15° 23° 30″ (2) Scale inverted 15° 28° 30″ (1) — (2) = 4 15° 21° 30″ (2) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) Scale evect. </td></t<></td></t<></td></t<>	Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect 80.3 (2) Scale inverted 2.3 (1) Circle Readings. Reading of Magnet. (1) Circle Reading of Magnet. (1) Scale erect (1) Scale erect (1) Scale erect	Circle Readings. Reading of Magnet. Vernier	Circle Readings. Reading of Magnet. Circle Readings. Circle Readings. Circle Readings. Reading of Magnet. (1) Scale erect	Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect 78⁴.0 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3 \$ 80.3	Vernier Circle Readings. Reading of Magnet. Preading of Magnet. Reading of Magnet. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect. 784.0 Vernier 12° 27′ 30″ (1) Scale erect. 78.3 12° 27′ 30″ (1) Scale erect. 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′ 30″ 12° 27′	Circle Readings. Reading of Magnet. Vernier 12° 23′ 30″ (1) Scale erect. 78³ 0 40° 0 (1) C2 = A · · · · · · · · · · · · · · · · · ·	Circle Readings. Reading of Magnet. Reading o	Circle Readings. Reading of Magnet. 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Circle Readings. Reading of Magnet. 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Vernier 75 25 30 1st limb 8 14 58.0 Wernier Wernier Wernier Wernier Wernier Tist limb Reading of Magnet. Rea</td><td> Vernier 12° 23′ 30″ (1) Scale erect 18° 35 </td><td> The Readings Reading of Magnet Reading of Magnet Reading of Magnetic axis Transit of San's Trans</td><td> Vernier 12° 23' 30'' (1) Scale erect. 12° 27' 30'' (2) Scale inverted 80 3 14" 28' 14" 28' 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15</td><td> 12° 23′ 30″ (1) Scale evect. 18° 40° 11° 21° 30″ (2) Scale inverted 8° 30° (2) Scale inverted 8° 3 15° 21° 30″ (2) Scale evect. 18° 30″ (2) Scale inverted 8° 30° 15° 11° 20″ (2) Scale evect. 15° 23° 30″ (1) — (2) = 4 15° 23° 30″ (2) Scale inverted 15° 28° 30″ (1) — (2) = 4 15° 21° 30″ (2) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) Scale evect. </td></t<></td></t<>	Circle Readings. Reading of Magnet. 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 784.0 <t< td=""><td>Vernier 75 25 30 1st limb 8 14 58.0 Wernier Wernier Wernier Wernier Wernier Tist limb Reading of Magnet. Rea</td><td> Vernier 12° 23′ 30″ (1) Scale erect 18° 35 </td><td> The Readings Reading of Magnet Reading of Magnet Reading of Magnetic axis Transit of San's Trans</td><td> Vernier 12° 23' 30'' (1) Scale erect. 12° 27' 30'' (2) Scale inverted 80 3 14" 28' 14" 28' 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15</td><td> 12° 23′ 30″ (1) Scale evect. 18° 40° 11° 21° 30″ (2) Scale inverted 8° 30° (2) Scale inverted 8° 3 15° 21° 30″ (2) Scale evect. 18° 30″ (2) Scale inverted 8° 30° 15° 11° 20″ (2) Scale evect. 15° 23° 30″ (1) — (2) = 4 15° 23° 30″ (2) Scale inverted 15° 28° 30″ (1) — (2) = 4 15° 21° 30″ (2) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) Scale evect. </td></t<>	Vernier 75 25 30 1st limb 8 14 58.0 Wernier Wernier Wernier Wernier Wernier Tist limb Reading of Magnet. Rea	Vernier 12° 23′ 30″ (1) Scale erect 18° 35	The Readings Reading of Magnet Reading of Magnet Reading of Magnetic axis Transit of San's Trans	Vernier 12° 23' 30'' (1) Scale erect. 12° 27' 30'' (2) Scale inverted 80 3 14" 28' 14" 28' 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 1 15 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15	12° 23′ 30″ (1) Scale evect. 18° 40° 11° 21° 30″ (2) Scale inverted 8° 30° (2) Scale inverted 8° 3 15° 21° 30″ (2) Scale evect. 18° 30″ (2) Scale inverted 8° 30° 15° 11° 20″ (2) Scale evect. 15° 23° 30″ (1) — (2) = 4 15° 23° 30″ (2) Scale inverted 15° 28° 30″ (1) — (2) = 4 15° 21° 30″ (2) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) — (2) = 4 15° 28° 30″ (1) Scale evect. 15° 28° 30″ (1) Scale evect.

	agnet.	. 79 ^d .4	+ 0.7	Sun's	6 ^h 42 ^m 20 ^s 45 36	6 43 58.0	6h 46m 45s 47 43	6 47 14.0	of Magnet.	. 884.2	- 18.5	Telescope Reversed.	Om 128.1 + 59° 7′ 21″ + 23 20 31	16° 33′.5 — 21.7 95 43.0	111 54.8 98 45.2	13 9.6 E.	
INATION. ne 15, 1866.	Reading of Magnet.	(1) Scale erect (2) Scale inverted	$(1)-(2)=\triangle\ldots$	Transit of St	st limb	Mean	1st limb	Mean	Reading of M.	(1) Scale inverted (2) Scale erect	$(z)-(1)=\Delta\ldots.$	Telescope Direct. Tel	Om 12°.0 +58° 18′ 22″ +23 20 30	16° 9′.5 + 0.8 95 19.5	111 29.8 98 20.5	13 9.3 E.	le after noon. ıst of local mean time.
MAGNETIC DECLINATION. San Diego Bay, June 15, 1866.	eadings.	16° 9′ 30″		ı	277 48 30 278 52 30	278 20 30	279° 2′ 0″ 278 28 30	278 45 IS	I	16 33 30					un	•	These observations were made after noon. Chronometer 2 ^h 50 ^m 32 ^s . 5 fast of local mean time.
	Circle Readings.	Vernier		-	Vernier	Mean	Vernier Vernier	Mean		Vernier			Equation of time.	Circle reading to magnet △ × ½ scale division . Sun's azimuth	Sum	Magnetic declination .	These
		1]		obe	Telesc		ed.	evers	 De B	Telesco	1	sed.	Eq.	G. Van	Sum 180°	Ma	
	et.	78 ^d .10	I.0I		9m 10s 10 18	9 44.0			et.			Telescope Reversed.	,				ro.
	of Magn		:	of Sun's	Sъ	ъ.			of Magn		:	Telesco					error ze
LINATION. Ine 9, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\Delta$	Transit of	1st limb	Mean	st limb	Mean	Reading of Magnet.	(1) Scale inverted (2) Scale erect	$(z)-(1) \stackrel{=}{=} \Delta$	Telescope Direct.	Im 38.0 + 40° 10′ 39″ + 22 58 41	13° 4′.0 — 2.4 95 53.4	108 55.0 98 14.5	10 40.5 E.	noon. Collimation error zero. cal mean time.
Magdalena Bay, June 9, 186		4, 0,,			39 0	14 30	-			<u> </u>	-					•	These observations were made after noon. Chronometer 2 ^h 30 ^m 4 ^s ,4 fast of local mes
M. Magd	Circle Readings.	130			278	278							• • •		. un	•	vations . r 2 ^h 30 ^r
	Circle R	Vernier			Vernier	Mean	Vernier	Mean		Vernier	·.	-	Equation of time	Circle reading to magnet A X I scale division . Sun's azimuth	Sum 180° + circle reading to sun	Magnetic declination	These obser Chronomete
	10	June			Telesc		•pə	everse	be K	Telesco			Equa	Circl Sun's	Sum 180°	Magn	

MAGNETIC DECLINATION. U. S. Naval Observatory, Washington, November 1, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\Delta \dots \dots + 17.0$	Transit of Sun's	1st limb , 7^h 9^m 6^s .5 and limb	Mean 7 IO 24.4	1st limb 7 ^h 16 ^m 7 ^s .5 2d limb	Mean 7 17 25.8	Reading of Magnet.	(1) Scale inverted 784.0 (2) Scale erect 79.9	$(2)-(1)=\Delta \cdots \cdots + 1.9$	Telescope Direct. Telescope Reversed.	+35° 43′ 47″ +37° 29′ 8″ -14 32 51 -14 32 55	0° 25'.0 0° 43'.5 + 20.0 + 2.2 39 22.2 40 59.7	40 7.2 4I 45.4 42 51.0 44 30.0	2 43.8 W. 2 44.6 W.	These observations were made after noon, and the readings of the magnet scale were taken two hours before the transits of the sun. Chronometer 5 ^h 3 ^m 47 ^s .8 fast of local mean time.
Magnetic Declination.	adings.	0° 25′ 0″				222 51 0		224° 30′ 31′		0 43 30					m	•	ide after noon, and the sun.
U.S. Naval Ol	Circle Readings.	Vernier			Vernier	Mean	Vernier	Mean		Vernier			Equation of time.	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum	Magnetic declination .	These observations were made after noon, and the two hours before the transits of the sun. Chronometer 5 ⁿ 3 ^m 47 ^s .8 fast of local mean time.
===			===== Direc	- adox	Telesc		- pə	GVETS	 ==== B 900] Doselesco		 - -		 O 4\\[\overline{\pi_0}\]	% ¥	2	<u> </u>
	gnet.	79 ^d .3 78.8	+ 0.5	n's	3 ^h 54 ^m 2 ^s 55 18	3 54 40.0	3h 57m 12s 58 9	57 40.5	Magnet.	89ª.6 68.1	-21.5	Telescope Reversed.	2 ^m 29 ^s .4 64° 29' 17" 23 22 9	20° 28′.5 — 25.3 265 6.2	35 9.4 38 43.0	16 26.4 E.	
	of Maş		:	t of Sun's		"		ω,	of		:	Tele	— 64° + 23	2 %	285 268		ė
Lination. June 26, 1866.	Reading of Magnet.	(1) Scale erect	$(1)-(2)=\Delta$	Transit of	rst limb	Mean	st limb	Mean	Reading	(1) Scale inverted (2) Scale erect	$(z)-(1)=\triangle$	Telescope Direct.	2m 29 ^s .4 -65° 14' 24" +23 22 9	. 20° 9'.5 + 0.6 264 40.7	284 50.8 268 26.2	16 24.6 E.	These observations were made before noon. Chronometer 8 ^h 13 ^m 8 ^s .2 fast of local mean time.
MAGNETIC DECLINATION San Francisco Bay, June 26,		0 9/ 30//			40 0 12 30	26 15	° 58′ 0″ 28 0	43 0		28 30		·					ations were ma 8h 13m 8s.2 fa
MA n Fra	eadings	200			88	88	88	88		70						•	observ
Sai	Circle Readings.	Vernier			Vernier	Mean	Vernier	Mean		Vernier			Equation of time	Circle reading to magnet A X ½ scale division . Sun's azimuth	Sum	Magnetic declination	These
		•10	Direc	eobe	Teles		eq.	z evers	adc	Telesco			Equal	Circle X X Sun's	Sum 180°-	Magr	

OBSERVATIONS OF MAGNETIC INCLINATION.

			ľ	Ä.	30' 24 18	24	-						37′ 42 45	41			}.
			Face West.	A	1111 1111	111	15				East.	z	\$666	69	54		
.•			ace		88 8	10	111				Face East.		0, 10	9	69		
A. 2.	H.	CIRCLE WEST.	H	s.	0111 1111 110	111		18	H.	CIRCLE EAST.	"	S.	70° 70°	70		45	
Needle A.	NORTH	RCLE		z.	41, 34	32		011	SOUTH	RCLE			37' 20 18	25		69	
Nec	END N	C	Face East.	4	109° 109	109	21		END S	IJ	Face West.	z.	666	69	36		54′
Oip. 65.			Face	s,	17,	2	109		D E		Face	s.	57, 41 40	46	69		69°
MAGNETIC DIP. Gosport, October 30, 1865.	MARKED			02	109° 109	109		I9	MARKED			01	66	69		29	Resulting Dip: +69°
GNE I 30	MAI			z.	48' 52 60	56		2.	MAF			z	59,	7		69	g Dij
Ma	OF		Face West.		6666	69	62		OF		Face East.		1110° 1111	E	58		sultin
, o	ITY	Ė	Face	S.	,49 14	∞	70		ITY	ST.	Face	s.	39, 57, 54	50	110		Re
port	POLARITY	E EAS			70° 70° 70°	70		, 56	POLARITY	E WE			110° 110 110	011		47	
Gos	PC	CIRCLE EAST.	نہ	z.	6 41/ 51 46	46		70	PO	CIRCLE WEST.	نډ	ż	6 40 54 23	39		110	
			Face East.		710	71	51				Faœ West.		0110 110 110	011	36		
			Face	S.	6 47′ 5 59	57	71			-	Faœ	S.	° 29′ 33 41	34	110		
					71° 72 71	71			1				0110 011 110	011			
			t.	Ä.	° 46′ 37 50	4					نب	Ä	° 26′ 13 20	30			
		·	Face West.		, 109 109 109	109	35				Face East.		68 68 68	89	30		
i.		ST.	Face	S.	° 25′ 19 33	26	601			ST.	Fac	s.	30 45/	39	89		
Ą.	TH.	E WE			, 109° 109 109	109		. 54	TH.	E EA			89 89 89	89	1	32	
Needle A. 1.	MARKED END NORTH.	CIRCLE WEST.	ژب	'n.	, 55′ 30 30	71 0		109	SOUTH	CIRCLE EAST.	j.	ż	3° 24′ 3° 27 3° 17	3 23		89	
1	QN.		Face East.		0110	011	12		END		Face West.	-	089 89 89		34		21/
Or Dir	ED E		Fac	က်	9° 58′ 0 10 0 15	8	110				Face	S.	68° 49′ 68 47 68 37	8 44	. 68		,69 +
30, 1865.	RKI				011 1	011		25	MARKED					89		- S	j.
MAGNETIC DIP. ober 30, 1865.	, MA		est.	z	70° 44′ 70° 44′ 70° 47	0 45		70	JM F		ast.	z	2° 29' 2 26' 2 25	2 27		89	Resulting Dip:
tobe	7 OF		Face We	<u>- </u>	242	4 7	55		Y OF		Face Ea	<u> </u>	3, 111	=	81 2		esult
MAG Gosport, October	POLARITY OF	LST.	Fac	s.		71 7	20	45	POLARITY	EST.	Fac	S.	,	2 10	112	10	^M
spor	OLA	CIRCLE EAST.			2, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71			70 4	OLA	CIRCLE WEST.			4, 112 8 112 17 112	10 112		112 1	
Ğ	Д	CIRC	ıst.	z	70° 22′ 70° 30 70° 27	70 26	10	7	H	CIRC	est.	z	, "	ł	3	11	
		·	Face East.			44 7	70 35				Face West.		52/ 112/ 25 1112	56 112	112		
			FF g	s,	70° 39′ 70° 49 70° 45	4 0/	7				Fac	si.	.	1	I		
ļ	- 1	l	-		~~~	7			11 . (- 1	1	1	111	111		i	

Note.—It will be observed that at some stations only one end of the needle was read. In such cases the other end of the needle was hidden by the cross-bar which supports the agate planes.

le A. I.	TH.	CIRCLE WEST.	Face West.	S. N.	130° 12′ 130° 28′ 130° 6 130° 24 130° 11 130° 26	130 10 130 26	i30 18	61	TH.	CIRCLE EAST.	Face East.	S. N.	55° 28′ 55° 25′ 55 21 54 50 55 20 54 54	55 23 55 3	55 13	24		
55, Needle A.	END SOUTH	CIRCL	Face East.	z 	130° 30′ 130° 30′ 130° 24	130 28	20	130	END NORTH.	CIRCL	Face West.	ż	55° 11′ 55° 24 55° 28	55 21	34	55	36/	,9 1 ₀ 9
ric Dip. 13, 1865,	MARKED E	·	Face	S.	130° 11' 130° 15 130° 11	130 12	130	55	MARKED E	-	Face	s.	55° 31′ 55° 49 56° 0	55 47	55	75،	+ 49° 3	Circle 2
Magnetic Dir November 13, 18	OF MAR		West.	z.	49° 52′ 49 45 49 53	49 50	61	49	OF MAF		East.	ż	125° 50' 125 51 125 56	125 52	45	55	Resulting Dip:	Azimuth of Dip Circle 26°
Thomas, No	POLARITY	EAST.	Face West.	s.	50° 12′ 50° 15 50° 16	50 14	50	IO	POLARITY	WEST.	Face East.	s.	125° 36′ 125 38 125 37	125 37	125	14	Result	Azimu
St. Tho	POI	CIRCLE EAST	East.	N.	49° 44′ 50 15 50 24	50 8	18	50	POJ	CIRCLE WEST.	West.	ż	125° 0′ 124 37 124 52	124 50	42	125		
		-	Face	s.	50° 2′ 50 35 50 50	50 29	50				Face West.	S.	124° 41' 124 22 124 35	124 33	124			
e A. 2.			ţ.	z.	° 36′ 35 31	34					ئد	N.	% % II 4	8				
		Face West.		, 128° 128 128	128	24			·	e East.		\$25° \$25°	52	22				
	TH.	CIRCLE WEST.	Fac	s.	128° 17' 128° 15 128° 8	128 13	128	58	LH.	CIRCLE EAST.	Face	s,	52° 35′ 52 39 52 30	52 35	52	51		
, Needle A.	END NORTH.	CIRCLE	East.	Ä.	127° 37′ 127 43 127 40	127 40	33	127	END SOUTH	CIRCLI	West.	'n.	53° 13′ 53 15 53 7	53 12	20	52		,91
IC DIP. 13, 1865,			Face	S.	127° 23' 127 30 127 26	127 26	127	37	MARKED EN		Face West.	s,	53° 24′ 53 35 53 26	53 28	53	33	+ 49° 32′	of Dip Circle 26°
MAGNETIC] ovember 13,	[E4		Vest.	'n.	52° 30′ 52° 34 52° 35	52 33	46	52	OF MAR		East.	ż	128° 17' 128 18 128 12	128 16	7	52	ng Dip: +49°	1
	POLARITY (EAST.	Face W	S.	52° 54′ 53° 0 53° 5	53 o	52	12	POLARITY	WEST.	Face Ea	S.	127° 59' 127 61 127 54	127 58	128	45	Resulting	Azimuth
St. Tho	POL	CIRCLE EAST.	East.	Ä	53° 18′ 53° 35 53° 35	53 29	39	53	POI	CIRCLE WEST.	Vest.	z.	127° 30' 1 127 32 127 33	127 32	23	127		
St. The			Face East.	တ်	53° 37′ 53° 55 53° 55	53 49	53				Face West.	S.	127° 11' 127 13 127 16	127 13	127			

ı) 1	1 1	1	ı	7 11 2	4	ı		11	ì	l	ì	2000	6		. 1	1
			est.	ż	128° 128 128	128	55				ast.	z	47° 30' 47 20. 47 8	47 19	30		
ij		_	Face West.		44, 12 45 12 52 12	47 113	127 5				Face East.	-	38 234	41 /	47 3		
e A.	H.	WEST.	Fa	S.	127° 1 127 127	, 421	ä	17	H.	EAST.	Ħ	s.	47° 47	47	•	22	
Needle A.	NORTH	CIRCLE WEST.			54' 44 42	47		128	SOUTH	CIRCLE EAST		'n.	14' 51 53	59		47	
	END D	CI	Face East.	z	128° 128 128	128	39			CI	Face West.	4	47° 46 46	46	14		39′
Dip. 1865.			Face	S.	° 36/ 28 30	31	128		D E		Face	S.	° 34′ 28 21	28	47		F 49°
MAGNETIC DIP November 16, 186	MARKED		l	1	1280	128		. 6 . 2	OF MARKED END)	87 47° 8 47 47	47		- 5 52	Resulting Dip: +49°
[AGN mber			st.	ż	52° 40′ 52° 47 52° 45	52 44	,,	52	F MA		East.	Ä.	133° 28′ 133 31 133 43	3 34	10	46	ting I
Nove	Y OF		Face West.		790,	5 5	52 55				Face Ea		12/ 13 16 13 24 13	17 133	133 25		Resul
ıas, 1	POLARITY	AST.	Fa	S.	53° 53 53	53	120	35	POLARITY	WEST.	Fa	s.	133° 1 133 1 133 2	133	Ĥ	37	
Thomas,	POL	CIRCLE EAST.			57′ 3	3		52	POL	CIRCLE WEST.			°, 5°	57		133	
St. 1		CIE	East.	Ŋ.	51° 52 52	52	15			CII	West.	Z T	134° 134 133	133	50		
			Face East.	S.	26 40	27	52				Face	S.	43′ 47 36	42	133		
				02	52 52 52	52						0,	133° 133 133	133			
			یہ	ż	° 47′ 57 66	57		. •			r.	ż	° 29' 45 32	35			
;			Face West.		, 130° 130 130	130	51				Face East.	<u> </u>	500	50	33		
		EST.	Face	s,	0° 56′ 0 37 0 41	0 45	130	4	∥ .	ST.	Fac	s,	50° 26′ 50° 36 50° 31	50 31	50	56	
Needle A.	SOUTH	CIRCLE WEST.			15' 130° 3 130 11 130	10 130		130 54	RTH	CIRCLE EAST.		<u> </u> 	28 27 27 27 27 27 27 27 27 27 27 27 27 27	20 5	-	49 5	
Ne	i	CIRC	ast.	ż	131° I 131 131 I	131 I	57	Ĥ'	MARKED END NORTH	CIRC	West.	ż	49° 49° 49° 3	49 2	18	.*	,4
Dip. 1865.	END		Face East.		50' I 40 I 46 I	45 I	130		EN		Face W		25 20	91	64		49° 4
TIC D	KED		1 124	s,	130 ° 130 130	130	"	34	KED		H	S.	49° 49 49	49		,53	+
Magneric Dir. rember 13, 186	MARKED			z.	55′ 42 19	81		49	MAR		_	z	30' 47 35	37		49	Resulting Dip: +49° 44'
Ma	OF		Face West.		50 50 50	50	29		OF		Face East,		130° 130 130	130	24		sultin
N.	POLARITY	ïT.	Face	S.	° 10′ 5 47	40	50		POLARITY	ST.	Face	S.	6 4, 8 8	11	130		Re
omas	OLAF	CIRCLE EAST.			50 51	50	ļ		OLAI	CIRCLE WEST.		1	130° 130 130	130		11 0	-
MAGNETIC St. Thomas, November 13,	F(CIRCI	st.	ż	49° 21′ 49 20 49 25	9 22		20	∥ ŭ	CIRCI	st.	ż	9° 59′ 0 11 0 20	0 10		130	
ॐ			Face East.		1	6 49	9 34				Face West.		32' 129° 47 130 55 130	45 130	9 58		
			Fa	s,	49° 42′ 49° 44 40° 53	49 46	49				Fac		129° 32' 129 47 129 55	129 4.	129		
	i		l	I	444	4	l		11	l	l	l	1 2 2 2	1 1	l		l i

			<u> </u>	,	3332	56	1			1	يبا	ļ z	34,	43			
A. I.	H.	VEST.	Face West.	S.	141° 40' 142° 141 31 141 141 30 141	141 34 141	141 45			AST.	Face East.	S.	31° 5′ 30° 31 10 30 31 29 30	31 15 30	30 59		
Needle A.1.	D NORTH	CIRCLE WEST.	Sast.	Ä	142° 23' 12 142° 45 12 142° 26 12	142 31 12	22	142	D SOUTH	CIRCLE EAST.	West.	z.	29° 39′ 29° 34 29° 45	29 39	52	. °,	27′
ric Di P. 3, 1865.	MARKED END		Face East.	s.	142° 5' 1 142 26 1 142 7	142 13 1	142	22	MARKED END		Face V	s,	30° 6′ 30° 0 30 IO	30 5	29	7	+ 34°
MAGNETIC DIP. , Nov. 28, 1865.	OF		Face West.	z.	38° 15′ 38° 5° 38° 5°	38 38	54	38	OF MAR		Face East.	ż	149° 23' 149° 33 149° 37	149 31	20	30	Resulting Dip:
Salute Islands,	POLARITY	CIRCLE EAST.	Face	s,	38° 50′ 39 25 39 16	39 10	38	. 48	POLARITY	CIRCLE WEST.	Face	s.	149° °′ 149 12 149 18	149 10	149	12	Re
Salute	PO	CIRCLI	Face East.	ż	38° 35′ 38° 25 38° 14	38 25	42	38	PO	CIRCLI	Face West.	ż		(151 22)	4	150	
			Face	s;	38° 57′ 39 °° 38 58	38 58	38				Face	\sigma	150° 55' 150° 50 150° 45	150 50	151		
			West.	Ŋ.	145° 48' 145° 44 146° 18	145 57	40				Face East.	z.	34° 44′ 34 21 34 9	34 25	39		
dle A. 2.	ГН.	CIRCLE WEST.	Face	s,	145° 15' 145° 12 145° 45	145 24	145	30	Ĥ.	EAST.	Face	တ်	35° 15′ 34 45 34 40	34 53	34	ςς.	
5. Needle	VD NORTH	CIRCLE	Face East.	'n.	145° 35' 145° 28 145° 16	145 26	20	145	END SOUTH	CIRCLE EAST.	West.	ż	35° 15′ 35 12 35 15	35 14	28	35	42/
ric Dir. 28, 1865.	MARKED END		Face	လွှဲ	145° 17' 145 5 145 17	145 13	145	4	MARKED EI		Face	s _i	35° 45′ 35 40 35 41	35 42	35	40	34°
MAGNETIC DIP	Gr.		Face West.	'n.	34° 10′ 34° 15 33° 53	34 6	22	34	OF MAF		Face East.	Ŋ.	145° 45' 145 55 145 55	145 52	39	34	Resulting Dip: +
ands, No	POLARITY O	EAST.	Face	တ်	34° 37′ 34° 45 34° 30	34 37	34	57	POLARITY	WEST.	Face	s,	145° 25' 145° 24 145° 25	145 25	145	42	Res
MAGNET Salute Islands, November	[PO]	CIRCLE EAST.	Face East.	Z.	35° 5′ 35 38 35 16	35 20	32	34	PO]	CIRCLE WEST	West.	z.	145° 45′ 145° 58 146° 6	145 56	45	145	
<i>o</i> 2			Face	s.	35°28′ 35 59 35 45	35 44	35				Face West.	S.	145° 28′ 145 35 145 40	145 34	145		

			West.	ż						East.	, z				
ï	H.	WEST.	Face West.	s,	166° 50' 165 30 166 0	1 991	41	H.	EAST.	Face East.	S.	27° 10' 27 0 27 20	27 10	.6	
Needle A.	D SOUT	CIRCLE WEST.	fast.	ĸ			164	D NORT	CIRCLE EAST.	Vest.	ż			27	26/
o.º	POLARITY OF MARKED END SOUTH		Face East.	s,	163° 20' 163 20 163 6	163 15	6	POLARITY OF MARKED END NORTH		Face West.	\sigma_i	27° 10' 27 10 27 0	27 7	28	210
Magneric Dip. aber 13, 1865.	OF MAR		West.	ż			91	OF MAR		East.	ż			26	Resulting Dip: +
MAGNETIC DII Ceara, December 13, 1865.	ARITY	EAST.	Face West.	s,	16° 5′ 15 52 15 52	15 56	45	ARITY	WEST.	Face East.	S.	153° 55' 154 20 154 40	154 18	13	Res
Cears	POI	CIRCLE EAST.	East.	z			16	POI	CIRCLE WEST.	West.	N.			154	
			Face East.	s,	17° 30' 17 31 17 45	17 35				Face West.	s.	154° 0′ 154 18 154 5	154 8		
			West.	ż						East.	Ä.				
1. 2.	́н.	WEST.	Face West.	s,	156° 35′ 157° 0 157° 0	156 52	36	H.	EAST.	Face East.	s;	22° 20' 22 8 22 26	22 18	88	
Needle A.	тр souтн.	CIRCLE WEST.	East.	ż		-	158	ID NORTH	CIRCLE EAST.	West.	ä			22	20/
۵.	MARKED END		Face East.	s.	159° 56' 160 37 160 30	160 21	7	MARKED END	•	Face West.	· ·	22° 55′ 22 32 22 28	22° 38′	33	p: + 21°
MAGNETIC DIP. aber 13, 1865.	1		Face West.	Z			21			Face East.	Ŋ.			21	Resulting Dip: +
Magneric Du Ceara, December 13, 1865.	POLARITY OF	EAST.	Face	s.	21° 30′ 21 2 21 15	21 16	51	POLARITY OF	CIRCLE WEST.	Face	s.	160° 20′ 160° 5 159° 23	159 56		Re
Cear	PO	CIRCLE EAST.	East.	N			20	POI	CIRCLE	West.	'n			159	
			Face East.	s,	20° 30′ 20 17 20 30	20 26				Face West.	S.	159° 4′ 158 45 158 40	158 50		

			West.	N.						East.	Ŋ.				
A. I.	H.	WEST.	Face West.	s,	163° 5' 163 20 162 30	162 58	44	H.	EAST.	Face East.	v.	7° 25′ 7 40 7 40	7 35	36	
Needle A. 1.	D NORT	CIRCLE WEST.	East.	ż			162	D SOUTH.	CIRCLE EAST.	Nest.	ż			9	/9
11c Dip.	KED EN		Face East.	s,	162° 10' 162 40 162 40	162 30	48	MARKED END		Face West.	s.	5 30	5 37	∞	
Magnetic Dip. Dec. 23, 1865.	OF MAR		West.	N.			17	OF MAR		East.	z.			9	Resulting Dip: + 12°
MAGNETIC DIP Pernambuco, Dec. 23, 1865.	POLARITY OF MARKED END NORTH.	EAST.	Face West.	s.	18° °′ 18° °′ 18° °	o 81	50	POLARITY	CIRCLE WEST.	Face East.	s,	173° 35' 173 30 173 50	173 38	20	Res
Perns	PO	CIRCLE EAST.	East.	Ŋ.			18	PO]	CIRCLE	West.	z z			174	
			Face East.	s.	18° 30' 18 35 18 55	18 40				Face West.	s,	174° 20' 175 20 175 30	175 3		
		-	West.	z.			·			East.	z				
A. 2.	rH.	WEST.	Face West.	S.	167° 5' 167 10 167 5	1 291	40	Н.	EAST.	Face East.	s,	12° 5' 12 30 12 25	12 20	56	
Needle A.	ID NOR	CIRCLE WEST.	East.	Z			891	тр ѕоотн.	CIRCLE EAST.	West.	Ä.			13	10/
Magnetic Dip. Dec. 23, 1865.	MARKED END NORTH		Face East.	s.	169° 45' 17° 10 17° 40	170 12	50	MARKED END	·	Face West.	v.	14° 45' 14 30 14 20	14 32	30	Resulting Dip: + 12° 10'
Magne Dec. 23	OF		Face West.	'n			II	1 '		East.	N.			12	sulting Di
M. Pernambuco, De	POLARITY	CIRCLE EAST.	Face	s.	12° 30' 12 10 12 10	12 17	20	POLARITY OF	CIRCLE WEST.	Face East.	S.	168° 10' 168 30 167 35	168 5	25	Res
Pern	PO	CIRCLI	Face East.	Ŋ.			12	PO	CIRCLE	West.	Ŋ.			891	
			Face	S.	12° 20' 12 15 12 35	12 23				Face West.	s.	168° 30′ 168° 25 169° 20	168 45		

			1	,	,				D								
			Nest.	z	-						Jast.	Ŋ.					
A. I.	TH.	CIRCLE WEST.	Face West.	s.	170° 20′ 169 55 170 25	170 13		36	H.	EAST.	Face East.	s,	179° 20′ 179 10 179 10	179 13		8 35	
Needle A.	D NOR	CIRCLE	fast.	z				169	D SOUT	CIRCLE EAST.	Vest.	, z				-178	
ic Dip. 1865.	KED EN		Face East.	s,	168° 55' 169 10 169 10	169 5		54	KED EN		Face West.	S.	177° 25′ 178° 20 178° 5	177 57		0	: +4° 31′
Magnetic Dip. 1ber 27, 1865.	OF MAR		Vest	ż	-			or	OF MAR		fast.	ż				7	Resulting Dip: +
Magneric Dii Bahia, December 27, 1865.	POLARITY OF MARKED END NORTH	EAST.	Face West	v.	11° 3°/ 11 10 11 10	11 11		. 82	POLARITY OF MARKED END SOUTH.	WEST.	Face East.	S.	1° 50' 1 55 1 55	I 53		35	Resi
Bahi	POI	CIRCLE EAST.	East.	z.				111	POI	CIRCLE WEST.	Vest.	Ä.				7	
			Face East.	s,	11° 30' 11 30 12 0	11 40					Face West.	s.	3° 15'	3 18			
			Vest.	ĸ	176° 10' 176° 5 175° 50	176 2	11				East.	Ŋ.	0 m 0	5.	15		
ł. 2.	H.	WEST.	Face West.	s.	176° 10' 176 5 176 45	176 20	176	24	H.	EAST.	Face East.	s.	5° 25' 5 30 5 30	5 28	ĸ	58	
Needle A.	MARKED END NORTH	CIRCLE WEST.	East.	Ŋ.	176° 30' 176 40 176 40	176 37	38	176	MARKED END SOUTH.	CIRCLE EAST.	West.	Ä	4° 10′ 4 45 4 40	4 32	42	4	17,
_	KED EN		Face East.	s.	176° 30′ 176° 45 176° 45	176 40	176	56	KED EN		Face West.	s,	4° 30′ 5° 5° 0°	4 52	4	39	64
Magneric Dip. nber 27, 1865.	OF MAR		West.	'n.	4° 15' 4 45 5 20	4 47	0	3.	OF MAR		East.	Ä.	176° 30′ 177 15 176 0	176 35	35	4	Resulting Dip: +
M Bahia, Decemb	POLARITY	EAST.	Face West.	S.	4° 40′ 5 10 5 50	5 13	ນ	91	POLARITY OF	WEST.	Face East.	S.	176° 30′ 177 15 176 0	176 35	176	40	Res
Bahi	POI	CIRCLE EAST.	East.	z.	3° 15' 3° 30 3° 35	3 27	32	4	POI	CIRCLE WEST.	West.	z'	174° 50′ 174 40 174 50	174 47	45	175	
	-		Face East.	s,	3° 35′ 3° 45 3° 3°	3 37	8				Face West.	s,	174° 45' 174° 45 174° 46	174 43	174		

			Face West.	z	7° 10' 7 0 6 35	6 55				Face East.	ż	162° 55' 163 15 163 35	163 IS		
A. I.	H.	WEST.	Face	s.			. 0	н.	EAST.	Face	s.			39	
Needle A.	ND NORT	CIRCLE WEST.	Face East.	Ŋ.	4° 50′ 5 35 0 0	5.	9	END SOUTH.	CIRCLE EAST.	West.	N.	162° 10' 162 15 161 45	162 3	162	48/
IC DIP.	KED EI	-	Face	s.			34			Face West.	s,			46	: — II°
MAGNETIC DIP. Rio Janeiro, January 6, 1866.	OF MARKED END NORTH		Face West.	z	174° 20′ 174 15 174 0	174 12	٠,	OF MARKED		Face East.	'n	18° 10' 18 5 18 15	I8 IO	17	Resulting Dip: —
neiro, J	POLARITY	EAST.	Face	s.			55	POLARITY	WEST.	Face	s.	,		12	Re
Rio Ja	POI	CIRCLE EAST.	Face East.	z.	175° 15' 175 50 175 45	175 37	174	POI	CIRCLE WEST.	West.	z.	18° 5' 18 15 18 25	18 15	81	
			Face	s.						Face West.	s,				
			Face West.	Ä	11° 35' 11° 35 11° 30	11 33				Face East.	N.	167° 45' 168 5 168 10	o 891		
A. 2.	H.	WEST.	Face	S.			50	H.	EAST.	Face	S.			35	
Needle A.	MARKED END NORTH	CIRCLE WEST.	Face East.	Ŋ.	11° 20' 12 30 12 30	12 7	11	F MARKED END SOUTH.	CIRCLE EAST,	Face West.	Ŋ.	168° 55' 169 o 169 35	оі 691	891	46/
ıc Dir.	KED E		Face	s,			57	KED E		Face	S.			35	oII — :
MAGNETIC DIP. Rio Janeiro, January 6, 1866.	OF		West.	'n	168° 30' 169 o 169 15	168 55	II	0		Face East.	z	12° 5′ 12 30. 12 50	12 28	H	Resulting Dip:
neiro,]	POLARITY	EAST.	Face W	S.			56	POLARITY	WEST.	Face	S.			45	Re
Rio Ja	POI	CIRCLE EAST.	fast.	z.	167° 0′ 166 45 167 10	166 58	191	POI	CIRCLE WEST.	Vest.	z.	10° 15' 11' 15 11' 35	11 2	II	
			Face East.	s,		-				Face West.	s,		:		-

	1	İ)	1.	000	1		1	1	1	1.	40° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40		1.
			Face West.	Z.	31° 31° 31°	31				Face East.	Ä	149° 150 149			
e A. 2.	H.	WEST.	Face	\sigma			56	H.	EAST.	Face	s.			35	
. Needle A.	POLARITY OF MARKED END NORTH.	CIRCLE WEST.	Face East.	Ä.	32° 10′ 31 20 32 0	31 50	31	ND SOUTH.	CIRCLE EAST.	Face West.	, z	149° 30' 149 IO 149 50	149 30	149	58/
ric Dir. 8, 1866	KED E		Face	s.			<i>w</i>	KED E		Face	s,			54	: - 30°
MAGNETIC DIP. Monte Video, January 18, 1866.	OF MAR		West.	z.	149° 20′ 149° 30 150° 10	149 40	31	POLARITY OF MARKED END		Face East.	Ŋ.	30° 50′ 31° 0 30° 50	30 53	30	Resulting Dip: - 30°
Video, J	ARİTY	EAST.	Face West.	. Si			23	ARITY	WEST.	Face	s.			22	Res
Monte 7	POI	CIRCLE EAST.	East.	z.	149° 10' 148 50 149 20	149 7	149	POI	CIRCLE WEST.	West.	Ŋ.	31° 40′ 32 10 31 40	31 50	31	
			Face East.	Š						Face West.	Š				
			est.	N.	26° 20′ 27 ° 26 40	26 40				ast.	z.	144° 10' 144 20 144 30	144 20		
A. I.	H.	ÆT.	Face West.	S.			zo.	٠	AST.	Face East.	s,	777	71	02	
Needle A.	MARKED END NORTH.	CIRCLE WEST.	East.	N.	25° 40′ 25° 10 25° 40	25 30	92	ID SOUTH.	CIRCLE EAST.	West.	Z.	144° 20' 144 20 144 20	144 20	144	11,
IC DIP.	KED EN	-	Face East.	s,			52	MARKED END		Face West.	S.			22	: —31° 11′
MAGNETIC DIP. Monte Video, January 18, 1866.	OF MAR		Face West.	Ŋ.	153° 30' 153 40 153 20	153 30	25	OF MAR		Face East.	Ŋ.	36° 20' 36° 20 36° 30	36 23	35	Resulting Dip: —
7ideo, J	POLARITY	EAST.	Face	S.			22	POLARITY	WEST.	Face	s.			15	Re
Monte V	POL	CIRCLE EAST.	Face East.	z.	155° 15′ 155° 10′ 155° 15′	155 13.	154	POL	CIRCLE WEST.	Face West.	'n.	36° 0′ 36° 10 36° 10	36 7	36	
			Face	s.						Face	S.				

MAGNETIC DIP.

Monte Video, January 18, 1866. Needle A. 2.

POLARITY OF MARKED END NORTH.

Yanan and a shadill	CIRCLE	EAST.			CIRCLE	WEST.	
Fac	e East.	Face	West.	Face	East.	Face	e West.
S.	N. 148° 50′ 149 0 149 30 149 7	S. 5	N. 149° 20′ 148 50 149 .0 149 3	S. 7	N. 31° 0′ 31 10 31 20 31 10	S.	N. 31° 0′ 31 40 31 40 31 27

POLARITY OF MARKED END SOUTH.

	CIRCLE	WEST.			CIRCLE	EAST.	
Face	e West.	Face	e East.	Fac	e West.	Fac	e East.
S.	N.	S.	N.	S.	N.	S.	N.
	32° 0′ 32 0 31 50		31° 0′ 31 20 31 40		149° 10′ 149 10 149 20		149° 10′ 149 30 149 50
	31 57		31 20		149 13		149 30
	31	39	31	8	149	22	

Resulting Dip: — 31° 8′

			Face West	z	0, 54° 50' 0 55 10 0 54 0	55 54 40	54 47				Face East.	ż	o' 125° 30' 15 125 35 50 125 45	2 125 37	5 50			
Ą.	ľH.	WEST.	Fa	\sigma	55° 54° 55°	54 5	120	01	ij.	EAST.	Fa	s,	126° 126 1 125 5	126	125	7		
Needle	NOR	CIRCLE WEST.	East.	ż	56° 0′ 55° 5 56° 0	55 42	33	55	SOUTH	CIRCLE EAST.	est.	z.	125° 0′ 124 30 123 45	124 25	4	125	27	
тіс Dів. 7, 1866.	OF MARKED END NORTH		Face E	s.	55° 30′ 55 30′ 55 30	55 23	55 3	54	KED END		Face West.	s,	124° 35' 12 124 40 12 123 55 12	124 23 12	124 24	IO	— 55°	
MAGNETIC DIP February 7, 1866	OF MAR		West.	, z	126° 10' 125 30 125 40	125 47	53	45	OF MARKED		East.	Ä	54° 30′ 1 54° 40 54° 45	54 38 1	35	55	Resulting Dip:	
	POLARITY	CIRCLE EAST.	Face West.	S.	126° 30′ 125° 45 125° 45	126 0	125	22	POLARITY	CIRCLE WEST.	Face East.	s.	54° 35′ 54 25 54 35	54 32	54	27	Res	
Sandy Point,	PO	CIRCLE	Face East.	N.	124° 45' 124 45 124 45	124 45	52	125	[Od	CIRCLE	Face West.	ż	56° 10' 56 45 56 15	56 23	20	55		
		·	Face	S.	124° 45' 124 55 125 15	124 58	124	18 ₁₁ \$			Face	s,	56° 15' 56 15 56 20	56 17	56			
			Vest.	z	52° 45′ 52° 50 52° 45	52 47	48				dast.	z.	122° 55' 123 0 123 0	122 58	3			
e A. 1.	ж.	WEST.	Face West.	S.	52° 45′ 52° 45 52° 55	52 48	52	44	H.	EAST.	Face East.	S.	123° 0' 1 123 10 1 123 10 1	123 7 1	123	12		
Needle A.	END NORTH	CIRCLE WEST.	East.	z	52° 30′ 52 40 52 40	52 37	40	22	END SOUTH.	CIRCLE EAST.	West.	Ä.	123° 15' 1 123 10 123 20	123 15	. 02	123	52′	
AGNETIC DIP. ruary 7, 1866.	MARKED EN		Face East.	s.	52° 35′ 52 45 52 45	52 42	52	22	MARKED EN		Face West.	S.	123° 10' 123 20 123 45	123 25	123	9	-54°	
MAGNET Sandy Point, February	OF MAF		Face West.	ĸ.	128° 10' 127 15 128 10	127 52	57	52	OF		Face East.	N.	57° 35′ 57 35 57 40	57 37	40	57	Resulting Dip:	
Point, F	POLARITY	EAST.	Face	လ	128° 15' 127 30 128 20	128 2	127	59	POLARITY	CIRCLE WEST.	Face	s,	57° 40′ 57 40 57 45	57 42	57	24	·Re	
Sandy	PO]	CIRCLE EAST.	East.	Ŋ.	128° 0′ 127 45 128 0	127 55	-	127	POj	CIRCLE	West.	z.	57° ° 0′ 57 5 57 5	57 3	7	57		
			Face East.	s,	128° 10' 128 0 128 10	128 7	128				Face West.	s.	57° 5′ 57 15 57 15	57 12	57			

			Face West.	ż	35° °° 35° 35° °° 34° 45° 35° 35° 35° 35° 35° 35° 35° 35° 35° 3	34 55		De January		Face East.	ż	145° 15' 145 10 145 0	145 8		
1. 2.	H.	WEST.	Face	s.			14	H.	EAST.	Face	s.			58	
Needle A.	POLARITY OF MARKED END NORTH	CIRCLE WEST.	Face East.	z	35° 20′ 35 35 35 40	35 32	35	END SOUTH.	CIRCLE EAST.	Face West.	z.	145° 0' 145° 0 144 20	144 47	144	7,
1c Dip. 1866.	KED E		Face	, vi			0			Face	s.	·		14	: -35°
MAGNETIC DIP. Valparaiso, March 2, 1866.	OF MAR		Face West.	'n.	145° 30' 144 40 145 15	145 8	35	OF MARKED		Face East.	, Z	34° 50′ 34° 50 35° 5	34 55	35	Resulting Dip:
araiso, l	ARITY	EAST.	Face	s.			13	POLARITY	WEST.	Face	S.			27	Res
Valpa	POI	CIRCLE EAST.	Face East.	'n.	145° 15' 145 25 145 15	145 18	145	POI	CIRCLE WEST.	West.	Ä	36° 10′ 35° 45 36° 5	36 0	35	
			Face	s.						Face West.	s.				
			West.	N.	31° 15′ 31° 10 31° 35	31 20				East.	Ä	141° 5' 141 · 45 141 · 15	141 22		
. I.	H.	WEST.	Face West.	s,		1 To Martin Administration	52	H.	EAST.	Face East.	s,			30	
Needle A. 1.	END NORTH	CIRCLE WEST.	East.	Ŋ.	30° 45′ 30° 30 29° 55	30 23	30	ID SOUTH	CIRCLE EAST.	West.	ż	141° 35' 142 20 140 55	141 37	141	50′
IC DIP. 1866.		·	Face East.	S.			31	F MARKED END		Face West.	S.			4	- 34°
MAGNETIC DIP. Valparaiso, March 2, 1866.	OF MARKED		West.	'n.	148° 30' 149 15 149 10	148 58	30	OF MAR		Face East.	'n.	39° 15′ 39° 0 39° 30	39 15	38	Resulting Dip:
araiso, 1	POLARITY	EAST.	Face W	S.			50	POLARITY O	WEST.	Face	s.			58	Res
Valp	POI	CIRCLE EAST.	Face East.	z.	150° 45′ 150° 40 150° 45	150 43	149	POI	CIRCLE WEST.	West.	ĸ.	38° 30′ 38° 45 38° 50	38 42	38	
			Face	s.					-	Face West.	s,		:		

	Ī		1	1	20.30	33]	11	1		1	0, 30 45	25		1 1
			Face West.	zi —	31° 31° 31° 31° 31° 31° 31° 31° 31° 31°	31				Face East.	z 	140° 140 140	140		
A. 1.	Ĥ.	WEST.	Face	s.			. 65	H.	EAST.	Face	S.			43	
Needle A.	POLARITY OF MARKED END NORTH	CIRCLE WEST.	Face East.	ż	30° 15′ 30° 30 30° 30	30 25	30	POLARITY OF MARKED END SOUTH.	CIRCLE EAST.	Face West.	z.	140° 55' 141 10 140 55	141 0	140	
ic Dip. 1866.	KED EI		Face	Š			52	KED EN		Face	s.			35	—35° 28′
MAGNETIC DIP Valparaiso, March 19, 1866.	OF MAR		West.	ż	148° 50' 148° 30 148° 20	148 33	30	OF MARJ		East.	Ä	40° 5′ 40° 15 40° 20	40 13	39	Resulting Dip: -
raiso, M	ARITY	EAST.	Face West.	s,			14	ARITY	WEST.	Face East.	Š			53	Result
Valpaı	POL	CIRCLE EAST.	East.	ż	149° 50' 150 10 149 45	149 55	149	POL	CIRCLE WEST.	West.	ż	39° 20′ 39° 50 39° 30	39 33	39	
	-		Face East.	s,						Face West.	s,				
			/est.	ż	34° 45′ 35° 5 35° 30	35 7				ast.	ż	145° 15' 145° 20 145° 10	145 15		-
. 2.	H.	WEST.	Face West.	s.			41	Ŧ	EAST.	Face East.	s.	Н	I	Ħ	
Needle A.	END NORTH.	CIRCLE WEST.	Bast.	z	35° 50′ 36 40 36 15	36 15	35	MARKED END SOUTH.	CIRCLE EAST.	Vest.	Ä	145° 10' 144 45 144 30	144 48	145	
IC DIP. 1866.			Face East.	S.			31	KED EN		Face West.	S.			25	-35° 28′
MAGNETIC DIP. Valparaiso, March 19, 1866.	OF MARKED		West.	Ä	144° 15' 144 30 144 20	144 22	35	1		East.	N.	34° 45′ 34 40 34 20	34 35	35	ng Dip: -
raiso, M	POLARITY OF	EAST.	Face West.	s,			39	POLARITY OF	WEST.	Face East.	S.			52	Resulting
Valpa	POL	CIRCLE EAST.	Sast.	Ä.	144° 50' 145° 0 144. 55	144 55	144	POL	CIRCLE WEST.	Vest.	Z.	37° °′ 37 10 37 20	37 IO	35	
	-		Face East.	s,						Face West.	S.				

			Face West.	z	31° 45' 31 50 31 40	31 45				Face East:	Ä.	140° 15' 140 40 140 30	140 28		
A. I.	TH.	WEST.	Face	S.			4	H.	EAST.	Face	S.			44	-
Needle	END NORTH	CIRCLE WEST.	East.	N.	30° 10' 30 20 30 40	30 23	31	END SOUTH	CIRCLE EAST	West.	z.	140° 40' 141 10 141 10	141 0	140	34′
rc Dip. 1866.	MARKED E		Face East.	S.			50			Face West.	S.			48	: — 35°
MAGNETIC DIP March 29, 1866.	OF MAR		West.	ż	149° 15' 148° 40 148° 40	148 52	30	OF MARKED		East.	z.	40° 20′ 40° 20 40° 20	40 20	39	Resulting Dip:
raiso, M	POLARITY	EAST.	Face West.	S.			24	POLARITY	WEST.	Face East.	s.			21	Re
Valparaiso,	POL	CIRCLE EAST.	East.	ä	149° 30' 150° 0 150° 15	149 55	149	POL	CIRCLE WEST.	West.	ż	40° 40' 40 IS 40 IO	40 22	40	
			Face East.	S.						Face West.	s.				
			Face West.	ż	35° 20′ 35 30 35 30	35 27				Face East.	z.	144° 40' 145 15 145 0	144 58		
A. 2.	Ĥ.	WEST.	Face	s,			36	H.	EAST.	Face	s,			45	
Needle A.	END NORTH	CIRCLE WEST.	Face East.	z.	35° 45′ 35 40 35 50	35 45	35	END SOUTH.	CIRCLE EAST.	Face West.	ż	144° 15' 145 0 144 20	144 32	144	271
IC DIP. 1866.	MARKED EI		Face	s.			1			Face	S.	-		46	: - 35°
MAGNETIC DIP. Valparaiso, March 29, 1866.			Face West.	Ä	145° 15' 145 30 145 15	145 20	35	OF MARKED		Face East.	z.	35° 30′ 35 45 35 45	35 40	35	Resulting Dip:
raiso, M	POLARITY OF	EAST.	Face	s,			22	POLARITY OF	WEST.	Face	S.			17	Re
Valpa	POL	CIRCLE EAST.	East.	'n.	146° 10' 145° 10 144° 50	145 23	145	POL	CIRCLE WEST.	West.	z.	36° 40′ 36° 40 37° 20	36 53	36	
			Face East.	si						Face West.	S.				

			West.	z	32° 0′ 32 15 32 10	32 8				Face East.	N.	140° 20' 140 30 140 30	140 27		
i,	'н.	WEST.	Face West.	S.			27	H.	EAST.	Face	s.			47	
Needle A. 1.	D NORT	CIRCLE WEST.	Jast.	Ä	30° 20′ 30° 25′ 31° 30	30 45	31 2	D SOUT	CIRCLE EAST.	Vest.	N.	140° 40' 141° 45 141° 0	141 8	140	26/
p.	KED EN		Face East.	S.			50	KED EN		Face West.	S.			34	— 35°
Magnetic Die. Valparaiso, April 7, 1866.	POLARITY OF MARKED END NORTH.		Vest.	z.	149° 20' 149 15 149 0	149 12	30	POLARITY OF MARKED END SOUTH		Bast.	ä	40° 15′ 40° 15 40° 0	40 IO	39	Resulting Dip:
araiso, A	ARITY (EAST.	Face West.	s.			47	ARITY (WEST.	Face East.	s.			55	Res
Valp	POL	CIRCLE EAST.	fast.	ż	150° 30′ 15° 40 15° 0	150 23	149	POL	CIRCLE WEST.	Vest.	'n	39° 50' 39 30 39 40	39 40	39	
			Face East.	Š					-	Face West.	S.				
			West.	z	35° 10' 35 10 34 40	35 0				East.	z	145° 40′ 144° 45 145° 15	145 13		
	H.	WEST.	Face West.	S.	·		36	H.	EAST.	Face East.	s.			52	
Needle A.	F MARKED END NORTH.	CIRCLE WEST.	East.	Ä.	36° 40′ 36° 15 35° 40	36 12	35	F MARKED END SOUTH.	CIRCLE EAST.	West.	Ŋ.	145° 15' 144 15 144 0	144 30	144	23'
P.	KED EN		Face East.	S.			22	KED EN		Face West.	s.			24	35°
Magnetic Die. Valparaiso, April 7, 1866.	OF MAR		Face West.	ä	144° 30' 145 30 145 10	145 3	35	OF MAR		Face East.	z	34° 40′ 35° 0 35° 0	34 53	35	Resulting Dip:
araiso, .	POLARITY O	EAST.	Face	S.			51	POLARITY O	WEST.	Face	S.			39	Re
m Valp	POI	CIRCLE EAST.	East.	Ä	144° 30′ 145° 0 144° 30	144 40	144	POI	CIRCLE WEST.	West.	z.	36° 2c′ 36° 15 36° 40	36 25	35	
			Face East.	S.						Face West.	s,				

	•					,			,					1	
			ř.	ż	50 40 40	43				نب ا	z.	30, 10	17		
			Face West.	-	31° 31 31	31				Face East.		140° 140 140	140		
i	H	WEST.	Fac	s,			₩.	H.	EAST.	Fac	s,			35	
Needle A.	POLARITY OF MARKED END NORTH	CIRCLE WEST.	Face East.	z	30° 40′ 30° 20 30° 10	30 23	31	END SOUTH	CIRCLE EAST.	Face West.	z	140° 50' 141 10 140 40	140 53	140	29/
ıc Dir. 1866.	KED E		Face	s.			42			Face	s.			45	. —35°
MAGNETIC DIP. Valparaiso, April 11, 1866.	OF MAR		West.	ż	150° 10' 148 50 149 0	149 20	30	OF MARKED		East.	ž	41° 20′ 40° 25 40° 0	40 35	39	Resulting Dip:
araiso, A	ARITY	EAST.	Face West.	s.			40	POLARITY	WEST.	Face East.	S.			4	Resi
Valpa	POI	CIRCLE EAST.	East.	z.	149° 40' 150 0 150 20	150 0	149	POI	CIRCLE WEST.	West.	ż	39° 30′ 39° 30 39° 40	39 33	04	
			Face East.	s,				-		Face West.	s,				
			West.	ż	35° 40′ 35° 40 35° 40	35 40				East.	ż	145° 10' 145 10 145 0	145 7		
Ą. 2.	Ĥ.	WEST.	Face West.	s,			49	H.	EAST.	Face East.	S.			47	
Needle A.	MARKED END NORTH	CIRCLE WEST.	East.	Ä.	36° 10′ 36° 0 35° 45	35 58	35	ID SOUTH	CIRCLE EAST.	West.	ż	144° 20′ 144 30 144 35	144 28	144	36/
e.	KED EN		Face East.	s,			30	MARKED END		Face West.	S.			42	-35°
Magnetic Dir. Valparaiso, April 11, 1866.	OF		Face West.	'n.	145° 20' 145 0 144 50	145 3	35	OF MAR		East.	, z	35° 20′ 36° 0 35° 10	35 30	35	Resulting Dip:
araiso, £	POLARITY	EAST.	Face	S.			50	POLARITY	WEST.	Face East.	.S.			OI	Res
Valp	POI	CIRCLE EAST.	East.	Ŋ.	144° 20′ 144° 40 144° 50	144 37	144	POI	CIRCLE WEST.	West.	Ŋ.	36° 50' 36 50 36 50	36 50	36	
			Face East.	S.						Face West.	S.				

				Ä.	50/				1		Z.		50		
			Face West.		310					Face East.	-4		139°		
i	H.	WEST.	Face	s.			9	H.	EAST.	Face	s.			15	
Needle A.	ND NORT	CIRCLE WEST.	Face East.	N.	30° 15′		31	END SOUTH.	CIRCLE EAST.	Face West.	z.		140° 40′	140	40/
ıc Dır. 1866.	KED E		Face	s,			46	KED EI		Face	s,			61	: — 35°
Magneric Die. Valparaiso, April 13, 1866.	POLARITY OF MARKED END NORTH		Face West.	Ŋ.	148° 50' 148° 50 148° 50	148 50	30	OF MARKED		Face East.	z		40° 30′	40	Resulting Dip:
raiso, 4	ARITY	EAST.	Face	s,			31	POLARITY	WEST.	Face	s.			18	Res
Valpa	POI	CIRCLE EAST.	Face East.	z.	150° 15' 150 10 150 10	150 12	149	POL	CIRCLE WEST.	West.	ż		40° 5′	40	
			Face	S.				-		Face West.	s,	-			
			Face West.	ż	35° 20′ 35° 30 35° 20	35 23				Face East.	ż	144° 30′ 144° 30′ 144° 30	144 30		
9	H.	WEST.	Face	S.			20	H.	EAST.	Face	s.	-		34	
Needle A.	MARKED END NORTH.	CIRCLE WEST.	East.	Ŋ.	35° 0′ 35 20 35 30	35 17	35	ID SOUTH.	CIRCLE EAST.	West.	'n.	144° 30′ 144° 30′ 144° 50	144 37	144	121
ď.	KED EN	-	Face East.	s.			57	MARKED END		Face West.	s,			56	— 35°
MAGNETIC DIP. Valparaiso, April 13, 1866.	- 1		Face West.	z.	145° 20' 145 ° 145 °	145 7	34			Face East.	Ŋ.	34° 50′ 34 50 34 50	34 50	35	Resulting Dip:
raiso, A	POLARITY OF	EAST.	Face	s.			26	POLARITY OF	WEST.	Face	S.			56	Re
Valpa	POL	CIRCLE EAST.	East.	z.	145° 45' 145° 45 145° 45	145 45	145	POL	CIRCLE WEST.	West.	'n	36° 10′ 36° 0 36° 0	36 3	35	
		-	Face East.	s,						Face West.	S.				

ï			Face West.	z —	1° 50'	-	The state of the s		Face East.	z.		168° 20		
Needle A. 1.	H.	WEST.	Face	S.		13	H.	EAST.	Face	S.			55	
	ND NORT	CIRCLE WEST.	Face East.	z	0° 35'	I	VD SOUT	CIRCLE EAST.	Face West.	Ŋ.		167° 30′	167	.87
11c DiP. 26, 186	KED E		Face	s.		81	KED EI		Face	S.			30	: -6° 2
MAGNETIC DIP. San Lorenzo Island, April 26, 1866.	POLARITY OF MARKED END NORTH.		Face West.	ż	+1° 15'	0	POLARITY OF MARKED END SOUTH.		Face East.	z		12° 40′	12	Resulting Dip: — 6° 28'
nzo Isla	LARITY	EAST.	Face	S.		37	ARITY	WEST.	Face	s.			55	Re
ian Lore	PO	CIRCLE EAST.	Face East.	Ä.	00 0/	+037	POI	CIRCLE WEST.	Face West.	ż		13° 10′	12	
0)			Face	s.					Face	s,				
		·	Face West.	Ŋ.	6° 20′.				Face East.	z		173° 30′		
Needle A.	TH.	WEST.	Face	s,		15	н.	EAST.	Face	S.			50	
	ND NORT	CIRCLE WEST.	Face East.	z.	/01 08	7	ND SOUT	CIRCLE EAST.	Face West.	Ä.		175° 10'	174	29/
1c DiP.	KED E		Face	S.		39	KED E		Face	v.			61	
MACNETIC DIP. San Lorenzo Island, April 26, 1866.	POLARITY OF MARKED END NORTH.		West.	z.	175° 35′	9	POLARITY OF MARKED END SOUTH.		Face East.	z.		7° 40′	9	Resulting Dip:6°
ızo İsla	ARITY	EAST.	Face W	S.		57	ARITY	WEST.	Face	s.			58	Re
an Lore	POI	CIRCLE EAST.	East.	z.	172° 20′	173	POI	CIRCLE WEST.	West.	z	,	6° 15′	9	
ŭ			Face East.	S.					Face West.	· v		:		

			Vest.	'n						East.	z			
.•	H.	WEST.	Face West.	s.		169° 50′	48	H.	EAST.	Face East.	s,	0° 45′	8	
Drp. Needle A. 1.	ID NORT	CIRCLE WEST.	East.	, z	·		691	D SOUT	CIRCLE EAST.	Vest.	'n.		 +	
_	POLARITY OF MARKED END NORTH.		Face East.	s.		169° 45′	32	POLARITY OF MARKED END SOUTH.		Face West.	S.	179° 20′	61	Resulting Dip: +5° 9′
MAGNETIC Payta, May 7, 1866.	OF MAR		West.	Ä			410	OF MAR		East.	N.		°	sulting Di
ayta, Ma	LARITY	EAST.	Face West.	S.		10° 30′	52	ARITY	WEST.	Face East.	S.	00 10/	40	Re
	POI	CIRCLE EAST.	East.	N.			OI	POI	CIRCLE WEST.	West.	ä		0	
			Face East.	S.		110 15				Face West.	s.	1° 10′		
			West.	Ä.		175° 0′				East.	, i	4° 40′	-	
· .	ΓH.	WEST.	Face West.	S.			52	Ĥ.	EAST.	Face East.	s.		22	-
)rp. Needle A. 2.	ID NOR	CIRCLE WEST.	East.	N.		176° 45′	175	TD SOUT	CIRCLE EAST.	West.	Ŋ.	6° 5′	ທ	47/
\vdash	KED EN		Face East.	S.			17	KED EN	-	Face West.	S.		11	o: + 4°
MAGNETIC ay 7, 1866.	POLARITY OF MARKED END NORTH.		Face West.	z.		4° 20′	4	POLARITY OF MARKED END SOUTH.		Face East.	'n.	175° 35′	7.5	Resulting Dip: + 4° 47′
M Payta, May	LARITY	EAST.	Face	S.			25	ARITY	WEST.	Face	S.		48	Re
14	PO.	CIRCLE EAST.	Face East.	z.		4° 30′	4	POI	CIRCLE WEST.	West.	Ä	174° 0′	174	
			Face	S.						Face West.	S,			

A. 1.			Vest.	Ŋ.						East.	z				-
Needle A. 1.	H.	WEST.	Face West.	S.	144° 25′		25	Н.	EAST.	Face East.	v.	28° 50′		15	
1866.	D NORT	CIRCLE WEST.	last.	N.			144	D SOUT	CIRCLE EAST.	Vest.	z			58	5,
IC DIP. May 14,	KED EN		Face East.	S.	144° 25′		61	KED EN		Face West.	S.	27° 40′		46	
MAGNETIC DIP. ma Bay, May 1	OF MAR		Vest.	ż			36	OF MAR		East.	z.			27	Resulting Dip: +32°
MAGNETIC DIP. Flamenco Island, Panama Bay, May 14, 1866.	POLARITY OF MARKED END NORTH	EAST.	Face West.	s,	36° 40′		30	POLARITY OF MARKED END SOUTH.	WEST.	Face East.	s.	152° 10′		43	Resi
ıco Islan	POI	CIRCLE EAST.	East.	ż	·		36	POI	CIRCLE WEST.	West.	z			152	
Flamer		14.	Face East.	s.	36° 20′					Face West.	s,	153° 15'			
A. 2.			West.	Ä	148° 10′	12				East.	N.	32° 0′	15		
Needle A.	CH.	WEST.	Face West.	S.	148° 15′ 148° 10′	148	28	Ĥ.	EAST.	Face East.	s.	32° 30′	32	22	
, 1866.	ID NORT	CIRCLE WEST.	East.	Ä.	50' 148° 40'	45	148	F MARKED END SOUTH.	CIRCLE EAST.	West.	N.	32° 10'	28	32	48/
ric Dip. May 14	KED EN		Face East.	s,	148° 50′	148	42	KED EN		Face West.	s,	32° 45′	32	54	o: + 31°
MAGNETIC DIP. Flamenco Island, Panama Bay, May 14, 1866.	POLARITY OF MARKED END NORTH.		Face West.	z	31° 0′	18	31	OF MAR		Face East.	N.	30' 148° 20'	25	31	Resulting Dip: + 31° 48'
ıd, Pana	LARITY	EAST.	Face	ν,	31° 35′	31	5. 2.	POLARITY O	CIRCLE WEST.	Face	s.	148° 30′	148	34	Res
nco Islaı	PO]	CIRCLE EAST.	Face East,	z.	32° 10′	25	31	PO	CIRCLE	Face West.	×.	148° 45′ 148° 40′ 148°	42	148	
Flame		·	Face	တံ	32° 40′	32				Face	s.	148° 45′	148		

	, ,		ı	1	1	1 %	1		b	1	Í	1	I	۱ ک	1		(1
			West.	Ä		137° 20	25				East.	Ä		36° 50'	25		
i.	ľH.	WEST.	Face West.	S.		137° 30′ 137° 20′	137	31	ĬĬ.	EAST.	Face East.	s.		37° 20'	37	47	
Needle A. 1.	POLARITY OF MARKED END NORTH.	CIRCLE WEST.	East.	z			37	137	POLARITY OF MARKED END SOUTH	CIRCLE EAST.	West.	ż		36° 15′	30	36	49/
El	KED EN		Face East.	s,		137° 40′ 137° 35′	137	50	KED EN		Face West.	\sigma_i		36° 45′	36	31	o: + 39°
Magnetic Die. Acapulco, May 30, 1866.	OF MAR		West.	z.		43° 15′	28	45	OF MAR		Face East.	ż		143° 15′	18	36	Resulting Dip: + 39° 49′
pulco, M	ARITY	EAST.	Face West.	S.		43° 40′	43	12	CARITY	WEST.	Face	s.		143° 20′	143	45	Res
Aca	POI	CIRCLE EAST.	East.	Ä		42° 40′	55	43	POI	CIRCLE WEST.	Face West.	ż		144° 10′	12	143	
			Face East.	s.		43° 10′	42				Face	s.		144° 15' 144° 10' 143° 20' 143° 15'	144		
			West.	z	-	140° 10'	10				East.	ż		38° 40′	50		
.2.	.H.	WEST.	Face West.	S.		45' 140° 10' 140°	140	56	H.	EAST.	Face East.	S.		39° 0′	38	28	
Needle A. 2.	MARKED END NORTH	CIRCLE WEST.	East.	ż		40' 139° 45'	42	139	MARKED END SOUTH.	CIRCLE EAST.	West.	ż		39° 50′	5	39	58/
ric Dip. 866. N	KED EN		Face East.	S.		139° 40′	139	15	KED EN		Face West.	v.		40° 20′	40	64	o: + 30°
Magnetic Dip lay 30, 1866.			West.	z.		39° 30′	50	40	11		East.	ż		140° 20′	28	39	Resulting Dip: + 39°
MACAPUICO, MAY	POLARITY OF	EAST.	Face West.	S.		40° 10'	39	25	POLARITY OF	WEST.	Face East.	s.		140° 35′ 140	140	7	Res
Acal	POI	CIRCLE EAST.	East.	ż		40° 45′	0	40	POI	CIRCLE WEST.	West.	z.		139° 45′	47	140	
			Face East.	s;		41° 15'	41				Face West.	S.		139° 50′	139		:

Magdalena Bay, June 9, 1866. Needle A. 1.	POLARITY CF MARKED END NORTH.	CIRCLE EAST.	Face West. Face East. Face West.	S S S	o' 52° 15' 51° 45' 129° 15' 129° 10' 128° 45' 128° 45'	52 0 129 12 128 45	51 43 128 58 51 23	POLARITY OF MARKED END SOUTH.	CIRCLE WEST. CIRCLE EAST,	Face East. Face West. Face East.	S. N. S. N. S. N.	50' 134° 30' 134° 30' 46° 0' 45° 40' 46° 30' 46° 0'	134 30 45 50 46 15	3 46 2 45 39 46 2 45 39 45 39 46 3 39 46 3 39 46 3	Resulting Dip: + 48° 41'
Mag	. eu	CIRC	Face East.	S.	51° 40′ 51° 10′	51 25	10,	d.	CIRC	Face West.	S. N.	135° 0′ 134° 50	134 55	134	
A. 2.	Н.	WEST.	Face West.	S. N.	132° 15' 132° 15'	132 15	29	H	EAST.	Face East	S. N.	48° 50′ 48° 30′	48 40	58	
AGNETIC DIP. June 9, 1866. Needle A.	POLARITY OF MARKED END NORTH.	CIRCLE WEST.	Face East.	S.	130° 40′ 130° 45′ 1	130 42	131	F MARKED END SOUTH	CIRCLE EAST.	Face West.	S. N.	45° 30′ 45° 0′	45 IS	46	: + 48° 22′
Magdalena Bay, June 9, 1866.	ARITY OF MAR	EAST.	Face West.	S. N.	49° 0′ 48° 30′	48 45	30 49	POLARITY OF MAR	WEST.	Face East.	S.	132° 0' 132° 10'	132 5	32 47	Resulting Dip: +48° 22′
Magda	POL	CIRCLE EAST.	Face East.	S. N.	50° 30′ 50° 0′	50 15	49	POL	CIRCLE WEST.	Face West.	S.	131° 0' 131° 0'	131 0	131	

			West.	, i	1200	20				East.	N.	56° 0'	10		
A. I.	H.	WEST.	Face West.	s,	120° 20′	120	36	Н.	EAST.	Face East.	s,	56° 20′	56	7	
Needle A. 1.	D NORT	CIRCLE WEST.	last.	z.	0/ 1200 45/ 1	52	120	D SOUT	CIRCLE EAST.	Vest.	ż	55° 50′	ro.	56	51,
rc Dre. , 1866.	KED EN		Face East.	s.	121° 0′ 1	120	45	KED EN		Face West.	, vi	56° 20′	56	44	
MAGNETIC DIP.	OF MARI		Vest.	N.	 0,009	15	59)F MARI	,	Cast.	ż	30	30	52	Resulting Dip: +57°
MAGNETIC DIP. San Diego Bay, June 15, 1866.	POLARITY OF MARKED END NORTH	EAST.	Face West.	S.	60° 30′	09	9	POLARITY OF MARKED END SOUTH	WEST.	Face East.	s.	124° 30′ 124°	124	38	Resu
San Die	POL	CIRCLE EAST.	sast.	Ŋ.	 59° 45′	58	. 09	POL	CIRCLE WEST.	Vest.	Ä	50' 124° 45' 1	47	124	
·	-		Face East.	S.	 00° 10′	59		-		Face West.	S.	124° 50'	124		
			Vest.	ż	122° 40′	04				fast.	Ŋ.	 57° 40′	57		
A. 2.	Н.	WEST.	Face West.	Š.	 122° 40′ 122°	122	81	H.	EAST.	Face East.	S.	58° 15′	57	∞	
Needle A.	ID NORT	CIRCLE WEST.	East.	ż	0' 121° 55'	57	122	TD SOUT	CIRCLE EAST.	West.	ż	58° 10'	20	28	56/
AGNETIC DIP. une 15, 1866.	MARKED END NORTH.		Face East.	Š	122° 0′	121	6	MARKED END SOUTH.		Face West.	·S.	58° 30′	58	43	
	OF MAR		West.	z.	57° 45′	0	58			East.	z	123° 0′	0	57	Resulting Dip: +57°
M San Diego Bay, J	POLARITY OF	EAST.	Face West.	s.	58° 15'	58	36	POLARITY OF	WEST.	Face East.	S.	123° 0′	123	42	Res
San Di	POI	CIRCLE EAST.	East.	'n.	59° 0′	12	58	POI	CIRCLE WEST.	West.	N.	30' 122° 20'	25	122	
			Face East.	s.	59° 25′	59			•	Face West.	S.	122° 30′	122	:	

Needle A. 1.	.;	EST.	Face West.	S.		116° 20′ 116° 10′	116 15	25		AST.	Face East.	S. N.	61° 10′ 60° 4 0′	60 55	56	
	POLARITY OF MARKED END NORTH.	CIRCLE WEST.	East.	, z			35	116, 2	POLARITY OF MARKED END SOUTH.	CIRCLE EAST.	West.	N.	60° 45′ (57	60,5	
ric Dip. 26, 1860	KED EN		Face East.	S.		116° 40′	911	45	KED EN		Face West.	s,	/OI ₀ 19	09	30	+ 62° 13
MAGNETIC DIP. San Francisco Bay, June 26, 1866.	OF MAR		West.	ä		64° 40′ 64° 15′ 116° 40′ 116° 30′	27	63	OF MAR		Face East.	'n.	0/ 120° 0′	0	9	Resulting Dip: +62° 13'
cisco Ba	ARITY	EAST.	Face West.	တ		64° 40′	64	54	CARITY	CIRCLE WEST.	Face	S.	 	120	56	Result
San Frar	POJ	CIRCLE EAST.	Face East.	Ŋ.		63° 40′	70	63	PO]	CIRCLE	Face West.	Ä	o' 119° 45′ 120°	52	611	
			Face	S.		63° 0′	63		· commenter of		Face	s,	1200	611		
			West.	Ŋ.	,	117° 30′	35				East.	Ä.	62° 40′	50		
Needle A. 2.	.н.	WEST.	Face West.	s.		117° 40′ 117° 30′	111	25	Н.	EAST.	Face East.	s,	63° 0′	62	32	
	POLARITY OF MARKED END NORTH	CIRCLE WEST.	East.	z.			15	117	OF MARKED END SOUTH	CIRCLE EAST.	Face West.	Ŋ.	62° 0′	15	, 29	
пс DiP. 26, 1860	KED EN		Face East.	o,		62° 20′ 117° 20′ 117° 10′	117	46	KED EN		Face	s,	62° 30′	62	91	+ 62° 31′
MAGNETIC DIP. 1y, June 26, 186	OF MAR		West.	Ŋ.		62° 20′	35	62	OF MAR		East.	'n.	117° 30′	40	62	ing Dip: + 62°
icisco Ba	ARITY	EAST.	Face W	s.		62° 50′	29	57	POLARITY	WEST.	Face E	s,	117° 50′	111	0	Resultir
MAGNETIC DIP. San Francisco Bay, June 26, 1866.	POI	CIRCLE EAST.	East.	Z.		63° 10′	50	62	POI	CIRCLE WEST.	West.	Ä.		20	118	
02			Face East.	S.		63° 30′	63.				Face West.	တံ	118° 20′ 118° 20′	118		

le A. 2.			Vest.	'n.		107° 45'	55				East.	'n.	71° 45'	53		
5. Need	Ĥ.	WEST.	Face West.	S.		108° 5′	101	33	H.	EAST.	Face East.	S.	72° 0′	71	∞	
7. 1, 1860	D NORT	CIRCLE WEST.	Jast.	Ä.	ī	107° 0′	oi	LO1	D SOUT	CIRCLE EAST.	Vest.	Ä.	72° 20'	22	72	13/
rc Dir. gton, Nov	POLARITY OF MARKED END NORTH	-	Face East.	·S.		107° 20′	101	24	POLARITY OF MARKED END SOUTH.		Face West.	S.	 72° 25'	72	8	Resulting Dip: +72° 13'
MAGNETIC DIP. Washington, No	OF MAR		Nest.	ż		71° 15′	23	72	OF MAR		East.	ÿ	50' 108° 40'	45	72	ulting Dip
rvatory,	ARITY	EAST.	Face West.	ķ		71° 30′	11	22	ARITY	WEST.	Face East.	s.	108° 50'	108	"	Res
val Obse	POI	CIRCLE EAST.	East.	ż		73° 15′	22	72	POL	CIRCLE WEST.	West.	ż	35' 107° 5'	20	108	
Magnetic Dip. U.S. Naval Observatory, Washington, Nov. 1, 1866. Needle A. 2.			Face East.	s.		73° 30′	73				Face West.	s,	107° 35′	101		
			Vest.	, z		107° 0′	13	-			East.	ż	70° 45′	55		
6. Need	H.	WEST.	Face West.	s,		107° 45′ 107° 30′ 107° 25′ 107°	101	25	Н.	EAST.	Face East.	s,	71° 5′	70	61	
7. 1, 186	MARKED END NORTH	CIRCLE WEST.	East.	ż		107° 30′	37	L 01	MARKED END SOUTH.	CIRCLE EAST.	Vest.	ż	710 0/	10	71	51,
rc Dre.	KED EN		Face East.	s,		107° 45′	101	46	KED EN		Face West.	s,	71° 20′	11	50	
Magnetic Dip Washington, N			West.	z.		73° 5′	10	72	OF MAR		East.	ż	109° 20′	33	70	Resulting Dip: +71°
rvatory,	POLARITY OF	EAST.	Face West.	s,		73° 15'	73	57	POLARITY	WEST.	Face East.	s,	109° 45′	601	23	Res
val Obse	POI	CIRCLE EAST.	East.	ż	-	72° 45′	45	72	POI	CIRCLE WEST.	Nest.	ż	109° 0′	12	601	
MAGNETIC DIP. U.S. Naval Observatory, Washington, Nov. 1, 1866. Needle A. 1.			Face East.	s.		72° 45'	72				Face West.	s,	109° 25′	601		

Magneric Dre. U. S. Naval Observatory, Washington, May 6, 1867. Needle A. 2.	POLARITY OF MARKED END NORTH.	CIRCLE BAST.	Face West. Face East. Face West.	N. S. N. S. N. S. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. N. S. N. S. N. N. S.	20/ 71° 50′ 107° 40′ 107° 15′ 108° 50′ 108° 40′	72 5 107 28 108 45 72 23	POLARITY OF MARKED END SOUTH.	CRCLE EAST.	Face East. Face West. Face East.	N. S. N. S. N.	0/ 108° 30′ 72° 30′ 72° 0′ 72° 0′ 71° 40′	108 45 72 15 72	71 46 72 2	Resulting Dip: +72° 4′	
			Face East,	S. N. N.	73° 45′ 73° 30′ 72°	73 38	72 52	POLAR	CIRCLE WEST.	Face West.	S. N. S.	108° 30′ 108° 0′ 109°	108 15	108 30	
MAGNETIC DIP. U. S. Naval Observatory, Washington, May 6, 1867. Needle A. 1.	POLARITY OF MARKED END NORTH.	CIRCLE WEST.	Face East. Face West.	S. N.	107° 10′ 106° 50′	15		H.	CIRCLE EAST.	Face East.	S. N.	71° 10′ 70° 50′	0 14	6	
				S.	107° 45′ 107° 15′	107 30	1	POLARITY OF MARKED END SOUTH		Face West.	S. N.	71° 25' 71° 10'	71 18	71	»: + 71° 55′
		CIRCLE EAST.	Face West.	S. N.	73° 35′ 73° 15′	73 25			CIRCLE WEST.	Face East.	S. N.	109° 40′ 109° 15′	109 28	36 70	Resulting Dip: +71°
			Face East.	S.	73° 0′ 72° 50′	72 55	73			Face West.	S. N.	110° 0′ 109° 30′	109 45	601	

	Philadelp	ohia, O	ctober 24, 18	B 65.	Gosport, October 30, 1865.				
No.	Time P. M.	No.	Time P. M.	Time of 156 vibrations.	No.	Time.	No.	Time.	Time of 150 vibrations.
0 10 20 30 40 50	3 ^h 27 ^m 5 ^s .6 3 28 17.2 3 29 29.6 3 30 42.0 3 31 54.4 3 33 6.4	156 166 176 186 196 206	3 ^h 45 ^m 50 ^s .8 3 47 2.0 3 48 15.2 3 49 27.2 3 50 39.2 3 51 51.6	18 ^m 45 ^s .2 18 44.8 18 45.6 18 45.2 18 44.8 18 45.2	0 10 20 30 40 50	12 ^h 17 ^m 5 ^s .1 12 18 12.8 12 19 20.7 12 20 28.5 12 21 36.1 12 22 44.0	150 160 170 180 190 200	12 ^h 33 ^m 58 ^s .8 12 35 7.8 12 36 16.4 12 37 24.0 12 38 29.6 12 39 39.2	16 ^m 53 ^s .7 16 55.0 16 55.7 16 55.5 16 53.5 16 55.2
	Mean 18 45.13 Extreme scale readings, At beginning 5.0 — 150.0 At end 23.0 — 86.0 Coefficient of torsion $v = 8.12$ div. Temperature $60^{\circ}.7$ Time of one vibration . $7^{\circ}.212$						ing	· · · · 70. · · · 77· · · 60°.0	,
	Gosport, October 28, 1865.					St. Thoma	ıs, Nov	vember 13, 18	365.
No.	No. Time P. M. No. Time P. M. Time of 150 vibrations.					Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	3 ^h 43 ^m 6 ^s .4, 3 44 14.4 3 45 22.0 3 46 29.6 3 47 37.2 3 48 45.6	150 160 170 180 190 200	4 ^h 0 ^m 3 ^s 6 4 I II.6 4 2 I9.5 4 3 27.2 4 4 34.9 4 5 42.8	16 ^m 57 ^s .2 16 57.2 16 57.5 16 57.6 16 57.7 16 57.2	0 10 20 30 40 50	2 ^h 23 ^m 6 ^s 2 2 24 3.2 2 24 59.8 2 25 56.9 2 26 2 27 49.0	150 160 170 180 190 200	2h 37m 18s.6 2 38 15.4 2 39 12.2 2 40 8.4 2 41 5.7 2 42 2.8	14 ^m 12 ^s .4 14 12.2 14 12.4 14 11.5 14 14 13.8
	At end . Coefficient of Temperature	ing	Mean	2 — 88.8		At end . Coefficient o Temperature	ing	62.	•
 	_		ober 28, 1869 on magnet.	j.		St. Thoma	ıs, Nov	zember 16, 1	865.
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	4 ^h 39 ^m 7 ^s ·9 4 40 35·1 4 42 2·3 4 43 29·3 4 44 56·4 4 46 23·7	150 160 170 180 190 200	5 ^h 0 ^m 55 ^s .0 5 2 21.7 5 3 48.8 5 5 16.0 5 6 43.2 5 8 10.1	21 ^m 47 ^s . I 21 46.6 21 46.5 21 46.7 21 46.8 21 46.4	0 10 20 30 40 50	12 ^h 13 ^m 3 ^s .4 12 14 0.4 12 14 57.2 12 15 54.3 12 16 50.6 12 17 47.8	150 160 170 180 190 200	12 ^h 27 ^m 15 ^s .1 12 28 12.0 12 29 8.5 12 30 5.4 12 31 2.2 12 31 59.0	14 ^m 11 ^s .7 14 11.6 14 11.3 14 11.1 14 11.6 14 11.2
	At end . Coefficient o Temperature	91.	0 — 69.0		Coefficient o Temperature	ing f torsion	59. $67.$ $v = 4.25 div.$	14 11.42 8 — 98.8 2 — 89.5	

St.	Thomas,	November	16, 1865.
	Inertia	ring on magn	et.

Γime P. M.	No.	Time P. M.	Time of vibratio
h 35 ^m 8 ^s .3	150 160	II ^h 49 ^m 36 ^s .0	14 ^m 27

0 Ih om 6s.4 150 Ih 18m 20s.5 18m 14s 10 I I 18.6 160 I 19 34.1 18 15. 20 I 2 31.8 170 I 20 46.6 18 14. 30 I 3 45.1 180 I 21 59.8 18 14. 40 I 4 58.1 190 I 23 12.9 18 14. 50 I 6 11.4 200 I 24 26.2 18 14. Mean Mean 18 14.	5 8 7 8 8

Extreme scale readings,

61.8 **—** 98.0 At beginning . . At end Coefficient of torsion . 63.5 - 96.2. v = 5.22 div. . $86^{\circ}.0$

Temperature . . . Time of one vibration 78.299 Ceara, December 13, 1865.

No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	
0 10 20 30 40 50	II ^h 35 ^m 8 ^s ·3 II 36 6.2 II 37 4.2 II 38 I.0 II 38 59.1 II 39 57.0	150 160 170 180 190 200	II ^h 49 ^m 36 ^s .0 II 50 34.2 II 51 33.4 II 52 31.2 II 53 28.2 II 54 25.6	14 ^m 27 ^s ·7 14 28.0 14 29.2 14 30.2 14 29.1 14 28.6	

Extreme scale readings,
At beginning
At end
Coefficient of torsion

Salute Islands, November 28, 1865.

Ceara, December 13, 1865.

Inertia ring on magnet.

No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.
0	9h 43m 3s.6	150	9h 57m 17s.7	14 ^m 14 ^s .1	0
10	9 44 0.4	160	9 58 14.2	14 13.8	10
20	9 44 57.4	170	9 59 11.4	14 14.0	20
30	9 45 54.2	180	10 o 8.6	14 14.4	30
40	9 46 51.3	190	10 I 5.6	14 14.3	40
50	9 47 48.3	200	10 2 2.5	14 14.2	50
			Mean	14 14.13	1 1

Extreme scale readings,

57.5 - 99.8 71.4 - 86.0 v = 3.72 div. $95^{\circ}.5$ $5^{\circ}.694$ At beginning . . . At end Coefficient of torsion Temperature . . . Time of one vibration

No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	
0 10 20 30 40 50	12 ^h 23 ^m 14 ^s .1 12 24 28.8 12 25 43.8 12 26 59.0 12 28 13.6 12 29 28.2	150 160 170 180 190 200	12 ^h 41 ^m 51 ^s .5 12 43 6.1 12 44 20.0 12 45 33.6 12 46 49.2 12 48 3.8	18 ^m 37 ^s .4 18 37.3 18 36.2 18 34.6 18 35.6 18 35.6	
			Mean	18 36.12	

Extreme scale readings,

104.8 — 58.8 100.0 — 62.2 At beginning . . . At end Coefficient of torsion . v = 7.00 div.. 89°.5 Temperature . . . Time of one vibration .

Pernambuco, December 23, 1865.

Time of 150 vibrations.

14^m 37^s.6 14 36.9 14 37.1 14 37.0 14 37.1 14 36.8

14 37.08

Salute Islands, November 28, 1865.

Inertia ring on magnet.

No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.
0 10 20 30 40 50	IIh 3Im 98.5 II 32 22.5 II 33 35.6 II 34 48.7 II 36 I.4 II 37 I4.8	150 160 170 180 190 200	IIh 49 ^m 25 ^s .I II 50 38.6 II 51 51.6 II 53 4.7 II 54 17.8 II 55 30.3	18 ^m 15 ^s .6 18 16.1 18 16.0 18 16.0 18 16.4 18 15.5	0 10 20 30 40 50	6h 50m 16s.8 6 51 15.7 6 52 14.0 6 53 12.6 6 54 10.9 6 55 9.6	150 160 170 180 190 200	7 ^h 4 ^m 54 ^s .4 7 5 52.6 7 6 51.1 7 7 49.6 7 8 48.0 7 9 46.4
			Mean	18 15.93				Mean

Extreme scale readings,

. 54.8 - 105.3. 65.4 - 94.0. v = 5.65 div. . $91^{\circ}.0$. $7^{\circ}.306$ Coefficient of torsion Temperature Time of one vibration .

Extreme scale readings,

. 46.0 - 115.0. 62.0 - 99.0. v = 4.27 div. . $90^{\circ}.5$. $5^{\circ}.847$ At beginning
At end
Coefficient of torsion
Temperature
Time of one vibration

		H	ORIZONTAL IN	TENSITY. C	BSER	vations of V	IBRAT	IONS.	
	Bahia,	Dece	mbe r 27, 186 5	; .		Rio Jan	eiro,	January 9, 18	66.
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.
0 10 20 30 40 50	7 ^h 14 ^m 5 ^s .6 7 15 4.9 7 16 4.1 7 17 3.6 7 18 2.9 7 19 2.2	150 160 170 180 190 200	7h 28m 55s.6 7 29 55.0 7 30 54.4 7 31 53.6 7 32 53.0 7 33 52.2	14 ^m 50 ^s .0 14 50.1 14 50.3 14 50.0 14 50.1 14 50.0	0 10 20 30 40 50	5 ^h 30 ^m 11 ^s .8 5 31 12.4 5 32 13.0 5 33 13.4 5 34 14.0 5 35 14.6	150 160 170 180 190 200	5 ^h 45 ^m 20 ^s .2 5 46 21.0 5 47 21.5 5 48 22.1 5 49 22.6 5 50 23.2	15 ^m 8 ^s .4 15 8.6 15 8.5 15 8.7 15 8.6 15 8.6
	E-t	1:	Mean	14 50.08		T	1:	Mean	15 8.57
	Extreme scale At beginning At end Coefficient of t Temperature Time of one vi	orsion	$92.8 86.8 v = 4.85$ $v = 4.85$	68. 3		Extreme scale At beginning At end Temperature Time of one vi	g	62.2— 69.2— 80°.5	98. 1 91. 2
			mber 27, 1865 g on magnet.			Monte Vi	deo,	January 18, 18	366.
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	8h 3m 4 ⁸ ·2 8 4 20.8 8 5 37·0 8 6 53·4 8 8 9.8 8 9 26.0	150 160 170 180 190 200	8h 22m 9s.4 8 23 25.8 8 24 42.2 8 25 58.6 8 27 14.8 8 28 30.8	19 ^m 5 ⁸ .2 19 5.0 19 5.2 19 5.2 19 5.0 19 4.8	0 10 20 30 40 50	I ^h 27 ^m 8 ^s .2 I 28 8.2 I 29 8.3 I 30 8.2 I 31 8.5 I 32 8.5	150 160 170 180 190 200	I ^h 42 ^m 9 ^s ·4 I 43 9·5 I 44 9·7 I 45 9·7 I 46 9·7 I 47 9·9	15 ^m 1 ^s .2 15 1.3 15 1.4 15 1.5 15 1.2 15 1.4
Extreme scale readings, At beginning $57.9 - 100.4$ At end $67.9 - 89.2$ Coefficient of torsion . $v = 6.70$ div. Temperature $97^{\circ}.5$ Time of one vibration . $7^{s}.634$						At end	corsion	$\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $	98. 3 90. 2
	Rio Jan	eiro,	January 6, 186	56.				January 18, 18 ng on magnet.	366.
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 4 50	3 ^h 21 ^m 6 ^s .8 3 22 5.8 3 23 6.6 3 24 7.0 3 25 7.7 3 26 8.1	150 160 170 180 190 200	3 ^h 36 ^m 12 ^s .5 3 37 12.5 3 38 13.3 3 39 13.6 3 40 14.5 3 41 15.0	15 ^m 5 ⁸ .7 15 6.7 15 6.7 15 6.6 15 6.8 15 6.9	0 10 20 30 40 50	2 ^h 10 ^m 3 ^s .2 2 11 20.5 2 12 37.8 2 13 55.1 2 15 12.4 2 16 29.8	150 160 170 180 190 200	2h 29 ^m 22 ^s .9 2 30 40.1 2 3I 57.3 2 33 14.6 2 34 3I.8 2 35 49.3	19 ^m 19 ^s .7 19 19.6 19 19.5 19 19.5 19 19.4 19 19.5
	At end Coefficient of to Temperature .	orsion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96. 3 89. 2		At end .	corsion	$\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $	101.0 91.4

Horizontal Intensity. Observations of Vibrations.

	Monte V	ideo,	January 18, 1	866.	Valparaiso, March 2, 1866.				5. ·
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	2 ^h 55 ^m 9 ^s ·3 2 56 9.2 2 57 9.4 2 58 9.4 2 59 9.4 3 0 9.8	150 160 170 180 190 200	3 ^h 10 ^m 11 ^s .4 3 11 11.4 3 12 11.5 3 13 11.9 3 14 12.1 3 15 12.1	15 ^m 2 ⁸ . I 15 2. 2 15 2 I 15 2. 5 15 2. 7 15 2. 3	0 10 20 30 40 50	5 ^h 0 ^m 3 ^s .4 5 1 2.2 5 2 0.6 5 2 59.4 5 3 57.4 5 4 55.7	150 160 170 180 190 200	5 ^h 14 ^m 41 ^s .0 5 15 39.3 5 16 37.8 5 17 36.6 5 18 35.1 5 19 33.7	14 ^m 37 ^s .6 14 37.1 14 37.2 14 37.2 14 37.7 14 38.0
	Extreme scale At beginning At end Temperature Time of one v	g	58.0 — 65.8 — 	100.2		Extreme scale At beginnin At end Coefficient of Temperature Time of one v	g torsion	99.8 — 97.8 — $v = 6.1$ $v = 6.1$	57.8
	Monte V	ideo,	January 19, 1	866.		Valpara	aiso, I	March 19, 186	6.
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	3 ^h 3 ^m 8 ^s .8 3 4 8.9 3 5 9.3 3 6 9.4 3 7 9.7 3 8 10.1	150 160 170 180 190 200	3h 18m 11s.8 3 19 12.2 3 20 12.6 3 21 12.6 3 22 13.0 3 23 13.3	15 ^m 3 ^s .0 15 3.3 15 3.3 15 3.2 15 3.3 15 3.2	0 10 20 30 40 50	I ^h 42 ^m 6 ^s .6 I 43 5.6 I 44 4.2 I 45 3.0 I 46 1.9 I 47 0.8	150 160 170 180 190 200	1 ^h 56 ^m 50 ^s .2 1 57 48.6 1 58 47.7 1 59 46.3 2 0 44.9 2 1 44.1	14 ^m 43 ^s .6 14 43.0 14 43.5 14 43.3 14 43.0 14 43.3
	Extreme scale At beginning At end Temperature Time of one vi	56.0— 66.6— 89°.5			Extreme scale At beginning At end Coefficient of t Temperature Time of one v	orsion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95. 8 96.8	
	Sandy Po	oint, I	February 7, 18	366.				March 19, 186 g on magnet.	6.
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	II ^h 37 ^m 4 ^s ·5 II 38 4·5 II 39 3·7 II 40 4·I II 4I 3·3 II 42 2·5	150 160 170 180 190 200	11h 51m 58s.4 11 52 58.4 11 53 58.2 11 54 58.0 11 55 57.8 11 56 57.8	14 ^m 53 ^s .9 14 53.9 14 54.5 14 53.9 14 54.5 14 55.3	0 10 20 30 40 50	2 ^h 32 ^m 5 ^s .4 2 33 21.2 2 34 36.8 2 35 52.5 2 37 8.2 2 38 23.9	150 160 170 180 190 200	2 ^h 51 ^m 0 ^s .4 2 52 15.8 2 53 30.8 2 54 47.2 2 56 1.2 2 57 15.8	18 ^m 55 ^s .0 18 54.6 18 54.0 18 54.7 18 53.0 18 51.9
	Extreme scale At beginning At end Coefficient of t Temperature Time of one vi Magnet rendered	orsion ibration	$\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $	100.0 97.5 5 div.		Extreme scale: At beginning At end Coefficient of tremperature Time of one vi	orsion	$\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $	84.0

		ŀ	IORIZONTAL IN	TENSITY. ()BSEI	RVATIONS OF $\$	IBRA'	rions.	
	Valpara	aiso, I	March 29, 186	٥.		Valpa	raiso,	April 11, 186	6.
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	12 ^h 37 ^m 9 ^s .0 12 38 7.4 12 39 5.7 12 40 4.3 12 41 3.4 12 42 2.0	150 160 170 180 190 200	12 ^h 51 ^m 47 ^s .4 12 52 45.8 12 53 46.2 12 54 44.2 12 55 40.4 12 56 —	14 ^m 38 ^s .4 14 38.4 14 40.5 14 39.9 14 37.0	0 10 20 30 40 50	12 ^h 15 ^m 14 ^s .0 12 16 13.0 12 17 11.8 12 18 10.4 12 19 9.0 12 20 7.8	150 160 170 180 190 200	12 ^h 29 ^m 56 ^s .6 12 30 55.4 12 31 54.2 12 32 53.2 12 33 52.0 12 34 51.0	14 ^m 42 ^s .6 14 42.4 14 42.4 14 42.8 14 43.0 14 43.2
M caus	Temperature Time of one v	61.3— 60.0	97.2		Extreme scale At beginnin At end . Temperature Time of one v	g	56.0 —. 64.5 — 74°.5		
	Valpara	iso, I	March 29, 186	6.		Valpar	aiso,	April 11, 1866) .
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	Ih 28m 7s.2 I 29 5.2 I 30 6.8 I 31 2.4 I 32 0.6 I 32 58.6	150 160 170 180 190 200	I ^h 42 ^m 49 ⁸ .0 I 43 48.0 I 44 46.9 I 45 45.2 I 46 43.8 I 47 43.0	14 ^m 41 ^s .8 14 42.8 14 40.1 14 42.8 14 43.2 14 44.4	0 10 20 30 40 50	12 ^h 37 ^m 12 ^s .2 12 38 11.0 12 39 9.8 12 40 8.6 12 41 7.4 12 42 6.4	150 160 170 180 190 200	12 ^h 51 ^m 55 ^s .0 12 52 54.0 12 53 52.8 12 54 51.8 12 55 50.6 12 56 49.4	14 ^m 42 ^s .8 14 43.0 14 43.0 14 43.2 14 43.2 14 43.2
	Extreme scale readings, At beginning 63.0 — 98.8 At end 65.5 — 96.0 Coefficient of torsion v = 3.80 div. Temperature					Extreme scale At béginning At end Temperature Time of one v	g	64.5— 70.0— 81°.0	91.0
	Valpar	aiso, .	April 7, 1866.			_		April 11, 1866 ng on magnet.	•
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.
0 10 20 30 40 50	10 ^h 2 ^m 15 ^s .6 10 3 14.2 10 4 13.2 10 5 11.8 10 6 11.2 10 7 9.6	150 160 170 180 190 200	10 ^h 16 ^m 55 ^s .0 10 17 54.2 10 18 53.6 10 19 53.0 10 20 52.4 10 21 51.2	14 ^m 39 ^s .4 14 40.0 14 40.4 14 41.2 14 41.2 14 41.6	0 10 20 30 40 50	I ^h 8 ^m 6 ^s .6 I 9 22.2 I 10 37.8 I II 53.7 I 13 9.4 I 14 25.0	150 160 170 180 190 200	I ^h 27 ^m 2 ⁸ .4 I 28 I8.1 I 29 33.8 I 30 49.4 I 32 5.2 I 33 21.0	18 ^m 55 ^s .8 18 55.9 18 56.0 18 55.7 18 55.8 18 56.0
•	Extreme scale At beginning At end oefficient of t Temperature Time of one vi	orsion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106.5		Extreme scale At beginning At end Coefficient of t Temperature Time of one v	orsion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.6

Horizontal Intensity. Observations of Vibrations.

	Valpar	raiso, <i>P</i>	April 13, 186	5.	Flamenco Island, Panama Bay, May 14, 1866.				
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.
0 10 20 30 40 50	2 ^h 45 ^m 23 ^s .6 2 46 21.8 2 47 21.2 2 48 19.6 2 49 19.0 2 50 17.8	150 160 170 180 190 200	3 ^h 0 ^m 6 ^s ·2 3 I 4.6 3 2 3.6 3 3 2.4 3 4 0.6 3 4 58.6	14 ^m 42 ^s .6 14 42.8 14 42.4 14 42.8 14 41.6 14 40.8	0 10 20 30 40 50	8h 50m i1s.4 8 51 5.1 8 51 59.0 8 52 52.8 8 53 46.5 8 54 40.4	150 160 170 180 190 200	9 ^h 3 ^m 37 ^s .8 9 4 31.4 9 5 25.2 9 6 19.0 9 7 13.0 9 8 6.9	13 ^m 26 ^s .4 13 26.3 13 26.2 13 26.2 13 26.5 13 26.5
	Extreme sca At beginn At end . Temperature Time of one	57.8 — 74.2 — 66°.5	14 42.17 101.5 85.2			ning	0.00000000000000000000000000000000000	2 — 101.0 6 — 92.9 2.78 div.	
	San Lorenz	d, April 26,	1866.		Acapu	ılco, M	ay 30, 1866.		
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.
0 10 20 30 40 50	12 ^h 40 ^m 6 ^s .9 12 41 3.0 12 41 59.0 12 42 55.0 12 43 51.0 12 44 47.1	150 160 170 180 190 200	12 ^h 54 ^m 7 ^s ·4 12 55 3.0 12 55 59·2 12 56 54·9 12 57 50·8 12 58 47·4	14 ^m 0 ⁸ .5 14 0.0 14 0.2 13 59.9 13 59.8 14 0.3	0 10 20 30 40 50	8h 32 ^m 3 ^s .8 8 32 57.0 8 33 50.6 8 34 43.9 8 35 37.0 8 36 30.6	150 160 170 180 190 200	8h 45m 23s.4 8 46 17.2 8 47 10.2 8 48 3.7 8 48 57.0 8 49 50.5	13 ^m 19 ^s .6 13 20.2 13 19.6 13 19.8 13 20.0 13 19.9
	Extreme scale readings, $61.2 - 101.1$ At beginning $61.2 - 101.1$ At end $71.0 - 89.0$ Coefficient of torsion $v = 3.10$ div.Temperature $89^{\circ}.0$ Time of one vibration $5^{s}.601$						ing of torsion	· · · 57· · · · 65. · · · $v =$ · · · 89°	
	Pay	rta, Ma	y 7, 1866.		Acapulco, May 30, 1866. Inertia ring on magnet.				
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.
0 10 20 30 40 50	9 ^h 21 ^m 9 ^s .8 9 22 4.4 9 22 59.2 9 23 53.6 9 24 48.2 9 25 42.8	150 160 170 180 190 200	9 ^h 34 ^m 49 ^s ·4 9 35 44.0 9 36 38.6 9 37 33·2 9 38 27.6 9 39 22·3	13 ^m 39 ^s .6 13 39.6 13 39.4 13 39.6 13 39.4 13 39.5	0 10 20 30 40 50	9 ^h 46 ^m 9 ^s .2 9 [•] 47 17.4 9 48 26.5 9 49 35.2 9 50 43.8 9 51 52.4	150 160 170 180 190 200	10 ^h 3 ^m 19 ^s .5 10 4 28.2 10 5 37.0 10 6 45.6 10 7 54.4 10 9 3.2	17 ^m 10 ⁸ . 3 17 10. 8 17 10. 5 17 10. 4 17 10. 6 17 10. 8
	Extreme scale readings, At beginning					Extreme sca At beginn At end. Coefficient of Temperature Time of one	ing	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 — 103.7 1 — 94.8 4.55 div.

San Francisco Bay, June 26, 1866.

No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.		
0 10 20 30 40 50	I ^h 8 ^m 5 ⁸ ·4 I 8 59·4 I 9 54·5 I 10 49.0 I II 44·4 I 12 39.8 I 17 16·4	150 160 170 180 190 200	I ^h 2I ^m 52 ^s .8 I 22 49.0 I 23 44.4 I 24 40.2 I 25 36.0 I 26 30.8		0 10 20 30 40 50	3 ^h 21 ^m 22 ^s .7 3 22 24.7 3 23 27.2 3 24 30.2 3 25 32.0 3 26 34.7	150 160 170 180 190 200	3 ^h 36 ^m 57 ^s ·7 3 38 0.0 3 39 2.5 3 40 4.7 3 41 7.2 3 42 10.0	15 ^m 35 ^s .0 15 35.3 15 35.3 15 34.5 15 35.2 15 35.3		
	Extreme scale: At beginning			101.0		Extreme scale	reading	Mean	15 35.10		
	At end 69.0 — 85.0					At beginning 57.0 — 102.0					

Temperature 79°.0 Time of one vibration . . $5^{s}.527$ In this and the following observation the vibrations of

the magnet were very irregular on account of a high wind which shook the instrument.

Magdalena Bay, June 9, 1866.

U. S. N. Observatory, Washington, Nov. 1, 1866.

	water the same and									
No.	Time A. M.	No.	Time A. M.	Time of 150 vibrations.	No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	
0 10 20 30 40 50	I ^h 4I ^m 12 ⁸ .2 I 42 7.8 I 43 3.0 I 43 59.0 I 44 54.0 I 45 48.4 I 50 25.4	150 160 170 180 190 200	Ih 55 ^m 4 ^s .8 I 56 0.4 I 56 56.0 I 57 51.4 I 58 46.4 I 59 41.6		0 10 20 30 40 50	5 ^h 19 ^m 52 ⁸ .7 5 21 5.0 5 22 16.0 5 23 27.5 5 24 39.0 5 25 50.7	150 160 170 180 190 200	5h 37m 46s.5 5 38 58.0 5 40 9.2 5 41 20.7 5 42 31.8 5 43 43.0	17 ^m 53 ⁸ .8 17 53.0 17 53.2 17 53.2 17 52.8 17 52.3	
	Extreme scale	reading	gs.					Mean	17 53.05	

· 53.5 — 98.5

The following sets of observations of vibrations were made in the basement of the Observatory, where there is much iron, and are to be used only to determine the moment of inertia of the magnet.

San Diego Bay, June 15, 1866.

Set 1. November 2, 1866.

			 						
No.	Time P. M.	No.	Time P. M.	Time of 150 vibrations.	No.	Time.	No.	Time.	Time of 150 vibrations.
0 10 20 30 40 50	6h IIm 98,2 6 I2 83 6 I3 7.4 6 I4 7.0 6 I5 6.2 6 I6 5.4	150 160 170 180 190 200	6h 25 ^m 58 ^s . 2 6 26 56.6 6 27 55.8 6 28 55.4 6 29 53.8 6 30 53.0	14 ^m 49 ^s .0 14 48.3 14 48.4 14 47.6 14 47.6	0 10 20 30 40 50	5 ^h 37 ^m 31 ^s .7 5 38 41.2 5 39 50.2 5 41 0.2 5 42 9.7 5 43 19.2	150 160 170 180 190 200	5 ^h 54 ^m 53 ^s .8 5 56 3.2 5 57 12.7 5 58 21.5 5 59 31.2 6 0 40.7	17 ^m 22 ⁸ 1 17 22.0 17 22.0 17 21.3 17 21.5 17 21.5

Extreme scale readings,

Extreme scale readings,

59. I — 99.8 66.9 — 92.2 65°.5

Set	No.	2.	Novem	ber	2,	1866.
	Tr	ertia	ring on n	naon	et	

Set No.	5.	November	2,	1866.

			· · · · · · · · · · · · · · · · · · ·						
No.	Time.	No.	Time.	Time of 150 vibrations.	No.	Time.	No.	Time.	Time of 150 vibrations.
0 10 20 30 40 50	6h 17 ^m 25 ^s .3 6 18 55.2 6 20 24.2 6 21 54.0 6 23 23.7 6 24 53.0	150 160 170 180 190 200	6h 39 ^m 46 ^s .8 6 4I 16.2 6 42 45.7 6 44 I4.8 6 45 44.2 6 47 I3.7	22 ^m 21 ^s 5 22 21.0 22 21.5 22 20.8 22 20.5 22 20.7	0 10 20 30 40 50	8h 7 ^m 22 ^s .7 8 8 32.2 8 9 41.7 8 10 51.2 8 12 0.7 8 13 10.2	150 160 170 180 190 200	8h 24m 44 ⁸ .2 8 25 53.7 8 27 3.2 8 28 12.7 8 29 22.0 8 30 31.7 Mean	17 ^m 21 ^s .5 17 21.5 17 21.5 17 21.5 17 21.3 17 21.5
Extreme scale readings,						Extreme scale		· .	

At beginning . . . 58.9 - 100.8At end 68.3 - 95.5Coefficient of torsion . v = 7.58 div. Temperature . . . $68^{\circ}.5$ Time of one vibration . $8^{\circ}.940$

At beginning . . . 58.7 - 99.3At end 66.5 - 91.2Coefficient of torsion . v = 6.05 div. Temperature . . . $69^{\circ}.5$ Time of one vibration . $6^{\circ}.943$

Set No. 3. November 2, 1866.

Set No. 6. November 2, 1866.

No.	Time.	No.	Time.	Time of 150 vibrations.	No.	Time.	No.	Time.	Time of 150 vibrations.
0 10 20 30 40 50	6h 57m 41s.3 6 58 50.8 7 0 0.2 7 1 9.8 7 2 19.0 7 3 28.8	150 160 170 180 190 200	7h 15m 3s.2 7 16 12.8 7 17 22.3 7 18 31.5 7 19 41.0 7 20 50.5	17 ^m 21 ^s .9 17 22.0 17 22.1 17 21.7 17 22.0 17 21.7	0 10 20 30 40 50	12 ^h 31 ^m 58 ^s .2 12 33 9.2 12 34 21.0 12 35 32.7 12 36 44.0 12 37 55.7	150 160 170 180 190 200	12 ^h 49 ^m 51 ^s .2 12 51 2.5 12 52 14.2 12 53 25.7 12 54 37.2 12 55 48.7	17 ^m 53 ^s .0 17 53·3 17 53·2 17 53·0 17 53·2 17 53·0
			Mean	17 21 00		,		Mean	17 52.12

No.

io 20 30

40 50

Extreme scale readings,

At beginning . . . 54.2 —
At end 63.2 —
Temperature 69°.0
Time of one vibration . . 68.946 54.2 — 104.5 63.2 — 94.9 69°.0

Set No. 4. November 2, 1866.

Inertia ring on magnet.

Set No.	7.	November 2, 1866.
In	ertia	ring on magnet.

Time of 150 vibrations. Time. No. Time. 3^m 23^s·5 4 55·2 6 27·5 7 59·2 9 31·3 II 3.2 22m 59s.2 I 27 54.2 I 29 26.7 I 30 58.5 I 32 30.2 I 34 2.5 22 59.0 22 59.2 22 59.3 22 58.9 22 59.3 160 170 180 190

Mean

0 7h 26m 18s, 3 150 7h 48m 39s, 0 22m 20s, 7 10 7 27 47, 7 160 7 50 8.5 22 20.8 20 7 29 17, 2 170 7 51 37, 9 22 20.7 30 7 30 46, 7 180 7 53 7.3 22 20.6 40 7 32 16.0 190 7 54 36.7 22 20.7 50 7 33 45.5 200 7 56 5.8 22 20.3	No.	Time.	No.	Time.	Time of 150 vibrations.
	10 20 30 40	7 27 47.7 7 29 17.2 7 30 46.7 7 32 16.0	160 170 180 190	7 50 8.5 7 51 37.9 7 53 7.3	22 20.8 22 20.7 22 20.6 22 20.7

Extreme scale readings,
At beginning . . . 58.2 — 101.0
At end 68.0 — 97.2
Temperature 53°.5
Time of one vibration . . . 98.194

Horizontal Intensity. Observations of Vibrations.

Set No. 8. November 2, 1866.

No.	Time.	No.	Time.	Time of 150 vibrations.
0 10 20 30 40 50	I ^h 40 ^m 19 ⁸ .2 I 4I 30.7 I 42 42.2 I 43 53.7 I 45 5.2 I 46 16.7	150 160 170 180 190 200	1 ^h 58 ^m 11 ^s .5 1 59 23.0 2 0 34.5 2 1 46.0 2 2 57.5 2 4 9.0	17 ^m 52 ^s .3 17 52.3 17 52.3 17 52.3 17 52.3 17 52.3
			Mean	17 52.30
	Extreme scale: At beginning At end Temperature . Time of one vi		60.0 — 1 68.0 — 9 52°.5	

HORIZONTAL INTENSITY. OBSERVATIONS OF DEFLECTIONS.

Philadelphia, October 24, 1865.

Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	4 ^h 40 ^m	59.°	141 ^d .5 41.5 141.4 41.4	141 ^d .5 41.5	100d.0	
East.	E. W. E. W.	4 58	56.	40.5 141.8 40.5 141.6	40.5 141.7	101.2	, r = 2.0 ft.
Me	ans		57.5		2ud	100.60	

		Gospo	ort, Oc	tober 30	, 1865	; -				Gospo	ort, Oc	tober 30	, 1865	.
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale dings.	Alternate Means.	Diff'
West.	W. E. W. E.	11 ^h 6 ^m	59°	39 ^d .2 127.7 39.4 127.4	39 ^d ·3 127.5	88d.2	ft.	West.	W. E. W. E.	11h 30m	59°	60 ^d .5 105.7 60.0 105.4	60 ^d .2 105.5	45ª.3
East.	E. W. E. W.	11 30	59	128.0 38.8 127.3 39.1	127.6 38.9	88.7	″=2.0 f	East.	E. W. E. W.	11 48	58	105.9 60.4 105.9 60.3	105.9 60.4	45.5
Me	ans		59.0		2u ^d	88.45		M€	eans		58.5		2u ^d	45.4
,		Coefficie	nt of tor	sion, $v =$	7.82 di	v.								

Horizontal Intensity. Observations of Deflections.

	Ş	St. Thon		vember				ľ	ATTO S	St. Thon	nas, No	ovember	13, 1	865.	
Magnet	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	2 ^h 5 ^m	87°.	46 ^d .4 108.1 46.4 108.1	46 ^d .4 108.1	61ª.7	j.	West.	W. E. W. E.	2 ^h 15 ^m	85.°	61 ^d .7 93.2 61.6 93.3	61 ^d .6 93.2	31d.6	ft.
East.	E. W. E. W.	2 15	85.	108.3 46.8 108.5 46.9	108.4 46.8	61.6	r = 2.0 ft.	East.	E. W. E. W.	2 35	85.	93.2 61.6 93.3 61.5	93.2 61.5	31.7	r=2.5
M	eans	·	86.0		2u ^d	61.65		Me	ans		85.0		2u ^d	31.65	
		Coefficie	nt of tor	sion, v =	4.80 di	v.							,		
	S	St. Thom	as, No	vember	16, 18	365.			S	st. Thom	as, No	vember	16, 18	865.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	12h 10m	90.°	43 ^d .6 105.3 43.7 105.3	43 ^d .6 105.3	61ª.7	نب	West.	W. E. W. E.	12 ^h 20 ^m	87.°	58 ^d .7 90.4 58.6 90.4	58ª.6 90.4	31ª.8	ſt.
East.	E. W. E. W.	12 20	87.	105.6 43.9 105.5 43.8	105.5	61.7	$r = 2.0 \mathrm{ft}.$	East.	E. W. E. W.	12 30	87.	90.4 59.1 90.5 58.9	90.4 59.0	31.4	r = 2.5 ft.
M	eans	·	88.5		2u ^d	61.70		Mo	eans		87.0		2u ^{d,}	31.60	
	Sa	Coefficie		sion, $v = \frac{1}{2}$ Novembe				Tanana	Sa	alute Isla	ınds, N	lovembe	er 28, :	1865.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	12h 15m	91.°	41 ^d .1 102.5 41.1 102.5	41 ^d . I 102. 5	61d.4		West.	W. E. W. E.	12h 25m	90.0	56 ^d ·3 87·8 56·3 87·8	56 ^d . 3 87.8	31 ^d .5	t.
East.	E. W. E. W.	12 25	90.	102.8 41.3 102.9 41.3	102.8	61.5	r = 2.0 ft.	East.	E W. E. W.	12 35	89.	88.0 56.4 88.0 56.4	88.0 56.4	31.6	r = 2.5 ft.
	Į.				2ud	61.45	-		eans		89.5		2ud	31.55	

HORIZONTAL INTENSITY. OBSERVATIONS OF DEFLECTIONS.

end.	m:		, <u>,</u>											
1	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
W. E. W. E.	12h 15m	89°	46 ^d .7 110.5 46.5 110.6	46 ^d .6 110.6	64ª.o	i.	West.	W. E. W. E.	12 ^h 26 ^m	90°	62 ^d .7 95.6 62.8 95.2	62 ^d .8 95·4	32 ^d .6	ſt.
E. W. E. W.	12 26	90	110.7 47.2 111.0 47.4	110.8 47·3	63.5	r = 2.0 f	East.	E. W. E. W.	12 40	89	95·3 63.4 95·7 64.1	95·5 63.7	31.8	r = 2.5 ft.
ns		89.5		2u ^d	63.75		M	eans		89.5	-	2ud	32.20	
	Coefficie	nt of tor	rsion, v =	6.72 d	iv.									
P	ernamb	uco, D	ecember	r 23, 1	865.			F	Pernamb	uco, D	ecemb e :	r 23, 1	865.	
end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet'.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
W. E. W. E.	8h 35m	85°	48 ^d ·4 113·3 48·5 113·2	48 ^d ·4 113.2	64 ^d .8	ئب	West.	W. E. W. E.	8h 50m	88°	64 ^d .6 98.0 64.8 98.1	64ª.7 98.1	33 ^d ·4	ئب
E. W. E. W.	8 50	88	113.9 49.5 114.4 49.7	114.2 49.6	64.6	r=2.0 f	East.	E. W. E. W.	9 0	88	98.2 64.9 98.2 65.0	98.2 65.0	33.2	r = 2.5 ft.
ns		86.5		2ud	64.70		M	eans		88.0		2ud	33.30	
	Coefficie	nt of tor	sion, v ==	5.10 d	iv.									
	Bahia	, Dece	mber 27	, 1865	•				Bahia	, Decei	nber 27	, 1865	•	
end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternute Means.	Diff's.	Dist.
W. E. W. E.	11h 5m	98°	46 ^d .5 112.2 46.6 112.7	4 ^{6d} .5	65ª.9	ند	West.	W. E. W. E.	11h 12m	98°	62 ^d .9 96.6 62.8 96.6	62ª.8 96.6	`33 ^d .8	
E. W. E. W.	II I2	98	113.6 46.4 113.9 46.4	113.7 46.4	67.3	r=2.0 f	East.	E. W. E. W.	II 20	98	96.9 62.6 97.1 62.8	97.0 62.7	34.3	r=2.5 ft.
ns		98.0		2u ^đ	66.60		Me	eans		98.0		2u ^d	34.05	
	P Pue V. V. V. Pue Pue Pue Pue Pue Pue Pue Pue Pue Pue	Coefficie Pernamb Time. V. 8h 35m V. 2. V. 8 50 Coefficie Bahia Time. V. 11h 5m V. 2. V. 11 12	Coefficient of tone Pernambuco, Description Pernambuco, Descript	Time. Temp. $\frac{110.7}{47.2}$ $\frac{110.7}{47.2}$ $\frac{111.0}{47.4}$ $\frac{113.0}{48.5}$ $\frac{113.9}{49.5}$ $\frac{114.4}{49.7}$ $\frac{114.4}{$	Time. Temp. t t t t t t t t t t	Time. Temp. $\frac{110.7}{47.2}$ $\frac{1}{47.3}$ $\frac{1}{48.5}$ $\frac{1}{47.3}$ $\frac{1}{48.5}$ $\frac{1}{13.2}$ $\frac{1}{48.4}$ $\frac{1}{48.5}$ $\frac{1}{13.2}$ $\frac{1}{48.4}$ $\frac{1}{49.6}$ $\frac{1}{49.5}$ $\frac{1}{14.4}$ $\frac{1}{49.6}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$	Time. Temp. $\frac{110.7}{47.2}$ $\frac{1}{47.3}$ $\frac{1}{48.5}$ $\frac{1}{48.5}$ $\frac{1}{48.5}$ $\frac{1}{48.4}$ $\frac{1}{48.5}$ $\frac{1}{48.5}$ $\frac{1}{49.5}$ $\frac{1}{49.5}$ $\frac{1}{49.6}$ $\frac{1}{49.6}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$ $\frac{1}{49.6}$ $\frac{1}{49.7}$ $\frac{1}{49.6}$	Time. Temp. $\frac{1}{2}$ Time Temp	Time Temp $\frac{1}{2} \frac{1}{2} \frac{1}$	Time Temp $\frac{g_0}{g_0} = \frac{1}{g_0} $	Time Temp $\frac{1}{2} \frac{1}{2} \frac{1}$	Time. Temp. $\frac{1}{2} \frac{1}{2} $	Time Temp $\frac{1}{4}$	
		Rio Ja	neiro,	January	6, 186	6.				Rio Ja	neiro,	January	6, 186	6.
---------	----------------------	--------------------------------	-----------	---	-----------------------------	---------	-------------------------	---------	----------------------	--------------------------------	----------	--	----------------------------	---------------------
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.
West.	W. E. W. E.	6h Om	75°	39 ^d . I 109.0 39.0 108.6	39 ^d .0 108.8	69ª.8	ب.	West.	W. E. W. E.	6h 10m	74°	56 ^d .2 92.0 56.2 91.8	56ª.2 91.9	35 ^d ·7
East.	E. W. E. W.	6 10	74	109.4 39.4 109.2 39.3	109.3	69.9	r = 2.0 ft.	East.	E. W. E. W.	6 20	74	92.0 56.2 92.2 56.2	92.1 56.2	35.9
M	eans		74.5		2u ^d	69.85		M	eans		74.0	,,	2u ^d	35.80
		Coefficie	nt of tor	sion, v =	5.77 di	v.								
		Monte V	Video,	January	18, 18	66.				Monte V	/ideo,]	January	18, 18	66.
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.
West.	W. E. W. E.	4 ^h 35 ^m	87°	37 ^d ·2 105.9 37·4 106.0	37 ^d ·3 106.0	68ª.7	t.	West.	W. E. W. E.	4 ^h 45 ^m	87°	54 ^d ·4 89·5 54·4 89·5	54 ^d ·4 89.5	35 ^d . I
East.	E. W. E. W.	4 45	87	106.0 37.7 105.9 38.3	106.0 38.0	68.o	r = 2.0 ft.	East.	E. W. E. W.	4 55	88	89.7 54.7 89.6 54.6	89.6 54.6	35.0
M	eans		87.0		2u ^d	68.35			eans		87.5		2u ^d	35.05
Magnet.	North end.			Scale Readings.			Dist.	Magnet.	North end.	Sandy I	Point, F	Scale Readings.	Alternate Means. 81	66.
West.	W. E. W. E.	12h 45n	72°	43 ^d .0 110.2 44.0 110.3	43 ^d ·5 110.3	66ª.8	t.	West.	W. E. W. E.	Ih 8m	69°	58 ^d .8 93.2 58.3 93.2	58ª.6 93.2	34 ^d .6
	E. W. E. W.	1 8	69	110.7 42.6 110.9 42.5	110.8	68.2	$r = 2.0 \mathrm{ft}.$	East.	E. W. E. W.	I 23	68	93.4 58.9 94.0 59.1	93·7 59.0	34.7
East.								11	1	1	. 1			

11.	L					10.	u	10 1	01	•					
		V alpa		orizont March 2			7. O	bser 	VATIO	ons of I Valpa		rions. March 2	, 1866	•	
Magnet.	North end.	Time. P. M.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time. P. M.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	5 ^h 52 ^m	71°.	38 ^d ·3 103.7 37·9 103.1	38 ^d . I 103.4	65ª.3	نبر	West.	W. E. W. E.	6h 3m	79.°	53 ^d .8 87.1 53.7 87.1	53 ^d ·7 87.1	33 ^d ·4	نب
East.	E. W. E. W.	6 3	70.	103.3 38.7 103.2 37.7	103.2	65.0	r = 2.0 ft.	East.	E. W. E. W.	6 14	68.	87.2 53.6 87.1 53.6	87.1 53.6	33.5	r = 2.5 ft.
M	eans		70.5		2u ^đ	65.15		M	eans		69.0		2ud	33.45	
		Coefficie				<u>' </u>									
		Valpa	raiso, I	March 1	9, 1860	5.				Valpai	aiso, I	March 1	9, 186	5.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp. t	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	Ip IOm	75·°	37 ^d ·9 103.6 37·7 103.7	37 ^d .8 103.6	65ª.8	j.	West.	W. E. W. E.	I ^h 20 ^m	76.°	54 ^d .2 87.7 54.0 87.7	54 ^d . I 87.7	33ª.6	
East.	E. W. E. W.	I 20	76.	103.7 38.4 103.7 38.5	103.7	65.3	$r = 2.0 \mathrm{ft}.$	East.	E. W. E. W.	I 35	78.	87.8 54·3 87.8 54·5	87.8 54·4	33.4	r = 2.5 ft.
M	eans		75.5		2u ^đ	65.55		Me	eans		77.0		2u ^đ	33.50	
		Coefficie	nt of tor	sion, v =	4.80 di	v.			272 25						
		Valpai	raiso, I	March 29	, 1866	5.				Valpar	aiso, N	Iarch 29	9, 1860	5 .	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	12h Om	69.°	36 ^d .9 102.1 36.9 102.6	36ª.9 102.4	65ª.5	lf.	West.	W. E. W. E.	12h 13m	68.°	53 ^d .1 86.7 52.9 86.6	53 ^d .0 86.6	33 ^d .6	Ť.
	E. W. E. W.	12 13	68.	102.8 37.2 102.8 37.3	102.8 37·3	65.5	r = 2.0 ft.	East.	E W. E. W.	12 28	68.	86.8 53.5 86.8 53.2	86.8 53·3	33.5	r=2.5 ft.
Me	ans		68.5		. 2ud	65.50		Me	eans		68.o		2u ^d	33.55	

Coefficient of torsion, v = 4.62 div.

HORIZONTAL INTENSITY. OBSERVATIONS OF DEFLECTIONS.

		Valp	araiso	April 7	, 1866	•				Valp	araiso,	April 7	, 1866	•	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's	Dist.
West.	W. E. W. E.	8h 55m	65°	38 ^d .2 102.9 37.9 103.0	38ª.c	64 ^d .9	ft.	West.	W. E. W. E.	9h 10m	67°	53 ^d .8 87.2 54.0 87.3	53 ^d ·9 87·3	33ª·4	نيا
East.	E. W. E. W.	9 10	67	104.0 37.2 103.9 37.2	103.9 37.2	66.7	r = 2.0 ft.	East.	E. W. E. W.	9 25	69	87.7 53.6 87.6 53.4	87.6 53·5	34.1	r=2.5 ft.
Me	eans		66.0		2u ^đ	65.80		Μє	eans		68.o		2ud	33.75	
		Coefficie	ent of to	rsion, $v =$	4.68 di	iv.									
		Valpa	raiso,	April 11	, 1866	•				Valpa	raiso,	April 11	, 1866		
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	I _p O _m	74.°	39 ^d ·2 104·3 39·3 104·4	39 ^d .2 104.3	65ª. I	ft.	West.	W. E. W. E.	Ip IIm	74°	55 ^d .2 88.4 55.2 88.6	55 ^d .2 88.5	33 ^d ·3	ft.
East.	E. W. E. W.	I II	74.	105.2 38.9 105.3 39.2	105.2 39.0	66.2	r = 2.0 ft.	East.	E. W. E. W.	I 23	74	88.9 54.9 88.9 54.8	88.9 54.9	34.0	$r=2.5 \mathrm{ft.}$
Me	ans		74.0		2u ^d	65.65		Me	eans		74.0		2u ^d	33.65	
		Valpa	raiso, A	pril 13,	1866.					Valpar	raiso, A	April 13,	1866.		
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	1 ^h 55 ^m	71°.	37 ^d .2 102.0 36.9 101.6	37 ^d .0 101.8	64 ^d .8	נג	West.	W. E. W. E.	2 ^h 7 ^m	65°.	51 ^d .9 84.9 51.5 84.9	51 ^d .7 84.9	33 ^d ·2	±
East.	E. W. E. W.	2 7	65.	102.2 36.0 101.7 35.6	101.9 35.8	66.1	r = 2.0 ft.	East.	E. W. E. W.	2 20	62.	85.4 51.0 85.0 50.9	85.2 51.0	34.2	- 2.5 ft.
Mea	ins -		68.o		2u ^d	65.45		Mea	ans		63.5	l	2u ^đ	33.70	
									<u>'</u>	<u> </u>	<u> </u>				

Means

11(,					10 1		10 1	O I	•									
						INTEN	ISITY.	Oı		ATIONS									
	Sa	an Lorer	izo Isla	and, Ap	ril 26,	1866.			Sa	an Lorer	izo Isla	and, Ap	ril 26,	1866.					
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.				
West.	W. E. W. E.	11h 40m	79°	51 ^d .0 109.7 50.9 109.6	50 ^d .9 109.6	58ª.7	1	West.	W. E. W. E.	11h 52n	820	65 ^d ·3 95·4 65.0 94·9	65 ^d . 1 95. 1	30ª.o	ft.				
East.	E. W. E. W.	11 52	82	110.4 50.9 110.4 50.7	110.4 50.8	59.6	r = 2.0 ft.	East.	E. W. E. W.	12 7	74	95.4 64.8 95.4 65.0	95·4 64.9	30.5	r=2.5 f				
	eans		80.5		2ud.	59.15			eans		78.0		2ud	30.25					
	Coefficient of torsion, $v = 4.25$ div.										<u> </u>]	<u> </u>				
		Coefficie	int of to	151011, 0	- 4.25 u.														
		Pa	ayta, M	Iay 7, 1	866.					Pa	ıyta, M	a, May 7, 1866.							
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.				
West.	W. E. W. E.	7 ^h 33 ^m	77°	52 ^d .2 107.7 52.0 107.8	52 ^d .1 107.7	55ª.6	t.	West.	W. E. W. E.	7 ^h 46 ^m	77°	65 ^d .2 93.7 65.0 93.6	65 ^d .1 93·7	28d.6	·•				
East.	E. W. E. W.	7 46	77	108.4 51.6 108.3 51.6	108.4	56.8	r = 2.0 ft.	East.	E. W. E. W.	7 59	77	94.0 64.7 94.0 64.7	94.0 64.7	29.3	r = 2.5 ft.				
—— Ме	eans		77.0		2u ^đ	56.20		Me	eans		77.0		2u ^d	28.95					
•		Coefficie		sion, v =	: 3.62 di	1 7.	<u> </u>							1	<u> </u>				
								<u> </u>											
Fla	amen	ico Islan	d, Pan		y, May	14, 18	866.	Fla	amen	co Islan	d, Pan		y, May	14, 1	866.				
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternute Means.	Diff's.	Dist.				
West.	W. E. W. E.	7 ^h 55 ^m	83°	50 ^d .7 104.6 51.0 104.7	50 ^d .8 104.6	53ª.8	ı.	West.	W. E. W. E.	8h 5m	82°	64 ^d .0 91.7 64.0 91.6	64 ^d .0 91.6	27ª.6	 ند				
East.	E. W. E. W.	8 5	82	105.6 50.4 105.5 50.1	105.5	53.3	r = 2.0 ft.	East.	E. W. E. W.	8 15	82	92.0 63.8 92.0 63.8	92.0 63.8	28.2	r = 2.5 ft.				

Means

2ud 53.55

Coefficient of torsion, v = 3.18 div.

				IVI 2	LUIN.	LII	<i>J</i> U 1	OCE	1 1% V	AII	MS.				11.
				Horiz	ONTAL	INTEN	ISITY.	OE	SERV	ATIONS	of Dei	FLECTIO	NS.		
		Acap	oulco, l	Мау 30,	1866.					Acar	oulco,	Мау 30,	1866.		
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	7h 22m	.86°	53 ^d ·9 107.0 53·9 107.0	53 ^d ·9 107.0	53 ^d . 1	ft.	West.	W. E. W. E.	7 ^h 32 ^m	84°	66 ^d .9 94.1 66.9 94.2	66 ^d .9 94.2	27 ^d · 3	ft.
East.	E. W. E. W.	7 32	84	107.5 53.5 107.7 53.8	107.6 53.6	54.0	r = 2.0 ft.	East.	E. W. E. W.	7 40	85	94.4 66.8 94.4 66.8	94.4 66.8	27.6	r=2.5 ft.
М	eans		85.0		2ud	53.55		M	eans		84.5		2ud	27.45	
		Coefficie	nt of to	rsion, $v =$	3.45 di	v.				2.					
		Magdal	ena Ba	y, June	9, 186	6.			-	Magdal	ena Ba	ıy, June	9, 186	56.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	I ^h 14 ^m	65°	49 ^d .4 106.6 49.4 106.8	49 ^d ·4 106.7	57 ^d ·3	ft.	West.	W. E. W. E.	I ^h 40 ^m	65°	64 ^d .0 93.1 63.7 94.1	63ª.9 93.6	29 ^d .7	ff.
East.	E. W. E. W.	I 40	65	106.7 49.6 107.9 49.7	107.3 49.7	57.6	r = 2.0 ft.	East.	E. W. E. W.	2 15	65	94·7 65.0 95·4 65.8	95.1 65.4	29.7	r=2.5 ft.
M	eans		65.0		2u ^d	57.45		Me	eans		65.0		2ud	29.70	
Mag of	net ve	umed coerry unstead f breeze w	y, and it	s readings	uncerta	in on ac	count								
		San Die	go Bay	, June 1	5, 186	66.				San Die	go Bay	y, June	15, 180	56.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
West.	W. E. W. E.	2 ^h 44 ^m	720	45 ^d ·9 111.3 46.3 111.2	4 ⁶ d. I III. 3	65 ^d .2	نب.	West.	W. E. W. E.	2h 53m	71°	62 ^d .2 95.4 62.2 95.4	62 ^d .2 95·4	33 ^d .2	ين .
East.	E. W. E. W.	2 53	71	112.6 45.8 112.5 45.8	112.5 45.8	66.7	r = 2.0 ft.	East.	E. W. E. W.	3 6	70	95.4 61.6 95.8 61.8	95.6 61.7	33.9	r=2.5 ft.
-								<u>'</u>					<u> </u>		

2ud 65.95

Means

71.5

Coefficient of torsion, v = 4.28 div.

70.5

Means

REPORT ON

Horizontal Intensity. Observations of Deflections.

	Sa	an Franc	isco B	ay, June	26,1	866.			Sa	an Franc	cisco Ba	ay, June	26, 18	866.	
Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.	Magnet.	North end.	Time.	Temp.	Scale Readings.	Alternate Means.	Diff's.	Dist.
est.	W. E. W. E.	6h 40m	65.°	42 ^d . 3 114. 8 42. 6 115. 1	42 ^d .4 114.9	72 ^d ·5	ı.	West.	W. E. W. E.	6h 50m	62.°	60 ^d .8 98.0 60.7 98.4	60 ^d .8 98.2	37 ^d ·4	t.
East.	E. W. E. W.	6 50	62.	116.1 43.0 116.3 43.0	116.2 43.0	73.2	″=2.0 ft.	East.	E. W. E. W.	6 59	63.	98.4 61.0 98.4 60.9	98.4 60.9	37.5	r=2.5 ft.
Me	eans		63.5		2ud	72.85		Mo	eans		62.5		2ud	37.45	
	Coefficient of torsion, $v = 5.30$ div.														
		Coefficie	nt of tor	sion, v =	: 5.30 di	v.									
J. S	5. N.	Coefficie Observa					866.	U. S	S. N.	Observa	atory, V	Washing	ton, N	ov. 1,	1866.
Magnet.	North 'Y 'S							Magnet. G	North end.	Observa	Temp.	Scale Readings.	Alternate Means.	ov. 1,	
		Observa	Temp.	Vashingt	on, No	ov. 1, 1	Dist.				Тетр.				Dist.
Magnet.	North end.	Observa	Temp.	Vashingt Scale Readings 123.6 28.5	Weans.	Diff's.		Magnet.	M. Worth end.	Time.	Temp.	Scale Scale 0.001.55 Readings.	Alternate Means.	Diff's.	

SECTION V.

OBSERVATIONS ON THE MAGNETISM OF THE SHIP.

THE Monadnock is a second rate iron-clad vessel, of the Monitor type, of 1564 tons old or 1091 tons new measurement. On deck her length is 260.5 feet, and her breadth 52.0 feet. She has a wooden hull, but her deck is covered by three layers of iron plates, each one inch thick; and her sides, for a depth of five feet from the deck, are covered by six layers of iron plates, each one inch thick. Thus the deck is protected by three, and the sides by six inches of iron. She is provided with two iron turrets, cylindrical in form, each 22.8 feet in outside diameter, 9.0 feet high, and 11 inches thick. On top of each of them stands an iron pilot-house, 7.7 feet in outside diameter, 6.4 feet high, and 11 inches thick. Each of these pilot-houses is cylindrical in form, and so placed that its axis coincides with the axis of the turret upon which it stands. The sides of the turrets and pilot-houses are not solid, but are composed of iron plates, each one inch thick, placed one upon the other and bolted together till a total thickness of eleven inches is attained. To each of the iron pilot-houses are bolted wooden stanchions, which carry wooden pilot-houses whose floors are about nine and a half feet above the tops of the iron pilot-houses. The centres of the wooden pilot-houses are respectively in the same vertical lines with the centres of the turrets and iron pilot-houses over which they The centres of the turrets coincide with the midships line. The distance from the stern of the vessel to the centre of the after turret is 84.5 feet; from the centre of the after turret to the centre of the forward turret, 99.1; and from the centre of the forward turret to the cut-water, 76.9 feet. Passing forward from the after turret, we come first to the ventilator, which is 6.5 feet in diameter, and 22.8 feet high above the deck; and then to the smoke-stack, which is 9.9 feet in diameter, and 31.0 feet high above the deck, both it and the ventilator being of iron. The distance from the centre of the after turnet to the centre of the ventilator is 31.3 feet; from the centre of the ventilator to the centre of the smoke-stack, 16.5 feet; and from the centre of the smoke-stack to the centre of the forward turret, 51.3 feet.

At St. Thomas, before the magnetic observations on board ship were made at that place, a wooden mast 77.7 feet high was placed on the ship in order to enable her to carry some sail. Its centre is 22 feet forward of the centre of the forward turret, and what little iron was used in its construction is so placed that it is not at all probable that it affected the deviation of the compasses in its neighborhood in the slightest.

The following are the designations and positions of the compasses which were used during the cruise:—-

The Forward Alidade was a Sands Alidade Compass, and was on top of the forward wooden pilot-house, 33.5 feet above the iron deck.

The Forward Binnacle was a Ritchie Liquid Compass, and was in the binnacle of the forward wooden pilot-house, 27.2 feet above the iron deck.

The Forward Ritchie was a Ritchie Monitor Compass, and was 6.7 feet above the top of the iron pilot-house on the forward turret. It was 22.1 feet above the iron deck.

Of these three compasses, the Forward Alidade and Forward Ritche were placed exactly in the vertical line passing through the centre of the forward turret, and the Forward Binnacle was placed about two feet further forward, but nearly in the same vertical plane.

The Admiralty Standard Compass was on top of the after wooden pilot-house, 37.0 feet above the iron deck.

The After Binnacle was a Ritchie Liquid Compass, and was in the binnacle of the after wooden pilot-house, 27.2 feet above the iron deck.

The After Ritchie was a Ritchie Monitor Compass, and was 6.7 feet above the top of the iron pilot-house on the after turret. It was 22.1 feet above the iron deck.

Of these three compasses, the Admiralty Standard and After Ritchie were placed exactly in the vertical line passing through the centre of the after turret, and the After Binnacle was placed about two feet futher forward, but nearly in the same vertical plane.

The After Azimuth was a common Azimuth Compass which was set up temporarily on the quarter deck every time the ship was swung; small cavities having been cut in the iron surface of the deck for the reception of the feet of the tripod, so as to make sure that the instrument always occupied precisely the same position. It stood 47.5 feet abaft the centre of the after turret, and there were two vertical iron stanchions, each two inches in diameter, 10.3 feet high above the deck, and 12.1 feet distant from the compass, one of them being directly forward and the other directly aft of it. This compass was elevated 4.6 feet above the iron deck; but when observations of magnetic force were made, it was necessary to remove it and substitute an Admiralty Standard Compass, which occupied precisely the same position, except that it was 4.8 feet above the deck. When the dip circle was used it also stood 4.8 feet above the deck.

It will be observed that *all* the compasses stood in the midships line, no matter what their elevation above the deck might be.

All the observations for determining the deviations of the compasses were made by swinging the ship in the following manner: The true azimuth of a well defined distant object was determined by a solar bearing, as explained in Section III, page 26, and the declination of the magnetic needle having been applied to it, its true magnetic azimuth became known; then, supposing the sight vanes of the Admiralty Standard Compass to be kept pointed steadily to that object while the ship was swung, the reading which they would indicate on the azimuth circle attached to

the cover of the compass, as the ship's head pointed successively to each of the true magnetic points, was computed by means of the formula

$$R = 180^{\circ} + A - \zeta$$

where

R = reading of sight vanes on the azimuth circle attached to the cover of the compass.

A = true magnetic azimuth of the distant object; the azimuth being counted from the south around by the west.

 ζ = azimuth of the ship's head, counted from the correct magnetic north around by the east.

This having been done, on a tolerably calm day steam was got up in the boilers, and, the vessel riding at a single anchor, slack water was waited for. As soon as the tide ceased to run, the executive officer took the deck; an officer was stationed at each of the compasses; I went to the Admiralty Standard; and a quartermaster was stationed at the ship's bell. Then the helm was put hard-a-starboard, or harda-port, depending on the direction in which it was desired to have her head swing, and the engines having been started, one forward and the other backward (the Monadnock was provided with twin screws which were entirely independent of each other), the vessel at once began to turn, without bringing any considerable strain on her cable. Her motion was perfectly under control, and could be made fast or slow at pleasure by merely varying the speed of the engines. I then set the sight vanes of the Admiralty Standard Compass to the reading (on the azimuth circle) of the point at which the ship's head would first arrive, and placing my eye to them I watched for the instant when they pointed to the distant object chosen as an azimuth mark. As the thread of the sight vane approached the object I cautioned the quartermaster to be ready, and at the instant it covered the object I made a signal, by dropping my outstretched arm, and the quartermaster struck a single stroke on the bell. Upon hearing this, every officer at once read off and recorded the heading of the ship, as indicated by the compass at which he was stationed. Then, the engines not having been stopped, I turned the sight vanes forward to the reading of the next point, and the same process was repeated; and so on, till the readings of all the compasses had been observed at each of the thirty-two points, which was generally accomplished in about an hour, or an hour and a half. The difference between any observed reading and the true point to which the vessel's head was directed at the time that reading was made, was of course the deviation of the compass on that point.

The forward iron and wooden pilot-houses were fixed and did not revolve with the turret, so that the lubber lines of the compasses in them always remained in the same position. But with the after iron and wooden pilot-houses the case was different. They were attached to the turret and revolved with it, and by so doing caused the lubber lines of the compasses in them also to revolve. As the turrets were frequently turned, it became necessary to establish marks by which the position of the after one could always be referred to some fixed position, so that a correction could be applied to the readings of the compasses in its pilot-houses to

¹⁶ August, 1872.

reduce them to what they would have been if their lubber lines had not moved For this purpose, whenever the ship was swung, a fixed line on the under side of the hurricane deck was produced till it touched the after turret, and then the distance from its point of contact with the turret to a joint (marked number XII) on the outside of the turret was measured. This distance, having been converted into degrees and minutes by means of the known diameter of the turret, was the correction to be applied to the position of the lubber lines. The following table gives the measured distance, and its angular equivalent, at every station where the ship was swung; but it must be noticed that these corrections apply only to the After Binnacle and After Ritchie Compasses. The lubber line of the Admiralty Standard Compass was always properly adjusted before beginning to observe.

Station. Join	nt XII. Lubber Line.
Hampton Roads 14in.4 St. Thomas 14.4 Salute Islands 0.6 s Ceara 0.6 Bahia 0.6 Rio Janeiro 0.8 g Monte Video 4.5 Sandy Point 4.5 Valparaiso 4.2 Callao 5.5 Panama 5.5 Acapulco 5.5 Magdalena Bay 5.5 San Francisco 5.3	starboard 6° 18′ east. 6′ 18 " 6′ 18 "

When the ship was being swung, I always read the Admiralty Standard Compass myself. Each of the other compasses was usually read by the officer whose name is set opposite to it in the following table.

Forward Alidade,
Forward Binnacle,
Forward Ritchie,
After Binnacle,
After Ritchie,
After Azimuth,

Lieutenant M. Miller.
Lieut. Miller, assisted by a Quartermaster.
Lieutenant Geo. Smith.
Ensign F. Wildes.
Master Wm. Barrymore.
Mate Jno. Ponte.

My instruments for the measurement of magnetic force restricted me to the method of deflections, and the only compasses on board at which that method could be applied were the Admiralty Standard and the After Azimuth. As the ship was always riding at anchor, and of course swinging a little, when such observations were made, in order to render them as accurate as possible the following plan was adopted.

The deflecting bar was screwed to the movable circle which carried the sight vanes of the Admiralty Standard Compass in such a position as to be at right angles to them. That is, when the sight vanes pointed north and south the deflecting bar pointed east and west. Then, 1°. The sights being directed exactly

north and south, as indicated by the compass card, the point, which we will designate by H, cut by them on the northern or southern horizon, as might be most convenient, was noted. 2° . The deflecting magnets were placed in the carriers, one to the east and the other to the west of the compass card, both being at the same distance from the centre of the card, and with their similar poles pointing in the same direction. Then, keeping the sight vanes pointed steadily to the object H, as soon as the compass card ceased to vibrate it was read off by means of the prism attached to the sight vane. Let this reading be designated as A. 3° . Each deflecting magnet was reversed, end for end, in its own carrier, and, the sight vanes being still kept directed to the object H, the card was again read. Let this reading be designated as B. Then the observed angle of deflection is $\frac{A-B}{2}$.

The dip was obtained by removing the Admiralty Standard Compass with which the deflections had been observed, and putting in its place a dip circle; the axle of the dipping needle occupying precisely the same position that had previously been occupied by the pivot of the compass card.

The observations of the deviations of the compasses made during the cruise have been compared with the following theory, which is taken from the English Admiralty Manual of the Deviations of the Compass, edition of 1863.

Let

- X, Y, Z, represent the force of the earth's magnetism drawing the north point of the compass needle to the ship's head, to the starboard side and vertically downwards.
- X', Y', Z', represent the combined force of the magnetism of the earth and ship in the same directions.
- a, b, c, d, e, f, g, h, k, represent constant coefficients depending on the amount and arrangement of the soft iron of the ship.
- P, Q, R, represent constant coefficients depending on the amount, arrangement, and independent magnetism of the hard iron of the ship.

H = the horizontal force of the earth.

H' the horizontal force of the earth and ship.

 θ = the dip.

 ζ = azimuth of the ship's head measured eastward from the correct magnetic north.

 $\zeta' = \text{azimuth of the ship's head measured from the direction of the disturbed needle.}$

 $\delta = \zeta - \zeta' =$ the deviation of the compass.

Then the whole mathematical theory of the deviations of the compass is comprised in the three following equations:

$$X' = X + aX + bY + cZ + P \tag{1}$$

$$Y' = Y + dX + eY + fZ + Q \tag{2}$$

$$Z' = Z + gX + hY + kZ + R \tag{3}$$

We have also

$$egin{array}{ll} X = H & \cos \zeta & Y = -H & \sin \zeta & Z = H & \tan \theta \\ X' = H' & \cos \zeta' & Y' = -H & \sin \zeta' & \end{array}$$

Substituting these values in equations (1), (2), and (3), and dividing by H, we have

$$\frac{H'}{H}\cos\zeta' = (1+a)\cos\zeta - b\sin\zeta + c\tan\theta + \frac{P}{H}$$
 (4)

$$-\frac{H}{H}\sin\zeta' = d\cos\zeta - (1+e)\sin\zeta + f\tan\theta + \frac{Q}{H}$$
 (5)

$$\frac{Z'}{H} = g \cos \zeta - h \sin \zeta + (1+k) \tan \theta + \frac{R}{H}$$
 (6)

Equation (6) may be written

$$0 = 1 - \frac{Z'}{Z} + g \frac{\cos \zeta}{\tan \theta} - h \frac{\sin \zeta}{\tan \theta} + k + \frac{R}{Z}$$
 (6a)

From equations (4) and (5) we obtain the following:

(4) $\cos \zeta$ — (5) $\sin \zeta$ gives after some reductions

$$\frac{H'}{H}\cos\delta = 1 + \frac{a+e}{2} + \left(e\tan\theta + \frac{P}{H}\right)\cos\zeta - \left(f\tan\theta + \frac{Q}{H}\right)\sin\zeta + \frac{a-e}{2}\cos2\zeta - \frac{d+b}{2}\sin2\zeta$$
 7)

(4) $\sin \zeta + (5) \cos \zeta$ gives after some reductions

$$\frac{H'}{H}\sin\delta = \frac{d-b}{2} + \left(c\tan\theta + \frac{P}{H}\right)\sin\zeta + \left(f\tan\theta + \frac{Q}{H}\right)\cos\zeta + \frac{a-e}{2}\sin2\zeta + \frac{d+b}{2}\cos2\zeta \tag{8}$$

Now let

$$1 + \frac{a+e}{2} = \lambda$$

$$\frac{d-b}{2} = \lambda \mathfrak{A}$$

$$\frac{a-e}{2} = \lambda \mathfrak{D}$$

$$\frac{d+b}{2} = \lambda \mathfrak{E}$$

$$e \tan \theta + \frac{P}{H} = \lambda \mathfrak{E}$$

$$f \tan \theta + \frac{Q}{H} = \lambda \mathfrak{E}$$

Then from equations (7) and (8) we get the following:

$$\frac{H}{\lambda H}\cos\delta = 1 + \mathfrak{B}\cos\zeta - \mathfrak{C}\sin\zeta + \mathfrak{D}\cos2\zeta - \mathfrak{E}\sin2\zeta \tag{9}$$

$$\frac{H'}{\lambda H}\sin\delta = \mathfrak{A} + \mathfrak{B}\sin\zeta + \mathfrak{C}\cos\zeta + \mathfrak{D}\sin2\zeta + \mathfrak{E}\cos2\zeta \tag{10}$$

Dividing (10) by (9),

$$\tan \delta = \frac{\mathfrak{A} + \mathfrak{B} \sin \zeta + \mathfrak{C} \cos \zeta + \mathfrak{D} \sin 2\zeta + \mathfrak{C} \cos 2\zeta}{1 + \mathfrak{B} \cos \zeta - \mathfrak{C} \sin \zeta + \mathfrak{D} \cos 2\zeta - \mathfrak{C} \sin 2\zeta}$$
(11)

From (11) we easily get

$$\sin \delta = \mathfrak{A} \cos \delta + \mathfrak{B} \sin \zeta' + \mathfrak{C} \cos \zeta' + \mathfrak{D} \sin (\zeta + \zeta') + \mathfrak{C} \cos (\zeta + \zeta')$$

$$= \mathfrak{A} \cos \delta + \mathfrak{B} \sin \zeta' + \mathfrak{C} \cos \zeta' + \mathfrak{D} \sin (2\zeta' + \delta) + \mathfrak{C} \cos (2\zeta' + \delta)$$

$$(12)$$

Of the last three equations (11) is used when the deviations are given on the correct magnetic points, (12) when the deviations are given on the compass points affected by deviation.

Equation (12) may be put under the following form, which is sometimes convenient, and which is very nearly exact, viz.:

$$\sin \delta = \frac{1}{1 - \mathfrak{D}\cos 2\zeta'} \left\{ \mathfrak{A} + \mathfrak{B}\sin \zeta' + \mathfrak{C}\cos \zeta' + \mathfrak{D}\sin 2\zeta' + \mathfrak{C}\cos 2\zeta' \right\}$$
(12a)

By means of the expressions for $\sin \delta$ we may calculate the values of the coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}$, if we know the deviations on five points. If we have the deviations on more than five points, we may determine the most probable values of the coefficients by the method of least squares; but the calculation will in general be long and difficult.

If, however, the compass points on which the deviations are given divide the circumference into equal parts, we may determine the exact coefficients $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{C}$, with great ease, and a sufficient degree of approximation, by determining first the approximate coefficients A, B, C, D, E, and then deducing from them the values of the exact coefficients. For that purpose we proceed as follows:

If the coefficients are less than 20° their squares and products may be neglected, and equation (12) may be put under the form

$$\delta = A + B \sin \zeta' + C \cos \zeta' + D \sin 2\zeta' + E \cos 2\zeta' \tag{13}$$

Let $\delta_0 \delta_1 \delta_2 \dots \delta_{31}$ be the deviations observed on the 32 points, by compass, $S_1 S_2 S_3 \dots S_7$ the natural sines of the rhumbs or of the angles 11° 15′, 22° 30′ 78° 45′ respectively, then if the observations have been made on the 32 points we have the following 32 equations from which to determine A, B, C, D, E.

Compass Courses.	Deviation.	A	$+B\sin \zeta'$	+ C cos ζ'	+ D and 2 \$	+ E cos 2 \(\zeta' \)
North	δ_0	A		+ C		+ E
N. by E.	δ_1	A	+ B S,	+ C S,	+ D S ₂	+ E S ₆
N. N. E.	δ_2	A	+ B S,	+ C S ₆	+ D S,	+ E S ₄
N. E. by N.	δ_3	A	+ B S ₃	+ C S ₅	+ D S ₆	$+ \operatorname{E} \operatorname{S}_{2}$
N. E.	δ_4 .	A.	+ B S ₄	+ C S ₄	+ D	12
N. E. by E.	δ_5	A	+ B S ₅	+ C S ₃	+ D S ₆	— E S,
E. N. E.	δ_6	A .	+ B S ₆	+ C S,	+ D S,	$-ES_4$
E. by N.	δ_7	A.	+ B S,	$+ C S_1$	+ D S ₂	$-ES_6$
East	δ_8	A	+ B	,		— E
E. by S.	δ_9	A	+ B S,	— C S,	— D S,	— E S
E. S. E.	δ_{10}	A	+ B S ₆	$-CS_2$	— D S,	— E S.
S. E. by E.	δ_{11}	A	+ B S ₅	$-CS_3$	— D S ₆	— E S ₂
S. E.	δ_{12}^{11}	A	+ B S	$-CS_4$	— D °	2
S. E. by S.	δ_{13}^{12}	A	+ B S ₃	$-CS_5$	— D S ₆	+ E S ₂
S. S. E.	δ_{14}^{13}	• A	+ B S,	$-CS_6$	— D S.	+ E S ₄
S. by E.	δ_{15}	A	+ B S,	— C S,	— D S ₂	+ E S
South	δ_{16}	A	· . •	— C ,	_	+ E °
S. by W.	δ ₁₇	A	— B S,	— C S,	+ D S ₂	+ E S ₆
S. S. W.	δ_{18}	A	$-BS_2$	— C S ₆	+ D S.	E S₄
S. W. by S.	δ_{19}	A	$-BS_3$	$-CS_5$	+ D S	+ E S ₂
S. W.	δ_{20}	A	— B S ₄	— C S,	+ D	
S. W. by W.	δ_{21}	A	— B S ₅	$-CS_3$	+ D S ₆	$-E S_2$
W. S. W	δ_{22}	A	— B S	— C S,	+ D S ₄	— E S.
W. by S.	δ_{23}^{23}	A	B S ₇	$-CS_1$	$+ D S_2$	— E S
West	δ_{24}	A	—В ´	•	_	— E
W. by N.	δ_{25}	A	— B S,	+ C S,	$-D S_a$	— E S
W. N. W.	δ_{26}	A	— B S ₆	+ C S ₂	$-D S_4$	— Е S,
N. W. by W.	δ ₂₇	$^{-}$ A	$-BS_5$	+ C S ₃	$-DS_6$	— E S ₂
N. W.	δ_{28}	A	— B S₄	+ C S,	— D	-
N. W. by N.	δ_{29}	A	$-BS_3$	+ C S ₅	— D S	$+ E S_2$
N. N. W.	δ ₃₀	A	$-BS_2$	+ C S	— D S.	+ E S.
N. by W.	δ_{31}^{00}	A	$-BS_1$	+ C S ₇	$-D S_2$	+ E S ₆

By the method of least squares we obtain, from these 32 equations of condition, the five normal equations

$$\begin{array}{l} \delta_0 + \delta_1 + \delta_2 \dots \dots + \delta_{31} = 32 A. \\ \delta_1 S_1 + \delta_2 S_2 + \delta_3 S_3 + \&c. \dots = 16 B. \\ \delta_4 + \delta_1 S_7 + \delta_2 S_6 + \&c. \dots = 16 C. \\ \delta_1 S_2 + \delta_2 S_4 + \delta_3 S_6 + \&c. \dots = 16 D. \\ \delta_0 + \delta_1 S_6 + \delta_2 S_4 + \&c. \dots = 16 E. \end{array}$$

For convenience of computation these equations have been put under the form

$$8A = \frac{1}{2} \left(\frac{\delta_0 + \delta_{16}}{2} + \frac{\delta_8 + \delta_{24}}{2} \right) + \frac{1}{2} \left(\frac{\delta_1 + \delta_{17}}{2} + \frac{\delta_9 + \delta_{25}}{2} \right) + \frac{1}{2} \left(\frac{\delta_2 + \delta_{18}}{2} + \frac{\delta_{10} + \delta_{26}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_3 + \delta_{19}}{2} + \frac{\delta_{11} + \delta_{27}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_4 + \delta_{20}}{2} \right) + \frac{\delta_{12} + \delta_{28}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_5 + \delta_{21}}{2} + \frac{\delta_{13} + \delta_{29}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_6 + \delta_{22}}{2} + \frac{\delta_{14} + \delta_{30}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_7 + \delta_{23}}{2} + \frac{\delta_{15} + \delta_{31}}{2} \right)$$

$$+ \frac{1}{2} \left(\frac{\delta_7 + \delta_{23}}{2} + \frac{\delta_{15} + \delta_{31}}{2} \right)$$

$$+ \frac{\delta_1 - \delta_{17}}{2} S_1 + \frac{\delta_9 - \delta_{25}}{2} S_7$$

$$+ \frac{\delta_2 - \delta_{18}}{2} S_2 + \frac{\delta_{10} - \delta_{25}}{2} S_6$$

$$+ \frac{\delta_3 - \delta_{19}}{2} S_3 + \frac{\delta_{11} - \delta_{27}}{2} S_5$$

$$+ \frac{\delta_4 - \delta_{20}}{2} S_4 + \frac{\delta_{12} - \delta_{28}}{2} S_4$$

$$+ \frac{\delta_5 - \delta_{21}}{2} S_5 + \frac{\delta_{13} - \delta_{29}}{2} S_2$$

$$+ \frac{\delta_7 - \delta_{23}}{2} S_7 + \frac{\delta_{15} - \delta_{31}}{2} S_1$$

$$+ \frac{\delta_1 - \delta_{17}}{2} S_7 - \frac{\delta_9 - \delta_{25}}{2} S_1$$

$$+ \frac{\delta_2 - \delta_{18}}{2} S_6 - \frac{\delta_{10} - \delta_{26}}{2} S_2$$

$$+ \frac{\delta_3 - \delta_{19}}{2} S_6 - \frac{\delta_{10} - \delta_{26}}{2} S_2$$

$$+ \frac{\delta_3 - \delta_{19}}{2} S_6 - \frac{\delta_{11} - \delta_{27}}{2} S_3$$

$$+ \frac{\delta_4 - \delta_{20}}{2} S_4 - \frac{\delta_{12} - \delta_{28}}{2} S_4$$

$$+ \frac{\delta_5 - \delta_{21}}{2} S_3 - \frac{\delta_{13} - \delta_{29}}{2} S_5$$

$$+ \frac{\delta_6 - \delta_{22}}{2} S_2 - \frac{\delta_{14} - \delta_{30}}{2} S_3$$

$$+ \frac{\delta_7 - \delta_{23}}{2} S_7 - \frac{\delta_{15} - \delta_{31}}{2} S_7$$

$$4D = + \frac{1}{2} \left(\frac{\delta_{4} + \delta_{20}}{2} - \frac{\delta_{12} + \delta_{28}}{2} \right) \\
+ \frac{1}{2} \left(\frac{\delta_{1} + \delta_{17}}{2} - \frac{\delta_{9} + \delta_{25}}{2} \right) S_{2} + \frac{1}{2} \left(\frac{\delta_{5} + \delta_{21}}{2} - \frac{\delta_{13} + \delta_{29}}{2} \right) S_{6} \\
+ \frac{1}{2} \left(\frac{\delta_{2} + \delta_{18}}{2} - \frac{\delta_{10} + \delta_{26}}{2} \right) S_{4} + \frac{1}{2} \left(\frac{\delta_{6} + \delta_{22}}{2} - \frac{\delta_{14} + \delta_{30}}{2} \right) S_{4} \\
+ \frac{1}{2} \left(\frac{\delta_{3} + \delta_{19}}{2} - \frac{\delta_{11} + \delta_{27}}{2} \right) S_{6} + \frac{1}{2} \left(\frac{\delta_{7} + \delta_{23}}{2} - \frac{\delta_{15} + \delta_{31}}{2} \right) S_{2} \\
4E = \frac{1}{2} \left(\frac{\delta_{0} + \delta_{16}}{2} - \frac{\delta_{8} + \delta_{24}}{2} \right) \\
+ \frac{1}{2} \left(\frac{\delta_{1} + \delta_{17}}{2} - \frac{\delta_{9} + \delta_{25}}{2} \right) S_{6} - \frac{1}{2} \left(\frac{\delta_{5} + \delta_{21}}{2} - \frac{\delta_{13} + \delta_{29}}{2} \right) S_{2} \\
+ \frac{1}{2} \left(\frac{\delta_{2} + \delta_{18}}{2} - \frac{\delta_{10} + \delta_{26}}{2} \right) S_{4} - \frac{1}{2} \left(\frac{\delta_{6} + \delta_{22}}{2} - \frac{\delta_{14} + \delta_{30}}{2} \right) S_{4} \\
+ \frac{1}{2} \left(\frac{\delta_{3} + \delta_{19}}{2} - \frac{\delta_{11} + \delta_{27}}{2} \right) S_{2} - \frac{1}{2} \left(\frac{\delta_{7} + \delta_{23}}{2} - \frac{\delta_{15} + \delta_{31}}{2} \right) S_{6}$$

But the deviations about to be discussed were all observed, not on the compass points, but on the correct magnetic points. Treating them in the manner which has just been described, we obtain the approximate coefficients A_1 , B_1 , C_1 , D_1 , E_1 , which belong to the correct magnetic points. Then, from equation (11) we get, going to terms of the third order inclusive,

$$\delta = \mathfrak{A}$$

$$+ (\mathfrak{B} + \mathfrak{A} \mathfrak{C}) \sin \zeta + (\mathfrak{C} - \mathfrak{A} \mathfrak{B} \cos \zeta)$$

$$+ \left\{ \mathfrak{D} - \frac{\mathfrak{B}^2 - \mathfrak{C}^2}{2} \right\} \sin 2\zeta + \left\{ \mathfrak{C} - \mathfrak{B} \mathfrak{C} - \mathfrak{A} \mathfrak{D} \right\} \cos 2\zeta$$

$$+ \left\{ -\mathfrak{B} \mathfrak{D} + \mathfrak{C} \mathfrak{C} + \frac{\mathfrak{B}^3}{3} - \mathfrak{B} \mathfrak{C}^2 \right\} \sin 3\zeta$$

$$+ \left\{ -\mathfrak{B} \mathfrak{C} - \mathfrak{C} \mathfrak{D} - \frac{\mathfrak{C}^3}{3} + \mathfrak{B}^2 \mathfrak{C} \right\} \cos 3\zeta$$

$$+ \left\{ -\frac{\mathfrak{D}^2}{2} + (\mathfrak{B}^2 - \mathfrak{C}^2) \mathfrak{D} \right\} \sin 4\zeta + \left\{ -\mathfrak{D} \mathfrak{C} + 2\mathfrak{B} \mathfrak{C} \mathfrak{D} \right\} \cos 4\zeta$$

$$+ \mathfrak{B} \mathfrak{D}^2 \sin 5\zeta + \mathfrak{C} \mathfrak{D}^2 \cos 5\zeta$$

$$+ \frac{1}{3} \mathfrak{D}^3 \sin 6\zeta$$

where δ is expressed in terms of the arc which is equal to radius. If we suppose the complete expression for δ to be

$$\delta = A_1 + B_1 \sin \zeta + C_1 \cos \zeta + D_1 \sin 2\zeta + E_1 \cos 2\zeta + F_1 \sin 3\zeta + G_1 \cos 3\zeta + H_1 \sin 4\zeta + K_1 \cos 4\zeta + L_1 \sin 5\zeta + M_1 \cos 5\zeta + N_1 \sin 6\zeta$$
 (15)

Then, comparing equation (14) with equation (15), we find, to terms of the third order inclusive,

$$\mathfrak{A} = A_{1}
\mathfrak{B} = B_{1} - A_{1} C_{1}
\mathfrak{C} = C_{1} + A_{1} B_{1}
\mathfrak{D} = D_{1} + \frac{B_{1}^{2} - C_{1}^{2}}{2}
\mathfrak{E} = E_{1} + B_{1} C_{1} + A_{1} D_{1}
\mathfrak{F}_{1} = -B_{1} D_{1} + C_{1} E_{1} - \frac{B_{1}^{3}}{6} - \frac{B_{1} C_{1}^{2}}{2}
\mathfrak{G}_{1} = -C_{1} D_{1} + B_{1} E_{1} \frac{C_{1}^{3}}{6} + \frac{C_{1} B_{1}^{2}}{2}
\mathfrak{H}_{1} = -\frac{D_{1}^{2}}{2} + \frac{D_{1} B_{1}^{2}}{2} - \frac{D_{1} C_{1}^{2}}{2}
\mathfrak{K}_{1} = -D_{1} E_{1} + 2 B_{1} C_{1} D_{1}
\mathfrak{L}_{1} = B_{1} D_{1}^{2}
\mathfrak{M}_{1} = C_{1} D_{1}^{2}
\mathfrak{N}_{1} = \frac{1}{3} D_{1}^{3}$$
(16)

"When the deviation of the compass is small, the several parts of which it is composed are simply added together; these parts are,

- 1. A, the constant deviation.
- 2. $B \sin \zeta' + C \cos \zeta'$, the semicircular deviation.
- 3. $D \sin 2\zeta' + E \cos 2\zeta'$, the quadrantal deviation.

"When the deviation is large, A, B, C, D, C, or the angles of which these quantities are the natural sines, may still be considered as the constant and as the several parts of the semicircular and the quadrantal deviation, each of these angles being in fact the maximum deviation which would exist if all the other coefficients were zero; but their effects are no longer combined by simple addition."

Before submitting the observed deviations to comparison with the theory, it is necessary to free them from constant errors. These errors originated in two ways.

1°. When the ship was swung, the variation of the needle at the port where she was lying was seldom accurately known. Hence, in order to obtain the true magnetic azimuth of the object used as an azimuth mark, it was necessary to adopt, for the time being, the best value of the variation which happened to be accessible. In order to facilitate the setting of the sight vanes of the Admiralty Standard Compass while the ship was being swung, the value thus adopted was always so taken that, when the ship's head pointed successively to each of the true magnetic points, the reading of the sight vanes on the azimuth circle attached to the cover of that compass was always either some whole degree or some quarter of a degree. When the declinometer observations were reduced, the true value of the variation of the compass at each port became known, and then it was discovered

17 August, 1872.

that in some cases the adopted value was in error by more than three degrees. But an error in the adopted value of the variation produced an error of the same amount in the magnetic azimuth of the distant object used as an azimuth mark, and, therefore, in the pointing of the ship's head to each of the true magnetic points. Bearing in mind that the observed deviations were obtained by simply taking the difference between the heading of the ship and the reading of the compass, it will be apparent that if we apply to each observed deviation the difference between the true and adopted variation of the compass, with its proper sign, we shall obtain the true deviations for the directions in which the ship's head actually pointed at the time the readings of the compasses were made. From these corrected deviations the deviations on the true magnetic points can be found by simple interpolation. Therefore, if we let

- m = the true, minus the adopted, magnetic azimuth of the distant object used as an azimuth mark: the azimuths being taken as increasing from the south around by the west.
- δ' = the observed deviation of the compass when the ship headed in the direction A.
- δ'' = the observed deviation of the compass when the ship headed in the direction $A \mp 11^{\circ} 15'$; the upper sign being taken when m is positive, the lower when m is negative.
- δ = the deviation of the compass when the ship heads to the true magnetic point which lies between A and $A = 11^{\circ}$ 15'; that point being of the same name as A was intended to be when the ship was swung.

Then we shall have with sufficient accuracy

$$\delta = \delta' + m \mp \frac{m (\delta' - \delta'')}{11^{\circ} 15'}$$

the upper sign being taken when m is positive, the lower when m is negative. By this formula the deviations of the Forward Alidade, Forward Binnacle, Forward Ritchie, Admiralty Standard, and After Azimuth Compasses, on the true magnetic points, have been computed from the observed deviations.

 2° . In addition to the correction which has just been explained, the observed deviations of the After Binnacle and After Ritchie Compasses require a further correction on account of the lubber lines of these instruments revolving with the after turret, and thus being frequently out of their true position. This correction, which we will represent by L, is constant, and is equal in amount to the displacement of the lubber line. Its sign is + if the lubber line is to starboard, - if it is to port, of its true position. The deviations of the After Binnacle and After Ritchie Compasses, on the true magnetic points, were therefore computed from the observed deviations by the formula

$$\delta = \delta' + (m+L) \mp \frac{m (\delta' - \delta'')}{11^{\circ} 15'}$$

the upper sign being taken when m is positive, the lower when m is negative.

To have computed *numerically* all the values of δ for each compass by means of the expressions just given, would have involved a great amount of labor; it was therefore done graphically as follows:

On a piece of cardboard of suitable size a horizontal line ab, $5\frac{5}{8}$ inches long, was drawn, and divided into eighths of an inch; each half inch representing one degree, and the whole line representing 11° 15′, or one point of the compass. Touching the extremities of the line ab, and at right angles to it, were drawn the line ab, into points and eights of points; each point occupying the space of $2\frac{1}{16}$ of an inch. Finally, a straight slip of drawing paper was divided on its edge into degrees and sixths of a degree, each degree occupying a space of one-quarter of an inch; and the graduation was numbered from the middle towards each extremity.

Then, to compute the values of δ for any compass at any place, the paper scale was laid down parallel to, and to the right of, cd, and at a distance from it (measured on the line ab) equal to m; next, without moving the paper scale at all in the direction ab, it was slipped up or down, as might be necessary, in the direction parallel to cd, till the line ab cut the division on it which was equal to (m+L); the zero of the scale being above the line ab if (m+L) was negative, below it if

¹ For computing the deviations of the Admiralty Standard and After Azimuth Compasses the lines cd and ef were divided into degrees and sixths of a degree, each degree occupying the space of one-quarter of an inch.

(m+L) was positive. Things being thus arranged, a weight was placed on the paper scale to prevent it from moving. Then a ruler being laid so that, while it crossed the line cd at a distance from a equal to δ' , it also crossed the line ef at a distance from b equal to δ'' (the distances δ' and δ'' being taken above the line ab if they were positive, below it if they were negative), the reading of the point on the paper scale where the ruler crossed its edge was the required value of δ . In that way, without again moving the paper scale, the values of the deviations on each of the thirty-two true magnetic points were computed from the observed values.

The following table contains the constants which were used in computing from the observed deviations the deviations on the true magnetic points. The first column gives the name of the station. The second column, the distance in miles from the ship to the object used as an azimuth mark. The third column, the assumed magnetic azimuth of the object used as an azimuth mark; the azimuth being counted from the south around by the west. The fourth column, the true magnetic azimuth of the same object, found by applying the magnetic declination given in the table on page 61, section IV, to the true azimuth given in the table on page 36, section III. The fifth column, the value of m. The sixth column, the value of L; and the seventh column, the value of (m+L).

Station.	Distance of Object in Miles.	Assumed Magnetic Azimuth.	True Magnetic Azimuth.	111		(m+L)
Hampton Roads	$6\frac{1}{4}$	9° 15′	13° 12′	$+3^{\circ}57'$	o° o′	$+ 3^{\circ} 57'$
St. Thomas	$6\frac{1}{4}$ $4\frac{1}{2}$	327 30	327 45	+ 0 15	0 0	+ 0 15
Salute Islands	. 25	11 0	10 58	_ O 2	+6 18	+ 6 16
Ceara	• 4	268 45	270 36	+ 1 51	+6 18	+8 9
Bahia	• 5	103 30	106 0	+ 2 30	+6 18	+ 8 48
Rio Janeiro	• 5	126 30	129 14	+ 2 44	+ 5 43	+8 27
	• 5	93 0	92 47	-0 13	+4 9	+ 3 56
Sandy Point	. 26	345 15	345 22	十 0 7	+4 9	+4 i6
Valparaiso	$\begin{array}{c c} 3\frac{1}{2} \\ 5\frac{1}{2} \end{array}$	195 15	195 16	+0 1	+4 17	+ 4 18
Callao	$\cdot 5\frac{1}{2}$	72 45	72 51	+0 6	+ 3 44	+ 3 50
Panama	. 7	15 0	15 1	+0 1	+ 3 44	+ 3 45
	. 4	243 15	243 21	+0 6	+ 3 44	+ 3 50
Magdalena Bay	. 8	303 30	302 50	— o 4o	+ 3 44	+ 3 4
San Francisco	. 9	150 30	149 45	— o 45	+ 3 49	+ 3 4

The following tables contain all the deviations of the compasses which were observed during the cruise. In each table the first column contains the assumed magnetic azimuth of the ship's head at the time the reading of the compass, given on the same line in the second column, was taken. The third column contains the observed deviation of the compass for each point, obtained by subtracting the readings in the second column from those in the first column. Hence, a deviation of the north point of the compass to the east is designated by the sign +; a deviation to the west by the sign -. The fourth column contains the deviation of the compass on each of the thirty-two true magnetic points, obtained from the observed deviations in the manner already explained.

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS ON THE U.S. IRON CLAD MONADNOCK.

Asymptotic Ship's Head by Compass. Deviation of Deviation of Corrected Ship's Head by Compass. Compass.	Correction	Hampton Roads, Novem Correction for Object = $+3^{\circ}$ 57. Correc	lovember 1, 1865. Correction for Lubber Line = 0.	865. Jubber Line ==	·o.	St. Correction	St. Thomas, West Indies, November 16, 1865. Correction for Object = + 0° 16' Correction for Lubber Lin	s, November 16, 1865. Correction for Lubber Line = 0.	16, 1865. Lubber Line ==	·
N. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
N. W. E. E. J. S. S. S. S. S. S. S. S. S. S. S. S. S.	NORTH.	N. 3 E.	r-la	, 0	°I	NORTH.	NORTH			/01 00 10/
N. N. E. by N. N. N. W. by N. W	N. by	N. by E. & E.	o~4∞•		63	N. by E.	− 1α) ⁻¹⁰		
F. F. F. F. F. F. F. F. F. F. F. F. F.	N. E.	N. N. E. & N. N. M. M. M. M. M. M. M. M. M. M. M. M. M.	-1∞- -			N.E.	¹ 44,	+		+2 40
E. E. B. E. E. E. E. E. E. E. E. E. E. E. E. E.	N.S.	N. E. 5 N. 4 N.	 			N.E. by N.	E. by N.	:::loo-		4+0
E. W. E. W.	N. E. by E.	N. E. by E. 4 N.	∞(- -+			N. E. by E.	i H	403~4 		+- % %
E. E. E. W. W. W. W. W. W. W. W. W. W. W. W. W.	ы́; Ы.	E.N.E.	+-			E. N. E.	E. by E.	on⊸lo		2 2 2 3 8
E. S. S. S. E. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	E. by N.	E. by N. & N.	+ -			E. by N.	N.E.	+		+ 6 40
S. S. E. By E. E. F. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. E. By E. S. S. S. E. By E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. By E. S. S. S. E. By E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. S. S. S. E. By E. By E.	E. by S.	E. by S. * E.	Harak			EASI.	ті ф~ с. о.			+ 6 40
S. S. S. E. by E. s. E. H. + 7 8 40 . S. S. E. by S. S. S. W. S. S. S. W. S. S. W. S. S. W. S. W. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S	E. S. E.	E. S. E. 3 E.	∞~io		8 8	i in	74.0 S. S.	.: ├		° ;
S. S. S. B. S. S. E. S. S. S. E. S. S. S. S. E. S. S. S. S. E. S. S. S. S. E. S. S. S. S. S. S. S. S. S. S. S. S. S.	S. E. by E.	S. E. by É. ½ E.	n- ∞		3 6	S. E. by	уу. Н М	+01-H		++ % &
S. E. By S. 4 E. 4 S. S. E. 4 S. S. E. 4 S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. E. 4 S. S. S. S. E. 4 S. S. S. S. S. S. S. S. S. S. S. S. S.	મું પ્	S. E. E. E.			9,6	S. E.	E. 4 E.			-+ 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0
S. S. S. E. 4. S. S. S. E. 4. S. S. S. E. 4. S. S. S. E. 4. S. S. S. E. 4. S. S. S. E. 4. S. S. S. E. 4. S. S. S. S. S. S. S. S. S. S. S. S. S.	ον ου υ	S. E. by S. ‡ E.	+			S. E. by S.	E. 5	+		+ 2 30
S. S. S. W.	S. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	S. by E.				. У. Б. Т.	Υ. Τ. Ξ. Γ. 44.	+		+2 30
S. S. S. W. S. S. W. S. S. S. W. S. S. S. W. S. S. S. W. S. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. S. W. S. S. S. S. S. S. S. S. S. S. S. S. S.	SOUTH.	S. 1 W.				SOUTH.	SOUTH.	0 0		
S. W. W. W. W. W. W. W. W. W. W. W. W. W.	S. by W.	S. by W. 3 W.	::o oo-			S. by W.	S. by W. & W.) -da		
S. W. by S. \$\frac{1}{2} \text{S. W. by S. \$\frac{1}{2} \text{S. W. by S. \$\frac{1}{2} \text{W. by W. \$\frac{1}{2} \text{S. W. by W. by W. \$\frac{1}{2} \text{S. W. by W. by W. \$\frac{1}{2} \text{S. W. by W. by W. \$\frac{1}{2} S. W. by W. by W	0.5. W.	S. S. W. & W.	-1010			S. S. W.	S. S. W. 1 W.	 4		
S. W. by W. 4 W. 5 W. 4 So W. by W. 5 W. by W. 4 W. 5 W. by W. 4 W. 5 W. by W. 5 W. by W. 4 W. 5 W. by W. 5 W. by W. 5 W. by W. by W. 5 W. by W.	S. W. Dy	S. W. Dy S. % W.	nicori			S. W. by S.	S. W. by S. \(\frac{1}{2} \) W.	'{c10		
W. by S. The control of the control	S. W. by W.	S. W. by W. 3 W.	4001-		4 4	S. W. S. W.	S. W. Se W.	2)00-		1 4 30
WEST. W. by N. W. by N. W. by W.	W. S. W.	W. by S.	* I		6 4 90	W. S. W.	S. W. By W. ♣ W. W. S. W. B. W.	450		- 3 10
W. by N. W. by N. W. by N. W. by N. W. by N. N. W. by W. 5. W. by W. 5. W. by N. W. by N. W. by N. N. W. by W. 5. W. by W. 5. W. by N. W. by N. W. by N. N. W. 5. W. by W. 5. W. W. by W. W. W. 5. W. 5. N. W. by N. 5. W. by W. 5. W. W. 5. W. 5. N. W. by W. 5. W. W. by N. W. W. 5. W. 5. N. W. by W. 5. W. W. by N. W. W. by N. W. by W. 5. N. by W. 5. W. by W. 5. W. by W. 5. W. by W. 5. N. by W. 5. W. by W. 5. W. by W. 5. W. by W. 5. N. by W. 5. W. by W. 5. W. by W. 5. W. by W. 5. N. by W. 5. W. by W. 5. W. by W. 5. W. by W. 5.	W. by S.	WEST.	1		- 7 20	W. by S.	W. & S.	00:00		1 4 \ 5 \
N. W. W. W. W. W. W. W. W. W. W. W. W. W.	WESI.	W. by N.	1		- 7 20	WEST.	W. was N.	020 0		1 4 4
N. W. By W. T. N. W. By W. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	W. by N.	W. N. W.	Ī		- 7 20	þ	W. by N. 3 N.	000 000		4 4 4 5 6 5 6 5
N. W. 59 N. S. S. N. W. 59 W. N. W. 59 W. N. W. 50 N. W.	N W 1w. W	N. W. by W.]		- 7 20	W. N. W.	W. N. W. 3 N.	onloo	-	4 30
N. W. 8 N. W. 4 N. W.	N W N	N M T N	-lock-		0 50	N. W. by W.	N. W. & W.	:0100·		1 4 30
N. N. W. 5 N. 5 N	N M	N W PA N 20 N	loovo		5 50		N. W	-14"		-3
$N. by W. \frac{3}{8}N.$ $-\frac{3}{8}$ $-\frac{1}{8}$		N N N N	0010		4 6		N. W. by N. A. N.			-3 0
- 1 30 NORTH. 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	N. by W.	N. by W. 3 N.	0000k)	N. M. W.	IV. W. 4	14		130
	NORTH.		o ∞		1 1 30	NORTH.	Ć.	0 0		0 70
					,			>		

A deviation of the North Point of the Compass to the East is designated by the sign +;

A deviation to the West by the sign —

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = \(\text{10} \) 37/4

B = \(\text{9} \) 27/4

B = \(\text{9} \) 27/5

Assumed magnetic bearing of tree S. 9° 15/ W. Distant 6\frac{1}{4}\) miles.

- 12
٠
C
Z
Α
⋖
Z
Ċ
MONADMOCK
~
-
IRON CLAD
Z
9
_ ~
70
S
Ŋ
_
(2)
THE U
Н
_
Z
S ON THE
S
Ś
۲
Ţ
Ž
ړې
\circ
_
. ₩
- 11
~
N
- 74
TAN
ĭ
01
5 2
Ę
DMIRALTY
- 5
~
₹
- 5
コ
4
ഥ
THE
Ξ
OF THE ADI
•
S
Ž
0
귿
\d
H
2
Œ
О
Œ
Ξ
THE
ည
Z
RMINI
H
×
ER
된
_
E
\Box
فد
O.R
\mathbf{E}
S
Ň
2
Η
ď
>
Ä
표
91
щ
OB

· · · · · · · · · · · · · · · · · · ·	Corrected Deviation of Compass.	++++++++ % % % % % % % % % % % % % % % % % % %	y the sign +; icients of the
je	Deviation of Compass in Degrees.	++++++++ 3	it is designated by use of the coeffic $C = +2^{\circ}$ 18'.7
oer 19, 1865. f Object = N. 88° 45' E. Correction for Lubber Line	Deviation of Compass in Points.		ass to the East following value 46'.1 E=-0° 1
Ceara, December 19, 1865. Assumed Magnetic Bearing of Object = N. 88° 45' E. Correction for Object = + 1° 51'. Correction for Lubber Lin	Bearing of Object by Compass.	NNNNNNNN \$ 78 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A deviation of the North Point of the Compass to the East is designated by the sign $+$; From the observations given above, the following values of the coefficients of the viation are obtained: A = -0° 34'.7 B = $+4^\circ$ 46'.1 C = $+2^\circ$ 18'.7 D = $+0^\circ$ 49'.2 E = -0° 14'.4
Assı Correction 1	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. B. B. B. B. B. B. B. B. B. B. B. B. B.	A deviation of the North Point of a deviation to the West by the sign From the observations given al deviation are obtained: A = -0° 34'.7 D = +0°
· o	Corrected Deviation of Compass.	++ ,2,72 ,04,04	the sign +; cients of the
30, 1865. 11° 0' W. Lubber Line =	Deviation of Compass in Degrees.	++ ,04 8	East is designated by the sign $+$; values of the coefficients of the C =
Isle Royal, Salute Islands, November 30, 1865. Assumed Magnetic Bearing of Object = S. 11° o' W. Correction for Object = -0° 2′. Correction for Lubber Line = 0.	Deviation of Compass in Points.		ss to the East is illowing values C E=
	Bearing of Object by Compass.	S. 5° 20′ W. 5. 40 W.	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: B C D E E D E
Isle Ass Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N	A deviation of the North Point of the a deviation to the West by the sign— From the observations given above deviation are obtained: A = D =

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS ON THE U.S. IRON CLAD MONADNOCK.

j o	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign +; coefficients of the o'.2
30' W. bber Line	Deviation of Compass in Degrees.	322222222222 1 +++++++++++++++++++++++++++++++	East is designated by values of the coeffice $C = + 0^{\circ}$ o'.2
uary 10, 1866. Object = N. 53° 30' W. Correction for Lubber Line	Deviation of Compass in Points.		ass to the East is ollowing values $\begin{array}{cccccccccccccccccccccccccccccccccccc$
Rio Janeiro, January 10, 1866. Assumed Magnetic Bearing of Object = N. 53° Correction for Object = + 2° 44′. Correction for Lu	Bearing of Object by Compass.	N. N. N. N. N. N. N. S. S. S. S. S. S. S. S. S. S. S. S. S.	A deviation of the North Point of the Compass to the East is designated by the sign + deviation to the West by the sign —. From the observations given above, the following values of the coefficients of the viation are obtained: $A = +2^{\circ} 35'.7$ $D = +0^{\circ} 53'.5$ $E = -0^{\circ} 3'.1$
Assu	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. BE. W. B. B. B. B. B. B. B. B. B. B. B. B. B.	A deviation of the North Point of a deviation to the West by the sign From the observations given all deviation are obtained: $A = + 2^{\circ} 35'.7$ $A = + 2^{\circ} 35'.7$
· · ·	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign +; coefficients of the o'.4
76° 30' W. Lubber Line	Deviation of Compass in Degrees.	+ + + + + + + + + + + + + +	designa of the ==+0°
er 30, 1865. Object = N. 7 Correction for	Deviation of Compass in Points.		ss to the East is llowing values $38'.5$ C E = 0° 0′.0
Bahia, December 30, 1865. Assumed Magnetic Bearing of Object = N. 76° 30′ W. Correction for Object = + 2° 30′. Correction for Lubber Line	Bearing of Object by Compass.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	A deviation of the North Point of the Compass to the leviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = + 1^{\circ} 40'.2$ $B = + 3^{\circ} 38'.5$ $D = + 0^{\circ} 47'.8$ $E = 0^{\circ}$
Assu	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. N. E. by N. N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by E. E. by	A deviation of the North Point of a deviation to the West by the sign. From the observations given al deviation are obtained: A = + 1° 40′.2 D = + 0°

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS ON THE U.S. IRON CLAD MONADNOCK.

le	of Corrected in Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign +; coefficients of the 40'.6
1866. S. 14° 45' E. for Lubber Lin	Deviation of Compass in Degrees.	++++++++++++++++++++++++++++++++++++++	East is designat values of the $C = -0^{\circ}$
February 10, 1866. ing of Object = S. 14° 45' E. 7'. Correction for Lubber Line	Deviation of Compass in Points.		Compass to the East the following value: $+1^{\circ}$ 20'.6 $=+1^{\circ}$
Sandy Point, February 10, Assumed Magnetic Bearing of Object = Correction for Object = +0° 7′. Correction	Bearing of Object by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	f the bove, B = 53':
Ass	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. N. by W. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. B. b	A deviation of the North Point of a deviation to the West by the sign. From the observations given all deviation are obtained: $A = + \circ^{\circ} 35'.9$ $A = + \circ^{\circ} 35'.9$ $A = + \circ^{\circ} 35'.9$
o l	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign $+$; coefficients of the 5'.8
o o' W. ubber Line	Deviation of Compass in Degrees.	++++++++++++++++++++++++++++++++++++++	designa of the -+0° .5
Monte Video, January 24, 1866. Assumed Magnetic Bearing of Object = N. 87 Correction for Object = -0° 13′. Correction for L.	Deviation of Compass in Points.	++	lL_
	Bearing of Object by Compass.	S. S. S. S. S. S. S. S. S. S. S. S. S. S	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = + r^{\circ} \frac{32'.8}{D} = + r^{\circ} \frac{19'.5}{E} = + r^{\circ} \frac{19'.5}{D} = + r^{\circ} \frac{19'.5}{D}$
Ass	Assumed Magnetic Direction of Ship's Head.	NORTH N. N. W. E. B. N. N. W. E. B. N. N. W. E. B. E. B. W. E. B. S. S. E. B. S. S. E. B. S. S. E. B. S. S. W. W. S. S. W. W. S. S. W. W. S. S. W. W. S. S. W. S.	A deviation of the North Point of a deviation to the West by the sign – From the observations given abo deviation are obtained: $A = + 1^{\circ} 32'.8$ $A = + 1^{\circ} 10^{\circ}$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS ON THE U.S. IRON CLAD MONADNOCK.

· II	f Corrected Deviation of Compass.	######################################	, 1, (a ,
72° 45' W. Lubber Line	Deviation of Compass in Degrees.	is designated	2
1 29, 1866. f Object = S. 72° 45' W. Correction for Lubber Line	Deviation of Compass in Points.	ass to the East	
Callao, April 29, 1866. Assumed Magnetic Bearing of Object == S. Correction for Object == + 0° 6'. Correction for	Bearing of Object by Compass.	MORTH. NORTH. est by the sign —.	
Assı Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. R. E. by N. N. E. by	a deviation to the West by the sign
.0.	Corrected Deviation of Compass	the sign + + + + + + + + + + + + + + + + + + +	-
Valparaiso, April 4, 1866. Assumed Magnetic Bearing of Object = N. 15° 15' E. Correction for Object = + 0° 1'. Correction for Lubber Line =	Deviation of Compass in Degrees.)
	Deviation of Compass in Points.	w	
	Bearing of Object by Compass.	NORTH. N. by E. N. by W. st by the sign —.	
Correct	Assumed Magnetic strain of Ship's Head.		a deviation to the West by the sign

a deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = + \cos 35'$, $A = + \cos 54'$, $A = + \cos 10'$, $A = + \cos 52'$, A = +

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS ON THE U.S. IRON CLAD MONADNOCK.

te I, 1866. f Object = N. 63° 15' E. Correction for Lubber Line = 0.	Deviation of Corrected Compass in Deviation of Compass.	++++++++++++++++++++++++++++++++++++	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: A = -0° 36.9 B = $+2^{\circ}$ 45.4 C = $+0^{\circ}$ 5.5 D = $+0^{\circ}$ 56.8 E = $+0^{\circ}$ 8.0
f Object = N. Correction for	Deviation of Compass in Points.		ass to the East is collowing values $45'.4$ C= $\pm -0^{\circ}$ 8.0
Acapulco, June 1, 1866. Assumed Magnetic Bearing of Object = N. Correction for Object = $+ \circ^{\circ} 6'$. Correction for	Bearing of Object by Compass.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	the North Point of the Compass to the East is designal West by the sign —. The relations given above, the following values of the med: $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$ $0.36.9$
Ass Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by E. S. E. by E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. B. By E. S. By W. S. By W. S. W. By W. W. By N. W. By N.	A deviation of the North Point of a deviation to the West by the sign. From the observations given a deviation are obtained: A = -0° 36/.9 D = +0°
·o	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign +; coefficients of the 1'.9
Panama, May 20, 1866. Assumed Magnetic Bearing of Object = S. 15° o' W. Correction for Object = $+$ o° 1′. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	++++++++++++++++++++++++++++++++++++++	s designars of the = + 0°
	Deviation of Compass in Points.		
	Bearing of Object by Compass.	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = + \circ^{\circ} 31'.6$ $B = + 3^{\circ} 2'.1$ $A = + \circ^{\circ} 55'.0$ $B = + 3^{\circ} 2'.1$
As: Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N.N.E. by N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.	A deviation of the North Point of a deviation to the West by the sign-From the observations given abdeviation are obtained: $A = + \circ^{3} 3.6$ $A = + \circ^{3} 3.6$ $A = + \circ^{2}$

Observations for Determining the Deviations of the Admiralty Standard Compass on the U.S. Iron Clad Monadnock.

me 23, 1866. Object = N. 29 $^{\circ}$ 30' W. Correction for Lubber Line = 0.	Compass in Compass in Deviation of Points. Compass.	N. E. by E. N. 33 ° W. H. S. S. S. W. W. S. S. S. E. by S. W. W. by S. W. W. by S. W. W. by W. W. W. by S. W. W. by W. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. by W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. S. S. W. W. W. W. W. W. S. S. W. W. W. W. W. W. W. W. S. S. W. W. W. W. W. W. S. S. W. W. W. W. S. S. W. W. W. W. W. W. W. S. S. W. W. W. W. W. W. W. W. W. S. S. W. W. W. W. W. W. W. W. W. W. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.
San Francisco, June 23, 1866. Assumed Magnetic Bearing of Object = N. 29° Correction for Object = 0° 45'. Correction for Lul	Bearing of Object by Co-Compass.	N. 28° 20′ W. N. 32 0 0 W. N. 33 0 0 W. N. 33 0 0 W. N. 34 30 W. N. 34 15 W. N. 34 15 W. N. 35 0 W. N. 35 2 0 W. N. 35 2 0 W. N. 37 2 0 W. N. 28 40 W. N. 28 40 W. N. 25 2 0 W. N. 25 2 0 W. N. 25 3 0 W. N. 25 3 0 W. N. 25 15 W. N. 25 15 W. N. 25 15 W. N. 27 15 W. N. 28 30 W. N. 28 20 W. N. 28 20 W. N. 28 30 W. N. 28 20 W. N. 28 30 W. N. 28 2
Assur Correction f	Assumed Magnetic Direction of Ship's Head,	N. N. E. N. N. E. N. N. E. N. N. E. N. E. by N. N. E. by N. E. by N.
.0	Corrected Deviation of Compass.	the sign + ;
Magdalena Bay, June 9, 1866. Assumed Magnetic Bearing of Object = S. 56° 30' E. Correction for Object = -0° 41'. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	+ 0 10
	Deviation of Compass in Points.	υ
	Bearing of Object by Compass.	N. N. E. by N. N. E. by N. N. E. by N. E. B. by S. E. by S. S. E. by E. S. S. E. S. S. E. S. S. W. S. S. W. S. W. by W. S. W. S. W. by W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. W. S. S. S. W. S. S. S. W. S. S. S. W. S. S. S. W. S. S. S. S. S. W. S. S. S. S. S. S. S. W. S
	Assumed Magnetic Direction of Ship's Head.	N. N. E. by N. E. S. S. E. by S. S. S. S. S. S. S. S. S. S. S. S. S.

a deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A=+0° 9.0 B=+3° 12'.1 C=-1° 10'.3

A=-0° 39'.6 B=+4° 53'.2 C=-1° 15'.4

D=+0° 53'.5 E=+0' 5'.8

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

·oi	Corrected Deviation of Compass.	0	by the sign +; ss swung. He r, are evidently
65. Lubber Line	Deviation of Compass in Degrees.	•	is designated is the ship within, however
mber 18, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.	+	ass to the East is on shore wh observations, w
St. Thomas, November 18, 1865. Correction for Object = +0° 16'. Correction for Lu	Ship's Head by Compass.	NORTH. N.N. N.	A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign The officer who usually read this compass was on shore when the ship was swung. He was replaced by another who made the above observations, which, however, are evidently worthless. No use has been made of them.
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. E. E. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. S. S. S. B. B. B. B. B. B. B. B. B. B. B. B. B.	A deviation of the North Point of the a deviation to the West by the sign —. The officer who usually read this com was replaced by another who made the worthless. No use has been made of the
· · ·	Corrected Deviation of Compass.	++++++++++++++++++	the sign +; cients of the
865. Lubber Line	Deviation of Compass in Degrees.	•	East is designated by the sign $+$; values of the coefficients of the $C = -1^\circ$ 14'.1
vember 1, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.		1
Hampton Roads, November 1, 1865. Correction for Object = +3° 57′. Correction for Lub	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following eviation are obtained: $A = + \circ^{\circ} 27.5$ $D = + 1\circ^{\circ} 39.2$ $E = +$
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. B. B. B. N. B. B. B. E. B. B. B. E. B. B. B. E. B. B. B. E. S. B. B. E. S. B. B. E. S. B. B. E. S. B. B. E. S. B. B. E. S. B. B. E. S. E	A deviation of the North Point of the a deviation to the West by the sign —. From the observations given above deviation are obtained: $A = + \circ^{\circ} 27 \cdot 5$ $D = + 1^{\circ} 39$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

F 6° 18′.	Corrected Deviation of Compass.	++++++++ % 70 7 70 4 4 4 \$ 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	by the sign +; efficients of the
ber Line ==	Deviation of Compass in Degrees.	0	is designated es of the coordinate $2 = +2^{\circ} +7^{\circ}$
ember 19, 1865. Correction for Lubber Line = + 6° 18/	Deviation of Compass in Points.		the Compass to the East is designated by ove, the following values of the coeff $B = +4^{\circ} 34'.9$ $C = +2^{\circ} 4'.8$ $3'.4$ $E = -0^{\circ} 16'.5$
Ceara, Dece=+1° 51′.	Ship's Head by Compass.	N N N N N N N N N N N N N N N N N N N	orth Point of by the sign. as given ab $21^{\circ}.5$ D= $+2^{\circ}$
Correction for Object	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. N. E. E. E. E. E. E. E. E. E. E. E. E. E.	A deviation of the North Point of the a deviation to the West by the sign— From the observations given above deviation are obtained: $A = + 0^{\circ} 21'.5$ $A = + 2^{\circ} 3'$
50 187.	Corrected Deviation of Compass.	% % % % % % % % % % % % % % % % % % %	the sign +;
30, 1865. er Line = + 6	Deviation of Compass in Degrees.	0	East is designated by the sign +; values of the coefficients of the C=
ands, November 30, 1865. Correction for Lubber Line = +6° 18'.	Deviation of Compass in Points.	0 0	
Isle Royal, Salute Islands, November 30, 1865. Correction for Object =0° 2′. Correction for Lubber Line =	Ship's Head by Compass.	EAST. E. by S.	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following viation are obtained: B = E = E
Isle Correction for (Assumed Magnetic Direction of Ship's Head.	NORTH. N.N. W. W. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the a deviation to the West by the sign— From the observations given above deviation are obtained: A = D =

. :
DNOCK
NO N
P
N
Mo
CLAD
\ddot{c}
IRON (
RO
Η.
S
D
HE
Η
NO
\circ
ASS
)MP
Ş
_
IAC
IN
\mathbf{B}_{I}
8
TE
AF
HE
H
F
S
NO
ŢŢ
IA
ΕV
Ω
THE
H
N.C
Ż
MI
ER
ET
O
OR
E
NS
10
ΑŢ
RV
SE
OB
_

	° 43′.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	v the sion 1.
NADNOCK.	January 10, 1866. Correction for Lubber Line = +5°	Deviation of Compass in Degrees.	0	is designated by
ON CLAD MO	uary 10, 1860 ection for Lubb	Deviation of Compass in Points.		ass to the East
PASS ON THE U.S. IR	Rio Janeiro, January 10, 1866. Correction for Object = + 2° 44' Correction for Lubber	Ship's Head by Compass.	N. N. N. 可用用用 N. N. N. N. N. N. N. H. H. H. H. H. H. H. H. H. H. H. H. H.	A deviation of the North Point of the Compass to the East is designated by the sign 1.
ER BINNACLE COM	Correction for	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. R. E. by N. E. by N. E. E. by N. E. E. by N. E. by N. E. by S. E. by E. S. E. by E. S. E. by E. S. E. by E. S. B. By E. S. By W. S. W. By W. S. W. By W. S. W. W. By W. S. W. W. By W. S. W. By W. S. W. W. By W. S. W. By W. S. W. By W. S. W. By W. S. W. By W. S. W. By W. S. W. W. By W. S.	A deviation of the
OF THE AFT	6° 18′.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	the sign +;
DEVIATIONS	ber Line = +	Deviation of Compass in Degrees.	0	s designated by
MINING THE	December 30, 1865. 30'. Correction for Lubber Line $= + 6^{\circ}$ 18'.	Deviation of Compass in Points.		ss to the East is
OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.	Dece 30'.	Ship's Head by Compass.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	A deviation of the North Point of the Compass to the East is designated by the sign +;
OBSE	Bahia, Correction for Object $= +2^{\circ}$	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. NORTH. E. M. W. E. M. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the 1

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A=+1° 29'.8

B=+5° 43'.6

C=-0° 6'.9

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A=+1° 29'.8

B=+5° 43'.6

C=-0° 4'.2

D=+1° 56'.7

E=-0° 4'.2

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

rection for C	Monte Video, Jan Correction for Object =0° 13'. Cor	January 24, 1866. Correction for Lubber Line = +4°	56. ber Line = +	4° 9′.	Correction for	Sandy Point, February 10, 1866. Correction for Object $= + 0^{\circ}$ 7'. Correction for Lubber	February 10, 1866. Correction for Lubber Line = + 4° 9'.	6. er Line = +	.,6 .
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. NORTH. NORTH. N. N. E. W. E. B. N. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	++++++++++	•	+ + + + + + + + + + + + + + + + + + +	NORTH. N. R. E. by N. R. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. by N. E. B. B. by N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.		•	++++++++++++++++++++++++++++++++++++
A deviation of the Nest a deviation to the West From the observation deviation are obtained: A = + 1	A deviation of the North Point of the Compass to the a deviation to the West by the sign —. From the observations given above, the following deviation are obtained: $A = + 1^{\circ} 3'.1$ $A = + 5^{\circ} 3'.2$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$ $A = + 1^{\circ} 3'.1$		East is designated by the sign $+$; values of the coefficients of the $C = + o^{\circ} 41'.9$ o° $42'.5$	y the sign +; cients of the	A deviation of the North Point of the a deviation to the West by the sign —. From the observations given above deviations are obtained: $A = -0^{\circ} 24'.5$ $A = +1^{\circ} 58$	A deviation of the North Point of the Compass to the East is designated by the sign + deviation to the West by the sign —. From the observations given above, the following values of the coefficients of the viations are obtained: $A = -0^{\circ} 24'.5$ $A = +1^{\circ} 58'.5$ $A = +0^{\circ} 0'.2$	the Compass to the East: ove, the following value $B = + 5^{\circ} 44'.4 \qquad (58'.5)$ $E = + 0^{\circ} 0$	it is designated by ues of the coeffic $C = -0^\circ$ 14.6	y the sign + cients of the 6

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE. COMPASS ON THE U. S. IRON CLAD MONADNOCK,

ı	J., o		+;
3° 44′.	Corrected Deviation of Compass.	++++++++++++	y the sign -
oer Line = +	Deviation of Compass in Degrees.	0	is designated best of the coefficient of the coeffi
pril 29, 1866. Correction for Lubber Line = +	Deviation of Compass in Points.		following values 12.5 C= 12.5 C= C= 0,0
Callao, A =+0° 6′.	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	f the Comp — bove, the B = +4°
Correction for Object	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by E. B. S. S. E. by E. S. S. E. by E. S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. W. S. S. W. W. S. S. W. W. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of a deviation to the West by the sign From the observations given a deviations are obtained: $A = -0^{\circ} 27.1$ $A = -2^{\circ}$ $D = +2^{\circ}$
t° 17'.	Corrected Deviation of Compass.	+++++++++++ 0 + 4 + 2 + 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4	the sign $+$;
er Line = + 4	Deviation of Compass in Degrees.	0	East is designated by the sign $+$; values of the coefficients of the $C = + 0^{\circ} 7.9$
, April 4, 1866. Correction for Lubber Line = + 4°	Deviation of Compass in Points.		
raiso 1'.	Ship's Head by Compass.	N. W. W. E. E. L. E. B. W. N. N. W. W. E. E. L. E. B. W. N. N. W. E. E. L. E. B. W. N. N. W. E. E. L. E. B. W. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = +0^{\circ} 4'.9$ $A = +2^{\circ} 1'.5$ $A = +2^{\circ} 1'.5$ $A = +2^{\circ} 1'.5$
Valpai Correction for Object $=+ \circ^{\circ}$	Assumed Magnetic Direction of Ship's Head.	NORTH N. W. W. E. W. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of that deviation to the West by the sign —. From the observations given above deviation are obtained: $A = + 0^{\circ} 4^{\prime}.9$ $D = + 2^{\circ} 1$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

1	o of		;;
3° 44′.	Corrected Deviation of Compass.	++++++++++	y the sign -
Acapulco, June 1, 1866. Correction for Object = $+ \circ^{\circ} 6'$. Correction for Lubber Line = $+ 3^{\circ} 44'$.	Deviation of Compass in Degrees.	0	is designated b
	Deviation of Compass in Points.		ass to the East
	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the East is designated by the sign ±:
	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. N.	A deviation of the
3° 44′.	Corrected Deviation of Compass.	+ + + + + + + + + +	the sion +:
er Line = +	Deviation of Compass in Degrees.	0	East is designated by the sign \pm :
May 20, 1866. Correction for Lubber Line = +3° 44'.	Deviation of Compass in Points.		
Panama, Correction for Object = $+ \circ^{\circ}$ 1'.	Ship's Head by Compass.	N.N. N.N. N.N. N.N. N. N. N. N. N. N. N.	A deviation of the North Point of the Compass to the
	Assumed Magnetic Direction of Ship's Head.	**************************************	A deviation of the N

A deviation of the North Four of the Compass to the East is designated by the sign +;

A deviation of the North Four of the Compass to the East is designated by the sign +;

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = -0° 50'.0

B = $+3^{\circ}$ 19'.5

C = $+0^{\circ}$ 22'.0

A = -1° 0'.2

B = $+2^{\circ}$ 32'.7

E = -0° 18'.0

D = $+2^{\circ}$ 32'.7

E = -0° 17'.1

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

3° 49′.	Corrected Deviation of Compass.	50000000000000000000000000000000000000	322222222222222222222222222222222222222
r Line = +	Deviation of Compass in Degrees.	•	
o, June 23, 1866. Correction for Lubber Line = +	Deviation of Compass in Points.		
Francisc o° 45′.	Bearing of Object by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	N. N. N. W. W. W. W. W. W. W. W. W. W. W. W. W.
San Correction for Object.=-	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. N. N. N. N. N. N. N. N. N. N. N. N	S. W. by S. W. by S. W. by S. W. by W. S. W. by W. By W. W. by W. By W.
3° 44′.	Corrected Deviation of Compass.	- 1 10 - 1 10	++
), 1866. for Lubber Line = +	Deviation of Compass in Degrees.	•	
ay, June 9, 1866 Correction for Lubl	Deviation of Compass in Points.	forestra	
Magdalena Bay, June 9, 1866 Correction for Object = -0° 41'. Correction for Lubl	Bearing of Object by Compass.	N. ² E. N. by E. ² E.	S. W. 14 W. S. W. 14 W. S. W. 14 W. S. W. 14 W. D. S. W. 14 W. D. D. S. S. S. S. S. S. S. S. S. S. S. S. S.
ction for C	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH. NORTH.	S. W. by S. S. W. by S. W. by S. W. by S. W. by W. by W. by N. W. by N. W. by N. W. by N. W. by N. W. by N. W. by W. N. W. by N. W. by W. N. W. by W. N. W. by W. N. W. by W. N. W. by W. N. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W. W. by W.

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = -1° 10'.7

B = +2° 16'.0

C = -1° 16'.8

A deviation of the North Point of the Compass to the East is designated by the sign +;

A deviation of the North Point of the Compass to the East is designated by the sign +;

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = -1° 10'.7

B = +2° 16'.0

C = -2° 13'.9

D = +1° 47'.5

E = +0° 10'.2

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER RITCHIE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

· 0	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	y the sign +; icients of the
mber 18, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	°	is designated by use of the coeffic $C = + 0^{\circ} + 0^{\circ} + 0^{\circ}$ $C' = + 0^{\circ} + 0^{\circ} + 0^{\circ}$
mber 18, 18 Correction for	Deviation of Compass in Points.	++++++++++++++++++++++++++++++++++++++	Compass to the East is of the following values of $+8^{\circ}$ 26'.9 C= $=-0^{\circ}$ 37'.2
St. Thomas, November 18, 1865. Correction for Object = +0° 16'. Correction for Lub	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	f the bove, B = 54'.2
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. R. E. by N. E. by N. E. by N. E. by N. E. by S. E. by E. S. E. by E.	A deviation of the North Point of a deviation to the West by the sign. From the observations given a deviation are obtained: $A = +3^{\circ} \cdot 14' + A = +1^{\circ} \cdot 14' +$
o II	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	the sign +; cients of the
r 1, 1865. on for Lubber Line = 0.	Deviation of Compass in Degrees.	•	East is designated by the sign $+$; values of the coefficients of the $C = -1^\circ 44'.I$
ovember 1, 1 Correction for	Deviation of Compass in Points.	++++++++++++++++++++++++++++++++++++++	1
Hampton Roads, November 1, 1865. Correction for Object = $+3^{\circ}$ 57′. Correction for Lubb	Ship's Head by Compass.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	A deviation of the North Point of the Compass to the deviation to the West by the sign—. From the observations given above, the following viation are obtained: $A = + 7^{\circ} 40^{\circ}.$ $D = + 0^{\circ} 15^{\circ}.$ $E = -$
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. E. B. S. S. E. by E. S. S. S. B. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	A deviation of the North Point of the a deviation to the West by the sign —. From the observations given above deviation are obtained: $A = +7^{\circ} 40^{\circ}$ $A = +7^{\circ} 15^{\circ}$ $A = +7^{\circ} 15^{\circ}$ $A = +7^{\circ}$ $A = +7^{\circ}$

Monadnock.
C_{LAD}
IRON (
$\dot{\mathbf{v}}$
D.
THE
COMPAS
RITCHIE COMPASS ON
AFTER
OF TH
DEVIATIONS
THE
DETERMINING
FOR
OBSERVATIONS FOR
$\overline{}$

- 6° 18′.	f Corrected Deviation of Compass.	++++++++ %	l by the sign +; efficients of the
oer Line 💳 🕂	Deviation of Compass in Degrees.	0	is designated es of the co $= + + 4^{\circ}$ 55'.
er 19, 1865. ection for Lubb	Deviation of Compass in Points.	++++++++++ 	uss to the East ollowing value 56.0 C:
Ceara, December 19, 1865. Correction for Object = $+1^{\circ}$, 51' Correction for Lubber Line = $+6^{\circ}$ 18'.	Ship's Head by Compass.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: $A = + 5^{\circ} 54.2 B = + 7^{\circ} 56^{\circ} C = + 4^{\circ} 55'.4$ $D = + 1^{\circ} 26'.6 E = -0^{\circ} 42'.7$
Correction for	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. N. E. N. E. N. E. N. N. M. N. M. N. M. M. N. M. M. M. M. M. M. M. M. M. M. M. M. M.	A deviation of the North Point of a deviation to the West by the sign. From the observations given all deviation are obtained: A=+5° 54'.2
5° 18′.	Corrected Deviation of Compass.	+ 11° 50′ + 14 40	the sign $+;$ cients of the
30, 1865. er Line = + 6	Deviation of Compass in Degrees.	0	East is designated by the sign +; values of the coefficients of the
ands, November 39, 1865. Correction for Lubber Line $= + 6^{\circ}$ 18'.	Deviation of Compass in Points.	++	
e Isla 2'.	Ship's Head by Compass.	ନ୍ତ ବ୍ୟକ୍ତୀୟ ଅଧି	A deviation of the North Point of the Compass to the leviation to the West by the sign —. From the observations given above, the following viation are obtained: B = E = E
Isle Royal, Salutt Correction for Object = — o°	Assumed Magnetic Direction of Ship's Head.	NORTH NORTH N.N. N. N. E. B. N. N. N. E. B. E. B. B. E. B. B. S. S. E. B. S. S. E. B. S. S. E. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. S. S. S. S. B. S	A deviation of the North Point of the a deviation to the West by the sign —. From the observations given above deviation are obtained: D = B

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER RITCHIE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

for Obj	Correction for Object $= +2^{\circ}$ 30'. Correction	mber 30, 1805. Correction for Lub	1905. for Lubber Line $= +6^{\circ}$ 18'.	6° 18′.	Correction for O	No Janetro, January 10, 1800. Correction for Object $= + 2^{\circ} 44'$. Correction for Lubbe	January 10, 1860. Correction for Lubber Line $=+5^{\circ} 43'$.	6. ber Line = +	5° 43′.
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. N. E. by N. N. E. by	N. N. N. N. N. N. N. N. N. N. N. N. N. N	++++++++++++++++++++++++++++++++++++++	•	++++++++++++++++++++++++++++++++++++++	NORTH. N. N. N. N. N. N. N. N. N. N. N. N. N. N	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.		0	++++++++++++++++++++++++++++++++++++

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A=+8° 47′.1 B=+6° 55′.6 C=-0° 57′.2

A=+8° 47′.1 E=+0° 14′.2

D=+1° 59′.1 E=-0° 7′.4

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

Monte Correction for Object =-	Video, . °° 13′.	January 24, 180 Correction for Lul	4, 1866. for Lubber Line = + 4°	-4° 9′.	Correction for	Sandy Point, Feb Correction for Object = + 0° 7′. Cc	February 10, 1866. Correction for Lubber Line = +4°	56. ber Line = +	- 4° 9′.
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH N. N. W. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. S. S. E. W. S. S. S. E. W. S. S. S. E. W. S. S. S. W. W. S. S. W. W. S. S. W. W. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	+++++++ ++ +	•	++++++++++ +++++++ ° 4 0 0 11 11 11 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	NORTH. NORTH. N. N. N. N. N. N. N. N. N. N. N. N. N. N	N. N. N. N. N. N. N. N. N. N. N. N. N. N	+++++++ ++++++++++++++++++++++++++++++	0	++++++++++++++++++++++++++++++++++++++
A deviation of the 1	A deviation of the North Point of the Compass to the		East is designated by the sign +:	the sign +:	A deviation of the	A deviation of the North Point of the Commacs to the East is designated 1 1.	oce to the Hact ;	- Consignation of	

A deviation of the 100 Hz form that the following values of the coefficients of the deviation are obtained:

A = $+6^{\circ}$ 32'8

A = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

B = $+6^{\circ}$ 32'8

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

3° 44′.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	y the sign +;
er Line = + 3	Deviation of Compass in Degrees.	0	It is designated by use of the coefficient $C = + 0^{\circ}$ 14'.1 52'.0
pril 29, 1866. Correction for Lubber Line =+	Deviation of Compass in Points.	++++++++++++++	ass to the East collowing value 50° . C $E = + 0^{\circ}$ 5
Callao, April 29, 1866. Correction for Object = +0° 6'. Correction for L	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viations are obtained: $A = +4^{\circ} 19'.4 B = +5^{\circ} 50'.1 C = +0^{\circ} 14'.1 D = +1^{\circ} 30'.5 E = +0^{\circ} 52'.0$
Correction for	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. S. E. B. S. E. B. S. S. E. B. S. S. S. B. S. S. S. B. S. S. S. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	A deviation of the North Point of a deviation to the West by the sign From the observations given a deviations are obtained: $A = + 4^{\circ} 19'.4$ $D = + 1^{\circ}$
4° 17′.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	y the sign +; cients of the
, April 4, 1866. Correction for Lubber Line = $+ 4^{\circ}$ 17/.	Deviation of Compass in Degrees.	•	East is designated by the sign $+$; values of the coefficients of the $C = + 0^{\circ} 12'.4$
oril 4, 1866. ection for Lubl	Deviation of Compass in Points.	+++++++++++	
raiso 1'.	Ship's Head by Compass.	NORTH NORTH NORTH NORTH N. N. E. E. E. E. E. E. E. E. E. E. E. E. E.	A deviation of the North Point of the Compass to the E deviation to the West by the sign —. From the observations given above, the following viviation are obtained: $A = + 4^{\circ} 21^{\circ}, 9 B = + 3^{\circ} 49^{\circ}.$ $A = + 4^{\circ} 21^{\circ}, 9 B = + 3^{\circ} 49^{\circ}.$
Valpa Correction for Object $= + \circ^{\circ}$	Assumed Magnetic Direction of Ship's Head.	N. ORTH. N. ORTH. N. ORTH. N. OR E. B. N. O. E. E. D.	A deviation of the North Point of a deviation to the West by the sign From the observations given a deviation are obtained: $A = +4^{\circ} 21'.9$ $A = +2^{\circ} 21'.9$

×
Š
9
ä
A
Z
9
\geq
Α
Ą
건
\cup
Z
္က
- H
ഗ
5
þ
된
THE
NO
SS
Ą
OMPAS
2
$\ddot{\circ}$
_
Ξ
CHI
TCHI
Ξ
R
ER
H
H
A_{FT}
A_{FT}
A_{FT}
THE AFT
THE AFT
OF THE AFT
OF THE AFT
OF THE AFT
OF THE AFT
ATIONS OF THE AFT
VIATIONS OF THE AFT
TIONS OF THE AFT
EVIATIONS OF THE AFT
DEVIATIONS OF THE AFT
DEVIATIONS OF THE AFT
E DEVIATIONS OF THE AFT
THE DEVIATIONS OF THE AFT
THE DEVIATIONS OF THE AFT
THE DEVIATIONS OF THE AFT
INING THE DEVIATIONS OF THE AFT
INING THE DEVIATIONS OF THE AFT
INING THE DEVIATIONS OF THE AFT
RMINING THE DEVIATIONS OF THE AFT
ETERMINING THE DEVIATIONS OF THE AFT
INING THE DEVIATIONS OF THE AFT
DETERMINING THE DEVIATIONS OF THE AFT
DETERMINING THE DEVIATIONS OF THE AFT
FOR DETERMINING THE DEVIATIONS OF THE AFT
FOR DETERMINING THE DEVIATIONS OF THE AFT
FOR DETERMINING THE DEVIATIONS OF THE AFT
FOR DETERMINING THE DEVIATIONS OF THE AFT
TIONS FOR DETERMINING THE DEVIATIONS OF THE AFT
TIONS FOR DETERMINING THE DEVIATIONS OF THE AFT
TIONS FOR DETERMINING THE DEVIATIONS OF THE AFT
vations for Determining the Deviations of the Aft
TIONS FOR DETERMINING THE DEVIATIONS OF THE AFT

Compass in Compass i	Correction for	Panama, May 20, Correction for Object = $+ \circ^{\circ} 1'$. Correction	May 20, 1866. Correction for Lubber Line =+	oer Line == +	3° 44′.	Correction for (Acapulco, Ju. Correction for Object = $+ \circ^{\circ} 6'$. Co	June 1, 1866. Correction for Lubber Line = +	ber Line = +	3° 44′.
NORTH. N	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
	NORTH. N. W. E. by N. N. N. E. by N. E. By	NORTH. NORTH. NORTH. N. N. H. H. H. H. H. H. H. H. H. H. H. H. H.		•		NORTH. N. N. W. B. E. B. W. N. R. E. B. W. N. R. E. B. W. N. R. E. B. W. N. R. E. B. W. N. R. E. B. W. S. S. S. S. S. S. S. S. S. S. S. S. S.			•	++++++++++++++++++++++++++++++++++++++

A deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = +5° 20.6

B = +4° 3.1

C = -0° 10.2

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = +4° 20.1

A = +4° 20.1

A = +1° 12.2

B = +0° 47.0

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

San Francisco, June 23, 1866.	-0° 45′. Correction for Lubber Line = $+3^{\circ}$ 49′.	Ship's Head by Compass in Compass in Points. Degrees. Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the East is designated by the sign +; deviation to the West by the sign —. From the observations given above, the following values of the coefficients of the
San Fr	Correction for Object =-	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. E. by N. N. N. E. by N. E	, a c
	: Line = $+3^{\circ}$ 44'.	Deviation of Corrected Compass in Deviation of Compass.	++ +++++ 1000000000000000000000000000000000000	East is designated by the sign $+$; values of the coefficients of the
June 9, 1866.	. 0 1	Deviation of Compass in Points.		
Magdalena Bay, June 9,	Correction for Object = -0° 41′. C	Ship's Head by Compass.	S. W. B. W. S. W. B. W. S. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. B. W. W. W. B. W.	A deviation of the North Point of the Compass to the deviation to the West by the sign —. Sign —. Sign —. Sign —.
	Correction for (Assumed Magnetic Direction of Ship's Head.	NORTH. N.N. E. by N. E. B. S. W. E. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point or a deviation to the West by the sign From the observations given all deviction are obtained:

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER AZIMUTH COMPASS ON THE U.S. IRON CLAD MONADNOCK.

.0	Corrected Deviation of Compass.	++++++
mber 18, 1865. Correction for Lubber Line = o.	Deviation of Compass in Degrees.	++++++ ++++++++
ember 18, 18 Correction for	Deviation of Compass in Points.	
St. Thomas, November 18, 1865. Correction for Object = +0° 16′. Correction for Lub	Ship's Head by Compass.	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Correction f	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. B. B. N. N. B. B. B. N. B. B. B. N. B. B. B. N. B. B. B. B. B. B. B. B. B. B. B. B. B.
· 0.	Corrected Deviation of Compass.	++++++ +++++++++ + +
vember 1, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	
Ovember 1, 1 Correction for	Deviation of Compass in Points.	
Hampton Roads, November 1, 1865. or Object = +3° 57′. Correction for Lubb	Ship's Head by Compass.	ХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХ
Hampte Correction for Object	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. N. N. N. N. N. N. N. N. N. N. N. N

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A=-1°5/.0 B=-4°53/.0 C=-0°9/.1

A=-1°17/.5 B=-3°0/.9 C=+1°20/.0

A=-1°17/.5 B=-4°12/.2

A=-1°49/.2 E=+0°12/.2

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER AZIMUTH COMPASS ON THE U. S. IRON CLAD MONADNOCK.

Deviation of Deviation of Corrected Assumed Magnetic Compass in Points. Compass in Degrees. Compass.	NORTH. NORTH. NORTH. N. Nby E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 24 E. N. N. 25 E. N. N. 25 E. N. N. 25 E. N. N. 25 E. N. N. N. N. N. N. N.	Point of the Compass to the East is designated by the sign +; the sign above, the following values of the coefficients of the eviation are obtained: A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign —. From the observations given above, the following values of the coefficients of the deviation are obtained:
Ship's Head by Compass.	S. 70° E. 63 E.	A deviation of the North Point of the Compass to a deviation to the West by the sign —. From the observations given above, the follow deviation are obtained:
	Ship's Head by Compass in Compass in Points. Compass. Points. Deviation of Corrected Compass. Compass.	Devation of Devation of Compass in Compass in Deviation of Points. - 20° 0 - 20° 0' - 15 50 - 15 50 - 15 50 - 15 50

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER AZIMUTH COMPASS ON THE U. S. IRON CLAD MONADNOCK.

.00	Corrected Deviation of Compass.	+++ ++++ % 4 0 4 4 4 6 7 7 8 7 2 1 0 2 4 2 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 4 8 5 2 8 4 8 8 0 1 8 0 1 8 0 \$ 0 8 0 1 4 8 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6. Lubber Line ==	Deviation of Compass in Degrees.	+++ 0 +++ 2
nuary 10, 1866. Correction for Lubber Line = 0°.	Deviation of Compass in Points.	
Rio Janeiro, January 10, 1866. Correction for Object $= + 2^{\circ}$ 44'. Correction for Lu	Ship's Head by Compass.	нанана « « « « « « « « « « « « « « « « «
Correction fo	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. N. E. N. N. E. N. E. by N. E. by N. E. by N. E. by E. S. E. by E. S. E. by E. S. B. B. S.
	Corrected Deviation of Compass.	+ + + + + + + + + + + + + + +
Lubber Line =	Deviation of Compass in Degrees.	% 24 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oer 30, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Bahia, December 30, Correction for Object $=+2^{\circ}$ 30'. Correc	Ship's Head by Compass.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Correction fo	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. E. N. W. E. N. W. E. E. By N. E. By

A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained:

A deviation of the North Point of the East is designated by the sign + a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviations are obtained:

A = -3° 36'.9

B = -4° 28'.5

C = -0° 19'.5

D = $+7^{\circ}$ 22'.0

E = -1° 5'.5

D = $+6^{\circ}$ 28'.2

E = -0° 4'.5

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER AZIMUTH COMPASS ON THE U.S. IRON CLAD MONADNOCK.

pril 4, 1866. Correction for Lubber Line = 0.	Deviation of Corrected Compass in Deviation of Degrees.	+++	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: $A = -2^{\circ} 16'.2 B = -4^{\circ} 54'.1 C = +0^{\circ} 20'.9$ $D = +5^{\circ} 52'.5 E = +0^{\circ} 37'.5$
pril 4, 1866. Correction for	Deviation of Compass in Points.		pass to the Eas following valu $54'.1 \qquad C$ $E = + \circ^{\circ}$
Valparaiso, April 4, 1866. Correction for Object $= + \circ^{\circ} 1'$. Correction for	Ship's Head by Compass.	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Next by the sign —. West by the sign —. The sign $-$ Red: $10^{-3} = 16^{-3}$ $10^{-3} = 16^{-3}$ $10^{-3} = 16^{-3}$ $10^{-3} = 16^{-3}$ $10^{-3} = 16^{-3}$ $10^{-3} = 16^{-3}$
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. N. E. by N. E. By N. E. By N. E. By N. E. By N. E. By N. E. By N. E. By N. E. By N. E. By E. S. E. By E.	A deviation of the North Point of a deviation to the West by the sign- From the observations given ab deviation are obtained: $A = -2^{\circ} 16'.2$ $D = +5^{\circ}$
.0	Corrected Deviation of Compass.	+ + + + + + + + + +	y the sign +; cients of the
10, 1866. tion for Lubber Line = 0.	Deviation of Compass in Degrees.	++++++	East is designated by the sign $+;$ values of the coefficients of the $C = -0^{\circ} 47'.2$ $-0^{\circ} 25'.5$
1 5	Deviation of Compass in Points.		
Sandy Point, February Correction for Object = +0° 7′. Corre	Ship's Head by Compass.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	A deviation of the North Point of the Compass to the leviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = -0^{\circ} 5'.6 B = -2^{\circ} 57'.8$ $A = -0^{\circ} 5'.6 B = -2^{\circ} 57'.8$ $A = -0^{\circ} 5'.6 B = -2^{\circ} 57'.8$
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by S. S. S. E. by S. S. S. B. By S. S. S. B. By S. S. S. B. By S. S. S. S. B. By S. S. S. S. S. S. S. S. S. S. S. S. S.	A deviation of the North Point of a deviation to the West by the sign—From the observations given ab deviation are obtained: $A = -0^{\circ} 5'.6$ $A = +7^{\circ}$

Observations for Determining the Deviations of the After Azimuth Compass on the U. S. Iron Clad Monadnock.

	· 0	Corrected Deviation of Compass.	+ + + + + + + + + +	
NADNOCK.	20, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	+ + + + + + + + +	
ON CLAD MC	May 20, 1866. 1'. Correction for	Deviation of Compass in Points.		
ng the Deviations of the After Azimuth Compass on the U.S. Iron Clad Monadnock.	Panama, May Correction for Object = + 0° 1'.	Ship's Head by Compass.	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	
fer Azimuth Comi	Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. N. E. B. N. E. B. S. S. S. E. B. S. S. S. S. E. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	
S OF THE AF	· o	Corrected Deviation of Compass.	+ + + + + +	
DEVIATIONS	1866. ction for Lubber Line = 0.	Deviation of Compass in Degrees.	+ + + + +	
	29, Corre	Deviation of Compass in Points.		
Observations for Determini	Callao, April Correction for Object $= + 0^{\circ} 6'$.	Ship's Head by Compass.	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	
OBS	Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. N. N. E. E. B. N. N. E. E. B. S. S. S. S. E. B. B. E. B. S. S. S. S. S. B. B. B. E. B. S. S. S. S. S. B. B. B. B. B. S. S. S. S. S. B. B. S. S. S. S. S. S. S. S. S. S. S. S. S.	

A deviation of the North Point of the Compass to the East is designated by the sign +;

Rom the Observations given above, the following values of the coefficients of the From the observations are obtained:

A = -3° 56.2 B = -2° 0.6 C = -1° 49.6

A deviation of the North Point of the Compass to the East is designated by the sign +;

A deviation of the North Point of the Compass to the East is designated by the sign +;

A deviation of the North Point of the Compass to the East is designated by the sign +;

A deviation to the West by the sign -.

B rom the observations given above, the following values of the coefficients of the deviation are obtained:

A = -3° 56.2 B = -0° 34.0

B = -0° 34.0

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE AFTER AZIMUTH COMPASS ON THE U. S. IRON CLAD MONADNOCK.

ō	Corrected Deviation of Compass.	++++++++++++
Jubber Line =	Deviation of Compass in Degrees.	7 \\ \tau \\ \u \\ \ta
June 9, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Magdalena Bay, Correction for Object =0° 41'.	Ship's Head by Compass.	N.N. N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.
Correction fo	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. N. E. by
	Corrected Deviation of Compass.	+ + + + + + + + + +
ubber Line ==	Deviation of Compass in Degrees.	+ + + + + +
ne 1, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Acapulco, June 1, 1866. Correction for Object = $+ o^{\circ} 6'$. Correction for	Ship's Head by Compass.	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
Correction fo	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. N. E. B. W. N. N. E. B. W. N. N. E. B. W. N. E. B. W. N. E. B. W. N. E. B. W. N. E. B. W. N. E. B. W. N. E. B. W. S. S. S. S. E. B. W. E. B. S. S. S. W. E. B. W. E. B. W. S. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = -3^{\circ} 11/2$ A =

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD ALIDADE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

Correction 1	Hampton Roads, November Correction for Object = +3° 57′. Correction	ovember 1, Correction for	s, November 1, 1865. 57'. Correction for Lubber Line = 0.		Correction	St. Thomas, November 18, 1865. Correction for Object = $+$ 0° 16′. Correction for Lu	ember 18, 18 Correction for	mber 18, 1865. Correction for Lubber Line = 0.	Ö
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH. N. by E. N. E. by N. N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by E. E. by E. S. S. S. E. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. E. S. S. S. S. S. S. E. S. S. S. S. S. S. S. S. S. E. S.	N. N. N. N. N. N. N. N. N. N. N. N. N. N		•	+ + + + + + + + + + +	NORTH. N. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. S. S. E. W. S. S. E. W. S. S. W. S. S. W. W. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	0	•	
A deviation of the North Point of a deviation to the West by the sign – From the observations given ab deviation are obtained: $A = +2^{\circ} \otimes Y.I$	the Comp ove, the		East is designated by the sign + values of the coefficients of th $C = -1^{\circ} 52'.0$	1 •• 0	de a	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: $A = + 0^{\circ} \frac{35^{\circ}}{1000} = + 1^{\circ} \frac{15^{\circ}}{1000} = + 1^{\circ} 1$	ass to the East is ollowing values 5. 35′.1 C: E = + c°. 20	is designated by the sign es of the coefficients of $C = -0^{\circ} 46'.2$	the sign +;

Observations for Determining the Deviations of the Forward Alidade Compass on the U. S. Iron Clad Monadnock.

AST. AST.	Isle Correction fo	Isle Royal, Salute Islands, November 30, 1865. Correction for Object = -0° 2′. Correction for Lubber Line:	ds, November Correction for L	mber 30, 1865. for Lubber Line = 0.°	. °.	Correction 1	Ceara, December 19, 1865. Correction for Object $= + 1^{\circ}$ 51'. Correction for	ber 19, 1865. Correction for Lubber Line = 0°.	Lubber Line =	.00.
NORTH NORTH North H H H H H H H H H	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
e Compass to the East is designated by the sign +; the following values of the coefficients of the coeffic	N.N. W. W. W. W. W. W. W. W. W. W. W. W. W.	EAST.		•	•	NORTH. N. N. E. B. N. E. B. N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	+++++		
	A deviation of the deviation to the We From the observat eviation are obtained A =	North Point of the Compath by the sign—. ions given above, the flame.	pass to the East following values	is designated by s of the coeffi	the sign +; cients of the	A deviation of the a deviation to the We We From the observed deviation are obtained A = +	North Point of the Compast by the sign —. tions given above, the tions 2° 3′.6 B = + o	pass to the East following value	is designated Its of the coeff	y the sign icients of

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD ALIDADE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

	of Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
6. Lubber Line	Deviation of Compass in Degrees.	0
uary 10, 1866. Correction for Lubber Line = 0°.	Deviation of Compass in Points.	+++ +++++
Rio Janeiro, January 10, 1866. Correction for Object = + 2° 44'. Correction for Lu	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction f	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. N. N. E. S. S. E. B. S. S. S. W. S. W. S. W. W. W. W. W. W. N. W. W. W. W. W. W. W. W. W. W. W. W. W.
·	Corrected Deviation of Compass.	
Lubber Line =	Deviation of Compass in Degrees.	
cember 30, 1865. 30'. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Bahia, December 30, Correction for Object = + 2° 30′. Correct	Ship's Head by Compass.	NORTH. NORTH. NORTH. N. N. E. N. N. M. E. N. N. M. M. N. N. W. N.
ection f	Assumed Magnetic Direction of Ship's Head.	NN NORTH. NN NORTH. NN N. E. by N. E.

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = +2° 9'.4 B = -0° 6'.0 C = -0° 34'.1

A = +1° 21'.1 E = +0° 1'.9

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD ALIDADE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

.0.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
56. Lubber Line =	Deviation of Compass in Degrees.	0
February 10, 1866. 7. Correction for Lubber Line = 0.	Deviation of Compass in Points.	-+++++++++++++++++++++++++++++++++++++
Sandy Point, Febr Correction for Object = $+ \circ^{\circ} 7'$.	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. N. E. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. B. B. S. S. S. S. B. B. S. S. S. S. B. B. S. S. S. S. B. B. S. S. S. S. S. B. B. S. S. S. S. S. S. S. S. S. S. S. S. S.
.0.	Corrected Deviation of Compass.	+ + + + + + + + + + + + + + + + + + +
16. Jubber Line ==	Deviation of Compass in Degrees.	0
nuary 24, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Monte Video, January Correction for Object = -0° 13' Correc	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. W. W. W. W. W. W. W. W. W. W. W. W.

A deviation of the North Point of the Compass to the East is designated by the sign +;

From the observations given above, the following values of the coefficients of the deviation are obtained:

A deviation of the North Point of the Compass to the East is designated by the sign +.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A deviation of the North Point of the Compass to the East is designated by the sign + from the observations given above, the following values of the coefficients of the deviation are obtained:

A = $+2^{\circ}$ 7/1 B = $+0^{\circ}$ 57/2 C = -1° 54/4

D = $+1^{\circ}$ 23/0 E = -0° 9/.8

D = $+1^{\circ}$ 23/0 E = -0° 90/.2

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD ALIDADE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

1	1 _ 4	
·	Corrected Deviation of Compass.	
29, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0
29, 1866. Correction for I	Deviation of Compass in Points.	++++ + + ++++++++
Callao, April 29, 1866 Correction for Object = +0° 6'. Correction 6	Ship's Head by Compass.	N. N. W. W. W. W. W. W. W. W. W. W. W. W. W.
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. W. W. W. W. W. W. W. W. W. W. W. W. W.
Ö	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
1866. on for Lubber Line = 0.	Deviation of Compass in Degrees.	0
	Deviation of Compass in Points.	○ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Valparaiso, April 4, for Object = +0° 1'. Correcti	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
V. Correction for Object	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. W. E. B. W. W. E. B. W. W. E. B. W. W. E. B. W. W. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.

A deviation of the North Point of the Compass to the East is designated by the sign +;

Rrom the observations given above, the following values of the coefficients of the deviation are obtained:

A=+1°55/2 B=+0°30'.0 C=-0°53'.9

A=+1°0°21'.0 B=+0°40'.9 C=-1°36'.4

B=+1°29'.0 E=-0°6'.8

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD ALIDADE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

Correction	Panama, May 20, 1866. Correction for Object $= + 0^{\circ}$ 1'. Correction	. 20, 1866. Correction for	20, 1866. Correction for Lubber Line = 0.	.0	Correction	Acapulco, June 1, 1866. Correction for Object = +0° 6′. Correction fo	ne 1, 1866. Correction for Lubber Line = 0.	bber Line ==	o
Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Snip's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
NORTH N. N. N. N. N. N. N. N. N. N. N. N. N. N	N N N N N N N N N N N N N N N N N N N	○	٥	++++++++++++++++++++++++++++++++++++++	NORTH. N. N. B. E. by N. E. by N. E. by N. E. by N. E. by N. E. by N. E. by E. E. by E. E. by E. S. S. B. By E. S. S. B. By E. S. S. B. By E. S. S. S. W. S. S. W. S. S. W. S. S. W. S. W. S. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	N. N. N. N. N. N. N. N. N. N. N. N. N. N		0	++++++++++++++++++++++++++++++++++++++
A deviation of the North Point of the a deviation to the West by the sign—. From the observations given above, deviation are obtained: $A = +2^{\circ} 15'.2$ $A = +1^{\circ} 21'.2$ $A = +1^{\circ} 21'.2$	A deviation of the North Point of the Compass to the leviation to the West by the sign —. From the observations given above, the following viation are obtained: $A = + 2^{\circ} 15^{\prime/2}$ $D = + 1^{\circ} 21^{\prime}.0$ $E = -$		signa the	ted by the sign +; coefficients of the 22'.1	A deviation of the North Point of a deviation to the West by the sign—From the observations given ab deviation are obtained: $A = + 1^{\circ} 8.1$ $A = + 1^{\circ} 8.1$	A deviation of the North Point of the Compass to the East is designated by the sign $+$; fevor the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: $A = + 1^{\circ} 8.1 B = -1^{\circ} 28.4 C = -0^{\circ} 33.1 D = + 1^{\circ} 52.8 E = +0^{\circ} 10.2$	ass to the East is ollowing values $28'.4 \qquad C = + \circ^{\circ}$	is designated by so of the coeffici C=-0° 33'.1	y the sign +; cients of the

CLAD MONADNOCK.
NON (
i. IRON
5
THE (
NO
COMPASS
ALIDADE (
ORWARD
(±)
EVIATIONS OF THE
ING THE D
Determinin
FOR]
ERVATIONS
OBSI

ine = 0.	on of Corrected less in Compass.	+ + + +	++++++++++++++++++++++++++++++++++++++
June 23, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.		
San Francisco, June 23, 1866. Correction for Object = -0° 45'. Correction for Lu	Ship's Head by Con	N N N N N N N N N N N N N N N N N N N	, A A
Correction for	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. N. E. by N. E. by N. E. E. by N. E. E. by N. E. by S. E. by E. S. E. by E. S. S. E. by S. S. S. S. E. S	:
.0	Corrected Deviation of Compass.	0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	++++++++
Lubber Line ==	Deviation of Compass in Degrees.	0	
June 9, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	o [†] ∞ +	++++++++++++++++++++++++++++++++++++++
Magdalena Bay, Correction for Object = — 0° 41'.	Ship's Head by Compass.	NORTH. N. g E.	S. W. W. W. W. W. W. W. W. W. W. W. W. W.
Correction fo	Assumed Magnetic Direction of Ship's Head.	NONTH N. N.	S. W. S. W. W. by S. W. by S. W. by W. by W. S. W. W. by W. S. W. W. by W. W. by W. W. by W. W. by W. W. by

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = -1^{\circ} 8.8 \quad B = -2^{\circ} 4'.1 \quad C = -1^{\circ} 7'.6$ $A = +1^{\circ} 19'.2 \quad E = 0^{\circ} \circ'.0$ A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = +1^{\circ} 19'.2 \quad E = 0^{\circ} \circ'.0$ $A = +1^{\circ} 19'.2 \quad E = 0^{\circ} \circ'.0$ $A = +1^{\circ} 19'.5 \quad E = 0^{\circ} \circ'.0$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

ine == 0.	on of Corrected ss in Deviation of Compass.		ated by the sign +:
November 18, 1865. 16'. Correction for Lubber Line = 0.	on of Deviation of Compass in Degrees.		East is designs
Iovember 18 67. Correctio	Deviation of Compass in Points.	000000	Compass to the
St. Thomas, November 18, 1865. Correction for Object = $+ \circ^{\circ}$ 16′. Correction for Lul	Ship's Head by Compass.	N N N N N N N N N N N N N N N N N N N	A deviation of the North Point of the Compass to the East is designated by the sign $+$:
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. N. E. by N. N. E. by N. E.	A deviation of th
· 	Corrected Deviation of Compass.		y the sign +;
ovember 1, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.		s designated b
Tovember 1, Correction for	Deviation of Compass in Points.		ass to the East i
Hampton Roads, November 1, 1865 Correction for Object = $+3^{\circ}$ 57. Correction for Lubh	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the East is designated by the sign +;
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N.N. W. E. B. W. N. W. E. B. W. W. E. B. W. W. E. B. W. W. E. B. W. W. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.	deviation of the

A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = + 0^{\circ} 49'.0$ $A = + 2^{\circ} 17'.7$ $A = + 2^{\circ} 17'.7$ $A = + 2^{\circ} 17'.7$ $A = - 2^{\circ} 33'.4$ A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the Sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = - 0^{\circ} 44'.4$ $A = - 0^{\circ} 44'.4$ $A = - 0^{\circ} 44'.4$ $A = - 0^{\circ} 7'.2$ $A = - 0^{\circ} 7'.2$

Observations for Determining the Deviations of the Forward Binnacle Compass on the U. S. Iron Clad Monadnock.

Ö	Corrected Deviation of Compass.	++++++	y the sign +; icients of the
Lubber Line =	Deviation of Compass in Degrees.	•	it is designated by use of the coeffice $C = +1^{\circ} 26'.9$
lber 19, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.	-	ass to the East i ollowing values $\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ceara, December 19, 1865. Correction for Object = $+ 1^{\circ}$ 51′. Correction for	Ship's Head by Compass.	スススススロボルの ないではないではである。 でいれる。 でい。 でいる。 でい。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でい。 でい。 でい。 でい。 でい。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でい。 でい。 でい。 でい。 でい。 でい。 でい。 でい	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: $A = -0^{\circ} 54'.7 B = +0^{\circ} 24'.6 C = +1^{\circ} 26'.9$ $D = +2^{\circ} 7'.8 E = +0^{\circ} 3'.2$
Correction f	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. E. W. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the a deviation to the West by the sign—. From the observations given above deviation are obtained: $A = -0^{\circ} 54^{\circ}7$ $D = + 2^{\circ}7$
.0.	Corrected Deviation of Compass.	° °	r the sign +; cients of the
30, 1865. Lubber Line =	Deviation of Compass in Degrees.	•	te East is designated by the sign +; g values of the coefficients of the C=
s, November 30, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.	•	ss to the East is ollowing values C E ==
Isle Royal, Salute Islands, November 30, 1865. Correction for Object = -0° 2′. Correction for Lubber Line	Ship's Head by Compass.	EAST.	A deviation of the North Point of the Compass to th deviation to the West by the sign —. From the observations given above, the followin viation are obtained: A = B = E =
Isle	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the a deviation to the West by the sign—From the observations given abodeviation are obtained: A = D =

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD BINNACLE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

·	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	ted by the sign +; coefficients of the 45'.5
uary 10, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0	it is designated by the coefficient of the coefficient $C = -1^\circ 45'.5$
Rio Janeiro, January 10, 1865. Correction for Object $= + 2^{\circ} 44'$. Correction for Lu	Deviation of Compass in Points.		pass to the East following value
	Ship's Head by Compass.	N. E. by N.	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viations are obtained: $A = -0^{\circ} 17'.1 \qquad D = +2^{\circ} 59'.8 \qquad C = -1^{\circ} 45'.5$
Correction fo	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. E. B. W. R. B. W. R. B. W. R. B. W. R. B. W. R. B. W. R. B. W. R. B. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of a deviation to the West by the sign—From the observations given ab deviations are obtained: $A = -0$
Ö	Corrected Deviation of Compass.		the sign +; cients of the
Bahia, December 30, 1865. Correction for Object = $+2^{\circ}$ 30′. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0	the East is designated by the sign +; ing values of the coefficients of the
	Deviation of Compass in Points.	0 0 0 0 0 0 0 C	iss to the East is collowing values of 26.5 C=
	Ship's Head by Compass.	NORTH. N.N. W. E. B. N.N. W. E. B. N.N. W. E. B. S. S. S. E. B. S. S. S. E. B. S. S. S. B. S. S. S. S. S. B. S. S. S. S. S. S. S. S. S.	orth Point of the Composition. By the sign —. In given above, the form $\frac{.57.9}{.51.9}$ B = $\frac{.57.9}{.51.9}$ b = $\frac{.57.9}{.51.9$
Correction Correction	Assumed Magnetic Direction of Ship's Head.	Mort 1842.	A deviation of the North Point of a deviation to the West by the sign – From the observations given ab deviation are obtained: A = + \circ \cir

Ä.
NO
DN.
ONADN
$\overline{}$
D
LA
\mathcal{O}
NO
IR
i
5
E
THE
ON THE
3.0
ASS
COMP
ည
CLE (
걸
NNA
_
D B
4R
RW.
0
THE
Œ
S 0.
NO
TI
EVIA
$\overline{}$
THE
Ç
NIN
ERMININ
ERI
ETI
$\bar{\Box}$
OR
E.
ONS
Ľ
V.
ER
)BS
O

Assumed Magnetic Direction of Ship's Head. NORTH. NORTH. N by E.	Magnetic Ship's Head by Geometric Ship's		Collection for Lubber Line o.	0	Correction	Correction for Object $\pm \pm$ 0° 7′	7/ Correction for Lubber Line == 0.	oo. Libber Line —	
	Ship's Head by	Demistion of	The state of		, P. C	.			
	Compass.	Compass in Points.	Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Confected Deviation of Compass.
W. W. W. W. W. W. W. W. W. W. W. W. W. W	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	++++++++++++++++++++++++++++++++++++++	•	+ + + + + + + + + + + + + + + + + +	NORTH. N. N. N. E. E. E. E. E. E. E. E. E. E. E. E. E.	N. N. N. N. N. N. N. N. N. N. N. N. N. N		•	+ + + + + + + + + + + + + + + +
	N. W. 8 W.			4 4 30	W. N. W. N. W. by W.	N. W. by W. \frac{1}{4} W. N. W. \frac{1}{4} W.	1		% % % % % % % % % % % % % % % % % % %
	N. W. IN. N. IN. N. IN. N. IN. N. IN. N. IN. I			00	N. W. N. W. by N.	N. W. 3 N. N. W. by N. 3 N.	100144014		
	N. by W. 4 W. N. 4 W.	 - 4- 4		000	N. N. W. N. by W. NORTH	N. by W. 8 W. N. 2 W.			- 7 o - 5 30
	And the second s		-		TOTALLE				7 40

A deviation of the North Foint of the Compass to the East is designated by the sign +; a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = + \circ 17/8 \quad B = + 2^{\circ} 55/4 \quad C = - \circ 41'.1$ $A = + \circ 17/8 \quad B = + 2^{\circ} 55/4 \quad C = - \circ 41'.1$ $A = - 1^{\circ} 45/2 \quad E = - \circ 2'.2$ $A = - 1^{\circ} 45/2 \quad E = - \circ 3'.2$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD BINNACLE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

.0	Corrected Deviation of Compass.	+ + + + + + +	y the sign +; cients of the
Lubber Line ==	Deviation of Compass in Degrees.	0	ast is designated by lues of the coeffice. $C = -2^{\circ} 6.8$ $24'.7$
29, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.		ass to the East is ollowing values o'.2 $C = E = +$ o° 24'.
Callao, April 29, 1866. Correction for Object $= + \circ^{\circ} e'$.	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N	A deviation of the North Point of the Compass to the East is designated by the sign $+$; feviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viation are obtained: A = -1° 3'.4 B = $+1^{\circ}$ 10'.2 C = -2° 6'.8 D = $+2^{\circ}$ 8'.2 E = $+6^{\circ}$ 24'.7
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. B. B. B. B. B. B. B. B. B. B. B. B. B.	A deviation of the North Point of a deviation to the West by the sign From the observations given al deviation are obtained: $A = -1^{\circ} 3'.4$ $D = +2^{\circ}$
.0	Corrected Deviation of Compass.	++++++	the sign +; sients of the
Jubber Line ==	Deviation of Compass in Degrees.	0	East is designated by the sign $+$; values of the coefficients of the $C = -0^{\circ} 46'.I$
pril 4, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	++++++ ++ ++	
Valparaiso, April 4, 1866. Correction for Object $=+ \circ^{\circ}$ 1. Correction for	Ship's Head by Compass.	N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	A deviation of the North Point of the Compass to the deviation to the West by the sign —. From the observations given above, the following vitation are obtained: $A = -0^{\circ} \ 14'.6 B = +1^{\circ} \ 47'.9$ $D = +1^{\circ} \ 33'.7 E = -$
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. E. by N. N. N. E. by N. E. S. S. E. S. S. E. S. S. S. E. by E. S. S. S. E. by E. S. S. S. S. S. S. S. S. S. S. S. S. S. S	A deviation of the North Point of a deviation to the West by the sign – From the observations given ab deviation are obtained: $A = -o^{\circ} 14'.6$ $A = + 1'$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD BINNACLE COMPASS

	rted on of uss.	10 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ne 1, 1866. Correction for Lubber Line = 0.	Corrected Deviation of Compass.	
	Deviation of Compass in Degrees.	0
e I, 1866. Correction for I	Deviation of Compass in Points.	
Acapulco, June 1, 1866. Correction for Object = +0° 6′. Correction for	Ship's Head by Compacs.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
	Assumed Magnetic Direction of Ship's Head.	NORTH. N.N.E. B. S. S. S. S. S. S. S. S. S. S. S. S. S.
.0.	Corrected Deviation of Compass.	
Panama, May 20, 1866. Correction for Object = $+ \circ^{\circ} 1'$. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0
	Deviation of Compass in Points.	
	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
	Assumed Magnetic Direction of Ship's Head.	N. N. N. N. N. N. N. N. N. N. N. N. N. N

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = -2° 31′.9

B = -1° 1′.5

C = -1° 33′.0

A deviation of the North Point of the Compass to the East is designated by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = -2° 31′.9

A = -2° 31′.2

A = -2° 31′.2

A = -2° 31′.2

B = -1° 1′.1

A = -2° 31′.2

B = -1° 1′.1

A = -2° 31′.2

A = -2° 31′.2

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -2° 1′.4

B = -1° 1° 1′.1

A = -2° 1′.4

B = -2° 1′.4

B = -2° 1′.4

B = -2° 1′.4

B = -1° 1° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2° 1′.7

B = -2°

D MONADNOCK.
FRON CLA
S.
U.
S ON THE
O
COMPAS
BINNACLE
E FORWARD
F TH
DEVIATIONS O
THE
EAMINING
DEL
NS FOR
OBSERVATION

June 23, 1866. Correction for Lubber Line = 0.	Deviation of Corrected Compass in Deviation of Degrees.	NORTH N. W. E. D. N. W. D. W. N
une 23, 1866 correction for L	Deviation of Compass in Points.	
San Francisco, June 23, 1866. Correction for Object = 0° 45'. Correction for Lu	Ship's Head by Compass,	N.N. N.N. N.N. N.N. N.N. N.N. N.N. N.N
Correction fo	Assumed Magnetic Direction of Ship's Head.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
·o·	Corrected Deviation of Compass.	++++
June 9, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	
June 9, 1866. Correction for L	Deviation of Compass in Points.	+++++
Magdalena Bay, June Correction for Object = 0° 41'. Corre	Ship's Head by Compass.	N. W. E. by N. N. N. E. by N. N. N. E. by N. N. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. B. N. E. by N. E. S. E. by S. S. S. E. S. S. N. S. S. W. B. N. S. S. W. B. N. S. S. W. B. N. S. W.
Correction fo	Assumed Magnetic Direction of Ship's Head.	NON NON NON NON NON NON NON NON NON NON

A deviation to the West by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = -1^{\circ} 42^{\circ} 6$ $A = -2^{\circ} 11^{\circ} 8$ $A = -3^{\circ} 9^{\circ} 9^{\circ} 9$ $A = -3^{\circ} 9^{\circ} 9^{\circ} 9$ $A = -3^{\circ} 9^{\circ} 9^{\circ} 9$ $A = -3^{\circ} 9^{\circ} 9^{\circ} 9^{\circ} 9$ $A = -3^{\circ} 9^{\circ} 9$

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

.0:	Corrected Deviation of Compass.	+ + + + + + + + + + + + + + + + + +	the sion 1.
mber 18, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0	is designated by
mber 18, 186 Correction for	Deviation of Compass in Points.	+ +++++++ +++ +++ ++++	ass to the East
St. Thomas, November 18, 1865. Correction for Object = +0° 16'. Correction for Lu	Ship's Head by Compass.	N.N. N.N. N.N. N.N. N.N. N.N. N.N. N.N	A deviation of the North Point of the Compass to the East is designated by the sign
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH, N. N. N. E. N. N. N. E. N. N. N. E. N. N. E. B. E. P. N. E. E. P. N. E. E. P. N. E. E. P. N. E. E. P. N. E. E. P. N. E. S. S. E. B. S. S. E. B. S. S. E. B. S. S. S. W. S. S. W. S. S. W. W. P. W. W. W. W. W. W. W. N. W. N. W. W. N. W. W. N. W. N. W. W. N. W. N. W. W. N.	A deviation of the
.0.	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++	the sign +;
ovember 1, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	0	s designated by
ovember 1, 1 Correction for	Deviation of Compass in Points.		ss to the East is
Hampton Roads, November 1, 1865. Correction for Object $= +3^{\circ}$ 577. Correction for Lubb	Ship's Head by Compass.		A deviation of the North Point of the Compass to the East is designated by the sign +;
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. by E. N. N. B. N. N. B. N. N. B. E. S. S. B. S. S. B. S. S. B. S. S. W. S. W. S. S.	A deviation of the

A deviation of the North Foint of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = 4,0 22.5

B = +1° 19'.2

C = -3° 37'.2

A = +1° 3'.7

B = +2° 4'.0

C = -1° 16'.6

D = +3° 16'.0

E = -0° 25'.5

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

0 11	Corrected Deviation of Compass.	++++++++ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	y the sign +; icients of the
Lubber Line =	Deviation of Compass in Degrees.	•	t is designated by es of the coeffice $C = +3^\circ$ 36.9
cember 19, 1865. 51'. Correction for Lubber Line = 0.	Deviation of Compass in Points.	++++++ 	f the Compass to the East is c.— bove, the following values or $B = -0^{\circ} 26^{\circ} I \qquad C = 26^{\circ} 6$
Ceara, December 19, 1865. Correction for Object = + 1° 51'. Correction for	Ship's Head by Compass.	N. 12 E. N. 15 W. E. N. 15 W. E. 15 W. N. N. 15 W. N. 15 W. N. 15 W. N. 15 W. N. 15 W. N. 15 W. E. 15	A deviation of the North Point of the Compass to the East is designated by the sign $+$; deviation to the West by the sign $-$. From the observations given above, the following values of the coefficients of the viviation are obtained: A= $+3^{\circ}$ 31.0 B= -0° 26.1 C= $+3^{\circ}$ 36.9 D= $+2^{\circ}$ 26.6 E= -0° 3.9
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. B. E. W. N. E. B. W. N. E. B. W. N. E. B. W. N. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the a deviation to the West by the sign —. From the observations given above deviation are obtained: A = +3° 31′.0 B: D = +2° 26′.
.0	Corrected Deviation of Compass.	• + • • • • • • • • • • • • • • • • • •	the sign +;
30, 1865. Lubber Line =	Deviation of Compass in Degrees.	•	t is designated by tes of the coeffi.
s, November 30, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.		ass to the East is following values C E E
Isle Royal, Salute Islands, November 30, 1865. Correction for Object = -0° 2′. Correction for Lubber Line	Ship's Head by Compass.	E. L. N.	A deviation of the North Point of the Compass to the East is designated by the sign +; deviation to the West by the sign —. From the observations given above, the following values of the coefficients of the viation are obtained: B = C = C = D = E = C = E = C = E = C = E = C = C = C
Isle Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. N. W. E. W. N. W. E. B. S. S. E. W. E. W. N. E. W. N. E. W. S. S. E. W. E. W. S. S. S. E. W. S. S. S. E. W. S. S. S. S. W. W. S. S. W. W. S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.	A deviation of the North Point of the a deviation to the West by the sign—From the observations given above deviation are obtained: A = D =

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

o,	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
5. Cubber Line ==	Deviation of Compass in Degrees.	•
utary 10, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Rio Janeiro, January 10, 1865. Correction for Object $= + 2^{\circ}$ 44'. Correction for Lu	Ship's Head by Compass.	N. E. N. N. E. L. V. E. L. V. E. L. V. N. E. L. V. N. E. L. V. N. E. L. V. V. V. V. V. V. V. V. V. V. V. V. V.
Correction for	Assumed Magnetic Direction of Ship's Head.	NORTH. N. by E. N. N. E. N. N. E. N. N. E. N. N. E. N. E. by E. E. by N. E. by E. E.
· 	Corrected Deviation of Compass.	
2r 30, 1865. Correction for Lubber Line = 0.	Deviation of Compass in Degrees.	•
er 30, 1865. Correction for	Deviation of Compass in Points.	
Bahia, December 30, Correction for Object = + 2° 30'. Correc	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH NORTH N.N. N.

A deviation of the North Point of the Compass to the East is designated by the sign +;
From the observations given above, the following values of the coefficients of the deviation are obtained:

A = $+2^{\circ}$ 6/2

B = $+3^{\circ}$ 39/3

C = -1° 33/3

A deviation of the North Point of the Compass to the East is designated by the sign +;
From the observations given above, the following values of the coefficients of the deviations are obtained:

A = $+2^{\circ}$ 6/2

B = $+2^{\circ}$ 39/3

B = $+2^{\circ}$ 33/3

C = -1° 10/3

D = $+2^{\circ}$ 10/5

E = -0° 0/1

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE II. S. IRON CLAN MONADINGER

er Line = 0.	Deviation of Corrected Compass in Compass. Compass.	
February 10, 1866. 7. Correction for Lubber Line = 0.	Deviation of Dev Compass in Co Points. D	+ ++++++++++++++++++++++++++++++++++
Sandy Point, Febr Correction for Object = +0° 7′.	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction f	Assumed Magnetic Direction of Ship's Head.	NORTH. N. N. B. N. N. B. B. B. B. B. B. B. B. B. B. B. B. B.
ö	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
i6. Jubber Line ==	Deviation of Compass in Degrees.	•
nuary 24, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	++++++++++++++++++++++++++++++++++++++
Monte Video, January Correction for Object = 0° 13' Correc	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction fo	Assumed Magnetic Direction of Ship's Head.	Weight Will Will Will Will Will Will Will Wil

a deviation to the west by the sign —.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = + 3^{\circ} 23'.8$ $A = + 2^{\circ} 11'.0$ | S. IRON CLAD MONADNOCK. |
|-------------------------|
| Ċ. |
| COMPASS ON THE |
| RITCHIE |
| Forwar |
| OF THE |
| DEVIATIONS (|
| DETERMINING THE |
| OBSERVATIONS FOR |

Assumed Magnetic Compass in Decrintion of Decrintion of Decrintion of Compass in Decrintion of Compass in Decrintion of Compass in Decrintion of Compass in Decrintion of Compass in Decrintion of Decrintion of Compass in Decrintion of Decrintion of Compass in Decrintion of Decrintion of Compass in Decrintion of Compass in Decrintion of Decrintion of Compass in Decrinion of Compass in Decrin	Correction	Valparaiso, April 4, Correction for Object $= + 0^{\circ}$ 1'. Correct	pril 4, 1866. Correction for Lubber Line = 0.	Jubber Line ==	o.	Correction	Callao, April 29, 1866. Correction for Object = +0° 6'. Correction f	29, 1866. Correction for Lubber Line = 0	Jubber Line =	ó
N. N. E. B. N. N. N. N. N. N. N. N. N. N. N. N. N.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.	Assumed Magnetic Direction of Ship's Head.	Ship's Head by Compass.	Deviation of Compass in Points.	Deviation of Compass in Degrees.	Corrected Deviation of Compass.
	NORTH. N. N. E. W. E. B. W. W. W. W. W. W. W. W. W. W. W. W. W.				0 0 0	NORTH. N. N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.	N N N N N N N N N N N N N N N N N N N		•	++++++++++++++++++++++++++++++++++++++

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained:

A = +3° 33′.4 B = +1° 20′.2 C = -1° 29′.0

A = +2° 37′.1 B = +1° 52′.8 C = -1° 58′.0

A = +2° 37′.1 B = +1° 52′.8 C = -1° 58′.0

A = +2° 37′.1 B = +0° 12′.0

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE U. S. IRON CLAD MONADNOCK.

·	Corrected Deviation of Compass.	++++++++++++++++++++++++++++++++++++++
Lubber Line ==	Deviation of Compass in Degrees.	a .
ne 1, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Acapulco, June 1, 1866. Correction for Object $= + 0^{\circ}$ 6'. Correction for	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.
o II	Corrected Deviation of Compass.	+++++++ ++ +++++++++++++++++++++++++++
Lubber Line =	Deviation of Compass in Degrees.	•
20, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	-++++++ ++ +++++++++++++++++++++++++++
Panama, May 20, 1866 Correction for Object = +0° 1'. Correction	Ship's Head by Compass.	N. N. N. N. N. N. N. N. N. N. N. N. N. N
Correction	Assumed Magnetic Direction of Ship's Head.	NORTH N. N. N. E. B. B. B. B. B. B. B. B. B. B. B. B. B.

A deviation of the North Point of the Compass to the East is designated by the sign +;

a deviation to the West by the sign -.

From the observations given above, the following values of the coefficients of the deviation are obtained: $A = + 1^{\circ} 34^{\circ} \circ B = + 2^{\circ} 12^{\circ} \circ C = -1^{\circ} 53^{\circ} \circ A = +1^{\circ} \cdot$

A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained:

A = + 1° 52'8 B = + ° 38'.2 C = -2° 11'.8 D = +2° 24'.2 E = +0° 26'.2

OBSERVATIONS FOR DETERMINING THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS ON THE U.S. IRON CLAD MONADNOCK.

16 = 0.	n of Corrected s in Deviation of Compass.	
6. Lubber Lii	Deviation of Compass in Degrees.	0
June 23, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	++ +++++++++++++++++++++++
San Francisco, Correction for Object = 0° 45'.	Ship's Head by Compass.	N N N N N N N N N N N N N N N N N N N
Correction fe	Assumed Magnetic Direction of Ship's Head.	NORTH. NORTH. N. N. W. B. B. B. B. B. B. B. B. B. B. B. B. B.
Ö	Corrected Deviation of Compass.	
i. Lubber Line =	Deviation of Compass in Degrees.	•
June 9, 1866. Correction for Lubber Line = 0.	Deviation of Compass in Points.	
Magdalena Bay, June of Correction for Object =0° 41'. Correct	Ship's Head by Compass.	S. S. W. W. W. W. W. W. W. W. W. W. W. W. W.
Correction fo	Assumed Magnetic Direction of Ship's Head.	N.N.ORTH. N.N.N.N.E. by E.E. E.E. by E

A deviation of the North Point of the Compass to the East is designated by the sign +; a deviation to the West by the sign -. From the observations given above, the following values of the coefficients of the deviation are obtained:

A=+2° 43′.8 B=+0° 39′.9 C=-0° 1′.3 A=+1° 3′.8 B=-0° 16′.2 C=-6° 41′.6 D=+1° 48′.5 E=-0° 33′.5

The observations made at stations where the deviations had been determined on all of the thirty-two points were first discussed. For that purpose the values of the coefficients A_1 , B_1 , C_1 , D_1 , E_1 , for each compass, at each station, were computed from the deviations on the true magnetic points by means of the equations given on pages 126 to 128. A specimen of the form employed in making these computations is appended. It sufficiently explains itself.

Admiralty Standard Compass. Computation of Coefficients B_1 and C_1 , from Deviations observed on 32 Points, on the U. S. Iron Clad Monadnock. Bahia, December 30, 1865.

					,				
	I.		II.	III.	IV. Half Sum		v.		VI.
				Half Sum of	of Cols. I and II,	Co	omputation of B ₁ .	Cor	nputation of C ₁ .
True Magnetic Direction of Ship's Head.	Observed Deviation of Compass.	True Magnetic Direction of Ship's Head.	Observed Deviation of Compass.	Quantities in Cols. I and II. —— Unchanging Part of Deviation.	(changing Signs of Col. II.) ——————————————————————————————————	Multipliers.	Products of Col. IV by Multipliers.	Multipliers.	Products of Col. IV by Multipliers.
NORTH. N. by E. N. N. E. N. E. by N.	+ 1° 40′ + 3 20 + 3 40 + 4 30	SOUTH. S. by W. S. S. W. S. W. by S.	+ 1° 40′ + 1 20 + 1° 00 + 0 30	+ 1° 40′ + 2 20 + 2 20 + 2 30	0° 0' + I 0 + I 20 + 2 0	O S ₁ S ₂ S ₃	0° 0' + 0 12 + 0 31 + 1 7	I S ₇ S ₆ S ₅	0° 0 + 0 59 + 1 14 + 1 40
N. E. N. E. by E. E. N. E. E. by N.	+ 4 40 + 5 0 + 5 30 + 5 40	S. W. S. W. by W. W. S. W. W. by S.	0 0 0 40 1 10 1 50	+ 2 20 + 2 10 + 2 10 + 1 55	+ 2 20 + 2 50 + 3 20 + 3 .45	S ₄ S ₅ S ₆ S ₇	+ I 39 + 2 2I + 3 5 + 3 4I	S ₄ S ₃ S ₂ S ₁	+ I 39 + I 34 + I I7 + 0 44
EAST. E. by S. E. S. E. S. E. by E.	+ 5 20 + 5 10 + 4 40 + 4 20	WEST. W. by N. W. N. W. N. W. by W.	-2 0 -2 I0 -2 0 -2 0	+ I 40 + I 30 + I 20 + I 10	+ 3 40 + 3 40 + 3 20 + 3 10	I S ₇ S ₆ S ₅	+ 3 40 + 3 36 + 3 5 + 2 38	O - S ₁ - S ₂ - S ₃	0 0 0 43 1 17 1 46
S. E. S. E. by S. S. S. E. S. by E.	+ 3 20 + 2 40 + 2 10 + 2 0	N. W. N. W. by N. N. N. W. N. by W.	-2 0 -1 10 -0 10 +0 30	+ 0 40 + 0 45 + 1 0 + 1 15	+ 2 40 + 1 55 + 1 10 + 0 45	S ₄ S ₃ S ₂ S ₁	+ I 53 + I 4 + 0 27 + 0 9	- S ₄ - S ₅ - S ₆ - S ₇	— I 53 — I 36 — I 5 — 0 44
					Sum of + to			+	9 7 9 4
					Divisor	8	+ 29 8	8	+ 0 3
						$B_i =$	+3 38.5	C ₁ =	= + 0 0.4

N. B.—Easterly deviations are to be entered in this table with the sign +; Westerly deviations with the sign -.

Computation of Coefficients $A_{\scriptscriptstyle 1},\ D_{\scriptscriptstyle 1},\ E_{\scriptscriptstyle 1},$ from Deviations observed on 32 Points.

I.	II.	III.	IV.		V.		VI.	
		Half Sum of Quantities	Half Sum of Cols. I and II,	Co	omputation of D ₁ .		mputation f E ₁ .	
Upper Half of Table A, Col. III.	Lower Half of Table A, Col. III.	in Cols. I and II. Constant Part of Deviation.	(changing Signs of Col. II.) Quadrantal Deviation.	Multipliers.	Products of Col. IV by Multipliers.	Multipliers.	Products of Col. IV by Multipliers.	
+ 1° 40′ + 2 20 + 2 20 + 2 30	+ I° 40′ + I 30 + I 20 + I 10	+ 1° 40′ + 1 55 + 1 50 + 1 50	0° 0′ + 0 25 + 0 30 + 0 40	0 S ₂ S ₄ S ₆	0° 0′ + 0 10 + 0 21 + 0 37	I S ₆ S ₄ S ₂	0° 0′ +0 23 +0 21 +0 15	
+ 2 20 + 2 10 + 2 10 + 1 55	+ 0 40 + 0 45 + 1 0 + 1 15	+ I 30 + I 27 + I 35 + I 35	+ 0 50 + 0 43 + 0 35 + 0 20	I S ₆ S ₄ S ₂	+ 0 50 + 0 40 + 0 25 + 0 8	O — S ₂ — S ₄ — S ₆	0 0 0 16 0 25 0 18	
Sum of + to Sum of - to		13 22	Sum of + to Sum of - to			+	59 59	
Di	visor 8	+ 13 22	Divisor 4	-	+ 3 11	4	0 0	
	A,=	+ I 40.2]	D, =	+0 47.8	E ₁ =	= 0 0.0	

Note.— $S_1 = .195$. $S_2 = .383$. $S_3 = .556$. $S_4 = .707$. $S_5 = .831$. $S_6 = .924$. $S_7 = .981$.

The resulting values of the coefficients for each compass, at each station, are given in the following tables:

Coefficients of the Deviations of the Admiralty Standard Compass.

SŢATION.	DATE.	A 1	B ₁	C ₁	D_1	E,
Bahia	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866	+ 0 14.6 + 1 40.2 + 1 32.8 + 0 35.9 + 0 35.6 + 0 9.1 + 0 31.6 - 0 36.9	+ 9° 4′.6 + 5 45.5 + 3 38.5 + 3 4.8 + 1 20.6 + 1 20.2 + 2 21.1 + 3 2.1 + 2 45.4 + 4 53.2	- 0° 33'.1 + 0° 33.5 + 0° 0.4 + 0° 5.8 - 0° 40.6 - 0° 6.9 - 0° 1.8 + 0° 1.9 + 0° 5.5 - 1° 15.4	+ 0° 29′.2 + 0 3.2 + 0 47.8 + 1 19.5 + 0 53.5 + 0 54.2 + 0 52.5 + 0 55.0 + 0 56.8 + 0 51.2	- 0° 7′.5 - 0 48.2 0 0.0 + 0 14.5 + 0 10.2 + 0 5.8 + 0 8.0 + 0 8.0 + 0 5.8

Coefficients of the Deviations of the After Binnacle Compass.

STATION.	DATE.	A ,	B ₁	C ₁	D_1	\mathbf{E}_{1}
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June I, 1866	+ I 29.8 + I 3.I - O 24.5 + O 4.9 - O 27.I - O 50.0 - I 0.2	+ 7° 16′.8 	- 1° 14'.1 - 0 6.9 + 0 41.9 - 0 14.6 + 0 7.9 - 0 3.9 + 0 22.0 - 0 17.1 - 2 13.9	+ 1° 39′.2 + 1 41.5 + 1 58.5 + 1 58.5 + 2 7.5 + 2 32.7 + 2 15.2 + 1 47.5	+ 0° 6′.2 + 0 7.8 - 0 42.5 + 0 0.2 - 0 0.2 + 0 9.0 - 0 18.0 - 0 17.2 + 0 10.2

MAGNETIC OBSERVATIONS.

Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	A ₁	В,	C ₁	D_1	E 1
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	+ 3 14.4 + 8 47.1 	+ II° 26′.5 + 8 •26.9 + 6 55.6 + 4 3.2 + 3 49.1 + 5 50.1 + 4 3.1 + 4 29.1 + 6 46.2	+ 0 40.4	+ 0° 15'.5 + 1' 54.2 + 1 59.7 + 1 14.5 + 2 21.0 + 1 30.5 + 1 17.0 + 1 12.2 + 2 28.5	- 0° 54′.5 - 0 37.2 + 0 14.2

Coefficients of the Deviations of the After Azimuth Compass.

STATION. DATE.		A_1	B ₁	C,	D_1	E,
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	- I 17.5 - 3 36.9 - 0 5.6 - 2 16.2 - 3 56.2 - 2 6.9 - 3 II.2	- 4° 53′.0 - 3 0.9 - 4 28.6 - 2 57.8 - 4 54.1 - 2 0.6 - 3 47.2 - 3 25.8	- 0° 9'.I + I 20.0 - 0 19.5 - 0 47.2 + 0 20.9 - 0 49.6 + I 44.6 - 0 0.8	+ 5° 35′.2 + 6 49.2 + 7 22.0 + 7 10.2 + 5 52.5 + 5 6.5 + 6 21.2 + 5 54.2 	+ 0° 17′.0 + 0 12.2 - 1 5.5 - 0 25.5 + 0 37.5 + 0 35.7 - 0 34.0 + 0 23.8

Coefficients of the Deviations of the Forward Alidade Compass.

STATION.	DATE.	A 1	В	C 1	D_1	E,
Hampton Roads St. Thomas Bahia	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	+ 0 50.9 + 2 9.4 + 2 7.1 + 2 25.6 + I 55.2 + 0 21.0 + 2 15.2 + 1 8.1	- 2° 28′.4 - 0 35.1 - 0 6.0 + 0 57.2 + 0 58.5 + 0 30.0 + 0 40.9 + 0 1.1 - 1 28.4 - 1 54.2	- 1° 52′.0 - 0 46.2 - 0 34.1 - 1 5.0 - 1 54.4 - 0 53.9 - 1 36.4 - 1 22.1 - 0 33.1 - 2 25.1	+ 1° 4'.2 + 1 15.7 + 1 15.0 + 1 23.0 + 1 47.0 + 1 29.0 + 1 21.0 + 1 52.8 + 0 58.0	0° 0.0 +0 20.5 +0 1445 -0 9.8 -0 20.2 -0 5.2 -0 6.8 -0 6.8 +0 10.2 +0 21.5

Coefficients of the Deviations of the Forward Binnacle Compass.

STATION.	DATE.	A ₁	B ₁	С,	D ₁	E ₁
Hampton Roads St. Thomas	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	-0 44.4 +0 57.9 +0 17.8 -1 16.5 -0 14.6 -1 3.4 -2 31.9 -2 31.2	- 5° 40′.8 - I 56.2 + 0 26.5 + 2 55.4 + 5 16.9 + I 47.9 + I 10.2 - I 1.5 - 2 2.4 - 4 4I.I	- 2° 33'.4 - 0 12.4 - 0 33.8 - 0 41.1 - 2 11.0 - 0 46.1 - 2 6.8 - 1 33.0 - 1 41.1 - 3 34.9	+ 2° 17'.7 + 1 59.5 + 2 6.5 + 1 45.2 + 2 0.5 + 1 33.7 + 2 8.2 + 2 6.5 + 1 56.5	+ 0° 8′.2 - 0 7.2 - 0 11.2 - 0 2.2 - 0 3.2 - 0 9.0 + 0 24.7 - 0 23.5 + 0 10.7 + 0 30.2

STATION.	DATE.	A_1	B ₁	C ₁	D_1	E,
Hampton Roads St. Thomas Bahia	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	+ I 3.7 + 2 6.2 + 3 23.8 + I 46.2 + 3 33.4 + 2 37.1 + I 34.0 + I 52.8	+ 1° 19′.2 + 2 4.0 + 3 29.1 + 3 48.0 + 3 49.5 + 1 20.2 + 1 52.8 + 0 12.2 + 0 38.2 - 0 16.2	- 3° 37′.2 - 1 16.6 - 1 33.9 - 0 0.4 - 2 44.2 - 1 29.0 - 1 58.0 - 1 53.8 - 2 11.8 - 6 41.6	+ 2° 17′.2 + 3 16.0 + 2 35.7 + 2 11.0 + 2 11.2 + 2 7.8 + 2 30.5 + 2 10.8 + 2 24.2 + 1 48.5	+ 0° 27′.5 - 0 25.5 - 0 0.5 - 0 28.5 - 0 10.0 + 0 31.2 + 0 12.0 - 0 14.0 + 0 26.2 - 0 33.5

COEFFICIENTS OF THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS.

In the case of the Admiralty Standard Compass, for some not very evident reason, the variations in the value of the coefficient A_1 are greater than might have been expected. The After Binnacle, Forward Alidade, and Forward Binnacle Compasses were frequently removed from their places, and the fittings were not sufficiently exact to give any certainty of replacing them with their lubber lines always precisely in the same position. This source of error sufficiently accounts for the variations in the values of the A_1 s belonging to them. The Forward and After Ritchie Compasses were firmly fixed in their places, and were not removed during the cruise, except at Valparaiso; but the arrangements for reading off their cards were such that an improper position of the eye of the observer might easily introduce a large parallax, which accounts for the changes in the values of the A_1 s belonging to them. The After Azimuth Compass was always taken down after each swing, and as there was no fixed mark by which to adjust its lubber line, the changes in the value of its A_1 are not surprising.

It now becomes necessary to determine the probable errors of the values of the coefficients which have just been given. To do this for any compass, at any particular station, the value of δ at each of the thirty-two points must be computed from the coefficients for that station. Comparing the values thus found with the corrected observed values, a series of thirty-two residuals are obtained, from which the probable error of δ for that station is deduced by means of the formula

$$r = 0.6745 \sqrt{\frac{[vv]}{m - \mu}}$$

where r is the probable error of a single observed value of δ ; [vv] the sum of the squares of the thirty-two residuals; m the number of the residuals, in this case thirty-two; and μ the number of the coefficients, in the present instance five. Then, letting p_A , p_B , p_C , p_D , p_E , represent respectively the weights, and r_A , r_B , r_C , r_D , r_E , the probable errors, of the values of A_1 , B_1 , C_1 , D_1 , E_1 , when determined from a set of deviations observed on each of the thirty-two true magnetic points; we have

$$r_{\scriptscriptstyle A} = \frac{r}{\sqrt{p_{\scriptscriptstyle A}}}$$
 $r_{\scriptscriptstyle B} = \frac{r}{\sqrt{p_{\scriptscriptstyle B}}},$ &c.

From the normal equations on page 126, we also have,

$$egin{aligned} p_{A} &= 32 & p_{D} = 16 \ p_{B} &= 16 & p_{E} = 16 \ p_{C} &= 16 & \end{aligned}$$

It is therefore evident that the probable errors of B_1 , C_1 , D_1 , and E_1 , will all be equal to each other.

The probable error of a single observed value of δ has been computed in this way, for each compass, at three stations; namely, Bahia, Sandy Point, and Panama, and the results are given in the following table. The column headed "mean value of r" was obtained by adding together, for each compass, the sum of the squares of the residuals at Bahia, Sandy Point, and Panama; dividing the result by three; and then computing the value of r from the mean value of r thus found. The column headed "r" gives the probable error of r0; and the column headed "r0" gives the probable error of r1, r2, r3, and r3, for each compass, when these coefficients have been computed from a set of deviations observed on thirty-two points.

	Value of r.			Mean	r	r
Compass.	Bahia.	Sandy Point.	Panama.	value of r.	√ <u>3</u> 2	$\sqrt{16}$
Admiralty Standard After Binnacle After Ritchie After Azimuth Forward Alidade Forward Binnacle Forward Ritchie	± 9'.8 ± 25.8 ± 30.6 ± 39.3 ± 19.0 ± 40.2 ± 59.7	± 12'.2 ± 20.1 ± 56.6 ± 51.1 ± 24.5 ± 31.2 ± 30.2	± 11'.3 ± 26.2 ± 38.8 ± 32.6 ± 23.6 ± 25.3 ± 37.8	± 11'.1 ± 24.2 ± 43.4 ± 41.7 ± 22.5 ± 32.8 ± 44.4	± 2'.0 ± 4.3 ± 7.7 ± 7.4 ± 4.0 ± 5.8 ± 7.8	± 2'.8 ± 6.1 ± 10.8 ± 10.4 ± 5.6 ± 8.2 ± 11.1

As an incidental result, this table shows that for ordinary steering compasses (such as the Forward Alidade, Forward Binnacle, and After Binnacle) when read to the nearest eighth of a point, the probable accidental error of a single reading is about half a degree; for Ritchie Monitor Compasses (such as the Forward and After Ritchie) when read to the nearest eighth of a point, the probable accidental error of a single reading is about three-quarters of a degree; and for Admiralty Standard Compasses, read to the nearest ten minutes, the probable accidental error of a single reading is about eleven minutes.

From the mathematical theory of the deviations of the compass, given in a preceding part of this section, we have

$$\mathfrak{P} = B_1 - A_1 C_1$$

and also

$$\mathfrak{B} = \frac{c}{\lambda} \tan \theta + \frac{P}{\lambda} \times \frac{1}{H}$$

Hence

$$0 = -B_1 + A_1C_1 + \frac{c}{\lambda} \tan \theta + \frac{P}{\lambda} \times \frac{1}{H}$$

But as P is liable to undergo a slow change, we introduce a term depending upon the time, and the equation becomes

$$0 = -B_1 + A_1 C_1 + \frac{c}{\lambda} \tan \theta + \frac{P}{\lambda} \times \frac{1}{H} + \frac{\Delta P}{\lambda} \times \frac{t}{H}$$
 (17)

where ΔP is the change of the value of P in one day, and t is the elapsed time in days, counted from November 1st, 1865.

We have further

 $\mathfrak{C} = C_1 + A_1 B_1$

and also

 $\mathfrak{C} = \frac{f}{\lambda} \tan \theta + \frac{Q}{\lambda} \times \frac{1}{H}$

Hence

$$0 = -C_1 - A_1 B_1 + \frac{f}{\lambda} \tan \theta + \frac{Q}{\lambda} \times \frac{1}{H}$$

But as Q is liable to undergo a slow change, we introduce a term depending upon the time, in the same manner as above, and the equation becomes

$$0 = -C_1 - A_1 B_1 + \frac{f}{\lambda} \tan \theta + \frac{Q}{\lambda} \times \frac{1}{H} + \frac{\Delta Q}{\lambda} \times \frac{t}{H}$$
 (18)

Each observed value of B_1 and C_1 gives two equations of condition; one of the same form as (17), the other of the same form as (18); and from all the equations of condition thus obtained for any compass, the values of A_1 , $\frac{c}{\lambda}$, $\frac{P}{\lambda}$, $\frac{\Delta P}{\lambda}$, $\frac{f}{\lambda}$, and $\frac{\Delta Q}{\lambda}$, for that compass, have been computed by the method of least squares.

The value of A_1 thus found we will designate as the "true A_1 " in order to distinguish it from the "apparent A_1 " obtained directly from the corrected observed values of the deviations. The value of the true A_1 depends only upon the value of the constants a, b, d, and e, in equations (1) and (2); but the apparent A_1 is made up of the true A_1 , together with any errors that may exist in the placing of the lubber line of the compass, or in the determination of the true magnetic bearing of the distant object used as an azimuth mark in swinging the ship.

The equations of condition, formed in the manner just explained; the normal equations derived from them by the method of least squares; and the resulting values of the constants, A_1 , $\frac{c}{\lambda}$, $\frac{P}{\lambda}$, $\frac{\Delta P}{\lambda}$, $\frac{Q}{\lambda}$, and $\frac{\Delta Q}{\lambda}$, for each compass are as follows: the values of B_1 and C_1 being expressed in parts of radius.

Admiralty Standard Compass. Equations of Condition.

Absolute Terms.	A_1	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	· <u>Δ</u> P λ	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	<u>Δ</u> <u>Q</u>
0 = -0.158 $0 = -0.100$ $0 = -0.064$ $0 = -0.023$ $0 = -0.041$ $0 = -0.048$ $0 = -0.085$ $0 = -0.085$ $0 = +0.010$ $0 = -0.002$ $0 = +0.012$ $0 = +0.002$ $0 = +0.001$ $0 = -0.002$ $0 = +0.001$ $0 = -0.002$ $0 = +0.001$ $0 = -0.002$ $0 = +0.002$ $0 = -0.002$ $0 = -0.002$ $0 = -0.002$ $0 = -0.002$ $0 = -0.002$ $0 = -0.002$	- 0.010 + 0.000 - 0.000 + 0.002 - 0.012 - 0.001 + 0.001 + 0.002 - 0.022 - 0.158 - 0.100 - 0.064 - 0.054 - 0.023 - 0.023 - 0.023 - 0.041 - 0.054 - 0.054 - 0.054 - 0.054 - 0.053 - 0.048 - 0.085	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 T 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519
			Normal Eq	luations.			
$ \begin{array}{cccc} 0 &=& 0.000 \\ 0 &=& -0.699 \\ 0 &=& -0.109 \\ 0 &=& -9.869 \\ 0 &=& +0.037 \\ 0 &=& +0.006 \\ 0 &=& +1.057 \end{array} $	+ 0.058 0.037 0.006 1.057 0.699 0.109 9.869	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 4983.3	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 4983.3
Hence	$A_1 = \frac{c}{\lambda} = +0$	5.000 .0240	$\frac{P}{\lambda} = +0$ $\frac{\Delta P}{\lambda} = +0$		$\frac{f}{\lambda} = -0$ $\frac{Q}{\lambda} = +0$ $\frac{\Delta Q}{\lambda} = -0$,006	

AFTER BINNACLE COMPASS. Equations of Condition.

			*				
Absolute Terms.	A_1	<u>c</u>	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	<u>Q</u>	<u>ΔQ</u>
0 = -0.127 $0 = -0.100$ $0 = -0.096$ $0 = -0.070$ $0 = -0.073$ $0 = -0.058$ $0 = -0.054$ $0 = -0.061$ $0 = +0.022$ $0 = +0.002$ $0 = +0.001$ $0 = -0.002$ $0 = +0.001$ $0 = -0.005$ $0 = +0.005$ $0 = +0.005$ $0 = +0.005$ $0 = +0.005$ $0 = +0.003$	- 0.022 - 0.002 + 0.012 - 0.004 + 0.002 - 0.001 + 0.006 - 0.039 - 0.127 - 0.100 - 0.096 - 0.073 - 0.073 - 0.058 - 0.054 - 0.061	+ 2.694 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 9.516 + 13.933 + 16.522 + 24.375 + 25.638 + 26.316 + 27.440 + 41.519	+ 2.694 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 9.516 + 13.933 + 16.522 + 24.375 + 25 608 + 26.316 + 27.440 + 41.519

AFTER BINNACLE COMPASS. Normal Equations.

Absolute Terms.	A_1	<u>c</u>	<u>P</u> λ	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	<u>Q</u>	<u>\(\Delta Q \) \(\lambda \) \(\tag{\lambda} \)</u>
$ \begin{array}{ccccc} 0 &=& 0.000 \\ 0 &=& -0.288 \\ 0 &=& -0.122 \\ 0 &=& -13.033 \\ 0 &=& +0.136 \\ 0 &=& +0.010 \\ 0 &=& +1.478 \end{array} $	+ 0.068 - 0.136 - 0.010 - 1.478 - 0.288 - 0.122 - 13.033	+ 14.910 + 0.652 + 67.212	+ 0.236 + 28.451	+ 4977.0	+ 14.910 + 0.652 + 67.212	+ 0.236 + 28.451	+ 4977.0
Hence	$A_1 = -c$ $\frac{c}{\lambda} = -c$	0.01 0 0.0048	$\frac{P}{\lambda} = +c$ $\frac{\Delta P}{\lambda} = -c$	0.664	$\frac{f}{\lambda} = -0.6$ $\frac{Q}{\lambda} = +0.6$ $\frac{\Delta Q}{\lambda} = -0.6$	0084	

AFTER RITCHIE COMPASS. Equations of Condition.

Absolute Terms.	A_1	<u>c</u>	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	<u>ΔQ</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0.030 + 0.012 - 0.017 - 0.060 + 0.004 + 0.003 + 0.021 - 0.200 - 0.148 - 0.121 - 0.067 - 0.102 - 0.067 - 0.102 - 0.071 - 0.078 - 0.118	+ 2.694 + 1.176 + 0.077 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ '2.520 + 9.516 + 16.522 + 24.375 + 25.668 + 26.316 + 27.440 + 41.519	+ 2.694 + 1.176 + 0.077 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519
			Normal Eq	uations.			
$\begin{array}{lll} 0 = & 0.000 \\ 0 = - & 0.896 \\ 0 = - & 0.161 \\ 0 = - & 15.837 \\ 0 = + & 0.022 \\ 0 = + & 0.018 \\ 0 = + & 1.525 \end{array}$	+ 0.127 - 0.022 - 0.018 - 1.525 - 0.896 - 0.161 - 15.837	+ 15.930 + 0.926 + 78.581	+ 0.231 + 26.514	+ 4789.2	+ 15.930 + 0.926 + 78.581	+ 0.231 + 26.514	+ 4789.2
Hence	$A_1 = \frac{c}{\lambda} = +c$		$\frac{P}{\lambda} = +0$ $\frac{\Delta P}{\lambda} = -0$.766 .00122	$\frac{f}{\lambda} = +0.0$ $\frac{Q}{\lambda} = -0.1$ $\frac{\Delta Q}{\lambda} = +0.0$	49	

AFTER AZIMUTH COMPASS. Equations of Condition.

Absolute Terms.	A_1	<u>c</u>	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	<u>ΔQ</u>
o = + 0.085 o = + 0.053 o = + 0.078 o = + 0.052 o = + 0.035 o = + 0.066 o = + 0.066 o = + 0.063 o = - 0.023 o = - 0.023 o = + 0.006 o = + 0.014 o = - 0.006 o = + 0.014 o = - 0.030 o = - 0.030 o = - 0.000	- 0.003 + 0.023 - 0.006 - 0.014 + 0.006 - 0.014 + 0.030 0.000 + 0.085 + 0.053 + 0.078 + 0.078 + 0.035 + 0.035 + 0.066 + 0.060	+ 2.694 + 1.176 + 0.077 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836	+ 0.212 + 0.148 + 0.161 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129	+ 2.520 + 9.516 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440	+ 2.694 + 1.176 + 0.077 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836	+ 0.212 + 0.148 + 0.161 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129	+ 2.520 + 9.516 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440
			Normal Eq	uations.			
0 = 0.000 $0 = + 0.250$ $0 = + 0.082$ $0 = + 8.100$ $0 = - 0.055$ $0 = - 0.003$ $0 = - 0.352$	+ 0.037 + 0.055 + 0.003 + 0.352 + 0.250 + 0.082 + 8.100	+ 12.282 + 0.588 - 0.725	+ 0.200 + 19.147	+ 3065.3	+ 12.282 + 0.588 - 0.725	+ 0.200 + 19.147	+ 3065.3
Hence	$A_1 = 0$ $\frac{c}{\lambda} = -c$		$\frac{P}{\lambda} = -c$ $\frac{\Delta P}{\lambda} = -c$	0.373	$\frac{f}{\lambda} = +0.$ $\frac{Q}{\lambda} = -0.$ $\frac{\Delta Q}{\lambda} = +0.$	oo66 044	

FORWARD ALIDADE COMPASS. Equations of Condition.

Absolute Terms.	A ₁	<u>c</u>	$\frac{P}{\lambda}$	<u>\Delta P</u>	$\frac{f}{\lambda}$	<u>Q</u>	<u>\Delta Q</u>
0 = + 0.043 0 = + 0.010 0 = + 0.002 0 = - 0.017 0 = - 0.017 0 = - 0.012 0 = 0.000 0 = + 0.026 0 = + 0.033 0 = + 0.013 0 = + 0.013 0 = + 0.010 0 = + 0.028 0 = + 0.028 0 = + 0.024 0 = + 0.042	- 0.033 - 0.013 - 0.010 - 0.019 - 0.033 - 0.016 - 0.028 - 0.024 - 0.010 - 0.042 + 0.043 + 0.010 + 0.002 - 0.017 - 0.009 - 0.012 - 0.000 + 0.026 + 0.033	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.158 + 0.143 + 0.132 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.668 + 26.316 + 27.440 + 41.519	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 26.316 + 27.440 + 41.519

FORWARD ALIDADE COMPASS. Normal Equations.

Absolute Terms.	A_1	$\frac{c}{\lambda}$	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	$\frac{\Delta Q}{\lambda}$
0 = 0.000 0 = + 0.255 0 = + 0.012 0 = + 1.089 0 = + 0.135 0 = + 0.037 0 = + 4.686	+ 0.011 - 0.135 - 0.037 - 4.686 + 0.255 + 0.012 + 1.089	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 4983.3	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 4983.3

Hence

$$A_1 = -0.025$$

$$\frac{P}{\lambda} = +0.014$$

$$\frac{f}{\lambda} = -0.0012$$

$$\frac{C}{\lambda} = -0.0162$$

$$\frac{\Delta P}{\lambda} = -0.00010$$

$$\frac{Q}{\lambda} = -0.00031$$

FORWARD BINNACLE COMPASS. Equations of Condition.

		E	quations of	Condition.			
Absolute Terms.	A	<u>c</u>	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	f x	<u>Q</u>	<u>ΔQ</u>
0 = + 0.099 0 = + 0.034 0 = - 0.008 0 = - 0.051 0 = - 0.092 0 = - 0.031 0 = - 0.020 0 = + 0.018 0 = + 0.045 0 = + 0.045 0 = + 0.004 0 = + 0.012 0 = + 0.013 0 = + 0.013 0 = + 0.013 0 = + 0.037 0 = + 0.029 0 = + 0.062	- 0.045 - 0.004 - 0.010 - 0.012 - 0.038 - 0.013 - 0.027 - 0.029 - 0.062 + 0.099 + 0.034 - 0.008 - 0.051 - 0.092 - 0.031 - 0.020 + 0.018 + 0.036 + 0.082	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0,212 + 0,148 + 0,161 + 0,166 + 0,164 + 0,158 + 0,143 + 0,132 + 0,129 + 0,177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519
			Normal Eq	nations			
$ 0 = 0.000 \\ 0 = + 0.690 \\ 0 = + 0.015 \\ 0 = + 1.334 \\ 0 = + 0.211 \\ 0 = + 0.046 \\ 0 = + 6.283 $	+ 0.043 - 0.211 - 0.046 - 6.283 + 0.690 + 0.015 + 1.334	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 49 ⁸ 3·3	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 49 ^S 3· 3
Hence	$A_1 = 0$	o.ooo	$\frac{P}{\lambda} = +c$	0.140	$\frac{f}{\lambda} = -\infty$	0059	

H

$$A_1 = 0.000 \qquad \frac{P}{\lambda} = +0.140 \qquad \frac{f}{\lambda} = -0.0059$$

$$\frac{c}{\lambda} = -0.0477 \qquad \frac{\Delta P}{\lambda} = -0.00041 \qquad \frac{Q}{\lambda} = -0.075$$

$$\frac{\Delta Q}{\lambda} = -0.00074$$

Forward Ritchie Compass. Equations of Condition.

Absolute Terms.	A ₁	. c	$\frac{P}{\lambda}$	$\frac{\Delta P}{\lambda}$	$\frac{f}{\lambda}$	$\frac{Q}{\lambda}$	<u>\(\Delta \ \ \delta \) \(\delta \) \(\delta \)</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.063 0.022 0.027 0.000 0.048 0.026 0.034 0.038 0.117 0.023 0.061 0.066 0.067 0.023 0.033 0.033 0.004 0.011 0.005	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519	+ 2.694 + 1.176 + 0.077 - 0.603 - 1.426 - 0.710 - 0.113 + 0.623 + 0.836 + 1.910	+ 0.212 + 0.148 + 0.161 + 0.166 + 0.164 + 0.158 + 0.143 + 0.132 + 0.129 + 0.177	+ 2.520 + 9.516 + 13.933 + 16.522 + 24.375 + 25.608 + 26.316 + 27.440 + 41.519
			Normal Eq	uations.			
$ \begin{array}{l} 0 = & 0.000 \\ 0 = + 0.044 \\ 0 = - 0.052 \\ 0 = - 4.306 \\ 0 = + 0.384 \\ 0 = + 0.068 \\ 0 = + 9.388 \end{array} $	+ 0.042 - 0.384 - 0.068 - 9.388 + 0.044 - 0.052 - 4.306	+ 16.294 + 0.826 + 70.177	+ 0.258 + 28.825	+ 4983.3	+ 16.294 + 0.826 + 70.177	+ 0.258 +28.825	+ 4983.3
Hence	$A_{i} = 0$ $\frac{c}{\lambda} = -0$	o.000 o.0169	$\frac{P}{\lambda} = +c$ $\frac{\Delta P}{\lambda} = -c$	0.36 7 0.0010 2	$\frac{f}{\lambda} = -0.6$ $\frac{Q}{\lambda} = -0.6$ $\frac{\Delta Q}{\lambda} = -0.6$		

The value of the true A_1 having thus become known for each compass, the values of the coefficients \mathfrak{B} , \mathfrak{C} , \mathfrak{D} , and \mathfrak{C} , for each compass, at each station, were next computed by means of the formulæ (16). The results, expressed in parts of radius, are as follows:

Coefficients of the Deviations of the Admiralty Standard Compass.

STATION.	DATE.	\mathfrak{A}	\mathfrak{B}	C	D	Œ
Hampton Roads St. Thomas	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.158 + 0.100 + 0.064 + 0.023 + 0.023 + 0.041 + 0.053 + 0.048 + 0.085	- 0.010 + 0.010 0.000 + 0.002 - 0.012 - 0.002 0.000 + 0.001 + 0.002 - 0.022	+ 0.021 + 0.006 + 0.016 + 0.024 + 0.016 + 0.016 + 0.017 + 0.018 + 0.018	0.004 0.013 0.000 +- 0.004 0.000 0.003 +- 0.002 +- 0.002 0.000

COEFFICIENTS OF THE DEVIATIONS OF THE AFTER BINNACLE

C	OEFFICIENTS OF TH	HE DEVIATIO	ONS OF THE A	AFTER BINN	ACLE.	
STATION.	DATE.	20	23	Œ	D	Œ
Hampton Roads	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1865 April 4, 1865 April 29, 186 May 20, 1866 June 1, 1866 June 23, 1866	- 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010	+ 0.127 + 0.100 + 0.096 + 0.100 + 0.070 + 0.073 + 0.058 + 0.054 + 0.060	- 0.023 - 0.003 + 0.011 - 0.005 + 0.002 - 0.002 + 0.006 - 0.006 - 0.040	+ 0.037 + 0.034 + 0.039 + 0.040 + 0.040 + 0.041 + 0.032 + 0.038	- 0.001 - 0.002 - 0.012 - 0.001 0.000 + 0.002 - 0.005 - 0.006 0.000
Соебы	FICIENTS OF THE D	EVIATIONS C	ог тне Агте	R RITCHIE C	COMPASS.	
STATION.	DATE.	Ą	\mathfrak{B}	હ	D	Œ.
Hampton Roads St. Thomas	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866 June 23, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.200 + 0.148 + 0.121 	- 0.030 + 0.012 - 0.017 - 0.060 + 0.004 + 0.004 - 0.003 + 0.021 - 0.027	+ 0.024 + 0.044 + 0.042 + 0.022 + 0.043 + 0.032 + 0.025 + 0.025 + 0.050	- 0.022 - 0.009 + 0.002 - 0.013 + 0.002 + 0.016 - 0.027 + 0.015 + 0.003
Coeff	CICIENTS OF THE D	EVIATIONS O	F THE AFTE	R AZIMUTH (COMPASS.	· · · · · · · · · · · · · · · · · · ·
STATION.	DATE.	\mathfrak{A}	\mathfrak{B}	હ	D	હ
Hampton Roads St. Thomas	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866 June 23, 1866	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0.085 0.053 0.078 0.052 0.086 0.035 0.066 0.060	- 0.003 + 0.023 - 0.006 	+ 0.101 + 0.120 + 0.132 - 0.126 + 0.106 + 0.090 + 0.113 + 0.105 	+ 0.005 + 0.002 - 0.019
Coeffic	CIENTS OF THE DE	VIATIONS OF	THE FORWA	rd A lidade	Compass.	
STATION.	DATE.	U	\mathfrak{B}	હ	D	Œ
Hampton Roads	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866 June 23, 1866	- 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025 - 0.025	- 0.044 - 0.010 - 0.002 + 0.016 + 0.017 + 0.008 + 0.012 - 0.001 - 0.026 - 0.034	0.032 0.013 0.010 0.019 0.034 0.016 0.029 0.024 0.009 0.041	+ 0.019 + 0.022 + 0.022 + 0.024 + 0.031 + 0.019 + 0.026 + 0.023 + 0.033 + 0.017	+ 0.001 + 0.006 + 0.004 - 0.007 - 0.002 - 0.003 - 0.003 + 0.002 + 0.007

COEFFICIENTS OF THE DEVIATIONS OF THE FORWARD BINNACLE COMPASS.

STATION. DATE.		U	33	હ	\mathfrak{D}	Œ
Hampton Roads St. Thomas Bahia	April 29, 1866 May 20, 1866 June 1, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	- 0.099 - 0.034 + 0.008 + 0.051 + 0.092 + 0.031 + 0.020 - 0.018 - 0.036 - 0.082		+ 0.044 + 0.035 + 0.037 + 0.032 + 0.039 + 0.028 + 0.037 + 0.037 + 0.035	+ 0.007 - 0.002 - 0.003 - 0.001 - 0.004 - 0.003 + 0.006 - 0.006 + 0.004 + 0.014

COEFFICIENTS OF THE DEVIATIONS OF THE FORWARD RITCHIE COMPASS.

STATION. DATE.		\mathfrak{A}	\mathfrak{B}	હ	D	Œ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco Means	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 May 20, 1866 June 1, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.023 + 0.036 + 0.061 + 0.066 + 0.067 + 0.023 + 0.033 + 0.004 + 0.011 - 0.005	- 0.063 - 0.022 - 0.027 0.000 - 0.048 - 0.026 - 0.034 - 0.033 - 0.038 - 0.117	+ 0.038 + 0.057 + 0.047 + 0.040 + 0.039 + 0.037 + 0.044 + 0.038 + 0.041 + 0.025	+ 0.006 - 0.008 - 0.002 - 0.008 - 0.006 + 0.008 + 0.002 - 0.004 + 0.007 - 0.009

The values of the coefficients $\mathfrak D$ and $\mathfrak E$ for any compass should be constant. Therefore the mean of all the observed values has been assumed as the truth, and is given on the line marked "means" in the case of each compass.

The constants thus far determined furnish the data with which to compute the values of the coefficients \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{D} , \mathfrak{E} , in any part of the world, for any of the compasses under discussion. For convenience of reference these constants are collected in the following table:

Compass.	$A_1 = \mathfrak{A}$	<u>c</u>	$\frac{P}{\lambda}$	P \(\frac{P}{\lambda} \)	<u>f</u>	<u>Q</u>	<u>ΔQ</u>	D	Œ
Admiralty Standard After Binnacle After Ritchie After Azimuth Forward Alidade Forward Binnacle Forward Ritchie	0.010 0.000 0.000 0.025 0.000	- 0.0048 + 0.0178 - 0.0026 - 0.0162 - 0.0477	+ 0.664 + 0.766 - 0.373 + 0.014 + 0.140	- 0.00112 - 0.00122 - 0.00032 - 0.00010 - 0.00041	- 0.0084 + 0.0052 + 0.0066 - 0.0012 - 0.0059	+ 0.002 - 0.149 - 0.044 - 0.106 - 0.075	- 0.00023 - 0.00022 + 0.00042 + 0.00039 - 0.00074 - 0.00120	+ 0.038 + 0.034 + 0.112 + 0.024 + 0.037	- 0.002 - 0.001 0.000 0.000 + 0.001

The values of the coefficients \mathfrak{A} , \mathfrak{B} , \mathfrak{C} , \mathfrak{D} , \mathfrak{C} , for each compass at each station, were next computed from the quantities given in this table, in the following manner. The coefficients \mathfrak{A} , \mathfrak{D} , and \mathfrak{C} are constant for each compass, and were taken December, 1872.

directly from the table; while the coefficients B and E were obtained by means of the formulæ

$$\mathfrak{B} = \frac{c}{\lambda} \tan \theta + \frac{P}{\lambda} \times \frac{1}{H} + \frac{\Delta P}{\lambda} \times \frac{t}{H}$$

$$\mathfrak{C} = \frac{f}{\lambda} \tan \theta + \frac{Q}{\lambda} \times \frac{1}{H} + \frac{\Delta Q}{\lambda} \times \frac{t}{H}$$

where θ is the true magnetic dip; H the earth's magnetic horizontal force, expressed in English units, namely, in feet, grains, and seconds; and t the time in days, counted from November 1st, 1865. The results, expressed in parts of radius, are as follows:

COEFFICIENTS OF THE DEVIATIONS OF THE ADMIRALTY STANDARD COMPASS.

STATION. DATE.		A	23	E	D	Œ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.162 + 0.094 + 0.066 + 0.048 + 0.024 + 0.031 + 0.037 + 0.049 + 0.052 + 0.085	0.003 0.002 0.001 0.001 0.000 0.003 0.005 0.006 0.007 0.011	+ 0.017 + 0.017 + 0.017 + 0.017 + 0.017 + 0.017 + 0.017 + 0.017 + 0.017	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

COEFFICIENTS OF THE DEVIATIONS OF THE AFTER BINNACLE COMPASS.

STATION.	DATE.	\mathfrak{A}	\mathfrak{B}	Œ	D	Œ
Hampton Roads St. Thomas Bahia	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	0.010 0.010 0.010 0.010	+ 0.128 + 0.096 + 0.097 + 0.081 + 0.067 + 0.055 + 0.051 + 0.062	- 0.022 - 0.002 + 0.002 + 0.009 + 0.001 - 0.004 - 0.011 - 0.013 - 0.025	+ 0.038 	- 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002 - 0.002

Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	U	\mathfrak{B}	હ	D	Œ
Bahia	February 10, 1866 April 4, 1866 April 29, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.211 + 0.131 + 0.113 	- 0.018 - 0.015 - 0.020 	+ 0.034 + 0.034 + 0.034 + 0.034 + 0.034 + 0.034 + 0.034 + 0.034	0.00I 0.00I 0.00I 0.00I 0.00I 0.00I 0.00I 0.00I

MAGNETIC OBSERVATIONS.

Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	U	33	હ	0	Œ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.086 0.059 0.063 0.062 0.065 0.061 0.059 0.059	+ 0.008 + 0.002 - 0.003 - 0.010 - 0.002 + 0.003 + 0.009 + 0.011	+ 0.112 + 0.112 + 0.112 + 0.112 + 0.112 + 0.112 + 0.112 + 0.112 	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Coefficients of the Deviations of the Forward Alidade Compass.

STATION.	DATE.	21	23	C	D	હ
	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 May 20, 1866 June 1, 1866	— 0.025 — 0.025 — 0.025 — 0.025 — 0.025 — 0.025 — 0.025	- 0.04I - 0.017 0.000 + 0.01I + 0.024 + 0.01I + 0.00I - 0.01I - 0.014 - 0.032	- 0.026 - 0.018 - 0.020 - 0.021 - 0.021 - 0.023 - 0.023 - 0.023 - 0.023 - 0.034	+ 0.024 + 0.024 + 0.024 + 0.024 + 0.024 + 0.024 + 0.024 + 0.024 + 0.024 + 0.024	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Coefficients of the Deviations of the Forward Binnacle Compass.

STATION.	DATE.	A	3	હ	D	Œ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866 June 23, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	- 0.099 - 0.036 + 0.015 + 0.046 + 0.084 + 0.046 + 0.015 - 0.022 - 0.033 - 0.083	0.032 0.020 0.019 0.016 0.026 0.029 0.033 0.035	+ 0.037 + 0.037 + 0.037 + 0.037 + 0.037 + 0.037 + 0.037 + 0.037 + 0.037	+ 0.00I + 0.00I + 0.00I + 0.00I + 0.00I + 0.00I + 0.00I + 0.00I + 0.00I

Coefficients of the Deviations of the Forward Ritchie Compass.

STATION.	DATE.	U	\mathfrak{B}	હ	D	હ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866	0.000 0.000 0.000 0.000 0.000 0.000 0.000	+ 0.032 + 0.032 + 0.048 + 0.057 + 0.067 + 0.045 + 0.028 + 0.011 + 0.005 - 0.010	0.056 0.032 0.026 0.022 0.013 0.032 0.041 0.051 0.056 0.092	+ 0.04I + 0.04I + 0.04I + 0.04I + 0.04I + 0.04I + 0.04I + 0.04I + 0.04I + 0.04I	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Comparing these computed values with the values before found directly from the observations, the following residuals are obtained:

Value of the Computed minus the Observed Coefficients of the Deviations of the Admiralty Standard Compass.

STATION.	DATE.	\mathfrak{A}	\mathfrak{B}	C	2	1 6
Monte Video	November 1, 1865 November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866 June 23, 1866		+ 0.004 - 0.006 + 0.002 - 0.006 + 0.001 + 0.008 - 0.004 - 0.004 + 0.004	+ 0.007 - 0.012 - 0.001 - 0.003 + 0.012 - 0.001 - 0.005 - 0.007 - 0.009 + 0.011	- 0.004 + 0.011 + 0.001 - 0.007 + 0.001 + 0.001 - 0.000 - 0.001	+ 0.003 + 0.012 - 0.001 - 0.005 - 0.001 + 0.002 - 0.003 - 0.003 - 0.003

Value of the Computed minus the Observed Coefficients of the Deviations of the After Binnacle Compass.

STATION.	DATE.	At .	\mathfrak{B}	હ	2	Œ
Hampton Roads	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866		+ 0.001 - 0.004 + 0.002 - 0.003 + 0.011 - 0.006 - 0.003 - 0.003 + 0.002	+ 0.001 - 0.001 - 0.009 + 0.014 - 0.001 - 0.002 - 0.017 - 0.007 + 0.015	+ 0.001 	- 0.001 - 0.004 + 0.010 - 0.001 - 0.002 - 0.004 + 0.003 + 0.004 - 0.002

Value of the Computed minus the Observed Coefficients of the Deviations of the After Ritchie Compass.

STATION.	DATE.	U	\mathfrak{B}	હ	D	Œ
Monte Video	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866		+ 0.011 - 0.017 - 0.008 + 0.009 + 0.012 - 0.026 + 0.009 + 0.002 + 0.001	+ 0.012 - 0.027 - 0.003 + 0.035 - 0.021 - 0.015 - 0.002 - 0.024 + 0.028	+ 0.010 - 0.010 - 0.008 + 0.012 - 0.009 + 0.002 + 0.009 - 0.010 - 0.016	+ 0.021 + 0.008 - 0.003 - 0.014 - 0.003 - 0.017 + 0.026 - 0.016 - 0.004

Value of the Computed minus the Observed Coefficients of the Deviations of the After Azimuth Compass.

STATION.	DATE.	A	3	C	D	Œ
Hampton Roads St. Thomas Bahia	December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866		- 0.001 - 0.006 + 0.015 - 0.010 + 0.021 - 0.026 + 0.007 + 0.001	+ 0.01I - 0.02I + 0.003 + 0.004 - 0.008 + 0.017 - 0.02I + 0.01I	+ 0.011 - 0.008 - 0.020 - 0.014 + 0.006 + 0.022 - 0.001 + 0.007	- 0.005 - 0.002 + 0.019 - 0.007 - 0.010 - 0.011 + 0.012 - 0.007

Value of the Computed minus the Observed Coefficients of the Deviations of the Forward Alidade Compass.

STATION.	DATE.	A	\mathfrak{B}	હ	2	હ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco	December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866		+ 0.003 - 0.007 + 0.002 - 0.005 + 0.007 + 0.003 - 0.011 - 0.010 + 0.002	+ 0.006 - 0.005 - 0.010 - 0.002 + 0.013 - 0.007 + 0.006 + 0.001 - 0.014 + 0.007	+ 0.005 + 0.002 + 0.002 - 0.000 - 0.007 + 0.005 - 0.002 + 0.001 - 0.009 + 0.007	- 0.co1 - 0.006 - 0.004 + 0.007 + 0.002 + 0.003 + 0.003 - 0.002 - 0.007

Value of the Computed minus the Observed Coefficients of the Deviations of the Forward Binnacle Compass.

STATION.	DATE.	20	33	હ	2	Œ
Hampton Roads St. Thomas Bahia Monte Video	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866		0.000 0.002 +- 0.007 0.005 0.008 +- 0.015 0.005 0.004 +- 0.003 0.001	+ 0.013 - 0.016 - 0.010 - 0.007 + 0.022 - 0.013 + 0.006 - 0.006 + 0.006	- 0.007 + 0.002 0.000 + 0.005 - 0.002 + 0.009 0.000 0.000 - 0.009 + 0.002	- 0.006 + 0.003 + 0.004 + 0.002 + 0.005 + 0.004 - 0.005 + 0.007 - 0.003 - 0.013

Value of the Computed minus the Observed Coefficients of the Deviations of the Forward Ritchie Compass.

STATION.	DATE.	U	33	હ	D	Œ
Hampton Roads St. Thomas Bahia Monte Video Sandy Point Valparaiso Callao Panama Acapulco San Francisco.	November 18, 1865 December 30, 1865 January 24, 1866 February 10, 1866 April 4, 1866 April 29, 1866 May 20, 1866 June 1, 1866		+ 0.009 - 0.004 - 0.013 - 0.009 0.000 + 0.022 - 0.005 + 0.007 - 0.006 - 0.005	+ 0.007 - 0.010 + 0.001 - 0.022 + 0.035 - 0.006 - 0.007 - 0.018 + 0.025	+ 0.003 - 0.016 - 0.006 + 0.001 + 0.002 + 0.004 - 0.003 + 0.003 0.000 + 0.016	- 0.007 + 0.007 + 0.001 + 0.005 - 0.009 - 0.003 + 0.003 + 0.008

In the following table the columns headed $r_{\mathfrak{B}}$, $r_{\mathfrak{G}}$, $r_{\mathfrak{D}}$, $r_{\mathfrak{G}}$, contain respectively the probable errors of a single observed value of \mathfrak{B} , \mathfrak{S} , \mathfrak{D} , and \mathfrak{S} , for each compass, computed from the residuals just given. But as these residuals were got by subtracting the computed from the observed values of the coefficients, and as each observed value was found from a set of deviations observed on all the thirty-two points, it follows that the probable errors here given belong to the coefficients when they have been computed from a set of deviations observed on all the thirty-two points. For convenience of reference we will designate these as the probable errors derived from all the observations of the cruise.

Compass.	r B	r ©	r D	r E	$\frac{r}{\sqrt{16}}$
Admiralty Standard After Binnacle After Ritchie After Azimuth Forward Alidade Forward Binnacle Forward Ritchie	± 0.0033 ± 0.0036 ± 0.0090 ± 0.0100 ± 0.0050 ± 0.0046 ± 0.0070	± 0.0053 ± 0.0069 ± 0.0153 ± 0.0100 ± 0.0059 ± 0.0084 ± 0.0127	± 0.0032 ± 0.0026 ± 0.0072 ± 0.0094 ± 0.0035 ± 0.0036	± 0.0033 ± 0.0028 ± 0.0106 ± 0.0074 ± 0.0031 ± 0.0043 ± 0.0047	± 0.0008 ± 0.0018 ± 0.0031 ± 0.0030 ± 0.0016 ± 0.0024 ± 0.0032
Means	± 0.0061	± 0.0092	± 0.0050	± 0.0052	± 0.0023

But we have before found the probable errors of B_1 , C_1 , D_1 , and E_1 , when computed from observations made at a single station on each of the thirty-two points, by a totally different process, namely, from the thirty-two observed deviations the values of A_1 , B_1 , C_1 , D_1 , and E_1 , were computed; next, with the values of A_1 , B_1 , C_1 , D_1 , and E_1 , thus found, the deviations were computed for each point; then, comparing these computed values of the deviation with the observed values, a series of residuals were obtained from which the probable errors in question (which are given in the table on page 185) were easily got. These we will designate as the probable errors obtained from observations at a single station; and it will be remembered that it was shown that, no matter what their numerical values might be, the probable errors of B_1 , C_1 , D_1 , and E_1 must all be equal to each other. Although the difference between the probable errors of B_1 , C_1 , D_1 , E_1 , and those of B, E, D, E, can never be great, yet, in general, it would not be rigorously correct to assume that they are equal to each other. However, in the case of the compasses under discussion we will make this assumption, for by so doing no error greater than the uncertainty of the probable errors themselves will be introduced. In order to facilitate the comparison of the two sets of probable errors, those of B_1 ,

 C_1 , D_1 , E_1 are given in the table above, in the column headed $\frac{r}{\sqrt{16}}$. This column is identical with the column headed in the same manner in the table on page 185, except that the quantities are here expressed in parts of radius instead of minutes of arc.

Now, comparing the probable errors derived from all the observations of the cruise with those derived from observations at any single station, we see that, taking the mean of the results for all the compasses, $r_{\mathfrak{D}}$ and $r_{\mathfrak{E}}$ are almost identical, as they should be, but they are each more than twice as great as $\frac{r}{\sqrt{16}}$. On the other hand,

 $r_{\mathfrak{D}}$ and $r_{\mathfrak{C}}$ are neither equal to each other, nor yet to $r_{\mathfrak{D}}$ and $r_{\mathfrak{C}}$, but are, the one nearly three, and the other four, times as great as $\frac{r}{\sqrt{16}}$. Assuming the theory employed in this discussion to be correct, we should have expected to find $r_{\mathfrak{D}}$, $r_{\mathfrak{C}}$, $r_{\mathfrak{D}}$, $r_{\mathfrak{C}}$ sensibly equal to each other, and all sensibly equal to $\frac{r}{\sqrt{16}}$. Such, however, is not the case; and, as the results for each compass all tend in precisely the same direction as the mean result, a doubt naturally arises whether or not the theory really represents the semi-circular deviation as accurately as it does the quadrantal. As this doubt is founded upon observations which may possibly have been affected by some unknown cause of constant error—as they were all made on a single vessel during a single cruise—perhaps it would not be well to insist upon it too strongly; but at all events, it shows the necessity for further investigation of the subject, and especially the great want of more observations.

The probable errors of the coefficients \mathfrak{B} , \mathfrak{C} , \mathfrak{D} , \mathfrak{E} , for each compass, when computed from the values of A_1 , $\frac{c}{\lambda}$, $\frac{P}{\lambda}$, $\frac{\Delta P}{\lambda}$, $\frac{f}{\lambda}$, $\frac{Q}{\lambda}$, $\frac{\Delta Q}{\lambda}$, \mathfrak{D} , and \mathfrak{E} , given in the table on page 193, are as follows:

Comp	pass.		1		r° B	ro C	r° D	r° E
Admiralty Standard After Binnacle . After Ritchie . After Azimuth . Forward Alidade		•	•		± 0.0010 ± 0.0012 ± 0.0030 ± 0.0035 ± 0.0016	± 0.0017 ± 0.0023 ± 0.0051 ± 0.0035 ± 0.0019	± 0.0010 ± 0.0009 ± 0.0024 ± 0.0033 ± 0.0011	± 0.0010 ± 0.0009 ± 0.0035 ± 0.0026 ± 0-0010
Forward Binnacle Forward Ritchie.	•	•	•	•	\pm 0.0010 \pm 0.0014 \pm 0.0022	± 0.0019 ± 0.0026 ± 0.0040	± 0.0011 ± 0.0012 ± 0.0018	± 0.0014 ± 0.0015

The following table shows, for each compass, the place at which the maximum value of its deviation, δ , was the greatest, together with the point on which that maximum value occurred, and its amount. Also, the place at which the maximum value of its deviation was the least, together with the point on which that maximum occurred, and its amount. These deviations are given on the compass points, and in computing them the true A was used.

Compass and	Statio	n.	Point.	8			
Admiralty Standard.							
Hampton Roads						E. by N.	+ 9° 29'
~ * * * * * * * * * * * * * * * * * * *						N. E. by E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
After Binnacle.						•	, ,
Hampton Roads		•	•			N. W. by W.	— 9 15
Acapulco		•				N. W. by W.	— 5 2I
After Ritchie.						ŕ	,
Hampton Roads		•	•	•		W. N. W.	12 45
Panama		•	•	•		N. W. by W.	— 5 4I
After Azimuth.						. ,	
Hampton Roads	•.	•	•			S. E. by E.	— 10 5
St. Thomas .			•	•	. 1	S. E.	— 8 45

Compass	and	Statio	n.				Point.	8
Forward Alidade.								
Bahia .				•		.	N. W. by N.	— 3° 39′
Sandy Point		•				. 1	N. W.	— 4 34
Forward Binnacle.								
Bahia .						.	N. W.	- 3 31
San Francisco						.	S. W.	+ 7 43
Forward Ritchie.								. , .0
St. Thomas							N. W.	— 4 55
San Francisco			•	•	•		S. W. by S.	+ 6 53

The following table shows, for each compass, the maximum change, $\Delta \delta$, in its deviation, which occurred on any single point, together with the azimuth at which, and the places between which that change occurred.

Compass and Station.			Azimuth.
Admiralty Standard. Hampton Roads and Sandy Point			S. 88° 52′ E. 7° 53′
After Binnacle.	•	•	C. 00 52 L. / 53
Hampton Roads and Acapulco . After Ritchie.	•	•	S. 82 43 E. 4 23
Hampton Roads and Panama . After Azimuth.	•	•	S. 84 27 E. 7 28
Hampton Roads and Sandy Point Forward Alidade.	. •	•	S. 48 31 E. 1 43
Hampton Roads and Sandy Point Forward Binnacle.	•	•	N. 85 20 E. 3 39
Sandy Point and San Francisco Forward Ritchie.	•	•	N. 76 17 E. 9 42
Sandy Point and San Francisco			N. 43 16 E. 6 18

In order to show the difference between the values of the deviation computed from observations made at a single station, and those computed from all the observations of the cruise, or, in other words, the difference between the theory and the observations, let δ be the deviation of a compass on any point, ζ , at a given station, as computed from values of A_1 , B_1 , C_1 , D_1 , E_1 , derived from all the observations of that compass made during the cruise; and also let δ' be the deviation of the same compass, on the same point, at the same station, as computed from values of A_1 , B_1 , C_1 , D_1 , E_1 , derived from observations of that compass made on each of the thirty-two points at the station in question. Then the following table shows, for each compass, the maximum value attained by $\delta - \delta'$ during the cruise, together with the point on which, and the station at which, that maximum occurred.

Compass.			Station.	Point.	2-21
Admiralty Standard After Binnacle After Ritchie After Azimuth Forward Alidade Forward Binnacle Forward Ritchie		•	St. Thomas Panama Sandy Point Callao Acapulco Valparaiso San Francisco	S. S. W. S. S. E. S. by E. S. E. by S. S. E. N. W. by W. N. N. E.	+ 1° 41' + 1 14 - 2 51 - 3 4 + 1 36 - 1 41 + 2 11

As the After Azimuth Compass was a very poor instrument, the descrepancy between theory and observation in the case of its deviations is not surprising. the case of all the other compasses, except perhaps the Forward and After Ritchie, the agreement of the observed and computed values of the deviations is much more satisfactory; and indeed the differences between them are so small as to be of very little consequence for the ordinary purposes of navigation; still, viewed from a purely scientific stand-point, they are larger than might have been expected.

The hard and soft iron forces involved in the production of the semi-circular deviation were next examined in order to ascertain whether or not their relations to each other were such as to render it possible, in the case of a vessel swung for the first time, to predict from the observed deviations of her standard compass what the deviations would be at any other place. The coefficients of the semi-circular deviation are B and C, and the components of the hard iron force involved in their production are $\frac{P}{\lambda}$ and $\frac{Q}{\lambda}$; while the components of the soft iron force are $\frac{c}{\lambda}$ and $\frac{f}{\lambda}$. As these components act at right angles to each other, the total hard iron force will be

$$\sqrt{\frac{P^2}{\lambda^2} + \frac{Q^2}{\lambda^2}},$$

and if we let a represent the direction in which it acts, measured from the ship's head toward the right hand, we have

$$\tan \alpha = \frac{\frac{Q}{\lambda}}{\frac{P}{\lambda}}$$

In the same way the total soft iron force will be

$$\sqrt{\frac{c^2}{\lambda^2} + \frac{f^2}{\lambda^2}}$$

 $\sqrt{\frac{c^2}{\lambda^2} + \frac{f^2}{\lambda^2}}$ and to determine its direction we have

$$\tan \alpha' = \frac{\frac{f}{\lambda}}{\frac{c}{\lambda}}$$

By means of these formulæ the following table was computed. It shows the amount and direction of the hard and soft iron forces acting on each compass on November 1, 1865, and June 23, 1866.

	Hard Ire	on Force.			
Novemb	er 1, 1865.	June 2	3, 1866.	Soft Ire	on Force.
Amount.	Direction.	Amount.	Direction.	Amount.	Direction.
0.460	000°.8	0.226	348°.0	0.024	356°.1
0.780	349.0	0.481	354.0	0.018	16.3
0.107	277.6	0.178	267.3	0.016	184.2 187.1
0.159	331.9	0.254	289.1	0.022	219.9
	Amount. 0.460 0.664 0.780 0.375 0.107 0.159	November 1, 1865. Amount. Direction. 0.460 000°.8 0.664 000.2 0.780 349.0 0.375 186.8 0.107 277.6 0.159 331.9	Amount. Direction. Amount. 0.460	November I, 1865. June 23, 1866. Amount. Direction. 0.460 000°.8 0.664 000.2 0.780 349.0 0.375 186.8 0.107 277.6 0.159 331.9 0.26 348°.0 0.481 354.0 173.9 0.178 267.3 0.254 280.1	November I, 1865. June 23, 1866. Soft Ire Amount. Direction. Amount. Direction. Amount. 0.460 000°.8 0.226 348°.0 0.024 0.664 000.2 0.639 353.0 0.010 0.780 349.0 0.481 354.0 0.018 0.375 186.8 0.449 173.9 0.007 0.107 277.6 0.178 267.3 0.016 0.159 331.9 0.254 280.1 0.048

The following table shows the change, in amount and direction, of the hard iron force between November 1, 1865, and June 23, 1866; the ratio of the hard to the soft iron force on each of these dates; and also the mean ratio of the same forces.

Compass.	Change of Har	rd Iron Force.	Ratio of	Hard to Soft Iron	Force.
Compass.	Amount.	Direction.	Nov. 1, 1865.	June 23, 1866.	Mean.
Admiralty Standard. After Binnacle After Ritchie After Azimuth. Forward Alidade Forward Binnacle Forward Ritchie	0.234 0.025 0.299 +- 0.074 +- 0.095 +- 0.011	- 12°.8 - 7.2 + 5.0 - 12.9 - 10.3 - 51.8 - 58.1	19.2 68.8 42.1 52.6 6.6 3.3 17.1	9.4 66.1 26.0 62.8 11.0 5.3 17.6	14 3 67.4 34.0 57.7 8.8 4.3

An examination of the last two tables shows that during the whole cruise the hard iron force was changing in a very remarkable manner, both in amount and direction. In the case of the three compasses mounted above the forward turret, the force was increasing: while in the case of those mounted above the after turret, it was decreasing. In other words, there seems to have been a transfer of hard iron force from aft forward. Now, looking at the change in direction of the force, we see that in every case, excepting only that of the After Ritchie, it took place in such a manner as to correspond to a rotation from right to left. Further, the ratio of the hard to the soft iron force was slowly varying at each compass; and for the different compasses it ranged between 4.3 and 67.4. Finally, there was not a single compass on board at which the direction of the hard and soft iron force coincided; from which it follows that in no case was the ratio of the hard and soft iron forces the same in the coefficient B as it was in the coefficient C. Under these circumstances we are forced to conclude that, so far as can be judged from the observations here given, in the case of a vessel swung for the first time it is impossible to make any reliable estimate of the ratio of the hard to the soft iron force in the coefficients \mathbb{B} and \mathbb{G}; and, therefore, it is also impossible to make any reliable estimate as to what changes her deviations will undergo upon a change of magnetic latitude. As a further proof of this, we see that the After Azimuth Compass, with a maximum deviation of 10° 5', changed its deviation during the cruise by only 1° 43', that is, by about one-sixth of its whole amount; while the Forward Binnacle Compass, with a maximum deviation of only 7° 43' changed its deviation during the cruise by 9° 42′, that is, by about one and a quarter times its whole amount.

In the beginning of this section it was stated that, at the positions occupied by the Admiralty Standard and After Azimuth Compasses, observations of deflection and dip were made in order to determine the absolute magnetic force; and the details of the method followed in taking these observations were explained. We will now proceed to reduce and discuss the observations themselves, and for that purpose the first thing necessary to be known is the magnetic moment of the deflecting magnets. For its determination we have the observations recorded in the following table, which were all made on shore. The first and second columns

of the table give the place where, and the date when, each observation was made. The third and fourth columns give respectively the observed deflections when the north ends of the deflecting magnets were directed towards the west and towards the east; the distance of their centres from the centre of the compass needle being in both cases eleven inches. The fifth column gives the mean of the four observed deflections recorded in the third and fourth columns. The sixth, seventh, and eighth columns contain, in precisely the same manner, the observed deflections, and their mean, when the centres of the deflecting magnets were at a distance of fifteen inches from the centre of the compass needle. Now, let r be the distance, expressed in feet, between the centres of the deflecting magnets and the centre of the compass needle; u, the observed angle of deflection given for each value of r in the column headed "mean"; m, the combined magnetic moment of the two deflecting magnets; and H, the earth's horizontal force at the place where the observation was made, taken from the table on page 61. Then we shall have

$$\frac{1}{2}r^3 \tan u = \frac{m}{H}$$

and the ninth column contains the mean of the two values of \log . $\frac{m}{H}$ computed respectively from the angles of deflection observed with r=11 inches = 0.917 foot, and r=15 inches = 1.250 feet. The tenth column contains the value of \log . m, found by adding to \log . $\frac{m}{H}$ the known value of \log . H.

]	Defle	ctions	s.						_
Station.	Date.		r =	= 11	inche	es.			r=	= 15	inch	es.		$\operatorname{Log.} \frac{m}{H}$.	Log. m.
		W	est.	Ea	ist.	Me	an.	We	est.	Ea	ıst.	Me	an.		
Gosport	Oct. 30, 1865	190	30'	22°	40′			140	30′	170	30'			_	_
C4 Th	37 - 06.	19	0	22	20	20°	521	14	20	17	40	*16°	0'	9.1617	9.8344
St. Thomas	Nov. 13, 1865	15	20	14	50		_	4	20	6	40		20	8.9961	9.8251
Salute Islands	Nov. 28, 1865	15	30 35	14 15	40 0	15	5	4 5	30 20	5	40 20	5	32	8.9901	9.0251
Surue Islands	1107. 20, 1003	14	35 35	15	5	14	49	4	55	5	20	5	14	8.9799	9.8079
Bahia	Dec. 27, 1865	15	40	16	10		77	6	10	5	30	,		0.9199	3.0073
	''	16	40	16	10	16	10	5	40	5	30	5	42	9.0184	9.8108
Rio Janeiro	Jan. 6, 1866	17	o	17	0			6	40	ĕ	O.		•		
		17	0	17	10	17	2	6	0	6	О	6	IO	9.0476	9.8216
Monte Video	Jan. 18, 1866	16	40	16	40			6	20	5	30				
a		17	0	16	40	16	45	- 6	10	5	30	5	52	9.0328	9.8130
Sandy Point	Feb. 7, 1866	16	30	16	20	_		5 6	40	6	40			0	- 0
37-1	36 1 - 000	16	40	16	20	16	27		0	6	30	6	12	9.0408	9.8270
Valparaiso	March 2, 1866	17	0	15	0			7	20	5	0	6	12	0.0000	9.8326
Valparaiso	April 7, 1866	16	40	14	40	15	50	7	30	5	0	U	12	9.0320	9.0320
valparaiso	April 7, 1866	14	40	17	40	16	_	4	30 20	7	30 40	6	o	9.0284	9.8290
Callao	April 26, 1866	14 14	30 30	17	30	10	5	4 5	20	7 5	10		U	9.0204	9.0290
Canao	11pm 20, 1000	14	30	14 14	30 30	14	30	5 5	10	5	30	5	18	8.9777	9.8222
Panama	May 14, 1866	12	50	13	30	14	30	3 4	30	-5	20	3	•	0.9777	9.0222
	1.2.5	13	10	13	30	13	15	4	40	. 5	0	4	52	8.9387	9.8195
Acapulco	May 30, 1866	12	30	12	20	- 3	- 5	4	40	4	30		,	75 1	, ,
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12	40	12	10	12	25	5	30	4	40	4	50	8.9227	9.8107
San Francisco	June 26, 1866	17	40	17	0		-	7	0	6	io		-	- 1	•
l		18	·0	16	40	17	20	7	IO	6	30	6	42	9.0698	9.8208

^{*} In this observation r = 12 inches.

The observed values of \log m show no trace whatever of any change depending upon the time, and therefore the indiscriminate mean of them all has been taken as the truth, and we have

$$Log. m = 9.8211 \pm 0.0016.$$

The probable error of a single observed value of log. m is ± 0.0058 .

The following table contains all the observations which were made at the position occupied by the Admiralty Standard Compass on board the Monadnock, for the determination of absolute force. The first nine columns contain quantities precisely similar to those in the columns headed in the same manner in the table last given. The column headed "Log. H'" gives the logarithm of the combined horizontal force of the earth and ship, obtained by subtracting log. $\frac{m}{H'}$ from the value of log. m given above. The column " θ '" contains the dip, which was observed immediately after the deflections. The column "Log. Z'" contains the logarithm of the combined vertical force of the earth and ship, computed from the quantities in the tenth and eleventh columns by the formula $Z' = H' \tan \theta'$. The columns "Log. $\frac{H'}{H}$," and "Log. $\frac{Z'}{Z}$ ", explain themselves when it is stated that H represents the horizontal force of the earth; H' the combined horizontal force of the earth and ship; Z the earth's vertical force; and Z' the combined vertical force of the earth and ship. The column " ζ " contains the azimuth of the ship's head as read off from the compass card at the time the deflections were observed; and the column " ζ " contains the same azimuth, counted from the true magnetic north.

ADMIRALTY STANDARD COMPASS.

		٠.						N. 89° 41′ E.	30 E.	, 1	30	8	, 6		0	. 4	13	9		3 22 E.
								N. 89	N. 74	N. 38		S.	S. 19	S. 39	S. 20	Z.	s.	Ñ. 45	S. 29	S. 18
		ù			+1	W. (?)	East.	N. 85° E.	N. 70 E.	N. 35 E.	N. 4 W.		S. 20 E.	S. 39 W.	S. 20 W.	N. 5 W.	South.	N. 42 W.	S. 30 E.	S. 20 E.
		Log. $\frac{Z'}{Z}$	1					ò.0644		0.2786	9.8324	0.0572	0.0435	0.0526	0.0604	0.0070	0.0288	0.0699	0.0484	0.0247
		$\log Z' \log \frac{H'}{H}$		-		9616.6	9.9293	9.9570	9.9566	9.9902	0.0040	9.9486	9.9548	9.9592	9.9574	9.9932	9.9492	9.9914	9.9592	9.9335
		Log. Z/						0.7318		9.9571	9.9258	0.1506	0.6042	0.9928	0.7124	0.6590	9.9275	0.7454	0.8586	1.0567
		, θ						10 30/		8 30		0	30	30	0	15				0
								+ 41°		+	∞ 	- 15	36	09	- 42	36	7 -	+ 36	+ 45	+ 67
		Log.H'			-	0.5923	0.7583	0.7850	0.7692	0.7826	0.7780	0.7226	0.7350	0.7454	0.7580	0.7938	0.7937	0.8722	0.8472	
		$\text{Log.} \frac{m}{H'}$				9.2288	9.0628	9.0361	9.0519	9.0385	9.0431	9.0985	1980.6	9.0757	9.0631	9.0273	9.0274	8.9489	8.9739	9.1366
			Mean.				6° 50′	oI 9	22	21 9	12	ນ	52	52	6 40	0	10		22	. 48
		shes.					010				9	7	9	9		9	· · ·	50		0 0
		= 15 inches.	East.				7° 10	5 40	99	6 6 20	o 9	7 IO 7	6 40 7 0	7 20	7 6 50	4 40 5 0	5 30 6 0	5 4 30	5 40 5 50	9 01
	٠	1	it.				30,	50. 40	30	30	2 20	0 0	. 01 04	2 02	30	0 0	30	8 8	0.0	30
.	Deffection.		West.				000	99	2	99	99	~ ~	29	99	99	~~	. 9 9	νν	יאיטי	9 25
6	Defle		Mean.			° 44′	30	12	50	72	37	37	10	22	55	0	48	25	'n	0
ľ		hes.	Z			23°	91	91	91	91	91	18	18	17	91	91	15	I3	14	
		r = 11 inches.	East.	26° 0	6 6 6 6	3 40	5 50	0 91	16 20 16 0	0 91	16 40 16 40	18 40 18 40	18 20 18 20	18 20 18 30	7 20 7 IO	14 40 14 40	16 o 15 o	12 40 I3 0	14 40 14 40	20 02
		1			0 0	0	10 I 20• I	20 I	0 0	20 0	30 I	40 I	00	0 t	40 I	20 I	30 I	0 0	30 I	04
			West.	0	2 12 2	23	17 1	16 26 31	18 . 17	16 2 16 2	16 3 16 4	18 4	18	16 16 4	16 4 16 3	17 2	16 3 15 4	14 14	13 3	20 19 4
	[1, 1865			1865	1865	18, 1865	29, 1865	4, 1866	4, 1866	24, 1866	9981 ,6	9981	4, 1866	9981	17, 1866	31, 1866	9981
		Date.					Nov. 15, 1865	30,	18,		4	4,	24,		h 20,	4	30,			23,
				Nov.			Nov.	Nov. 30, 1865	Dec.	Dec.	Jan.	Jan.	Jan.	Feb.	March 20, 1866	April	April 30, 1866	. May	May	June
		Station.		Hampton Roads			St. Thomas	Salute Islands .	Ceara	Bahia	Rio Janeiro	Rio Janeiro	Monte Video	Sandy Point	Valparaiso	Valparaiso	Callao	Panama	Acapulco	San Francisco. June 23, 1866

The following table contains, in precisely the same manner, all the observations which were made for the determination of absolute force at the position occupied by the After Azimuth Compass on board the Monadnock.

									ر با	, % \ \	. F		M 81	23 W.	. F			
	N								, 6	. 2	£ 2	5 5	13					t, 09
	*								<u> </u>									
	ù			West (?)	Fast				, T	۱ و	, 7	F 5	5 2		, i	N. 25	5 7	50
	$Log.\frac{Z'}{Z}$	7			•	9.9378		0.2168	0.6080									
	I 'H' So'	Į.		0.8710	9.8879													
	Log. $Z' \operatorname{Log} \frac{H'}{G}$					0.6052		9.8953										
	н							30										. 0
	9					+ 40° 12′		6 +		81	1 39	55	38	33	2 1	4	+ 49	+ 62
	Log. H'			0.5437	0.7169	0.6783	0.6740	0.6717	0.7347	0.7860	0.6957	0.6884	0.7932	0.7636	0.8251	0.8067	0.7587	9.1063 0.7148 + 62
	Log. ""	7		9.2774	9.1042	9.1428	9.1471	9.1494	9.0864	9.0351	9.1254	9.1327	9.0279	9.0575	8.9960	9.0144	9.0624	9.1063
		Mean.			70	48	23	57		55	35	7	58	7	55	50	40	15
	nches.		1		30/ 40 7°		20 7	10 0 7	50 6	0 IO 5	20 40 7	50 8	40 5	9	40 - 5	40 30 5	30 6	0 2
	= 15 inches.	East.			7°3	~ ~ ~ ~ ~ ~	6 2 3	7 × 8	6 6	9	6 7 9 4		44	. 2	10 r0		7.5	~ ~
ion.	*	West.			6° 40′ 6	7 20 7	7 8 40	8 10 8 30	6 40 6 40	5 40 5 50	8 40 9 40	0 7 40	7 30	6 30	5. 20	o 9	7 20 6 30	7 30
Deflection		Mean.		26° 11′	12	32	0	45	37	47	35	57		55	∞	32	52	- 2o
	ches.		70.0		19	20	57	30	18	91 0	19	18	91 16	17	114	15 15	91	
	= 11 inches.	East.		78 8	19 40 19 20	21 40 21 20	16 40 18 40	20 20 20 IO	18 10 18 10	16 20 16 0	17 50 18 30	16 50 16 40	o 91 16 50	16 20 16 40	15 o 15 30	15 20 15 30	15 40 16 0	19 30
	7.	West.	25° 20'	25 20 23 40	19 10 18 40	19 40 19 30	25 40 27 0	21 20 21 10	01 61 0 61	17 20 17 30	20 20 21 40	21 O 21 20	16 20 15 20	19 o 19 40	13 0 13 0	15 20 16 0	18 20 17 30	19 20 17 30
			1, 1865		1865	1865	Dec. 18, 1865	29, 1865	4, 1866	4, 1866	24, 1866	9, 1866	. March 20, 1866		. April 30, 1866	. May 17, 1866	31, 1866	9981
	Date.				v. 15,	v. 30	c. 18,				24,		rch 20,	il 4.	il_30,	y 17,	y 31,	ie 23,
			ds No		· No	°Z	De	. Dec.	. Jan.	Jan.	Jan	. Fel	. Ma	. April	. Apr	. Ma	. Ma	lun
	Station.		Hampton Roads Nov.		St. Thomas Nov. 15, 1865	Salute Islands . Nov. 30, 1865	Ceara	Bahia	Rio Janeiro	Rio Janeiro .	Monte Video Jan.	Sandy Point Feb.	•		Callao	Panama	Acapulco May	San Francisco . June 23, 1866 19 17

AFTER AZIMUTH COMPASS.

From the data already given, the value of λ was next computed by means of the formulæ

$$\sin \delta = \frac{1}{1 - \mathfrak{D} \cos 2\zeta'} \left[\mathfrak{A} + \mathfrak{B} \sin \zeta' + \mathfrak{C} \cos \zeta' + \mathfrak{D} \sin 2\zeta' + \mathfrak{C} \cos 2\zeta' \right]$$

$$\lambda = \frac{H'}{H} \times \frac{\sin \delta}{\mathfrak{A} + \mathfrak{B} \sin \zeta + \mathfrak{C} \cos \zeta + \mathfrak{D} \sin 2\zeta + \mathfrak{C} \cos 2\zeta}$$

The individual results obtained from the observed values of $\frac{H'}{H}$ are as follows:

			Value	of λ
Station			Admiralty Standard Compass.	After Azimuth Compass.
Salute Islands		•	0.918	
Ceara			0.896	
Bahia			0.922	
Rio Janeiro.			0.939	0.942
Rio Janeiro.			0.904	0.884
Monte Video			0.913	0.814
Sandy Point			0.914	0.821
Valparaiso .	•		0.954	0.848
Valparaiso .	•		0.934	0.886
Callao .	•		0.905	0.820
Panama .			0.952	0.861
Acapulco .			0.947	0.816
San Francisco			0.914	0.947

Taking the means, for the Admiralty Standard Compass, we have finally

$$\lambda = 0.924 \pm 0.0036$$

and the probable error of a single observed value of λ is \pm 0.013. For the After Azimuth compass we have finally

$$\lambda = 0.864 \pm 0.0107$$

and the probable error of a single observed value of λ is ± 0.034 .

In order to determine these coefficients which depend upon the value of $\frac{Z'}{Z}$, we have equation (6 a), which is

$$0 = 1 - \frac{Z'}{Z} + g \times \frac{\cos \zeta}{\tan \theta} - h \times \frac{\sin \zeta}{\tan \theta} + k + R \times \frac{1}{Z}$$

But as R is liable to a slow change, a term depending upon the time is introduced, and then we get

$$0 = 1 - \frac{Z'}{Z} + g \times \frac{\cos \zeta}{\tan \theta} - h \times \frac{\sin \zeta}{\tan \theta} + k + R \times \frac{1}{Z} + \Delta R \times \frac{t}{Z}$$
 (6 b)

where ΔR is the daily change in the value of R, and t is the time in days, counted from November 1, 1865. Each observed value of $\frac{Z'}{Z}$ furnishes an equation of condition of the same form as (6 b), and from all the equations of condition thus obtained the most probable values of g, h, k, R, and ΔR , can be found by the method of least squares.

The following are the equations of condition, formed in the manner	just explained,
for the Admiralty Standard Compass.	

From these equations of condition, the following normal equations have been obtained by the method of least squares.

Absolute Term.	g	h	k	R	100 △R
0 = -12.462 $0 = +7.286$ $0 = -1.701$ $0 = -1.957$ $0 = -1.112$	+ 237.337 - 79.068 + 20.688 + 9.858 - 7.513	+ 68.794 10.147 16.451 9.444	+ 12.000 0.941 2.022	+ 7.605 + 6.735	+ 7.892

Solving, we find

$$\begin{array}{ccc} g = + \; 0.04070 & k = + \; 0.1006 \\ h = + \; 0.00504 & R = + \; 0.1665 \\ 100 \Delta R = + \; 0.0694 & \end{array}$$

Substituting these results in the equations of condition, we find that the probable error of a single observed value of $\frac{Z'}{Z}$ is ± 0.024 , and the probable error of a computed value of $\frac{Z'}{Z}$ is ± 0.007 .

In a precisely similar manner, from the values of $\frac{Z'}{Z}$ observed at the position of the After Azimuth Compass, we obtain the following equations of condition.

	I	1	1	1	1
Absolute Term.	8	h	k	R	ΔR
0 = + 0.501	— 4·79°	+ 0.173	+ 1.000	 0.806	— 51.61
0 = -0.625	+ 4.663	1.114	+ 1.000	— 0.806	— 51.61
0 = -0.115	+ 0.979	+ 1.338	+ 1.000	0.275	23.10
0 = + 0.059	+ 0.358	<u> —</u> 0.603	+ 1.000	0.115	II.48
o = -0.101	+ 1.370	-0.324	+ 1.000	- 0.223	— 30.76
0 = + 0.152	— 1.393	0.205	+ 1.000	0.223	— 34·32
0 = -0.602	+ 8.823	+ 0.031	+ 1.000	— I.263	- 227.3
0 = -0.165	+ 1.250	+ 1.006	+ 1.000	+ 0.211	+ 41.59
0 = -0.049	+ 0.314	+ 1.154	+ 1.000	+ 0.155	+ 32.66
0 = + 0.094	- o. 257	— o.456	+ 1.000	+ 0.093	+ 21.74

And the resulting normal equations are

Absolute Term.	g	h	k	R	100 A R
0 = -11.313 0 = +0.311 0 = -0.851 0 = +0.840	+ 129.164 - 3.078 + 11.317 - 11.053	+ 6.125 + 1.000 + 0.888	+ 10.000	+ 2 161	
0 = + 0.840 0 = + 1.367	— 11.053 — 19.634	+ 0.888 + 1.042	$\begin{array}{c c} - & 3.253 \\ - & 3.342 \end{array}$	+ 3.161 + 4.084	+ 6.305

Solving, we find

$$g = +0.11398$$
 $k = -0.0509$
 $h = +0.00981$ $R = -0.3918$
 $100\Delta R = +0.3634$

Substituting these results in the equations of condition, the probable error of a single observed value of $\frac{Z'}{Z}$ comes out \pm 0.030, and the probable error of a computed value of $\frac{Z'}{Z}$ comes out \pm 0.010.

For the Admiralty Standard Compass we found $\mathfrak{A}=0.000,\,\mathfrak{D}=+0.017,$ and $\mathfrak{E}=-0.001.$ We have also

$$a = \lambda (1 + \mathfrak{D}) - 1$$

$$e = \lambda (1 - \mathfrak{D}) - 1$$

$$b = \lambda (\mathfrak{E} - \mathfrak{A})$$

$$d = \lambda (\mathfrak{E} + \mathfrak{A})$$

Hence

$$a = -0.0605$$
 $e = -0.0917$ $b = -0.0008$ $d = -0.0008$

For the After Azimuth Compass we found $\mathfrak{A}=0.000$, $\mathfrak{D}=+0.112$, and $\mathfrak{E}=0.000$. Hence, in the same manner,

$$a = -0.0396$$
 $e = -0.2324$ $b = 0.0000$ $d = 0.0000$

Collecting our results, we have the following final values of the coefficients of the

ADMIRALTY STANDARD COMPASS.

$$\mathfrak{A} = 0.000$$

$$\mathfrak{B} = +0.0240 \tan \theta + 0.460 \frac{1}{H} - 0.00102 \frac{t}{H} \pm 0.001$$

$$\mathfrak{C} = -0.0016 \tan \theta + 0.006 \frac{1}{H} - 0.00023 \frac{t}{H} \pm 0.002$$

$$\mathfrak{D} = +0.017 \pm 0.001$$

$$\mathfrak{C} = -0.001 \pm 0.001$$

$$\mathfrak{C} = -0.001 \pm 0.001$$

$$\mathfrak{C} = -0.0047 \frac{\cos \zeta}{\tan \theta} - 0.0050 \frac{\sin \zeta}{\tan \theta} + 0.1006 + 0.1665 \frac{1}{Z} + 0.000694 \frac{t}{Z} \pm 0.007$$
27 December, 1872.

Hence, the general equations for the determination of the deviations of this compass are

$$X' = X - 0.0605 X - 0.0008 Y + 0.0221 Z + 0.425 - 0.00094 t$$

 $Y' = Y - 0.0008 X - 0.0917 Y - 0.0015 Z + 0.006 - 0.00021 t$
 $Z' = Z + 0.0407 X + 0.0050 Y + 0.1006 Z + 0.166 + 0.00069 t$

The following are the final values of the coefficients of the

AFTER AZIMUTH COMPASS.

$$\mathfrak{A} = 0.000$$

$$\mathfrak{B} = -0.0026 \tan \theta - 0.373 \frac{1}{H} - 0.00032 \frac{t}{H} \pm 0.004$$

$$\mathfrak{C} = +0.0066 \tan \theta - 0.044 \frac{1}{H} + 0.00039 \frac{t}{H} \pm 0.004$$

$$\mathfrak{D} = +0.112 \pm 0.003$$

$$\mathfrak{E} = 0.000 \pm 0.003$$

$$\mathfrak{C} = 0.000 \pm 0.003$$

$$\mathfrak{C} = 0.000 \pm 0.003$$

$$\mathfrak{C} = 0.000 \pm 0.003$$

$$\mathfrak{C} = 0.000 \pm 0.003$$

$$\mathfrak{C} = 0.0002 + 0.0036 \pm 0.003$$

$$\mathfrak{C} = 0.0002$$

$$\mathfrak{C} = -0.0022$$

$$\mathfrak{C} = -0.0002$$

$$\mathfrak{C} = -0.00032$$

$$\mathfrak{C} = -0.00034$$

$$\mathfrak{C} = -0.0036$$

Hence, the general equations for the determination of the deviations of this compass are

$$\begin{array}{l} X' = X - \text{0.0396} \ X - \text{0.0000} \ Y - \text{0.0022} \ Z - \text{0.322} - \text{0.00027} \ t \\ Y' = Y - \text{0.0000} \ X - \text{0.2324} \ Y - \text{0.0058} \ Z - \text{0.038} + \text{0.00034} \ t \\ Z' = Z + \text{0.1140} \ X + \text{0.0098} \ Y - \text{0.0509} \ Z - \text{0.392} + \text{0.00363} \ t \end{array}$$

The constants P, Q, R, are the resolved values of the hard iron magnetism of the ship; and in order to show as clearly as possible how it varied during the cruise, at the positions occupied by the two compasses under discussion, the following table is appended. The columns headed "F" contain the values of the total hard iron force, computed by means of the formula

$$F = \sqrt{P^2 + Q^2 + R^2}$$

Date.	Ac	lmiralty Star	ndard Compa	ass.	After Azimuth Compass.					
	Р.	Q.	R.	F.	P.	Q.	R.	F.		
November 1, 1865	+0.425	+ 0.006	+0.166	0.456	- 0.322	0.038	0.392	0.509		
June 23, 1866	+0.205	0.043	+0.327	0.388	— o. 385	+ 0.042	+ 0.457	0.599		

Thus it appears that in the interval between November 1, 1865, and June 23, 1866, the total hard iron force had decreased fifteen per centum at the position of the Admiralty Standard Compass, while it had increased eighteen per centum at the position of the After Azimuth Compass; and in both cases the changes in the direction of the force were very great. On the whole, the so-called permanent and sub-permanent magnetism of the Monadnock seem to have been in a very unstable condition.

There were some places where observations of the deviations of the compasses were obtained on a number of points less than thirty-two, because the ship could not be made to swing completely around. In order to deduce from these observations the corresponding values of the coefficients A_1 , B_1 , C_1 , D_1 , E_1 , we remark that each observed deviation furnishes an equation of condition of the form

$$0 = -\delta + A_1 + B_1 \sin \zeta + C_1 \cos \zeta + D_1 \sin 2\zeta + E_1 \cos 2\zeta$$

and from all the equations thus obtained the values of the coefficients must be found by the method of least squares. As all the compasses were observed simultaneously; the deviations at each place are given on the same points in the case of each compass. Hence, although the absolute terms in the equations of condition will be different, the numerical coefficients of the unknown quantities A_1 , B_1 , C_1 , D_1 , E_1 , will be identical for all the compasses at any one station. Advantage has been taken of this circumstance in forming the following table, which gives the equations of condition for all the compasses at Ceara. The absolute terms of the equations of condition belonging to any compass will be found in the column headed with the name of that compass, while the coefficients of the remaining terms of the equations will be found in the columns headed A_1 , B_1 , C_1 , D_2 , E_1 . For example, the first equation of condition for the Admiralty Standard Compass is

$$0 = -170 + A_1 + 0.195 B_1 + 0.981 C_1 + 0.383 D_1 + 0.924 E_1.$$

In the same way, the first equation of condition for the After Binnacle Compass is $0 = -220 + A_1 + 0.195 B_1 + 0.981 C_1 + 0.383 D_1 + 0.924 E_1$.

EQUATIONS OF CONDITION AT CEARA.

Absolute Terms.										
Admiralty Standard.	fter Binnacle.	ıfter Ritchie.	Forward Alidade.	orward Binnacle.	Forward Ritchie.	C	oefficients of	the Unknow	vn Quantitie	S.
Adr Sta	After	After	For	For	For	A_1	B_1	C ₁	D_1	$E_{\mathbf{i}}$
— 170' — 210 — 260 — 350 — 340 — 330 — 310 — 230 — 210 — 170	220' 310 390 470 420 410 260 240 170	- 820' - 820 - 820 - 970 - 990 - 1140 - 1020 - 850 - 690 - 660	- 180' - 270 - 280 - 280 - 211 - 200 - 130 - 110 - 40	- 110' - 110 - 110 - 180 - 139 - 110 - 40 + 40 + 130 + 140	- 430' - 520 - 600 - 480 - 380 - 300 - 420 - 170 - 40 - 30	+ I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000	+ 0.195 + 0.383 + 0.556 + 0.707 + 0.831 + 0.981 + 1.000 + 0.981 + 0.924	+ 0.981 + 0.924 + 0.831 + 0.707 + 0.556 + 0.383 + 0.195 0.000 - 0.195 - 0.383	+ 0.383 + 0.707 + 0.924 + 1.000 + 0.924 + 0.707 + 0.383 0.000 - 0.383 - 0.707	+ 0.924 + 0.707 + 0.383 0.000 - 0.383 - 0.707 - 0.924 - 1.000 - 0.924 - 0.707

From these equations of condition five normal equations were obtained for each compass by the method of least squares; but on attempting to solve them the numerical coefficients of D_1 and E_1 came out so small that no confidence could be placed in the resulting values of these quantities; and moreover, the uncertainty of them vitiated the values of A_1 , B_1 , and C_1 . It was therefore considered best to reject the normal equations in D_1 and E_1 , and to employ in their stead the equations

$$0 = - \mathfrak{D} + D_1 + \frac{1}{2} (B_1^2 - C_1^2)$$

$$0 = - \mathfrak{E} + E_1 + B_1 C_1 + A_1 D_1$$

using for \mathfrak{D} and \mathfrak{E} the numerical values already found. The following are the normal equations thus formed, and the resulting values of A_1 , B_1 , C_1 D_1 , and E_1 , for each compass. For convenience of computation, the unit of the absolute terms of the normal equations has been changed from minutes of arc to radius.

ADMIRALTY STANDARD COMPASS.

$$\begin{array}{c} \circ = - \circ.75\circ5 + 1\circ.0\circ\circ A_1 + 7.482 \ B_1 + 3.999 \ C_1 + 3.938 \ D_1 - 2.631 \ E_1 \\ \circ = - \circ.5789 + 7.482 \ A_1 + 6.317 \ B_1 + 1.969 \ C_1 + 2.334 \ D_1 - 3.774 \ E_1 \\ \circ = - \circ.3183 + 3.999 \ A_1 + 1.969 \ B_1 + 3.685 \ C_1 + 3.708 \ D_1 + 1.665 \ E_1 \\ \circ = - \circ.0169 + D_1 + \frac{1}{2} \left(B_1^2 - C_1^2 \right) \\ \circ = + \circ.0009 + E_1 + B_1 \ C_1 \\ \end{array}$$
 Hence
$$\begin{array}{c} A_1 = - \circ.0102 = - \circ^{\circ} \ 35'.1 \\ B_1 = + \circ.0833 = + 4 \quad 46.3 \\ C_1 = + \circ.0405 = + 2 \quad 19.2 \\ D_1 = + \circ.0142 = + \circ \quad 48.8 \\ E_1 = - \circ.0043 = - \circ \quad 14.8 \end{array}$$

AFTER BINNACLE COMPASS.

$$\begin{array}{l} \circ = - \text{ o.9599} + \text{ i o.000} \ A_1 + 7.482 \ B_1 + 3.999 \ C_1 + 3.938 \ D_1 - 2.631 \ E_1 \\ \circ = - \text{ o.7253} + \ 7.482 \ A_1 + 6.317 \ B_1 + \text{ i.969} \ C_1 + 2.334 \ D_1 - 3.774 \ E_1 \\ \circ = - \text{ o.4413} + \ 3.999 \ A_1 + \text{ i.969} \ B_1 + 3.685 \ C_1 + 3.708 \ D_1 + \text{ i.665} \ E_1 \\ \circ = - \text{ o.0385} + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ \circ = + \text{ o.0018} + E_1 + B_1 \ C_1 + \text{ o.0047} \ (B_1^2 - C_1^2) \\ \end{array}$$

Hence

$$A_1 = + 0.0062 = + 0^{\circ} 21'.3$$
 $B_1 = + 0.0801 = + 4 35.2$
 $C_1 = + 0.0362 = + 2 4.6$
 $D_1 = + 0.0360 = + 2 3.6$
 $E_1 = - 0.0048 = - 0 16.3$

AFTER RITCHIE COMPASS.

```
 \begin{array}{l} \circ = -2.5540 + 10.000 \ A_1 + 7.482 \ B_1 + 3.999 \ C_1 + 3.938 \ D_1 - 2.631 \ E_1 \\ \circ = -1.9282 + 7.482 \ A_1 + 6.317 \ B_1 + 1.969 \ C_1 + 2.334 \ D_1 - 3.774 \ E_1 \\ \circ = -1.0844 + 3.999 \ A_1 + 1.969 \ B_1 + 3.685 \ C_1 + 3.708 \ D_1 + 1.665 \ E_1 \\ \circ = -0.0340 + D_1 + \frac{1}{2} \left( B_1^2 - C_1^2 \right) \\ \circ = +0.0008 + E_1 + B_1 \ C_1 \\ \end{array}
```

Hence

$$A_1 = + 0.1030 = + 5^{\circ} 54'.2$$
 $B_1 = + 0.1385 = + 7 56.0$
 $C_1 = + 0.0859 = + 4 55.4$
 $D_1 = + 0.0281 = + 1 36.6$
 $E_1 = - 0.0127 = - 0 43.7$

FORWARD ALIDADE COMPASS.

```
 \begin{array}{l} {\rm o} = - \ {\rm o.5265} + {\rm 10.000} \ A_1 + 7.482 \ B_1 + 3.999 \ C_1 + 3.938 \ D_1 - 2.631 \ E_1 \\ {\rm o} = - \ {\rm o.3589} + \ 7.482 \ A_1 + 6.317 \ B_1 + 1.969 \ C_1 + 2.334 \ D_1 - 3.774 \ E_1 \\ {\rm o} = - \ {\rm o.3022} + \ 3.999 \ A_1 + 1.969 \ B_1 + 3.685 \ C_1 + 3.708 \ D_1 + 1.665 \ E_1 \\ {\rm o} = - \ {\rm o.0235} + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ {\rm o} = - \ {\rm o.0007} + E_1 + B_1 \ C_1 + {\rm o.0125} \ (B_1^2 - C_1^3) \\ \end{array}
```

Hence

$$A_1 = + 0.0359 = + 2^{\circ} 3'.5$$
 $B_1 = + 0.0001 = + 0 0.2$
 $C_1 = + 0.0188 = + 1 4.8$
 $D_1 = + 0.0237 = + 1 21.4$
 $E_1 = + 0.0007 = + 0 2.4$

FORWARD BINNACLE COMPASS.

```
 \begin{array}{l} {\rm o} = -\ {\rm o.1396} + {\rm io.000}\ A_1 + 7.482\ B_1 + 3.999\ C_1 + 3.938\ D_1 - 2.631\ E_1 \\ {\rm o} = -\ {\rm o.0593} + \ 7.482\ A_1 + 6.317\ B_1 + 1.969\ C_1 + 2.334\ D_1 - 3.774\ E_1 \\ {\rm o} = -\ {\rm o.1831} + \ 3.999\ A_1 + 1.969\ B_1 + 3.685\ C_1 + 3.708\ D_1 + 1.665\ E_1 \\ {\rm o} = -\ {\rm o.0369} + D_1 + \frac{1}{2}\ (B_1^2 - C_1^2) \\ {\rm o} = -\ {\rm o.0011} + E_1 + B_1\ C_1 \\ \end{array}
```

$$A_1 = -0.0159 = -0^{\circ} 54'.7$$
 $B_1 = +0.0072 = +0 24.6$
 $C_1 = +0.0253 = +1 26.9$
 $D_1 = +0.0372 = +2 7.8$
 $E_1 = +0.0009 = +0 3.2$

FORWARD RITCHIE COMPASS.

$$\begin{array}{l} \text{0} = -0.9803 + \text{10.000} \ A_1 + 7.482 \ B_1 + 3.999 \ C_1 + 3.938 \ D_4 - 2.631 \ E_1 \\ \text{0} = -0.6394 + 7.482 \ A_1 + 6.317 \ B_1 + 1.969 \ C_1 + 2.334 \ D_1 - 3.774 \ E_1 \\ \text{0} = -0.6193 + 3.999 \ A_1 + 1.969 \ B_1 + 3.685 \ C_1 + 3.708 \ D_1 + 1.665 \ E_1 \\ \text{0} = -0.0407 + D_1 + \frac{1}{2} \left(B_1^2 - C_1^2 \right) \\ \text{0} = +0.0013 + E_1 + B_1 \ C_1 \\ \end{array}$$

Hence

$$A_1 = + 0.0614 = + 3^{\circ} 31'.0$$
 $B_1 = - 0.0076 = - 0 26.1$
 $C_1 = + 0.0631 = + 3 36.9$
 $D_1 = + 0.0427 = + 2 26.6$
 $E_1 = - 0.0011 = - 0 3.9$

The following are the equations of condition, together with the resulting normal equations, and the values of the coefficients A_1 , B_1 , C_1 , D_1 , E_1 , as determined for each compass from the observations made at Rio Janeiro.

EQUATIONS OF CONDITION AT RIO JANEIRO.

Absolute Terms.											
Admiralty Standard.	After Binnacle.	After Ritchie.	After Azimuth.	Forward Alidade.	Forward Binnacle.	Forward Ritchie.			1	own Quant	1
A S	F F	A _H	A.	Ĕ,	F H	Ĕ H	A_1	$B_{\mathbf{I}}$	C_{i}	D_1	E_{1}
+ 360 + 390 - 350 + 350 + 360 + 280 + 260 + 240 + 210 + 170	- 320' - 410 - 430 - 430 - 360 - 340 - 280 - 260 - 190 - 170 - 90 - 90 - 10	- 840' - 840 - 840 - 970 - 1010 - 880 - 720 - 610 - 590 - 510 - 510 - 510 - 510 - 510 - 510 - 510	- 160' - 120 - 20 + 130 + 160 + 280 + 390 + 410 + 440 + 400 + 320 + 200 - 190 - 290 - 310	250' 250 250 180 160 160 160 160 160 230 250 250 310 330 330	- 160' - 160 - 160 - 160 - 160 - 160 - 160 - 100 - 140 - 100 - 20 - 60 - 80 - 80 - 140 - 100 - 80 - 80 - 80 - 80	— 500′ — 500′ — 500 — 370 — 460 — 500 — 440 — 350 — 330 — 330 — 330 — 270 — 250 — 180 — 230 — 230 — 250	+ I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 - I.000 + I.000 - I.000 - I.000 - I.000 - I.000		+ 0.707 + 0.556 + 0.383 + 0.195 - 0.383 - 0.556 - 0.707 - 0.831 - 0.924 - 0.981 - 1.000 - 0.981 - 0.924	+ 0.707 + 0.383 0.000 - 0.383 - 0.707 - 0.924 - 1.000 - 0.707 - 0.383 0.000 + 0.383	0.000

Normal Equations.

ADMIRALTY STANDARD COMPASS.

```
 \begin{array}{l} \mathbf{0} = -\text{ 1.2217} + \text{ 17.000 } A_1 + 8.442 \ B_1 - 5.641 \ C_1 + \text{ 0.924 } D_1 + \text{ 0.383 } E_1 \\ \mathbf{0} = -\text{ 0.7991} + 8.442 \ A_1 + 8.310 \ B_1 + \text{ 0.462 } C_1 - \text{ 1.205 } D_1 - 4.543 \ E_1 \\ \mathbf{0} = +\text{ 0.1662} - 5.641 \ A_1 + \text{ 0.462 } B_1 + 8.691 \ C_1 + 3.900 \ D_1 - 4.438 \ E_1 \\ \mathbf{0} = -\text{ 0.0169} + D_1 + \frac{1}{2} \left( B_1^2 - C_1^2 \right) \\ \mathbf{0} = +\text{ 0.0009} + E_1 + B_1 \ C_1 \\ \end{array}
```

$$A_1 = + 0.0453 = + 2^{\circ} 35'.7$$
 $B_1 = + 0.0519 = + 2 58.5$
 $C_1 = + 0.0001 = + 0 0.2$
 $D_1 = + 0.0156 = + 0 53.5$
 $E_1 = - 0.0009 = - 0 3.1$

AFTER BINNACLE COMPASS.

$$\begin{array}{l} \circ = -\text{ i.i228} + \text{ i7.000 } A_1 + 8.442 \ B_1 - 5.64 \text{ i. } C_1 + \text{ o.924 } D_1 + \text{ o.383 } E_1 \\ \circ = -\text{ o.8724} + 8.442 \ A_1 + 8.3 \text{ i. } B_1 + \text{ o.462 } C_1 - \text{ i.205 } D_1 - 4.543 \ E_1 \\ \circ = -\text{ o.0346} - \text{ 5.64 i. } A_1 + \text{ o.462 } B_1 + 8.69 \text{ i. } C_1 + 3.900 \ D^1 - 4.438 \ E_4 \\ \circ = -\text{ o.0385 } + D_4 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ \circ = +\text{ o.0018 } + E_1 + B_1 \ C_1 + \text{ o.0047 } (B_1^2 - C_1^2) \\ \end{array}$$

Hence

$$A_1 = + 0.0148 = + 0^{\circ} 50'.8$$

 $B_1 = + 0.0947 = + 5 25.4$
 $C_1 = - 0.0073 = - 0 25.2$
 $D_1 = + 0.0340 = + 1 57.1$
 $E_1 = - 0.0012 = - 0 4.1$

AFTER RITCHIE COMPASS.

```
 \begin{array}{l} {\rm o} = -3.3336 + {\rm i}\, 7.000 \, A_1 + 8.442 \, B_1 - 5.641 \, C_1 + 0.924 \, D_1 + 0.383 \, E_1 \\ {\rm o} = -1.9499 \, + \  \, 8.442 \, A_1 + 8.310 \, B_1 + 0.462 \, C_1 - 1.205 \, D_1 - 4.543 \, E_1 \\ {\rm o} = + 0.6086 \, - \  \, 5.641 \, A_1 + 0.462 \, B_1 + 8.691 \, C_1 + 3.900 \, D_1 - 4.438 \, E_1 \\ {\rm o} = -0.0340 \, + D_1 + \frac{1}{2} \, (B_1^2 - C_1^2) \\ {\rm o} = + 0.0008 \, + E_1 + B_1 \, C_1 \\ \end{array}
```

Hence

$$A_1 = + 0.1684 = + 9^{\circ} 39'.0$$
 $B_1 = + 0.0659 = + 3 46.6$
 $C_1 = + 0.0203 = + 1 9.8$
 $D_1 = + 0.0320 = + 1 50.1$
 $E_1 = - 0.0021 = - 0 7.4$

AFTER AZIMUTH COMPASS.

```
 \begin{array}{l} \circ = + \text{ o.4916} + \text{ i7.000 } A_1 + \text{ 8.442 } B_1 - \text{ 5.641 } C_1 + \text{ o.924 } D_1 + \text{ o.383 } E_1 \\ \circ = + \text{ o.6880} + \text{ 8.442 } A_1 + \text{ 8.310 } B_1 + \text{ o.462 } C_1 - \text{ i.205 } D_1 - \text{ 4.543 } E_1 \\ \circ = - \text{ o.2024} - \text{ 5.641 } A_1 + \text{ o.462 } B_1 + \text{ 8.691 } C_1 + \text{ 3.900 } D_1 - \text{ 4.438 } E_1 \\ \circ = - \text{ o.1116 } + D_1 + \frac{1}{2} \left( B_1^2 - C_1^2 \right) \\ \circ = + \text{ o.0002 } + E_1 + B_1 \ C_1 \\ \end{array}
```

Hence

$$A_1 = -0.0434 = -2^{\circ} 29'.3$$

 $B_1 = -0.0199 = -1 8.5$
 $C_1 = -0.0552 = -3 9.7$
 $D_1 = +0.1129 = +6 28.2$
 $E_1 = -0.0013 = -0 4.5$

FORWARD ALIDADE COMPASS.

```
 \begin{array}{l} {\rm o} = -\text{ 1.0908} + \text{ 17.000 } A_1 + 8.442 \ B_1 - \text{ 5.641 } C_1 + \text{ 0.924 } D_1 + \text{ 0.383 } E_1 \\ {\rm o} = -\text{ 0.4111} + 8.442 \ A_1 + 8.310 \ B_1 + \text{ 0.462 } C_1 - \text{ 1.205 } D_1 - \text{ 4.543 } E_1 \\ {\rm o} = +\text{ 0.4058} - \text{ 5.641 } A_1 + \text{ 0.462 } B_1 + 8.691 \ C_1 + 3.900 \ D_1 - \text{ 4.438 } E_1 \\ {\rm o} = -\text{ 0.0235 } + D_1 + \frac{1}{2} \left( B_1^2 - C_1^2 \right) \\ {\rm o} = -\text{ 0.0007 } + E_1 + B_1 \ C_1 + \text{ 0.0125 } \left( B_1^2 - C_1^2 \right) \\ \end{array}
```

$$A_1 = + 0.0615 = + 3^{\circ} 31'.5$$
 $B_1 = -0.0084 = -0 28.8$
 $C_1 = -0.0166 = -0 57.2$
 $D_1 = +0.0236 = + 1 21.1$
 $E_1 = +0.0006 = +0 1.9$

FORWARD BINNACLE COMPASS.

$$\begin{array}{l} \mathrm{o} = - \ \mathrm{o.5643} + \mathrm{i7.000} \ A_1 + 8.442 \ B_1 - 5.641 \ C_1 + \mathrm{o.924} \ D_1 + \mathrm{o.383} \ E_1 \\ \mathrm{o} = - \ \mathrm{o.3228} + \ 8.442 \ A_1 + 8.310 \ B_1 + \mathrm{o.462} \ C_1 - \mathrm{i.205} \ D_1 - 4.543 \ E_1 \\ \mathrm{o} = + \ \mathrm{o.0861} - \ 5.641 \ A_1 + \mathrm{o.462} \ B_1 + 8.691 \ C_1 + 3.900 \ D_1 - 4.438 \ E_1 \\ \mathrm{o} = - \ \mathrm{o.0369} + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ \mathrm{o} = - \ \mathrm{o.0011} + E_1 + B_1 \ C_1 \\ \end{array}$$

Hence

$$A_1 = -0.0050 = -0^{\circ} 17'.1$$

 $B_1 = +0.0523 = +2 59.8$
 $C_1 = -0.0307 = -1 45.5$
 $D_1 = +0.0360 = +2 3.7$
 $E_1 = +0.0027 = +0 9.3$

FORWARD RITCHIE COMPASS.

$$\begin{array}{l} {\bf 0} = - \ {\bf 1.7570} + \ {\bf 17.000} \ A_1 + 8.442 \ B_1 - 5.641 \ C_1 + 0.924 \ D_1 + 0.383 \ E_4 \\ {\bf 0} = - \ {\bf 1.0582} + \ 8.442 \ A_1 + 8.310 \ B_4 + 0.462 \ C_1 - 1.205 \ D_1 - 4.543 \ E_1 \\ {\bf 0} = + \ {\bf 0.3128} - \ 5.641 \ A_4 + 0.462 \ B_4 + 8.691 \ C_1 + 3.900 \ D_4 - 4.438 \ E_1 \\ {\bf 0} = - \ {\bf 0.0407} + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ {\bf 0} = + \ {\bf 0.0013} + E_1 + B_4 \ C_1 \\ \end{array}$$

Hence

$$A_1 = + 0.0564 = + 3^{\circ}$$
 14'.0
 $B_1 = + 0.0766 = + 4$ 23.5
 $C_1 = - 0.0205 = - 1$ 10.4
 $D_1 = + 0.0380 = + 2$ 10.5
 $E_1 = 0.0000 = 0$ 0.0

The following are the equations of condition for the determination of the cients of the After Ritchie Compass at Monte Video.

```
0 = -240' + 1.000 A_1 0.000 B_1 + 1.000 C_1
                                                                                 0.000 D_1 + 1.000 E_1
o = -570 + 1.000 A_1 + 0.195 B_1 + 0.981 C_1 + 0.383 D_1 + 0.924 E_1
0 = -570 + 1.000 A_1 + 0.383 B_1 + 0.924 C_1 + 0.707 D_1 + 0.707 E_1
0 = -740 + 1.000 A_1 + 0.556 B_1 + 0.831 C_1 + 0.924 D_1 + 0.383 E_1
\mathbf{0} = -740 + \mathbf{1.000} \ A_{1} + \mathbf{0.707} \ B_{1} + \mathbf{0.707} \ C_{1} + \mathbf{1.000} \ D_{1} \quad \text{ 0.000} \ E_{1}
\circ = -740 + 1.000 A_1 + 0.831 B_1 + 0.556 C_1 + 0.924 D_1 - 0.383 E_1
 \begin{array}{l} {\rm o} = -\ 910\ +\ 1.000\ A_1\ +\ 0.924\ B_1\ +\ 0.383\ C_1\ +\ 0.707\ D_1\ -\ 0.707\ E_1 \\ {\rm o} = -\ 900\ +\ 1.000\ A_1\ +\ 0.981\ B_1\ +\ 0.195\ C_1\ +\ 0.383\ D_1\ -\ 0.924\ E_1 \\ \end{array} 
0 = -230 + 1.000 A_1 + 0.924 B_1 - 0.383 C_1 \rightarrow 0.707 D_1 - 0.707 E_1
o = - 60 + 1.000 A_1 + 0.831 B_4 - 0.556 C_1 - 0.924 D_1 - 0.383 E_1
\mathbf{0} = + \ \mathbf{270} + \mathbf{1.000} \ A_1 + \mathbf{0.707} \ B_1 - \mathbf{0.707} \ C_1 - \mathbf{1.000} \ D_1 \quad \  \  \mathbf{0.000} \ E_1
 \begin{array}{l} 0 = + \text{ ioo} + \text{ i.ooo} \ A_1 + \text{ o.556} \ B_1 - \text{ o.831} \ C_1 - \text{ o.924} \ D_1 + \text{ o.383} \ E_1 \\ 0 = - 240 + \text{ i.ooo} \ A_1 + \text{ o.383} \ B_1 - \text{ o.924} \ C_1 - \text{ o.707} \ D_1 + \text{ o.707} \ E_1 \\ 0 = - 240 + \text{ i.ooo} \ A_1 + \text{ o.195} \ B_1 - \text{ o.981} \ C_1 - \text{ o.383} \ D_1 + \text{ o.924} \ E_1 \\ 0 = - 240 + \text{ i.ooo} \ A_1 - \text{ o.ooo} \ B_1 - \text{ i.ooo} \ C_1 - \text{ o.ooo} \ D_1 + \text{ i.ooo} \ E_1 \\ \end{array} 
0 = — 410 + 1.000 A_{\rm 1} — 0.195 B_{\rm 1} — 0.981 C_{\rm 1} + 0.383 D_{\rm 1} + 0.924 E_{\rm 1}
\mathbf{0} = -4\mathbf{10} + 1.000 A_1 - 0.383 B_1 - 0.924 C_1 + 0.707 D_1 + 0.707 E_1
\circ = -240 + 1.000 A_1 - 0.556 B_1 - 0.831 C_1 + 0.924 D_1 + 0.383 E_1
\mathbf{0} = -240 + 1.000 A_1 - 0.707 B_1 - 0.707 C_1 + 1.000 D_1 \quad 0.000 E_1
0 = -570 + 1.000 A_1 - 0.831 B_1 - 0.556 C_1 + 0.924 D_1 - 0.383 E_1
```

The resulting normal equations are

$$\begin{array}{l} \circ = -2.5365 + 22.000 \ A_1 + 7.482 \ B_1 - 3.999 \ C_1 + 3.938 \ D_1 + 2.631 \ E_1 \\ \circ = -1.0294 + 7.482 \ A_1 + 9.685 \ B_1 + 1.969 \ C_1 - 2.334 \ D_1 - 3.774 \ E_1 \\ \circ = -0.3901 - 3.999 \ A_1 + 1.969 \ B_1 + 12.316 \ C_1 + 3.708 \ D_1 - 1.665 \ E_1 \\ \circ = -0.0340 + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ \circ = +0.0008 + E_1 + B_1 \ C_1 \\ \end{array}$$

Hence

$$A_1 = + \text{ o.1143} = + 6^{\circ} \text{ 32'.8}$$
 $B_1 = + \text{ o.0146} = + \circ 5 \text{ 50.3}$
 $C_1 = + \text{ o.0555} = + 3 \text{ 10.9}$
 $D_1 = + \text{ o.0354} = + 2 \text{ 1.8}$
 $E_1 = - \text{ o.0016} = - \circ 5.5$

The following are the equations of condition, together with the resulting normal equations, and the values of the coefficients A_1 , B_1 , C_1 , D_1 , E_1 , as determined for each compass from the observations made in Magdalena Bay.

Equations of Condition at Magdalena Bay.

Absolute Terms.									-		
Admiralty Standard.	fter Binnacle.	fter Ritchie,	Forward Alidade.	Forward Binnacle.	Forward Ritchie.	Coefficients of the Unknown Quantities					
Adı	After	After	For	For	For	A_1	$B_{\mathbf{i}}$	$C_{\mathbf{I}}$	D_1	$E_{\mathbf{I}}$	
+ 20' + 60 + 110 + 140 + 180 + 230 + 250 + 250 + 220 + 160 + 100 + 40 + 30	- 10' - 10 + 80 + 160 + 170 + 320 + 320 + 320 + 320 + 320 + 230 + 230 + 150 + 70	- I00' - 180 - 180 - 180 - 180 + 170 + 320 + 160 + 160 + 150 - 100 - 190	- 300' - 370 - 210 - 130 - 130 - 130 - 130 - 120 - 40 - 40 + 40 + 40 - 50	- 300' - 290 - 210 - 210 - 120 + 50 + 130 + 210 + 380 + 380 + 380 + 380 + 370 + 290	- 540' - 460 - 380 - 290 - 200 + 50 + 210 + 210 + 370 + 210 + 210 + 120	+ I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000 + I.000	- 0.707 - 0.831 - 0.924 - 0.981 - 1.000 - 0.981 - 0.924 - 0.831 - 0.707 - 0.556 - 0.383 - 0.195 0.000 + 0.195	-0.707 -0.556 -0.383 -0.195 0.000 +0.195 +0.383 +0.556 +0.707 +0.831 +0.924 +0.981 +1.000 +0.981	+ 1.000 + 0.924 + 0.707 + 0.383 0.000 - 0.383 - 0.707 - 0.924 - 1.000 - 0.924 - 0.707 - 0.383 0.000 + 0.383	0.000 - 0.383 - 0.707 - 0.924 - 1.000 - 0.924 - 0.707 - 0.383 0.000 + 0.383 + 0.707 + 0.924 + 1.000 + 0.924	

Normal Equations.

ADMIRALTY STANDARD COMPASS.

$$\begin{array}{l} {\rm o} = + \; {\rm o.5789} \; + \; {\rm i.4.000} \; A_1 \; - \; 8.825 \; B_1 \; + \; 4.717 \; C_1 \; - \; {\rm i.631} \; D_1 \; - \; {\rm i.090} \; E_1 \\ {\rm o} = - \; {\rm o.4310} \; - \; \; 8.825 \; A_1 \; + \; 7.545 \; B_1 \; - \; {\rm o.816} \; C_1 \; + \; {\rm o.934} \; D_1 \; + \; 4.272 \; E_1 \\ {\rm o} = + \; {\rm o.2352} \; + \; \; 4.717 \; A_1 \; - \; {\rm o.816} \; B_1 \; + \; 6.456 \; C_1 \; - \; 4.554 \; D_1 \; + \; 3.784 \; E_1 \\ {\rm o} = - \; {\rm o.0169} \; + \; D_1 \; + \; \frac{1}{2} \; (B_1^2 \; - \; C_1^2) \\ {\rm o} = + \; {\rm o.0009} \; + \; E_1 \; + \; B_1 \; C_1 \\ \end{array}$$

$$\begin{array}{l} A_1 = + \text{ o.oo26} = + \text{ o}^{\circ} \text{ o}'.\text{I} \\ B_1 = + \text{ o.o559} = + \text{ 3} \text{ I2.I} \\ C_1 = - \text{ o.o204} = - \text{ I} \text{ Io.3} \\ D_1 = + \text{ o.o156} = + \text{ o} \text{ 53.5} \\ E_1 = + \text{ o.oo02} = + \text{ o} \text{ o.8} \end{array}$$

AFTER BINNACLE COMPASS.

$$\begin{array}{l} \circ = + \text{ o.8029} + \text{ i.4.000} \ A_1 - \text{ 8.825} \ B_1 + \text{ 4.717} \ C_1 - \text{ i.631} \ D_1 - \text{ i.090} \ E_1 \\ \circ = - \text{ o.5291} - \text{ 8.825} \ A_1 + \text{ 7.545} \ B_1 - \text{ o.816} \ C_1 + \text{ o.934} \ D_1 + \text{ 4.272} \ E_1 \\ \circ = + \text{ o.4497} + \text{ 4.717} \ A_1 - \text{ o.816} \ B_1 + \text{ 6.456} \ C_1 - \text{ 4.554} \ D_1 + \text{ 3.784} \ E_1 \\ \circ = - \text{ o.0385} + D_1 + \frac{1}{2} \left(B_1^2 - C_1^2 \right) \\ \circ = + \text{ o.0018} + E_1 + B_1 \ C_1 + \text{ o.0047} \ \left(B_1^2 - C_1^2 \right) \\ \end{array}$$

Hence

$$A_1 = -0.0208 = -1^{\circ}$$
 II'.4
 $B_1 = +0.0393 = +2$ I5.0
 $C_1 = -0.0222 = -1$ I6.2
 $D_1 = +0.0380 = +2$ I0.5
 $E_1 = -0.0010 = -0$ 3.3

AFTER RITCHIE COMPASS.

$$\begin{array}{l} \circ = + \text{ o.o989} + \text{ i.4.000} \ A_1 - 8.825 \ B_1 + 4.717 \ C_1 - \text{ i.631} \ D_1 - \text{ i.o90} \ E_1 \\ \circ = - \text{ o.i171} - 8.825 \ A_1 + 7.545 \ B_1 - \text{ o.816} \ C_1 + \text{ o.934} \ D_1 + 4.272 \ E_1 \\ \circ = + \text{ o.2238} + 4.717 \ A_1 - \text{ o.816} \ B_1 + 6.456 \ C_1 - 4.554 \ D_1 + 3.784 \ E_1 \\ \circ = - \text{ o.o340} + D_1 + \frac{1}{2} \left(B_1^2 - C_1^2 \right) \\ \circ = + \text{ o.ooo8} + E_1 + B_1 \ C_1 \\ \end{array}$$

Hence

$$A_1 = + 0.0627 = + 3^{\circ} 35'.5$$

 $B_1 = + 0.0778 = + 4 27.3$
 $C_1 = - 0.0497 = - 2 51.0$
 $D_1 = + 0.0322 = + 1 50.7$
 $E_1 = + 0.0031 = + 0 10.6$

FORWARD ALIDADE COMPASS.

$$\begin{array}{l} \circ = -\text{ o.4683} + \text{ i.4.000 } A_1 - \text{ 8.825 } B_1 + \text{ 4.717 } C_1 - \text{ i.631 } D_1 - \text{ i.090 } E_1 \\ \circ = +\text{ o.4115} - \text{ 8.825 } A_1 + \text{ 7.545 } B_1 - \text{ o.816 } C_1 + \text{ o.934 } D_1 + \text{ 4.272 } E_1 \\ \circ = +\text{ o.1082} + \text{ 4.717 } A_1 - \text{ o.816 } B_1 + \text{ 6.456 } C_1 - \text{ 4.554 } D_1 + \text{ 3.784 } E_1 \\ \circ = -\text{ o.0235 } + D_1 + \frac{1}{2} \left(B_1^2 - C_1^2 \right) \\ \circ = -\text{ o.0007 } + E_1 + B_1 C_1 + \text{ o.0125 } \left(B_1^2 - C_1^2 \right) \\ \end{array}$$

Hence

$$A_1 = + 0.0200 = + 1^{\circ} 8'.8$$
 $B_1 = -0.0361 = -2 4.1$
 $C_1 = -0.0197 = -1 7.6$
 $D_1 = +0.0230 = + 1 19.2$
 $E_1 = 0.0000 = 0 0.0$

FORWARD BINNACLE COMPASS.

$$\begin{array}{l} \circ = + \circ.3956 + 14.000 \ A_1 - 8.825 \ B_1 + 4.717 \ C_1 - 1.631 \ D_1 - 1.090 \ E_1 \\ \circ = + \circ.0125 - 8.825 \ A_1 + 7.545 \ B_1 - \circ.816 \ C_1 + \circ.934 \ D_1 + 4.272 \ E_1 \\ \circ = + \circ.7497 + 4.717 \ A_1 - \circ.816 \ B_1 + 6.456 \ C_1 - 4.554 \ D_1 + 3.784 \ E_1 \\ \circ = - \circ.0369 + D_1 + \frac{1}{2} \ (B_1^2 - C_1^2) \\ \circ = - \circ.0011 + E_1 + B_1 \ C_1 \end{array}$$

$$A_1 = -0.0298 = -1^{\circ} 42'.6$$

 $B_1 = -0.0478 = -2$ 44.3
 $C_1 = -0.0719 = -4$ 7.3
 $D_1 = +0.0384 = +2$ 11.8
 $E_1 = -0.0023 = -0$ 7.9

FORWARD RITCHIE COMPASS.

$$\circ = + \circ . \circ \circ 58 + 14.0 \circ A_1 - 8.825 B_1 + 4.717 C_1 - 1.631 D_1 - 1.090 E_1$$

$$\circ = + \circ . \circ 2058 - 8.825 A_1 + 7.545 B_1 - 0.816 C_1 + 0.934 D_1 + 4.272 E_1$$

$$\circ = + \circ . \circ 6749 + 4.717 A_1 - 0.816 B_1 + 6.456 C_1 - 4.554 D_1 + 3.784 E_1$$

$$\circ = - \circ . \circ 407 + D_1 + \frac{1}{2} (B_1^2 - C_1^2)$$

$$\circ = + \circ . \circ \circ 13 + E_1 + B_1 C_1$$

$$A_1 = + \circ . \circ 477 = + 2^\circ 43'.8$$

$$B_1 = + \circ . \circ 116 - + \circ . \circ 20.0$$

Hence

$$A_1 = + 0.0477 = + 2^{\circ} 43'.8$$
 $B_1 = + 0.0116 = + 0 39.9$
 $C_1 = - 0.1051 = -6 1.3$
 $D_1 = + 0.0462 = + 2 38.7$
 $E_1 = - 0.0004 = - 0 1.3$

For convenience of reference the values of the coefficients A_1 , B_1 , C_1 , D_1 , E_1 , obtained at stations where the compasses were not read on all the thirty-two points, have been collected in the following table. No use has been made of them.

Stations and Compasses.	A_1	B_1	C_1	D_1	E_1	
Ceara, December 19, 1865. Admiralty Standard Compass After Binnacle Compass Forward Alidade Compass Forward Binnacle Compass Forward Ritchie Compass	$\begin{array}{cccc} + & 0 & 21.3 \\ + & 5 & 54.2 \\ + & 2 & 3.5 \\ - & 0 & 54.7 \end{array}$	+ 4° 46′·3 + 4 35·2 + 7 56.0 + 0 0.2 + 0 24.6 - 0 26.1	+ 2° 19′.2 + 2 4.6 + 4 55.4 + 1 4.8 + 1 26.9 + 3 36.9	+ 0° 48′.8 + 2 3.6 + 1 36.6 + 1 21.4 + 2 7.8 + 2 26.6	- 0° 14′.8 - 0 16.3 - 0 43.7 + 0 2.4 + 0 3 2 - 0 3.9	
Rio Janeiro, January 10, 1866. Admiralty Standard Compass After Binnacle Compass After Ritchie Compass After Azimuth Compass Forward Alidade Compass Forward Binnacle Compass Forward Ritchie Compass	$\begin{array}{cccc} + 9 & 39.0 \\ - 2 & 29.3 \end{array}$	+ 2 58.5 + 5 25.4 + 3 46.6 - 1 8.5 - 0 28.8 + 2 59.8 + 4 23.5	+ o o.2 - o 25.2 + I 9.8 - 3 9.7 - o 57.2 - I 45.5 - I 10.4	+ 0 53.5 + 1 57.1 + 1 50.1 + 6 28.2 + 1 21.1 + 2 3.7 + 2 10.5	-0 3.1 -0 4.1 -0 7.4 -0 4.5 +0 1.9 +0 9.3 0 0.0	
Monte Video, January 24, 1866. After Ritchie Compass	+6 32.8	+0 50.3	+ 3 10.9	+2 1.8	— o 5.5	
Magdalena Bay, June 9, 1866. Admiralty Standard Compass	$\begin{array}{c cccc} - & & \text{II.4} \\ + & 3 & 35.5 \\ + & 1 & 8.8 \\ - & 1 & 42.6 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1 10.3 - 1 16.2 - 2 51.0 - 1 7.6 - 4 7.3 - 6 1.3	+ 0 53.5 + 2 10.5 + 1 50.7 + 1 19.2 + 2 11.8 + 2 38.7	+ o o.8 - o 3.3 + o 10.6 o o.o - o 7.9 - o 1.3	

At a number of the ports visited during the cruise, the line dividing the north from the south polarity, on the exterior of the turrets, was traced out; but as the boundary between the two kinds of magnetism was frequently very badly defined, and the observations were otherwise unsatisfactory; and further, as they throw no light whatever on the theory of the deviations of the compasses, and can only be shown by means of drawings on a rather large scale, it has not been deemed worth while to insert them here.

In conclusion, the results of the observations made during the cruise may be briefly recapitulated as follows:

- 1°. The latitudes of seven points have been determined.
- 2°. The magnetic declination, inclination, and horizontal force, have been determined at eighteen places.

3°. The deviations of seven compasses have been observed, and compared with the theory, at ten places so situated as to afford very great changes in the terrestrial magnetic elements. For all these compasses the coefficients depending upon the hard and soft iron have been so far separated from each other as to render it possible to predict the deviations in any part of the world; and for the Admiralty Standard and After Azimuth Compasses every one of the coefficients in Poisson's general equations has been determined separately with a considerable degree of accuracy.

The conclusions drawn from the discussion of the observations are that, in the case of the Monadnock,

- a. The agreement between the theoretical and observed deviations is sufficiently exact for the purposes of navigation, but is not entirely satisfactory in a scientific point of view.
- b. It is questionable whether the theory really represents the semicircular as well as it does the quadrantal deviation; and to settle this point there is great need of more observations.
- c. The so-called permanent and subpermanent magnetism of the ship were undergoing a constant and rapid change such as would correspond to a transfer of magnetism from aft forward; and to a rotation from right to left in the direction of the force.
- d. The ratio of the hard to the soft iron force was slowly varying at each compass; and, for the different compasses it ranged between 4.3 and 67.4.
- e. There was not a compass on board at which the direction of the hard and soft iron forces coincided; from which it follows that in no case was the ratio of the hard to the soft iron force the same in the coefficient \mathbb{B} as it was in the coefficient \mathbb{E}.
- f. So far as can be judged from the observations discussed in this report, in the case of a vessel swung for the first time, it is impossible to make any reliable estimate of the ratio of the hard to the soft iron force in the coefficients \mathfrak{B} and \mathfrak{C} ; and therefore, it is also impossible to make any reliable estimate of the changes the deviations of the compasses will undergo upon a change of magnetic latitude.