REFERENCE GUIDE TO THE INTERNATIONAL SPACE STATION

UTILIZATION EDITION
JULY 2015

FRONT COVER: Images from top to bottom: 1. NASA astronaut Steve Swanson is photographed near the Veggie facility in ExPRESS (Expedite the Processing of Experiments to Space Station) Rack 3 (ER3) during Veg-01 experiment initialization. 2. Japan Aerospace Exploration Agency astronaut Aki Hoshide snaps a selfie, while in the midst of completing repairs on the ISS. In his visor you can see the robotic arm and the reflection of earth, while the sun shines behind him. 3. View of the Midwestern United States city lights at night with Aurora Borealis.

MESSAGE FROM THE PROGRAM MANAGER BACKGROUND:
The night lights of cities in North and South America glow in this image captured by the Suomi NPP satellite and mapped over existing imagery of Earth. The Suomi NPP satellite has a Visible Infrared Imaging Radiometer Suite which allows it to detect light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires and reflected moonlight. This image provides new meaning to the Earth being a spaceship traveling through the darkness and overwhelming expanse of space.

Reference guide to the International Space Station. - Utlization Edition. NP-2015-05-022-JSC

A World-Class Laboratory in Space

I am pleased to provide this 2015 International Space Station (ISS) Reference Guide, Utilization Edition. The unique environment of space and the full capabilities of the ISS are available for innovative commercial use, including academic and government research. In this edition, we provide an overview of the ISS, describe its research facilities and accommodations, and provide key information to conduct your experiments on this unique orbiting laboratory.

As of this writing, NASA and the space agencies of Russia, Japan, Europe and Canada have hosted investigators from 83 nations to conduct over 1700 investigations in the long-term micro-gravity environment on-board the ISS. Many investigators have published their findings and others are incorporating findings into follow-on investigations on the ground and onboard. Their research in the areas of earth and space science, biology, human physiology, physical sciences, and technology demonstration will bring yet to be discovered benefits to humankind and prepare us for our journey beyond low Earth orbit.

While ISS has proven its value as a platform for a broad waterfront of research disciplines and technology development for exploration, NASA and the Center for the Advancement of Science in Space (CASIS), are providing an ideal opportunity to test new business relationships. One that allows a shift from a paradigm of government-funded, contractor-provided goods and services to a commercially provided, government-as-a-customer approach. From commercial firms spending some of their research and development funds to conduct applied research on the ISS, to commercial service providers selling unique services to users of the orbiting lab, the beginnings of a new economy in LEO are starting to emerge.

Please enjoy this latest iteration of the ISS Reference Guide and its focus on conducting pioneering science in micro-gravity. Herein we cover current capabilities, but the ISS is an extremely flexible platform. linvite you to use the additional resources listed in the back of this guide to learn more and I hope to work with you to conduct your experiment onboard the ISS soon. Please let us know if you have other needs to support your use of this amazing platform.

Sincerely,

MICHAEL T. SUFFREDINI
ISS Program Manager
Research/Research Accomodations 8
The Lab is Open - Unique Features of the ISS Research Environment 9
Destiny Racks 10
Kibo Racks 11
Columbus Racks 12
Internal Research Accommodations 13
External Research Accommodations 14
Biological Sciences and Biotechnology 15
Human Research 18
Physical Sciences 19
Earth and Space Science 21
Technology Demonstrations 23
Commercial Development 24
Education 25
Elements and Support Systems 26
U.S. Laboratory Module Destiny 27
European Research Laboratory Columbus 28
Japanese Experiment Module Kibo (Hope) 29
Nodes 30
Node 1 Unity 31
Node 2 Harmony 32
Node 3 Tranquility 33
Joint Airlock Quest 34
Cupola 35
Permanent Multipurpose Module (PMM) 36
Functional Cargo Block (FCB) Zarya (Sunrise) 37
Docking Compartment (DC) Pirs (Pier) 38
Mini-Research Module 2 (MRM2) Poisk (Explore) 39
Mini-Research Module 1 (MRM1) Rassvet (Dawn) 40
Service Module (SM) Zvezda (Star) 41
Pressurized Mating Adapters (PMAs) 42
Habitation 43
Environmental Control and Life Support System (ECLSS) 44
Crew Health Care System (CHeCS) 45
Computers and Data Management 46
Extravehicular Mobility Unit (EMU) 47
Orlan Spacesuit 48
Mobile Servicing System (MSS) 49
Electrical Power System (EPS) 50
Guidance, Navigation and Control (GN\&C) 51
Thermal Control System 52
Integrated Truss Assembly 53
Propulsion 54
Communications 55
Micrometeoroid and Orbital Debris (MMOD) Protection 56
International Partnership 57
ISS Operations and Management 58
Canada 60
Europe 61
Japan 62
Russia 63
United States of America 64
Soyuz 66
Progress 67
JAXA H-II Transfer Vehicle (HTV) 68
Space Shuttle Orbiter/Columbia, Discovery, Atlantis, Endeavour 69
Automated Transfer Vehicle (ATV) 70
Commercialization 71
Requirements and Benefits 72
Antares and Cygnus 73
Falcon 9 and Dragon 74
Assembly 75
ISS Expanded View 76
Principal Stages in Construction 78
Missions 88
ISS Expeditions and Crews 89
STS Missions and Crews 95
Soyuz ISS Missions 101
Unmanned ISS Missions 106
Reference 109
To Learn More 110
Acronym List 111
Definitions 114

The International Space Station (ISS) is a unique scientific platform that enables researchers from all over the world to put their talents to work on innovative experiments that could not be done anywhere else. Although each space station partner has distinct agency goals for station research, each partner shares a unified goal to extend the resulting knowledge for the betterment of humanity. Through advancing the state of scientific knowledge of our planet, looking after our health, developing advanced technologies and providing a space platform that inspires and educates the science and technology leaders of tomorrow, the benefits of the ISS will drive the legacy of the space station as its research strengthens economies and enhances the quality of life here on Earth for all people.

The Lab Is Open

Unique Features of the ISS Research Environment

Microgravity, or weightlessness, alters many observable phenomena within the physical and life sciences. Systems and processes affected by microgravity include surface wetting and interfacial tension, multiphase flow and heat transfer, multiphase system dynamics, solidification, and fire phenomena and combustion. Microgravity induces a vast array of changes in organisms ranging from bacteria to humans, including global alterations in gene expression and 3-D aggregation of cells into tissue-like architecture.

Extreme conditions in the ISS space environment include exposure to extreme heat and cold cycling, ultra-vacuum, atomic oxygen, and high energy radiation. Testing and qualification of materials exposed to these extreme conditions have provided data to enable the manufacturing of long-life reliable components used on Earth as well as in the world's most sophisticated satellite and spacecraft components.

Low-Earth orbit at 51 degrees inclination and at a 90-minute orbit affords ISS a unique vantage point with an altitude of approximately 240 miles (400 kilometers) and an orbital path over 90 percent of the Earth's population. This can provide improved spatial resolution and variable lighting conditions compared to the sun-synchronous orbits of typical Earth remotesensing satellites.

Research Discipline of ISS Investigations By Partner Agency: Expeditions 0-40
December 1998-September 2014

Through Expedition 40, 83 countries and areas (highlighted in green) have been involved in ISS Research and Educational activities

Destiny Racks

This view in the International Space Station is looking into the Destiny Laboratory from Node 1 (Unity) with Node 2 (Harmony) in the background.

EXPRESS
Rack 1

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Fluids
Integrated Rack
(FIR)

A complementary fluid physics research facility designed to accommodate a wide variety of microgravity experiments.

EXPRESS
Rack 2

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Materials Science
Research Rack-1 (MSRR-1)

Accommodates studies of many different types of materials.

EXPRESS
Rack 6

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Microgravity Science Glovebox (MSG)

A dedicated science facility that provides a sealed environment to perform many different types of small "glovebox" sized experiments.
window on the ISS.

EXPRESS
Rack 7

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Combustion
(CIR)

Used to perform sustained, systematic combustion experiments in microgravity.

Window Observational Minus Eighty-Degree
Research Facility Laboratory Freezer for
(WORF)

Provides a facility for Earth science research using the Destiny science

Integrated Rack

ISS (MELFI-3)

A reffigeratorffreezer for biological and life science samples.

NASA astronaut Reid Wiseman conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment in the Kibo laboratory of the International Space Station.

Minus Eighty-Degree Laboratory Freezer for ISS (MELFI-1)

A refrigerator/freezer for biological and life science samples.

EXPRESS Rack 5

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Minus Eighty-Degree Laboratory Freezer for ISS (MELFI-2)

A refrigerator/freezer for biological and life science samples.

Ryutai Experiment Rack

A multipurpose payload rack system that supports various fluid physics experiments.

Multipurpose Small Payload Rack 1 (MSPR-1)

Multipurpose rack accommodating small experiments from various science disciplines.

Saibo Experiment Rack

A multipurpose payload rack system that sustains life science experiment units inside and supplies resources to them.

EXPRESS Rack 4

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

KOBAIRO

Science experiment rack accommodating a gradient heating furnace for material studies.

NASA astronaut Dan Burbank uses Neurospat hardware to perform a science session with the PASSAGES experiment in the Columbus laboratory.

EXPRESS Rack 3

Sub-rack-sized experiments with standard utilities such as power, data, cooling, and gases.

Multipurpose Small
Payload Rack 1
(MSPR-1)

Multipurpose rack accommodating small experiments from various science disciplines.

Biological Experiment Laboratory
 (BioLab)

Used to perform space biology experiments on microorganisms, cells, tissue cultures, small plants, and small invertebrates.
Muscle Atrophy
Research and Exercise
System (MARES)

Used for research on musculoskeletal, biomechanical, and neuromuscular human physiology.

European Physiology Module
(EPM)

Investigates the effects of shortand long-duration space flight on the human body.

Human Research Facility (HRF-1)

Enable researchers to study and evaluate the physiological, behavioral, and chemical changes induced by long-duration space flight.

Fluid Science Laboratory (FSL)

A multi-user facility for conducting fluid physics research in microgravity conditions.

Human Research
Facility
(HRF-2)

Enable researchers to study and evaluate the physiological, behavioral, and chemical changes induced by long-duration space flight.

KOBAIRO

Science experiment rack accommodating a gradient heating furnace for material studies.

Internal Research Accommodations

Several research facilities are in place aboard the ISS to support microgravity science investigations, including those in biology, biotechnology, human physiology, material science, physical sciences, and technology development.

Standard Payload Racks

Research payload within the U.S., European, and Japanese laboratories typically are housed in a standard rack, such as the International Standard Payload Rack (ISPR). Smaller payloads may fit in ISS lockers carried in a rack framework.

Active Rack Isolation System (ARIS)

The ARIS is designed to isolate payload racks from vibration. The ARIS is an active electromechanical damping system attached to a standard rack that senses the vibratory environment with accelerometers and then damps it by introducing a compensating force.

3, 6, or 12 kW , 114.5 to 126 voltage, direct current (VDC)

Data
 Low rate \quad MIL-STD-1553 bus 1 Mbps

High rate	100 Mbps
Ethernet	10 Mbps
Video	NTSC
Gases	

Nitrogen flow	$0.1 \mathrm{~kg} / \mathrm{min}$ minimum 517 to 827 kPa, nominal $1,379 \mathrm{kPa}$, maximum
Argon, carbon dioxide, helium	517 to 768 kPa, nominal $1,379 \mathrm{kPa}$, maximum

Cooling Loops

Moderate temperature $\quad 16.1$ to $18.3^{\circ} \mathrm{C}$

Flow rate	0 to $45.36 \mathrm{~kg} / \mathrm{h}$
Low temperature	3.3 to $5.6^{\circ} \mathrm{C}$
Flow rate	$233 \mathrm{~kg} / \mathrm{h}$
Vacuum	10^{-3} torr in less than 2 h
for single payload of 100 L	
Venting	10^{-3} torr
Vacuum resource	

Research Rack Locations

International Pressurized Sites	Total by Module	U.S. Shared
U.S. Destiny Laboratory	13	13
Japanese Kibo Laboratory	11	5
European Columbus Laboratory	10	5
Total	34	23

NASA astronaut Sunita Williams works in MELFI-2 rack in the U.S. Laboratory/Destiny.

External Research Accommodations

External Earth and Space Science hardware platforms are located at various places along the outside of the ISS. Locations include the Columbus External Payload Facility (CEPF), Russian Service Module, Japanese Experiment Module Exposed Facility (JEM-EF), four EXPRESS Logistics Carriers (ELC), and the Alpha Magnetic Spectrometer (AMS). External facility investigations include those related to astronomy; Earth observation; and exposure to vacuum, radiation, extreme temperature, and orbital debris.

External Payload Accommodations

External payloads may be accommodated at several locations on the U.S. S3 and P3 Truss segments. External payloads are accommodated on an Expedite the Processing of Experiments to the Space Station racks (EXPRESS) Logistics Carrier (ELC). Mounting spaces are provided, and interfaces for power and data are standardized to provide quick and straightforward payload integration. Payloads can be mounted using the Special Purpose Dexterous Manipulator (SPDM), Dextre, on the ISS's robotic arm.

Japanese Experiment Module Exposed Facility (JEM-EF).

The European Columbus Research Laboratory has four exterior mounting platforms that can accommodate external payloads.

Small Satellite Orbital Deployer (SSOD) providing a novel, safe, small satellite launching capability.

Exterior nadir view of the ExPRESS Logistics Carrier 1 (ELC1) mounted to the P3 truss segment.

Express Logistics Carrier (ELC) Resources

Mass capacity	227 kg (8 sites across 4 ELCs; not including adaptor plate)
Volume	$1.2 \mathrm{~m}^{3}$
Power	$750 \mathrm{~W}, 113$ to 126 VDC 500 W at 28 VDC per adapter
Thermal	Active heating, passive cooling
Low-rate data Medium- rate data	6 Mbps (shared)
Kibo Exposed Facility Resources	

- 500 kg Standard Site (10 Standard Mass capacity Sites, mass includes PIU adaptor) - 2500 kg Heavy Site (3 Heavy Sites, mass includes PIU adaptor)
Volume $\quad 1.5 \mathrm{~m}^{3}$

Power	3 kW max, 113-126 VDC
Thermal	$3-6 \mathrm{~kW}$ cooling
Low-rate data	1 Mbps (MIL-STD-1553)
High-rate data	43 Mbps (shared) Ethernet: 100 Base-TX

Columbus External Payload Facility (CEPF) Resources

Mass capacity	230 kg per site (4 sites; uses Columbus External Payload Adapter (CEPA)
Volume	$1.2 \mathrm{~m}^{3}$
Power	Passive
Thermal	$1250 \mathrm{~W}, 120$ VDC
Low-rate data	1 Mbps (MIL-STD-1553)
Medium- rate data Ethernet: 100 Base-TX	

External Research Locations

External Unpressurized Attachment Sites	Stationwide	U.S. Shared
U.S. Truss	8	8
Japanese Exposed Facility	10	5
European Columbus Research Laboratory Total	4	2

Biological Sciences and Biotechnology

European Space Agency astronaut Alexander Gerst working on the T-Cell Activation investigation.

View of Russian cosmonaut Elena Serova as she performs the RJR Augmented Microbial Sampling investigation by taking air samples with Microbial Air Sampler.

NASA astronaut Karen Nyberg harvests plants from JAXA's Resist Tubule investigation.

The ISS has scientific capabilities to provide a unique laboratory to investigate biological or life sciences without the constraint of gravity. Biological researchers are investigating a multitude of questions that include the role of gravity and genomic diversity in biological processes. They are also contributing to finding solutions for biomedical problems that occur both on Earth and in space, in addition to the biological responses to multiple stressors.
Cells, microbes, animals and plants have evolved and developed in gravity, and the role of this environment on the regulation of biological processes is beginning to be understood. Genetic diversity in some systems is obscured in the Earth environment; use of a microgravity environment is providing unique insights into such regulation. Previous microgravity studies observed increased virulence in microbes, pluripotency of stem cells, and tissue morphogenesis patterns.
Results obtained from ISS research have implications for understanding basic biological processes, understanding stress response, developing drugs and therapeutics that can combat diseases, improving food supplies on Earth, and enhancing life-support capabilities for the exploration of space. In addition, better understanding of some of these biological processes (such as microbial virulence and the behavior of planktonic vs. biofilm forms of bacteria) could also have implications for astronaut health and also for improving life here on Earth.

Cellular and Molecular Biology

Cellular Biology includes cell culture, tissue culture and related microbial (single-cell organism) experiments. These cell-based studies in microgravity support many areas of basic and applied research for space exploration and Earth applications. The environment of space offers a unique opportunity for novel
discoveries of cellular and tissue adaptation. These novel discoveries have applications in understanding changes to human health during long-duration spaceflight and to Earth-based medicine in such areas of biomedical research as tissue engineering, host-pathogen interactions, vaccine development and drug discovery. Using gravity as a variable enables two broad classes of space cell biology research: (a) understanding fundamental mechanisms of life's responses to changes in gravity and (b) using gravity as a tool to advance biological applications in the field of tissue engineering.

Top view of enclosed Bioculture System cassette. Image courtesy of Tissue Genesis, Inc.

Hand-Held High Density Protein Crystal Growth (HDPCG).

In the area of molecular biology, protein crystallization is at the forefront of this discipline. Proteins are biological macromolecules that function in an aqueous environment. Biotechnology and pharmaceutical researchers carry out the process of protein crystallization in order to grow large, well-ordered crystals for use in X-ray and neutron diffraction studies. However, on Earth, the protein crystallization process is hindered by forces of sedimentation and convection since the molecules in the crystal solution are not of uniform size and weight. This leads to many crystals of irregular shape and small size that are unusable for diffraction. Diffraction is a complex process and the quality of data obtained about the three-dimensional structure of a protein is directly dependent on the degree of perfection of the crystals. Thus, the structures of many important proteins remain a mystery simply because researchers are unable to obtain crystals of high quality or large size. Consequently, the growth of high quality macromolecular crystals for diffraction analysis has been of primary importance for protein engineers, biochemists, and pharmacologists.

Hand-Held High Density Protein Crystal Growth (HDPCG).

Fortunately, the microgravity environment aboard the ISS is relatively free from the effects of sedimentation and convection and provides an exceptional environment for crystal growth. Crystals grown in microgravity could help scientists gain detailed knowledge of the atomic, three-dimensional structure of many important protein molecules used in pharmaceutical research for cancer treatments, stroke prevention and other diseases. The knowledge gained could be instrumental in the design and testing of new drugs.

Microbial Research

NASA astronaut Reid Wiseman activates the BRIC-19 investigation.

A human is both an individual organism and an entire ecosystem, including microorganisms in, on, and around them in which the human cells are greatly outnumbered by the microbial cells. The microbial inhabitants in and on the person outnumber the human cells 10 to 1 . For the most part, these microorganisms are beneficial to their human host or otherwise innocuous. Given the right opportunity, either a shift in the environment of the host or the invasion to a new location within the host, can cause the microorganisms to become pathogenic.

Significant strides have been made to define and mitigate the source of microbial contamination aboard spacecraft and to document the responses of numerous microorganisms to the spaceflight environment. Both experience and research data has helped in the identification of critical gaps in scientist's understanding of how this environment impacts microbial ecology, the microbial genotypic and phenotypic characteristics, and their interactions with plant and animal hosts. As we look toward human interplanetary exploration, the importance of this knowledge has been recognized. With the increases in both the occupancy and duration of humans aboard the ISS, these knowledge gaps are becoming better defined. With the laboratory platform aboard ISS, many of these gaps for future spaceflight can be understood.

Animal Biology

The International Space Station provides a unique environment in which to study the effects of microgravity and the space environment on various organisms. Rodents (rats and mice) are the animal models most commonly used to study fundamental biological processes in space: predominately rats, followed by mice. Given that human astronauts and

Interior view of the rodents found within the rodent habitat.

Japan Aerospace Exploration Agency astronaut Aki Hoshide works on the Multipurpose Small Payload Rack (MSPR) in preparation for the arrival of the JAXA Medaka Osteoclast experiment.
cosmonauts routinely spend 180 days or longer on the ISS, that amount of time represents a significant portion of the lifespan of a rodent. Studies with rodents in space have been useful and important for extrapolating the implications for humans living in space and more work remains to be done (National Research Council [U.S.], 2011).

One example is the leveraging of current technology such as using genetically engineered mice in flight experiments to investigate the molecular mechanisms of bone loss that occurs during exposure to microgravity for possible pharmacological intervention. NASA is particularly interested in studies that enable a better understanding of how mechanisms
governing homeostasis at the genetic, molecular and cellular levels are integrated to regulate adaptation to spaceflight at the physiological system or wholeanimal level.

Plant Biology

The progress in plant space biology over the past quarter century has greatly increased our understanding of how plants: respond to gravity; informed the design of advanced plant growth facilities; achieved the completed life cycle; and demonstrated that physiological processes necessary for biological life support are sustainable. In the process, the horticulture of plants in the unique environment of microgravity was being developed, and plant/microbe interactions were explored. The advances made during the decades of spaceflight experimentation have also identified critical gaps in our understanding of the role of gravity and the spaceflight environment on plant biology at the cellular, tissue, whole plant, and community levels.

In this context, the International Space Station is a unique platform where reduced gravity can be used to probe and dissect biological mechanisms in plants for understanding how terrestrial biology responds to gravity. This knowledge is important for supporting safe and long-term human habitation in space using bio-regenerative life support, utilizing plants and microbial communities, and for reducing exploration risks to crews by designing countermeasures to problems associated with living in space. In addition, by using the facilities with centrifuges, scientists can investigate how plants respond to the reduced gravity environments on the moon and Mars.

NASA astronaut Steve Swanson is photographed near the Veggie facility in ExPRESS (Expedite the Processing of Experiments to Space Station).

Human Research

NASA astronaut Catherine Coleman prepares to insert samples into the Minus Eighty Degree Laboratory Freezer for ISS (MELFI).

NASA astronaut Terry Virts must maintain a well balanced diet while in microgravity to help avoid additional bone and muscle loss.

NASA astronaut Sunita Williams as she underwent a blood draw to support Human Research.

NASA's history has proven that humans are able to live safely and work in space. The ISS serves as a platform to extend and sustain human activities in preparation for long-duration, exploration-class missions. It provides opportunities to address critical medical questions about astronaut health through multidisciplinary research operations to advance our understanding and capabilities for space exploration.

The multi-disciplinary biomedical research currently underway on the ISS include studies addressing behavioral health and performance, bone and muscle physiology, exercise countermeasures, cardiovascular physiology, nutrition, and immunology. These life sciences research studies aim to provide a thorough understanding of the many physiologic changes that occur in a microgravity environment. Among the many physiological changes that occur in the human body include susceptibility to fainting after landing, vision changes potentially because of the harmful effects of microgravity on the eye and optic nerve, changes in blood volume, reduction in heart size and capacity, alterations in posture and locomotion, decreases in

NASA astronaut Michael Hopkins performs ultrasound eye imaging while European Space Agency astronaut Luca Parmitano assists.
aerobic capacity and muscle tone, difficulty sleeping, increased risk for renal stone formation, and weakened bones.

The research focuses on astronaut health and performance and the development of countermeasures that will protect crew members from the space environment during long-duration voyages, evaluate new technologies to meet the needs of future exploration missions and develop and validate operational procedures for long-duration space missions.

European Space Agency astronaut Samantha Cristoforetti exercises on the Advanced Resistive Exercise Device (ARED).

Physical Sciences

Flame burning in microgravity.

European Space Agency astronaut Samantha Cristoforetti using the Capillary Beverage Cup in the Cupola.

A close-up view of the Capillary Flow Experiments-2.

The ISS provides a long-duration spaceflight environment for conducting microgravity physical science research. The microgravity environment greatly reduces buoyancy driven convection, pressure head, and sedimentation in fluids. By eliminating gravity or using gravity as a factor in experimental design, the ISS allows physical scientists to better understand fluid physics; the dynamics of interfaces, such as the line of contact between a liquid and a gas; the physical behavior of systems made up wholly or partially of particles; combustion processes in the absence of buoyant convection and the properties of materials.

Fluid Physics

A fluid is any material that flows in response to an applied force; thus, both liquids and gases are fluids. Nearly all of the life support, environmental and biological, processes take place in the fluid phase. Fluid motion accounts for most transport and mixing in both natural and man-made processes as well as within all living organisms. Fluid physics is the study of the motions of liquids and gases and the associated transport of mass, momentum and energy. The need for a better understanding of fluid behavior has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low- gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena. The nearly weightless conditions allow researchers to observe and control fluid phenomena in ways that are not possible on Earth.

Experiments conducted in space have yielded rich results. Some were unexpected and most could not be observed in Earth-based labs. These results provided valuable insights into fundamental fluid behavior that
apply to both terrestrial and space environments. In addition, research on fluid management and heat transfer for both propulsion and life-support systems, have contributed greatly to U.S. leadership in space exploration.

NASA astronaut Reid Wiseman conducts a session with the Binary Colloidal Alloy Test.

Image taken during a BASS-II (Burning and Suppression of Solids - II) experiment flame test.

Combustion

Combustion occurs when fuel and oxygen react to produce carbon dioxide, water and heat. For the foreseeable future the overwhelming majority of delivered energy in terrestrial applications will be from combustion or other chemically reacting systems. These energy uses cover the range from electric power and transportation to processes directly tied to the delivered material (e.g., glass and steel manufacture). These processes produce some of the most important environmental hazards currently facing humanity (global climate change, acid gas pollution, mercury contamination from coal, and wild-land fires).
Despite being the subject of active research for over 80 years, combustion processes remain one of the most poorly controlled phenomena that have a significant impact on human health, comfort and safety. This is because the simplest combustor (e.g., kitchen stove) remains beyond our detailed numerical modeling capabilities. The combustion process typically involves a large number of chemical species (hundreds) and reactions (even thousands). It is these species and reactions that determine flammability limits (combustor operating ranges) and pollutant emissions. Much of combustion research involves developing a comprehensive and predictive quantitative understanding of this complex process.

The ISS allows for the variance or elimination of the effects of gravity. By doing this, we can extract fundamental data that is important for understanding combustion systems. This approach has been implemented to some extent in existing terrestrial reduced-gravity platforms, but the experimental time scales and sizes have been limited. Long-duration experiments using realistic sizes are essential for a comprehensive understanding of the combustion phenomena and are possible only in the microgravity environments offered by space facilities.

Materials Science

Most materials are formed from a partially or totally fluid sample and the transport of heat and mass inherently influences the formation of the material and its resultant properties. The reduction in gravity related sources of heat and mass transport may be used to determine how the material processes are affected by gravitational driven and gravitationally independent sources of heat and mass transfer.

Images of the Materials Science Research Rack (MSRR).

Interior view of the EML experiment. Image credit: European Space Agency (ESA)

Earth and Space Science

One of the more spectacular scenes of the Aurora Australis was photographed by one of the Expedition 40 crew members.

The expedition 41 crew took pictures of the Atlantic Hurricane Edouard.

Image taken for the Hyperspectral Imager for the Coastal Ocean (HICO) investigation.

The presence of the space station in low-Earth orbit provides a vantage point for collecting Earth and space data. From an altitude of about 400 km , details in such features as Glaciers, agricultural fields, cities, and coral reefs taken from the ISS can be layered with other sources of data, such as orbiting satellites, to compile the most comprehensive information available.

Earth Observation

While NASA and other space agencies have had remote-sensing systems orbiting Earth and collecting publically available data since the early 1970s, these sensors have been primarily carried aboard free-flying, unmanned satellites. These satellites have typically been placed into sun-synchronous polar orbits that allow for repeat imaging of the entire surface of the Earth with approximately the same sun illumination (typically local solar noon) over specific areas, with set revisit times - this allows for uniform data to be taken over long time periods and enables straightforward analysis of change over time.

The ISS is a unique remote sensing platform from several perspectives - unlike automated remote-

Artistic representation of the Cloud-Aerosol Transport System (CATS) that is being used to measure clouds and aerosols in the Earth's atmosphere.
sensing platforms-it has a human crew, a low-orbit altitude, and orbital parameters that provide variable views and lighting. The presence of a crew provides options not available to robotic sensors and platforms, such as the ability to collect unscheduled data of an unfolding event using handheld digital cameras as part of the Crew Earth Observations facility and real-time assessment of whether environmental conditions (like cloud cover) are favorable for data collection. The crew can also swap out internal sensor systems and payloads installed in the Window Observational Research Facility (WORF) on an as-needed basis.

Japan Aerospace Exploration Agency astronaut Koichi Wakata works with the Window Observational Research Facility (WORF) rack.

Artistic representation of the ISS RapidScat payload that is being used to measure wind speeds and directions over the oceans. Image credit: NASA/JPL.

Fundamental Physics

Exterior view of the International Space Station (ISS) taken during an Extravehicular Activity (EVA) with the Alpha Magnetic Spectrometer - 02 (AMS-02) visible in the foreground.

Studies in fundamental physics address space, time, energy, and the building blocks of matter. The primary theories of modern physics are based upon Einstein's theory of relativity and the standard model of particle physics. However, as scientists, we know that the picture painted by these theories remains incomplete. Einstein's theory of gravitation remains unproved to be consistent with the theories that define other forces of nature in all length scales. Furthermore, recent astronomical observation and cosmological models strongly suggest that dark matter and dark energy, which are entities not directly observed and not at all understood, dominate these interactions at the largest scales. All these unexplained observations and inconsistencies point to the potential for discovery of new theories. The ISS provides a modern and well-

View of DEvice for the study of Critical Llquids and Crystallization (DECLIC) Experiment Locker.

Dendritic pattern of the Succinonitrile-Camphor alloy grown in microgravity, seen from the top. Image courtesy of Nathalie Bergeon.
equipped orbiting laboratory for long-term micro-gravity environment research. Routine and continued access to this environment allows for fundamental physics research to be performed from a completely different vantage point.

The International Space Station provides a unique space laboratory for a set of fundamental physics experiments with regimes and precision not achievable on the ground. Some of the advantages of the space environment for experiments include:

- Long-duration exposure to the orbital free-fall environment
- Ease of measurement of changes of gravitational potential and relative motions
- Study of very small accelerations on celestial bodies
- Reduced atmospheric interference on the propagation of optical and radio signals
- Ability to track and fit to theory very long time segments of body orbital motion

Technology Demonstrations

NASA Astronaut Barry (Butch) Wilmore holds a 3-D printed ratchet wrench from the new 3-D printer.

Cyclops enables the space-based launch of a new class of satellites, which are larger than cubesats but not large enough to require their own Earth-based launch vehicles.

The ISS provides an infrastructure capable of demonstrating prototypes and systems that may advance spaceflight technology readiness. The space station, the in-orbit crew, the launch and return vehicles, and the operation control centers are all supporting the demonstration of advanced systems and operational concepts that will be needed for future exploration missions.

NASA astronaut Chris Cassidy poses for a photo while conducting a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES

The ISS is the only long-duration platform available in the relevant space environment with an integrated space systems architecture that can be used to demonstrate advanced technologies and operations concepts. Working in close cooperation with the exploration community, the ISS Program is enabling technology and systems investigations in support of future exploration endeavors. NASA has identified 11 exploration technology areas of interest that ISS is capable of supporting

- In-Space Propulsion
- Space Power and Energy
- Robotics, Tele-Robotics and Autonomous Systems
- Communication and Navigation
- Life Support and habitation Systems
- Exploration Destination Systems
- Science Instruments
- Entry, Descent and landing Systems
- Materials Structures and Manufacturing
- Thermal Management Systems
- Operational Processes and Procedures

NASA astronaut Steve Swanson takes a picture with Robonaut after installation of the Robonaut legs.

Commercial Development

NanoRacks CubeSat Deployer.

While the International Space Station (ISS) has proven its value as a platform for a broad waterfront of research disciplines as well as technology development, it also provides an ideal opportunity to test new business relationships. This allows an opportunity to shift from a paradigm of governmentfunded, contractor-provided goods and services to a commercially provided, government-as-a-customer approach.
This interest in promoting a more commercially oriented market in low-Earth orbit (LEO) is driven by several goals. First, it can stimulate entirely new markets not achievable in the past. Second, it creates new stakeholders in spaceflight and represents great economic opportunity. Third, it ensures strong industrial capability not only for future spaceflight but also for the many related industries. Finally, and perhaps most importantly, it allows cross-pollination of ideas, processes, and best practices, between partners of equal standing.
From commercial firms spending some of their research and development funds to conduct research on the space station, to commercial service providers selling unique services to users of the orbiting lab, the beginnings of a new economy in LEO is starting to emerge.

The Bigelow Expandable Activity Module. Image Courtesy of Bigelow.

Various sizes of Cubelab modules are available. Image courtesy of NanoRacks.

Cubelabs fit within SubeLab Modules that will in turn fit into an EXPRESS Rack on the ISS. Image courtesy of NanoRacks.

Education

Students [articipating in STEM education training.

Japan Aerospace Exploration Agency astronaut Koichi Wakata reads a book to students in the cupola

Students learning about different STEM opportunities at NASA.

The International Space Station has a unique ability to capture the interests of both students and teachers worldwide. The presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students from 64 countries around the world have participated in ISS-related educational activities. Having the opportunity to connect with crewmembers realtime, either through"live" downlinks or simply speaking via a ham radio, ignites the imagination of students about space exploration and its application to the STEM fields. Projects such as Earth Knowledge-based Acquired by Middle Schools (EarthKAM) have allowed for global student, teacher and public access to space through student image acquisition. This serves to support inquiry-based learning which is an approach to science education that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence, analyze data, and identify solutions or explanations.

Through the life of ISS operations, these projects and their accompanying educational materials will

A Canadian student from Good Shepherd School in Peace River, Alberta, studies orbital paths of the International Space Station.
continue to be made available to more students and more countries. Through expanded international cooperation, the next generation of scientists, engineers and explorers from our global community will have the capability to learn more about and be involved in space exploration.

NASA Astronaut Scott Kelly poses with 600000 tomato seeds for the Tomatosphere ${ }^{\text {TM }}$ educational project.

[^0]
(1)

The International Space Station modules serve as a habitat for its crew and provide ports for docking and berthing of visiting vehicles. The station functions as a microgravity and life sciences laboratory, test bed for new technologies, and platform for Earth and celestial observations.

U.S. Laboratory Module Destiny
 NASA/Boeing

The U.S. Laboratory Module, called Destiny, is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety, and quality of life for people all over the world.

Science conducted on the ISS offers researchers an unparalleled opportunity to test physical processes in the absence of gravity. The results of these experiments will allow scientists to better understand our world and ourselves and prepare us for future missions. Destiny provides internal interfaces to accommodate 24 equipment racks for accommodation and control of ISS systems and scientific research.

Length	$8.5 \mathrm{~m} \mathrm{(28} \mathrm{ft)}$
Length with attached Common Berthing Mechanism (CBM)	$9.2 \mathrm{~m} \mathrm{(30.2} \mathrm{ft)}$
Width	4.3 m diameter (14 ft)
Launch Mass	$14,515 \mathrm{~kg}(32,000 \mathrm{lb})$
Exterior	Aluminum, 3 cylindrical sections, 2 endcones
Number of racks	$24(13$ scientific and 11 system)
Windows	1, with a diameter of $50.9 \mathrm{~cm}(20$ in $)$
Launch date	February 7,2001 STS-98 5 A

Visible are the Pressurized Mating Adapter 2 (PMA2),Destiny laboratory module,and Node 1.

NASA astronaut Doug Wheelock as he retrieves 2D Nano Template sample bags from the Minus Eighty Laboratory Freezer for ISS (MELFI) in U.S. Laboratory Destiny.

NASA astronaut Reid Wiseman is pictured in the Harmony node looking through the Destiny laboratory.

European Research Laboratory Columbus

European Space Agency (ESA)/European Aeronautic

 Defence and Space Co. (EADS) Space TransportationThe Columbus Research Laboratory is Europe's largest contribution to the construction of the ISS. It supports scientific and technological research in a microgravity environment. Columbus is a multifunctional pressurized laboratory permanently attached to Node 2 of the ISS. Astronauts carry out experiments in materials science, fluid physics, life science, and technology.

Length	$6.9 \mathrm{~m}(22.6 \mathrm{ft})$
Diameter	$4.5 \mathrm{~m}(14.7 \mathrm{ft})$
Launch Mass	$10,300 \mathrm{~kg}(22,700 \mathrm{lb})$
Launch date	February 7, 2008 STS-122 1 E
Racks	10 International Standard Payload Racks (ISPRs)

An interior view of the Columbus laboratory of the International Space Station.

European Space Agency astronaut Luca Parmitano works with the Biolab in the Columbus laboratory of the International Space Station. Biolab is used to perform space biology experiments on microorganisms, cells, tissue cultures, plants and small invertebrates.

Columbus attached to the ISS.

Japanese Experiment Module Kibo (Hope)
 Japan Aerospace Exploration Agency (JAXA)/ Mitsubishi Heavy Industries, Ltd.

The Japanese Experiment Module (JEM), known as "Kibo" (pronounced keybow), which means "hope" in Japanese, is Japan's first human-rated space facility and the Japan Aerospace Exploration Agency's (JAXA's) first contribution to the ISS program.

Kibo was designed and developed with a view to conducting scientific research activities on orbit. In Kibo astronauts perform experimental research activities. Currently, educational, cultural, and commercial uses of Kibo are also planned. Thus, as a part of the ISS, Kibo will provide extensive opportunities for utilization of the space environment. Resources necessary for Kibo's on-orbit operation, such as air, power, data, and cooling fluid, are provided from the U.S. segment of the ISS.

Environmental Control
and Life-Support/Thermal
Control System Rack

	PM	ELM-PS
Diameter	$4.4 \mathrm{~m}(14.4 \mathrm{ft})$	$4.4 \mathrm{~m}(14.4 \mathrm{ft})$
Length	$11.2 \mathrm{~m}(36.7 \mathrm{ft})$	$4.2 \mathrm{~m}(13.9 \mathrm{ft})$
Launch Mass	$15,900 \mathrm{~kg}$ $(35,050 \mathrm{lb})$	$4,200 \mathrm{~kg}$ $(9,260 \mathrm{lb})$
Launch date	May 31, 2008 STS-124 1J	March 11, 2008 STS-123 1J/A

EF

Dimensions $\quad 5.6 \times 5 \times 4 \mathrm{~m}(18.4 \times 16.4 \times 13.1 \mathrm{ft})$

Launch Mass $\quad 4,100 \mathrm{~kg}(9,038 \mathrm{lb})$

July 15, 2009
Launch date STS-127
2J/A
JEM Remote Manipulator System
Main Arm length $\quad 10 \mathrm{~m}(32.9 \mathrm{ft})$

Small Fine Arm length
2.2 m (7.3 ft)

View of the Japanese Experiment Module (JEM) Pressurized Module (JPM), Japanese Experiment Logistics ModulePressurized Section (JLP), and JEM Exposed Facility (JEF).

NASA astronauts Scott Kelly (left) and Terry Virts (right) work on a Carbon Dioxide Removal Assembly (CDRA) inside the station's Japanese Experiment Module.

Nodes

Nodes are U.S. modules that connect the elements of the ISS. Node 1, called Unity, was the first U.S.-built element that was launched, and it connects the U.S. and Russian segments.

Node 2 (Harmony) and Node 3 (Tranquility) are European-built elements and are each one rack bay longer than Node 1. Node 2 connects the U.S., European, and Japanese laboratories, as well as providing a nadir berthing port and a forward PMA-2 docking port. Node 3 is attached to the port side of Node 1 and provides accommodation for life-support and exercise equipment.

Astronaut Reid Wiseman is photographed at work in the Node 2 module. He is joined by Astronaut Steve Swanson (left).

Mechanical assemblies-including berthing mechanisms and hatches, cable hamesses for electrical and data systems routing, and fluid lines for themal control-add to the complexity of the node modules.

Node 1 Unity

NASA/Boeing

Node 1's six ports provide berthing connections to the Z1 Truss, U.S. Laboratory Module, Airlock, and Node 3. In the summer of 2015, the Node 1 nadir port will be available as a second berthing port for visiting cargo vehicles.

Length	$5.5 \mathrm{~m}(18 \mathrm{ft})$
Width (diameter)	$4.3 \mathrm{~m} \mathrm{(14} \mathrm{ft)}$
Mass	$11,895 \mathrm{~kg}(26,225 \mathrm{lb})$
Exterior	Aluminum cylindrical sections, 2 endcones
Number of racks	4
Launch date	December 4, 1998 STS-88 2 A

Node 1 is shown with the Russian segment FGB to the right (aft), the U.S. Laboratory to the left (fore), the U.S. Airlock at the bottom (starboard), and PMA-3 at the top (port).

NASA astronaut Karen Nyberg is pictured near fresh fruit floating freely in the Unity Node 1 module.

The moments are far and few between when crewmembers have an opportunity to gather together. Pictured here in Node 1 are Chris Hadfield of the Canadian Space Agency at the right. Clockwise from his position are the five flight engineers -- NASA astronauts Tom Marshburn and Chris Cassidy, and Russian cosmonauts Alexander Misurkin, Roman Romanenko and Pavel Vinogradov.

Node 2 Harmony

ESA/Thales Alenia Space Italy (TAS-I)

Node 2 was built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. It incorporates six berthing ports: two in the longitudinal axis and four on the radial perpendicular axes. Node 2 is attached to the forward end of the U.S. laboratory and connects Columbus, the European laboratory, on the starboard side; Kibo, the Japanese laboratory, on the port side; the Pressurized Mating Adaptor 2 (PMA-2) on the forward side, which provides a docking location for visiting vehicles; on the nadir (Earth-facing) side, Node 2 provides a berthing port for the H-II Transfer Vehicle (HTV), a Japanese cargo vehicle as well as commercial cargo vehicles,. In the summer of 2015, the PMA3 (currently on Node 3) will be relocated to provide a second US docking port on the zenith port of Node 2. In addition, Node 2 provides Crew Quarters for 4 crew members as well as vital functional resources for the operation of the connected elements, namely the conversion and distribution of the electrical power, heating, cooling resources from the ISS Integrated Truss, and support of the data and video exchange with the ground and the rest of the ISS.

ESA astronaut Samantha Cristoforetti works on the Maintenance Work Area (MWA) which provides a rigid surface on which to perform maintenance tasks.

European Space Agency astronaut Alexander Gerst conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony Node 2.

Node 3 Tranquility

ESA/Thales Alenia Space Italy (TAS-I)

Node 3 was built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. Node 3 is attached to the port side of Node 1, and the Cupola is berthed on its nadir (Earth facing) port. The PMA-3 is currently attached to the Node 3 port. The zenith port has been inhibited and modified to become the parking location of the ISS: Special Purpose Dexterous Manipulator (SPDM). In the summer of 2015, the PMM will be relocated from the Node 1 nadir port to the Node 3 forward port and the PMA-3 will be relocated to Node 2 zenith port. The port and aft ports are then available for further ISS additions.

Node 3 accommodates ISS air revitalization, oxygen generation, carbon dioxide removal and water recovery systems. It also accommodates the bathroom for the crew hygiene and exercising equipment such as a treadmill and a weight-lifting device.

Exterior view the P1 truss segment, and the Node 3/Tranquility and Cupola.

Length	$6.7 \mathrm{~m}(22 \mathrm{ft})$
Width (diameter)	$4.3 \mathrm{~m} \mathrm{(14} \mathrm{ft)}$
Mass	Aluminum cylindrical sections, 2 endcones
Exterior	8
Number of racks	February 8,2010 STS-130 $20 A$
Launch dates	

Interior view of the Node 3/Tranquility.

NASA astronaut Chris Cassidy enters data in a computer in the Tranquility node.

View of the Waste Management Compartment (WMC) in the Node 3 module.

Joint Airlock Quest

NASA/Boeing

The Quest Airlock is a pressurized space station module consisting of two compartments attached end-to-end by a connecting bulkhead and hatch. The two compartments consist of: the Equipment Lock, which provides the systems and volume for suit maintenance and refurbishment, and the Crew Lock, which provides the actual exit for performing EVAs. The airlock is the primary path for International Space Station spacewalk entry and departure for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. Quest can also support the Russian Orlan spacesuit for spacewalks.

EVA Hatch

View of NASA astronaut Chris Cassidy (left) and European Space Agency astronaut Luca Parmitano (right) preparing for a dry run in the International Space Stations Quest airlock in preparation for the first of two sessions of extravehicular (EVA). Both are wearing a liquid cooling and ventilation garment and preparing to don their EMUs. Astronaut Karen Nyberg, is visible in the foreground.

Cupola

ESA/Thales Alenia Space Italy (TAS-I)

The Cupola (named after the raised observation deck on a railroad caboose) is a small module designed for the observation of operations outside the ISS such as robotic activities, the approach of vehicles, and extravehicular activity (EVA). It was built in Europe by Thales Alenia Space Italy (TAS-I) under contract of the European Space Agency. It provides spectacular views of Earth and celestial objects. The Cupola has six side windows and a direct nadir viewing window, all of which are equipped with shutters to protect them from contamination and collisions with orbital debris or micrometeorites. The Cupola is designed to house the robotic workstation that controls the ISS's remote manipulator arm. It can accommodate two crewmembers simultaneously and is berthed to the Earth facing side of Node-3 using a Common Berthing Mechanism (CBM).

Window Assembly (1 top and 6 side windows with fused silica and borosilicate glass panes, window heaters, and

At the robotics workstation in the Cupola, NASA astronaut Karen Nyberg participates in onboard training activity in preparation for the grapple and berthing of a visiting vehicle.

Exterior view of the Cupola and the Node 3/Tranquility taken by a crew member during a Extravehicular Activity (EVA). Crew members onboard are partially visible in the Cupola windows.

European Space Agency astronaut Alexander Gerst enjoys the view of Earth from the windows in the Cupola of the International Space Station.

Permanent Multipurpose Module (PMM)

NASA/ASI (Italian Space Agency)

Derived from the Leonardo Multi-purpose Logistics Module (MPLM), the Italian-built Permanent Multi-Purpose Module (PMM) is currently berthed to the nadir port of Node 1. In the summer of 2015, the PMM will be relocated to the Node 3 forward port. The PMM can host up to 16 racks containing equipment, experiments, and supplies, and it has additional storage space for bags in the aft endcone.

Length	$6.67 \mathrm{~m}(21.7 \mathrm{ft})$
Diameter Exterior Interior	$4.5 \mathrm{~m}(14.76 \mathrm{ft})$ $4.21 \mathrm{~m}(13.81 \mathrm{ft})$
Mass	$4,428 \mathrm{~kg}(9,784 \mathrm{lb})$
Pressurized volume	$76.7 \mathrm{~m}^{3}\left(2708.6 \mathrm{ft}^{3}\right)$
Cargo capability	$9,000 \mathrm{~kg}(20,000 \mathrm{lb})$
Pressurized habitable volume	$31 \mathrm{~m}^{3}\left(1,095 \mathrm{ft}^{3}\right)$

NASA astronauts Chris Cassidy and Karen Nyberg along with European Space Agency astronaut Luca Parmitano are shown amongst cargo bags in the PMM.

View of Permanent Multipurpose Module (PMM) and Soyuz spacecraft.

Functional Cargo Block (FGB) Zarya (Sunrise)
 NASA/Boeing/Khrunichev State Research and Production Space Center

The FGB was the first launched element of the ISS, built in Russia under a U.S. contract. During the early stages of ISS assembly, the FGB was selfcontained, providing power, communications, and attitude control functions. Now, the FGB module is used primarily for storage and propulsion. The FGB was based on the modules of Mir.

Docking Compartment (DC) Pirs (Pier)

Russian Federal Space Agency (Roscosmos)/ S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Pirs serves as a docking port for the Russian Segment. Pirs also provides the capability for extravehicular activity (EVA) using Russian Orlan spacesuits. Additionally, Pirs provides systems for servicing and refurbishing the Orlan spacesuits. The nadir Docking System on Pirs provides a port for the docking of Soyuz and Progress vehicles. When the final Russian Multi-

Cosmonaut Oleg Kononenko with two Russian Orlan spacesuits in the Pirs Docking Compartment.

Progress supply vehicle docked to the Pirs DC-1.

Mini-Research Module 2 (MRM2) Poisk (Explore)

Russian Federal Space Agency (Roscosmos)/ S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Poisk, also known as the MRM2, is almost identical to the Pirs Docking Compartment. Poisk provides the capability for extravehicular activity (EVA) using Russian Orlan spacesuits. Additionally, Poisk provides systems for servicing and refurbishing the Orlan spacesuits.

The zenith docking system on Poisk provides a port for the docking of Soyuz and Progress logistics vehicles. Poisk also provides extra space for scientific experiments, including power supply outlets and data transmission interfaces for five external workstations (one three-port active and four passive) to accommodate science payloads for observation of the upper hemisphere and for exposure. The module is also equipped with three temporary internal workstations near the module's side windows to observe a local horizon plane and to accommodate payloads equipped with vacuum interfaces.

Exterior view of the Mini Research Module 2 (MRM2)/Poisk.

Mini-Research Module 1 (MRM1) Rassvet (Dawn)

Russian Federal Space Agency (Roscosmos)/ S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Rassvet, also known as the MRM1, is primarily used for cargo storage; being equipped with eight internal workstations, it serves as a mini-research laboratory for biological and biotechnological investigations, as well as for experiments in material sciences and fluid physics. The nadir docking system on Rassvet provides the fourth docking port on the Russian segment for the docking of Soyuz and Progress logistics vehicles. It was built from the pressurized hull of the Science Power Platform (SPP) dynamic test article. Moreover, the exterior of Rassvet carries a spare elbow joint for the European Robotic Arm and outfitting equipment for the Russian Multi-Purpose Laboratory Module (MLM), including a radiator, an airlock for payloads, and a checkout, and nominal operations.

Length	$6.0 \mathrm{~m}(19.7 \mathrm{ft})$
Maximum diameter	$2.35 \mathrm{~m}(7.7 \mathrm{ft})$
Mass	$5,075 \mathrm{~kg}(11,188 \mathrm{lb})$
Volume	$17.4 \mathrm{~m}^{3}\left(614 \mathrm{ft}^{3}\right)$ Launch date STS-132 ULF4
Attitude control	32 engines
Orbital maneuvering	2 engines

Portable Work Platform (PWP) provides EVA worksite on MLM for ERA activation, checkout, and nominal ops. $\because \cdot$...

View of the Rassvet Mini-Research Module 1 (MRM1) as it is mated with the Zarya Functional Cargo Block (FGB) nadir docking port.

Russian cosmonaut Oleg Skripochka uses the Russian Tekh-38 VETEROK ("Breeze") science hardware to take aero-ionic concentration measurements in the Rassvet Mini-Research Module 1 (MRM1).

Service Module (SM) Zvezda (Star)

Roscosmos/S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

The Service Module was the first fully Russian contribution, providing early living quarters, life-support system, electrical power distribution, data processing system, flight control system, and propulsion system. Its communications system still enables remote command capabilities from ground flight controllers. Although some of these systems were subsequently supplemented by U.S. systems, the Service Module remains the structural and functional center of the Russian segment of the ISS. The Service Module was intended primarily to support crew habitation but became the first

Pressurized Mating Adapters (PMAs)

NASA/Boeing

Three conical docking adapters, called Pressurized Mating Adapters, attach to the Nodes' berthing mechanisms. The other sides of the adapters allow for docking vehicles. PMA-1 connects the U.S. and Russian segments while PMA-2 and PMA-3 serve as docking ports for future commercial crew vehicles. PMA-2 is located on the Node 2 forward port and PMA-3 is currently located on Node 3 port. In the summer of 2015 PMA-3 will be relocated to the Node 2 zenith port. The ISS at that point will have two permanent docking ports.

Length	$1.86 \mathrm{~m}(6.1 \mathrm{ft})$
Width	$1.9 \mathrm{~m}(6.25 \mathrm{ft})$ at wide end, 1.37 m (4.5 ft) at narrow end
Mass of PMA-1 PMA-2 PMA-3	$\begin{aligned} & 1,589 \mathrm{~kg}(3,504 \mathrm{lb}) \\ & 1,376 \mathrm{~kg}(3,033 \mathrm{lb}) \\ & 1,183 \mathrm{~kg}(2,607 \mathrm{lb}) \end{aligned}$
Launch date	
PMAs 1 and 2	$\begin{aligned} & \text { December 4, } 1998 \\ & \text { STS-88 } \\ & \text { ISS-2A } \end{aligned}$
PMA-3	October 11, 2000 STS-92 ISS-3A

PMA-1, 2 and 3 structures are identical. The PMA structure is a truncated conical shell with a 28 inch axial offset in the diameters

View of Node 2, Pressurized Mating Adapter 2 (PMA-2) taken during Extravehicular Activity (EVA).

European Space Agency astronaut Paolo Nespoli and NASA astronaut Ron Garan pause for a photo during preparations to open the Pressurized Mating Adapter 2 (PMA-2) hatch.

Habitation

The habitable elements of the ISS are mainly a series of cylindrical modules.
Accommodations-including the waste management compartment and toilet, the galley, individual crew sleep compartments, and some of the exercise facilitiesare located in the Service Module (SM), Node 1, Node 2, Node 3, and the U.S. Laboratory.

Environmental Control and Life Support System (ECLSS)

Earth's natural life support system provides the air we breathe, the water we drink, and other conditions that support life. For people to live in space, however, these functions must be performed by artificial means. The CLSS includes compact and powerful systems that provide the crew with a comfortable environment in which to live and work.

The on-orbit ECLSS is supplemented by an vehicles provided by the international partnership and U.S. Commercial Resupply System (CRS) vehicles. Water can be resupplied via odine Compatible Water Containers (ICWCS) on SpaceX's Dragon, Orbital's Cygnus, or JAXA's H-II Transfer Vehicle (HTV). High pressure oxygen and nitrogen can be resupplied by these same vehicles via the Nitrogen/Oxygen Recharge System (NORS). The Russian Progress
also delvers water and also delvers water and atmospheric gas.

Acroymns
$\begin{array}{ll}\text { WPA } & \text { Water Processor Assembly } \\ \text { UPAA } \\ \text { OAfine Pocoesso Assembly } \\ \text { Oxvoen Generation Assembli }\end{array}$

Crew Health Care System (CHeCS)

The Crew Health Care System (CHeCS) is a suite of hardware on the ISS that provides the medical and environmental monitoring capabilities necessary to ensure the health and safety of crewmembers during long-duration missions. CHeCS is divided into four subsystems:

Countermeasures System (CMS) - The CMS provides the equipment and protocols for the performance of daily exercise to mitigate the deconditioning effects of living in a microgravity environment. The CMS hardware provides aerobic conditioning, interval and resistive training, and also works to preserve aerobic and anaerobic capacity, and muscular strength and endurance.

Environmental Health

System (EHS) - The EHS monitors the atmosphere for gaseous contaminants (i.e., from nonmetallic materials offs gassing, combustion products, and propellants), and microbial contamination levels from crewmembers and station activities. The EHS also monitors water quality and acoustics.
eaith Maintenance System (HMS) - The HMS provides infilight life support and resuscitation, medical care to respond to crew ilness and injury, preventative health care, and crew health monitoring capabilities.

The Radiation System

 The Radiation System characterizes the complex, multicomponent radiation environment to which the crew is exposed, and records the crewmembers' cumulative exposures. The ionizin radiation environment encountered by ISS consists of a mixture of primary and secondary radiation types:- Primary radiation varies as a function of ISS altitude and consists mostly of trapped protons, electrons, galactic cosmic radiation and solar flux.
- Secondary radiation products are produced by collisions of priman radiation with the ISS and its hardware inside, as well as insid the crewmembers' bodies.

Computers and Data Management

The system for storing and transferring information essential to operating the ISS has been functioning at all stages of assembly and provides control from various egments of the ISS. The Enhanced Processor and Integrated Communications upgrade in some of the Multiplexer/Demultiplexers (MDMs) has vastly improved the processing and memory margins; in addition to adding a new Ethernet interface. The Portable Computer System laptops provide the crew interface for commanding and monitoring the ISS Core Systems hardware and associated software.
software.

Destiny

Extravehicular Mobility Unit (EMU)

NASA/Hamilton Sundstrand/ILC Dover

The EMU provides a crewmember with life support and an enclosure that enables an EVA (Extravehicular Activity). The unit consists of two major subsystems: the Primary Life Support Subsystem (PLSS) and the Space Suit Assembly (SSA). The EMU provides atmospheric containment, thermal insulation, cooling, solar radiation protection, and micrometeoroid/orbital debris (MMOD) protection.

Suit's nominal pressure $\quad 0.3 \mathrm{~atm}(4.3 \mathrm{psi})$

Atmosphere	100% oxygen
Primary oxygen tank pressure	900 psi
Secondary oxygen tank pressure	6,000 psi (30-min backup supply)
Maximum EVA duration	8 h
Mass of entire EMU	143 kg (315 lb)
Suit life	25 EVA's or 6 years prior to returning to Earth

Suit Layers

 returning to Earth1. Thermal Micrometeoroid Garment (TMG). Cover: Ortho/KEVLAR® reinforced with GORE-TEX ${ }^{\text {. }}$
2. TMG Insulation. Five to seven layers of aluminized Mylar® (more layers on arms and legs).
3. TMG liner. Neoprene-coated nylon ripstop.
4. Pressure garment cover. Restraint: Dacron ${ }^{\circledR}$.
5. Pressure garment bladder. Urethane-coated nylon oxford fabric.
6. Liquid cooling garment. Neoprene tubing.

NASA astronaut Chris Cassidy participates in a session of extravehicular activity (EVA). During the six-hour, seven-minute spacewalk, Cassidy was preparing the space station for a new Russian module and performed additional installations on the station's backbone.

Orlan Spacesuit

Russian Federal Space Agency (Roscosmos)/ Science Production Enterprise Zvezda

The Orlan-MK spacesuit is designed to protect an EVA (Extravehicular Activity) crewmember from the vacuum of space, ionizing radiation, solar energy, and micrometeoroids. The main body and helmet of the suit are integrated and are constructed of aluminum alloy. Arms and legs are made of a flexible fabric material. Crewmembers enter from the rear via the backpack door, which allows rapid entry and exit without assistance. The Orlan-MK spacesuit is a "one-size-fits-most" suit.

Russian cosmonaut Alexander Misurkin, attired in a Russian Orlan spacesuit (blue stripes),participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station.

Mobile Servicing System (MSS)

Space Station Remote Manipulator System (SSRMS/ Canadarm2)
Special Purpose Dexterous Manipulator (SPDM/Dextre) Mobile Base System (MBS) Canadian Space Agency (CSA)

The Mobile Servicing System (MSS) is a sophisticated robotics suite that plays a critical role in the assembly, maintenance, and resupply of the ISS. The MSS Operations Complex in Saint Hubert, Quebec, is the ground base for the MSS, which is composed of three robots that can work together or independently. The MSS was built for the CSA by MacDonald, Dettwiler and Associates Ltd. (MDA).

	SSRMS	MBS	SPDM
Length/ height	$\begin{aligned} & 17.6 \mathrm{~m} \\ & (57 \mathrm{ft}) \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~m}(11.4 \\ & \mathrm{ft}) \end{aligned}$
Maximum diameter	$\begin{aligned} & .36 \mathrm{~m} \\ & (1.2 \mathrm{ft}) \end{aligned}$		$\begin{aligned} & .88 \mathrm{~m} \\ & (2.9 \mathrm{ft}) \end{aligned}$
Dimensions		$\begin{aligned} & 5.7 \times 4.5 \times \\ & 2.9 \mathrm{~m} \\ & (18.5 \times 14.6 \times \\ & 9.4 \mathrm{ft}) \end{aligned}$	
Mass	$\begin{aligned} & 1,497 \mathrm{~kg} \\ & (3,300 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 1,450 \mathrm{~kg} \\ & (3,196 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 1,662 \mathrm{~kg} \\ & (3,664 \mathrm{lb}) \end{aligned}$
Degrees of freedom	7		

Roll Joint Yaw Joint

Three components of MSS

The Space Station Remote Manipulator System (SSRMS), known as Canadarm2, is a 56-foot- long robotic arm that assembled the ISS module by module in space. It is regularly used to move supplies, equipment, and even astronauts, and captures free-flying spacecraft to berth them to the ISS.

The Special Purpose Dexterous Manipulator (SPDM), also known as Dextre, performs routine maintenance on the ISS. Equipped with lights, video equipment, a tool platform, and four tool holders, Dextre's dual-arm design and precise handling capabilities reduces the need for spacewalks.

The Mobile Base System (MBS) provides a movable work platform and storage facility for astronauts during spacewalks. With four grapple fixtures, it can serve as a base for both the Canadarm2 and the Special Purpose Dexterous Manipulator (SPDM) simultaneously.

Canadian Remote Power Controller Module (CRPCM)

Payload and Orbital Replacement Unit (ORU) Accommodation

Electrical Power System (EPS)

The EPS generates, stores, and distributes power and converts and distributes secondary power to users.

Guidance, Navigation, and Control (GN\&C)

The ISS is a large, free-flying vehicle. The attitude or orientation of the ISS with respect to Earth and the Sun must be controlled; this is important for maintaining thermal, power, and microgravity levels, as well as for communications.

The ISS GN\&C hardware consists of GPS receivers and antennas, rate gyro sensors, control moment gyros on the U.S. segment, and thrusters, star trackers, GPS receivers, and rate gyros on the Russian segment. The GPS receivers provide information about the location of the ISS, and the rate gyros provide information about the change in orientation of the ISS. Both U.S. and Russian segment GN\&C systems have extensive software to be able to determine and control the ISS orientation. The GN\&C system tracks the Sun, communications and navigation satellites, and ground stations. Solar arrays, thermal radiators, and communications antennas aboard the ISS are pointed using information from the GN\&C system.

The preferred method of attitude control is the use of Control Moment Gyroscopes (CMGs), sometimes called gyrodynes in other programs, mounted on the Z1 Truss segment. Each CMG has 98-kilogram (220-pound) flywheel that spins at 6,600 revolutions per minute (rpm). The high-rotational velocity and large mass of the flywheel allow a considerable amount of angular momentum to be stored. Each CMG has gimbals such that the flywheels can be repositioned. As the flywheel is repositioned, the resulting force orients the ISS. Using multiple CMGs permits the ISS to be moved to new attitudes or permits the attitude to be held constant. The advantages of this system are that it relies on electrical power generated by the solar arrays and that it provides smooth, continuously variable attitude control. CMGs are; however, limited in the amount of angular momentum they can provide and the rate at which they can move the station. When CMGs can no longer provide the requisite energy, Russian segment thrusters are used.

Thermal Control System (TCS)

The TCS maintains ISS temperatures within defined limits. The four components used in the Passive Thermal Control System (PTCS) are insulation, surface coatings, heaters, and heat pipes.

The Active Thermal Control System services point source heat loads such as electrical equipment on cold plates as well as providing heat rejection for the crew cabin using pumps to move heat rejection fluids through the vehicle. The water-based internal cooling loops are used in controlling humidity and removing heat loads generated by the crew and electronic equipment. This heat is transferred to interface heat exchangers located on the exterior of the vehicle. The interface heat exchangers flow water on one side, and transfer the heat to anhydrous ammonia flowing on the other side. The warmed ammonia rejects heat to space from the six large Heat Rejection Subsystem (HRS) radiators. There is a single independent PhotoVoltaic Thermal Control System (PVTCS) radiator for each of the four pairs of solar array wings that

Integrated Truss Assembly

The truss assemblies provide attachment points for the solar arrays, thermal control radiators, and external payloads. Truss assemblies also contain electrical and cooling mes, as well as the mobile transporter rails. The Integrated Thes which are shown in the figure, will be installed on the station so that they extend symmetrically from the center of the ISS.

At full assembly, the truss reaches 108.5 meters (356 feet) in length across the extended solar arrays. ITS segments are labeled in accordance with their location. P stands for "port," S stands for "starboard," and Z stands for "Zenith.

1 Solar Array Alpha Rotary Join
${ }_{2}$ Ammonia Tank Assembly
Assembly Contingency
4 Batteries
5 Battery Charge Discharge Uni
6 Beta Cimbal Assemblies
7 Cable Trays
${ }^{8}$ Charged Particle Directional Spectrometer
9 Direct Current Switching Unit (DCSU)
10 DC-to-DC Converter Unit (DDCU)
11 Deployed Thermal System Radiator
12 Grapple Fixture
13 Inboard Lower Camera
14 Main Bus Switching Units
15 Mast Storage Canister
16 Mobile Transporter Rails
17 Multiplexer/De-Multiplexers
18 Nitrogen Tank Assembly (interior to truss)
19 Outboard Lower Camera
${ }_{20}$ Photovoltaic Radiator
${ }_{22}^{21}$ Pump Flow Control Assembly

23 Pump Module
24 PVR Controller Unit
${ }^{25}$ PVR Grapple Fixture Bar
26 Radiator Beam Valve Module
27 Remote Power Control Modules
${ }^{2}$ Remote Power Control Modules
${ }_{29}$ S-Band Antenna
30 Solar Array Alpha Rotary Joint Drive
Lock Assembly
31 Solar Array Wing
32 Stowed Photovoltaic Raciator
33 Struts
34 Thermal Control System Radiator Beam
35 Thermal Radiator Rotary Joint with Flex Hose
Rotary Coupler
${ }^{36}$ Transponde
37 Trunnion
38 UHF Antenna
${ }^{39}$ Umbilical Mec
41 Unpressurized Cargo Carrier Attachment
42 Wireless Video System Antenna

Propulsion

Communications

The Communications \& Tracking (C\&T) System provides Radio Frequency (RF) links between ISS and the Mission Control Center-Houston (MCC-H), other ground control centers, and Payload Operations Centers (POCs) around the world via the Tracking \& Data Relay Satellite System provided by NASA's Space Network. These links support all ISS mission operations via real-time exchange of digital audio, video, and systems and payload data. It also enables the flight control team and POCs on the ground to control, operate and monitor performance of ISS systems and payloads.

The C\&T System provides the following:

- Two-way audio between crew aboard the ISS and with Control Centers, including exchange of audio and receipt of video from Extravehicular Activity (EVA) crew.
- Downlink of high-rate payload science data to MCC-H and the Payload Operations \& Integration Center (POIC) for distribution to payload scientists.
- Two-way crew support (email, daily planning products, family \& medical teleconferencing, IP Phone, public affairs broadcasts).
- Transmission of multiple video channels to the ground.
- Communications with Visiting Vehicles including the new Common Communications for Visiting Vehicles (C2V2) system currently in development for use by future Commercial Crew and Commercial Cargo/ Resupply vehicles.

Ku band radio in U.S. Lab.

UHF antenna on the P1 Truss.

Ku band radio on exterior of ISS.

Russian cosmonaut Yuri Onufrienko during communications pass.

Crewmembers performing a public affairs event in Kibo.

Micrometeoroid and Orbital Debris (MMOD) Protection

Spacecraft in low-Earth orbit are continually impacted by meteoroids and orbital debris. Most of the meteoroids and debris are small and cause little damage. A small fraction of the meteoroid and debris populations, however, are larger and can cause severe damage in a collision with a spacecraft.

The International Space Station (ISS) is the largest spacecraft ever built. With the completion of assembly more than $11,000 \mathrm{~m}^{2}\left(118,400 \mathrm{ft}^{2}\right)$ of surface area is exposed to the space environment. Due to its large surface area, its long planned lifetime, and the potential for a catastrophic outcome of a collision, protecting the ISS from meteoroids and debris poses a unique challenge.

Many ISS elements are shielded from impacts. The primary shielding configurations are:

- Whipple shield is a two layer shield consisting of an outer bumper, usually aluminum, spaced some distance from the module pressure shell wall; the bumper plate is intended to break up, melt, or vaporize a particle on impact. This type of shield is used where few MMOD impacts are expected (aft, nadir and zenith areas of ISS.)
- Stuffed Whipple shield consists of an outer bumper, an underlying blanket of Nextel ceramic cloth, and Kevlar fabric to further disrupt and disperse the impactor spaced a distance from the module pressure shell. Because these shields have a higher capability than Whipple shields, they are used where more MMOD impacts are expected to occur (front and starboard/port sides of ISS).

Windows are generally multi-pane with separate and redundant pressure panes, as well as an outer debris pane and/or shutter to provide protection from MMOD. Other critical areas, such as electrical, data, and fluid lines on the truss and radiator panels, are toughened with additional protective layers to prevent loss from MMOD impacts.

Exterior view of the Cupola Module and Japan Aerospace Exploration agency astronaut Koichi Wakata inside, looking out through one of the windows.

U.S. Lab in orbit, above, NASA astronaut Ken Bowersox uses camera at window with partially deployed shutter; to right, window shutter fully deployed; outer debris shields are visible.

A 5 inch long by 4 inch wide hole found in 2014 in a port-side radiator for the solar array power system. No coolant leak occurred due to this impact damage.

Threat Directions

Micrometeoroids may approach the ISS from any direction but are less likely from below, where earth acts as a shield. debris will typically approach ISS on a path roughly parallel with earth's surface and from the side or front.

Launched in 1998 and involving the U.S., Russia, Canada, Japan, and the participating countries of the European Space Agencythe International Space Station is one of the most ambitious international collaborations ever attempted. It has been visited by astronauts from 14 countries.

Operating the space station is even more complicated than other space flight endeavors because it is an international program. The station requires the support of facilities on the Earth managed by all of the international partner agencies, countries and commercial entities involved in the program.

ISS Operations and Management

CSA Headquarters

Mobile Servicing System Control and Training
Saint-Hubert, Quebec, Canada

European Astronaut Centre
Cologne, Germany

Telescience Support Center
Glenn Research Center Cleveland, Ohio, U.S.

Telescience Support Center
Ames Research Center Moffett Field, California, U.S.

ISS Training
Program Management
Mission Control Johnson Space Center Houston, Texas, U.S.

NASA Headquarters
Washington D.C., U.S.
Launch Control
Kennedy Space Center
Florida, U.S:
Payload Operations Center
Marshall Space Flight Center
HUntsville, Alabama, U.S.

ESA European Space

Research and Technology
Centre (ESTEC)
Noordwijk, Netherlands

ISS Mission Control
Korolev, Russia
Roscosmos Headquarters
Moscow, Russia

Gagarin Cosmonaut Training Center (GCTC) Star City, Russia

Columbus Control Center
Oberpfaffenhofen, Germany

\rightarrow Russian Launch Control

 Baikonur Cosmodrome Baikonur, KazakhstanESA Headquarters Paris, France
ESA Headquarters Paris, France

JEM HTV Control Center and Crew Training Tsukuba, Japan Crew Training Tsukuba, Japan

H-II Launch Control
Tanegashima, Japan

JAXA Headquarters Tokyo, Japan

Canada

Canadian Space Agency (CSA)

Mobile Servicing System (MSS) Operations Complex (MOC)

Located in Saint-Hubert, Quebec, the MSS Operations Complex is composed of the following facilities:

- Remote Multipurpose Support Room (RMPSR)
- Operations Engineering Centre (OEC)
- MSS Operations and Training System (MOTS)
- Canadian MSS Training Facility (CMTF)

These facilities provide the resources, equipment and expertise for the engineering and monitoring of the MSS, as well as the facilities for training crew and flight controllers on Canadian robotic systems.

Payload Telescience Operations Centre (PTOC)
The PTOC in Saint Hubert supports real-time operations for Canadian payloads onboard the ISS.
http://www.asc-csa.gc.ca

Europe

European Space Agency (ESA)

European Space Research and Technology Centre (ESTEC)

The European Space Research and Technology Centre in Noordwijk, the Netherlands, is the largest ESA establishment, a test center and hub for European space activities. It has responsibility for the technical preparation and management of ESA space projects and provides technical support to ESA's ongoing satellite, space exploration, and human space activities.

Columbus Control Centre (Col-CC)

The COL-CC, located at the German Aerospace Center (DLR), in
Oberpfaffenhofen, near Munich, Germany, controls and operates the Columbus, laboratory and coordinates the operation of European experiments.

Guiana Space Centre (GSC)

Europe's Spaceport is situated in the northeast of South America in French Guiana. Initially created by CNES, it is jointly funded and used by both the
French space agency and ESA as the launch site for the Ariane 5 vehicle.

European Astronaut Centre (EAC)

The European Astronaut Centre of the European Space Agency is situated in Cologne, Germany:It was established in 1990 and is the home base of the 13 European astronauts who are members of the European Astronaut Corps.

User Centers

User Support and Operation Centers (USOCs) are based in national centers distributed throughout Europe: These centers are responsible for the use and implementation of European payloads aboard the ISS.

ese

Russia

Roscosmos, Russian Federal Space Agency
Roscosmos oversees all Russian human space flight activities.

Moscow Mission Control Center (TsUP)

Moscow Mission Control Center is the primary Russian facility for the control of Russian human spaceflight activities and operates the ISS Russian segment. It is located in Korolev, outside of Moscow, at the Central Institute of Machine building (TsNIIMASH) of Roscosmos.

Gagarin Research and Test Cosmonaut Training Center (GCTC)

The Gagarin cosmonaut training center, at Zvezdny Gorodok (Star City), near Moscow, provides full-size trainers and simulators of all Russian ISS modules, a water pool used for spacewalk training, centrifuges to simulate g-forces during liftoff, and a planetarium used for celestial navigation.

Baikonur Cosmodrome

The Baikonur Cosmodrome, in Kazakhstan, is the chief launch center for both piloted and unpiloted space vehicles. It supports the Soyuz and Proton

Greva nonę̃ TIIK 'Cows TMA-IO'
 launch vehicles and plays an essential role in the deployment and operation of the ISS.

United States of America

National Aeronautics and Space Administration (NASA)

NASA Headquarters (HQ)

NASA Headquarters in Washington, DC, exercises management over the NASA Field Centers, establishes management policies, and analyzes all phases of the ISS program.

Johnson Space Center (JSC)

Johnson Space Center in Houston, TX, directs the ISS program. Mission control operates the U.S. On-orbit Segment (USOS) and manages activities across the ISS in close coordination with the international partner control centers. JSC is the primary center for spacecraft design, development, and mission integration. JSC is also the primary location for crew training. Commercial Resupply Services contracts with OrbitaIATK and SpaceX U.S. commercial companies are managed by JSC to provide reliable commercial cargo transportation that is critical for the continued support of the ISS research community. NASA's contract strategy enabled the contractor's responsibility to provide an end to end service while meeting milestone payment and mission success criteria. NASA's key focus is managing the research, cargo and safety aspects for each mission to the ISS. A followon contract for ISS services will expand the vehicle research capability and promote further U.S. space industry competition.

Kennedy Space Center (KSC)

Kennedy Space Center in Cape Canaveral, FL, prepared the ISS modules and Space Shuttle orbiters for each mission, coordinated each countdown, and managed Space Shuttle launch and post-landing operations. The goal of NASA's Commercial Crew Program (CCP) Commercial Crew Transportation Capability will enable NASA to ensure crew transportation system is safe, reliable and cost-effective. The certification process will assess progress throughout the production and testing of one or more integrated space transportation systems, which include rockets, spacecraft, missions and ground operations. Requirements also include at least one crewed flight test to the space station before NASA certification of a U. S. spacecraft can be granted. CCP missions will then provide ISS crew rotation and double the amount of critical science research being performed on-orbit.

Marshall Space Flight Center (MSFC)

Marshall Space Flight Center's Payload Operations and Integration Center (POIC) controls the operation of U.S. experiments and coordinates partner experiments aboard the ISS. MSFC oversaw development of most U.S. modules and the ISS ECLSS system.

Telescience Support Centers (TSCs)

Telescience Support Centers around the country are equipped to conduct science operations on board the ISS. These TSCs are located at Marshall Space Flight Center in Huntsville, AL; Ames Research Center (ARC) in Moffett Field, CA; Glenn Research Center (GRC) in Cleveland, OH; and Johnson Space Center in Houston, TX.

http://www.nasa.gov

Soyuz

Roscosmos
 Russia

Proton
\qquad

H-IIB

JAXA
Japan

Ariane
2008-2015
ESA
Europe

Shuttle
1998-2011
NASA
United States

	Russia		Japan	Europe	U.S.
	Soyuz SL-4	Proton SL-12	H-IIB	Ariane 5	Space Shuttle
First launch to ISS	2000	1998	2009	2008	1998
Launch site(s)	Baikonur Cosmodrome	Baikonur Cosmodrome	Tanegashima Space Center	Guiana Space Center	Kennedy Space Center
Launch performance payload capacity	$\begin{gathered} 7,150 \mathrm{~kg} \\ (15,750 \mathrm{lb}) \end{gathered}$	$\begin{aligned} & 20,000 \mathrm{~kg} \\ & (44,000 \mathrm{lb}) \end{aligned}$	$\begin{gathered} 16,500 \mathrm{~kg} \\ (36,400 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 18,000 \mathrm{~kg} \\ (39,700 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 18,600 \mathrm{~kg} \\ (41,000 \mathrm{lb}) \\ 105,000 \mathrm{~kg}(230,000 \mathrm{lb}), \\ \text { orbiter only } \end{gathered}$
Return performance payload capacity	N/A	N/A	N/A	N/A	$\begin{gathered} 18,600 \mathrm{~kg} \\ (41,000 \mathrm{lb}) \\ 105,000 \mathrm{~kg}(230,000 \mathrm{lb}), \\ \text { orbiter only } \end{gathered}$
Number of stages	$2+4$ strap-ons	4 + 6 strap-ons	$2+4$ strap-ons	$2+2$ strap-ons	$1.5+2$ strap-ons
Length	$\begin{aligned} & 49.5 \mathrm{~m} \\ & (162 \mathrm{ft}) \end{aligned}$	$\begin{gathered} 57 \mathrm{~m} \\ (187 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 57 \mathrm{~m} \\ (187 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 51 \mathrm{~m} \\ (167 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 56.14 \mathrm{~m} \\ (18.2 \mathrm{ft}) \\ 37.24 \mathrm{~m}(122.17 \mathrm{ft}), \\ \text { orbiter only } \end{gathered}$
Mass	$\begin{aligned} & 310,000 \mathrm{~kg} \\ & (683,400 \mathrm{lb}) \end{aligned}$	$\begin{gathered} 690,000 \mathrm{~kg} \\ (1,521,200 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 531,000 \mathrm{~kg} \\ (1,170,700 \mathrm{lb}) \end{gathered}$	$\begin{gathered} 746,000 \mathrm{~kg} \\ (1,644,600 \mathrm{lb}) \end{gathered}$	$\begin{aligned} & 2,040,000 \mathrm{~kg} \\ & (4,497,400 \mathrm{lb}) \end{aligned}$
Launch thrust	$\begin{gathered} 6,000 \mathrm{kN} \\ (1,348,800 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 9,000 \mathrm{kN} \\ (2,023,200 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 5,600 \mathrm{kN} \\ (1,258,900 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 11,400 \mathrm{kN} \\ (2,562,820 \mathrm{lbf}) \end{gathered}$	$\begin{gathered} 34,677 \mathrm{kN} \\ (7,795,700 \mathrm{lbf}) \end{gathered}$
Payload examples	Soyuz Progress Pirs	Service Module Functional Cargo Block (FGB) Multipurpose Lab Module (MLM)	H-II Transfer Vehicle (HTV)	Ariane Automated Transfer Vehicle (ATV)	Shuttle Orbiter, Nodes 1-3, U.S. Lab, JEM, Truss elements, Airlock, SSRMS

Soyuz

Russian Federal Space Agency (Roscosmos)/ S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Soyuz spacecraft have been in use since the mid-1960s and have been upgraded periodically. Soyuz can support independently three suited crewmembers for up to 5.2 days and be docked to the ISS up to 200 days. The vehicle has an automatic docking system and may be piloted automatically or by a crewmember. The Soyuz provides transportation of Crewmembers and cargo to/from the ISS. The Soyuz is comprised of 3 modules, the Descent module is the only one which returns to Earth.

Soyuz spacecraft approaching the International Space Station.

Cosmonaut Anton Shkaplerov reviews procedures in the descent module of a docked Soyuz TMA-1 spacecraft.

Mission Sequence

Progress

Russian Federal Space Agency (Roscosmos)/ S.P. Korolev Rocket and Space Corporation Energia (RSC Energia)

Progress is a resupply vehicle used for dry cargo, propellant, water, and gas deliveries to the ISS. Once docked to the ISS, Progress engines can boost the ISS to higher altitudes and control the orientation of the ISS in space. Typically, four Progress vehicles bring supplies to the ISS each year. Progress is based upon the Soyuz design, and it can either work autonomously or can be flown remotely by crewmembers aboard the ISS. After a Progress vehicle is filled with trash from the ISS, and after undocking and deorbit, it is incinerated in Earth's atmosphere at the end of its mission. During its autonomous flight (up to 30 days), Progress can serve as a remote free-flying research laboratory for conducting space experiments.

JAXA H-II Transfer Vehicle (HTV)

Japan Aerospace Exploration Agency (JAXA)/ Mitsubishi Heavy Industries, Ltd.

The H-II Transfer Vehicle is an autonomous logistical resupply vehicle designed to berth to the ISS using the Space Station Remote Manipulation System (SSRMS). HTV offers the capability to carry logistics materials in both its internal pressurized carrier and in an unpressurized carrier for exterior placement. It is launched on the $\mathrm{H}-\mathrm{II}$ unmanned launch vehicle and can carry dry cargo, gas and water. After fresh cargo is unloaded at the ISS, the HTV is loaded with trash and waste products; after unberthing and deorbit, it is

Tanegashima Launch Facility control room.
Length
$9.2 \mathrm{~m}(30 \mathrm{ft})$
Maximum diameter $\quad 4.4 \mathrm{~m}(14.4 \mathrm{ft})$
Launch mass $\quad 16,500 \mathrm{~kg}(36,375 \mathrm{lb})$

Cargo upload capacity	$5,500 \mathrm{~kg}(12,125 \mathrm{lb})$

View of H-II Transfer Vehicle (HTV) docked to Node 2.

Space Shuttle Orbiter/ Discovery, Atlantis, Endeavour

NASA/Boeing

1981-2011

Between the first assembly launch using the Space Shuttle on December 4, 1998, and the final landing on July 21, 2011, NASA's space shuttle fleet Discovery, Atlantis and Endeavour - helped construct the largest structure in space, the International Space Station. The Space Shuttle was used to deliver most of the ISS modules and major components. It also provided crew rotation (beginning in November, 2001), science and maintenance cargo delivery, and is the only vehicle that provided the capability to return significant payloads.

Length	$37.2 \mathrm{~m}(122.2 \mathrm{ft})$
Height	$17.3 \mathrm{~m}(56.7 \mathrm{ft})$
Wingspan	$23.8 \mathrm{~m}(78 \mathrm{ft})$
Typical mass	$104,000 \mathrm{~kg}(230,000 \mathrm{lb})$
Cargo capacity	$16,000 \mathrm{~kg}(35,000 \mathrm{lb})$ (typical launch and return to
Pressurized habitable	$74 \mathrm{~m}^{3}(2,625 \mathrm{ft})$
volume	$7-16$ days, typical
Mission length	7, typical
Number of crew	$0 x y g e n-n i t r o g e n$
Atmosphere	$18.3 \mathrm{~m}(60 \mathrm{ft})$
Cargo Bay	$4.6 \mathrm{~m}(15 \mathrm{ft})$
Length	Diameter

Maneuvering
Engines:

Orbital and
Attitude Maneuvering
System Pod

Access Hatch
Crew
Access Hatch
Payload Bay Door Hinges

A portion of the International Space Station and the docked space shuttle Endeavour.

Space shuttle Atlantis launches from Launch Pad 39A at Kennedy Space Center on the STS-135 mission, the final flight of the Space Shuttle Program (SSP).

Automated Transfer Vehicle (ATV)

European Space Agency (ESA)/European Aeronautic

 Defence and Space Co. (EADS) 2008-2015The European Space Agency Automated Transfer Vehicle was an autonomous logistical resupply vehicle that provided the crew with dry cargo, atmospheric gas, water, and propellant. After the cargo was unloaded, the ATV was reloaded with trash and waste products, undocked, and was incinerated during reentry. Five ATVs, Jules Verne, Johannes Kepler, Edoardo Amaldi, Albert Einstein, and Georges Lemaître were launched, with the first in March 2008. The last ATV was undocked from ISS in February 2015, ending

Length	$10.3 \mathrm{~m}(33.8 \mathrm{ft})$
Maximum diameter	$4.5 \mathrm{~m}(14.8 \mathrm{ft})$
Span across solar arrays	$22.3 \mathrm{~m}(73.2 \mathrm{ft})$
Launch mass	$20,750 \mathrm{~kg}(45,746 \mathrm{lb})$
Cargo upload capacity	$7,667 \mathrm{~kg}(16,903 \mathrm{lb})$
Engine thrust	$1,960 \mathrm{~N}(441 \mathrm{lbf})$
Orbital life	6 mo
Cargo Load	

Dry cargo such as bags $\quad 5,500 \mathrm{~kg}(12,125 \mathrm{lb})$

ESA astronaut André Kuipers floats into the ATV.

View of European Space Agency (ESA) Edoardo Amaldi Automated Transfer Vehicle-3 (ATV-3) approaching the International Space Station (ISS).

Requirements and Benefits

Commercial Crew Requirements for International Space Station Missions

- Transport 4 NASA or NASA-sponsored crew members
- Transport 220.5 pounds of pressurized cargo
- Stay on orbit docked to the station for up to 210 days
- Serve as a safe haven and act as a lifeboat in case of an emergency
- Able to quickly return to Earth for time-sensitive cargo

Commercial Crew Benefits

- Cost-Effective: Developing safe, reliable and costeffective crew transportation to the International Space Station that reduces reliance on foreign systems.
- American Ingenuity: Lowering the cost of access to space and enhancing the U.S. industrial base.
- NASA's Commercial Crew Program partner companies, and their providers and suppliers, are leading a truly national effort.
- More than 150 companies across 37 states are applying their most efficient and innovative approaches to get astronauts back into space on American-led spacecraft and rockets.
- American companies have the flexibility to determine the design details and development approach for state-of-the-art U.S.-based transportation systems to and from the International Space Station and to develop other space markets in low-Earth orbit.
- Journey to Mars: Using limited resources wisely to enable deep space capabilities.
- NASA is on a dual path for human exploration. By turning over low-Earth orbit flights to the commercial aerospace industry, NASA can pursue the challenges of deep space exploration and our journey to Mars.
- Focus on Science: Two times more research.
- The International Space Station crew spends about 35 hours each week conducting research in Earth, space, physical and biological sciences to advance scientific knowledge for the benefit of people living on Earth.
- NASA requires these spacecraft to carry a crew of four, enabling the station crew to expand from six to seven astronauts and cosmonauts.
- It only takes six crew members to maintain the station, so an extra person translates to 40 additional hours of crew time for research.

Antares and Cygnus

Orbital ATK

The Cygnus missions are launched on an Antares from the NASA Wallops Flight Facility on Wallops Island, Virginia. The first stage is powered by two RD-181 engines, and the second stage is a Castor 30XL. The spacecraft that launches on the Antares is called the Cygnus. The Cygnus spacecraft is an automated logistical resupply vehicle designed to rendezvous with the ISS and is grappled and berthed using the Space Station Remote Manipulator System (SSRMS). The Cygnus has a Pressurized Cargo Module (PCM) that brings cargo (logistics and utilization) to the ISS. The other section of the spacecraft is the Service Module (SM), which houses the avionics, electrical, propulsion, and guidance systems. After cargo is transferred to the ISS, Cygnus is then loaded with trash for disposal. Once the mission is complete, the Cygnus unberths from the ISS and is destroyed (incinerated) upon re-entry into the Earth's atmosphere.

Antares

Height	40.1 m
Diameter	3.9 m
Mass at launch	$290,000-310,000 \mathrm{~kg}$
First stage thrust	4.17 MN
Second stage thrust	533 kN

Cygnus

PCM Length	5.1 m
Diameter	3.05 m
Maximum Upmass Pressurized	$3200-3500 \mathrm{~kg}$
Maximum Downmass Pressurized	3500 kg
Maximum Upmass Unpressurized	0
Maximum Downmass Unpressurized	0
Payload volume Pressurized	$26 \mathrm{~m}^{3}$

Falcon 9 and Dragon

Space Exploration Technologies (SpaceX)

The SpaceX missions are launched on a Falcon 9 from Launch Complex 40 at Cape Canaveral Air Force Station, Florida. The first stage is powered by nine SpaceX Merlin engines, and the second stage is also a single SpaceX Merlin engine. The spacecraft that launches on the Falcon 9 is called the Dragon.

The Dragon spacecraft is an automated logistical resupply vehicle designed to rendezvous with the ISS and is grappled and berthed using the Space Station Remote Manipulator System (SSRMS).

The Dragon has a capsule section for delivering pressurized cargo, and another section called the "trunk" is used to deliver unpressurized cargo to the ISS. Once the mission is complete, the Dragon unberths from the ISS. The trunk is jettisoned and destroyed during reentry into the atmosphere, whereas the Dragon capsule, with its valuable pressurized return cargo, reenters the Earth's atmosphere and lands in the ocean with the use of parachutes. The Dragon capsule is recovered by SpaceX and is transported back to their facility for return cargo processing.

SpaceX's Dragon cargo capsule is seen here docked to the Earth facing port of the Harmony module.

Falcon 9

Height	48.1 m (157.80 ft)
Diameter	3.66 m (12 ft)
Mass at launch	$313,000 \mathrm{~kg}(690,047 \mathrm{lb})$
First stage thrust	3.80 MN (854,000 lb)
Second stage thrust	414 kN (93,000 lb)
Dragon	
Height	5.1 m (16.73 ft)
Diameter	3.66 m (12 ft)
Maximum Pressurized Cargo Up mass/volume Down mass/volume	$\begin{aligned} & 3,310 \mathrm{~kg}(7,297 \mathrm{lb}) \\ & 6.8 \mathrm{~m}^{3}\left(240 \mathrm{ft}^{3}\right) \\ & 2,500 \mathrm{~kg}(5,512 \mathrm{lb}) \\ & 6.8 \mathrm{~m}^{3}\left(240 \mathrm{ft}^{3}\right) \end{aligned}$
Maximum Unpressurized Cargo Up mass/volume Down mass/volume	$\begin{aligned} & 3,310 \mathrm{~kg}(7,297 \mathrm{lb}) \\ & 14 \mathrm{~m}^{3}\left(494 \mathrm{ft}^{3}\right) \\ & 2,600 \mathrm{~kg}(5,732 \mathrm{lb}) \\ & 14 \mathrm{~m}^{3} \text { Disposed }\left(494 \mathrm{ft}^{3}\right) \end{aligned}$
Payload volume Pressurized Unpressurized	$\begin{aligned} & 10 \mathrm{~m}^{3}\left(245 \mathrm{ft}^{3}\right) \\ & 14 \mathrm{~m}^{3}\left(490 \mathrm{ft}^{3}\right) \end{aligned}$

憵

nipll
 $*$

ISS Expanded View

ISS Expanded View prior to the ISS

ISS Expanded View post the ISS

 reconfiguration in the summer of 2015

Principal Stages in Construction

The ISS is the largest human made object ever to orbit the Earth. The ISS has a mass of $410,501 \mathrm{~kg}(905,000 \mathrm{lbs})$ and a pressurized volume of approximately 916 m3 ($32,333 \mathrm{ft} 3$). The ISS can generate up to 80 kilowatts of electrical power per orbit from solar arrays which cover an approximate area of $2,997 \mathrm{~m} 2(32,264 \mathrm{ft} 2)$. The ISS structure measures $95 \mathrm{~m}(311 \mathrm{ft})$ from the P6 to S6 trusses and $59 \mathrm{~m}(193 \mathrm{ft})$ from PMA2 to the Progress docked on the aft of the Russian Service Module. The ISS orbital altitude can range from 278-460 km (150-248 nautical miles) and is in an orbital inclination of 51.6 degrees. The ISS currently houses 6 crew members.

Building the ISS required 36 Space Shuttle assembly flights and 5 Russian launches. Currently, logistics and resupply are provided through a number of vehicles including the Russian Progress and Soyuz, Japanese H-II Transfer Vehicle (HTV), and commercial cargo vehicles (Dragon and Cygnus). Previous vehicles that have been retired include the Space Shuttle and the European Automated Transfer Vehicle (ATV).

A=U.S. Assembly
E=European Assembly
J=Japanese Assembly
LF=Logistics
R=Russian Assembly
UF=Utilization
ULF=Utilization/Logistics

$\begin{aligned} & \text { Stage/ } \\ & \text { Date } \end{aligned}$	Element Added	Launch Vehicle	ISS Picture
1A/R November 1998	Functional Cargo Block (FGB)	Proton	
2A December 1998	Node 1, Pressurized Mating Adapter (PMA) 1, 2	Space Shuttle STS-88	
1R July 2000	Service Module (SM)	Proton	
3A October 2000	 Zenith 1 (Z1) Truss, PMA 3	Space Shuttle STS-92	

Stage/ Date	Element Added	Launch Vehicle	ISS Picture
4A December 2000	 Port 6 (P6) Truss	Space Shuttle STS-97	
5A February 2001	U.S. Laboratory (Lab)	Space Shuttle STS-98	
5A. 1 March 2001	External Stowage Platform (ESP) 1	Space Shuttle STS-98	
6A April 2001	Space Station Remote Manipulator System (SSRMS)	Space Shuttle STS-100	

ISS Expeditions and Crews

| 28 | 32 |
| :--- | :--- | :--- | :--- |

			End September 11, 2014 165 days on ISS	Aleksandr Skvortsov Oleg Artemyev Gregory R. Wiseman Maksim Surayev $=$ Alexander Gerst
			Start September 11, 2014 End November 10, 2014 167 days on ISS	
				Alexander Gerst Aleksandr Samokutyayev Yelena Serova Barry E. Wilmore
			Start November 10, 2014 End March 12, 2015 169 days on ISS	
				Yelena Serova Anton Shkaplerov Samantha Cristoforetti Terry W. Virts
			Start March 12, 2015 End May 13, 2015	$\begin{aligned} & \text { Anton Shkaplerov } \\ & \text { Samantha Cristoforetti } \end{aligned}$
	Start March 11, 2014 End May 13, 2014 169 days on ISS			$\begin{aligned} & \text { Scott Kelly } \\ & \text { Mikhail Kornienko } \\ & \text { Genady Padalka } \end{aligned}$
		11	Start May 13, 2015 End September 11, 2015	

For information on current mission, visit http://www.nasa.gov/mission_pages/station/expeditions/index.html

STS Missions and Crews

Space Shuttle Missions to the ISS

	Launched December 4, 1998 Landed December 15, 1998 12 days		$\begin{aligned} & \text { ISS Flight } \\ & \frac{3 \mathrm{~A}}{\text { STS-92 }} \\ & \text { Discovery } \end{aligned}$	Launched October 11, 2000 Landed October 24, 2000 13 days	- Brian Duffy - Pamela A. Melroy - Leroy Chiao - William S. McArthur - Peter J. K. Wisoff - Michael E. Lopez-Alegria - Koichi Wakata
ISS Flight $\frac{2 \mathrm{A.}_{1} 1}{\text { STS-96 }}$	Launched May 27, 1999 Landed June 6, 1999 10 days		$\begin{aligned} & \text { ISS Flight } \\ & \frac{4 \mathrm{~A}}{\text { STS-97 }} \\ & \text { Endeavour } \end{aligned}$	Launched November 30, 2000 Landed December 11, 2000 11 days	- Brent W. Jett - Michael J. Bloomfield - Joseph R. Tanner - Carlos I. Noriega -1 Marc Garneau
$\begin{aligned} & \text { ISS Flight } \\ & \frac{2 A .2 a}{\substack{\text { STS-101 } \\ \text { Atlantis }}} \end{aligned}$	Launched May 19, 2000 Landed May 29, 2000 10 days	- James D. Halsell - Scott J. Horowitz - Mary E. Weber - Jeffrey N. Williams - James S. Voss - Susan J. Helms - Yury Usachev	ISS Flight 5 A STS-98 Atlantis	Launched February 7, 2001 Landed February 20, 2001 13 days	
$\begin{aligned} & \text { ISS Flight } \\ & \frac{2 \mathrm{~A} .2 \mathrm{~b}}{\substack{\text { STS-106 } \\ \text { Atlantis }}} \end{aligned}$	Launched September 8, 2000 Landed September 20, 2000 12 days	$=$ Terrence W. Wilcutt $=$ Scott D. Altman $=$ Edward T. Lu $=$ Richard A. Mastracchio Daniel C. Burbank Yuri Malenchenko Boris Morukov	ISS Flight $\frac{5 \mathrm{~A} .1}{\substack{\text { STS-102 } \\ \text { Discovery }}}$	Launched March 8, 2001 Landed March 21, 2001 12 days	- James D. Wetherbee - James M. Kelly - Paul W. Richards - Andrew S. W. Thomas - Yury Usachev - James S. Voss - Susan J. Helms

ISS Flight $\frac{6 A}{\text { STS-100 }}$ Endeavour	Launched April 19, 2001 Landed May 1, 2001 12 days	- Kent V. Rominger - Jeffrey S. Ashby - John L. Phillips - Scott E. Parazynski I*\\| Chris A. Hadfield I. Umberto Guidoni - Yuri Lonchakov		Launched April 8, 2002 Landed April 19, 2002 11 days	- Michael J. Bloomfield - Stephen N. Frick - Jerry L. Ross - Steven L. Smith - Ellen L. Ochoa - Lee M. E. Morin - Rex J. Walheim
ISS Flight 7A STS-104 Atlantis	Launched July 12, 2001 Landed July 24, 2001 13 days	- Steven W. Lindsey - Charles O. Hobaugh - Michael L. Gernhardt - Janet L. Kavandi - James F. Reilly	$\begin{aligned} & \text { ISS Flight } \\ & \text { UF-2 } \\ & \hline \text { STS-111 } \end{aligned}$ Endeavour	Launched June 5, 2002 Landed June 19, 2002 11 days	- Kenneth D. Cockrell - Paul S. Lockhart - Franklin R. Chang-Diaz - Philippe Perrin - Valery Korzun - Sergei Treshchev - Peggy A. Whitson
ISS Flight 7A.1 STS-105 Discovery	Launched August 10, 2001 Landed August 22, 2001 10 days		ISS Flight 9A STS-112 Atlantis	Launched October 7, 2002 Landed October 18, 2002 11 days	- Jeffrey S. Ashby - Pamela A. Melroy - David A. Wolf - Sandra H. Magnus - Piers J. Sellers - Fyodor Yurchikhin
$\begin{aligned} & \text { ISS Flight } \\ & \text { UF-1 } \\ & \hline \text { STS-108 } \end{aligned}$ Endeavour	Launched December 5, 2001 Landed December 17, 2001 12 days		ISS Flight STS-113 Endeavour	Launched November 23, 2002 Landed December 7, 2002 14 days	- James D. Wetherbee - Paul S. Lockhart - Michael E. Lopez-Alegria - John B. Herrington - Kenneth D. Bowersox - Donald R. Pettit - Nikolai Budarin

ISS Flight
STS-114
Discovery

Soyuz ISS Missions

ISS Flight $2 R$ Soyuz TM-31	Launched October 31, 2000 Undocked May 6, 2001 186 days		ISS Flight $6 S$ Soyuz TMA-2	Launched April 26, 2003 Undocked October 27, 2003 185 days	- Yuri Malenchenko - Edward T. Lu
ISS Flight $2 S$ Soyuz TM-32	Launched April 28, 2001 Undocked October 31, 2001 186 days		ISS Flight $7 S$ Soyuz TMA-3	Launched October 18, 2003 Undocked April 29, 2004 192 days	
ISS Flight 3S Soyuz TM-33	Launched October 21, 2001 Undocked May 5, 2002 196 days		ISS Flight 8 SS Soyuz TMA-4		- Gennady Padalka - Michael Fincke - André Kuipers
ISS Flight 4S Soyuz TM-34			ISS Flight 9S Soyuz TMA-5	Launched October 14, 2004 Undocked April 24, 2005 193 days	$\begin{aligned} & \text { - Salizhan Sharipov } \\ & \text { = Leroy Chiao } \\ & \text { Yuri Shargin } \end{aligned}$
ISS Flight $5 S$ Soyuz TMA-1	Launched October 20, 2002 Undocked May 3, 2003 186 days		ISS Flight $10 S$ Soyuz TMA-6	Launched April 15, 2005 Undocked October 10, 2005 180 days	

ISS Flight 11S Soyuz TMA-7	Launched October 1, 2005 Undocked April 8, 2006 190 days		ISS Flight $16 S$ Soyuz TMA-12	Launched April 8, 2008 Undocked October 24, 2008 199 days	\square Sergei Volkov \square Oleg Kononenko Yi So Yeon (SFP)
ISS Flight 12 S Soyuz TMA-8	Launched March 30, 2006 Undocked September 28, 2006 182 days	Pavel Vinogradov - Jeffrey N. Williams Marcos Pontes (SFP)	ISS Flight 17 S Soyuz TMA-13	Launched October 12, 2008 Undocked April 8, 2009 178 days	
ISS Flight 13S Soyuz TMA-9	Launched September 18, 2006 Undocked April 21, 2007 215 days		ISS Flight 18 S Soyuz TMA-14	Launched March 26, 2009 Undocked October 11, 2009 199 days	
ISS Flight 14S Soyuz TMA-10	Launched April 7, 2007 Undocked October 21, 2007 196 days		ISS Flight 19 S Soyuz TMA-15	Launched May 27, 2009 Undocked December 1, 2009 188 days	Roman Romanenko Frank de Winne Robert B. Thirsk
ISS Flight 15 S Soyuz TMA-11	Launched October 11, 2007 Undocked April 19, 2008 191 days	- Yuri Malenchenko - Peggy A. Whitson - Sheikh Muszaphar Shukor (SFP)	ISS Flight $20 S$ Soyuz TMA-16	Launched September 30, 2009 Undocked March 18, 2010 169 days	Maksim Surayev Jeffrey N. Williams Guy Laliberté (SFP)

ISS Flight $31 S$ Soyuz TMA-05M	Launched July 15, 2012 Undocked November 18, 2012 126 Days		$\begin{aligned} & \text { ISS Flight } \\ & 36 \mathrm{~S} \\ & \hline \text { Soyuz } \\ & \text { TMA-10M } \end{aligned}$	Launched September 25, 2013 Undocked March 11, 2014 166 Days	
$\begin{aligned} & \text { ISS Flight } \\ & 32 S \\ & \hline \text { Soyuz } \\ & \text { TMA-06M } \end{aligned}$	Launched October 23, 2012 Undocked March 15, 2013 143 Days		ISS Flight $\frac{375}{\text { Soyuz }}$	Launched November 7, 2013 Undocked May 13, 2014 187 Days	
ISS Flight $33 S$ Soyuz TMA-07M	Launched December 19, 2012 Undocked May 13, 2013 145 Days		$\begin{aligned} & \text { ISS Flight } \\ & 38 S \\ & \hline \text { Soyuz } \\ & \text { TMA-12M } \end{aligned}$	Launched March 25, 2014 Undocked September 11, 2014 169 Days	\square Aleksandr Skvortsov Oleg Artemyev - Steven R. Swanson
ISS Flight $34 S$ Soyuz TMA-08M	Launched March 28, 2013 Undocked September 11, 2013 166 Days		$\begin{aligned} & \text { ISS Flight } \\ & 39 S \\ & \hline \text { Soyuz } \\ & \text { TMA-13M } \end{aligned}$	Launched May 28, 2014 Undocked November 10, 2014 165 Days	Maksim Surayev - Gregory R. Wiseman - Alexander Gerst
ISS Flight $35 S$ Soyuz TMA-09M	Launched May 28, 2013 Undocked November 10, 2013 166 Days		$\begin{aligned} & \text { ISS Flight } \\ & 40 S \\ & \hline \text { Soyuz } \\ & \text { TMA-14M } \end{aligned}$	Launched September 25, 2014 Undocked May 12, 2015 167 Days	Aleksandr Samokutyayev Yelena Serova - Barry E. Wilmore

Unmanned ISS Missions

Spacecraft	Launch date	ISS Flight Number	Deorbit
Progress M1-3	6 August 2000	ISS-1P	1 November 2000
Progress M1-4	16 November 2000	ISS-2P	8 February 2000
Progress M-44	26 February 2001	ISS-3P	16 April 2001
Progress M1-6	20 May 2001	ISS-4P	22 August 2001
Progress M-45	21 August 2001	ISS-5P	22 November 2001
Progress M-S01	14 September 2001	ISS-4R	26 September 2001
Progress M1-7	26 November 2001	ISS-6P	20 March 2001
Progress M1-8	21 March 2002	ISS-7P	25 June 2002
Progress M-46	26 June 2002	ISS-8P	14 October 2002
Progress M1-9	25 September 2002	ISS-9P	1 February 2002
Progress M-47	2 February 2003	ISS-10P	28 August 2003
Progress M1-10	8 June 2003	ISS-11P	3 October 2003
Progress M-48	29 August 2003	ISS-12P	28 January 2004
Progress M1-11	29 January 2004	ISS-13P	3 June 2004
Progress M-49	25 May 2004	ISS-14P	30 July 2004
Progress M-50	11 August 2004	ISS_15P	22 December 2004
Progress M-51	23 December 2004	ISS-16P	9 March 2005
Progress M-52	28 February 2005	ISS-17P	16 June 2005
Progress M-53	16 June 2005	ISS-18P	7 September 2005
Progress M-54	8 September 2005	ISS-19P	3 March 2006
Progress M-55	21 December 2005	ISS-20P	19 June 2006
Progress M-56	24 April 2006	ISS-21P	19 September 2006
Progress M-57	24 June 2006	ISS-22P	17 January 2007
Progress M-58	23 October 2006	ISS-23P	27 March 2007
Progress M-59	18 January 2007	ISS-24P	1 August 2007
Progress M-60	12 May 2007	ISS-25P	25 September 2007
Progress M-61	2 August 2007	ISS-26P	22 January 2008
Progress M-62	23 December 2007	ISS-27P	15 February 2008
Progress M-63	5 February 2008	ISS-28P	7 April 2008
ATV	9 March 2008	ISS-ATV1	5 September 2008
Progress M-64	14 May 2008	ISS-29P	8 September 2008
Progress M-65	10 September 2008	ISS-30P	8 December 2008
Progress M-01M	26 November 2008	ISS-31P	8 February 2009
Progress M-66	10 February 2009	ISS-32P	18 May 2009
Progress M-02M	7 May 2009	ISS-33P	13 July 2009
Progress M-67	24 July 2009	ISS-34P	27 September 2009
HTV	10 September 2009	ISS-HTV1	30 October 2009
Progress M-03M	15 October 2009	ISS-35P	27 April 2010
Progress M-MIM2	10 November 2009	ISS-5R	8 December 2009

Spacecraft	Launch date	ISS Flight Number	Deorbit
Progress M-04M	3 February 2010	ISS-36P	1 July 2010
Progress M-05M	28 April 2010	ISS-37P	15 November 2010
Progress M-06M	30 June 2010	ISS-38P	6 September 2010
Progress M-07M	10 September 2010	ISS-39P	20 February 2011
Progress M-08M	27 October 2010	ISS-40P	24 January 2011
HTV	22 January 2011	ISS-HTV2	28 March 2011
Progress M-09M	28 January 2011	ISS-41P	26 April 2011
ATV	16 February 2011	ISS-ATV2	20 June 2011
Progress M-10M	27 April 2011	ISS-42P	29 October 2011
Progress M-11M	21 June 2011	ISS-43P	1 September 2011
Progress M-12M	24 August 2011	ISS-44P	ISS-44P. Failed to orbit; premature third stage cutoff, impacted in the Choisk Region of Russia's Altai Republic.
Progress M-13M	30 October 2011	ISS-45P	25 January 2012
Progress M-14M	25 January 2012	ISS-46P	28 April 2012
ATV	23 march 2012	ISS-ATV3	28 September 2012
Progress M-15M	20 April 2012	ISS-47P	20 August 2012
SpaceX	22 May 2012	ISS-SpX-D	31 may 2012
HTV	21 July 2012	ISS-HTV3	12 September 2012
Progress M-16M	1 August 2012	ISS-48P	9 February 2013
SpaceX	8 October 2012	ISS-SpX-1	28 October 2012
Progress M-17M	31 October 2012	ISS-49P	21 April 2013
Progress M-18M	11 February 2013	ISS-50P	26 July 2013
SpaceX	1 March 2012	ISS-SpX-2	26 March 2013
Progress M-19M	24 April 2013	ISS-51P	19 June 2013
ATV	5 June 2013	ISS-ATV4	28 October 2012
Progress M-20M	27 July 2013	ISS-52P	11 February 2014
HTV	3 August 2013	ISS-HTV4	4 September 2013
Orbital	18 September 2013	ISS-Orb-D1	22 October 2013
Progress M-21M	25 November 2013	ISS-53P	9 June 2014
Orbital	9 January 2014	ISS-0rb-1	18 February 2014
Progress M-22M	5 February 2014	ISS-54P	18 April 2014
Progress M-23M	9 April 2014	ISS-55P	31 July 2014
SpaceX	18 April 2014	ISS-SpX-3	15 May 2014
Orbital	13 July 2014	ISS-Orb-2	15 August 2014
Progress M-24M	23 July 2014	ISS-56P	19 November 2014
ATV	29 July 2014	ISS-SpX-4	25 October 2014
Orbital	28 October 2014	ISS-Orb-3	Lost on Ascent
Progress M-25M	29 October 2014	ISS-57P	25 April 2015

Spacecraft	Launch date	ISS Flight Number	Deorbit
SpaceX	10 January 2015	ISS-SpX-5	10 February 2015
Progress M-26M	17 February 2015	ISS-58P	Planned: 26 August 2015
SpaceX	13 April 2015	ISS-SpX-6	21 May 2015
Progress M-27M	28 April 2015	ISS-59P	Failed to Orbit

To Learn More

ONLINE:

International Space Station

www.nasa.gov/station

Station Science

www.nasa.gov/iss-science

Canadian Space Agency (CSA)

http://www.asc-csa.gc.ca/eng/iss/

European Space Agency (ESA)
 http://www.esa.int/esaHS/iss.html

Japan Aerospace Exploration Agency (JAXA)
 http://iss.jaxa.jp/en/

Russian Federal Space Agency (Roscosmos)
http://knts.rsa.ru/
http://www.energia.ru/english/index.html

SOCIAL MEDIA:

Acronym List

A

C

D

B

BASS-II
BCA
BCDU
BIOLAB
BRIC
BSA

C

C\&T Communications \& Tracking
C2V2 Common Communications for Visiting Vehicles

CATS
CBM
CDRA
CEPF
CEVIS
CFE
CHECS
CIR
CM
CMG
CMO
CMTF
CO_{2}
COLBERT
col-cc Columbus Control Center
CRPCM Canadian Remote Power Controller Module
CRS
CSA
CWC
CWQMK

DC Docking Compartment
DC
DCSU
DDCU

Arm Control Unit
Automated External defibrillator
Airlock
Alpha Magnetic Spectrometer
Articulating Portable Foot Restraint
Ames Research Center
Advanced Resistive Exercise Device
Active Rack Isolation System
Italian Space Agency
Atmosphere
Automated Transfer Vehicle

Burning and Suppression of Solids - II
Battery Charging Assembly
Battery Charge Discharge Unit
Biological Laboratory
Biological Research in Canisters
Battery Stowage Assembly

Celsius
Cloud-Aerosol Transport System
Common Berthing Mechanism
Carbon Dioxide Removal Assembly
Columbus External Payload Facility
Cycle Ergometer with Vibration Isolation System
Capillary Flow Experiment
Crew Health Care System
Combustion Integrated Rack
centimeter
Control Moment Gyroscope
Crew Medical Officer
Canadian MSS Training Facility carbon dioxide
Combined Operational Load Bearing External
Resistive Exercise Treadmill

Commercial Resupply System
Contingency Water Container
Colorimetric Water Quality Monitoring Kit

Direct Current
Direct Current Switching Unit
DC-to-DC Converter Unit

DECLIC	Device for the study of Critical Liquids and Crystallization
DRTS	Data Relay Test Satellite
E	
EAC	European Astronaut Centre
EADS	European Aeronautic Defence and Space
	Company
Earthkam	Earth Knowledge-based Acquired by Middle Schools
ECLSS	Environmental Control and Life Support System
ECU	Electronics Control Unit
EDR	European Drawer Rack
EF	Exposed Facility
EHS	Environmental Health System
ELC	EXPRESS Logistics Carriers
ELITE-S2	ELaboratore Immagini Televisive-Space 2
ELM-ES	Experiment Logistics Module Exposed Section
ELM-PS	Experiment Logistics Module-Pressurized Section
EML	Electromagnetic Levitator
EMU	Extravehicular Mobility Unit
EPM	European Physiology Module
EPS	Electrical Power System
ESA	European Space Agency
ESTEC	European Space Research and Technology Centre
EVA	Extravehicular Activity
EXPRESS	Expedite the Processing of Experiments to the Space Station
F	
F	Farenheit
FGB	Functional Cargo Block
FIR	Fluids Integrated Rack
FSL	Fluid Science Laboratory
FT	foot
FT^{3}	Cubic feet
G	
GATOR	Grappling Adaptor to On-Orbit Railing
GCTC	Gagarin Cosmonaut Training Center
GN\&C	Guidance, Navigation, and Control
GPS	Global Positioning System
GRC	Glenn Research Center
GSC	Guiana Space Centre
H	
H_{2}	hydrogen
$\mathrm{H}_{2} \mathrm{O}$	water
HDPCG	Hand-Held High Density Protein Crystal Growth
HICO	Hyperspectral Imager for the Coastal Ocean
HMS	Health Maintenance System

HMS CMRS	Health Maintenance System/Crew Medical Restraint System
HQ	Headquarters
HR	hour
HRF	Human Research Facility
HRS	Heat Rejection Subsystem
HTV	H-II Transfer Vehicle
I	
ICWS	Iodine Compatible Water Containers
IEA	Integrated Equipment Assembly
IN	inch
IPS	International Partners
IRU	In-Flight Refill Unit
ISPR	International Standard Payload Rack
ISS	International Space Station
ITS	Integrated Truss Structure
IV-TEPC-IV	Tissue Equivalent Proportional Counter

J	
JAXA	Japan Aerospace Exploration Agency
JEF - JEM	Exposed Facility
JEM	Japanese Experiment Module
JEM-RMS	Japanese Experiment Module Remote Manipulator System
JLP	Japanese Experiment Logistics Module-
	Pressurized Section
JPL	Jet Propulsion Laboratory
JPM	Japanese Pressurized Module
JSC	Johnson Space Center

K

K	Kelvin
KG	kilogram
KM	kilometer
KN	Kilonewton
KSC	Kennedy Space Center
KW	kilowatt

L

L liters
LB pound
LBF pound-force
LED Light Emitting Diode
LEO Low-Earth orbit
Lioh Lithium Hydroxide

M	
M	meter
M 3	cubic meter
MARES	Muscle Atrophy Research Exercise System
MAS	Microbial Air Sampler
MBPS	Megabits Per Second
MBS	Mobile Base System
MBSU	Main Bus Switching Unit

MCC
MCC-H
MELFI
MERLIN

MIL-STD
MLM
MMOD
MN
MOC
MOTS
MPLM
MRM
MSFC
MSG
MSPR
MSRR
MSS

N

$\mathrm{N}_{2} \quad$ nitrogen
$\mathrm{N}_{2} \mathrm{O}_{4}$
NASA
NORS

0
$\mathrm{O}_{2} \quad$ oxygen
OBSS
OEC
OGS
ORU

P

R Incubator

Meganewton Gravity

Mission Control Center
Mission Control Center-Houston
Minus Eighty-Degree Laboratory Freezer for ISS
Microgravity Experiment Research Locker/

Military Standard
Multi-Purpose Laboratory Module
Micrometeoroid and Orbital Debris

MSS Operations Complex
MSS Operations and Training System
Multi-Purpose Logistics Module
Mini-Research Module
Marshall Space Flight Center
Microgravity Sciences Glovebox
Multipurpose Small Payload Rack
Materials Science Research Rack
Mobile Servicing System
nitrogen tetroxide
National Aeronautics and Space Administration
Nitrogen/Oxygen Resupply System

Orbiter Boom Sensor System
Operations Engineering Centre
Oxygen Generation System
Orbital Replacement Unit

Scaling Body-Related Actions in the Absence of
Pressurized Cargo Module
Power Data Grapple Fixture
Primary Life Support Subsystem
Pressurized Mating Adaptor
Permanent Multipurpose Module
Payload Operations Centers
Payload Operations and Integration Center Pressurized Section
Power Supply Assembly
pounds per square inch
Passive Thermal Control System
Payload Telescience Science Operations Center Photovoltaic Thermal Control System Portable Work Post

Radiation Area Monitor

Remote Multipurpose Support Room
Remote Manipulator System
revolutions per minute

Definitions

Mating or linking operations of two spacecraft, modules, or elements where an inactive module/ vehicle is placed into the mating interface using a Remote Manipulator System

Mating or linking operations of two spacecraft, modules, or elements where an active vehicle flies into the mating interface under its own power

A structural component such as a module or truss segment

A long-duration crew during a stay on the space station

Period of time from launch of a vehicle rotating
International Space Station crewmembers to the undocking of the return vehicle for that crew
MISSION
Flight of a "visiting" Soyuz, or other vehicle not permanently attached to the International Space Station
MODULE
An internally pressurized element intended for habitation

NADIR
Direction directly below (opposite zenith)
PORT
Direction to the left side (opposite starboard)
RENDEZVOUS
Movement of two spacecraft toward one another

Nonprofessional astronaut
STARBOARD
Direction to the right side (opposite port)
ZENITH
Directly above, opposite nadir

[^0]: After completing its pupa stage, a Monarch butterfly emerges on the International Space Station on Nov. 30, 2009 during the latest in a series of educational experiments designed to accompany in-class experiments for teachers and students.
 Credit: NASA/BioServe, University of Colorado

