
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-09

Absolute position measurement for

automated guided vehicles using the Greedy

DeBruijn Sequence

Ortiz, John E.

Monterey California. Naval Postgraduate School

http://hdl.handle.net/10945/2612

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ABSOLUTE POSITION MEASUREMENT FOR
AUTOMATED GUIDED VEHICLES USING THE GREEDY

DEBRUIJN SEQUENCE

by

John E. Ortiz

September 2006

 Co- Advisors: Harold M. Fredricksen
 Jon T. Butler

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Absolute Position Measurement for Automated
Guided Vehicles using the Greedy DeBruijn Sequence
6. AUTHOR(S) John E. Ortiz

5. FUNDING NUMBERS
 N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER N/A

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 N/A

13. ABSTRACT (maximum 200 words)
Automated Guided Vehicles (AGVs) use different techniques to help locate their position with respect to a point of

origin. This thesis compares two approaches that utilize a binary track laid on the floor for the AGV to follow. Both approaches
use equally spaced n-tuples on the track that the AGV can use to compute its position. Both approaches also have the special
feature that every n-tuple on the binary track is unique and can be used to designate the position of an AGV. The first approach,
developed by E.M. Petriu, uses a Pseudo-Random Binary Sequence (PRBS) as a model for the binary track. In the second
approach, we use a Greedy DeBruijn Sequence (GDBS) as a model for the binary track. Unlike the PRBS model, the GDBS
model has a natural ordering which can be used to determine the position of the AGV more quickly and efficiently than the PRBS
model.

15. NUMBER OF
PAGES 169

14. SUBJECT TERMS
Automated Guided Vehicle (AGV), DeBruijn Sequence, Necklace, Necklace Algorithm, Pseudo-
Random Binary Sequence, Absolute Position Measurement, Discrete Logarithm Problem 16. PRICE CODE N/A

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ABSOLUTE POSITION MEASUREMENT FOR AUTOMATED GUIDED
VEHICLES USING THE GREEDY DEBRUIJN SEQUENCE

John E. Ortiz

Lieutenant, United States Navy
B.S., University of Central Florida, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: John E. Ortiz

Approved by: Harold M. Fredricksen
Co-Advisor

Jon T. Butler
Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Automated Guided Vehicles (AGVs) use different techniques to help locate their

position with respect to a point of origin. This thesis compares two approaches that

utilize a binary track laid on the floor for the AGV to follow. Both approaches use

equally spaced n-tuples on the track that the AGV can use to compute its position. Both

approaches also have the special feature that every n-tuple on the binary track is unique

and can be used to designate the position of an AGV. The first approach, developed by

E.M. Petriu, uses a Pseudo-Random Binary Sequence (PRBS) as a model for the binary

track. In the second approach, we use a Greedy DeBruijn Sequence (GDBS) as a model

for the binary track. Unlike the PRBS model, the GDBS model has a natural ordering

which can be used to determine the position of the AGV more quickly and efficiently

than the PRBS model.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. WHAT IS A NECKLACE?...1
A. BACKGROUND ..1
B. STRUCTURE OF NECKLACES ..1
C. NECKLACE ALGORITHM ..3
D. DEBRUIJN SEQUENCES..7
E. ENUMERATION OF NECKLACES ..10

II. PETRIU’S METHOD..17
A. BACKGROUND ..17
B. ABSOLUTE POSITION MEASUREMENT ..17
C. PERFORMANCE COSTS..21

III. GREEDY DEBRUIJN SEQUENCE (GDBS) APPROACH AND RESULTS.....25
A. BACKGROUND ..25
B. ABSOLUTE POSITION MEASUREMENT ABOVE THRESHOLD.....25
C. SIGNPOST GENERATION BELOW THRESHOLD...............................30
D. PERFORMANCE EVALUATION..36
E. SHIFTING ONES SIGNPOSTS...44

IV. CONSIDERATIONS AND FUTURE WORK..51
A. BACKGROUND ..51
B. RECURRENCE RELATION FOR MISSINGS...51
C. MAPPING OF SUBSEQUENCES OF NECKLACES56
D. CONCLUSION ..59

APPENDIX A: PSEUDO-RANDOM BINARY SEQUENCES...61
A. SHIFT REGISTER GENERATION OF A PSEUDO RANDOM

BINARY SEQUENCE (PBRS)...61
B. FINITE FIELDS AND SHIFT REGISTERS..64

APPENDIX B: CODE ...67
A. BACKGROUND ..67
B. HEADER FILES..67

1. Necklace Header File ...67
2. IO Thesis, FileOpeningException and SieveSizeException

Header Files..80
C. CPP FILES ...85

1. Necklace CPP File ..85
2. Thesismain CPP File..132
3. IO Thesis CPP File...141

LIST OF REFERENCES..149

INITIAL DISTRIBUTION LIST ...151

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Circular Permutations of 01101 ...1
Figure 2. Zn vs. 2n..15
Figure 3. Serial-parallel PRBS to Natural Code Conversion (From: [Pe3])19
Figure 4. PBRS Track with Milestones (From: [Pe2])..20
Figure 5. Relative Time Performance Of Different Pseudorandom / Natural Code

Conversion Methods (From [Pe1]) ..21
Figure 6. Serial-Parallel Code Conversion Costs as a Function of Distance (From

[Pe1])..23
Figure 7. Distance between Milestones vs. n ..37
Figure 8. Number of Milestones vs. n ...38
Figure 9. Distance between Signposts vs. n ..39
Figure 10. Number of Signposts vs. n ...40
Figure 11. %Nt vs. n ..42
Figure 12. %Nr vs. n ..43
Figure 13. Feedback Shift Register Corresponding to x4 + x + 1 (From [Ma])62

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Decimal Equivalents of Elements of Equivalence Class for 011012
Table 2. Comparison of Equivalence Classes..3
Table 3. Necklaces and Lyndon Words for n = 6 ..8
Table 4. Necklaces and Lyndon Words for n = 5 ..10
Table 5. Necklaces, Class Numbers and Decimal Equivalents for n = 6.......................11
Table 6. Class Number vs. Cardinality for n = 6 ...12
Table 7. Necklace Enumeration for Odd n ..13
Table 8. Necklace Enumeration for Even n ...14
Table 9. Milestone-to-Natural Code Conversion (From [Pe2]).....................................20
Table 10. Necklaces and Lyndon Words for the Greedy DeBruijn Sequence.................28
Table 11. Generating Shortened Necklaces for d = 6 ..29
Table 12. Generating Shortened Necklaces for d = 4 ..30
Table 13. Necklaces and Signpost Insertion for n = 7 ...31
Table 14. Signposts for n = 7 ...33
Table 15. Statistics on GDBS vs. PRBS Performance...41
Table 16. %Nr and %NT vs. n ..42
Table 17. Distances between Shifting Ones Signposts (weight = 1) for n = 1546
Table 18. Distances between Shifting Ones Signposts (weight = 2) for n = 1549
Table 19. Number of Shifting Ones Signposts vs. % of DeBruijn Sequence for

Various Weights...50
Table 20. Number of “Missings” for Even n ...52
Table 21. Number of “Missings” for Odd n...53
Table 22. Necklaces and Their Classes for n = 7 Used in Analyzing “Missings”...........54
Table 23. Comparison of n = 7 and n = 9 “2-missings” ..57
Table 24. Comparison of n = 8 and n = 10 “5-missings” ..57
Table 25. Comparison of number of “missings” for n = 32, 26, 20, 14 and 8.................59
Table 26. 16 Feedback Shift Register States Corresponding to x4 + x + 1 (From

[Ma]) ..63
Table 27. 16 Output Sequences Corresponding to x4 + x + 1 (From [])..........................64
Table 28. Polynomials Associated with 16 States of the Shift Register (From [Ma]).....66

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I want to thank my wife, Danielle, for her support and encouragement during our

time here. I know that it has not been easy for her and I know she looks forward to

having me available at nights and on the weekends again. I want to thank the rest of my

family for their support and help whenver my wife and I needed it. I want to thank my

advisors, Dr. Fredricksen and Dr. Butler, for their availability, instruction and insight.

Both of you helped me craft my thesis into a far better product than I could have done on

my own. Mostly, I want to thank the Lord for allowing me to have the opportunity to

study at the Naval Postgraduate School. I will continue to trust in Him as He uses

whatever means to shape me into the person He wants me to become.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The greedy DeBruijn sequence (GDBS) of span n is a binary string of length

2n where every n-tuple in the sequence is unique. Originally the sequence was defined

by the rule: Start with n-1 zeros and then add a 1. Continue adding 1’s as long as the n-

tuple created has not been seen before in the sequence. If it has already appeared, add a

zero instead. Continue by adding 1s. If neither a 0 nor a 1 can be added, then stop. The

process will generate a sequence of length 2n [Mar]. The sequence can also be

constructed more efficiently by concatenating a list of combinatorial objects called

necklaces in lexicographic order. [Fr] The motivation behind this project is to try to

determine a mapping between the set of necklaces for the greedy DeBruijn sequence and

the natural code, much like the mapping that exists between the Gray code strings and the

natural code. Finding this necklace-to-natural code mapping would enable us to

determine the absolute position of any arbitrary n-tuple in a greedy DeBruijn sequence.

Although we do not solve the mathematical problem in determining this mapping, we are

able to apply the properties of this DeBruijn sequence to construct a very efficient

implementation in helping an Automated Guided Vehicle (AGV) determine its position

on a long DeBruijn track. Since every n-tuple in the DeBruijn sequence is unique, the n-

tuples can be used to designate unique positions for the AGV.

In this thesis, we compare two approaches to the AGV implementation. E.M.

Petriu developed the first approach. He uses a Pseudo-Random Binary Sequence (PRBS)

generated by a linear shift register as the basis of his binary track. He implements a

series of n-tuples, called milestones, on the track that provide the AGV with information

about its location. We advocate the use of the GDBS as the binary track since it has

certain advantages over the PRBS. Like Petriu, we use certain n-tuples, called signposts,

to give the AGV information about its position. However, the way the signposts are

generated and they way they are used differs significantly from Petriu’s approach. With

the GDBS, the AGV can determine its location in a far more efficient manner than can

the method used by Petriu.

 xvi

Chapter II gives the background on the mathematical structures of necklaces.

There the Necklace Algorithm developed by Fredricksen, to generate necklaces

efficiently, is introduced. [Fr] This algorithm plays an important role in helping the AGV

determine its absolute position. There the GDBS is constructed from the necklaces as

generated by the Necklace Algorithm.

Chapter III introduces Petriu’s method. It describes the sequential-parallel

approach Petriu uses to determine the AGV’s absolute position. We also discuss the

equipment and time costs associated with his scheme and the computation needed to

determine the optimum number of milestones that will be used.

Chapter IV describes our method and the results obtained. We introduce the

initial steps the AGV must take to determine its location. We describe how signposts are

generated and where they are placed on the GDBS. We compare the number of

milestones versus the number of signposts and find they are similar in both methods but

the GDBS method has computational advantages over Petriu’s PRBS scheme. The

GDBS scheme can also be used to potentially optimize the distribution of more than one

AGV on the GDBS track. Finally, we describe an alternate means of signpost generation

and compare it to the approach we decided to use.

Chapter V describes current problems of a mathematical nature that

simultaneously give insight into necklaces and their structure and significantly improve

the AGV implementation. By solving the necklace-to-natural code-mapping problem, the

AGV would not even need an external binary track to follow. There are two fruitful

approaches that were initiated to try to solve this problem but more work needs to be

done.

Appendix A provides a background on linear shift registers and how they generate

the PBRS. Appendix B contains the code used to execute the Necklace Algorithm,

generate necklaces and signposts, and gather statistics needed to analyze the structure of

necklaces.

 1

I. WHAT IS A NECKLACE?

A. BACKGROUND
This chapter provides background material on using a greedy DeBruijn sequence,

instead of a PBRS, as a bit track for the Automated Guided Vehicle (AGV). This

DeBruijn sequence, generated via the Necklace Algorithm, has some properties that give

it an advantage over the PBRS in helping determine the position of an arbitrary n-tuple of

that sequence.

B. STRUCTURE OF NECKLACES

Let nA represent the set of all n-bit binary strings. The total number of possible

strings in nA is 2n . We define a mapping : n nA Bφ → where the set nB is the set of all

necklaces over nA . By a necklace, we mean a linear representation of the collection of

all circular permutations of a binary n-tuple into another binary n-tuple. For example, for

n = 5, let 1a = 01101 be an arbitrary binary string in 5A . Then the following binary

strings are all left circular permutations of 1a :

Figure 1. Circular Permutations of 01101

Note that each binary string is a result of cyclically rotating the previous string

one position to the left. Also, note that the last cyclic permutation just reproduces the

original string 1a . From this, we can see that each binary string in this list is some

number of cyclical shifts of any other binary string in the list. Although each binary

01101

11010

10101

01011

10110

01101

 2

string is distinct in 5A , we can represent this whole list of binary 5-tuples as an

equivalence class (the elements of nB) of some binary string in the list. We pick a

particular binary string to be the linear representation of this equivalence class. We call

this representative a necklace, and we define it to be the element of nA that has the

largest decimal value. (See Table 1.)

Binary String Decimal Equivalent

011012 13

110102 26

101012 21

010112 11

101102 22

Table 1. Decimal Equivalents of Elements of Equivalence Class for 01101

We see that 110102 has the greatest decimal equivalent so this is the “necklace”

for this equivalence class. Note that the necklace always ends in a “0” (except for the

necklace of all “1”s) since a “1” at the end can always be cyclically shifted to the front of

the binary string to give a larger decimal equivalent. Counting from the Most Significant

Bit (MSB), or the leftmost bit, a necklace representative contains its greatest number of

leading ones before the first zero.

The crucial point here is that every possible binary string in nA (for every n) will

be a member of some necklace’s equivalence class. Further, it is possible to produce a

list of necklaces whose equivalence classes are disjoint (no two distinct equivalence

classes can contain any binary string in common). One obvious way to tell if two

necklaces are from two different equivalence classes is to see if they have different

densities (different number of ones). The certain way to ensure that two equivalence

classes are disjoint is to test if one necklace can be circularly permuted into the other one.

For example, let 1b = 110010 and 2b = 110100 be two necklaces for n = 6. Neither can be

 3

obtained from the other by circular permutation although both have the same density.

Both have different equivalence classes as seen in Table 2:

Equivalence Class for 110010 Equivalence Class for 110100

110010 110100

100101 101001

001011 010011

010110 100110

101100 001101

011001 011010

Table 2. Comparison of Equivalence Classes

One could randomly choose binary strings in nA and search for necklaces, but this

would be an inefficient procedure at best (especially for large n). Fortunately, an elegant

algorithm has been developed to generate all the necklaces for any n [Fr].

C. NECKLACE ALGORITHM
The Necklace Algorithm [Fr] generates the list of all necklaces in lexicographic order

from the all ones necklace to the all zeros necklace. We use a subroutine, called the

Θ−Algorithm, to generate a binary string, which may be a necklace.

Θ−Algorithm [Fr]:

1. Given an arbitrary binary sequence of length n (where the indices ascend
from left to right), read the binary string from right to left and find the
largest index corresponding to the bit that is equal to “1” and any
remaining subsequent bits (bits of a higher index) are all 0s. Denote this
largest index by j. If j is equal to n, there will be no zeros following it.

2. Denote this binary n-tuple as the parent string. Copy the contents of this
parent string into another string called the child string. Subtract “1” from
the bit corresponding to the jth index in the child string. This bit will
become a zero. Discard the remaining n-j bits (all zeros) of higher index
following this bit.

3. Since we discarded the remaining n-j bits, we may need to fill them with
bits so that the child string has a length of n. We do this by copying n-j

 4

bits from the beginning of the child string into the remaining n-j “spaces”
as many times as necessary to complete an n-long string.

The following theorem [Fr] states:

If 1 2, ,..., na a a a= is a necklace, 000...0≠ , then one of 2 [(1) / 2](), (),..., ()na a aθ θ θ − is a

necklace.

As an example, let the 11110 be the parent string. We copy the contents of this parent

string into a child string. Then, j = 4. Subtracting “1” from the bit corresponding to this

index, we have

11110 (child string)

 -1

 1110_ (child string).

To fill the remaining position, we need to copy one bit from the beginning of the child

string so we have:

 11101.

Necklace Algorithm [Fr]:

1. Start with the n-bit binary string of all ones denoted by 1n . This is the first
necklace and the first binary parent string.

2. To find the (1)sti + necklace for 1i ≥ , apply the Θ−algorithm to the
thi necklace and denote the execution of this algorithm as 1θ .

3. If the jth index of the parent string divides n, the child string is a necklace.
Then increment i and return to step 2. Otherwise it is nota necklace. The
child string now becomes the parent string for the next execution of the Θ-
Algorithm.

4. If j does not divide n, then apply 2 3, ,..., kθ θ θ , where k denotes the least
number of times needed to apply the Θ−algorithm to the thi necklace until j
divides n. The resulting child string is a necklace so increment i .

5. If the all zeros necklace 0n has not appeared in steps 2,3 and 4 above,
return to step 2.

 5

The number of bad n-tuples (or non-necklaces), nB , between any pair of consecutive

necklaces generated by the Necklace Algorithm is bounded by 1 (1)
2n nB n Z⎡ ⎤≤ −⎢ ⎥⎣ ⎦

 where

|

1 2 ()
n
d

n
d n

Z d
n

ϕ= ∑ (1.1)

.
nZ is the number of necklaces, d is a divisor of n, and ()dϕ is Euler’s totient function

which represents the number of integers that are relatively prime to d, including “1” [Go].

By the Necklace Algorithm, we generate a lexicographic list of necklaces whose

equivalence classes together contain all possible 2n binary strings of length n. The

following example demonstrates the Necklace Algorithm.

Let n = 6. Starting with the initial necklace and parent string:

111111

note that the index j = 6 and there are no zeros following the last bit.

Also, the index of this parent string (j = 6) divides 6, so the child formed from the all

ones parent string will also be a necklace. Subtracting 1 from the last bit we have:

111110

Since the string has 6 bits, the Θ−Algorithm need not fill in any missing bits.

This is the second necklace and the new parent string. Note that the index of the last non-

zero bit is 5. This index does not divide 6 so the child string formed from the parent

string 111110 is not a necklace. The Θ−Algorithm procedure yields:

111110 (parent string)

 -1

11110_ (child string)

To fill the remaining position, we copy one bit from the beginning of the child string so

we have:

111101

To see how this child string is not a necklace, just cyclically shift the last bit to the

beginning of the string to produce

 6

111110

Note that this is the parent string that was a necklace. Remember that a necklace is the

representative of the equivalence class that has the largest decimal value. It is easily seen

that 111101 belongs to the equivalence class of 111110 and that 1111102 > 1111012. To

continue, note that for the string 111101, j = 6. This obviously divides six so the child

string of 111101 is a necklace although the string 111101 is not a necklace. To see the

necklace, subtract “1” from 111101 to produce

111100

which is clearly a necklace. (Further this necklace cannot be cyclically rotated to produce

111110. So the equivalence class of 111100 is distinct from the equivalence class of

111110).

Continuing in the same manner, we generate a list containing both binary

necklaces and non-necklaces from 111111 to 00000.

111111 - necklace (jth index = 6)

111110 - necklace (jth index = 5)

111101 - non-necklace (jth index = 6)

111100 - necklace (jth index = 4)

111011 - non-necklace (jth index = 6)

111010 - necklace (jth index = 5)

111001 - non-necklace (jth index = 6)

111000 - necklace (jth index = 3)

110110 - necklace (jth index = 5)

110101 – non-necklace (jth index = 6)

110100 - necklace (jth index = 4)

110011 - non-necklace (jth index = 6)

110010 - necklace (jth index = 5)

110001 - non-necklace (jth index = 6)

110000 - necklace (jth index = 2)

101010 – necklace (jth index = 5)

101001 - non-necklace (jth index = 6)

 7

101000 - necklace (jth index = 3)

100100 - necklace (jth index = 4)

100010 - non-necklace (jth index = 5)

100001 - non-necklace (jth index = 6)

100000 - necklace (jth index = 1)

000000 - necklace (end of algorithm)

With the necklace algorithm, we only need to generate and search through 23 (instead of
62 64=) binary strings to find out which ones were necklaces. Of these 23, exactly 14

are necklaces.

D. DEBRUIJN SEQUENCES
A binary DeBruijn sequence of span n contains every possible n-tuple of length n

in a cycle of length 2n . The necklace { }()1 2... 0.1n ix x x whereeach x ∈ has a period of

length d if 1 2 1 2 1 2...n d d n dx x x x x x x x x+ += . So

1 2 1 2 2 2 1 2 2 3...d d d d d d dx x x x x x x x x+ + + += = = is the periodic sub-necklace of period d .

Lyndon words are necklaces that exhibit no sub-period behaviour or necklaces with

multiple cycles removed. We are only interested in concatenating all the Lyndon words

from the Necklace Algorithm, in lexicographic order, to generate a DeBruijn sequence.

The length of a Lyndon word is equal to one period of a necklace. Table 3 lists all the

necklaces along with their periods and respective Lyndon words for the case where n = 6.

(We list those Lyndon words in bold face that are shortened by virtue of being periodic

necklaces).

Necklace Lyndon Word Period
111111 1 1

111110 111110 6

111100 111100 6

111010 111010 6

111000 111000 6

110110 110 3

 8

Necklace Lyndon Word Period
110100 110100 6

110010 110010 6

110000 110000 6

101010 10 2

101000 101000 6

100100 100 3

100000 100000 6

000000 0 1

Table 3. Necklaces and Lyndon Words for n = 6

To determine the period of a necklace, simply count the number of bits until the

pattern of ones and zeros begins to repeat. It is easy to see this process if one

concatenates copies of the necklace with itself (where the carat “^” operator is used for

concatenation) and count how many bits are needed before the same pattern of zeros and

ones is repeated. In the following examples

111111^111111 = 111111111111

000000^000000 = 000000000000

the pattern repeats itself after only one bit so the period is one. The following sequence

110110^110110 = 110110110110

repeats the patterns of ones and zeros after three bits. So the period is three. However,

the following sequence

111100^111100 = 111100111100

 9

requires six bits before the pattern repeats itself. So its period is six. We can now

concatenate in order the Lyndon words found by the Necklace Algorithm to find the

DeBruijn sequence. For n = 6 the DeBruijn sequence is:

1^111110^111100^111010^111000^110^110100^110010^110000^10^101000^100^10000

0^0

The resulting sequence is 26 = 64 bits in length. Reading from left to right, the first

string is 111111. Cycling one bit to the right and reading six bits yields the next string

111110. Continuing in this manner until the last bit is reached yields all possible binary

strings of length six that are contained in the above sequence exactly once. The binary

strings 000001, 000011, 000111, 001111, and 011111 are read from the sequence as we

cycle one bit at a time to the right from 000000 to 111111.

The reason that we concatenate the Lyndon words, and not the necklaces

themselves, is to ensure that every possible binary sequence of length six occurs only

once. To see this, imagine if we concatenated the entire necklaces and not just the

Lyndon words:

111111^111110^111100^111010^111000^110110^110100^110010^110000 ^ 101010

^ 101000^100100^100000^000000 =

1111111111101111001110101110001101101101001100101100001010101010001001001

00000000000 (84 bits)

If we read the sequence formed by concatenation from left to right, we see that the binary

strings 111111 and 000000 occur multiple times. The binary strings 110110, 101010 and

100100 occur multiply. By using the Lyndon words, every possible binary string of length

six occurs exactly once in the DeBruijn sequence for n = 6. This is the same sequence as

that formed by the greedy algorithm described in Chapter I.

 10

Note that n = 6 is a composite number (it has more factors other than one and itself)

and that the factors of six (one, two, three and six) correspond to the periods of the

necklaces (or the length of the Lyndon words). This is always the case for any 0n ≥ . If n

is prime (itself and 1 are the only factors), then the only necklaces that have periods less

than n are the all 1s and the all 0s necklace. All other necklaces have periods equal to n.

Table 4 lists the necklaces for n = 5:

Necklace Lyndon Words Period
11111 1 1

11110 11110 5

11100 11100 5

11010 11010 5

11000 11000 5

10100 10100 5

10000 10000 5

00000 0 1

Table 4. Necklaces and Lyndon Words for n = 5

Concatenating only the Lyndon words

1^11110^11100^11010^11000^10100^10000^0 =

11111011100110101100010100100000

is the DeBruijn sequence of length 52 32= bits.

E. ENUMERATION OF NECKLACES

 We organize the necklaces into classes according to their class number. Reading

the necklace from left to right, the class number corresponds to the number of ones

preceeding the first zero. When we list the necklaces for n = 6, they are listed in a

decreasing order from 1111112 to 0000002. This is one of the special features produced

by the necklace algorithm that we will use later on. Table 5 contains the necklaces, their

class numbers and decimal equivalents for n = 6:

 11

Necklace Class Number Decimal Equivalent
111111 6 63

111110 5 62

111100 4 60

111010 3 58

111000 3 56

110110 2 54

110100 2 52

110010 2 50

110000 2 48

101010 1 42

101000 1 40

100100 1 36

100000 1 32

000000 0 0

Table 5. Necklaces, Class Numbers and Decimal Equivalents for n = 6

 For purposes of this presentation, we do not shorten the necklaces to their

respective Lyndon words for those necklaces whose periods are less than n since we want

the true decimal equivalence of the binary number. Note that the decimal equivalents

(except for the first number) decrease by two until we reach the string 110000. The

decimal equivalents of 46 and 44 are “missing”. The reason 46 and 44 are missing is that

their binary equivalents are 1011102 and 1011002 respectively, and these strings are not

necklaces since they can be cyclically rotated to produce 111010 and 110010

respectively. As seen in the Table, the necklaces 111010 and 110010 have already

appeared in the list earlier. So the strings 101110 and 101100 belong to the respective

equivalence classes of 111010 and 110010. Recall that the list of necklaces will contain

only one representative (i.e., the necklace) from each distinct equivalent class. All

decimal equivalents that are “missing” as we continue on correspond to binary strings

that are in equivalence classes of necklaces that have already appeared on the list. At

 12

times, we may have more than one even decimal “missing” between two adjacent

necklaces. We call this group of consecutive missing even decimals a “clump”.

 Define the threshold as the necklace that has the smallest decimal equivalent from

the beginning of the list of necklaces and for which no “missing” has yet been

encountered. This necklace is designated by p ones followed by all zeros where

 1
2

np −⎢ ⎥= ⎢ ⎥⎣ ⎦
 (1.2)

For n = 6, 6 1 2
2

p −⎢ ⎥= =⎢ ⎥⎣ ⎦
 so our threshold is 110000 (highlighted in the Table above).

The decimal equivalents have no missing values until the class number of the necklace is

strictly less than p . Any necklace whose class number is strictly less than p (i.e., one

and zero for n = 6) will have “missing” decimal equivalents.

 Define cardinality of a class as the number of necklaces in a given class. For n =

6, the cardinality of class one is four. The entries in the Table below are the cardinalities

for a given class number k = n-q and a given necklace length n and an index q. The totals

represent the total number of necklaces generated by the necklace algorithm for a given

n. For n = 6, the class numbers and their cardinalities are given in Table 6.

Class No. 6 5 4 3 2 1 0

Cardinality 1 1 1 2 4 4 1

Table 6. Class Number vs. Cardinality for n = 6

Summing the cardinalities produces 14 necklaces for n = 6, which, not surprisingly,

corresponds to the number of necklaces generated by the Necklace Algorithm. We can

also calculate the number of necklaces of length n without running the Necklace

Algorithm by using equation 1.1 on page 5 to calculate nZ . Although the number of

necklaces grows with increasing n, it is small compared to the number of total binary

strings 2n since 2~
n

nZ
n

 [Go]. In other words, we can represent the entire binary space

 13

containing 2n strings with 1 th
n

 of its members (represented as the % entries in Table 7

and Table 8). This difference between nZ and 2n is also displayed in Figure 2.

q n=3 n=5 n=7 n=9 n=11 n=13 n=15 n=17 n=19 n=21

0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 2 2 2 2 2 2 2 2 2

4 2 4 4 4 4 4 4 4 4

5 1 6 8 8 8 8 8 8 8

6 4 14 16 16 16 16 16 16

7 1 19 30 32 32 32 32 32

8 9 50 62 64 64 64 64

9 1 56 114 126 128 128 128

10 18 178 242 254 256 256

11 1 172 433 498 510 512

12 40 635 944 1010 1022

13 1 533 1640 1968 2034

14 93 2262 3682 4016

15 1 1646 6222 7777

16 210 8072 14363

17 1 5126 23610

18 492 28828

19 1 16035

20 1169

21 1

Total 4 8 20 60 188 632 2192 7712 27596 99880

2N 8 32 128 512 2048 8192 32768 131072 524288 2097152

% 50 25 15.6 11.7 9.18 7.71 6.69 5.88 5.26 4.76

Table 7. Necklace Enumeration for Odd n

 14

q n=4 n=6 n=8 n=10 n=12 n=14 n=16 n=18 n=20 n=22

0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2 2 2

4 1 4 4 4 4 4 4 4 4 4

5 4 8 8 8 8 8 8 8 8

6 1 11 16 16 16 16 16 16 16

7 7 27 32 32 32 32 32 32

8 1 33 59 64 64 64 64 64

9 14 96 123 128 128 128 128

10 1 101 223 251 256 256 256

11 30 338 479 507 512 512

12 1 305 844 991 1019 1024

13 63 1202 1867 2015 2043

14 1 940 3199 3914 4063

15 142 4281 7276 8010

16 1 2915 12128 15462

17 328 15267 28374

18 1 9078 46005

19 765 54511

20 1 28418

21 1810

22 1

Total 6 14 32 108 352 1182 4116 14602 52488 190746

2N 16 64 256 1024 4096 16384 65536 262144 1048576 4194304

% 37.5 21.9 12.5 10.5 8.59 7.21 6.28 5.57 5.01 4.55

Table 8. Necklace Enumeration for Even n

 15

Figure 2. Zn vs. 2n

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

II. PETRIU’S METHOD

A. BACKGROUND
In this chapter we describe Petriu’s method for computing the Automated Guided

Vehicle’s (AGV) position from a point of origin on a binary track. We also describe the

hardware and software efficiencies of his method as well as its limitations. Petriu’s

scheme only requires a 1-bit wide code track to be physically laid on the floor. This is an

attractive alternative for absolute position measurement that requires a very long track.

This method is used by high-resolution shaft encoders and Automated Guided Vehicles

(AGVs) [Pe2]. He uses a pseudorandom binary sequence (PRBS) as the basis for the

track that the AGV will follow on the floor. The PBRS is a maximal length linear

sequence of length 2 1n − generated by a linear shift register (see Appendix A for more

details). If we scan every possible n-tuple in this sequence with a window of length n, we

see that every possible n-tuple (except the all 0 n-tuple) appears uniquely. If the AGV’s

position is designated by an n-tuple, then it can use this uniqueness property to determine

its exact position on this track [Pe2].

B. ABSOLUTE POSITION MEASUREMENT
There are different methods to convert these pseudorandom n-tuples into a natural

code (the binary equivalent of the exact distance from a point of origin). One conversion

method uses a strictly parallel solution by implementing a ROM-stored lookup Table.

This can increase hardware costs for large values of n [Pe2]. At the other extreme is a

strictly serial solution by using a reverse feedback shift register to count the number of

reverse feedback shifts it takes to get to the “zero position” code pattern. This is

equivalent to counting the number of bits the n-tuple is from the origin. Although the

hardware costs are not as high, it becomes prohibitively time consuming as n gets large

[Pe1]. Petriu uses a combination of the parallel and serial methods to achieve a more

economic approach. This approach implements a set of evenly spaced n-tuples, called

milestones, where each milestone and its distance from the point of origin (designated to

be the MSB of the PBRS), is paired with a binary equivalent of the distance of the

milestone’s MSB from the point of origin [Pe2].

 18

In the PBRS, we have a total of 2 1n − positions, or n-tuples, that the AGV can

occupy (the PBRS does not include the n-tuple consisting of all zeros). See Appendix A

for further details. Since the milestones are uniformly distributed with a period of t bits,

the total number of milestones needed is

 1(2) /nw t−⎡ ⎤= ⎢ ⎥ (2.1)

Let *p m t r= + designate the position of any n-tuple where *m t represents the position

of the nearest “down the track” milestone, Q(m), and r represents the relative distance

between this milestone and the n-tuple representing the AGV’s initial position [Pe2].

Petriu uses a sequential algorithm for the code conversion of the relative distance

r and a parallel code conversion method for the milestone position *m t . The sequential

algorithm counts the number of steps needed for the AGV to move from its initial

position toward the origin (p=0) until it reaches the MSB of a milestone. The parallel

code conversion scheme compares each unique n-tuple encountered during this “back

stepping” against all possible milestones to see if the binary patterns match [Pe2]. The

parallel “milestone” recognition method can be implemented using a field-programmable

logic array (FPLA) since it has n inputs, 1n + outputs and w products. This is seen in

the schematic below [Pe3]:

 19

Figure 3. Serial-parallel PRBS to Natural Code Conversion (From: [Pe3])

The outputs B(n), B(n-1),…,B(1) yield the natural binary code for *m t which is

the position of the recognized milestone Q(m). The output MS signals the control logic

that a milestone as been detected. The control logic then stops the sequence of “back

shifts” in the sequential code conversion method. The AGV stops traveling and

computes the natural binary code of its position p by adding the binary representations of

r and *m t using an n-bit adder [Pe2].

 20

For example, let n=5. Then the PBRS track is 52 1 31− = bits long. If the period is 8t = ,

then the number of milestones is 5 1(2) / 8 4w −⎡ ⎤= =⎢ ⎥ . The Figure below illustrates this

clearly [Pe2].

Figure 4. PBRS Track with Milestones (From: [Pe2])

Each () (0 3)Q i i≤ ≤ (boxed in with dashed lines) is a milestone and is associated with

the following pseudorandom / natural code conversion scheme:

Milestone Natural code position Code decimal equivalent

00001 00000 0

11101 01000 8

01111 10000 16

11010 11000 24

Table 9. Milestone-to-Natural Code Conversion (From [Pe2])

Assume the AGV’s initial position is 10011 (boxed in with solid lines). The

AGV begins to travel one bit at a time towards position 0p = , comparing each n-tuple in

parallel with all milestones. Once it reaches the milestone 01111, it obtains the position

of this milestone to be * 16m t = , where the natural binary code for this is 10000 (as seen

in the Table above). Since the AGV needed to travel 25 00101r = = bits to reach this

 21

milestone, the absolute position of this n-tuple 2 2 2* 10000 00101 10101p m t r= + = + = =

21 bits which corresponds to the location of the n-tuple in the PBRS above.

C. PERFORMANCE COSTS

The performance cost of the previous example can be estimated as follows:

Hardware cost: 4 words x 5 bits

Time cost: 7 clock periods

This cost is efficient when compared to a strictly parallel approach (31 words x 5 bits) or

a strictly sequential approach (31 clock periods) [Pe2]. This comparison is demonstrated

graphically below [Pe1]:

Figure 5. Relative Time Performance Of Different Pseudorandom / Natural Code
Conversion Methods (From [Pe1])

The following are equipment and temporal cost equations for the serial-parallel method

employed by Petriu [Pe1]:

1 2

1
1 2(2) /n

Equipment Cost k number of milestones k

k t k−

= +

⎡ ⎤= +⎢ ⎥

i

i
 (2.2)

 22

 3 4Temporal Cost k k t= + i (2.3)

 1
1 2 3 4(2) /nTotal Cost Equipment Cost Temporal Cost k t k k k t−⎡ ⎤= + = + + +⎢ ⎥i i (2.4)

where

1k = equipment cost associated with each milestone

2k = basal equipment cost for the serial back shift operations

3k = basal temporal cost for a fully parallel solution

4k = temporal cost associated with each back shift operation

and 1k , 2k , 3k and 4k are constant for a given n and are functions of the technology

being used [Pe1]. The following graph illustrates this relationship:

 23

Figure 6. Serial-Parallel Code Conversion Costs as a Function of Distance (From [Pe1])

The total cost has a minimum at optt and can be found by using the following formula:

1

1 2
1 4(/) (2)n

optt k k −⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎢ ⎥

i (2.5)

the optimal distance, optt , between milestones depending on the values of 1k and 4k .

More parallelism is needed as the temporal cost begins to exceed the hardware costs

4 1k k> . As the measuring resolution increases, we will need more milestones to maintain

the same code conversion speed [Pe1].

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. GREEDY DEBRUIJN SEQUENCE (GDBS) APPROACH AND
RESULTS

A. BACKGROUND

In Petriu’s scheme, the AGV monitors its position on a binary track that is

physically laid out on the floor. This track is modeled after a Pseudo-Random Binary

Sequence (PRBS) that is generated using a linear shift register. Our scheme also uses a

binary track laid out on the floor that is encoded using the greedy DeBruijn sequence.

This sequence can be constructed from the concatenation of lexicographically ordered

Lyndon words generated by the Necklace algorithm. The objective of this chapter is to

demonstrate an alternate scheme of measuring the absolute position of any Automated

Guided Vehicle (AGV) whose position is given by an n-tuple on a greedy DeBruijn

sequence.

There are two ways to measure the absolute position of an n-tuple depending on

whether the position is above or below a threshold. The first method applies a direct

computation for those n-tuples which are Lyndon words or which lie between two

adjacent necklaces that are equal to or greater than the threshold. Since there are no

missing even decimals above the threshold, we can directly calculate the position of any

n-tuple above the threshold without any need of signposts or without running the

Necklace Algorithm. The second method uses lexicographically ordered signposts that

serve a similar function to Petriu’s milestones. These signposts are evenly distributed

throughout all the necklaces below the threshold. The signpost data are 2n bits long

where the first n bits correspond to the necklace designated as a signpost and the last n

bits indicate the binary equivalent of the numerical value of the distance from a point of

origin. We define the LSB of the greedy DeBruijn sequence whose position number is

designated as “1”as the LSB (or the rightmost bit) of the 000…0 n-tuple.

B. ABSOLUTE POSITION MEASUREMENT ABOVE THRESHOLD
In our approach, an AGV travels either to the left or right tracking at most n bits

until the AGV’s position matches that of a necklace. We call a nearby necklace the

position of reference (POR). While the AGV moves towards the POR it tallies the

number of bits it has traveled. The subroutine below, called testforNecklace, is

 26

embedded in another routine that searches the vicinity of the original n-tuple and tests

each new n-tuple as the AGV moves to see if it is a necklace. The routine stops

executing when testforNecklace returns a true Boolean value indicating a necklace was

found.

bool Necklaces::testforNecklace(long long bininput);

{

bool foundnecklace = false;

long long ndecimal = bininput; // binary decimal associated with n-tuple

nstring = decToBin(ndecimal); // subroutine that converts decimal value into a binary

 // sequence

shiftSequenceToNecklace(); // subroutine that shifts a binary sequence into its necklace

 // representative

shiftdecimal = binToDec(); // subroutine that converts a binary string into its decimal

 // equivalent

if(shiftdecimal = = ndecimal) // test to see if current n-tuple is a necklace

{

 foundnecklace = true;

}

else

{

 foundnecklace = false;

}

return foundnecklace;

// end testforNecklace

The key subroutine in testforNecklace is shiftSequenceToNecklace. Further details of the

coding implementation can be found in Appendix B.

The absolute distance of any n-tuple above the threshold is given by:

 27

1

1

22 ()
2

n k
n d

i
i

nD n n p b
−

=

⎡ ⎤−
= − ∗ + − ±⎢ ⎥

⎣ ⎦
∑ , (3.1)

where D is the distance of the most significant (leftmost) bit of the n-tuple from the

point of origin (including the point of origin), dn is the decimal value of the POR, ip is

the period of the thi necklace generated by the Necklace Algorithm and b is the number of

bits traveled to reach the necklace (where b− represents the AGV moving b bits to the

left to reach a POR). For example, given the greedy DeBruijn sequence for n = 7

1^1111110^1111100^1111010^1111000^1110110^1110100^1110010^1110000^1101100^

1101010^1101000^1100100^1100010^1100000^1010100^1010000^1001000^1000000^0

we determine the number of leading ones the threshold (highlighted above) to be

7 1 6 3
2 2

p −⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. Assume 1011101 (underlined above) is the AGV’s initial position

(shown using an underline). According to the above subroutine, the decimal value of

1011101 is 93 when the point of origin is the LSB position of the 0000000 n-tuple in the

above sequence. Shifting the string to its necklace representative

1011101 1110110

and determining its decimal value we have 118 ≠ 93. So the AGV keeps moving to the

left until the decimal values match. After moving five bits to the left it reaches the

necklace 1110110, which is designated as the POR. Using the formula for D , we have

the position of the 7-tuple 1011101 to be:
7 5

7

1

2 1182 7 (7) 5
2 i

i
D p

=

⎡ ⎤−
= − ∗ + − −⎢ ⎥

⎣ ⎦
∑

128 35 6 0 0 0 0 5 94D = − + + + + + − =

which corresponds to the location of the sequence above.

In the above example, we used n = 7, a prime number. When n is composite (e.g

n = 6) we can see more clearly the effects of shortened periods. (See Table 10)

 28

Necklace Lyndon Word Period Decimal Equivalent

111111 1 1 63

111110 111110 6 62

111100 111100 6 60

111010 111010 6 58

111000 111000 6 56

110110 110 3 54

110100 110100 6 52

110010 110010 6 50

110000 110000 6 48

101010 10 2 42

101000 101000 6 40

100100 100 3 36

100000 100000 6 32

000000 0 1 0

Table 10. Necklaces and Lyndon Words for the Greedy DeBruijn Sequence

We construct the greedy DeBruijn sequence given for n = 6:

1^111110^111100^111010^111000^110^110100^110010^110000^10^101000^100

^100000^0

The threshold has 1 6 1 2.5 2
2 2

np − −⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 leading ones and is highlighted in our

sequence. If the AGV’s current position is 100110 and we move three bits to the right to

reach the POR 110010 we obtain
6 7

6

1

2 502 6 (6) 3
2 i

i
D p

=

⎡ ⎤−
= − ∗ + − +⎢ ⎥

⎣ ⎦
∑

64 42 5 3 3 33D = − + + + = .

This location is also confirmed by the above sequence.

 29

It is not too difficult to determine the necklaces that have shortened periods for a

given composite n before you run the Necklace Algorithm. First, determine the prime

divisors of n. Partition the n-length sequence of all ones into subsequences whose

lengths are the cofactors of these prime divisors (numbers resulting from the divisions by

the prime divisors). We run the Necklace Algorithm on each of the partitions

simultaneously until all of the necklaces have been generated for each of these identical

partitions. Finally, we concatenate all identical partitions into a sequence of length n.

This results in all the necklaces that have shortened periods.

For example, let n =12. The prime divisors of 12 are 2 and 3. Dividing 12 by 2

and 3 yields 6 and 4. Partitioning the 12-long sequence 111111111111 into the

subsequences of lengths six and four yields 111111^111111 and 1111^1111^1111. We

then generate Table 11 for the cofactor d = 6 and Table 12 for the cofactor d = 4.

Necklace Period Decimal

111111^111111 111111111111 1 4095

111110^111110 111110111110 6 4030

111100^111100 111100111100 6 3900

111010^111010 111010111010 6 3770

111000^111000 111000111000 6 3640

110110^110110 10110110110 3 1462

110100^110100 110100110100 6 3380

110010^110010 110010110010 6 3250

110000^110000 110000110000 6 3120

101010^101010 101010101010 2 2730

101000^101000 101000101000 6 2600

100100^100100 100100100100 3 2340

100000^100000 100000100000 6 2080

000000^000000 000000000000 1 0

Table 11. Generating Shortened Necklaces for d = 6

 30

Similarly,

Necklace Period Decimal

1111^1111^1111 111111111111 1 4095

1110^1110^1110 111011101110 4 3822

1100^1100^1100 110011001100 4 3276

1010^1010^1010 101010101010 2 2730

1000^1000^1000 100010001000 4 2184

0000^0000^0000 000000000000 1 0

Table 12. Generating Shortened Necklaces for d = 4

Note that since 6 and 4 have a greatest common divisor (g.c.d.) of 2, they share the same

common factors of 1 and 2. Thus, they also share the necklaces whose periods are one

and two, namely: 111111111111, 000000000000 and 101010101010. All the other

necklaces for the two divisors are distinct. Since 3 is a divisor of 6 and not of 4, all

necklaces with shortened periods of length 3 are contained in the list for d = 6 as well as

d = 3. Since all necklaces are lexicographically ordered, we know which of the necklaces

with shortened periods will precede the POR so we can make the necessary adjustments

in calculating the AGV’s position. Of course, we can make things simpler by insisting

that n be a prime number.

C. SIGNPOST GENERATION BELOW THRESHOLD

When measuring the absolute position of an n-tuple below the threshold we have

a more difficult situation. Since there are “missing” even decimals to contend with as

described in Chapter II we cannot apply a direct computation. We choose to select some

of the necklaces below the threshold as “signposts” to contain embedded information

about their distance from the origin. This procedure dominates absolute position

measurement as n increases since the ratio of necklaces above the threshold to those

below gets very small. This is confirmed through mathematical derivation and supported

by experimental data illustrated in Table 16 and Figures 11 and 12. Although these

signposts are distributed evenly within the DeBruijn sequence below the threshold, each

 31

class will contain a different number of signposts since each class contains a different

number of necklaces. We describe a placement of signposts for n = 7 in Table 13.

Necklace Lyndon
Words Class Period Decimal

Equivalent
1 1 1 1 1 1 1 1 7 1 127

1 1 1 1 1 1 0 1 1 1 1 1 1 0 6 7 126

1 1 1 1 1 0 0 1 1 1 1 1 0 0 5 7 124

1 1 1 1 0 1 0 1 1 1 1 0 1 0 4 7 122

1 1 1 1 0 0 0 1 1 1 1 0 0 0 4 7 120

1 1 1 0 1 1 0 1 1 1 0 1 1 0 3 7 118

1 1 1 0 1 0 0 1 1 1 0 1 0 0 3 7 116

1 1 1 0 0 1 0 1 1 1 0 0 1 0 3 7 114

1 1 1 0 0 0 0 1 1 1 0 0 0 0 3 7 112

1 1 0 1 1 0 0 1 1 0 1 1 0 0 2 7 108

1 1 0 1 0 1 0 1 1 0 1 0 1 0 2 7 106

1 1 0 1 0 0 0 1 1 0 1 0 0 0 2 7 104

1 1 0 0 1 0 0 1 1 0 0 1 0 0 2 7 100

1 1 0 0 0 1 0 1 1 0 0 0 1 0 2 7 98

1 1 0 0 0 0 0 1 1 0 0 0 0 0 2 7 96

1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 7 84

1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 7 80

1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 7 72

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 7 64

0 0 0 0 0 0 0 0 0 1 0

Table 13. Necklaces and Signpost Insertion for n = 7

Below the threshold (highlighted row), there are only 11 remaining necklaces within which

we insert signposts. If we arbitrarily designate six necklaces as signposts (highlighted in

 32

bold), we see class 2 has three signposts, class 1 has two signposts and class 0 has one

signpost (the all 0s n-tuple). Although we would not likely put the signposts in such close

proximity when n is larger, this example serves to illustrate the point of equal placement.

As n increases, the results are more dramatic and there are more necklaces between

adjacent signposts.

For any n, we generate the signposts as we run the Necklace Algorithm to

generate the necklaces. To find the number of signposts, sN , we want to insert, we first

need to calculate how many remaining necklaces, rN , there are below the threshold. We

use the following formula:

 1

(2 2) (2 1) (2 1)(1)
2

2 1
,

n n n p

r n

n p
n

n T

N Z

Z
Z N

−

− −

⎡ ⎤− − − − −
= − +⎢ ⎥

⎣ ⎦
= − −
= −

 (3.2)

where 1
2

np −⎢ ⎥= ⎢ ⎥⎣ ⎦
. nZ indicates the total number of necklaces for a given n and

12 1n p
TN − −= + is the number of necklaces above and including the threshold. The

number of signposts, sN , is

1

r
s

NN
d
⎡ ⎤= ⎢ ⎥+⎢ ⎥

, (3.3)

where rd N≤ , 0d ≠ and d represents the number of necklaces we want the necklace

algorithm to generate between signposts on the list. We define the distance between

signposts as dN . If n is prime, then *dN d n= . Otherwise, since *dN d n≤ , we need to

take into account necklaces that have periods less than n. In our example,

7 1 6 3
2 2

p −⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 and 7 3 1

7 2 1 11rN Z − −= − − = which agrees with the example above.

We choose 1d = yielding a total of six signposts and the distance between signposts is

1*7 7dN = = bits.

Recalling that we only concatenate the Lyndon words derived from the necklaces,

we have the following greedy DeBruijn sequence for n=7:

 33

1^1111110^1111100^1111010^1111000^1110110^1110100^1110010 ^1110000

^1101100^1101010^1101000^1100100^1100010^1100000^1010100^1010000

^1001000^1000000^0.

The sequence is of length 72 128= with the signposts indicated in bold and the threshold

highlighted. If we measure the point of origin from the zero bit at the LSB position of the

DeBruijn sequence, then the number of bits needed to reach the MSB of our signpost is

the absolute distance D . By beginning with a count of 72 128= , we subtract the period

of each necklace we generate to determine this distance, convert it into binary, and

concatenate it to the necklace. This is illustrated in the Table below:

Necklace Distance (bits) Signpost

1101100 71 = 10001112 1101100^1000111

1101000 57 = 01110012 1101000^0111001

1100010 43 = 01010112 1100010^0101011

1010100 29 = 00111012 1010100^0011101

1001000 15 = 00011112 1001000^0001111

0000000 7 = 00001112 0000000^0000111

Table 14. Signposts for n = 7

The signpost information has length 2n , since it is a concatenation of the

necklace designated as a signpost and the binary equivalent of its numerical distance

from the point of origin. After we generate the signposts, the AGV can store them in its

memory to use in determining its location. Like Petriu’s scheme, the AGV will find itself

in an arbitrary position designated by a unique n-tuple. In Petriu’s implementation, the

AGV must travel back towards the origin one bit at a time, using the window property of

the PRBS to see if each n-tuple encountered matches a milestone. Since Petriu

simultaneously uses a serial and a parallel operation to detect his milestones, this is an

O(m) x O(l) operation, where m represents the distance between the n-tuple and the

 34

milestone and l represents the number of milestones. Since the number of bits between

milestones grows significantly as n increases, this can take a while and the work grows

accordingly.

Our signposts contain the same information as Petriu’s milestones. The main

difference in the two schemes is that our signposts are lexicographically ordered, so their

relative spatial relationship to each other is clear. The same cannot be said about Petriu’s

milestones unless one performs the pseudorandom to natural code conversion described

in Chapter III.

Unlike in Petriu’s scheme, in our scheme each n-tuple examined is not compared

with each signpost until a match is found. Instead, we search for a POR to compare

against signposts so we can determine between which signposts the POR resides. Since

the signposts are lexicographically ordered and organized by class number, we can

narrow the search to a smaller subset of the list of signposts. As we compare the POR to

our signposts, we keep track of the current and the last signpost we encounter on our list.

When the first signpost is found whose decimal value is smaller than that of our POR, we

stop the search. The AGV then runs the Necklace Algorithm from the last signpost

whose decimal value is greater than the POR’s to the POR while simultaneously

computing how many bits lie between them. This is accomplished by determining the

period of each necklace generated and then summing the periods. This number is

subtracted from the decimal equivalent of the distance information in the signpost. If the

AGV needed to travel to the left to reach the POR, then we would subtract the number of

bits traveled. Otherwise, we add them. We summarize this in the following formula:

m

j i
i j

D D p b
=

= − ±∑ (3.4)

D is the absolute distance of the n-tuple, jD is the distance of the jth signpost from the

origin, ip is the period of a necklace between the jth signpost and the mth necklace that

precedes the POR, and b is the number of bits traveled to reach the POR.

For example, given the DeBruijn sequence for n=7,

 35

1^1111110^1111100^1111010^1111000^1110110^1110100^111 0010^1110000

^1101100^1101010^1101000^1100100^1100010^1100000^1010100^1010000^1001000

^1000000^0

If the AGV’s initial position is below the threshold, for example 0011001 (underlined

above), we need to use the distance information contained in the signposts. If we choose

to move to the left five bits, the AGV’s designated position will be the POR 1101000.

Since this POR is already a signpost, we do need not run the Necklace Algorithm to find

the separation distance between a signpost and the POR. Using the formula and the

distance corresponding to 110100 from the Table above,

57 0 5 52D = − − = bits from the point of origin

There are no necklaces between the signpost and the POR (since they are the

same) and the AGV needed to move five bits to the left. This matches the count we

would obtain from the above sequence. If the POR is not a signpost, we need to search

through all the signposts in the same class as our POR to find out between which

signposts our POR resided. We then run the Necklace Algorithm to get the information

needed to compute the absolute position.

For example, assume we only choose to insert four signposts (indicated in bold) in

our sequence below:

1^1111110^1111100^1111010^1111000^1110110^1110100^111 0010^1110000

^1101100^1101010^1101000^1100100^1100010^1100000^1010100^1010000

^1001000^1000000^0

If we have the same POR as before, 1101000 is not a signpost. We compare this necklace

to the list of signposts below

1101100

1100100

 36

1010100

1000000

and we see that 1101100 < 1101000 < 1100100. Running the Necklace Algorithm from

1101100 to 1101000, we find that they are 14 bits apart. Using formula 3.4
m

j i
i j

D D p b
=

= − ±∑

71 (7 7) 5 71 19 52D = − + − = − = bits from the point of origin

This corresponds with the previous result we had for this n-tuple.

With more than one AGV on the DeBruijn track, we initially space them

uniformly apart where their initial positions correspond to a signpost. Then, as each

AGV begins to move we update their current locations by adding new signposts to the list

or by changing the identities of the signposts. If the AGVs are not initially on signposts

and not spaced evenly, we could move each of them to their respective PORs and easily

find out how far apart they are from each other. Even without knowing the exact location

of each POR, we can have a sense of where each AGV is on the DeBruijn track and

where they are relative to each other since the PORs are lexicographically ordered. (A

higher decimal value of the POR corresponds to a longer distance from the point of

origin). This also leads to an optimized solution on the AGV placement since we can

calculate (without moving them beyond the POR) which one is closest to a particular

signpost or AGV. This is not possible with Petriu’s milestones, since in his formulation

the milestones are not lexicographically ordered with respect to their distance from the

point of origin. In addition, an AGV on Petriu’s track needs to move much further than n

bits (when n is sufficiently large) to find its location to get a sense of how far it is from

the point of origin. The problem becomes more expensive with more than one AGV on

the track for a sufficiently large value of n.

D. PERFORMANCE EVALUATION

Petriu uses a pseudorandom-to-natural code conversion with his milestones.

Depending on the value of n that is used to generate the PRBS of length 2 1n − , the

number of milestones can become large, or if we limit the number of milestones, the

 37

distance between adjacent milestones can become large. Figures 7 and 8 indicate how

the value of optt , the distance between milestones and w , the number of milestones,

grows with the value of n.

Figure 7. Distance between Milestones vs. n

 38

Figure 8. Number of Milestones vs. n

Figures 9 and 10 compare the number of signposts versus n and the distance between

signposts versus n.

 39

Figure 9. Distance between Signposts vs. n

 40

Figure 10. Number of Signposts vs. n

Petriu’s milestones are fixed once they are chosen for a given n as they are

designed into the hardware. Our signposts are stored in memory and, each time an AGV

moves to a new location, we can determine a new POR and add a new signpost among

existing signposts while the AGVs are in operation. We have the flexibility of adding or

removing as many signposts as we want or changing which POR we choose to be a

signpost. Table 15 compares the number of signposts and their distances between them

with Petriu’s statistics.

 41

Greedy DeBruijn Sequence Track

n 5 7 8 16 19 24 31 50

2n 32 128 256 65,536 524,288 16,777,216 2,147,483,648 1.12589990684262e+015

nZ 8 20 36 4116 27,596 699,252 69,273,668 22,517,998,808,028

rN 3 11 19 3859 27,083 695,155 69,240,899 22,517,965,253,595

TN 5 9 17 257 513 4097 32,769 33,554,433

d 1 1 1 8 20 86 748 335,545

dD 0 0 0 112 361 2040 23,157 16,777,200

sN 3 11 19 483 1355 8084 92,569 67,108,631

Petriu’s Track

optt 3 6 8 128 363 2048 23,171 16,777,216

w 4 10 16 456 1373 8098 92,556 67,108,665

Table 15. Statistics on GDBS vs. PRBS Performance

(1)*dD d n= −⎡ ⎤⎢ ⎥ refers to the distance between the LSB of one necklace to the MSB of

the adjacent necklace. The variable optt
d

n
⎡ ⎤

= ⎢ ⎥
⎢ ⎥

 is chosen so that every thd necklace could

be selected as a signpost so that the distances between necklaces would match Petriu’s

optimal distances. Both approaches (highlighted above) perform about the same. The

number of signposts, r
s

NN
d

⎡ ⎤= ⎢ ⎥⎢ ⎥
, is about the same as the number of milestones, w .

We restrict our signpost selection to those necklaces below the threshold. However, the

percentage of necklaces, % TN , above the threshold decreases rapidly as n becomes large.

Given 12 1 ,n p
r n n TN Z Z N− −= − − = − then

1

1
2

2 11 1 1
2 22

n p
n Tr T

n n n
n n n

Z NN N n n
Z Z Z

n

− −

−

⎛ ⎞− + ⎜ ⎟= = − = − = − +
⎜ ⎟
⎝ ⎠

,

 42

since 1 1
2 2

n np − −⎢ ⎥= ≈⎢ ⎥⎣ ⎦
, and 2~

n

nZ
n

. Then as n →∞ , 2n n� and 1r

n

N
Z

→ .

Since T n rN Z N= − , we have 0TN → as n →∞ . This is also verified experimentally in

Table 16 and in Figures 11 and 12.

n 5 7 8 16 19 24 31 50

% rN 37.5 55 52.78 93.76 98.14 99.414 99.95 99.99985

% TN 62.5 45 47.22 6.24 1.86 0.586 0.05 0.00015

Table 16. %Nr and %NT vs. n

Figure 11. %Nt vs. n

 43

Figure 12. %Nr vs. n

This explains why the performance between Petiu’s approach and ours are

similar. Our biggest savings occur during the AGV’s movement to its POR to test

whether or not each n-tuple examined is a necklace. The number of comparisons is at

most n, while in Petriu’s case, for n = 50, there is a potential of 67,108,665 comparisons.

As mentioned previously, the AGV on Petriu’s track needs to travel at most 16,777,216

bits in order to know its location. The AGV on our DeBruijn track would need to travel

at most 50 bits. Of course, if the AGV does not find a signpost at the POR, then more

computation is needed. If our POR lies between two signposts, for n = 50 the number of

necklaces between adjacent signposts is d = 335,545 necklaces. Using the Necklace

Algorithm to generate this number of necklaces for n = 50 is still less work than

generating necklaces for n = 30 (since the number of total necklaces for n = 30 is

364,724). Once we have our POR, we know in which class to begin our search. The

 44

number of comparisons needed for our necklace will be less than 67,108,631 since all of

the signposts are spread out among 50 11 1 23
2

p −⎢ ⎥− = − =⎢ ⎥⎣ ⎦
 classes. Assuming, as a

baseline measure, that these signposts were evenly distributed among these classes we

would have 67,108,631 =2,917,767
23

⎡ ⎤
⎢ ⎥⎢ ⎥

signposts over which to compare our necklace. In

reality, some classes have more signposts than others. In Petriu’s scheme, comparisons

against the milestones occur numerous times while in our scheme comparisons against

our signposts happens only once.

E. SHIFTING ONES SIGNPOSTS

A way to measure the effectiveness of the signpost scheme is to measure the

average distance between the signposts and where along the greedy DeBruijn track they

are distributed. This gives an idea of how much computation the AGV will need to

perform in order to locate its POR within a list of signposts. An alternate technique to

generate signposts is termed the shifting ones signposts. The idea is to see if a different

distribution of signposts throughout the DeBruijn track below the threshold could

produce better results than evenly distributing them. We compare the average distance

between the shifting ones signposts with the distance between evenly spaced signposts.

 First, we select the last necklace associated with a given class number. For

example, with n = 5, 11000 is the last necklace associated with class 2. We then shift the

“1” associated with the largest index one space to the right, each time checking that we

still have a necklace. These necklaces will be associated with our signposts. For

example:

11000

10100

10010 Not a necklace

10000

For larger n, there are many necklaces that demonstrate this pattern but we only

select those necklaces that are associated with a clump (a group of consecutive even

 45

decimals that are “missing” between two adjacent necklaces). The reason for this is

explained more clearly in Chapter IV. In the example above, if we select only those

necklaces associated with “missing” decimal equivalents to be signposts, then the final

list of signpost values is:

11000

10100

10000.

The value n = 5 is too small to make a big difference. However, for n = 15 when we run

the Necklace Algorithm we obtain the following nine signposts out of a potential 97

necklaces which demonstrate this shifting ones pattern:

110000000000100: clump size = 1 even decimal “missing”

101000000000000: clump size = 1 even decimal “missing”

100100000000000: clump size = 3 even decimals “missing”

100010000000000: clump size = 7 even decimals “missing”

100001000000000: clump size = 7 even decimals “missing”

100000100000000: clump size = 127 even decimals “missing”

100000010000000: clump size = 63 even decimals “missing”

100000000000000: c1ump size = 63 even decimals “missing”

The clump size refers to the number of “missing” decimal equivalents. These signposts

are not evenly spaced apart as can be seen from the Table 17:

Necklaces Distances Between Necklaces

 31,359

110000000000100

 1085

101000000000000

 46

Necklaces Distances Between Necklaces

 183

100100000000000

 60

100010000000000

 20

100001000000000

 15

100000100000000

 15

100000010000000

 15

100000000000000

 15

000000000000000

Table 17. Distances between Shifting Ones Signposts (weight = 1) for n = 15

The average distance between signposts is 3640 bits and the first distance corresponds to

the distance from the MSB of the DeBruijn sequence to the MSB of the first signpost.

The distance between our evenly spaced signposts is 90 bits and we need 295 of them.

The DeBruijn sequence itself is of length 152 32,768= bits. The beginning gap is 31,359

bits long so the percentage of the DeBruijn sequence covered by signposts is

32,768 31,359 *100 4.3%
32,768

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

which is very inefficient since only a small percentage of the DeBruijn track is covered.

If we decrease our searching range by increasing the weight to 2, we obtain 39

(containing a weight of one or two) signpost ts out of a potential 361 necklaces:

 47

Signposts Distances between Signposts

 23,336

1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

 4778

1 1 0 1 0 0 0 0 0 0 0 0 1 0 0

 1620

1 1 0 0 1 0 0 0 0 0 0 0 1 0 0

 725

1 1 0 0 0 1 0 0 0 0 0 0 1 0 0

 375

1 1 0 0 0 0 1 0 0 0 0 0 1 0 0

 45

1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

 165

1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

 120

1 1 0 0 0 0 0 0 1 0 0 0 1 0 0

 75

1 1 0 0 0 0 0 0 0 1 0 0 1 0 0

 45

1 1 0 0 0 0 0 0 0 0 1 0 1 0 0

 45

1 1 0 0 0 0 0 0 0 0 0 1 0 1 0

 30

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

 525

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

 230

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

 48

Signposts Distances between Signposts

 120

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

 75

1 0 1 0 0 0 0 1 0 0 0 0 0 0 0

 45

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

 30

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

 15

1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

 15

1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

 15

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

 15

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 63

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

 45

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

 15

1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

 15

1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

 15

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

 15

1 0 0 1 0 0 0 0 0 0 0 1 0 0 0

 49

Signposts Distances between Signposts

 15

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 15

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

 15

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

 15

1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

 15

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 15

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

 5

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 15

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 15

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18. Distances between Shifting Ones Signposts (weight = 2) for n = 15

The average distance is 840 bits. The DeBruijn sequence covered by signposts is

32,768 23,336 *100 28.78%
32,768

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

,

which is a significant improvement. However, the percentage of the

 50

DeBruijn sequence covered by equally spaced signposts is

 2 * *100
2

n
T

n

n N⎛ ⎞−
⎜ ⎟
⎝ ⎠

. (3.5)

For n = 15, we have
15

15

2 15*129 *100 94.10%
2

⎛ ⎞−
=⎜ ⎟

⎝ ⎠
,

which is much more efficient. The following Table summarizes the performance of the

shifting ones signposts as the weight is increased:

Weight Distance to first signpost (bits) Number of Signposts % of DB sequence

1 31,359 9 4.3

2 23,336 39 28.78

3 13,701 116 58.19

4 6976 244 78.71

5 2866 370 91.25

6 1921 432 94.14

7 1921 447 94.14

8 1921 450 94.14

Table 19. Number of Shifting Ones Signposts vs. % of DeBruijn Sequence for Various
Weights

The gap between the first signpost and the beginning of the DeBruijn sequence

levels off to 1921 bits yieldig the highest efficiency of 94% with at least 432 shifting ones

signposts. Evenly spacing the signposts throughout the DeBruijn sequence achieves the

same efficiency but with 295 signposts. Clearly, the evenly spaced signpost scheme has a

better performance.

 51

IV. CONSIDERATIONS AND FUTURE WORK

A. BACKGROUND
In Petrui’s scheme, the AGV needs to examine every n-tuple sequentially until it

reaches a milestone. There is no pattern in the sequence it traverses. In our scheme, the

AGV needs to initially examine at most n bits sequentially, and then it can examine n bits

simultaneously as it compares the POR to the signposts because of the pattern inherent in

the list of necklaces. Although our scheme is efficient in finding the absolute position of

an n-tuple, we have attempted to improve on its efficiency by a couple of methods. The

first method involves trying to find a pattern in the number of missing necklaces that

allows us to calculate the number of “missings” in a given class for any n. The second

method involves trying to map the necklaces of length n to a class of a larger group of

necklaces of length n+k, where k is some class number for this larger group of necklaces.

Rather than scan through the list of signposts one at a time to find the location of a POR,

either method would allow us to make calculable leaps over a group of signposts and

speed up the search problem. Determining a method of computing the position of an n-

tuple in a greedy DeBruijn sequence would eliminate the need to use the Necklace

Algorithm to calculate the position. It would also eliminate the need for having a

physically laid out binary track for the AGV to follow. The AGV would know the

location of the n-tuple that designates its position without having to travel to its POR on

the binary track. Although there are readily apparent patterns, finding a mathematical

relationship to describe these patterns has been challenging and would be an appropriate

topic for future work.

B. RECURRENCE RELATION FOR MISSINGS

A linear recurrence relation is of the form 1 1 1 1...n i n n i ih c h c h+ − + − += + + where the

'ic s (1 1)i n≤ ≤ − are integers and the ' (1)ih s i n≤ ≤ (in our presentation) are positive

integers representing the number of “missings” for a given group of necklaces of length

i . We attempt to predict the number of “missings” for a given value of n knowing the

number of “missings” for smaller values of n.

 52

We ran the Necklace Algorithm and collected and organized the following

information on the number of “missings” per class for a given n. (The class number is

determined by k = n-q).

q n=2 n=4 n=6 n=8 n=10 n=12 n=14 n=16 n=18 n=20 n=22

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0 0 0

5 3 0 0 0 0 0 0 0 0

6 15 5 0 0 0 0 0 0 0

7 25 5 0 0 0 0 0 0

8 63 31 5 0 0 0 0 0

9 114 32 5 0 0 0 0

10 255 155 33 5 0 0 0

11 482 174 33 5 0 0

12 1023 719 180 33 5 0

13 1985 846 181 33 5

14 4095 3156 897 182 33

15 8050 3911 916 182

16 16383 13469 4256 922

17 32440 17501 4394

18 65535 56458 19531

19 130307 76561

20 262143 233726

21 522478

22 1048580

Table 20. Number of “Missings” for Even n

Notice that as n increases the number of “missings” per class approaches a steady state

value. From the Table above, our steady state values (highlighted in bold) are 5, 33 and

182.

 53

q n=1 n=3 n=5 n=7 n=9 n=11 n=13 n=15 n=17 n=19 n=21

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0

4 2 0 0 0 0 0 0 0 0

5 7 2 0 0 0 0 0 0 0

6 12 2 0 0 0 0 0 0

7 31 13 2 0 0 0 0 0

8 55 14 2 0 0 0 0

9 127 72 14 2 0 0 0

10 238 78 14 2 0 0

11 511 340 79 14 2 0

12 984 389 80 14 2

13 2047 1515 408 80 14

14 4003 1834 414 80

15 8191 6546 1970 415

16 16174 8312 2021

17 32767 27642 9158

18 65044 36708

19 131071 115037

20 260975

21 524287

Table 21. Number of “Missings” for Odd n

The steady state values in the Table for n odd are 2, 14 and 80. There is an additional

pattern that is shared by both Tables. These values are verified by listing the necklaces

for a given n and a given class k = n-q. For example, if n = 7 we have the following

information in Table 22:

 54

Necklace Class Decimal Equivalent

1 1 1 1 1 1 1 7 127

1 1 1 1 1 1 0 6 126

1 1 1 1 1 0 0 5 124

1 1 1 1 0 1 0 4 122

1 1 1 1 0 0 0 4 120

1 1 1 0 1 1 0 3 118

1 1 1 0 1 0 0 3 116

1 1 1 0 0 1 0 3 114

1 1 1 0 0 0 0 3 112

1 1 0 1 1 0 0 2 108

1 1 0 1 0 1 0 2 106

1 1 0 1 0 0 0 2 104

1 1 0 0 1 0 0 2 100

1 1 0 0 0 1 0 2 98

1 1 0 0 0 0 0 2 96

1 0 1 0 1 0 0 1 84

1 0 1 0 0 0 0 1 80

1 0 0 1 0 0 0 1 72

1 0 0 0 0 0 0 1 64

0 0 0 0 0 0 0 0 0

Table 22. Necklaces and Their Classes for n = 7 Used in Analyzing “Missings”

Note for class 7-5 = 2 there are two missing decimal equivalents: 110 and 102,

corresponding to the strings 1101110 and 1100110, thus the entry (highlighted) in the

Table above of 2 “missing”. When considering class 9-6 = 3 (for n = 9) and class 11-7 =

4 (for n =11) there are also 2 “missings”: 111011110 and 111001110 (for n = 9),

 55

11110111110 and 11110011110 (for n = 11). With knowledge of how many “missings”

there are between necklaces, we can use the following formula in determining how many

necklaces, nN , there are between any two necklaces

 1 2 1
2

d d
n m

n n
N N

−⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

, (4.1)

where
1 2
,d dn n are the decimal value of the necklaces and

1 2d dn n≥ , and mN represents the

number of “missings” between these two necklaces (0mN = if
1 2d dn n=). For example,

given the necklaces 1110000 and 1100000, we have

 112 96 2 1 5
2nN necklaces−⎛ ⎞= − − =⎜ ⎟

⎝ ⎠
,

which corresponds with the Table above. Without knowledge of the number of

“missings”, we would have needed to run the Necklace Algorithm in order to determine

this information.

Although the steady state values differ whether n is even or odd, they do share an

additional common pattern. Comparing the first few diagonal elements as we approach

the steady state values we have:

For n even:

3, 3, 5, 5, 5, … steady state value = 5

15, 25, 31, 32, 33, 33, 33, … steady state value = 33

63, 114, 155, 174, 180, 181, 182, 182, 182, … steady state value = 182

For n odd:

1, 2, 2, 2, … steady state value = 2

7, 12, 13, 14, 14, 14, … steady state value = 14

31, 55, 72, 78, 79, 80, 80, 80, … steady state value = 80

If we form the difference sequence between adjacent values we have:

 56

For n even:

2, 0, 0, 0, …

10, 6, 1, 1, 0, 0, …

51, 41, 19, 6, 1, 1, 0, 0, …

For n odd:

1, 0, 0, 0, …

5, 1, 1, 0, 0, 0, …

24, 17, 6, 1, 1, 0, 0, 0, …

Based on the difference sequences, we can conjecture what the steady state value should

be for a given n, class number and the last few values approaching the steady state. In the

case of n = 24 and class number = 24 –17 = 7, the steady state value should be 922+2 =

924. For n = 23 and class number = 23 – 16 = 7, the steady state value should be 415 + 1

= 416.

Running the data for higher values of n, we notice the difference sequences for n

odd or even are the same, namely: 1, 1, 6, 19, 51, 138, … Comparing these values to an

online integer sequence database [Sl] to see if this pattern matched any other

mathematical structure, we found there was no match. Evidently, this problem has not

been studied previously. More work needs to be done to uncover the meaning of this

pattern since it unifies the data for both n odd and even.

C. MAPPING OF SUBSEQUENCES OF NECKLACES
A second approach to understand the missing n-tuples involves trying to

enumerate the number of necklaces in a given class k = n-q, by creating a mapping of

these necklaces to those of length n-k, where the total number of necklaces was known.

If we know a lot of information (such as number and location of “missings”) for

necklaces of length n-k, we want to know how much information we can predict about

necklaces of length n, class k. For group of missings associated with steady state, there

seems to be a lot of predictability.

 57

Define an “m-missing” to be a binary string in the group of “missings “associated

with steady state value m for a particular n. For example, the “2-missings” for n = 7 and n

= 9 is shown in Table 23.

n =7 “2-missing” (Class 2) n = 9 “2-missing” (Class 3)

11011102 = 11010 1110111102 = 47810

11001102 = 10210 1110011102 = 46210

Table 23. Comparison of n = 7 and n = 9 “2-missings”

The binary and deciemal values are shown. Note that the “2-missings” for n = 9 is

obtained by adding a 1 to the two longest runs of 1s for n = 7 (in this case there are only

two runs in which to add a 1).

n =8 “5-missing” (Class 2) n = 10 “5-missing” (Class 3)

110111102 = 22210 11101111102 = 95810

110111002 = 22010 11101111002 = 95610

110101102 = 21410 11101011102 = 94210

110011102 = 20610 11100111102 = 92610

110001102 = 19810 11100011102 = 91010

Table 24. Comparison of n = 8 and n = 10 “5-missings”

In both Tables the length n increased by two and 1 bit was added to each of the longest

run of ones. Since we have a one-to-one mapping between both sets of “missings”, the

number of “missings” does not change and that is why we have steady state values for the

“missings”.

There is another means of evaluating a mapping from a set of missings for length n-k to

another set of missings of length n. Consider the clump that is generated as the Necklace

Algorithm transitions from one class to another while generating necklaces. The last

 58

element of a class k will have k ones followed by all zeros:111...10....0
k ones
�	
 . The next

necklace produced will be of the form N
(2 1)1 1 1

111...10111...10...0111...10 11..0
n r kk ones k ones k ones − −− − −

�	
 �	
 �	
 where r is the

number of times
1

111...10
k ones−
�	
 occurs in the sequence. Using the following formula, we can

find the number of missings between two consecutive necklaces generated by the

Necklace Algorithm:

 1 2
2

2
d d

m

N N
N

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (4.2)

.

mN is the number of missings and
1dN ,

2dN are the decimal values of the necklaces. We

can then determine the clump size, or number of necklaces, between the smallest

necklace of class k and the laragest necklace of class k-1. If we remove the first k bits

from the left of the necklace N
(2 1)1 1 1

111...10111...10...0111...10 11..0
n r kk ones k ones k ones − −− − −

�	
 �	
 �	
 , then we obtain a smaller

version of this necklace that is derived from the necklace 111...10....0
k ones
�	
 of length n-k.

Knowing the size of the first clump for the n-k case should give us insight into knowing

the size of the first clump for the n case. For example, let n = 32. Then for k = 6 we have

11111100000000000000000000000000.

Applying the Θ-Algorithm, we obtain

 11111011111011111011111011111010.

Removing the first 6 bits from 11111011111011111011111011111010 we obtain

 11111011111011111011111010 (n =26).

 59

This is derived from (using the Necklace Algorithm)

 11111100000000000000000000

The following Table summarizes the number of missings between these consecutive

necklaces for n = 32, 26, 20, 14 and 8.

 n = 32 n = 26 n = 20 n = 14 n = 8

6 1’s
followed by

all 0s
4227858432 66060288 1032192 16128 252

1θ 4226793210 66043642 1031930 16122 250

No.
Missings

532610 8322 130 2 0

Table 25. Comparison of number of “missings” for n = 32, 26, 20, 14 and 8.

If we take the following ratios

6532610 64 2
8322

⎢ ⎥ = =⎢ ⎥⎣ ⎦
, 68322 64 2

130
⎢ ⎥ = =⎢ ⎥⎣ ⎦

, and 6130 65 2
2

⎢ ⎥ = ≈⎢ ⎥⎣ ⎦

it seems as n increases by 6, the number of missings for the first clump increases by a

factor of 62 . This type of information can be useful in reducing the number of

computations needed when generating necklaces. More work needs to be done to

understand the nature of this mapping between various classes for necklaces of a given

length n and other families of necklaces of length < n.

D. CONCLUSION

Improvement in Petriu’s scheme involved improving the hardware

synchronization design. Improving our scheme is of a mathematical nature. Gaining

more theoretical understanding of these issues will allow us to make significant

computational gains. This potential benefit is not possible through Petriu’s scheme.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

APPENDIX A: PSEUDO-RANDOM BINARY SEQUENCES

A. SHIFT REGISTER GENERATION OF A PSEUDO RANDOM BINARY
SEQUENCE (PBRS)
A Pseudo-Random Binary Sequence (PBRS) is a shortened De Bruijn sequence

since it contains all possible 2n n-tuples except the all zeros sequence [Mi]. So the length

of the PBRS is 2 1n − . A PBRS contains 12n− ones and 12 1n− − zeros. There are 12n− odd

numbers (binary numbers ending in 1) and 12 1n− − even numbers (binary numbers ending

in 0) between 1 and 12n− . So the total is

1 1 12 2 1 (2 2) 1 2 1
2

n n n n n− −+ − = + − = − total n-tuples

The number of runs (consecutive sequence of identical integers) of ones and zeros are

approximately the same. For any given n, we have ½ of the runs have length 1, ¼ of the

runs have length 2, 1/8 have length 3 and 1/16 have length 4, etc. as long as the fraction

makes sense [Go].

One can generate a PBRS using a linear shift register that is modeled using a primitive

polynomial ()h x of degree n [Ma]. A primitive polynomial is one that is irreducible and

has maximum period. The coefficients of the primitive polynomial come from the field

of { }2 0,1 .=Z An example is the following:

 4 3 2 1 0 4() 1 0 0 1 1 1h x x x x x x x x= + + + + = + + (A.1)

The diagram below gives an illustration of a linear shift register that generates a maximal

length sequence of length 42 1− . Each stage in the register can contain a value of “0” or

“1”. The only non-zero coefficients of ()h x are those corresponding to 4 1,x x and 0.x The

values in the stages corresponding to 1x and 0x are the only ones that are “tapped” to be

added. Since 4 1 0x x x= + , the value associated with 4x is inserted into the stage associated

with 3x at the next time unit when all of the constants shift to the right. The all zeros

input is excluded so that we do not produce a continuous sequence of zeros. Starting

with an initial state of 1 0 0 0 loaded into the shift register in Figure 13, we generate the

 62

various state values as a result of adding the stages corresponding to 1x and 0x , and then

shifting the contents of the stages one step to the right [Ma]. (See Table 25).

Figure 13. Feedback Shift Register Corresponding to x4 + x + 1 (From [Ma])

State

MSB LSB State Number
3x 2x 1x 0x

Output

0 1 0 0 0 0

1 0 1 0 0 0

2 0 0 1 0 0

3 1 0 0 1 1

4 1 1 0 0 0

5 0 1 1 0 0

6 1 0 1 1 1

7 0 1 0 1 1

8 1 0 1 0 0

9 1 1 0 1 1

10 1 1 1 0 0

11 1 1 1 1 1

12 0 1 1 1 1

OUTPUT

0*X3 0*X2 1*X1

X4

1*X0

 63

State

MSB LSB State Number
3x 2x 1x 0x

Output

13 0 0 1 1 1

14 0 0 0 1 1

15 1 0 0 0 0

16 0 1 0 0 0

Table 26. 16 Feedback Shift Register States Corresponding to x4 + x + 1 (From [Ma])

Note that there are 15 states corresponding to all the possible 42 1− different non-zero

binary 4-tuples. Since states 15 and 16 are just repeats of states 0 and 1, we have

generated a cycle of length 42 1− . The value for Most Significant Bit (MSB) column in a

row is just the sum of the LSB value (the value for 0x) and the 1x value from the

previous row. The output corresponds to the last column of states (the Least Significant

Bit (LSB) position). Since the shift register essentially generates a cycle of length 2 1n − ,

any one of the states we load into the shift register will produce a cyclically shifted

version of the output of various initial states as can be seen in Table 26 [Ma].

STATE
3x 2x 1x 0x

OUTPUT

 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0

1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1

0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1

 64

STATE
3x 2x 1x 0x

OUTPUT

1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1

1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0

1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1

0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

Table 27. 16 Output Sequences Corresponding to x4 + x + 1 (From [])

Thus there are 42 1− different pseudo-random binary sequences, each one corresponding

to a state of the linear shift register. (We can generate a sequence of length 2n , called a

De Bruijn sequence only if we use a non-linear shift register [Go]). The important point

to make is that the sequence is a result of how we define ()h x . If we change ()h x to be

another irreducible polynomial 4 3 1x x+ + , then we reverse the sequences in the previous

Table. Appropriate polynomials exist for every value of n [Ma].

B. FINITE FIELDS AND SHIFT REGISTERS

Let a , b and c be elements of a set F with two binary operations: addition and

multiplication. Then F is a field if the following properties hold [Ma]:

(i) a b b a+ = +

(ii) ab ba=

(iii) () ()a b c a b c+ + = + +

(iv) () ()a bc ab c=

(v) ()a b c ab ac+ = +

Properties (i) and (ii) are the commutative properties, properties (iii) and (iv) are the

associative properties and property (v) is the distributive property. Further, there must

exist elements 0, 1 in the set and for every non-zero element (0a ≠), the additive and

 65

multiplicative inverses, a− and 1a− respectively, must also exist. Then the following hold

[Ma]:

(vi) 0 a a+ =

(vii) () 0a a− + =

(viii) 0 0a =

(ix) 1a a=

(x) 1() 1a a− =

A finite field is one that contains a finite number of elements. A field of q elements is

known as a Galois field and is denoted by ()GF q where q is a power of a prime number.

An example of a simple field is the integers modulo p , (),GF p where p is a prime

number. The elements of this field are{ }0,1,..., 1p − and addition, subtraction,

multiplication and division (by non-zero elements) are carried out modulo p . So if

2,p = then { } 2(2) 0,1GF = = Z . We can construct a field with np elements, where n is

any integer and p is a prime number, by selecting an irreducible polynomial ()h x of

degree n. The elements of this field will all be polynomials in x of degree < n with

coefficients from ()GF p . We will illustrate with 2p = and 4n = . We construct a field

of 42 16= elements. In this case, we let the irreducible polynomial be 4() 1h x x x= + + .

This leads to the results in Table 27 [Ma].

Polynomial Polynomial Coefficients Power of ξ

1 0 0 0 1 0 1ξ =

x 0 0 1 0 1ξ

2xx x= 0 1 0 0 2ξ

3x 1 0 0 0 3ξ

1x + 0 0 1 1 4ξ

2x x+ 0 1 1 0 5ξ

 66

Polynomial Polynomial Coefficients Power of ξ

3 2x x+ 1 1 0 0 6ξ

3 1x x+ + 1 0 1 1 7ξ

2 1x + 0 1 0 1 8ξ

3x x+ 1 0 1 0 9ξ

2 1x x+ + 0 1 1 1 10ξ

3 2x x x+ + 1 1 1 0 11ξ

3 2 1x x x+ + + 1 1 1 1 12ξ

3 2 1x x+ + 1 1 0 1 13ξ

3 1x + 1 0 0 1 14ξ

1 0 0 0 1 15 01ξ ξ= =

Table 28. Polynomials Associated with 16 States of the Shift Register (From [Ma])

Note that the coefficients of the polynomials correspond to the different possible states of

the shift register. (The 16th state, not appearing in the sequence, is the all zeros state).

Note that the third column of the Table has corresponding powers of .ξ We denoteξ as

the primitive element that is a root of the primitive polynomial 4() 1.h x x x= + + If we

have 4() 1 0h x x x= + + = andξ is a root, then 4 1 0ξ ξ+ + = or 4 1ξ ξ= + . From this

relation we can derive all other entries in the Table. We can then find the powers of any

polynomial or the products of any of the polynomials above simply by performing

exponential addition on the powers of ξ .

 67

APPENDIX B: CODE

A. BACKGROUND
The most important subroutine is the runNecklaceAlgorithm code. The algorithm

of runNecklace Algorithm had to be modified from Matty’s version [Mat]. Since the

number of necklaces grows prohibitively large, as n gets large, it was necessary to gather

statistical information on necklaces (such as number of “missings”) and insert signposts

while executing the Necklace Algorithm to generate necklaces. The level of detail

analysis is also limited by the amount of memory needed to store information on

“missings”, clump sizes and other pertinent information. The runNecklaceAlgorithm is

also limited to generate necklaces of a given binary string length n at a particular time.

So comparison of data for different binary string lengths can only occur by storing the

data separately. Fortunately, it is not necessary to generate all the necklaces using the

necklace algorithm so detailed analysis can be performed on a small range of necklaces.

The Automated Guided Vehicle (AGV) determines its position in a greedy DeBruijn

track by using this feature.

B. HEADER FILES

1. Necklace Header File

//**
// Necklaces.h
//
// LT John Ortiz
//
// Project: Thesis
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date:
// Description:
//
//**
#ifndef NECKLACES_H
#define NECKLACES_H

 68

//**
// Class: Necklaces
// Purpose:
//**
class Necklaces {

 public:
 const static int MAX_COLUMNS = 400;

// Keep in mind the limits of memory when displaying missings.
// You might not display them all if there are too many.
// Adjusting the threshold and percentage may help you see most of them.

 const static int DEFAULT_THRESHOLD = 0;

 const static int DEFAULT_PERCENT = 0;
 const static int MAX_LENGTH = 40;
 const static int OUTPUT_CELL_SIZE = 4; //output size

 //**m = 14 is the largest dimension I can use here without running out of memory

 //*************************************
 // Method Necklaces--Default Constructor
 // Return value none
 // Parameters none
 // Purpose
 //*************************************
 Necklaces();

 //*************************************
 // Method Necklaces-- Constructor
 // Return value none
 // Parameters int size, int thresh, float per
 // Purpose
 //**
 Necklaces(int size, int thresh, int per);

 //**
 // Method initNecklace
 // Return value decimal equivalent
 // Parameters int ones
 // Purpose to create a sequence consisting of a certain number of leading ones
 // with the remaining sequence consisting of zeros
 //**
 long long initNecklace(int ones);

 69

 //**
 // Method printSequence
 // Return value none
 // Parameters none
 // Purpose displays necklaces, theta generated and unobserved binary sequences
 //**
 void printSequence();

 //**
 // Method binToDec
 // Return value none
 // Parameters none
 // Purpose converts binary number of a sequence into its decimal equivalent
 //**
 long long binToDec();

 //*************************************
 // Method decToBin
 // Return value none
 // Parameters int input
 // Purpose converts binary number of a sequence into its
 // decimal equivalent and returns a pointer to binary sequence
 //*************************************
 void decToBin(long long input);

 //*************************************
 // Method createUnobservedSequences
 // Return value none
 // Parameters int dec1, int dec2
 // Purpose generates all even binary sequences between any two even sequences
 //**
 long createUnobservedSequences(int a, int b);

 //*************************************
 // Method findDivisors
 // Return value none
 // Parameters int num
 // Purpose find all divisors for an integer n
 //*************************************
 void findDivisors(int num);

 //**
 // Method printDivisors
 // Return value none

 70

 // Parameters int num
 // Purpose prints all divisors for an integer n
 //**
 void printDivisors(int num);

 //**
 // Method findGCD
 // Return value int gcd
 // Parameters int num1, num2
 // Purpose find greatest common divisor (gcd) for two integers
 //**
 int findGCD(int num1, int num2);

 //*************************************
 // Method eulerTotient
 // Return value long long Zn
 // Parameters int num
 // Purpose Calculate number of necklaces for a given n
 //*************************************
 long long eulerTotient(int num);

 //**
 // Method generatePower2
 // Return value long long power2val
 // Parameters long long exponent
 // Purpose generates 2 raised to any integer
 //**
 long long generatePower2(long long exponent);

 //*************************************
 // Method runNecklaceAlgorithm
 // Return value none
 // Parameters long long initial, long long final, long long input, bool numflag
 // Purpose executes necklace algorithm
 //*************************************
 void runNecklaceAlgorithm(long long initial, long long final, long long input, bool
 numflag);

 //**
 // Method inputBinaryString
 // Return value none
 // Parameters none
 // Purpose checks whether user input binary string is valid
 //**
 void inputBinaryString();

 71

 //**
 // Method countRunningOnes
 // Return value int nclass, largest number of running ones
 // Parameters int start, int finish
 // Purpose counts the number of running ones in each necklace
 //**
 int countRunningOnes(int start, int finish);

 //**
 // Method countRunningZeros
 // Return value int nclass, largest number of runnning zeros
 // Parameters int start, int finish
 // Purpose counts the largest number of running ones in each sequence
 //**
 int countRunningZeros(int start, int finish);

 //**
 // Method shiftSequenceToNecklace
 // Return value none
 // Parameters none
 // Purpose given an arbitrary n-tuple, it rotates the sequence until it generates
 necklace
 //**
 void shiftSequenceToNecklace();

 //**
 // Method generateShiftingOnesSequence
 // Return value none
 // Parameters long long neckdec, decimal equivalent of necklace
 // long long numclump, number of missings after necklace
 // long distance, distance between adjacent signposts
 // long necknum, necklace number associated with each signpost
 // Purpose generates shifting ones sequence to use as signposts
 // Note: Entries are stored in a matrix format that is read from left to right where the last
 // entry of the previous row precedes the first entry of the current row. This ensures I
 // have enough memory to collect enough signposts
 //**
 void generateShiftingOnesSequence(long long necdec, long long clmpsz, long distance,
 long necknum);

 //**
 // Method getWeight
 // Return value void
 // Parameters int num

 72

 // Purpose obtain user weight input for shifting ones sigposts
 //**
 void getWeight(int num);

 //**
 // Method cycleshiftSequence
 // Return value none
 // Parameters int index, index of largest sequence of running ones
 // Purpose cyclically rotate sequence until largest number of
 // running ones is at the leftmost position of the sequence
 //**
 void cycleshiftSequence(int index);

 //**
 // Method createInputString
 // Return value none
 // Parameters long long input
 // Purpose creates binary string version of user input decimal
 // to be matched to a subsection of the DeBruijn sequence
 //**
 void createInputString(long long input);

 //**
 // Method createFirstNecklace
 // Return value none
 // Parameters long long input
 // Purpose creates first necklace to be used in creating a
 // subsection of the DeBruijn sequence
 //**
 void createFirstNecklace(long long input);

 //**
 // Method createMiddleNecklace
 // Return value none
 // Parameters long long input
 // Purpose creates middle necklace to be used in creating a
 // subsection of the DeBruijn sequence
 //**
 void createMiddleNecklace(long long input);

 //**
 // Method createLastNecklace
 // Return value none
 // Parameters long long input
 // Purpose creates last necklace to be used in creating a

 73

 // subsection of the DeBruijn sequence
 //**
 void createLastNecklace(long long input);

 //**
 // Method createDeBruijnSection
 // Return value none
 // Parameters none
 // Purpose concatenates nonperiodic portions of three adjacent necklaces
 //**
 void createDeBruijnSection();

 //**
 // Method createWraparoundDeBruijnSection
 // Return value none
 // Parameters none
 // Purpose concatenates nonperiodic portions of four adjacent necklaces:
 // 100...00 ^ 0 ^ 1 ^ 111...10
 //**
 void createWraparoundDeBruijnSection();

 //**
 // Method getInputDec
 // Return value none
 // Parameters long long input
 // Purpose obtains user input decimal value that yields binary string
 // to be searched for in DeBruijn sequence
 //**
 void getInputDec(long long input);

 //**
 // Method searchDeBruijnString
 // Return value long long position
 // Parameters none
 // Purpose searches for user input binary string in DeBruijn sequence
 // and returns its location
 //**
 long long searchDeBruijnString();

 //**
 // Method findSequencePeriod
 // Return value int period
 // Parameters none
 // Purpose find period of a necklace
 //**

 74

 int findSequencePeriod();

 //**
 // Method computeDensity
 // Return value int nclass, largest number of runnning zeros
 // Parameters int start, int finish
 // Purpose counts the total number of ones in the sequence
 // ** Note: To compute number of zeros = length of sequence - computeDensity
 //**
 int computeDensity(int start, int finish);

//**
// Method testforNecklace
// Return value bool foundnecklace
// Parameters long long bininput
// Purpose tests n-tuple to see if it is a necklace
//**
bool testforNecklace(long long bininput);

 //**
 // Method countNecklacesPerClass
 // Return value none
 // Parameters int ones, number of leading ones
 // Purpose separates the number of leading ones in each necklace
 // into distinct classes
 //**
 void countNecklacesPerClass(int ones);

 //**
 // Method generateChangeSequence
 // Return value none
 // Parameters long long oldec, decimal value of previous necklace
 // long long newdec, decimal value of current necklace
 // int indx, array index for sequence
 // Purpose counts the number of bits that differ between each necklace
 // and inserts these values into a sequence
 //**
 void generateChangeSequence(long long olddec, long long newdec, int indx);

 //**
 // Method displayNecklaceInfo
 // Return value none
 // Parameters int col, classnumber, long long value, numclump
 // Purpose displays all information related to a necklace
 //**

 75

 void displayNecklaceInfo(int a, int b, long long c, long long d);

 //**
 // Method displayPower2Array
 // Return value none
 // Parameters none
 // Purpose displays power2[i] array
 //**
 void displayPower2Array();

 //**
 // Method displayDifference
 // Return value none
 // Parameters none
 // Purpose calculates and displays difference between power2 approximation and
number of necklaces
 //**
 void displayDifference();

 //**
 // Method displayNumbNeck
 // Return value none
 // Parameters none
 // Purpose displays number of necklaces per class
 //**
 void displayNumbNeck();

 //**
 // Method displayClassNumbers
 // Return value none
 // Parameters none
 // Purpose displays class numbers of necklaces in decreasing order
 //**
 void displayClassNumbers();

 //**
 // Method displayNcount
 // Return value none
 // Parameters none
 // Purpose displays total number of necklaces
 //**
 void displayNcount();

 //**
 // Method displayClumpsPerClass

 76

 // Return value none
 // Parameters none
 // Purpose displays total number of missing even n-tuples per class
 //**
 void displayClumpsPerClass();

 //**
 // Method displayClumpDistribution
 // Return value none
 // Parameters none
 // Purpose displays various clump sizes per class
 //**
 void displayClumpDistribution();

 //**
 // Method displayDecimalArray
 // Return value none
 // Parameters none
 // Purpose displays decimal equivalent of necklaces associated with clumps per
class
 //**
 void displayDecimalArray();

 //**
 // Method displayShiftingOnesSignposts
 // Return value none
 // Parameters none
 // Purpose displays decimal and binary equivalents of shifting signposts
 //**
 void displayShiftingOnesSignposts();

 //**
 // Method displayShiftingOnesDistances
 // Return value none
 // Parameters none
 // Purpose displays distances between shifting ones signposts
 //**
 void displayShiftingOnesDistances();

 //**
 // Method displayBitChangeSequence
 // Return value none
 // Parameters none
 // Purpose displays bit changes between necklaces
 //**

 77

 void displayBitChangeSequence();

 //**
 // Method displayFirstNecklace
 // Return value none
 // Parameters none
 // Purpose displays prior necklace in deBruijn section
 //**
 void displayFirstNecklace();

 //**
 // Method displayMiddleNecklace
 // Return value none
 // Parameters none
 // Purpose displays input necklace in deBruijn section
 //**
 void displayMiddleNecklace();

 //**
 // Method displayLastNecklace
 // Return value none
 // Parameters none
 // Purpose displays post necklace in deBruijn section
 //**
 void displayLastNecklace();

 //**
 // Method displaydeBruijnSection
 // Return value none
 // Parameters none
 // Purpose displays deBruijn sectional associated with user input necklace
 //**
 void displaydeBruijnSection();

 //**
 // Method displayUnobservedSequences
 // Return value none
 // Parameters none
 // Purpose displays all missings (even binary n-tuples) between any 2 nunmbers
 //**
 void displayUnobservedSequences();

 //*************************************
 // Method outputData
 // Return value none

 78

 // Parameters
 // Purpose display numerical results of algorithm output
 //*************************************
 void outputData();

 private:

 //**
 // Method initSequences
 // Return value none
 // Parameters int size, int thresh, float per
 // Purpose to initialize all the sequences involved in the analysis of the algorithm
 //**
 void initSequences(int size, int thresh, int per);

 private:

 //variables
 int m; // size of sequence
 int k; // number of leading ones input by the user
 int q; //index for onescount array
 int mark; // marker for shifting ones array
 int dim; //dimension for decimalarray
 int begin; //index to begin counting ones or zeros
 int threshold; // smallest size of missings displayed
 int num; // integral numerator of percentage
 int numevensignposts; // number of evenly spaced signposts
 int ncountdiff; // counts the number of necklaces between adjacent signposts
 int firstperiod; // period of first adjacent necklace in a deBruijn section
 int middleperiod; // period of middle adjacent necklace in a deBruijn section
 int lastperiod; // period of last adjacent necklace in a deBruijn section
 int sumperiod; // sum of last three periods
 int weight; // weight for shifting ones signposts
 int rowindex; // shifting ones row index <= MAX_LENGTH
 int colindex; // shifting ones column index <= MAX_COLUMNS
 long distance; // computes distance between initial and final necklace
 long olddistance; // computes distance of last necklace
 long totaldistance; //distance from end of deBruijn sequence (111.11) until first
 //necklace in deBruijn section
 float percent; // percentage of maximum clump size in a given class
 long ncount; // necklace number on theta generated list
 long noncount; // theta-generated non-necklace count
 long shiftonesnoclump; //number of shifting ones sequence NOT associated with
 //missings

 79

 long long absposition; // // absolute position from origin or end of 000...0 necklace
 long long totmissing; // number of missing even n-tuples in a given class
 long long maxclumpsize; // maximum clump size for all the classes
 long long inputstrdec; // decimal equivalent of input string
 double shiftonesclump; //number of shifting ones sequence associated with missings
 double binlength; // binary length of 2^m-1
 double petriumilestones; // number of petriu milsetones assuming max period of m
 double milestonedistance; // petriu distance given number of signposts
 double topt; // optimal petriudistance between milestones

 //arrays
 int sequence[MAX_LENGTH]; // binary sequence for necklaces
 int divisors[MAX_LENGTH+1]; // all divisors for a given n
 int bitchangeseq[MAX_COLUMNS]; // stores the number of bit changes between
 // necklaces
 int inputstring[MAX_LENGTH]; // binary sequence of user input decimal
 int firstnecklace[MAX_LENGTH]; // necklace listed before user input necklace
 int middlenecklace[MAX_LENGTH]; // user input necklace
 int lastnecklace[MAX_LENGTH]; // necklace listed after user input necklace
 int debruijnsection[MAX_LENGTH]; // section of DB sequence containing prior
 // three arrays
 int wrapdebruijnsection[MAX_LENGTH]; // section of DB sequence that includes
 // strings between 00...0 and 11...1
 long onescount[MAX_LENGTH+1]; //collects number of necklaces per class
 long power2[MAX_LENGTH+1]; // power of 2 approximation to onescount
 long diff[MAX_LENGTH+1]; // difference between power2 and onescount
 long ncountarray[MAX_LENGTH][MAX_COLUMNS]; // numbered count of each
 //necklace on theta list per class
 //long long decimalarray[MAX_LENGTH][MAX_COLUMNS]; // decimal
 //equivalent of each necklace per class
 long clumpcntarray[MAX_LENGTH+1]; //number of clumps per class
 long long missingarray[MAX_LENGTH][MAX_COLUMNS];
 long long maxclumpsizearray[MAX_LENGTH]; // maximum clump size for each
 // class
 long long totalmissings[MAX_LENGTH];
 long long missingbelowthreshold[MAX_LENGTH]; // total number of missing for a
 // given class less than threshold
 long long clumpsizearray[MAX_LENGTH][MAX_COLUMNS];
 long long evenspacedsignpostarray[MAX_LENGTH][MAX_COLUMNS]; //contains
 // decimal value of evenly spaced signposts
 long long shiftonesarray[MAX_LENGTH][MAX_COLUMNS]; // contains decimal
 //value of necklaces with shifting ones in a given class
 long shiftonesdistancearray[MAX_LENGTH][MAX_COLUMNS]; // contains
 // distances (in bits) between adjacent signposts
 long shiftonesncountarray[MAX_LENGTH][MAX_COLUMNS]; // contains

 80

 // necklace number of each signpost
 long long shiftonesclumpsizearray[MAX_LENGTH][MAX_COLUMNS]; // contains
 // clumpsize associated with shifting ones array
}; //end Class Necklaces

#endif // end of file Necklaces.h

2. IO Thesis, FileOpeningException and SieveSizeException Header
Files

//**

// IOThesis.h
//
// LT John Ortiz
//
//
// Course: CS2971 2006 Q1
// Project: Generating Necklaces
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date: 08 December 2005
// Description:
//
//**

#ifndef IOTHESIS_H
#define IOTHESIS_H

#include <string>
#include <sstream>
#include "NecklaceTable.h"
#include <fstream>

using std::string;
using std::ifstream;

const int EXIT_WITH_ERROR = 1; // global constant that enables a program to exit
when there is an error.
const int EXIT_NORMALLY = 0; // global constant that enables a program to exit when
there is no error.

//**
// Class: IOThesis
// Purpose: Display a 20x20 Matrix of integers where multiples of a filter
// provided by the user are replaced by blank spaces.
//**

 81

class IOThesis {

public:

 //**
 // Method displayMessage
 // Return value none
 // Parameters none
 // Purpose prompts user for dimension input
 //**
 static void displayMessage(string message);

 //**
 // Method openOutputFile()
 // Return value
 // Parameters: const char *FILE_NAME the name of the file to open for writing
 // Purpose: dynamically create a new ofstream and returns a pointer if successful
 //**
 static ofstream* openOutputFile(const char *FILE_NAME);

 //**
 // Method openInputFile
 // Return value ifstream*
 // Parameters const char *FILE_NAME, the file to open for reading
 // Purpose
 //**
 static ifstream* openInputFile(const char *FILE_NAME);

 //**
 // Method pauseBeforeExit
 // Return value none
 // Parameters int condition (EXIT_WITH_ERROR = 1, global defined in
IOController.h)
 // (EXIT_NORMALLY = 0, global defined in IOController.h)
 // Purpose keeps display window open long enough to see results
 //**
 static void pauseBeforeExit(int condition);

 //**
 // Method inputInt
 // Return value int
 // Parameters none, function will ask for input via I/O
 // Purpose take string input and determine if valid for an int
 // use inputFilter = IOController::inputInt(); vice cin >> inputFilter
 //**

 82

 static int inputInt();

 //**
 // Method inputIntWithLimits
 // Return value int
 // Parameters (string message, int lower, int upper)
 // Purpose calls input int for a valid int, then checks limits
 // used similiarly to inputInt
 //**
 static int inputIntWithLimits(string message, int lower, int upper);

 //**
 // Method clearInputBuffer
 // Return value bool TRUE if cin buffer has no additional stuff in it
 // Parameters none
 // Purpose utility function for processing inputs
 //**
 static bool clearInputBuffer();

}; //end Class IOThesis

#endif // end of file IOThesis.h

//**
// FileOpeningException.h
//
// LT John Ortiz
//
//
// Course: CS2971 2006 Q1
// Project:
// Operating Environment: Windows XP Pro
// Compiler: Visual Studio .NET
// Date: 08 December 2005
// Description: Provide exception handling for file opening.
//**

#include <stdexcept>
using std::runtime_error;

//**
// Class: FileOpeningException
// Purpose: Provide exception handling for file opening.
//**
class FileOpeningException : public runtime_error {

 83

public:

 //*************************************
 // Method FileOpeningException--Constructor
 // Return value none
 // Parameters none
 // Purpose
 //*************************************
 FileOpeningException::FileOpeningException(): runtime_error("Unable to open file")
 {
 //nothing else to initialize
 }

 //variables
 private:
 //none
}; //end Class FileOpeningException

//**
// SieveSizeException.h
//
// LT Ortiz
//
//
// Project: Thesis
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date:
// Description: Provide exception handling for incorrect necklace size requests
// There is no default constructor. Coders must provide an argument.
// Choose the appropriate enumerated constant
//**
#ifndef SIEVESIZEEXCEPTION_H
#define SIEVESIZEEXCEPTION_H

#include <string>
#include <stdexcept>
using namespace std;

//**
// Class: SieveSizeException
// Purpose: Provide exception handling for incorrect sieve size requests
//**

 84

class SieveSizeException : public runtime_error {

public:
 const static enum { TOO_SMALL, TOO_BIG };

 //*************************************
 // Method SieveSizeException--Constructor
 // Return value none
 // Parameters const int ERROR_ID
 // Purpose
 //*************************************
 SieveSizeException(const int ERROR_ID) : runtime_error(
resolveErrorType(ERROR_ID)) {
 //nothing else to initialize
 }

 //**
 // Method resolveErrorType
 // Return value string The exception message
 // Parameters const int errorID
 // Purpose generate exception text
 //**
 string resolveErrorType(const int ERROR_ID) {

 switch (ERROR_ID) {
 case TOO_SMALL:
 return "A necklace needs to have positive dimensionality";
 break;

 case TOO_BIG:
 return "That would produce a necklace too large to output in the console";
 break;

 default:
 return "Really bad things are happening here...function was not provided
TOO_SMALL or TOO_BIG as an argument";
 }

 }//end function resolveErrorType

 //variables
 private:
 //none

 85

}; //end Class SieveSizeException

#endif // end of file SieveSizeException.h

C. CPP FILES

1. Necklace CPP File

//**

// Necklaces.cpp
//
// LT John Ortiz
//
//
// Project: Thesis
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date:
// Description:
//
//**

#include <iostream>
#include <iomanip>
#include <cctype>
#include "math.h"
#include "Necklaces.h"
#include "IOThesis.h"

using namespace std;

//*************************************
// Method Necklaces--Default Constructor
// Return value none
// Parameters none
// Purpose
//*************************************
Necklaces::Necklaces()
{
 initSequences(MAX_COLUMNS,DEFAULT_THRESHOLD,DEFAULT_PERCENT);
// MAX_COLUMNS = 34

 86

}

//*************************************
// Method Necklaces-- Constructor
// Return value none
// Parameters int size, int thresh, float per
// Purpose
//*************************************
Necklaces::Necklaces(int size, int thresh, int per)
{
 initSequences(size, thresh, per);
}//end constructor

//**
// Method initSequences
// Return value none
// Parameters int size, int thresh, float per
// Purpose to initialize all the sequences involved in the analysis of the algorithm
//**
void Necklaces::initSequences(int size, int thresh, int per)
{
 m = size; // defined only once for all functions
 threshold = thresh;
 begin = 0;
 num = per;
 percent = num /100;

 if (m < 1)
 {
 cout << "A necklace needs to have a length > = 1 \n"
 << "exiting the program.\n" << endl;

 IOThesis::pauseBeforeExit(EXIT_WITH_ERROR);
 }

 if (m > MAX_LENGTH) // MAX_COLUMNS = 400
 {
 cout << "That would produce a necklace too large to output in the console \n"
 << "exiting the program.\n" << endl;

 IOThesis::pauseBeforeExit(EXIT_WITH_ERROR);
 }

 87

 initNecklace(0); //initializes necklace to be all zeros

 for (int i = 0; i < MAX_LENGTH; i++)
 {
 maxclumpsizearray[i]= 0;
 totalmissings[i] = 0;
 missingbelowthreshold[i] = 0;
 firstnecklace[i] = 9;
 middlenecklace[i] = 9;
 lastnecklace[i] = 9;
 debruijnsection[i]= 9;
 wrapdebruijnsection[i] = 9;
 }

 for (int i = 0; i <= MAX_LENGTH; i++)
 {
 power2[i] = 1;
 diff[i] = 0;
 onescount[i] = 1;
 clumpcntarray[i] = 0;
 divisors[i] = -1;
 }

 for (int i = 0; i < MAX_COLUMNS; i++)
 {
 bitchangeseq[i] = 0;
 }

 mark = -1;
 for (int i = 0; i < MAX_LENGTH; i++)
 {
 for(int j = 0; j < MAX_COLUMNS; j++)
 {
 missingarray[i][j] = 0;
 ncountarray[i][j] = 0;
 //decimalarray[i][j]= 9; // a necklace will always have an even decimal equivalent
 clumpsizearray[i][j] = 0;
 shiftonesarray[i][j] = mark;
 shiftonesdistancearray[i][j] = 0;
 shiftonesclumpsizearray[i][j] = 0;
 evenspacedsignpostarray[i][j] = mark;
 }
 }

 for (int i = 0; i < MAX_LENGTH; i++)

 88

 {
 for(int j = 0; j < MAX_LENGTH; j++)
 {
 evenspacedsignpostarray[i][j] = 0;
 }
 }
} // end initSequences

//**
// Method initNecklace
// Return value decimal equivalent
// Parameters int ones
// Purpose to create a sequence consisting of a certain number of leading ones
// with the remaining sequence consisting of zeros
//**
long long Necklaces::initNecklace(int ones)
{
 long long initdec = 0;

 for (int i=0; i < m; i++)
 {
 sequence[i] = 0; // sequence initially set to all zeros
 }

 k = ones;
 int x = 1;
 for(int i=0; i< k; i++) // initializing initial fill with given number of leading ones
 {
 sequence[i]= x;
 }
 initdec = binToDec();

 return initdec; //returns decimal equivalent of initial necklace
}// end initNecklace

//**
// Method printSequence
// Return value none
// Parameters none
// Purpose displays binary sequences into three parts
//**
void Necklaces::printSequence()
{
 int n = 0;

 89

 int i = 0;
 while(sequence[i] != 0 && i < m) // determine number of leading ones
 {
 n++;
 i++;
 }

 for(int i = 0; i < m; i++)
 {
 if(i == n)
 {
 cout << sequence[i] << " ";
 // this next line is optional and can be commented out if desired
 //cout << setw(OUTPUT_CELL_SIZE - 1)<< " "; //print 2 spaces after first run of
ones and a zero
 }
 else if(i == m-2)
 {
 cout << sequence[i] << " ";
 // this next line is optional and can be commented out if desired
 //cout << setw(OUTPUT_CELL_SIZE - 1)<< " "; //print 2 spaces before
terminating zero
 }
 else
 {
 cout << sequence[i] << " "; //print 1 within middle part
 }
 }
}// end printSequence

//**
// Method runNecklaceAlgorithm
// Return value none
// Parameters long long initial, long long final, long long input, bool numflag
// Purpose executes necklace algorithm
//**
void Necklaces::runNecklaceAlgorithm(long long initial, long long final, long long input,
bool numflag)
//void Necklaces::runNecklaceAlgorithm(int ones, long long numneck, bool numflag)
{
 ncount = 0;
 noncount = 0;
 totmissing = 0;
 maxclumpsize = 0;

 90

 distance = 0;
 olddistance = 0;
 ncountdiff = 0;
 shiftonesclump = 0;
 shiftonesnoclump = 0;
 firstperiod = 0;
 middleperiod = 0;
 lastperiod = 0;
 sumperiod = 0;
 int classnumber = 0;
 int j = m-1; //largest index such that aj=1 and ak=0 for k=j+1 to m
 //k = ones;
 q = 0;
 long inputncount = 0; // necklace number associated with user input necklace
 long long nondecimal = 0; // decimal equivalent of current non-necklace1
 long long ndecimal = 0; // decimal equivalent of current necklace
 long long oldndecimal = 0; // decimal equivalent of previous necklace
 long long oldnondecimal = 0; // decimal equivalent of previous non-necklace
 long long priorndecimal = 0;
 long long maxnum = final - initial + 1;
 long long value = 0;
 long long inputdec = input;
 long long nummissing = 0; //difference between decimal equivalences of 2 adjacent
necklaces
 int col = 0; // column number for arrays
 int idx = 0; // index number
 int idx2 = 0; // second index number
 int oldclassnumber = 0;
 int numclump = 0; // number of clumps in a given class corresponding to number of
signposts
 int numevensignposts = 0; // number of evenly spaced signposts
 bool printflag = numflag;
 rowindex = 0;
 colindex = 0;

 //initNecklace(k);

 ncount = 1;
 shiftonesnoclump++;
 oldndecimal = initial;
 decToBin(oldndecimal); // initial necklace
 distance = findSequencePeriod(); // initial calculation

 if (printflag == true) // print statement for initial necklace
 {

 91

 cout << endl;
 cout << "\nNecklace " << ncount << ":" << endl;
 printSequence();
 cout << " decimal equivalent = " << oldndecimal << endl;
 cout << "\n" ;
 }

 do
 {
 nummissing = 0; //resetting the count
 j=m-1; //always start at the end of the current sequence and work backwards to find
largest aj = 1
 while (sequence[j]==0) // keep decrementing index until aj = 1
 {
 j=j-1;
 }
 sequence[j]=sequence[j]-1; //subtracts 1 from jth position

 if(j!=m-1)// checks to see if we can copy beginning portion to end
 {
 for(int i=1; i < m -j; i++)
 {
 sequence[j+i] = sequence[i-1]; //copies the first portion onto the remainder of
necklace
 }
 } // end if

 if(m %(j+1)!=0) // Checking for generated nonnecklaces: (j+1) ensures we do not
have division by zero; m = real length, j+1 = real index
 {
 noncount = noncount++;
 nondecimal = binToDec();
 //if (printflag == true)
 {
 //cout << endl;
 //cout << "\nNon-Necklace " << noncount << ":" << endl;
 //printSequence();
 //cout << "decimal equivalent = " << nondecimal << endl;
 //cout << "\n" ;
 }
 } // end if

 if(m %(j+1)==0) // Checking for necklaces: (j+1) ensures we do not have division by
zero
 {

 92

 ncount = ncount++;
 ndecimal = binToDec();
 distance += findSequencePeriod(); // computing and summing up successive
 // periods
 olddistance = distance - findSequencePeriod();

 if(ncount == maxnum) // allows us to exit after a given number of thetasteps
 {
 break;
 }

 if(ndecimal == inputdec) // case where missing n-tuple is close to its necklace
 {
 //cout << "\noldndecimal for first necklace = " << oldndecimal << endl;
 createFirstNecklace(oldndecimal);
 firstperiod = findSequencePeriod();
 //cout << "\nndecimal for middle necklace = " << ndecimal << endl;
 createMiddleNecklace(ndecimal);
 middleperiod = findSequencePeriod();
 inputncount = ncount;
 totaldistance = olddistance - firstperiod; // need to adjust for first necklace
 }

 if(final < inputdec)
 {
 if(ncount == inputncount + 1)
 {
 //cout << "\nndecimal for last necklace = " << ndecimal << endl;
 createLastNecklace(ndecimal);
 lastperiod = findSequencePeriod();
 sumperiod = firstperiod + middleperiod + lastperiod;
 }
 }
 if (idx <= MAX_COLUMNS) // prevents access violations in memory
 {
 generateChangeSequence(value, ndecimal, idx);
 idx++;
 }
 if(computeDensity(0, m-1) <= weight + classnumber)// tests for shifting ones in
substring: changed classnumber to 0
 {
 //generateShiftingOnesSequence(ndecimal, nummissing, distance, ncount);
 shiftonesnoclump++;
 } // end if(computeDensity)
 //{

 93

 // evenspacedsignpostarray[col][col] = ndecimal;
 //}
 if (printflag == true)
 {
 cout << endl;
 cout << "\nNecklace " << ncount << ":" << endl;
 cout << "\n";
 printSequence();
 cout << " decimal equivalent = " << ndecimal << endl;
 //cout << "\nmaxdistance = " << distance << endl;
 cout << "\n" ;
 } // end if(printflag)
 classnumber = countRunningOnes(begin,j);
 countNecklacesPerClass(classnumber);
 nummissing = (oldndecimal - ndecimal - 2)/2;
 if ((nummissing) > 0) // indicates there exists a clump
 {
 value = 0; //resetting value to accept current value
 value = oldndecimal; // sets "value" to previous value of ndecimal
 if (printflag == true)
 {
 cout << "number missing between Necklaces " << ncount - 1 << " and " <<
ncount << " = " << nummissing << endl;
 cout << "\n" ;
 } // end if(printflag)
 totmissing += nummissing;

 if(oldclassnumber != classnumber) // verifies if class number has changed
 {
 oldclassnumber = classnumber;
 col = 0;
 numclump = 0; // reset when class number changes
 //idx = 0; // check to see if you need it here
 }
 else
 {
 col++; // change to allow new info in a given class to be recorded
 totalmissings[classnumber]+= nummissing; // sums total missing for a given
class
 } // end if-else
 if (nummissing > maxclumpsize) // only records largest clump size per class
 {
 maxclumpsize = nummissing;
 maxclumpsizearray[classnumber]= maxclumpsize;
 }

 94

 if(nummissing >= threshold && col <= MAX_COLUMNS) // restricting to
collecting signpost information
 {
 clumpsizearray[classnumber][col] = nummissing;
 //decimalarray[classnumber][col] = value; //stores decimal equivalent of
sequence after missings
 //cout << "decimalarray[" << classnumber << "][" << col << "] = " << value;
 //cout << "\n" ;
 missingarray[classnumber][col] = nummissing; // records instances of all
missings > threshold for a given class
 idx++;
 }
 if(nummissing <= threshold)
 {
 missingbelowthreshold[classnumber]+= nummissing; // records only the sum of
missings below threshold
 }
 if(nummissing >= threshold) // counts the total number of clumps for a given class
 {
 numclump++;
 clumpcntarray[classnumber]= numclump;
 }
 if(computeDensity(0, m-1) <= weight + classnumber)// tests for shifting ones in
substring: changed classnumber to 0
 {
 generateShiftingOnesSequence(ndecimal, nummissing, olddistance, ncount);
 shiftonesclump++;
 } // end if(computeDensity)
 ncountarray[classnumber][col] = ncount - 1; // why do I have this here??
 if (printflag == true)
 {
 //displayNecklaceInfo(col, classnumber, value, numclump);
 }
 }// end outside if(nummissing)
 oldndecimal = ndecimal; // setting value which is the old "value" of ndecimal to
current ndecimal
 ///value = 0; //resetting value to accept current value
 } // end if(m %(j+1)==0)
 }while (ndecimal != final); // end of necklace algorithm

}// end runNecklaceAlgorithm

//**
// Method inputBinaryString

 95

// Return value none
// Parameters none
// Purpose checks whether user input binary string is valid
//**
void Necklaces::inputBinaryString()
{
 const int SIZE = MAX_LENGTH;
 char ch[SIZE]; // temporary buffer for input characters
 for(int i=0; i< SIZE; i++) //initializing ch array
 {
 ch[i] = 9;
 }
 bool state = true;
 int limit = m; // limits size of user input binary string to match with constructor

 while(state == true) // This loop prompts a user to enter in only one integer that is less
than 12 characters long
 {
 int q = 0;
 int total = 0;
 char element = cin.get();
 while(element != '\n')// reads elements into a character array
 {
 ch[q] = element;
 total++;
 if (total == limit) // checks if total exceeds 12 characters
 {
 cout << "You have reached the maximum number of characters allowed" <<
endl;
 cout << "We will truncate the additional digits" << endl;
 state = false;
 break;
 }
 if (cin.eof()) // checks if ctrl-z in input as a character
 {
 cout << "\nInvalid character.";
 cin.clear(); //resets input stream so it can keep processing
 cin.putback('\n');
 state = !IOThesis::clearInputBuffer();
 break;
 }
 if (ch[q] != '0' || ch[q] != '1') // checks if there is an invalid element
 {
 cout << "\nInvalid character.";
 state = !IOThesis::clearInputBuffer();

 96

 break;
 }
 else
 {
 element = cin.get(); // gets the next element
 q++;
 }
 } // end inside while
 } // end outside while

 for (int i=0; i <= m-1; i++)
 {
 if(ch[i]!= 9)
 {
 sequence[i] = ch[i];
 }
 }

} // end inputBinaryString
//**
// Method countRunningOnes
// Return value int numones, largest number of runnning ones
// Parameters int start, int finish
// Purpose counts the largest number of running ones in each sequence
//**

int Necklaces::countRunningOnes(int start, int finish)
{
 int alpha = start;
 int omega = finish;
 int tempcnt = 0;
 int numones = 0;

 for(int i = alpha; i <= omega; i++)
 {
 if(sequence[i] != 0)
 {
 tempcnt++;
 }
 else
 {
 tempcnt = 0; //resets tempcnt
 }

 97

 if(tempcnt > numones)
 {
 numones = tempcnt; //ensures largest string of ones is preserved
 }
 }

 if(alpha == omega)
 {
 numones = sequence[alpha];
 }

 return numones;
} // end countRunningOnes

//**
// Method countRunningZeros
// Return value int numzeros, largest number of runnning zeros
// Parameters int start, int finish
// Purpose counts the largest number of running ones in each sequence
//**

int Necklaces::countRunningZeros(int start, int finish)
{
 int alpha = start;
 int omega = finish;
 int tempcnt = 0;
 int numzeros = 0;

 for(int i = alpha; i <= omega; i++)
 {
 if(sequence[i] != 1)
 {
 tempcnt++;
 }
 else
 {
 tempcnt = 0; //resets tempcnt
 }

 if(tempcnt > numzeros)
 {
 numzeros = tempcnt; //ensures largest string of zeros is preserved
 }
 }

 98

 if(alpha == omega)
 {
 if(sequence[alpha]== '0')
 {
 numzeros = 1;
 }
 else
 {
 numzeros = 0;
 }
 }

 return numzeros;
}// end countRunningZeros

//**
// Method cycleshiftSequence
// Return value none
// Parameters int index, index of largest sequence of running ones
// Purpose cyclically rotate sequence a number of positions to the left
//**

void Necklaces::cycleshiftSequence(int index)
{
 int temp = 0; // temporary place holder
 int seqindx = index;
 for (int i = 0; i < seqindx; i++) //outer for loop only keeps track of number of shifts
 {
 temp = sequence[0]; // beginning of sequence stored until it can be placed at the end
 for (int j = 0; j < m-1; j++)
 {
 sequence[j] = sequence[j+1]; // all bits shift one place to the left
 }
 sequence[m-1]= temp;
 }
} // end cycleshiftSequence

//**
// Method createInputString
// Return value none
// Parameters long long input
// Purpose creates binary string version of user input decimal

 99

// to be matched to a subsection of the DeBruijn sequence
//**
void Necklaces::createInputString(long long input)
{
 long long inputdecimal = input;

 decToBin(inputdecimal);

 for(int i = 0; i < m; i++)
 {
 inputstring[i] = sequence[i];
 }

} // end createInputString

//**
// Method createFirstNecklace
// Return value none
// Parameters long long input
// Purpose creates first necklace to be used in creating a
// subsection of the DeBruijn sequence
//**
void Necklaces::createFirstNecklace(long long input)
{
 long long firstdecimal = input;

 decToBin(firstdecimal);

 for(int i = 0; i < m; i++)
 {
 firstnecklace[i] = sequence[i];
 }
} // end createFirstNecklace

//**
// Method createMiddleNecklace
// Return value none
// Parameters long long input
// Purpose creates middle necklace to be used in creating a
// subsection of the DeBruijn sequence
//**
void Necklaces::createMiddleNecklace(long long input)
{
 long long middledecimal = input;

 100

 decToBin(middledecimal);

 for(int i = 0; i < m; i++)
 {
 middlenecklace[i] = sequence[i];
 }
} // end createMiddleNecklace

//**
// Method createLastNecklace
// Return value none
// Parameters long long input
// Purpose creates last necklace to be used in creating a
// subsection of the DeBruijn sequence
//**
void Necklaces::createLastNecklace(long long input)
{
 long long lastdecimal = input;

 decToBin(lastdecimal);

 for(int i = 0; i < m; i++)
 {
 lastnecklace[i] = sequence[i];
 }
} // end createLastNecklace

//**
// Method createDeBruijnSection
// Return value none
// Parameters none
// Purpose concatenates nonperiodic portions of three adjacent necklaces
//**
void Necklaces::createDeBruijnSection()
{
 int p1 = firstperiod; // period of firstnecklace
 int p2 = middleperiod; // period of middlenecklace
 int p3 = lastperiod; // period of lastnecklace
 int p4 = 0; // period of last necklace during wraparound case
 long long testinteger = 0; //testing for wraparound case

 for(int i = 0; i < p1; i++)
 {

 101

 debruijnsection[i] = firstnecklace[i]; // first third of deBruijn section
 //cout << "\ndebruijnsection[" << i << "] = " << debruijnsection[i] << endl;
 //cout << "\nfirstnecklace[" << i << "] = " << firstnecklace[i] << endl;
 }

 //testinteger = binToDec();
 //cout << "\ntestinteger = " << testinteger << endl;
 //if(testinteger == generatePower2(m-1) || testinteger == 0) // wraparound case
 //{
 // initNecklace(0); // all zeros
 // middleperiod = findSequencePeriod();
 // initNecklace(1); // all ones
 // lastperiod = findSequencePeriod();

 // debruijnsection[0] = 1;
 // debruijnsection[2*m + 1] = 0;
 // for(int i = 1; i <= m ; i++)
 // {
 // debruijnsection[i] = 0;
 // }
 // for(int i = m+1; i <= 2*m; i++)
 // {
 // debruijnsection[i] = 1;
 // }
 // } // end if
 // else
 // {
 for(int i = 0; i < p2; i++)
 {
 debruijnsection[i + p1] = middlenecklace[i]; // middle third of deBruijn section
 }
 for(int i = 0; i < p3; i++)
 {
 debruijnsection[i + p1 + p2] = lastnecklace[i]; // last third of deBruijn section
 }
 // } // end else
} // end createDeBruijnSection

//**
// Method createWraparoundDeBruijnSection
// Return value none
// Parameters none
// Purpose concatenates nonperiodic portions of four adjacent necklaces:
// 100...00 ^ 0 ^ 1 ^ 111...10

 102

//**
void Necklaces::createWraparoundDeBruijnSection()
{
 wrapdebruijnsection[0] = 1;
 wrapdebruijnsection[2*m + 1] = 0;

 for(int i = 1; i <= m ; i++)
 {
 wrapdebruijnsection[i] = 0;
 }

 for(int i = m+1; i <= 2*m; i++)
 {
 wrapdebruijnsection[i] = 1;
 }

} // end createWraparoundDeBruijnSection

//**
// Method getInputDec
// Return value none
// Parameters long long input
// Purpose obtains user input decimal value that yields binary string
// to be searched for in DeBruijn sequence
//**
void Necklaces::getInputDec(long long input)
{
 inputstrdec = input;
} //end getInputDec

//**
// Method searchDeBruijnString
// Return value long long position
// Parameters none
// Purpose searches for user input binary string in DeBruijn sequence
// and returns its location
//**
long long Necklaces::searchDeBruijnString()
{
 long position = 0; // position from beginning of 111...1 necklace
 absposition = 0;
 int matchcount = 0; // counts how many matches there are between n-tuple and
deBruijn string
 long stepcount = 0; // counts how many step you take thru deBruijn section until there
is a match

 103

 cout << "\nsumperiod = " << sumperiod << endl;

 for(int i = 0; i < sumperiod; i++)
 {
 for(int j = 0; j < m; j++)
 {
 if(inputstring[j] == debruijnsection[i+j])
 {
 matchcount++;
 }
 else
 {
 matchcount = 0; //reset
 break;
 }
 } // end inner for loop

 if(matchcount = = m) //section of deBruijn sequence fully and uniquely matches user
input
 {
 break;
 }
 stepcount++; // keep counting number of steps needed to find a match
 }
 position = stepcount + totaldistance;

 if(inputstrdec = = generatePower2(m)-1) // accounts for all ones necklace
 {
 absposition = generatePower2(m); //last position in deBruin sequence read from right
to left
 }
 else if (inputstrdec = = 0) //accounts for all zeros necklace
 {
 absposition = 1; //first position in deBruin sequence read from right to left
 }
 else //everything else in between two extremes
 {
 absposition = generatePower2(m) - position;
 }

 return position;
} // end searchDeBruijnString

 104

//**
// Method findSequencePeriod
// Return value int period
// Parameters none
// Purpose find period of a necklace
//**

int Necklaces::findSequencePeriod()
{
 int period = 0;

 findDivisors(m); // need to find divisors first

 for(int i = 0; i < m; i++)
 {
 if(divisors[i]!=0)
 {
 for(int j = 0; j < (m / divisors[i]) - 1; j++)
 {
 period = 0; //reset
 for(int k = 0; k < divisors[i]; k++)
 {
 if(sequence[k] == sequence[k + (j+1)*divisors[i]])
 {
 period++; // period value keeps accumulating as long as there is a match
 }
 else
 {
 period = m;
 break; // exit k for loop if there is no match
 }
 }// end k for loop
 if(period == m)
 {
 break; // do not bother comparing remaining instances
 }
 } // end j for loop
 } // end outer if statement
 if(period == divisors[i])
 {
 break; // no need to check remaining divisors since we found period
 }
 } // end i for loop

 return period;

 105

} // findSequencePeriod

//**
// Method shiftSequenceToNecklace
// Return value none
// Parameters none
// Purpose given an arbitrary n-tuple, it rotates the sequence until it generates
necklace
//**

void Necklaces::shiftSequenceToNecklace()
{
 int w = 0; // value of largest run of ones for cyclical rotation
 int w1 = 0; // window equal to running ones without wraparound
 int w2 = 0; //first half of wraparound window
 int w3 = 0; // second half of wraparound window

 int firstsum = 0; // number of ones from i to m-1 when i+w-1 > m-1
 int secondsum = 0; // number of ones from 0 to i+w-1
 int onessum = 0;
 long long temp1 = 0;
 long long temp2 = 0;

 temp1 = binToDec(); // initial decimal value

 w1 = countRunningOnes(0,m-1); //window size consisting of all ones

 for(int i = 0; i < w1; i++)
 {
 if(sequence[i]==1)
 {
 w2++;
 }
 else
 {
 break;
 }
 }

 for(int i = m-1; i >= m-w1; i--)
 {
 if(sequence[i]==1)
 {
 w3++;
 }

 106

 else
 {
 break;
 }
 }

 if(w1 > w2+w3) // need to find largest window size under cyclical rotation
 {
 w = w1;
 }
 else
 {
 w = w2+w3;
 }

 for(int i = 0; i < m; i++)
 {
 if(i+w-1 < m-1) // checks if end of window has reached end of sequence
 {
 if(countRunningOnes(i,i+w-1)== w)
 {
 decToBin(temp1);
 cycleshiftSequence(i);
 temp2 = binToDec(); // converts rotated sequence into a decimal value
 if(temp2 > temp1)
 {
 temp1 = temp2; //stores only largest decimal equivalent associated with "w"
ones
 }
 } // end if(i+w-1 <= m-1) statement
 else // may not need to use this
 {
 continue; // ignores all windows which have less than "w" running ones
 }
 }
 else if (i+w-1 >= m-1) //window exceeds sequence length and wraps around to
beginning
 {
 //cout << "\nInside if(" << i+w-1 << " >= " << m-1 << ") statement..." << endl;
 //cout << "\n i = " << i << endl;
 //cout << "\n temp1 before cycleshift = " << temp1 << endl;
 //cout << "\n Binary value of temp1: ";
 decToBin(temp1);
 //printSequence();
 //cout << "\n" << endl;

 107

 cycleshiftSequence(i);
 temp2 = binToDec(); // converts rotated sequence into a decimal value
 //cout << "\n Binary value of temp1 after shifting by "<< i << ": ";
 //printSequence();
 //cout << "\n";
 //cout << "\n temp2 = " << temp2 << endl;
 //cout << "\n temp1 = " << temp1 << endl;
 if(temp2 > temp1)
 {
 //cout << "\n ";
 //cout << temp2 << " > " << temp1 << endl;
 temp1 = temp2; //stores only largest decimal equivalent associated with "w" ones
 }
 }
 }// end for loop

 decToBin(temp1); // converts decimal equivalent to binary
} // end shiftSequenceToNecklace

//**
// Method generateShiftingOnesSequence
// Return value none
// Parameters long long neckdec, decimal equivalent of necklace
// long long numclump, number of missings after necklace
// long distance, distance between adjacent signposts
// long necknum, necklace number associated with each signpost
// Purpose generates shifting ones sequence to use as signposts
// Note: Entries are stored in a matrix format that is read from left
// to right where the last entry of the previous row precedes
// the first entry of the current row. This ensures I have enough
// memory to collect enough signposts
//**

void Necklaces::generateShiftingOnesSequence(long long necdec, long long clmpsz,
long distance, long necknum)
{
 long long nval = necdec;
 long long nclump = clmpsz;
 long dist = distance;
 long ncnt = necknum;

 if(colindex <= MAX_COLUMNS)
 {
 shiftonesarray[rowindex][colindex] = nval;

 108

 shiftonesclumpsizearray[rowindex][colindex] = clmpsz;
 shiftonesdistancearray[rowindex][colindex] = distance;
 shiftonesncountarray[rowindex][colindex] = ncnt;
 colindex++; // increment column index
 }
 else
 {
 colindex = 0; // reset column index
 rowindex++; //increment row index
 if(rowindex <= MAX_LENGTH)
 {
 shiftonesarray[rowindex][colindex] = nval;
 shiftonesclumpsizearray[rowindex][colindex] = clmpsz;
 shiftonesdistancearray[rowindex][colindex] = distance;
 shiftonesncountarray[rowindex][colindex] = ncnt;
 colindex++; // increment column index
 }
 }
}// end generateShiftingOnesSequence

//**
// Method getWeight
// Return value void
// Parameters int num
// Purpose obtain user weight input for shifting ones sigposts
//**
void Necklaces::getWeight(int num)
{
 weight = num;
} // end getWeight

//**
// Method getNumEvenlySpacedSignposts
// Return value void
// Parameters int num
// Purpose obtain number of evenly spaced sigposts from user
//**
void Necklaces::getNumEvenlySpacedSignposts(int num)
{
 numevensignposts = num;
}// end getNumEvenlySpacedSignposts

 109

//**
// Method computeDensity
// Return value int nclass, largest number of runnning zeros
// Parameters int start, int finish
// Purpose counts the total number of ones in the sequence
// ** Note: To compute number of zeros = length of sequence - computeDensity
//**

int Necklaces::computeDensity(int start, int finish)
{
 int alpha = start;
 int omega = finish;
 int density = 0;

 for(int i = alpha; i <= omega; i++)
 {
 if(sequence[i] == 1)
 {
 density++;
 }
 }
 return density;
} // end computeDensity

//**
// Method testforNecklace
// Return value bool foundnecklace
// Parameters long long bininput
// Purpose tests n-tuple to see if it is a necklace
//**

bool Necklaces::testforNecklace(long long bininput);

{

bool foundnecklace = false;

long long ndecimal = bininput; // binary decimal associated with n-tuple

nstring = decToBin(ndecimal); // subroutine that converts decimal value into a binary

 // sequence

shiftSequenceToNecklace(); // subroutine that shifts a binary sequence into its necklace

 // representative

shiftdecimal = binToDec(); // subroutine that converts a binary string into its decimal

 110

 // equivalent

if(shiftdecimal = = ndecimal) // test to see if current n-tuple is a necklace

{

 foundnecklace = true;

}

else

{

 foundnecklace = false;

}

return foundnecklace;

// end testforNecklace

//**
// Method countNecklacesPerClass
// Return value none
// Parameters int ones, number of leading ones
// Purpose separates the number of leading ones in each necklace
// into distinct classes
//**

void Necklaces::countNecklacesPerClass(int ones)
{
 int p = ones; //number of leading ones

 if(p != m-q)//checks if current ones count is different from last ones count
 {
 onescount[m-p]= 1; // ensures unique number of ones is counted only once
 q++;
 }
 else
 {
 onescount[m-p]++; //increase number of necklaces with same number of leading ones
 }

 if(p == 0) //accounts for all zeros string
 {
 onescount[m-p]= 1;
 }
}// end countNecklacesPerClass

 111

//**
// Method generateChangeSequence
// Return value none
// Parameters long long oldec, decimal value of previous necklace
// long long newdec, decimal value of current necklace
// int indx, array index for sequence
// Purpose counts the number of bits that differ between each necklace
// and inserts these values into a sequence
//**
void Necklaces::generateChangeSequence(long long olddec, long long newdec, int indx)
{
 int oldseq[MAX_LENGTH]; // binary sequence for previous necklace
 int newseq[MAX_LENGTH]; // binary sequence for current necklace
 int bitchange = 0; // counts the number of bit changes between both sequences
 int idx = indx; // column index for bit change sequence

 decToBin(olddec);
 for(int i=0; i < m; i++)
 {
 oldseq[i] = sequence[i];
 }
 decToBin(newdec);
 for(int i=0; i < m; i++)
 {
 newseq[i] = sequence[i];
 }

 for(int i=0; i < m; i++)
 {
 if(oldseq[i]!= newseq[i])
 {
 bitchange++;
 }
 }
 bitchangeseq[idx]= bitchange;
}// end generateChangeSequence

//**
// Method binToDec
// Return value int dec
// Parameters none
// Purpose converts binary number of a sequence into its decimal equivalent
//**

 112

long long Necklaces::binToDec()
{
 long long dec = 0;
 for(int i = 0; i < m; i++)
 {
 dec = dec + generatePower2(m-1-i)*sequence[i];
 }
 return dec;
}// end binToDec

//**
// Method decToBin
// Return value none
// Parameters long long decimal input
// Purpose converts decimal input into its binary equivalent sequence
//**

void Necklaces::decToBin(long long input)
{
 int r = 0; //number of leading ones
 int j = m-1; //start at LSB
 initNecklace(r);
 long long quotient = input; //find a way to change to long long
 while(quotient !=0 && j >= 0)
 {
 if (quotient == 0)
 {
 sequence[j] = 1; // accounts for the MSB where 1/2 = 0 + (rem=1)
 }
 else
 {
 sequence[j] = quotient%2; //remainder should be 0 or 1
 }
 j--;
 quotient = quotient /2;
 }
}// end decToBin

//**
// Method createUnobservedSequences
// Return value none
// Parameters int dec1, int dec2
// Purpose generates preabsorbed necklaces that are skipped by theta

 113

// and which exist between the last necklace in a given class
// and the first necklace in the next adjacent class
//**

long Necklaces::createUnobservedSequences(int dec1, int dec2)
{
 long index = 0;
 long index1 = dec1; // decimal equivalent of last necklace in a given class
 long index2 = dec2; // decimal equivalent of first necklace in next class
 long seqcount = 0; //counts sequences

 //index = index1-2;
 index = index1;
 while (index >= index2)
 {
 decToBin(index); //generates binary equivalent of decimal
 printSequence();
 cout << "decimal value = " << index << endl;
 index = index - 2; // substract 2 to skip over binary strings ending in 1
 seqcount++;
 cout << "\n";
 }
 return seqcount;
} // end createUnobservedSequences

//**
// Method findDivisors
// Return value none
// Parameters int num
// Purpose find all divisors for an integer n
//**

void Necklaces::findDivisors(int num)
{
 for(int i=0; i < MAX_LENGTH+1; i++)
 {
 divisors[i] = 0;
 }

 int number = num;
 for(int i=0; i < number; i++) // does not include m itself
 {
 if(number%(i+1)== 0) // checks for divisors; i+1 ensures no division by zero
 {

 114

 divisors[i] = i+1; // assigns divisors to the (i-1)th place in array
 }
 }
}// end findDivisors

//**
// Method printDivisors
// Return value none
// Parameters int num
// Purpose prints all divisors for an integer n
//**

void Necklaces::printDivisors(int num)
{
 int number = num;
 cout << "\nDivisors of " << number << "...\n" << endl;
 for(int i=0; i < number; i++)
 {
 if(divisors[i]!=0)
 {
 cout << setw(3) << divisors[i] << " "; // divisors printed
 }
 }
} // end printDivisors

//**
// Method findGCD
// Return value int gcd
// Parameters int num1, num2
// Purpose find greatest common divisor (gcd) for two integers
//**

int Necklaces::findGCD(int num1, int num2)
{
 int first = num1;
 int second = num2;
 int factor1[MAX_LENGTH + 1];
 int factor2[MAX_LENGTH + 1];

 for(int i=0; i < MAX_LENGTH + 1; i++)
 {
 factor1[i] = 0;
 factor2[i] = 0;

 115

 }

 int factor1cnt = 0;
 findDivisors(first);
 for(int i=0; i < MAX_LENGTH + 1; i++)
 {
 if(divisors[i]!=0) //only collect non-zero divisors
 {
 factor1[i]= divisors[i];
 factor1cnt++;
 }
 }

 int factor2cnt = 0;
 findDivisors(second);
 for(int i=0; i < MAX_LENGTH + 1; i++)
 {
 if(divisors[i] !=0) //only collect non-zero divisors
 {
 factor2[i]= divisors[i];
 factor2cnt++;
 }
 }

 int factorcnt = 0;
 if(factor1cnt > factor2cnt)
 {
 factorcnt = factor1cnt;
 }
 else
 {
 factorcnt = factor2cnt;
 }

 int gcd = 0;

 for(int i=0; i < factorcnt; i++)
 {
 for(int j=0; j < factorcnt; j++)
 {
 if(factor2[j] == factor1[i])
 {
 if(factor2[j] > gcd)
 {
 gcd = factor2[j];

 116

 }
 }
 }
 }

 return gcd;
} // end findGCD

//**
// Method eulerTotient
// Return value long long Zn
// Parameters int num
// Purpose Calculate number of necklaces for a given n
//**

long long Necklaces::eulerTotient(int num)
//double Necklaces::eulerTotient(int num)
{
 int size = num;
 long long Zn = 0;
 long long totient[MAX_LENGTH+1]; // contains number of integers relatively prime
to the divisor including "1"
 //double Zn = 0;
 //double totient[MAX_LENGTH+1]; // contains number of integers relatively prime to
the divisor including "1"

 int divisorarray[MAX_LENGTH+1];

 for(int i=0; i <= MAX_LENGTH; i++)
 {
 totient[i] = 0;
 divisorarray[i] = 0;
 }

 int divisorcnt = 0;
 findDivisors(size);
 for(int i=0; i <= MAX_LENGTH; i++)
 {
 if(divisors[i]!=0) //only collect non-zero divisors
 {
 divisorarray[i] = divisors[i];
 divisorcnt++;
 }
 }

 117

 for(int i=0; i <= size; i++)
 {
 if(divisorarray[i] != 0)
 {
 for(int j = 1; j < divisorarray[i]; j++)
 {
 if(findGCD(divisorarray[i],j)== 1)
 {
 totient[i]++;
 }
 }
 }
 }

 totient[0] = 1; // to include "1"
 long long sum = 0;
 //double sum = 0;
 for(int i=0; i <= size; i++)
 {
 if(totient[i]!=0)
 {
 sum = sum + totient[i]*generatePower2(m/divisorarray[i]);
 }
 }
 Zn = sum / size;

 cout << "\n";
 return Zn;
}// end eulerTotient

//**
// Method generatePower2
// Return value long long power2val
// Parameters long long exponent
// Purpose generates 2 raised to any integer
//**

long long Necklaces::generatePower2(long long exponent)
{
 long long power2val = 1;
 long long expint = exponent;
 for(int i = 0; i < expint; i++)
 {
 power2val *= 2; //calculates power of 2

 118

 }

 return power2val;

}// end generatePower2

//**
// Method displayNecklaceInfo
// Return int ncountarray
// Parameters none
// Purpose displays all information related to a necklace
//**

void Necklaces::displayNecklaceInfo(int a, int b, long long c, long long d)
{
 int column = a;
 int clssnum = b;
 long long val = c;
 long long totalclumps = d;

 cout << "\nclass number = " << clssnum << endl;
 cout << "\nnumber of clumps so far = " << totalclumps << endl;
 cout << "\nclumpcntarray[" << clssnum << "]= " << totalclumps << endl;
 cout << "\nncountarray["<< clssnum << "][" << column << "] = " << ncount <<
endl;
 //cout << "\ndecimalarray["<< clssnum << "][" << column << "] = " <<
decimalarray[clssnum][column] << endl;
 cout << "\n";
}// end displayNecklaceInfo

//**
// Method displayPower2Array
// Return value none
// Parameters none
// Purpose displays power2[i] array
//**

void Necklaces::displayPower2Array()
{
 int a1 = 3;
 int a2 = 2;
 for(int i=a1; i<=m; i++)
 {

 119

 for(int j=a2; j<i; j++)
 {
 power2[i] *= 2; //calculates power of 2
 }
 }

 cout << "\n\nPower of 2 approximation for each class number:\n" << endl;
 for(int i=0; i <= m; i++)
 {
 cout << setw(OUTPUT_CELL_SIZE)<< power2[i] <<" ";
 }
}// end displayPower2Array

//**
// Method displayDifference
// Return value none
// Parameters none
// Purpose calculates and displays difference between power2 approximation and
number of necklaces
//**

void Necklaces::displayDifference()
{
 for(int i = 0; i <= m; i++)
 {
 diff[i] = power2[i] - onescount[i];
 }

 cout << "\n\nNumber of differing necklaces per class number:\n" << endl;
 for(int i=0; i <= m; i++)
 {
 cout << setw(OUTPUT_CELL_SIZE)<< diff[i] <<" ";
 }
}// end displayDifference

//**
// Method displayNumbNeck
// Return value none
// Parameters none
// Purpose displays number of necklaces per class
//**

void Necklaces::displayNumbNeck()

 120

{
 cout << "\nNumber of necklaces per class number:\n" << endl;
 for(int i=0; i <= m; i++)
 {
 cout << setw(OUTPUT_CELL_SIZE)<< onescount[i] <<" ";
 }
}// end displayNumbNeck
//**
// Method displayClassNumbers
// Return value none
// Parameters none
// Purpose displays class numbers of necklaces in decreasing order
//**

void Necklaces::displayClassNumbers()
{
 cout << "\nDecreasing class numbers:\n" << endl;
 for(int i = m; i >= 0; i--)
 {
 cout << setw(OUTPUT_CELL_SIZE) << i <<" "; // displays decreasing leading ones
 }
 cout << endl;
}// end displayClassNumbers

//**
// Method displayNcount
// Return value none
// Parameters none
// Purpose displays total number of necklaces
//**

void Necklaces::displayNcount()
{
 cout << "\n\n*** Total number of theta generated binary " << m << "-tuples = "
<< ncount + noncount << " ***" <<endl;
 cout << "\nNumber of necklaces = " << ncount << endl;
 cout << "\nNumber of theta generated non-necklaces = " << noncount << endl;
 cout << "\nNumber of missing even " << m << "-tuples = " << totmissing << endl;
 cout << "\nNumber of missing even " << m << "-tuples + number of necklaces = "
<< totmissing + ncount << endl;
 cout << "\nMaximum distance of necklaces = " << distance << endl;
 cout << "\n";
}// end displayNcount

 121

//**
// Method displayClumpsPerClass
// Return value none
// Parameters none
// Purpose displays total number of missing even n-tuples per class
//**

void Necklaces::displayClumpsPerClass()
{
 long clumptotal = 0;
 cout << "\n\nNumber of missing clumps per class number:\n" << endl;
 for(int i = m; i >= 0; i--)
 {
 cout << setw(OUTPUT_CELL_SIZE)<< clumpcntarray[i] <<" ";
 clumptotal += clumpcntarray[i];
 }
 cout << "\n\nTotal number of clumps = " << clumptotal << " for threshold = " <<
threshold << endl;

}// end displayClumpsPerClass

//**
// Method displayClumpDistribution
// Return value none
// Parameters none
// Purpose displays various clump sizes per class
//**

void Necklaces::displayClumpDistribution()
{
 cout << "\n\n\nDistribution of missing necklaces for n = " << m << " and threshold
= " << threshold << ":" << endl;
 cout << "\nEach number below represents the size of the clump." << endl;
 cout << "\n";

 long long summissing = 0;
 long long nummiss = 0;
 int numclump = 0;
 int listwidth = 4; // displays only so many triples across
 // triple = (Necklace Number, Decimal Equivalent of Necklace, Number of Missings
after Necklace)

 // percent = percentage of the maximum clump size

 122

 cout << "Clump sizes which are greater than " << num << " percent of the
maximum clump size are shown. " << endl;
 cout << "\nMaximum clumpsize for all the classes = " << maxclumpsize << endl;
 cout << "\nNote: Lower necklace decimal value = Upper necklace decimal value -
2*(number of missings)\n" << endl;
 cout << "\n";
 for (int i = 0; i < m; i++)
 {
 cout << "\nClass "<< i << ": ";
 summissing = 0; //resetting count
 nummiss = 0;
 for (int j = 0; j < MAX_COLUMNS; j++)
 {
 if(clumpsizearray[i][j]!= 0)
 {
 if(clumpsizearray[i][j] >= maxclumpsizearray[i]*percent)
 {
 cout << setw(OUTPUT_CELL_SIZE) << clumpsizearray[i][j] << " " ;
 summissing += clumpsizearray[i][j];
 nummiss ++;
 }
 }
 }
 if(nummiss!=0)
 {
 cout << "\n\nTotal number of missing even " << m << "-tuples exceeding
threshold of " << threshold << " = " << summissing << endl;
 cout << "\nTotal number of missing even " << m << "-tuples below threshold
of " << threshold << " = " << missingbelowthreshold[i] << endl;
 cout << "\nTotal number of clumps = " << nummiss << endl;
 cout << "\nMaximum clump size for this class = " << maxclumpsizearray[i] <<
endl;
 cout << "\n(Necklace Number, Decimal Equivalent of Necklace, Number of
Missings after Necklace)"<< endl;
 cout << "\n";
 numclump = 0; //resetting count
 for (int j = 0; j < MAX_COLUMNS; j++)
 {
 //if(ncountarray[i][j] != 0 && missingarray[i][j]!= 0 && decimalarray[i][j]!= 9)
 {
 //cout << setw(OUTPUT_CELL_SIZE) << "(" << ncountarray[i][j] << " , " <<
decimalarray[i][j]<< " , " << missingarray[i][j] << ")" ;
 numclump++;
 if((j+1)%listwidth == 0)
 {

 123

 cout << "\n\n";
 }
 }
 } // end for
 } // end if
 else
 {
 cout << "No missings in this class." << endl;
 }
 cout << "\n\n" << endl;
 }//end outside for
}// end displayClumpDistribution

//**
// Method displayDecimalArray
// Return value none
// Parameters none
// Purpose displays decimal equivalent of necklaces associated with clumps per class
//**

void Necklaces::displayDecimalArray()
{
 int listwidth = 4; // displays only so many triples across
 cout << "\n\n\nDistribution of decimal equivalents for missing clumps for n = " <<
m << " and threshold = " << threshold << ":" << endl;
 cout << "\n";
 for (int i = 0; i < m; i++)
 {
 for (int j = 0; j < MAX_COLUMNS; j++)
 {
 //if(decimalarray[i][j]!= 9)
 {
 //cout << setw(OUTPUT_CELL_SIZE) << decimalarray[i][j]<< " " ;
 if((j+1)%listwidth == 0)
 {
 cout << "\n\n";
 }
 }
 }
 } // end for

 cout << "\n\n\nList of necklaces associated with clumps for n = " << m << " and
threshold = " << threshold << ":" << endl;
 cout << "\n";

 124

 for (int i = m-1; i >= 0; i--)
 {
 for (int j = 0; j < MAX_COLUMNS; j++)
 {
 //if(decimalarray[i][j]!= 9)
 {
 //decToBin(decimalarray[i][j]);
 printSequence();
 cout << "\n\n";
 }
 }
 }
}// end displayDecimalArray

//**
// Method displayShiftingOnesSignposts
// Return value none
// Parameters none
// Purpose displays decimal and binary equivalents of shifting ones signposts
// along with clump sizes
//**

void Necklaces::displayShiftingOnesSignposts()
{
 int numshiftones = 0; // total number of shifting ones signposts
 int loopcnt = 0; // keeps track of long long for loop count
 long long shiftonesmissingsum = 0; //sums missings
 char answer1;
 char answer2;
 cout << "\n\n\nSignposts with shifting ones for n = " << m << endl;
 cout << "\n";

 cout << "Do you want to see the signposts? (Enter 'y' or 'n'): ";
 cin >> answer1;
 cout << "\n";

 cout << "Do you want to see the various clump sizes? (Enter 'y' or 'n'): ";
 cin >> answer2;
 cout << "\n";

 for(int i = m-1; i >= 0; i--)
 {
 for (int j = 0; j < MAX_COLUMNS; j++)
 {

 125

 if (shiftonesarray[i][j]!= mark)
 {
 numshiftones++;
 if(answer1 == 'Y' || answer1 == 'y') // displays binary strings, decimal values and
clump sizes
 {
 decToBin(shiftonesarray[i][j]);
 printSequence();
 cout << " decimal value = "<< shiftonesarray[i][j] << ", ";
 cout << setw(OUTPUT_CELL_SIZE) << "clump size = "<<
shiftonesclumpsizearray[i][j] << endl;
 shiftonesmissingsum += shiftonesclumpsizearray[i][j];
 cout << "\n";
 }
 else // displays only various clump sizes
 {
 loopcnt++;
 if (shiftonesclumpsizearray[i][j]!= 0)
 {
 if(answer2 == 'Y' || answer2 == 'y')
 {
 if (loopcnt <= 1) // ensures output statement is not repeated more than once
 {
 cout << "Clump sizes for shifting ones signposts: " << endl;
 cout <<"\n";
 }
 cout << setw(OUTPUT_CELL_SIZE) << shiftonesclumpsizearray[i][j] << "
";
 }
 shiftonesmissingsum += shiftonesclumpsizearray[i][j];
 }
 }
 }
 else
 {
 continue;
 }
 }
 }

 binlength = generatePower2(m-1);
 int k1 = 4; // equipment cost
 int k4 = 1; // temporal cost

 petriumilestones = floor(binlength / m); // assume max period = m

 126

 milestonedistance = floor(binlength /shiftonesclump); // distance between milestones
using number of shifting ones signposts
 topt = ceil(sqrt((k1/k4)*binlength));// gives bad answer

 cout << "\n\nNumber of shifting ones signposts associated with missings (using
array) = " << numshiftones << endl;
 cout << "\nNumber of shifting ones signposts associated with missings (using pure
count) = " << shiftonesclump << endl;
 cout << "\nNumber of shifting ones signposts NOT associated with missings = " <<
shiftonesnoclump << endl;
 cout << "\nTotal number of missings accounted for by shifting ones = " <<
shiftonesmissingsum << endl;
 cout << "\n\nPetriu length is 2^" << m << " - 1 = " << generatePower2(m) - 1 <<
endl;
 cout << "\nTotal number of Petriu's signposts (assuming the max separation
distance is " << m << " bits) = " << petriumilestones << endl;
 cout << "\nPetriu distance between milestones (assuming the number of milestones
is " << shiftonesclump << ") = " << milestonedistance << endl;
 cout << "\nOptimal Petriu distance between milestones = " << topt << endl;
}// end displayShiftingOnesSignposts

//**
// Method displayShiftingOnesDistances
// Return value none
// Parameters none
// Purpose displays distances between shifting ones signposts
//**

void Necklaces::displayShiftingOnesDistances()
{
 long reldistance = 0; // relative distance
 long currentdistance = 0;
 long sumdistance = 0; // sum of rleative distance elements
 long numdistance = 0; // number of distance elements
 long avedistance = 0;
 int colspread = 15; // width of data elements
 int spreadcount = 0; // number of data elements used to spread data matrix evenly
 long shiftonespetriunumbigger = 0; // number of distances greater than petriu distance
 long shiftonespetriunumlesser = 0; // number of distances less than or equal to petriu
distance

 cout << " "; // adjustment for first row to make entries look even

 for(int i = 0; i < MAX_LENGTH; i++)

 127

 {
 for(int j = 0; j < MAX_COLUMNS; j++)
 {
 if(shiftonesdistancearray[i][j] != 0)
 {
 reldistance = shiftonesdistancearray[i][j] - currentdistance;
 cout << setw(OUTPUT_CELL_SIZE) << reldistance;
 currentdistance = shiftonesdistancearray[i][j];
 sumdistance += reldistance;
 numdistance++;
 spreadcount++;
 //if(reldistance > milestonedistance)
 if(reldistance > topt)
 {
 shiftonespetriunumbigger++;
 }
 else
 {
 shiftonespetriunumlesser++;
 }
 if(spreadcount == colspread)
 {
 cout << "\n " ;
 spreadcount = 0; //reset
 }
 else
 {
 cout << setw(OUTPUT_CELL_SIZE) << " " ;
 }
 }
 }
 }

 avedistance = sumdistance / numdistance;
 cout << "\n\navedistance = " << avedistance;
 //cout << "\n\nNumber of signposts whose distance is greater than " <<
milestonedistance << " = " << shiftonespetriunumbigger << endl;
 //cout << "\n\nNumber of signposts whose distance is less than or equal to " <<
milestonedistance << " = " << shiftonespetriunumlesser << endl;
 cout << "\n\nNumber of signposts whose distance is greater than " << topt << " = "
<< shiftonespetriunumbigger << endl;
 cout << "\n\nNumber of signposts whose distance is less than or equal to " <<
topt<< " = " << shiftonespetriunumlesser << endl;

}// end displayShiftingOnesDistances

 128

//**
// Method displayBitChangeSequence
// Return value none
// Parameters none
// Purpose displays bit changes between necklaces
//**

void Necklaces::displayBitChangeSequence()
{
 cout << "\n\nThe following sequence shows the number of bit changes between
each pair of necklaces. " << endl;
 cout << "\n";

 for(int i=0; i < MAX_COLUMNS; i++)
 {
 if (bitchangeseq[i]!= 0)
 {
 cout << setw(OUTPUT_CELL_SIZE) << bitchangeseq[i] << " ";
 }
 }
}// end displayBitChangeSequence

//**
// Method displayFirstNecklace
// Return value none
// Parameters none
// Purpose displays prior necklace in deBruijn section
//**

void Necklaces::displayFirstNecklace()
{
 for(int i = 0; i < m; i++)
 {
 if(firstnecklace[i]!= 9)
 {
 cout << firstnecklace[i] << " ";
 }
 }
 cout <<"\n";
 cout << "\nfirstperiod = " << firstperiod << endl;

}// end displayFirstNecklace

 129

//**
// Method displayMiddleNecklace
// Return value none
// Parameters none
// Purpose displays input necklace in deBruijn section
//**

void Necklaces::displayMiddleNecklace()
{
 for(int i = 0; i < m; i++)
 {
 if(middlenecklace[i]!= 9)
 {
 cout << middlenecklace[i] << " ";
 }
 }
 cout <<"\n";
 cout << "\nmiddleperiod = " << middleperiod<< endl;

}// end displayMiddleNecklace

//**
// Method displayLastNecklace
// Return value none
// Parameters none
// Purpose displays post necklace in deBruijn section
//**

void Necklaces::displayLastNecklace()
{
 for(int i = 0; i < m; i++)
 {
 if(lastnecklace[i]!= 9)
 {
 cout << lastnecklace[i] << " ";
 }
 }
 cout <<"\n";
 cout << "\nlastperiod = " << lastperiod << endl;
 cout << "\nsumperiod = " << sumperiod << endl;

}// end displayLastNecklace

 130

//**
// Method displaydeBruijnSection
// Return value none
// Parameters none
// Purpose displays deBruijn sectional associated with user input necklace
//**

void Necklaces::displaydeBruijnSection()
{
 for(int i = 0; i < firstperiod; i++)
 {
 if(debruijnsection[i]!= 9)
 {
 cout << debruijnsection [i] << " "; // prints the first third
 }
 } // end for loop
 cout << "^ ";

 for(int i = 0 ; i < middleperiod ; i++)
 {
 if(debruijnsection[i + firstperiod]!= 9)
 {
 cout << debruijnsection [i + firstperiod] << " "; // prints the second third
 }
 } // end for loop
 cout << "^ ";

 for(int i = 0; i < lastperiod; i++)
 {
 if(debruijnsection[i + firstperiod + middleperiod]!= 9)
 {
 cout << debruijnsection [i + firstperiod + middleperiod] << " "; // prints the last
third
 }
 } // end for loop
 //} // end else

 cout << "\n"<< endl;

} // end displaydeBruijnSection

//**
// Method displayUnobservedSequences
// Return value none
// Parameters none

 131

// Purpose displays all missings (even binary n-tuples) between any 2 nunmbers
//**

void Necklaces::displayUnobservedSequences()
{
 char answer;
 int input1 = m ; //need to change to long long
 int input2 = 0; //need to change to long long
 long totseq = 0;

 cout << "\n\nWould you like to see all the binary sequences between 2 numbers? (y
or n) ";
 cin >> answer;
 if (answer == 'Y' || answer == 'y')
 {
 cout << "\nThis section will help you see all the sequences between 2 numbers."
<< endl;
 cout << "\nPlease enter 0 to quit or an even positive number less than " <<
generatePower2(input1)-1 << ": ";
 cin >> input1;

 while(input1%2 !=0)
 {
 cout << "\nPlease enter another positive number: ";
 cin >> input1;
 }

 if(input1 != 0)
 {
 cout << "\nPlease enter another number less than or equal to " << input1 << ": ";
 cin >> input2;
 cout << "\nGenerating unobserved sequences..." << endl;
 cout << "\n";
 totseq = createUnobservedSequences(input1,input2);
 cout << "\n\nTotal number of sequences = " << totseq;
 }
 }
}// end displayUnobservedSequences

//**
// Method outputData
// Return value none
// Parameters none
// Purpose provide numerical data useful for analysis

 132

//**

void Necklaces::outputData()
{
 displayNcount();

 displayClassNumbers();

 displayNumbNeck();

 displayPower2Array();

 displayDifference();

 displayClumpsPerClass();

 displayDecimalArray();

 displayClumpDistribution();

 displayShiftingOnesSignposts();

 displayBitChangeSequence();

 displayUnobservedSequences();

}// end outputData

// end of file Necklaces.cpp

2. Thesismain CPP File

//**
// Thesismain.cpp
//
// LT John Ortiz
//
//
// Project: Thesis
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date: 08 December 2005
// Description: This program generates necklaces and performs analysis on them
//
// Inputs: This program takes as inputs the length of the necklace
// Outputs: This program displays a table of necklaces

 133

// Processes: none
// Assumptions: none
//
// Warnings: none
//
//**

#include "Necklaces.h"
#include "IOThesis.h"
#include "SieveSizeException.h"
#include "math.h"
#include <iostream>
#include <iomanip>
#include <cctype>
#include <fstream>

using std::ostream;
using std::ofstream; //output file stream
using namespace std;

//**
// Method checkInput(input2);
// Return value int input2
// Parameters int input2
// Purpose checks if input2 is valid
//**
int checkInput(int input1, int input2)
{
 int oneslength = input2;
 int limit = input1;
 while (oneslength < 0 || oneslength > limit)
 {
 cout << "Please enter a number between 0 and " << limit << " for the initial
sequence." << endl;
 cin >> oneslength;
 }
 return oneslength;
} // end checkInput

int main()
{
 long long input1 = 0;
 long long input2 = 0;
 long long input3 = 0;

 134

 char input;
 char answer;
 long long inputstep = 0;
 int maxinput = 63;
 int num = 0;
 int num1 = 0;
 int num2 = 0;
 int intshift = 0;
 int onesrun = 0;
 int decimal = 0;
 int necknum = 0;
 int cellsize = 3;
 int bound = 0; // value of threshold
 int length = 0; //length of binary string
 int permaxclump = 0; // percentage of the maximum clump size
 long long expinput = 0;
 long long expoutput = 0;
 bool flag = false;

 cout << "This program will help you generate a list of necklaces" << endl;
 cout << "to enable you to perform analysis on them." << endl;
 flag = false;
 while (flag == false)
 {
 cout << "\n\nPlease enter an integer for your necklace length between 1 and 50: ";
 try
 {
 length = IOThesis::inputInt(); // verifies user input dimension is valid
 flag = true;
 }
 catch(SieveSizeException &sieveSizeException)
 {
 cout << "Error occured: " << sieveSizeException.what() << endl;
 flag = false;
 }
 }
 cout << "\n\nControlling the threshold (smallest size of missings displayed) and " <<
endl;
 cout << "\nthe percentage of the maximum clump size can help manage the limitations
" << endl;
 cout << "\nof memory when displaying the missings. If you don't want to adjust the "
<< endl;
 cout << "\nthreshold or percentage, enter '0'. Else, hit any key: ";
 cin >> answer;

 135

 if (answer != '0')
 {
 cout << "\n\nPlease enter the threshold: ";
 cin >> bound;

 cout << "\nPlease enter the percentage: ";
 cin >> permaxclump;
 }

 Necklaces necklace = Necklaces(length, bound, permaxclump); //Necklace class
instantiated

 // Relatively prime test
 cout << "\n" << endl;
 cout << "Would you like to know whether two integers are relatively prime? ";
 cin >> answer;
 while (answer == 'y' || answer == 'Y')
 {
 cout << "\nPlease enter your first integer: ";
 cin >> input1;
 cout << "\nPlease enter your second integer: ";
 cin >> input2;
 cout <<"\nThe greatest common divisor between " << input1 << " and " << input2 <<
" is " << necklace.findGCD(input1,input2);
 if(necklace.findGCD(input1,input2)==1)
 {
 cout << "\n\nThe integers are relatively prime." << endl;
 }
 else
 {
 cout << "\n\nThe integers are not relatively prime." << endl;
 }
 cout << "\n\nWould you like to know whether another two integers are relatively
prime? ";
 cin >> answer;
 } // end relatively prime test

 //Calculating divsiors of binary string length
 cout << "\n" << endl;
 cout << "Would you like to know number of necklaces for and the divisors of n = " <<
length << " ? ";
 cin >> answer;
 if (answer == 'y' || answer == 'Y')
 {
 necklace.findDivisors(length);

 136

 necklace.printDivisors(length);
 cout << "\nCalculated value of number of necklaces = " <<
necklace.eulerTotient(length) << endl;
 }

 cout << "\nWould you like run the Necklace algorithm? ";
 cin >> answer;
 if (answer == 'y' || answer == 'Y')
 {
 cout << "\nWould you like to generate signposts? ";
 cin >> answer;

 if (answer == 'y' || answer == 'Y')
 {
 cout << "\n\nThis next section enables you to generate signposts using the shifting ones
strategy."<< endl;
 cout << "\nPlease enter a '1' if you want to use the shifting ones signposts: " ;
 cin >> answer;
 if (answer == '1')
 {
 cout << "\n\nPlease enter the weight you would want to use: ";
 cin >> num;
 necklace.getWeight(num);
 } // end if
 cout << "\n" << endl;

 cout << "If you want to generate all the necklaces, enter '1' or else hit any other key: ";
 cin >> answer;
 if (answer != '1')
 {
 cout << "\nPlease enter a number between 0 and " <<
necklace.generatePower2(length)-1 << " for the intial decimal: ";
 cin >> input1;
 cout << "\nPlease enter a number between 0 and " <<
necklace.generatePower2(length)-1 << " for the final decimal: ";
 cin >> input2;
 cout << "\nPlease enter a number between 0 and " <<
necklace.generatePower2(length)-1 << " for the input decimal: ";
 cin >> input3;
 }
 else //default settings to generate all the necklaces
 {
 input1 = necklace.generatePower2(length)-1;
 input2 = 0;
 input3 = 0;

 137

 }

 cout << "\n\nPlease enter 'y' or 'Y' if you would like to see the necklaces. Otherwise,
enter any key: ";
 cin >> input;

 if (input == 'y' || input == 'Y')
 {
 flag = true;
 cout << "\nGenerating Necklaces..." << endl;
 }
 else
 {
 flag = false;
 }
 necklace.runNecklaceAlgorithm(input1, input2, input3, flag);
 necklace.outputData();
 }

 cout << "\n\nDo you want to test cycle shifting a sequence? ";
 cin >> answer;

 while (answer == 'Y' || answer == 'y')
 {
 cout << "\nPlease enter a decimal to generate a binary sequence: ";
 cin >> input1;
 necklace.decToBin(input1);
 cout << "\n";
 necklace.printSequence();
 cout << "\n";
 cout << "\nPlease enter an integer to test the cyclic shift: ";
 cin >> intshift;
 necklace.cycleshiftSequence(intshift);
 cout << "\n";
 necklace.printSequence();
 cout << "\n";
 cout << "\n\nDo you want to test cycle shifting another sequence? ";
 cin >> answer;
 }

 cout << "\n\nDo you want to compute the density of a sequence? ";
 cin >> answer;
 while (answer == 'Y' || answer == 'y')
 {
 cout << "\nPlease enter a decimal to generate a binary sequence: ";

 138

 cin >> input1;
 necklace.decToBin(input1);
 cout << "\n";
 necklace.printSequence();
 cout << "\n";
 cout << "Density = " << necklace.computeDensity(0, length-1) << endl;
 cout << "\n\nDo you want to compute the density of another sequence? ";
 cin >> answer;
 }

 cout << "\n\nDo you want to find the period of a sequence? ";
 cin >> answer;
 while (answer == 'Y' || answer == 'y')
 {
 cout << "\nPlease enter a decimal to generate a binary sequence: ";
 cin >> input1;
 necklace.decToBin(input1);
 cout << "\n";
 necklace.printSequence();
 necklace.findDivisors(length);
 cout << "\n\n";
 cout << "Period = " << necklace.findSequencePeriod() << endl;
 cout << "\n\nDo you want to find the period of another sequence? ";
 cin >> answer;
 }

 cout << "\n\nDo you want to find the necklace of a sequence? ";
 cin >> answer;
 while (answer == 'Y' || answer == 'y')
 {
 cout << "\nPlease enter a decimal to generate a binary sequence: ";
 cin >> input1;
 necklace.decToBin(input1);
 cout << "\nSequence prior to shifting: ";
 necklace.printSequence();
 cout << "\n";
 necklace.shiftSequenceToNecklace();
 cout << "\nNecklace: " << endl;
 cout << "\n";
 necklace.printSequence();
 cout << "\n\nDo you want to find the necklace of another sequence? ";
 cin >> answer;
 }

 cout << "\n\nDo you want to see the distances between the shifting ones signposts? ";

 139

 cin >> answer;
 if (answer == 'Y' || answer == 'y')
 {
 cout << "\n";
 necklace.displayShiftingOnesDistances();
 }

 cout << "\n\nDo you want to see the deBruijn section surrounding your necklace input?
";
 cin >> answer;
 while (answer == 'Y' || answer == 'y')
 {
 cout << "\nPlease enter a decimal between 0 and " <<
necklace.generatePower2(length)-1 << " to generate a binary sequence: ";
 cin >> input3;
 necklace.decToBin(input3);
 cout << "\nSequence prior to shifting: ";
 necklace.printSequence();
 cout << "\n";
 necklace.shiftSequenceToNecklace();
 cout << "\nNecklace: " << endl;
 cout << "\n";
 necklace.printSequence();
 input3 = necklace.binToDec();
 cout << "\n\ndecimal associated with necklace = " << input3 << endl;

 cout << "\n\nPlease enter another decimal greater than " << input3 << ": ";
 cin >> input1;
 necklace.decToBin(input1);
 cout << "\nSequence prior to shifting: ";
 necklace.printSequence();
 cout << "\n";
 necklace.shiftSequenceToNecklace();
 cout << "\nNecklace: " << endl;
 cout << "\n";
 necklace.printSequence();
 input1 = necklace.binToDec();
 cout << "\n\ndecimal associated with necklace = " << input1 << endl;

 cout << "\n\nPlease enter another decimal less than " << input3 << ": ";
 cin >> input2;
 necklace.decToBin(input2);
 cout << "\nSequence prior to shifting: ";
 necklace.printSequence();
 cout << "\n";

 140

 necklace.shiftSequenceToNecklace();
 cout << "\nNecklace: " << endl;
 cout << "\n";
 necklace.printSequence();

 cout << "\n\nRunning Necklace Algorithm..." << endl;
 necklace.runNecklaceAlgorithm(input1, input2, input3, false);

 cout << "\nFirst necklace: " << endl;
 necklace.displayFirstNecklace();

 cout << "\nMiddle necklace: " << endl;
 necklace.displayMiddleNecklace();

 cout << "\nLast necklace: " << endl;
 necklace.displayLastNecklace();

 necklace.createDeBruijnSection();

 cout << "\nDeBruijn Section..." << endl;
 cout << "\n";
 necklace.displaydeBruijnSection();

 cout << "\n\nDo you want to search the deBruijn section for a particular " << length
<< "-tuple? ";
 cin >> answer;
 while (answer == 'Y' || answer == 'y')
 {
 int pos = 0;
 int per = 0;
 cout << "\nPlease enter a decimal value between " << input1 << " and " << input2
<< ": ";
 cin >> input3;
 necklace.getInputDec(input3);
 cout << "\nSequence prior to shifting: ";
 necklace.printSequence();
 cout << "\n";
 necklace.shiftSequenceToNecklace();
 cout << "\nNecklace: " << endl;
 cout << "\n";
 necklace.printSequence();
 input3 = necklace.binToDec();
 cout << "\n\ndecimal associated with necklace = " << input3 << endl;

 necklace.runNecklaceAlgorithm(input1, input2, input3, true);

 141

 cout << "\nFirst necklace in deBruijn section: " << endl;
 necklace.displayFirstNecklace();
 necklace.createInputString(input3);
 cout << "\nBinary string associated with decimal input: ";
 necklace.printSequence();
 cout << "\n";
 necklace.createDeBruijnSection();
 pos = necklace.searchDeBruijnString();
 cout << "\n\nPositon associated with binary string input = " << pos << endl;
 cout <<"\nDo you want to search for another sequence? " << endl;
 cin >> answer;
 }
 cout << "\n\nDo you want to see another deBruijn section surrounding your necklace
input? ";
 cin >> answer;
 }

 cout << "\n\nGoodbye.." << endl;
 IOThesis::pauseBeforeExit(EXIT_NORMALLY);

 return 0;
} // end Thesismain.cpp

3. IO Thesis CPP File
//**
// IOThesis.cpp
//
// LT John Ortiz
//
// Thesis: Generating Necklaces
// Operating Environment: Windows XP Home
// Compiler: Visual Studio .NET
// Date: 08 December 2005
// Description: This program verifies that user inputs are valid
//**

#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <cctype>
#include <string>
#include <sstream>
#include "IOThesis.h"
#include "FileOpeningException.h"

using namespace std;

 142

using std::exit;

//**
// Method displayMessage
// Return value none
// Parameters none
// Purpose prompts user for dimension input
//**

void IOThesis::displayMessage(string message)
{
 cout << message << endl;

} //end displayMessage

//**
// Method openOutputFile()
// Return value
// Parameters: const char *FILE_NAME the name of the file to open for writing
// Purpose: dynamically create a new ofstream and returns a pointer if successful
//**

ofstream* IOThesis::openOutputFile(const char *FILE_NAME)
{
 ofstream *outputFileptr = NULL;
 try
 {
 outputFileptr = new ofstream(FILE_NAME,ios::out);
 if (!(*outputFileptr)) // unable to open object outputFile of type ofstream
 {
 throw FileOpeningException();
 }
 else
 {
 return outputFileptr; //returns pointer to ofstream if file was opened successfully
 }
 }
 catch(FileOpeningException &)
 {
 throw;
 }
}// end openOutputFile

 143

//**
// Method openInputFile
// Return value ifstream*
// Parameters const char *FILE_NAME, the file to open for reading
// Purpose
//**

ifstream* IOThesis::openInputFile(const char *FILE_NAME)
{
 ifstream *inputFileptr = NULL;
 try
 {
 inputFileptr = new ifstream (FILE_NAME,ios::in);
 if (!(*inputFileptr)) // unable to open object outputFile of type ofstream
 {
 throw FileOpeningException();
 }
 else
 {
 return inputFileptr; //returns pointer to ofstream if file was opened successfully
 }
 }
 catch(FileOpeningException &)
 {
 throw;
 }
} // end openInputFile

//**
// Method inputInt
// Return value int
// Parameters none, function will ask for input via I/O
// Purpose take string input and determine if valid for an int (integer can be any value
less than MAXINT)
// use inputFilter = IOThesis::inputInt(); vice cin >> inputFilter
//**

int IOThesis::inputInt()
{
 const int SIZE = 12;
 char ch[SIZE]; // temporary buffer for input characters
 char ch2[SIZE]; // buffer for sstream
 string token;
 char *tokenPtr;

 144

 int size = 0;
 int integer = 0;
 int count = 0;
 bool state = false;
 stringstream ss;

 while(state == false) // This loop prompts a user to enter in only one integer that is less
than 12 characters long
 {
 int q = 0;
 int total=0;
 char element = cin.get();
 while(element != '\n')// reads elements into a character array
 {
 ch[q]= element;
 total++;
 if (total == SIZE) // checks if total exceeds 12 characters
 {
 cout << "You have reached the maximum number of characters allowed" <<
endl;
 cout << "Please enter another integer.";
 state = false;
 cin.clear();
 break;
 }

 if (cin.eof()) // checks if ctrl-z in input as a character
 {
 cout << "\nInvalid character.";
 cin.clear(); //resets input stream so it can keep processing
 cin.putback('\n');
 state = !IOThesis::clearInputBuffer();
 break;
 }

 if (q == 0 && (ch[q] == '+'|| ch[q] == '-')) // checks if first character is plus or
minus
 {
 element = cin.get(); // gets the next element
 q++;
 continue;
 }

 else if(!isdigit(ch[q])) //checks if I have something other than a digit
 {

 145

 cout << ch[q] << " is not an integer."<< endl;
 state = IOThesis::clearInputBuffer();
 state = false;
 cin.clear();
 break;
 }
 else
 {
 state = true;
 element = cin.get(); // gets the next element
 q++;
 }
 } // end while

 tokenPtr = strtok (ch," "); //begin tokenization of string
 int numtok = 0; // need to initialize through every pass of outer while loop
 while (tokenPtr != NULL) // loop exits if there is one or more token detected
 {
 tokenPtr = strtok (NULL, " "); //get next token
 numtok ++;
 } // end while

 if (numtok != 1) // tests if there is more than or no inputs in the string
 {
 cout << endl;
 cout << "You have too many inputs." << endl;
 cin.putback('\n');
 state = IOThesis::clearInputBuffer();
 state = false;
 cin.putback('\n');
 } // end if
 else
 {
 state = true;
 count = q;
 }
 } // ends outer while loop

 if (state == true)
 {
 for (int m=0;m < count; m++)
 {
 ch2[m] = ch[m]; // only assigns current "good" input to sstream
 }
 ss << ch2; //takes input string and sends it to sstream

 146

 ss >> integer;
 } // end if
 return integer;

} // end inputInt

//**
// Method inputIntWithLimits
// Return value int
// Parameters (string message, int lower, int upper)
// Purpose calls input int for a valid int, then checks limits
// used similiarly to inputInt
//**

int IOThesis::inputIntWithLimits(string message, int lower, int upper)
{
 cout << message << endl;
 int condition = IOThesis::inputInt();
 while (condition < lower || condition > upper)
 {
 cout << message << endl;
 condition = IOThesis::inputInt();
 }// end while

 return condition;

}// end inputIntWithLimits

//**
// Method clearInputBuffer
// Return value bool TRUE if cin buffer has no additional stuff in it
// Parameters none
// Purpose utility function for processing inputs
//**

bool IOThesis::clearInputBuffer()
{
 bool boolstate = false;
 char somechar = cin.get();
 while(somechar!= '\n') //loop enables the input buffer to be flushed
 {
 if (isspace(somechar))
 {

 147

 boolstate = true;
 }
 else
 {
 boolstate = false;
 }
 somechar = cin.get(); // keeps writing over somechar's memory space with current
character
 } // end while

 return boolstate;

} // end clearInputBuffer

//**
// Method pauseBeforeExit
// Return value none
// Parameters int condition (EXIT_WITH_ERROR = 1, global defined in IOThesis.h)
// (EXIT_NORMALLY = 0, global defined in IOThesis.h)
// Purpose keeps display window open long enough to see results
//**

void IOThesis::pauseBeforeExit(const int condition)
{
 cout << "\n\n" << endl;
 char ch;
 ch = cin.get(); //need to flush the input buffer or it may still hold the last
 // carriage return and blow us out of the program early
 cout << "\n\tPress <enter> or <return> to exit...\n";
 ch = cin.get();
 exit(condition);

} // end pauseBeforeExit

// end of file IOThesis.cpp

 148

THIS PAGE INTENTIONALLY LEFT BLANK

 149

LIST OF REFERENCES

[Fr] H. Fredricksen, I. Kessler, “An algorithm for generating necklaces of beads in two
colors”, Discrete Mathematics, vol. 61, pp 181-188, 1986.

[Go] S. Golomb, Shift Register Sequences. San Francisco: Holden-Day, 1967.

[Ma] F. MacWilliams, N. Sloane, “Pseudo-random sequences and arrays”, Proceedings
of the IEEE, vol. 64, pp.1715-1729, 1976.

[Mar] M. Martin, “A problem in arrangement”, Bull. Amer. Math. Soc. vol. 40, pp. 859-
864, 1934.

[Mat] D. Matty, “Analysis of the necklace algorithm and its applications”, Naval
Postgraduate School Thesis, 1999.

[Mi] C. Mitchell, T. Etzion, K. Paterson, “A method for constructing decodable DeBruijn
sequences”, IEEE Trans. Inform. Theory, vol. 42, pp. 1472-1478, 1996.

[Pe1] E. Petriu, J. Basran, F. Groen, “Automated guided vehicle position recovery”, IEEE
Trans. Instrum. and Meas., vol. 39, pp.254-258, 1990.

[Pe2] E. Petriu, “New pseudo-random / natural code conversion method”, Electron. Lett.,
vol. 24, pp.1358-1359, 1988.

[Pe3] E. Petriu, J. Basran, F. Groen, “Absolute position measurement using pseudo-
random binary encoding”, IEEE Instrum. and Meas. Magazine, Sept., pp.19-23, 1998.

[Sl] N. Sloane, On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/Seis.html, accessed 20 January 2006.

 150

THIS PAGE INTENTIONALLY LEFT BLANK

 151

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Harold M. Fredricksen
Department of Applied Mathematics
Naval Postgraduate School Code Fs / Ma
Monterey, CA

4. Jon T. Butler
Department of Electrical Engineering
Naval Postgraduate School Code EC / Bu
Monterey, CA

