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PEEFAOE.

The following work has been prepared to meet a want

experienced by myself in my course of instruction in

Thermodynamics.

After reading several works upon the subject, including

those of the founders of the science—Rankine, Clausius,

Thomson—I was most favorably impressed with the spirit

of Rankine's mode of discussing the subject. It is in keep-

ing with the modern method of treating Analytical Mechan-

ics, in which the analysis is founded upon ideal conditions

established by definitions, and the resulting formulas modi-

fied to represent the infinite variety of conditions in nature.

But Rankine's giant-like processes are not adapted to the

wants of the average student. Article 241 of his Steam

Engine and other Prime Movers reaches the height of

sublimity in regard to terseness, comprehensiveness, and ob-

scurity. Without a proper preliminary, he crowds into a

few words a principle which has cost other writers protracted

labor and heroic efforts to establish.

My aim has not been to bring down the subject to the

comprehension of the reader, but to lead him up, by a more

easy and uniformly graded path, to the same height, and at

the same time familiarize him with the way by a free use of

illustrations, exercises, historic references, and numerical

examples.

°)



IV PREFACE.

The body of the work contains a development of the es-

sential principles of the subject, to which I have added an

Addenda, for the purpose of enlarging upon the matter con-

tained in some of the articles, more especially those pertain-

ing to vapors. This enabled me to follow the thread of

the subject more closely without turning aside to consider

applications to a variety of substances, and to enlarge more
freely upon those secondary matters when separated from

the body of the text.

Special attention is called to the graphical representation

of internal work, as in Figs. 36 and 37, supposed to be new,

as well as many of the exercises and the discussion of En-
tropy, or the Thermodynamic Function.

Db Volson Wood.
HoBOKEN, Sept., 1888

THIED EDITION.

The treatment of the theoretical part of Thermodynamics,

including its application to the steam engine, as far as page

180, is the same in this edition as in the first and second

editions. Since the first edition there have been added the

following subjects : Vapor Engine ; Sterling's Engine
';

Ericsson's Hot-Air Engine ; Gas Engine ; Naphtha Engine

;

Ammonia Engine ; Steam Injector ; Pulsometer ; Com-

pressed-Air Engine ; The Compressor ; Steam Turbine ; Re-

frigerating Machines ; Miscellaneous matter in an Addenda
;

Combustion of Fuel ; Steam, Ammonia and other Tables.

The Ammonia Tables have been computed from the formu-

las of the author and are new.
The Authoe.

August, 1889.



CONTENTS.

CHAPTEE I.

GBKBRAL PRINCIPLES.

ABTIOLE PAQB
1. Heat is ENBuey 1

2. Heat is not Material 1

3. Heat a Result of the Motion of the Pabticles 1

4. Velocity of Heat 2

5. Heat Energy measured by its effects ,

.

2

6. Thermal Unit 3

7. Work 3

8. Internal Work 4

9. Actual Energy 4

10. Latent Heat 5

11. General Expression 5

12. Temperature 5

13. Thermometers 6

14. The Air-Thermometer 7

15. A Perfect Gas 8

16. An Absolute Scale 9

17. Absolute Zero of Temperature 10

18. Equation of a Gas 10

19. Equation of a Perfect Gas 10

20. Mariotti's Law 13

21. Law op Gay Lussac 12

22. So-called Imperfect Gases 12

23. Thermal Lines 13



VI CONTENTS.
AKTICXi: PAaE

34. ISOTHBRMAI. LiNES 14

25. Adiabatic Lines 16

26. Cycle I'i'

27. Heat Engine 17

28. Caknot's Cycle 17

29. SouECE 19

30. Work done . 19

31. Indicator Diagram 80

33. Carnot's Cycle is Reversible 20

33. Conditions of a Reversible Cycle 21

34. Heat absorbed 33

35. Mbch.anical equivalent of Heat 84

36. First law of Thermodynamics 87

87. Thermal Capacities 28

38. Specific Heat at constant pressure 39

39. Specific Heat at constant volume 31

40. Tempbratdrk constant during Expansion 32

41. Thomson and Joule's Method 41

43. Heat absorbed in terms of External Work 43

43. Heat transmuted into Work 44

44. General case 45

45. Temperature and Pressure as independent variables. 46

46. Fundamental Equations of Thermodynamics 48

CHAPTEE II.

PERFECT GASES.

47. Difference of Specific Heat 49

48. Specific Heat constant 50

49. Perfeotnbss of Gases 51

50. To find the Specific Heat of a Gas at constant volume. 53

51. Relatite Specific Heats 53

53. Temperature Constant during Expansion 54

53. Volume Constant 55



CONTENTS. VU
ABTICLIS PAGE
54. Signification of R 50

55. Arbitrary Path during Expansion 57

56. Gas expanding without transmission of Heat 61

57. Ice Machines 63

58. Air Compressor 63

59. Velocity of Sound in a Gas 71

60. To find the value of y 75

61. Velocity OF Sound in Air 75

62. To find the Specific Heat of a Gas by means of Joule's

Equivalent 77

63. To FIND the Mechanical Equivalent of Hbat by means

OF THE Specific Heat of a Gas 78

64. Relations of J, R, y 79

65. Other methods of determining 7 79

66. Flo-w OF Gases 81

67. Weight of Gas Discharged 83

CHAPTEE III.

IirPEEFECT GASES

68. General Discussion 85

69. Temperature Constant ^ 86

70. Change of State of Aggregation 88

71. Latent Heat of Fusion 88

72. Experimental Verification 91

73. Expansion during Fusion 92

74. Latent Heat of Evaporation 94

75. Vapok 96

76. Relations between the Temperature and Pressure of

Vapor 97

77. Volume of Vapor 98

78. Weight of Vapor 99

79. Experimental Determination of the Density of Sat-

urated Steam 104



nil CONTENTS.

ARTICLE PAGB

80. Measurement of Heights 105

81. Sublimation 106

82. Eyaporation without Ebullition 106

83. Specific Heat of Solids sensibly the same fob Pkbss-

URK Constant and Volume Constant 107

84. Mechanical Mixtures 108

85. Total Heat op Evaporation 110

86. Evaporative Power Ill

87. Superheated Steam 113

88. Free Expansion 114

89. Absolute Zero 116

90. General Expression for Specific Heat 117

91. Specific Heats at Change of State op Asgregation. . 117

92. Modified Expression for the Specific Heat 118

93. Apparent and Real Specific Heats 120

94. General Expression for the Difference of the Specific

Heats 123

95. Specific Heat of Water 128

96. Another General Equation of Thermodynamics 126

97. Other General Equations 131

97a. The Thermodynamic Function or Entropy 136

98. Liquid and its Vapor 143

99. Specific Heat of Saturated Vapor 145

100. Adiabatics op Imperfect Gases 148

101. Condensers 154

102. IsoDiABATic Lines 157

CHAPTER IV.

HEAT EKGIM'ES.

103. Efficiency 159

104. Perfect Elementary Heat Engine. 159

105. Regenerators 166



COBTTENTS. ix
akticle pagb
106. Some Genebal Principles 169

107. Remarks 169

108. The Stbam-Engine—General Statement 169

109. Ideal Steam Diagram 171

110. Steam-Engine—Isothermal Expansion 173

111. Steam Engine—Adiabatic Expansion, Approximate Law. 175

112. Adiabatic Expansion, Theoretical Law 177

112a. General Equations for Vapor Engines 180

113. CuT-OFP 200

114. Special Engines 205

115. Multiple Expansions 210

116. Condensation 212

117. Experiments op Engines 214

118. Miscellaneous 217

119. Hot-Air Engines—Stirling's Engine 223

120. Theory op Stirling's 224

121. Designing 230

133. Ericsson's Hot-Air Engine 234

123. Description op Ericsson's Engine 235

124. Analysis 237

125. Value op the Ratio op Expansion to Produce Maximum

Mean Effective Pressure 245

126. Heat Absorbed at Constant Pressure 246

127. Gas Engines 247

138. History 248

129. Some Details 251

130. Theory , 358

131. Furnace 356

133. Work and Efficiency 357

183. Expansion and Compression Curves 358

134. Experiments 259

135. Petroleum Engine 266

136. Experiments 267

137. Efficiency of Naphtha-Engine Plant 270

138. Efficiency of Fluid in Naphtha Engine 371

139. Remarks 273

140. Ammonia Engine 274



X CONTENTS.
ARTICLE PAGE

141. Binary-Vapor Engine 278

143. Products of Cojibustign the Working Fluid 278

143. The Steam Injector 279

144. Theory of Steam Injector 280

145. Approximate Formulas for Injector 288

146. Injector and Direct-Acting Pump 289

147. The Pulsometer 293

148. Analysis of the Pulsometer 293

149. Comprkssed-Air Engine 396

150. Analysis of Compressed-Air Engine 396

151. Air Compressor 301

153. Analysis op the Compressor 303

153. Efficiency 805

154. Friction of Air in Pipes 306

155. Steam Turbine 308

156. OuTw.iRD Flow Turbine 808

157. Reaction Turbine 309

158. Analysis op Outward Flow Turbine 314

CHAPTER V.

refrigeration.

159. Refrigerating Machine 318

160. Practical Operation 319

161. Efficiency 331

162. Circulating Fluid 324

163. Some Properties of Ammonia 825

164. Latent Heat of Evaporation of Ammonia 828

165. Specific Volume of Liquid Ammonia 333

166. Specific Volume op Ajimonia Gas 333

167. ISOTHEKMALS OF Ammonia Vapor 333

168. Adiabatics of Ammonia Vapor 334

169. Specific Heat of the Saturated Vapor is Negative. . . . 335

170. Specific Heat of Liquid Ammonia 335

171. Work of the Compressor 337

173. Volume of Cylinder for n Pounds op Vapor 340



CONTENTS. XI
Article page
173. Volume of Cylinder for Required Refrigeratikg

Effect 340

174. Duty 340

175. Case of Superheatikg 344

176. Efficiency 347

177. Tesj of a Compressor Syste>.: 348

178. Test op an Ice-Making Plant 352

179. Absorption System 353

180. Test of Absorption Plant 355

180a. Sulphur Dioxide 357

CHAPTER VI.

combustion.

181. Essential Principle. 358

182. Heat op Combustion 360

183. Incombustible Matter 368

184. Air Required for Combustion : .

.

864

185. Forced Draft 865

186. Temperature of Fire 365

187. Height of Chimney 366

APPENDIX I.

The Luminiferous Ether 369

APPENDIX II.

Second Law of Thermodynamics 389

ADDENDA.

Miscellaneous Topics 395

Tables 453

Index 472





THEEMODTl^TAMIOS.

CHAPTER I.

FUNDAMENTAL PEINCIPLES AND GENERAL EQUATIONS.

1. Heat is energy.—Energy is a capacity for doing

work, and it has been shown in many ways that heat, by its

action npon substances, can do work. Thus, it may cause

steam to drive a piston; it causes solids and Uquids to ex-

pand, and changes the molecular condition of bodies, as

when solids are fused or hquids vaporized. Heat is also

recognized as a sensation.

2. Heat is not material.—A body has the same

weight when hot as when cold. Count Eumford, in 1798, dis-

covered that he could boil a large quantity of water by the

heat produced in boring a piece of cannon. Sir Humphry
Davy (about 1Y99) melted ice by rubbing two pieces to-

gether without heat being imparted to them.

3. Heat consists of a motion of the particles

of a body.—The only known method of directly meas-

uring energy is by a combination of mass and velocity ; thus,

if m be the mass of a body and v its velocity, then will its

kinetic energy be ^ m^)^ The mass being constant while the

body is heated we infer that its heat energy is produced by

the velocity of its mass elements. These motions are in-

visible, and hence their character can only be inferred ; it

may be a motion of the ultimate atom, or of an atmosphere
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about the atom, a vibratory or periodic motion of some kind,

or a combination of simple motions. It is probably not a

to-and-fro rectilinear motion of the molecule. A develop-

ment of the theory of heat, fortunately, does not require

a knowledge of this motion, or even a particular hypothesis,

beyond the fact that there is a motion of some kind. Eankine

constructed an hypothesis called "molecular vortices," from

which he deduced many important consequences pertaining

to heat. (See Edinburgh Trans., vol. xx. ; Philosophical

Mag., 1851 and 1855.)

4. Velocity of heat.—The perfect identity of the

laws of radiant heat with those of light as to reflection,

refraction, interference and absorption, and the identity of

their velocities, being 186,300 miles per second, i-equires

essentially the same theory as to their nature and mode of

propagation. Electricity is also a form of energy and gov-

erned by laws similar to those of heat. As light is trans-

mitted by means of a subtle ether pervading all space, and

called the lumin iferous ether, so it is believed that the same

ether transmits heat, electricity and magnetism. (See Ap-

pendix.)

5. Heat-energy is measured only by its ef-

fects.—The kinetic energy of a mass may be computed if

its mass and velocity are known, or it may be determined by
the work it does in being brought to rest, but since the ve-

locity of the particles producing heat cannot be measured,

heat-energy can be measured only by its effects. Tlius. if

a ball of hot iron would just melt one pound of ice, and

after being heated again would just melt two pounds of ice,

then would the ball in the second case have contained twice

the heat above the melting-point of ice that it did in the

first case. Similarly, it requires about twice as much heat

to raise the temperature of a given amount of water two

degrees as it does one degree. The same principle applies
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to other bodies of one substance having different weigbts

and to bodies composed of different substances, or to hetei-o-

geneons substances. For scientific purposes some specific

effect must be assumed as a stcmda/rd, and considered as a

unit.

6. The thermal unit is the heat necessary to raise the

temperature of unity of weight of water at its maximum
density one degree.

Water is at its maximum density at 39.1° F. (4° C). Ac-

cording to the experiments of Kopp, its volume is 1.00012

at 32° F., 1.00000 at 39.1° F., 1.00011 at 46° F., and 1.04312

at 212° F.

The British Thermal Unit (B. T. U.) is the heat neces-

sary to raise the temperature of one pound of water from
39° F. to 40° F.

The French Calorie is the heat necessary to raise the tem-

, perature of one kilogramme of water from 4° C. to 5° C, and

is 3.968 times the B. T. IJ.

Some writers, in defining the thermal unit, start the meas-

urement with the temperature of melting ice, instead of at

39° F., and although there is but little difference between

the two values thus obtained, yet for scientific purposes and

for physical reasons, the latter is preferable, and should be

generally adopted.

7. Work.—When heat-energy disappears as heat, it must,

according to the principles of the conservation of energy,

appear or exist in some other form of energy. When the heat

in steam drives the piston of an engine, the steam loses heat

by the operation, and an exact equivalent of the energy

so disappearing reappears as work done or as energy in

the moving parts of the engine, no allowance being made in

this illustration for losses due to radiation or friction. To

aid one in this conception conceive that one end of the cyl-

inder is filled with small, perfectly elastic balls, bounding
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and rebounding between the bead of the cylinder and the

piston ; they will, by their continued action, produce a pres-

sure upon the piston. If the piston moves forward the

energy of the balls will be diminiched, as is shown in me-

chanics in the discussion of the im'pact of elastic bodies, and

this loss of energy will equal that imparted to the piston, or,

if the piston moves uniformly, equal to the work done. In

general, when heat-energy disappears it is said that an equiv-

alent amount ' of work has been done, although the entire

work may not be visible energy. Some of it may prod'iice

molecular changes in the substance. In the preceding illus-

tration, if the piston be forced inward against the rebound-

ing balls, their velocity will be increased, and hence their

energy will be increased by an amount equal to the work
imparted to them by the piston.

8. Internal work is some kind of effect produced

upon the molecular character of a substance. Thus, if one

pound of water at 32° F. be mixed with one lb. at 33° F. it

will produce two pounds of water at 32|-° F., but if one

pound of ice at 33° F. be mixed with 1 pound of water at 33°

F. the temperature of the mixture will be 32° F. Indeed,

it is found by experiment that it will require about 1-ii

pounds of water at 33° to melt one pound of ice producing

145 pounds of water only a very little above 32° F., so that

nearly all the heat between 32° F. and 33° F. in the 144

pounds of water is necessary to change solid water (ice) at

32° to liquid water at the same temperature. Similarly, a

large amount of heat is aljscjrbed in changing liquid water

at 212° F. to gaseous water (steam) at tlie same temperature.

This disgregation of the molecular structure is called internal

wurh, or energy of a potential form.

9. The actual heat-energy of a substance is de-

pendent upon its temperature. The heat absorbed by a

substance may do external M'ork, as in driving a piston, and
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internal work, as shown in the preceding article, and in ad-

dition to both it may increase the temperature of the sub-

stance, thus increasing its energy. The last is called actual

energy. The actual energy is some function of the tempera-

ture.

10. Latent heat is heat which produces effects other

than that of change of temperature. Strictly speaking, it is

not heat, but is a measure of the heat which has been de-

stroyed in producing effects other than that of changing the

actual energy of the substance. Thus, heat becomes latent

in producing changes in the state of aggregation of the sub-

stance, as in fusion, vaporization or sublimation ; and as defined

in Article 8, constitutes internal work. But it also becomes

latent in doing external work by expansion, and if the tem-

perature be maintained constant during expansion, the heat

destroyed in doing the work is called the latent heat of

expansion.

11. General expression.—The total heat in a.defi-

nite weight of any substance is unknown, although if gases

were perfect it might be computed, as will hereafter be

shown ; but it is possible to find expressions for the heat ab-

sorbed in passing from one known state to another, for we
have

Heat absorbed = change of actual energy -j- change of
potential energy -\- external worTc ;

= total change of internal energy -\- exter-

nal work ;

= change of actual energy -\- total work.

In this expression the total internal energy includes all the

heat involved both in changing the temperature and the in-

ternal structure of the substance.

13. Temperature is a condition of relative heat. Ex-

perience shows that when two bodies, one hotter than the
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other, are near each other, the hot body becomes cooler and

the cooler one hotter. Pleat of itself passes from a hotter to

a colder body, and this process cannot be reversed except by

an expenditure of mechanical energy. The hotter body if

said to have a higher temperature than the colder one.

Temperature is not an indication of the quantity of heat

absorljed by a body, nor of the amount of heat in a body,

but of the intensity of the heat. Thus, if a pound of iron

has the same temperature as a pound of water, the latter will

contain about eight timeS as much heat as the former for each

degree, as would be found by putting each pound into an-

other quantity of some liquid at a different temperature.

Temperature is a measure of the sensible heat—that is,

actual heat—wliicli can affect the senses.

13. Tlierinometers are instruments for measuring

differences of temperature. The more common ones depend

for their action upon the expansibility of a liquid—such as

mercury or alcohol. The liquid is coniined in a tulie as

nearly cylindrical as possible, within which it expands.

Wlien the expansion of metals is employed for determining

temperature, the instruments used are called j>;/>-"i/iete/'.i.

The air thermometer depends for its action upon the

pressure produced l)y heat at constant volume.

All thermometers have two fixedj>oints : one the melting

point of ice, the either the boiling point of water at atmos-

pheric pressure.

The melting point of ice is a more nearly fixed point

than the freezing point of water. In some carefully con-

ducted experiments water has been reduced several de-

grees below the (irdinary freezing point, 32° F., before freez-

ing. To secure such a result, the water must be kept in a

condition of as perfect lest as possible. The boiling point

of water depends upon the pressure to which it is subjected

;

and since the pressure of the atmosphere is continually

'changing, as sho\vn hv the l)arometer, the pressure of one
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atmospliere must be fixed for scientific purposes. The value

determined by Eegnault, and now generally adopted, is

2116.2 pounds per square foot, or 14.7 pounds, very nearly,

per square inch. In determining the boiling point of water the

thermometer should be placed in the vapor near the water.

The Fahrenheit scale has 180 equal divisions between the

fixed points, and the zero of the scale is 32 such divisions

below the melting point of ice. It is designated by F., or

Fahr.

The Centigrade scale has 100 equal divisions between the

fixed points, its zero being at the lower or melting point of

ice. It is indicated by C. It is sometimes called the Celsius

scale.

The Reaumur scale h^s 80 equal divisions between the

fixed points, its zero being at the lower.

To reduce the readings of one scale to those of another,

the following equations may be used :

The construction here implied assumes that liquids ex-

pand equally for equal quantities of heat, and that the

tubes containing them are uniform ; but neither of these

conditions are exactly realized, the practical considerations

of which belong to Thermometry.

14. The Air Thermometer.—In order to gain an

idea of an elementary air thermometer, conceive a small,

perfectly cylindrical tube closed at the lower end to contain

a quantity of air, limited at its upper end by a drop of

mercury acting as a piston. Subject this instrument to the

temperature of melting ice under the pressure of one atmos-

phere, 29.922 inches of mercury, and mark the upper end of

the air column ; then, next subject it to the temperature of

boiling water under the same pressure and mark the upper

end of the air column at this temperature. The two marks

will be ih.Q fixedjxjints before described. If the length of
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the column from the lower end to the lower mark be unity,

then will its length to the upper mark be 1.3665 as found by

Eegnault. The expansion is 0.3665 of its original volume.

For the Fahrenheit scale the space between the fixed points

would be divided into 180 equal parts, and hence each part

would be ^-i-f^- = 0.00203611 of the distance below the

lower fixed point. If the length below the lower fixed point

be divided into equal parts of the same magnitude, the num-

ber of such spaces will be,

1 = J^ = 491 13
0.00203611 0.3665 '

'

If these parts are numbered according to the natural

numbers, 0, 1, 2, 3, etc., beginning with zero at the extreme

lower end of the tube—called the absolute zero of the air

thermometer—then would the temperature of melting ice

be 491.13° F. from the absolute zero of the air thermometer,

and that of boiling water 671.13° F. from the same zero.

If air were a perfect gas, this would constitute an ahsohite

scale, but as it is not, a correction is required in order to es-

tal)lish such a scale. For air thermometers the pressure at

constant volume is commonly used, instead of the volume at

constant pressure as aliove described.

15. A perfect gas is defined to be such that, under a

constant pressure, its rate of expansion would be exactly

equal to its rate of increase of temperature, and, the volume

being constant, increments of pressure will be equal for

equal increments of heat. In other words, it would be a

substance in which no internal work would be done by
changes of temperature or pressure. Xo such substance is

known—it is ideal, subjected merely to a definition and to

laws to be assigned—and yet it is of great service in this

science. The idea of a perfect gas was the result of ex-

periments upon existing gases, as air, oxygen, hydrogen, etc.,

which, at first, were supposed to be represented by the per-
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feet law. In meclianics, at the present time, the bodiea

treated are, at first, the subjects of definition, and considered

perfect, as jjerfect wlids, perfect liq^uids, perfectly elastic,

etc., and the results obtained from these hypotheses made
practical by the introduction of moduli the values of which

are found by experiments. The same method is adopted in

this science.

16. An absolute scale is one whose divisions would

be indicated by a perfect gas thermometer. On such a

scale the divisions would be exactly equal for equal incre-

ments of heat down to the zero of the scale. Since a per-

fect gas is unknown, the zero of the ahsolute scale can be

determined only approximately by computation, as wiU be

shown hereafter, where the best result yet obtained fixes

it at 492.66° F. below the melting point of ice. The letter

r. here affixed implies that there are 180 divisions between

the fixed points, as in Fahrenheit's scale. This zero on the

centigrade scale is \ of 493.66° = 273. 'r° C. Temperature

on the absolute scale will generally be indicated by the

Greek letter r, and the temperature of melting ice by r^.

If T° F. indicate the temperature from the zero of the Fah-

renheit scale, and T° C. from the zero of the centigrade

scale, we will have

r„= 492.66° i^= 273.7° C.

r -^ 460.66° i^+ T F.

= 273.7° 0+ T C.

It is found that air is so nearly a perfect gas within the

ranges of temperature and pressure for which it has been

tested that it may be considered as such for all practical

purposes, and will be so considered theoretically except in

the determination of the place of the zero of the absolute

scale. Further, the ordinary mercurial thermometer agrees

sufficiently well with the air thermometer for the more or-

dinary ranges of temperature met with in engineering prae-
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tice to be used in sucli cases. But for scientific purposes

and for extreme cases in practice, the difference is too large

to be ignored. Eegnault found that when the air ther-

mometer marked 630° F. above the melting point of ice, the

mercurial thermometer indicated 651.9° above the same

point, a difference of about 22°. Liquids generally expand

more rapidly the higher the temperature.

17. The absolute zero of temperature is the

zero of the absolute scale, and corresponds to the condition

of total deprivation of heat ; at which temperature no sub-

stance could exercise any expansive power. This tempera-

ture has never been reached, and the nearest approach to it

has been produced by expansion in liquefying air, oxygen and

nitrogen, reaching —373° F. (—225° C'.), or more than f the

distance from the zero of Fahrenheit to the absolute zero.

(L'dinpteK Rendus, Feb. 9, 1S65; Jour. Frank. Inst., Sept.

1SS6, p. 213). The absolute zero is about •192.66-41»1.13

= 1.5 degrees Fahr. below the zero of the air thermometer,

as computed on the hypothesis of the same rate of contrac-

tion of air below 32° as from 32° to 212°. This law might

change as the temperature was extremely reduced, but it

would continue uniform for the ideally perfect gas.

18. The equatiou of a gas is an eqiiation expressing

a continuous relation between its vohmie, pressure and tem-

perature throughout a finite range of the same. Let j) be

the pressure on a unit of area of the substance when the

volume of one pound is v and absolute temperature is r,

then, generally,

1> =fi:'-\ ^)-

which may be considered as the equation to a surface, called

the therm 0(1ynatibic surface.

19. Equation of a perfect gas.—According to the

definition in Article 15,

(j>\ oc T, and {v)p cc t.
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where the subscripts represent the quantities which are

constant while the others vary, and combining these in one

expression, we have

^ -y Qc r,

or, pv _ !>,% /-,%

where j)„ v^, r, are contemporaneous fixed values. Let p„
be the pressure of one atmosphere; r„ the absolute temper-

ature of melting ice, and v^ the volume of one pound of the

gas at that pressure and temperature, then will equation (1)

become

£± = I>^ = E{..j), (2)

which is the equation required. The values of p„ and t,

have already been given and are independent of the nature

of the gas, but v^ depends upon the density of the gas. A
cubic foot of dry air weighs at sea level at the temperature

of melting ice

w„ — 0.080Y28 pounds

;

hence,

1

«„ = = 12.387

;

0.080728

' P±^^ = 2116.2 X 12.387 ^ 26214 ^ gg ^l
r„ 492.66 492.66 —^^*

when r„ is measured from the zero of the absolute scale

;

but if it be from the zero of the air thermometer, we have

£^ =^^^ = 53.37;
r„ 491.13

and equation (2) becomes,

for the absolute scale,pv = 53.21 r, (3)

for tJie air thermometer,p «= 53.37 t. (3')

For French units, let

Pi = the pressure of one atmosphere in kilogrammes per square metre,
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va — the volume of a kilogramme of the gas In cubic metres,

To' = the absolute temperature of melting ice on the centigrade scale;

then

KjV _ 8.2 (3.28)3 _ 1 j?oCo

T„' t r„ 1.8232 !-„ '

which for air becomes in kilogramme—metre—centigrade units (k. m. c),

omitting the accents,

pv = 29.30 r;

and in decimetre—kilo.—centigrade units,

pv = 3.930 r.

30. Mariotte's law.—If the temperature be con-

stant, equation (2j shows that the volume varies inversely as

the pressure ; a law discovered by direct experiments upon

gases, and known as Mariotte's law, supposed liy some to

have first been discovered by that investigator, but by others

this credit is given to Boyle. For a time after the announce-

ment of the la^^' it was supposed to be perfect for the so-

called permanent gases, but more refined experiments have

shown that the actual law governing them is only a very

close approximation to it.

31. Law of Gray Liissac (or of Charles).—According

to equation (2), if the pressure be constant, the volume will

increase directly as the temperature, or

7
H

7

1>

a law discovered 1 )y Gay Lussac (or, according to some, by

Charles) V)y experiments upon actual gases, and known as

the law of Gay Lussac. xVt first it was sujDposed to be the

perfect law of the so-called permanent gases, but it is now
known not to be exact though very nearly so. Originally,

it was not stated in terms of the absolute temperature, as that

term was not then known, liut the law of the increments is

the same on any thermometric scale.

33. The so-called impei'fect gases include all

such as cannot be represented with suificient accuracy by
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equation (2). All known gases are imperfect, strictly speak,

ing, but the permanent gases are so nearly perfect that they

may, for engineering purposes, be considered as perfect. No
single formula can represent exactly the law of imperfect

gases, but the most comprehensive one, and one which may
be made to represent actual substances with sufficient ac-

curacy for practical purposes, was deduced by Eankine from

his theory of Molecula/r Vortices, and is

in which ff„, a^, a„ &c., are functions of the density to be

determined by experiment ; but as the theory here referred to

is not a recognized part of science, the formula is accepted

only so far as it conforms to the results of experiment.

(Eankine's JSc. Papers, 32.)

For carbonic acid gas the form of the equation, as coi-

firmed by the experiments of E,egnault, becomes

»^=-£!^r-^=^r - A, (5)
r„ TV r V

in which p„ = 2116.2, v, = 8.1572, j>, v, = 1Y262, r„ =
492.66°, h = 481600;

„. r 481600 fc,.
.-. ^ = 35 - —.. ^ (6)

V TV

Sir "William Thomson and Dr. Joule used, for imperfect

gases, the formula,

in which for air the constants for French units are

B = 2.8659, a = 777.386, /? = 844560, y = 214325840.

{FML Trans. [1854], cxliv., 360).

33. Thermal lines.—Any line the co-ordinates of

which represent the contemporaneous relation between the

pressure, volume, and temperature of a body subjected *o
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thermal conditions, is a tliermal line. Ideally, it may be

any line on a thermodynamic surface ; actually, the projec-

tion of a thermal line on any one of the co-ordinate planes

is called a thermal line, and geometrically it is called the

path of the fluid, although the latter refers to the projec-

tion on the co-ordinate plane, p v, unless otherwise stated.

Thermal lines on the plane jpv constitute a diagram of
energy. If the pressure ]) be constant, the line is called an

isobar / if the volume v be constant, it is called an iso-

. metric. Thermal lines were introduced into this science by

M. Olapeyron.

24. Isothernial lines represent the relation between

the pressure and volume when the temperature is maintained

constant. In equation (2) if r be constant we have

^:>^) = i?T = m, (8)

for the equation of an isothermal of a perfect gas. It is an

equilateral hyperbola referred to its

asymptotes as shown in Fig. 1, in which

CO is the axis of the hyperbola, the

branches of which will be asymptotic

respectively to the axes v and Op;
V being the axis of volumes and Op

the axis of pressures.

FIG.
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d

R =

PIG. 3.

of an inch, and construct the curve as in Fig. 3. But for the equilateral
hyperbola it is unnecessary to compute any co-ordinates except for the ver-
tex e ; for, having found c by making p = ij =
Oa = ac, bisect Oaatd and make de = ^ae,
&c. ; and make Og = 20a aod g h = iac,&o.

2. Construct an isothermal for air at

the temperature of 1° F. absolute.

3. Find the vertex of the hyperbola

of the isothermal for air whose tem-

perature is T = 400° F.

4. Find i? for the following gases :

For hydrogen, -y, = 178.83,

nitrogen, v„ = 12.T5,

oxygen, v, — 11.20,

5. Find the value of H in French units for hydrogen.

6. Find the equation to the isothermal for carbonic acid

gas for the temperature T — 60° F.

7. "What is the volume of air, considered as a perfect gas,

under the pressure of four atmospheres and absolute tem-

perature of r = 800° ?

8. If the heat in one pound of carbon is 14500 B. T. U.,

how many pounds of carbon completely consumed are neces-

sary to increase the temperature of 2000 pounds of water

45° F. ?

9. How many kilogrammes of water would be raised

25° C. by the heat in one pound of carbon ?

10. On a diagram of energy draw on the plane v r the

locus of the path of a perfect gas when the pressure is con-

stant.

11. Find the pressure per square inch of two pounds oi

air when its volume is one half of a cubic metre and its ab-

solute temperature is 500° C.

12. Show that all isothermals of a perfect gas are asymp-

totic to each other as well as to the co-ordinate axes^ and v.

13. "What is the temperature of a pound of air when its
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volume is 5 cubic feet and pressure 35 pounds per square

foot^

14. What is the weight of a cubic foot of air when the pres-

sure is 50 pounds per inch and the temperature 16o" F. ?

35. Adiabatic or Isentropic lines represent the

relations between the volume and pressure of a substance

doing work by expansion without transmission of heat.

Conceive a gaseous substance to be enclosed in a cylinder

iiaving a frictionless piston, it will, by driving the piston, do

work. It will be conceived that the external pressure is infln-

itesimally less than the internal during expansion. The
temperature of the enclosed gaseous substance may depend

upon several conditions. If heat be properly supplied the

temperature may be maintained con-

stant, producing isothermal expansion,

which may be represented by the line

A i, Fig. 3. Having performed that

operation, bring the substance to its

initial state A, and conceive the ex-

pansion to take place without any
"

j,jjj g
transmission of heat, to do which the

vessel must be considered as imper-

meable to the passage of heat, in 'which case the external

work will be at the expense of the heat-energy of the sub-

stance, and therefore the temperature will fall as expansion

proceeds, and the pressure will also fall on account of the

loss of temperature, as shown by equation (2), and the line

A (I representing the continuous relation between the vol-

ume and pressure will be lower than the isothermal A h, and
its slope downward greater for equal ^-olumes. If the sub-

stance Ije compressed from state A, the line A e will be
above the isothermal 7} A c. The line e A d, representing

the law of expansion or of compression without transmis-

sion of heat, is by Eankine called an Adiahati.o (from
dia^aivnv, to pass through), and by Gribbs, C'lausius and
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others, Isentropic, because the entropj' (a term to be con-

sidered later) remains constant in this kind of expansion.

Adiabatics are asymptotic to the axes^ and v and also to the

isothermals.

26. If a fluid, after a series of changes of pressures and
volumes, returns to its initial state, the path of the fluid

will be a re-entrant curve, as A and

-5, Fig. 4, and in such cases 4;he fluid is

said to work in a cycle.

211. A heat engine is a machine

for continuously transforming heat into

work. Such engines in practice work
in cycles.

38. Carnot's cycle. This is a cycle performed by
an imaginary heat engine, devised by M. Carnot in 1824,

and involves the most important fundamental principle of

this science. The following is the operation

:

Let B, Fig. 5, be a piston moving in a frictionless cylin-

der, all parts of which are perfectly impermeable to the pas-

sage of heat except the base F. Let

the base of the cylinder be one square

foot, so that the height of the piston

will correspond with the number of

cubic feet below it, and let the cylinder

contain one pound of air, or any other

gas. Let H be an indefinitely large

vessel containing heat at a given tem-

perature, and L another indefinitely large vessel contain-

ing heat at a lower temperature, the initial letters, It

and Z, indicating the relative temperatures. The vessels

are assumed to be indefinitely large, so that, in imparting

heat to a finite body, they will maintain a sensibly uniform

temperature. Let N and N' be plates, as large or larger

than the base F of the cylinder, perfectly impermeable to

t J

FIG. 5.
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the passage of heat. Two of tliese are used simply for con-

venience of arrangement, so that the operation to be de-

scribed, passing in the direction indicated by the arrows,

will be the more suggestive of a cycle. Conceive the base I
of the cylinder to be placed against the vessel II ; the pound

of air in the cylinder will quickly become of the samL' tem-

perature as that of II. While in this condition let the pis-

ton move outward against a resistance which is continually

infinitesimally less than the pressure within,—the tempei'a-

ture will be constantly that of ZT, and the ex|)ansion will be

ivdthcrmal.

After the piston has been moved outward as far as desired

in this manner, transfer the cylinder to the non-conducting

cover iTand allow the piston to move outward still further

1 ly a gradual reduction of the external pressure ;—the press-

ure and temperature of the substance will both fall, and

since the walls of the cylinder are impermeable to the pas-

sage of heat, the expansion will be <idiabatic. Let the op-

eration be continued until the temperature of the pound

of gas in the cylinder has been reduced to that in the

vessel L.

At the end of the preceding operation let the cylinder be

renir)\-ed to the vessel Z, and the piston then forced inward

;

the lieat generated by the compression of the pound of air

M'ill escape as fast as generated, and is said t(.i be rejected or

emitted into the vessel L, the temperature of which will not

be sensibly changed ; hence the temperature of the pound of

air will lie constantly that of the vessel L, and the et impres-

sion will be 'iKothei'mnl. Let the operation continue to such

a point that when the cylinder is removed to the cover X'
and the air compressed adiabatically until the temperature is

raised to that in the vessel //, the volume will be the same

as that at the beginning of the series of operations.

To show these operations graphically, let h. Fig. 6, rep-

resent the volume and J IB the pressure of the pound of gas
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FIG. 6.

in the initial state ; then will B on the diagram represent

this state.

First operation. When the cylinder is in contact with the

vessel II, the expansion of the gas will be represented by the

isothermal B C, e being the final

volume and c C the final pressure.

Second operation . When the cylin-

der is in contact with the cover iV, the

expansion will be represented by the

adiabatic C D, d being the final

volume and d D the corresponding

pressure.

Third operation. The compres-

sion, when the cylinder is in contact with the vessel Z, will

be represented by the isothermal line D A.

Foupth operation. The compression when the cylinder

is on the cover W will be represented by the adiabatic A B.
These are the successive operations as indicated by Car-

not ; but it is more convenient, in describing the process,

to begin either at the state for J., on account of limiting

the third operation. Thus, when the cylinder is on the ves-

sel // and in the state C, let it be transferred to N and ex-

panded along CD imtil the temperature is reduced to that

of L ; then transferred to L and compressed along DA any

desired amount ; thence transferred to N' and compressed

until the temperature is raised to that of II\ then transferred

to H and expanded along B to the state C.

39. Source. The vessel from which the working sub-

stance receives heat, as H in the above operation, is called

the source. Similarly, the vessel receiving the heat emitted

from the working substance, as I in the above operation, is

called the refrigerator. In engineering science these are

called, respectively, ihe/vrnace and condenser.

30. Work done. During the expansion from state B
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to state C work is done by tlie gas while forcing the piston

outward, represented by tlie area b £ C c, and while expand-

ing from O to D more work is done by the gas, represented

by the area c D d; but during the compression from D to

A work is done by the piston upon the gas, the amount

being represented by the area (IDA a, and work is still fur-

ther done upon the gas in compressing it from A to B, rep-

resented by the area a A B h. The difference between

these works will be the external work done by the cycle of

operations. We have

-Vl B Cc + cC Del - el DAa-aABl = AB CD.

3 1 . Indicator diagram. The diagram A B CD
would be described by an indicator on Carnot's imaginary

engine ; and the area of an actual indicator diagram, taken

from any engine, expressed in foot-pounds, is a measure of

the heat destroyed in the cycle. It is in this sense that we
speak of " foot-pounds of heat."

33. Carnot's cycle is reversible. In a complete

cycle, if all the heat taken in is at one uniform tempera-

ture, and all the heat rejected is at a uniform lower tem-

perature, the operation is called Carnot's cycle. Such a

cycle is revei'><ihle, for all the operations may be performed

in precisely the reverse order, the final result, however, being

work done by the piston upon the gas in

the cylinder, the energy of the gas thereby

being increased by an amount represented

by the area B A D C, Fig. 6, expressed

in foot-poiinds. A reversible engine is also

called a perfect engine.

_ ^ (>)i-reev/'f!/hle cycle. As an example

i-io. 7.
°^ ^ non-reversible cycle, after the sub-

stance has expanded isothermally while in

communication with the source, represented by the line

B C, Fig. 7, let it be transferred directlj- to the refriger-



JiW ]
CONDITIONS OF A REVERSIBLE CYCLE. 21

ator—lieat will be abstracted and the pressure may be

reduced at constant volume, and hence without doing

work, the operation being represented by the line CD.
Then compress it isothermally when in communication with

the refrigerator along the line DA ; then transfer it direct-

ly to the source, raising the temperature and pressure to the

initial state B. This cycle cannot be performed in precisely

the reverse order ; for the pressure cannot be reduced from

B to A when the engine is iii communication with the

source, nor raised from D to C when in communication with

the refrigerator.

33. Conditions of a reversible cycle. In order

that a cycle be reversible, the difference between the exter-

nal pressure and the internal during a change of volume

must be infinitesimal—during expansion the external being

infinitesimally less, and during compression infLnitesimally

greater than the internal ; also during the transfer of heat,

the difference between the heat of the substance and that of

the external body shall also be infinitesimal—during absorp-

tion being infinitesimally less than the source, and during

emission infinitesimally greater than the refrigerator. The

differences being infinitesimal, the quantities will in finite

measures be equal.

33a. It follows from the conditions of the preceding

article, that if a closed cycle be bounded

by the isothermals and adiabaties of any

substance, the cycle will be reversible

when worked with that substance. Thus,

if there be an adiabauc compression

along A B, Fig. 8, an isothermal ex-

pansion along B A', adiabatic expan-

sion A' B', isothermal expansion B' A",

and so on back to A, the cycle will be reversible.

Also, the cycleAB CD, Fig. 7, may be made reversible by

conceiving an indefinite number of sources of heat differing by
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d T, and passing down CD by an indefinite number of indefi-

nitely short isothermal compressions and a corresponding

number of indefinitely short intermediate adiabatic expan-

sions as indicated in Fig. 9 ;
and a similar

reversed operation in ascending from A
to B.

34. The heat absorbed hy asuh-

stancevnworMngfrom a state A to state

B may'le rejjresoited on a diagram of

energy hy the urea inchided Ijetween the

FIG. 9. V^i^ of thef II id and the adiahaticspass-

ing through A and B respectively, ex-

tended indefin-itely in the direction of the expansifjn, Fig. 10.

Let A be the initial and B the final states for the expan-

sion 'i\ v^, and the line A B the path of the fluid. Pass the

adiabatics A (p^ and B q>„ then will the indefinitely extended

area cp^ A B cp, represent the heat absorbed by the substance

in doing the external work -v, A B r^, in the same units as c, v,

fend v^ A ; uhat is, if v^ v^ represents

feet, and /', ^1, pounds, the area cp^A

B (^2 "^vill represent foot-pounds.

From the state B conceive the

substance to be expanded adiabatically

along B ipj, doing wcjrk as against a

piston, to the state C, then will the

external work ?„ B G r have been

done, without the absorption or emis-

sion of heat ; and hence the reduction of temperature (and

pressure) will be due to the transmutation of heatinto work.

At the constant volume v let sufiicient heat be emitted to

reduce the pressure to v D, where B is on the adiabatic A ^,;

from J) compress the substance along A cp, to ^1, during

•which the external Avork v^ A D /: will liaA-e been done upon

the substance ; thence expand from A to B along the path

A B, during which heat must be absorbed. The only heat

PIG. 10.
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absorbed in this cycle of operations is while working from

A to B, and the only heat emitted is in describing the jjath

D ; and since the cycle is complete the ideally external

tvork A B CD is the exact equivalent of the difference

between the heat absorbed and that emitted, or

.//b - JIi = v,BCv + v,ABv,-vv,AD = AB CD
= (p,A B cp,- cp,I) C <p,,

where 9>, and cp^ may be at a distance indefinitely great.

Let CD be moved to the right indefinitely—it will become

less and less, and at the limit JI^,, or cp^CD cp^ will be zero,

and we will have

JI^ = (p,AB<p,

for the heat absorbed. At the limit, q>^ and ip, being at an

indefinite distance to the right may be considered as coincid-

ing, and the path cp^A B <p^ as re-entrant, forming a cycle, in

working around which, heat is absorbed only along the path

A B. The enclosed area represents what would be the exter-

nal work done if the substance could be worked in this

cycle. If the external work, v^AB v.^, actually performed

plus the increased actual energy of the substance equals ip^

AB (p^, no internaJ work will be done in working along

the path AJB, but if these are unequal, the difference will

be the internal work, either done upon the substance in

passing from state A to state B, or by the substance in pass-

ing from state 5 to A. This theorem was first given by Ean-

kine, and is very fruitful in the geometrical development of

this science.

The heat absorbed in passing from state A to state B may

be expended in the three followng ways, as stated in arti^

cle 9:

1. In doing the external work v^ A B v^ := (J;

2. In doing internal work = 8;

3. In increasing the actual-energy of the siibstanee = Q ;

..<p,ABcp, = Ji^=Q + S+U. (9)

Any of the terms in the last member may be negative.
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35. The ineclianical equivalent of heat. The

direct determinations of lieat have been in terms of thermal

units, but on the indicator diagram the work done by heat

is in terms of foot-pounds or their equivalent. It is neces-

sary to reduce one <:)f these to the otlier. Tlie first accurate

determination of the meclianical equivalent of the thermal

unit was made by Dr. Joule, of Manchester, England, who,

after a series of experiments beginning in 1843 and extend-

ing over a period of about seven years, concluded that its

value was about 772 foot-pounds. To state it otherwise ; if

a pound of water falling through a height of 772 feet in

a vacuum should be suddenly l)rought to rest, and all the

heat thereby generated could be utilized for the purpose,

it would increase its temperature one degree Fahrenheit.

Joule's experiments gave quite a range of values, and he was

inclined to give more weight to the smaller than to the larger

ones. Later, in 1876, a committee appointed by the British

Association for the Advancement of Science reported that the

mean of sixty of the best experiments made by Joule on the

friction of water gave 774.1 foot-pounds subject to a small

correction, possibly amounting to ^j-g-j,- of its valu.e, on account

of the uncertainty of the exact position of the absolute zero

on the thermometric scale.

Still later, in 1878, Joule made another set of experiments,

giving as results the following values

:

Deg. C. Foot-poimds.

at 12.7, 774.6

15.5, 773.1

17.3, 774.0

Mean 15.1, 773.9

Joule's experiments were made with water at about 60° F.,

and reducing his results to their equivalent for water at its

maximum density, according to the law indicated by E.eg-

uault's experiments, reduces the value slightly, thoiigh for a
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difEerence of 20° F. it will scarcely affect the first decimal
figure, as will be seen -when we consider the specific heat of
water. Thus, if the mechanical equivalent of heat at 60° F.

were 774.1, then at 89.1° F., or say 40° F., it would be 774
(nearly), and reduced from the latitude of Manchester to that

of New York it becomes 774.8, nearly ; and if the entire

margin of error, ^^^j, be positive and applicable to this num-
ber, the value would be 776.7, or, to the nearest integer, it

would be 777.

More recently, Professor Eowland has made a very critical

examination of the specific heat of water at the lower tem-

peratures, and made a more accurate determination of the

mechanical equivalent at those temperatures {Oil the Mechan-
ical Equivalent of Heat, Proc. Am. Acad, of Arts and Sc,

1880). The most probable values, as determined by him,

are, for the latitude of Baltimore (ibid., p. 196)

:

Temperatures.
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specific heat of water diminislies according to the same law.

Prior to these experiments, it had been held, in accordance

with Kegnault's experiments, that the specific heat of liquids

increases with the temperature ; but according to the above

experiments this law is reversed for water from 40° F. to

80° F., being a minimum in the vicinity of the latter value,

and increasing for higher temperatures. Kegnault's experi-

ments were chiefly for higher temperatures. Rowland's

values, even when reduced to the same latitude, all exceed

those heretofore used for scientific and engineering pur-

poses, although the,y agree very nearh' with Joule's ^vhen re-

duced to the same thermometer, temjDerature, and place

{'ih/\/., Appendix, ii, 45). The first cause of difference lies

in the fact, above stated, that the mechanical equivalent is

greater at 39° F. than at 60° F.—amounting to about 3

foot-pounds—instead of less, as given by E-egnault's experi-

ments. The second cause is due to the fact that a degree

on the air thermometer, from S'J° to -iu", is perceptibly

larger than on the mercurial thermometer, the difference

being about y^ of a degree of the air thermometer, and re-

sulting in an increase of more than 5 foot-pounds above that

given Ijy the mercurial thermometer. Joule used a mercu-

rial thermometer.

It is apparent that the old value, 772, so generally used

by the scientific world, is much too small, and 774.1, recom-

mended by the crmimittee of the British Association, is not

sufliciently large. According to Rowland's experiments,

the British Thermal Unit is al)0ut 7S4 fo(.)t-pounds per de-

gree on the air thermometer, and nearly 779 on the mercu-

rial thermometer. Scientifically, the air thermometer should

be used ; while for engineering purposes the mercurial ther-

mometer is almost universally used ; but in neither case

should the highest numbers be adopted unless the law of

change of the substance be known throughout the extent of

the investigation. Such a law is not known with scientific
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exactness. In refined analysis it lias been customary to nse

an empirical formula representing the experiments of Eeg-
iiault—especially for water—but in ordinary practice it is

customary to consider the speciiic heat of water as constant

at all temperatures, and for this reason it is not advisable to

adopt the highest values given by experiment. Before de-

ciding upon the value to be adopted in tliis work, values

M^ere computed by other methods, to be explained hereafter,

and that number selected which would, according to our

present knowledge of all the elements involved, harmonize

with the various methods by which it has been determined.

This number is 778. The exact value cannot be found, but,

hke other physical constants, it maj' be determined within

certain hmits. The value here adopted is probably within

j-^ of its own value for the mercurial thermometer at the

latitude of New York. The mechanical equivalent we rep-

resent by t/, and call it Joule's equivalent.

36. FiestLaw of Tueemodtnamics. Heat and mechan-

ical energy are mutually convertible in the ratio of about

778 foot-pounds for the British Thermal Unit.

The equivalent in French, or part French and part Eng-

lish units, is

1400 foot-pounds per pound of water per degree

centigrade,

426.8 kilogramme-metres per kilogramme of water

per degree centigrade.

EXERCISES.

1. How many foot-pounds of heat-energy are there in one

pound of coal containing 14500 British thermal units ?

Ans.

2. How far will one pound of anthracite coal propel a

locomotive weighing 60 tons on a level track, friction 6

pounds per ton, if the entire heat-energy of the coal could
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be utilized for tliis purpose, tlie coal containing 15(300

B. T. u.

;

Ans. miles.

3. If in melting one pound of ice 144 B. T. U. become

latent, liow many foot-pounds of energy are required to

change the state of aggregation of the substance—that is, to

change ice to water '.

Ans. 1120.32 ft.-lbs.

4. Find the value of the mechanical equivalent of the

B. T. U. when expressed in kilogramme-metres.

5. How many thermal units must be transformed into

mechanical energy per minute to equal one horbC-power '.

6. What is the theoretical efficiency of a steam plant that

develops one horse-]DOwer per hour for every 2i ]iounds of

coal used, the heat units in a pound of the coal being 130(iO ?

7. Steam plants have been reported as developing a horse-

power pel hour with 1.5 pounds of coal ; what Avas the theo-

retical efficiency of the plant, if a pound of the ci:ial con-

tained 1521)0 B. T. U. ; What if it contained 12o00

B. T. U. (

Ans. In the latter case, -i-|- nearly.

8. How many foot-pounds of energy will be re(juired to

raise the temperature of five pounds of water from the tem-

perature of melting ice t<j that of boiling water, the value

of J l.ieing YTS for each degree '.

9. One kilogramme-metre per degree centigrade e(pials

how many foot-pounds per degree Fahrenheit (

An.<. 13.(12.

1(). How many foot-kilogrammes of heat are necessary in

order to raise the temperature of one decigramme of water

one degi'ee Fahr. '( How many metre-pounds to raise one

gramme of water one degree C. '.

37. Thermal capacities. The amount of heat nee
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essary to change by unity any quality of unit-mass of a

substance under given circumstances is called the tliermal

capacity corresponding to the given change. Three such ca-

pacities have received the respective names

—

specific heat at

constant pressure, specific heat at constant volvms and the

latent heat of eipansio7i. When these capacities are vari-

able, their values at a particular state may be considered as

the rate at which heat is absorbed per unit of the constant

element.

The unit-mass, in English units, is the standard one-pound

weight, and in French units is the standard kilogramme.

38. Pressure constant. Specific lieat at con-
stant pressure. If the pressure be constant, the path

of the fluid will be a right line perpendicular to the^-axis.

Fig. 11 ; and the heat absorbed in working from state A to

state B along this line will be, according to Article 34, repre-

sented hy the area cp^ A B q)^ in foot-pounds, to find which

requires an experiment with the substance in order to deter-

mine its thermal capacity under constant pressure.

The specific heat at constant pressure is the amount of

heat absorbed in increasing the temperature of a unit-mass of

the substance one degree, the pressure

being constant and the specific heat

constant throughout the degree. In

English units, it is the number of

thermal units (Art. 6) absorbed in rais-

ing the temperature of one pound of

the substance one degree Fahrenheit.

To represent it on a diagram of

energy, the line A B, perpendicular

to the^-axis, must be limited by two isothermals, as r and

r -\-l, differing by unity of temperature ; then will the

dynamic specific heat at and from r be represented by the

indefinitely extended area cp, A B cp,. If the specific heat

be variable, the isothermals must differ hjdr only.

PIG. 11.
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For nnmerical valnes, see tables of specific heat. To ex-

press it algebraically, let

Zp = the ordinary specific heat at the temperature r and

pressure 7',

K^ ~ the equivalent ijijnamlc specific heat

;

then

^p = Jl;. (10)

If <1 Ap = tlie thermal units absorbed in raising the tem-

perature of a unit-mass of the substance under a constant

pressure an amount d t ^ d r degrees, and d S^ the same ex-

pressed in foot-pounds, then

dh^ = l;dT, (11)

d H,-=^Jl',dr = K,dr; (12)

..(7^-J
= Ap; (13)

hence, after substituting,

H,

If the specific heat be constant, equation (12) integrated

between limits gives

//p = a; (r, - rO, . (15)

and if r^ — t, — 1, we have

^p = I^f = 9. -i ^ <P« Fig. 11,

as before stated.

When the path is arbitrary, the heat absorbed may be a

function of the three variables p, i\ r, but when p or v is

dH .„ ,

constant -r- will be a partial differential coefficient, and

may be indicated as above \\'ith a parenthesis and subscript.

d,H
d r

by Clausius, or (/Z",)p as by M. Saint-Robert, or even with

or with a parenthesis without a subscript, or by -^-?— as used
d r
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out any distinguishing mark, leaving it for the reader to infer

its true character, which may be so easily done in this

science as to make it questionable whether any mark is

desirable.

39. Volume constant. Specific heat at con-
stant volume is the heat absorbed in raising the tempera-

ture of a unit-mass of a substance through one degree when

the volume is constant, the specific

heat remaining constant throughout

the degree. It is the number of heat

units necessary to raise the tempera-

ture of one pound of the substance

one degree F., the volume being con-

stant. When constant its dynamic

value may be represented on a diagram

of energy by the area between a line

A B, Fig. 12, perpendicular to the

-y-axis hmited by two isothermals differing by one degree,

and two indefinitely extended adiabatics A q), and B (p„_, as

shown in Article 34.

Let Av = the specific heat for a constant volume at the

temperature r in ordinary thermal units,

K^ = its equivalent dynamic specific heat,

dK = the thermal units absorbed in raising the tempera-

ture d r,

dRy= the foot-pounds of heat in ^ A,

;

then

dK — K^''^^

dE^ = JK dr = K^dx'.

X = IdR
\dr

(16)

(17)

If K^ be constant, then in Fig. 12,

K^= q>,A B cp^.
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tXERCISES,

1. How much more heat (mechanical energy) is required

to raise the temperature of one pound of water 1° F. than

of one pound of air, the same amount under constant

pressure ?

(Find the ratio of the values of their specific heats, as found from a

table of specific heats, and express their diflEerence in foot-pounds.)

2. How much more heat is required to raise the tempera-

ture of one pound of water 1° C. than of one pound of air

tlie same amount, at constant pressure i

3. How far must a mass of iron fall in a vacuum in order

tliat its resultant energy, if transmuted into heat, would

melt it ?

4. xVssuming that air and hydrogen are perfect gases,

how much more heat will be required to increase the tem-

perature of one pound of the latter one degree Fahr. than

one pound of the former the same amount ? Express tlie

difference in thermal units and in foot-pounds.

5. If oxygen and hydrogen are perfect gases, how many
pounds of oxygen will l)e required in order to contain as

mucli heat as one pound of hydrogen at the same tempera-

ture '{

(\ Show that a right line parallel to the -y-axis will he

di\'ided into e<.|ual parts by a series of isothermals of which

the general equation is^^-y = It r, provided r^ — r^i= r^— r„

1. In the preceding exercise, show that a right line

parallel to the^-axis will also be divided into equal parts.

8. Show that a line drawn through the origin of co-ordi-

nates is not divided into equal parts by the successive equi-

lateral hyperbolas of Exercise 6.

40. Let the temperature be constant during
exijansion. Second Law. In this case the path of the
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A.
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computation of the lieat absorbed during expansion, tlie

heat of the worl^ing fluid being maintained at a constant

temperature. Thus, if between 600° F. and 500° F. ab-

solute, in a perfect elementary engine, ten thermal units be

transmuted into work, then will the heat absorbed at 600° F.

have been

A = 10 !j = 0(.t

thermal units. If the expansion be isothermal, the equation

to the path of the fluid will be that of the gas at constant

temperature, and the e.iierntfl work may be directly com-

puted, from the equation to the gas, being represented in

Fig. 13, by

W = t\ A B 'i\ = fj) d V.

It will be observed in Fig. 13 that, if the area cp^ABq)^
be divided into an indefinite number of strips, representing

Carnot's cycles, ultunately the topmost strip A B c d will

equal the topmost strip of -y, A B v.,, representing external

work cut off by the second isothermal. If the work done

in those Carnot's cycles be e(]ual, the total Iieat, tp^ A B q)„

will, according to the second law, be the area of the top-

most one multiplied h\ the imniber of cycles. The top-

most one. Fig. 13, will be the differential of the external

work, or d W, and r, — t^ becomes d t, and if r, be the

constant temperature at which heat is absorbed, which will

>je the temperature of the isothermal A B, we have

H = d U -J- = r, -^—
d T ^ d T

The second law is the result of observations, experiments,
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and deduction. It is not, like a proposition" in geometry,

capable of a direct, rigid demonstration ; but rather, like the

axioms of geometry, appeals to our uudei'standing for as-

sent whcTi the terms used and the operations assumed are

well understood. Or, perhaps a better parallel will be

found in the Newtonian laws of motion, which were first

conceived, from the results of experiments, to represent

idea(lly perfect conditions, .^nd later became firmly estab-

lished by the fact that when applied to the solution of prob-

lems in nature the results olitained agreed with those ob-

served. So this law, first conceived to represent what would

be the results of experiments if the conditions were j)erfect,

has become firmly established thi-ough the fact that it has

successfully stood the many crucial tests to which it has

been subjected. If the formulas founded upon it had led

to results known to be erroneous, they would have dis-

proved tile law ; but it has been found that all tlie results so

deduced agree Avith those of experiment at least within

the limits of the errors of observation.

Carnot made the first step toward the establishment of

the law by showing that the efficiency of his ideal engine

was a direct function of the difference of the temperatures

of the source and refrigerator, and was indeiDcndent of the

nature of the working fluid. The idea of an absolute tem-

perature had not then entered this science. Later the law

became established through the labors of Clausius, and of

Joule and Thomson. Eankine virtually deduced it from

his theory of molecular vortices. He came to the conclusion

that Carnot's law is not an independent principle, but is de-

ducible from the equations of the mutual conversion of heat

and expansive power.

Let one pound of any substance having the volume y,,

pressure v^ A, and absolute temperature r, in constant com-

munication with a source of heat at the same temperature

(or at a temperature r -\- dr), expand from v^ to i\ by driv-
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ing a piston in a cylinder ; then will the indefinitely ex-

tended area ^j, A B (p„, expressed in foot-poimds, represent

the heat absorbed, and divided by 778 will be the value of

the heat in British thermal units.

Tofiwl the area qi^^i B q)^, conceive it to be divided into

an indefinite number of strips of equal areas by isothermals

of the given substance, as dc,ji,. . . ij .=, etc. ; they M'ill repre-

sent e(|ual quantities of heat, and if an elementary engine

be worked in the successive cycles A B c d, d o ij, ifec, the re-

sultant works done will also Ije e(|ual. These are Carnot's

cycles, since all the heat absorbed will be at one temperature,

and that which is rejected, at one lower temperature. Let

the successive equal quantities of heat thus transmuted into

external wc)rk constitute a scale of temperatures—known
as Thomson's Absolute Thermometric Scale {Phil. Hag., xi.

(ISoCi) '216. Thomson's J'aj_/e/'s, p. 100). The characteristic

quality of this scale is — equal quantities of heat when

W(jrked in Carnot's cycle will do equal quantities of external

work hulependenf]
IJ of fhie nature of the VMrhiny siibstance.

At first, any amount of heat or area, as /
/' d e, may be taken,

arbitrarily, as a unit, and a repetition of this unit will con-

stitute a scale of natural numbers, as 7, S, 9, etc., the zero

of which may bo placed arbitrarily. Having assigned its

place and the unit of heat, the quantity of heat involved in

any number of such operations becomes known. Thus, the

heat necessarily destroyed in performing the operations

numbered 7, S and 9 will be three times the unit initially

assumed. Fractional parts of the scale will correspond to

fractional parts of the unit. The scale may be so numbered

that the tw(j fixed points shall correspond with 32° F. and

212° F.

Conceive that the zero of the scale corresponds with the

total deprivation of heat from the substance, and that in

raising the pressure fi-om () to i\ A, there are r of the

arbitrary units. Let each unit be divided into an indefinite
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number of equal parts by isothermals, each represented by
d T

; then will the number of parts in each unit be 1 -h (^ t,

and the number in r units will be

number, of strips ^
dr

The area of any one of the infinitesimal strips, 2& A B c d,

being known, we have

cp,AB<p^= ^y, ABc d, . (18)

and the solution is now reduced to that of finding the area

^1 B c d. Conceive it to be divided into an indefinite

number of parts by vertical lines having between them the

constant abscissa d v (or, more accurately, let the divisions

be made by adiabatics having between their upper ends the

abscissa d v), then

efh g = dj> d v,

and

ABo d= 2'"' dp d V.

This summation cannot, generally, be performed by an

hitegration, for, generally, cZ^ varies from A to B, and is

not simply a function of v. For any assigned value of v,

d J} depends directly upon d r, since it is limited by two con-

secutive isothermals differing by d t, a condition which, in

the language of the calculus, is indicated b}' the expression

thus, changing from dp independent to p dependent upon

r. Substituting this for d 2^ above, gives

where d r is placed outside the integral sign since it is con-
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stant throughout the strip ^-i B. This value in equation (18)

II, = <p,ABcp, = rl "^

(g I V. (19«)

If the expansion be infinitesimal and equals d v, we have

rlll=r(^^cl., (20)

which is the required equation.

In using this equation,
(
--^

) is to be found by differen,-
\d tJ

thdlng the equation of the gas, given in terms of the o]jf>o-

lute Kcale of temperatures, cvjnsidering v as constant ; or by an

experiment, finding the change of pressure for a very small

change of temj^erature, but in in1e<jr(diruj from i\ to v^ the

temperature must be constant, so that not on]y will r, if

any in
(
~-

j
, be constant, but the r before the integral sign

will also l^e constant. Indicate this by r^. Since an amount of

heat equal ti.i that absorbed by any substance during isother-

mal expansion becomes latent, the preceding equ_ation, more

completely expressed, becomes :

Latent heat of

•EXPANSION from }. = //^ = T, / ^('— ) "'''i (21)
•t\ to «,

j

in which the subscript r, of the bracket implies, as explained

above, that r within the parenthesis is to be considered con-

stant during the integration. As a tlieniuil cajKiciti/, Article

37, the latent heat of expansion is t -i , as if d >: were unitv,
d T

being the /'I'.fe at which heat is abscirlied per unit of volume.

Differentiating equation (^1), considering r as constant and

V variable, gives , i

q)^ A h n = r^ (—i^)d v,
\ d T/
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which is the same as equation (20), where d v is the abscissa

of h in reference to v^A, Fig. 13.

T'he scale of temperatures above used is not practical, except

for the purposes of analysis, since heat cannot be actually

divided with acciiracy by any known means according to the

process described ; and it remains to be shown how the re-

sult can be made of practical value. Conceive a quantity of

heat equal to that absorbed by a pound of the substance,

<p^A B (p„ to be absorbed by such a quantity of 2i,perfect gas

as will give the same temperature, and let the temperatures

be measured by an ideally perfect gas thermometer graduat-

ed from absolute zero and having r equal divisions up to the

temperature here considered ; then will equal divisions on

this scale correspond with equal quantities of actual heat in

the perfect gas—so that, if the gas be cooled by abstracting

equal, successive quantities of heat, the successive tempera-

tures will be indicated by equal divisions on the scale. In

this manner, the heat in a perfect gas might be divided into

equal parts. Let the temperature of the given •substance be

reduced an amount d r on this scale by working the heat in

Carnot's cycle, the same amount of heat will be transmuted

into work as must be abstracted from the perfect gas in re-

ducing its temperature the same amount, and so on. Con-

ceive isothermals of the substance to be drawn on the dia-

gram of energy, differing by r/ t of the perfect gas thermom-

eter ; there will be t -h (f t such divisions between zero and

r, as in the former case. These isothermals may be con-

ceived to be described, geometrically, from the equation of

the gas given in terms of the scale of the perfect gas ther-

mometer, or, physically, by supplying heat to the expanding

gas so that the temperature will remain constant as indicated

by this thermometer and noting the contemporaneous press-

ures and volumes. These processes, perfectly done, would

give the same isothermals ; and since the number is made
the same as in the earlier part of this article where the strips
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were, arbitrarily, made equal, and since tlie lowest, or zero-

isothermals, coincide, also the highest, or r-isothermals, it is

inferred that the successive isothermals in the two cases co-

incide. It follows, then, that if the area q)^ A B q)^ be inter-

sected by isothermals difEering by an absolute constant tem-

perature, the areas between the successive isothermals will be

equal ; and if the numljer representing the difference of

temperatures be comniens'irable with the number represent-

ing the highest temperature, the entire area cp^ A B q)^ will be

divided into eipial parts. By making the difference indefinite-

ly small, or d r, the question of commensurability disappears.

But a perfect gas is unknown ; it has, however, been found,

as stated in Articles 14 and Kl, that the air thermometer dif-

fers but little from that of a perfect gas thermometer,

the temi3erature of melting ice being 491.13° F. above the

absolute zero of the air thermometer, and about 493.66° F.

above the zero of the absolute scale, a difference of about

jj|~ij-
of the entire 491°, a quantity too small to be measured

in actual practice, and can be determined only by the most

refined experiments. The position of the zero of the abso-

lute scale cannot be determined exactly, but, accepting the

results of Thomson and Joule, if the zero of the air ther-

mometer be made to eiiincide with the melting point of ice,

then l)y adding 492.(i()° F. to the reading of the air ther-

mometer, the sum will be the value of the teniperature on

the absolute scale, almost exactly.

Equations (20) and (21) are tlienret'icalltj exact, and hence

are [nuiet'ieaJJij so for volumes, pressures and temperatures

determined by the best methods known.

The following reasoning may aid the reader in satisfying

himself of the equality of the strips. Conceive the area

cp.AB q)„ Fig. 14, to be divided into an indefinite number of

strips by isothermals of the substance, differing by the con-

stant absolute temperature d r, then will the areas thus

formed be equal.

If the areas between equidistant isothermals and the adia
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batics are not equal, a line, B iV", may
be so drawn that they will be equal,

but the area (p, A B JS"" (Fig. 14) will

be an area exceeding that which rep-

resents the heat

absoi-bed ; or, if

it falls within

B q)^ it will be

FIG. 14. less than that

representing
the heat absorbed.

If the working fluid is a perfect

gas the areas a hod and efg h (Fig.

15) will be equal, but if the gas be imperfect all the small

areas in <p^ A B cp^ below the topmost one will exceed those

between the corresponding isothermals va. v^ A B ^),.

41. Thomson and Joule established equation (20) upon a

principle of Carnot. Carnot proved that, of the heat ab-

sorbed, (p^Ain, Fig. 13, during isothermal expansion, the

part d i transmuted into work by working in one of his

cycles, was yu (^i— r,) of the heat absorbed, whei-e /< is a func-

tion of the higher temperature only and hence independent

of the nature of the working substance, and t,— t„ the

fall in temperature of the working substance. In this case,

let T^ — T^ = dr, then will /u d t he the fractional part of

(p^ A b 71 transmuted into work.

Let Ifhe the latent heat of expansion in thermal units,

then will J/ rZ v be the heat units in ^,A h n, and in footr

pounds we have
JM d V = (p. Ah n,

and the heat transmuted into the work h d will be

h d = jj. JM d V dr.
But we also have

hd = (a d r d
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and making these equal gives

Carnot did not find the form of the function yu. In re-

gard to it Thomson says :
" It has an absolute value, the same

for all substances for any given temperature, but which may
vary with the temperature in a manner that can only be

determined by experiment" (Thomson s Papers, p. 18Tj.

Thomson, whose resources e^er seem sufficient for the oc-

casion, set about its determination, the processes for which are

described in the Philosophical Magashie, and more recent-

ly in Thomson's J/(/^/'ry/;«//V'rt? ami Physical Papers, cover-

ing many j)ages. Early in the investigation, Joule suggest-

ed that the value of i-i might be " inversely as the tempera-

ture from zero" (Thomson's Pap)ers, p. 199); and these

experimenters established the truth of this suggestion by

that celebrated series of experiments known as " the experi-

ments with porous plugs." Hence, we have

1
fA. =

r

JJfd u ('^;)-

as already found. The quantity ^l is known as " Carnot's

function," the title given to it by Sir WiUiam Thomson. The

value 1 -f- /^ = To, the absolute temperature of melting ice,

was found t.j be ^7;j.(iS° C. {lh!il., p. 391).

Thomson's absolute scale may be thus defined : The num-

liers e.ipresshuj <le(/rees of alisol uti' ffmpi-ralures a re propor-

tional to tJa; (jKiin-fifies of la'at aljsurlieil and emitted at those

temperatures In. et. rerersllile ri/ele. Thus, if // = q>^ A JB

cp^ = the heat absorbed. Fig. 13, and it be divided into r

equal parts, then will one part he S ^ r ; and if h be the
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heat emitted = <p^y z (p„ then will the number of equal

parts in h be

h -^{II-T- t) = ~r = t (say)

;

, h _ t

"H ~ 7'

The equal parts of heat in (p^AB cp^ may be conceived

to be secured, physically, by a succession of perfect engines

in which the refrigerator of one is the source of the next,

and so on. It was in this manner that Carnot established

his expression for efficiency. The amount of work done by

heat depended only upon the difEerenee of the temperatures

of the source and refrigerator and some function of the

higher temperature, as already given.

43. To express equation (21) in terms of the external

work, from Fig. 13, we have

U = v,A B v^—
I ^ dv ',

. •
. dU = p dv;

. .^ _ ('^^\ d V, also written -^dU;
dr - \d rJ ' dr

hence, substituting in (21),

jS, = r f-^l^ ^<p,AB cp,, Fig. 13
; (22)

J d T

dH, d'U
r d r

^ r' dr

(d^\dv = r^^ = cp^Al>n.
\ dv J dr

From equation (22) it appears that the heat absorbed may

be found from the temperature at which it is absorbed and
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the external work regarded as a function of the tempera-

ture.

The three preceding articles will be more clearly under-

stood after becoming more thoroughly familiar with the sub-

ject as developed in the following pages.

43. In equation (19) the quantity under the integral sign

for a given expansion is constant, hence d r may be inte-

grated between limits, giving

/'.///= //,-//,=(r-r,| j{±iyjv=ABBy C5i3)

of Fig. 1.3, in which r, is the absolute temperature of the

isothermal A B and r, that of y z, and //, the heat absorbed

along ^1 B and 11^ that rejected along z y. Heat al )sorbed

during an operation may be considered positive and that

emitted, negative.

» EXERCISES.

1. If the eipiation of the gas be
i>

r = B t, find the heat

absorbed during expansion at the constant temperature of

5<.t0° F. fn.im i\ = ten cubic feet to i\ = 30 cubic feet.

(Use Eq. (21).)

2. If the equation of the fluid be ^^ = ^ — — —- (of
V rr

which carbonic aci<l gas is a special case), find the area of

one of the stri])s in Fig. 13 frjr a difference of temperature

d r, for an expansion from /', to r„ at the temperature r^.

I n 1
Ans. BIorj^ + JLa-l) <Jr.

3. Find the latent heat i)f expansion in the preceding ex-

ercise.

r 1)

4. If the eqtiation of tlie gas be p z:^ B ^ — —^, find
V re'
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the external work done in expanding from -y, to v, at the

temperature r,.

Ans. Jirjoo'^-l f1 - 1 V

5. Find the internal work done in exercise 4.

6. In exercise 4 find the area between the two consecutive

adiabatics A q>^ and h n, Fig. 13.

7. In exercise 4 find the ratio of the internal work to the

external for an expansion from v^ — ^ to-y^ = 18 cnbic

feet, at T = 700° F., i? = 35, and h = 48000.

8. If the equation of a gas were jy = 4 ?; t, find the heat

absorbed at the temperature r = 600° F. in expanding

from 20 to 30 cubic feet, and reduce to thermal units.

44. General Case.—Let the path of the fiuid be

arbitrary, as A B, Fig. 16, A (p,, B ^„ two adiabatics in-

definitely extended to the right, then, as shown in Article 34,

the area q}^ A B cp^ will represent the

heat absorbed in passing from state

A to state B. To find this area, con-

ceive it to be divided into an indefi-

nite number of indefinitely narrow

strips, as follows:—Divide the line

A B into an indefinite number of parts

by the isothermals ao, }> p, &c., differ-

ing by d r, the points of division being

at a, h, c, &c. ; and from these points draw verticals inter-

secting the isothermals next below in the points •«, o,p, q, &c.

Through the points «, h, c, &c., and n, o, p, etc"., draw adi-

abatics, as a m, o m„, h 7?i, ; then will the sum of all the strips

'inao m,„ m^o h m,, &c., ultimately equal the area cp, A B cp^.

If r be the absolute temperature of any isothermal, as a o,

and d v the expansion from state a to state o, then, accord-

ing to equation (20), will the area

m a m, = T (y^j dv;
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and, according to Article 39, the area

in.^ h in^ = K^ d r
;

hence, ultimately,

area m a I m, = d H = K, d r -\- r (^-2\ d v, (24)

\rhich is a general differential equation of theemody-

NAMICS.

In this solution the polygon Anao hp, &c., is inscribed

in the figure (p^ A B q)^, but the -same result would be

reached if the polygon were circumscribed, as indicated in

the figure by A w a w h, &c.

From equation (24) we have

cp,ABcp^ = JI^ = r^-K^dr + ' \ (4^) dv, (25)

but the general integral cannot be found since K^ is not a

known function of r, nor r and (~^
)
known functions of

\(/ r/

V. In equation (24) r and /' are independent variables.

The shaded strip m a o m^ represents heat transmuted into

work due ti) an isotliermal expansion, and the unshaded

strip m^oh m^ the increased energy of the substance, both

actual and potential, due to the change of temperature in

jaassing from a to h.

45. To make r and p inde-
pendent varialjles. Intersect the

path A £, Fig. 17, with consecutive

isothermals differing by the constant

d r, as before ; and from the points of

division h, c, d. etc., draw lines parallel

to the axis r, intersecting the ad-

jacent isothermals in the points n, n,

&c., thus describing an inscribed poly-

gon, Anbo, &c. A circumscribed polygon would answer the

same purpose.- Through the vertices of the polygon. A, n.
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I, 0, c, &c., draw the adiabatics b m„ c m„ o m^, &c., then,-

ultimately,

= K^dr — m^com,, (Eq. (12)),

= K,dr -r {^\ ,/^,(Eq. (20)).

But (I V in this equation is the abscissa of o in reference

to c (Figs. 17 and 18), on an isother- "|vZ

mal through c, and hence is not de- \e_

termined directly from the equation

of the path. Change this d v to d v'

and let ITi — dv, being the differ-

ence of the abscissas of two consecu-

tive points of the path : then
w* w^ m.^

^ ' PIG. 18.

( T— ) = the rate of change of pressure,

(~ \ dr^T}l^^ci^= increase of pressure,

f-^-j drdv' =^ zxQ'a.icoj, (-=— j dr=zho,

d'])-=^Tcc\ .-(t-) drdp^^iooe.

But icoj = l)oce having the common base c o and

between the same parallels. Multiplying the last expression

by r H- (^ r, and substituting, gives

dJS=K,dr-r(^^-^)^dp. (26)

Equation (26) is a second general equation of thermody-

namics in which r and p are the independent variables.

Other forms may be deduced from these, as will hereafter

be shown. For convenience of reference these equations

are brought together.



48 THERMODYNAMICS. [46.]

46. The two fundamental equations of ther-
modynamics are :

—

cl II = a; dr ^r i'll] d V.

\n Tl

dll^ K^dr - r ('-^j di).

(A)

The i-emainder of this work will consist chiefly of a dis-

cussion of these equations. Thermodynamics is the science

which treats of the mechanical theory of heat.

Questions for Exajiination.

(Some of these questions require knowledge outside of tliis text.)

Give instances of heat generated by mechanical action. Draw infer-

ence. What did Count Rmnford conclude ? Describe Davy's e.xperi-

ment. Is his experiment conclusive ? Who first made an exact deter-

mination of the mechanical equivalent ? Describe his methods. How
long did he devote himself to the subject '? "W hat did he consider the

most probable value ? What is meant by work ? momentum ? energy ?

foot-pound? horse-power? metre kilogram ? heat unit ? caloric? rati^J

Define exactly the " thermal equivalent." Why does the mechanical

equivalent depend upon latitude ? altitude ? thermometer used ? In

what respects do the results of Rowland's experiments differ from Reg-

nault's ? Is perpetual motion possible ? Why not ? When a gas ex-

pands, why does the temperature fall ? When it expands into a vacuum,

does its temperature fall ?

"What is an atom ? molecule ? " ether "? What are he it rays ? In what
respects do heat ami light differ ? agree ? When is a body transparent ?

opaque ? athermaunus ? diathermanous ? When is a body heated by

radiation ? cvjuduction ? When a body is heated, what three effects may
be produced ? What is specific volume ? specific pressure ? specific grav-

ity ? specific heat? real specific heat? apparent specific he .t ? latent

heit ? latent Iieat of expansion ? thermal capacity ?

What is a perfect gas ? imperfect gas ? Does the coefficient of expan-

sion vary with different gases ? For what is it least ? What is the " ab-

solute zero"? Can it be realized ? Of what value is it in theory's

What is thermodynamics ". What is a general equation of thermodynam-
ics ? Eliminate d r from equations (.4), and deduce a third equation foi

dR.
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47. Difference of specific heats. From the

equation of a perfect gas, equation (2), we find

('^\=^ = I.
\dr) V r'

^d V \ R
P

and these in equations {A) give

dH— K^ d r -\-pdv.
\ ,o/t\

dH=K,dr-vdp.\ ^ '

From equation (2) _p dv-[-vdp=RdT, which iu

equation (27), after placing the second members equal,

give

K,-A\ = Ii; (28)

"hence, the difference of the two specific heats for a perfect

gas is constant.

48. Specific lieat constant. In a perfect gas no

internal work is done during a change of state, hence, at

constant volume, no work will be done by the absorption of

heat, and all the heat absorbed will be sensible at all temper-

atures ; hence, the specific heat of a perfect gas at constant

volume will be constant, and equation (28) shows that, in

this case, the specific heat at constant pressure will also be

constant. It is found that the specific heat for sensibly per-

fect gases at constant volume is independent of the volume.
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Let K^ = 6'v and K^ = C'^ for sensibly perfect gases, and

equations (27) become

dll= O'^dT-vdpJ ^ '

which are the general equations of sensibly perfect gases.

Equation (28) becomes

R = C\ - a. (29)

When Clausius first established the preceding equation,

he concluded that both specific heats were constant for per-

fect gases at all pressures and temperatures, although this

view opposed the one then prevalent—that the specific heat

was a function of the density of the gas. Soon after, how-

ever, the experiments of Regnault confirmed the conclusion

of C'lausius by showing that it was practically constant for

the so-called permanent gases, as air, oxygen, hydrogen and

nitrogen.

IiL'gnault found the following results for air at constant

pressure {IieIatio)i dcs E.riwriencex, ii., 108).

Heat required to raise the temperature of one pound of

air 1° 0. at constant pressure,

between - 30° O. and + 10° f. 0.23771 thermal units,

0° C. " + 100° C. 0.2371:1 "

0° O. " + 200° a 0.23751 "

which show that it is not strictly uniform, neither is the law

of change apparent. There is, ajDparently, a minimum
\'alue, but it is not safe to assert that such is the fact, much
k'ss to assign its place. Other experimenters find values

differing slightly from these. The departure from the mean

is so small, we may, for all ordinary purposes, consider the

Bjieeific heat as constant.

Regnault also determined the specific heat of air under

different pressures from 1 to 12 atmospheres, and of hydro-
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gen from 1 to 9 atmospheres, and found the specific heats of

eacli to be sensibly constant within these respective ranges.

49. The perfectness of a gas may also be tested

by comparing" its agreement with the equation of a perfect

gas. Thus, Regnault found for atmospheric air, if the vol-

ume be constant, the following :

Density, or pressure in atmosplieres
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The following table gives the expansion of several gases

vtnder constant pressure from 0° C. to 100° C, and the in-

creased tension for the same range of temperatures under

constant volumes, the initial pressure being one atmosphere,

as determined by Regnault.

Substance.

Hydrogen
Atmospheric air

Nitrogen
Carbonic oxide

" acid

Protoxide of nitrogen.

Sulphurous acid

Cyanogen ! .

Increase in volume
under constant
pressure for

100° C.

0.3661

0.3670

0.3670

0.3669

0.3710
0.3719

0.3903

0.3877

1°F.

002034
002039
002039
002038
002061
002066
002168
002154

Increase of pressure
under constant
volume for

:oo°o.

3667
3665
.3668

,3667

,3688

0,

0.

0.

0,

0,

3676:0,

3845,0

38290

IT.

00203Y
002036
002039
,002037

,002039

,002032

,002136

.002127

50. To find Cy. The specific heat of any substance

at constant volume has not been found to any degree of ac-

curacy by direct experiment, but its value for sensibly per-

fect gases may be computed from equation (29), for we

have
C; = Cp - B, (30)

which is the required equation.

Kegnault found for air, the mean value

Cp = 0.2375 T. U.

.: 6; = 184.77 = 0.2375 X 778.

Also, equation (3'), H — 53.37

difference = Cy = 131.40";

.-. 0, = 0.1689 = 131.40 ^ 778.

Equation (3') is here used because the determinations were

made with the air thermometer.

51. Relative specific heats. Since both specific
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heats are constant for perfect gases, their ratio will be con-

stant, which we will represent by y ; then

Cp c,

a
For air we have

1=^::^ = y, (31)

This ratio was originally found by means of the velocity

of sound in the gas, in a manner soon to be explained. Art. 60,

From equations (3(_>) and (31) we find

C, = -JL^ E = -T— .£±v, = Dv„ (32)
y — 1 r — 1 "^0

where Z> is a constant for sensibly perfect gases ; hence, for

another gas we have

.-. ^ = ^ = ^
; (33)

C" v' C"

that is, the f<pecific heats of two sensibly perfect gases are di-

rect/// <is their specific volumes.

But the specific volumes are inversely as the specific

weights, or densities, of the gas, or

= A = JL-
w g S^

hence,

^ = f = ^
; (34)

6'p' S 6'/' ^ '

that is, tJie specific heats of two perfect gases are Inversely

CIS their densities.

53, Let the teniperatvire be constant during

expansion, find the heat absorbed.

For this condition

d r ^
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in the first and second of eq[uations {B), and from the first

we have

H-. -

Ip dv, (35)

which may be integrated if j? be a known function of v.

The equation of the path of the fluid will be equation (2),

making r = t„

p -y = ^ Tj,

the value of p from which substituted in the preceding

equation gives

H= Br,
""'

§1 = E r.log'^ (36)

The first member of this equation may
be represented by the area cp^AB (p„

Fig. 19, and the last member by -y, A
B v^, which is the external work done

during the expansion ; hence, in a per-

fect gas the external work done during

an isothermal expansion equals the hea'S

absorbed—a necessary result, there be-

ing no internal work.

Since the area A B h \s, common, it follows that, for a

perfect gas,

(p^l B q>^ — v^Ah %.

53. Let the .volume be constant.

d V = and v = «,, and equations (B) give

Then will

(37)

H= C^ (r, — r^) — «, (^, —p^.

But the equation of the gas gives

v,p^ = B T,, V, p, = B r„

and the condition of the problem gives v, = v.

11= C,{r,- H (r. - r.)

(C; - i?) (r, - r.),
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which placed equal to equation (37) gives

6v =, t/p — XI,

as before found in equation (29).

54:. Let the pressure be constant. Siynificance

of H, equation (^2',)). Let the lieat absorbed be

d H = C\ a r, (38)

and equation {£)-^ becomes

(dp — C^) d r = p d V
;

and sincep is constant during the absorption of heat, as indi-

cated by the condition in equation (38), we have by integrating

the last eqiiation between the limits r and r -\-l for temjjer-

ature, and v^ and i.\ for volumes, observing that v^ — v, will

be the horizontal distance . between the isothermals r and

r -|- 1 at the upper extremity of the ordinate^, we have

(Cp- C,) = p{v,-v,)--^E;

that is, the value of R is the ensryy

exerted' hy one pound of the gas

in expandhig at constant jjressure

while the temperature increases one

degree.

In Fig. 20, if the isothermals through

A and ^ respectively differ by one

degree, A B being horizontal, B G
vertical, we have

rm. 20.

6'p = m^ A B in,. C' = m, C B m,.

' - Cp — Cv = TO, A B m, — m^

and by the second law,

%\ A Cv^ = m^ A C m,;
CB 771, = m^ AB Cm,

= m,A Cm,-\-ABO,
=^v,ACv,-i-ABO = v,ABv,;

.-.B = v,A B %,

which is the external work done during the expansion at
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constant pressure from the state A on one isothermal to the

state Ji on the isothermal one degree higher, as stated above.

For air this becomes 53.21 foot-pounds (Eq. (3) ), or

63.21 ^ 778 = 0.069 of a thermal

unit.

55. Let the path he arbitra-
ry. Then will the first of equations

{B) give

H — JO dv = C^{r^ — r).

The second term is, Fig. 21,

p d V ^ v^ A B V,,

FIG. 31.

/.

and may be separated into two parts. Through A draw the

isothermal A G, and the adiabatios Am, C m^, B m^; then

V, A C V, = m A C mr;

I J) d V = m A G mr -{- A B C.

But
JI ^ m A B m,;

.". JI —
I p d V ^= m A B TO, — ni A C mr — A B G

= mrGBm,= G, {r, - r,), (Eq. (37))

;

that is, to'find the increased energy of the substance in

passing from state A to state B due to the absorption of

heat, through the initial state A of the substance represented

on a diagram of energy pass an isothermal, and note the

point C where it intersects the ordinate to the second state,

then will the area between G B and two adiabatics drawn

respectively through G and B indefinitely extended in the

direction of increased volume, represent the increased

energy of the substance.

Let the isothermal A G be prolonged to an intersection
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with B cp^, at D, Fig. 22, then according to the second law

the indefinitely extended area q)^ CD cp^ will equal v^CD v',

to which adding the area B CD, we

have

cp,CB<p, = v^BDv',

by which means the increased energy

of the substance in the state B over

that in state A may be represented by

the finite area t\ B D v'. Thus in

working from t\ to v^ along the path

A B, Fig. 23, the external work t\ A B
% M'ill have been done, and the energy of the substance

will have been increased by the heat absorbed an amount

represented by the area v^ B D v' . This mode of repre-

sentation is due to M. Cazin.

If a piston were driven by the expansion of a fluid with-

out absorbing or emitting heat, it would

do the work v^ A E v,_, Fig. 22, where

.^ ^ is an adiabatic ; but if the heat

of the expanding fluid be maintained

constant, it will do the work i\ A C i-\,

where A Cis an isothermal. In the

latter case, the heat absorbed, qj^A C
(p„ according to the second law, ecj^uals

the entire work done, i', A C v^ ; but

the work done due to the heat absorbed exceeds that done

by adiabatic expansion by the area EA C.

EXERCISES.

1. Deduce equation (37) from the second of equations {B),

employing any other equation necessary.

2. How many foot-pounds of heat must be absorbed

by 2 pounds of air in expanding to double its initial

volume at the constant temperature of 100° F. ? How
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many degrees F. would it raise tlie temperature of 20

pounds of water ? Here, r, = 460.66 + 100 — 560.66, and,

equation (36),

// = 2 X 53.2] X 560.66 X (2.303 X 0.301030)

= 41370 ft.-lbs.

* = 2^^ = '''' F- --ly-

3. How many B. T. U. of work must be expended in

compressing 3 pounds of air at the constant temperature of

15° C. to one fourth its initial volume 1

4. By means of equations (3), (29) and (31) reduce equa-

tions {£) to the following :

—

dH= C,

dir= a

0.711 dr 4- 0.2887 r —
1.406 dr - 0.406 r ^1

1

(39)

5. The specific heat of hydrogen at constant pressure

being 3.4090 find the specific heat at constant volume.

Find the ratio of the specific heat at constant pressure to

that at constant volume.

6. The specific heat of oxygen at constant volume having

been found to be 0.1551 find the specific heat at constant

pressure ; the ratio of the two ; and their values in foot-

pounds.

7. Having
6p — t'v = -''')

and

^p = V = 1.406,

to find Cp and Cy in terms of H.

Ans. Cp = 3.463 B = —^ H.
y -1

61 = 2.463 R = _i_, R.
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8. Find the value of D in equation (32), and tlie value of

6V in terms of v^.

9. The specific heat of air being (1.2375, and tlie weight

of a cubic foot being u.()Sn728 lbs., and the weight of a

cubic foot of hydrogen being 0.005592, find the sjjecific

heat of the latter by eqiiation (34) and compare the result

with the tabular value.

10. How many foot-pounds of heat must be absorbed in

expanding three kilograms of air at the constant temper-

ature of 30° C. from 3 cubic metres to 5 culjic metres ?

11. If the equation to the path of the gas be^ = a -y -|- &,

the initial volume v^ = 10 cii. ft., initial pressure 2000 lbs.

per square foot, the terminal v,_ = 20 cu. ft., p„ = 5000 lbs.

;

how much heat must be absorbed in passing from the

initial to the terminal state, how much external work will

be done and how much will the energy of tlie substance be

increased \ Let the substance be atmospheric air.

Approx. ans. // = 232000 ft. -lbs.

^pd V = 35000

B - f p d V = 197000

12. How mucli heat must be al)sorbed by a perfect gas in

expanding at a constant pressure from i\ to v,,, the initial

temperature being r^ 'i What will be the final tamjJerature ?

13. llow much heat must be absorbed liy a perfect gas in

expanding from tlie state j\, ii, to^>,, r.,, the equation to the

path being />' = m (v — h) 'I If gas lie air, 7?, = 2000 lbs.

per ft., j9, = 6000, v, = 10 cu. ft., and i\_ = 20 cu. ft.

Ans. 290580 ft.-lbs.

14. In the preceding example, the heat absorbed would

raise the temperature of how many pounds of water through

three degrees F. '(

15. How many B. T. U. will be required to double the
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volume of one pound of air at constant pi-essure from the

temperature of melting ice ?

16. How much heat will be absorbed in expanding a per-

fect gas to twice its initial volume, if the equation to the

path be^ -y^ = c (a constant) ?

56. Let the gas expand Tvithout transiiais-

sion of heat. Since no heat is absorbed or emitted, we
have, in equations (B),

d IT = o;

.'. C^ d r = — pd V,

C^ d T — V df.

Dividing, gives

df _ C^ d V d V

Integrating,

where p^ and v^ are the initial limits, the other limits being

general. From this we find

r 7

p V — p^v, = constant, (40)

which is the equation of the projection of the line of no

transmission on the plane^ v. To find it on the plane t v,

eliminate J? from the preceding equation by means of equa-

tion (2) and find

which are the equations to the adiabatics for perfect gases.

If p„ v„ T, be terminal values, then

A = f^) = f
A) y

(42)
r, \vj \pj
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EXERCISES.

1. Two cul)ic feet of air at 60° F., and initial pressure one

atmosphere (absolute), is compressed in a cylinder to 5 at-

mospheres gauge pressure ; if there be no transference of

heat, required the terminal temperature and volume, and

the pounds of water at 50° F. necessary to reduce the tem-

perature to 65° F.

We have, omitting 0.66 in the temperature,

T, = 460 + 60 = 520° F.

U = 530 ilf^^^ = 873° F.

V, = 2 ii)^^' = 0.559.

TF(65 - 50) = 2 X 0.1689 (r, - 525) x 0.0807 x 512 .

..-. Tr= 11.32+.

2. If one cubic foot of air expands from a pressure of 4

atmospheres gauge pressure and temperature of 60° F. to

an alisolute pressure of one atmosphere without transmission

(if lieat, required the terminal temperature.

"We have

r., = r,2i){iy"' = 337°
;

•
.

•
. To = 337 - 460 = - 133° F.,

or the terminal temperature will be 133° below the zero of Fahrenheit's

scale.

57. It will be seen from exercise 2 that a low tempera-

ture may be secured by suddenly expanding a gas from a

high pressure and moderate temperature to a low pressure.

This principle is used for commercial purposes, one form of

wliicli is called " cold storage." A gas—as ammonia—is

compressed tu a comparatively high tension, thus increasing

its temperature, and allowed to cool while under high ten-

siun, after which it is expanded to a low tension, thus pro-

ducing a low temperature oi the fluid. A liquid whose
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freezing point is lower than that of water—technically called

" brine "—is made to circulate in pipes through the cool fluid,

thus reducing its temperature, after which it passes to com-

paratively air-tight compartments containing the articles to

be preserved—such as meat, vegetables, fruit, eggs, &c. Any
desired temperature may be thus maintained for any length

of time at alhseasons of the year. Meat is thus stored and

kept frozen for months.

Ice machines are constructed on the same principle, by
means of which ice may be manufactured during hot

weather.

58. An air-compressor is a machine, or engine, for

compressing a gas, as atmospheric air, to a higher tension.

Air thus compressed is useful for many purposes—especially

for driving engines in the place of steam, when the power

is to be transmitted a considerable distance, and especially

underground. It does not condense like steam. If the heat

which is generated in the act of compression could be re-

tained until the air is used in the motor, it would be

useful, but a large portion of it generally escapes through

the walls of the conducting pipes and storage reservoirs,

and hence is energy, lost. To avoid this loss efforts are

made, in the use of the best compressors^ to prevent as

much as possible the rise of temperature during the pro-

cess of compression, by injecting water into the cylinder.

The water should enter the cylinder in the form of a fine

spray, the elements widely diverging, so as to fill, as nearly

as possible, the entire cross-section of the cylinder with a

mist.

If compressed air escaping from a vessel suddenly ex-

pands, its temperature may be reduced to such an extent as

to freeze the water in it and choke the exhaust. This an-

noyance is reduced, and sometimes prevented, in the case of

motors, by causing warm air to circulate about the exhaust,

or by gradually increasing the section of the outlet. Eefrig-
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eration and the principles of the air compressor are discussed

on pages 301-306 and in Chapter V.

EXERCISES.

1. An air-compressor whose cross-section is 2 square feet

and stroke 3 feet takes in air at a tension of 1-i pounds per

square inch and temperature 60° F., and compresses it to 60

lbs. gauge pressure without transmission of heat ; required

the final temperature and the pounds of water at 50° F.

necessary to reduce the temperature of the air to 55° F. ; to

70° F. ; to 90° F.

2. In the preceding exercise, if the air at 60 lbs. gauge pres-

sure and 70° F. expands adiabatically to a final pressure of 2o

lbs. gauge pressure ; required tlie final temperature and the

pounds of water that it would cool from 60° F. to 32° F.

3. Required the entire amount of heat-energy in one

pound of atmospheric air, at tlie temperature of melting ice,

considered as a perfect gas.

Considering that it is brought to its present temperature by being

heated from absolute zero at a constant volume, we have, In the first of

equations (B),

.H
./o

dT = C, {a)

O J/. I'

PIG. 24.

But from equation (40),

= 131.40 X 493.66 = 64735 ft. -lbs. (J)

We may also consider that the entire heat-

energy has been transmuted into e.xternal -work

by an adiabatic. expansion, A B, Fig. 24, in

which case we have, from the first of equations

(B),

dH= = CdT+pdv.

y Y
pv =p„v^.

Y -V
. p = p^ Vo V = a 71, Fig. 24

;

— Cy / d T = p„ Va / V '^d V,

J -0 -/"„
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C'tTo' = 64785;
Po 1^0 _ 36214

'r-i r-1
..) = 1.405 very nearly.

If 7 = 1.406, as previously found, then

_2?!li _ 64566,
y- 1

-

which is about t^ of this value less than the preceding.

If the terminal tempemture be the zero of the air thermometer, then

the value of ^'in equation (a) would be

H = 131.40 X 491.13 = 64534,

which agrees very nearly with the preceding value, where y = 1.406.

4. Required the height to which a ball weighing one

pound could be projected upward in a vacuum by the heat-

energy in one pound of air under the pressure of one at-

mosphere at the temperature of melting ice. (Use the

value in (S) of exercise 3.) How many times the height of

a homogeneous atmosphere ?

5. Required the entire heat-energy in one pound of hy-

drogen at sea level at the temperature of melting ice.

6. Required the heat-energy in two pounds of air under

the pressure of one atmosphere at the temperature of

100° F.

7. If a gas be forced into or out of a receiver of constant

volume, without transmission of heat, can equations (42)

be transformed so as to give the rela-

tion between weights, temperatures and

pressures ?

8. For a perfect gas, verify the fact

that the external work i\ A B v^, Fig.

25, equals cp^A B cp^, A B being an iso-

thermal, A 9J, and B q>^ adiabatics, by

finding the area (p,iB q)^.

The equation of A <pi will be

Pi
V V

V, — pv

,



6fi
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but since A and B are on the same isothermal, we hare

Pn Va = pt, Vb
;

and, tlierefore, the two preceding expressions are equal, independently

of the path between the states A and B.

10. Ill a perfect gas, verify the principle : The elementary

areas between consecutive isothermals

and a pair of adiabaties are equal, by

using the equations to the adiabaties.

Let A B, Fig. 37, be an isothermal—the top-

most one

—

y z any other, both limited by the

pair of adiabaties A <pi and B <p2. Let isother-

mals be drawn under A B and y z respectively,

so that the difference in temperatures will be

d T in each ; the length of the one aX A B
measured on the axis of abscissas being v^ — v,, and of ^z, v, — va, we are

to prove that

V, V V3 Vt

FIG. 37.

dp dv = I dp dv.

Let the equations to the lines be

pv =
p V ^
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Similarly, for the points y and z, we have
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For instance, if tlie temperature of tlie isothermal y z were 300° abso-

lute, and of A B, 600° absolute, then from (1) and (3) above we have

and

Va — Vs

Vi — Vi

_1_
v-1

_ 2 2-463 _ g 53_

or the strip at j^ s for the 300" absolute temperature would be more than

5^ times the length of the topmost, or tne 600 degree one. For the

depths we have

dpi = — d T, at A,

dpi = — dr, aXB,
V,

dps = — dT, aXy,

d Pi = — d T, aXz,

being less and less from A to z. If Ds = 3 Vi, then 1)4 = 3 »s, and

d pi = 2 d Pi,

dpa = 2 dp,
;

and further, if v^ = 1)3, then

d pi = 2 d pi = 4: d Pi.

The strips increase in length as the isothermals are lower in temper-

ature, but decrease in depth. In the case of perfect gases the consec-

utive isothermals cut equal areas from the area representing external

work, and the area representing heat, so that in Pig. 15 we have

abcd=:efhg.

11. In Fig. 28, show that the area

v^ A, JS, V, — v^ A^ B^ v,, for perfect

Let the equations to the lines be

for Ai Ai, p V = ct,

for Bi Bi, p v — Oil,

for J.1 Ml, p v* = Cs,

for Ai Mi, p v^ = d;

FIG. 38.

from which the co-ordinates of Ai, A,, Bi, Bi, may be found. Thus,
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1

Vi = i)i = [-^
J

'''~
, and similarly for llie other co-ordinates. We have

nnd the area v^ A2 B^ Vi reduces to the same value ; hence, in working

around Carnot's cycle the work done during expansion without trans-

mission of heat equals that done during compression also without trans-

mission of heat, and they cancel each other. This should have been an-

ticipaluil, since all the work done is by a transmutation of heat.

12. A cylimlrical vessel the area of whose Lase is one

square foot contains 2 cubic feet of air at 60° F. wlien com-

pressed by a frictionless piston of 2000 pounds resting upon

it ; required tlie volume and temperature of the air if the

vessel be inverted, there being no transmission of air or

heat.

13. A c}dindrical vessel the area of whose base is a

square feet and height i feet is filled with air at 60° F. and

pressure of one atmosphere; a frictionless piston whose

^v;;ght is iv is placed at the upper end and dropped into the

cylinder ; if there be no escape of air nor of heat.how much
will the air be compressed, and M-hat will be its temperature

at the instant of greatest compression ?

Let .)• = the height of tlie volume of air when the piston has descended

to its lowest point

;

p = the pressure of the atmosphere on a square foot

;

then will the work done during the descent of the piston be

(p a + w) (h — .))
;

and the opposing work done by the air will be

. . {pa \-w){o — ,t) = —i—^ "^^ ' 0.406
fJ LV
I _^,0-406 JO-406 I

from which the value of x may lie found when numbers are substituted
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for the other letters, and therefore b — » becomes knowa Theadiabatic

relation also gives

r,= 520.6 \-\

14. If the heat absorbed varies as r" find the path of the

fluid.

Here H = ar"
;

.• d H = a n t"~ d t,

and the first and second of equations (B) give

a nr" d r = Cij d T -\- p d V,

anr" dT = CpdT — vdp;
in which substitute

Rt , Rt
p = — and V =—

,

V p
and dividing through by t, thus separating the variables, and integrating,

gives

Eliminate r by means of equation (3) and find the equation in terms of p
and V. Equation (2) may be deduced from the last equation here given.

15. If the heat absorbed varies as v" find the equation to

the path of the fluid.

16. If the heat absorbed varies as p" find the path of the

fluid.

17. If If =^ a v'^ -\- b p'^ find the equation to the path.

APPLICATIONS.

59, Velocity of a wave in an elastic medium,*
This article is a digression for the purpose of establishing a formula from

* The general problem of wave propagation has received the attention

of several of the most eminent mathematicians since the days of Newton,

and many problems have been solved in a satisfactory manner. The
simple method of Newton, Principia, Prob's XLIII.-L., B. II., has not

been excelled, and the definite theoretical result obtained is quoted to

the present day, although the effect of heat upon the velocity of sound
- was not then known. La Place, in the Mecanique Celeste, tomes II. and

V. , has treated of the oscillations of the sea and atmosphere
; Lagrange,
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which 7 may be deduced. Assume that the medium is confined in a

prismatic tube of section unity, E the coefficient of elasticity for com-
pression,^! a force which will produce a compression dy ins, length d x,

then from definition we have

The lamina d .! will be urged forward—or backward—by the differ-

ence of the elastic forces on opposite sides of it, and as the quantities are

infinitesimal, this difference will he dpi ; or

Let D be the density of the lamina, then its mass will be M = D d x,

and we have from equation (21), page 18, of Analytical Mechanics,

Bdxt^-E'^,
d e ~ dx

or,

d^ !/ _ E d'^y

df" D d~x^'
(43)

which is a partial differential equation of the motion of any lamina, the

integral of which is given in works on Differential Equations. One

of the methods is as follows : Let E -l. D = o;^, and adding a ^
dx dt

to both members, we have

dt \dt^ d.vJ dx \dt^ d.J
Let

dt d X

in the Mecanique Annlyiiqye, tome II., has discussed the problem of the

movement of a heavy liquid in a very long canal ; M. Navier published

a Memoire on the flow of elastic fluids in pipes, in the Aaxdeinie des

Sciences, tome IX. ; and II. Poisson wrote several Memoires on the propa-

gation of wave movements in an ela,stic medium, and the theory of

sound, for which see Journal de I'&ole Pi/Iiitn-hniqiie, 14th chapter, and
of the Academic des Sciences, tomes II. and X. These eminent mathe-
maticians established the basis of the analysis for the solution of the

problem. Jlore recently we have M. Lame's Lefons siii- I'Elasticile des

Corps solries, and Lord Rayliegh's Treatise on Sound, both of which are

works o' );reat merit.
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then (iJ\=^Iy + a J2J_, (44)
\dt) dt^ dxdt

where the parenthesis indicates a partial differential coefficient, and

ltV\^_£y-+aty, (45)
\ dx J dtdx dx^

and equations (43), (44), (45), or, more directly, the last equations on

p. 73 give

The total differential of F= / {x., t) is

by substituting (46),

- ('^\ (dx + adt)
\dx J

= ('ir\ d{x + a t),

\dx J

and integrating.

y=J.,.^a, = %+J£ (47)

where i''is any arbitrary function.

d^ V
Similarly subtracting a ^— from (43),dx d t

Adding and subtracting (47) and (48), sve have the respective equations

y- = \F{x^at) + \f{x-at).
a t

— = ^F{x-^at)-^f{x-at).
dx 1 a ^ ^ ' % a-'

^

But
y=f{x, t);

-^=(S)-+(S)-
and substituting from above, gives

dy = ^F{z + at)d(x + at)-^— f{x-a1)d{x-at);

integrating,
, ^ ,,m

y = ili{x-\-at)- ip(x-a(), (49)



74 PEEFECT GASES. [59.]

where ip and cp are any arbitrary functions wlaatever. Tlieir character

and initial values must be determined from the conditions of the prob-

lem. The equation represents a wave both from and toward the origin.

If the wave be from the origin only, the <p function may be suppressed,

and we have
p = i,(:x + a t), (50)

and differentiating.

m - f {x -\- a t),

which is the rate of dilation (the expansion or contraction of a prism of

the air), and

which is the velocity of a particle, and dividing the latter by the former,

^ = a, (51)

which is the velocity of the wave ; hence,

(•53)« = /-^.

which is Newton's formula {PriiKipin, ii., § 8).

The elasticity of air equals its tension
; hence, if p be the pressure per

square foot, w the weight of a cubic foot, and H the height of a homo-

geneous atmosphere, then

« = l'''^ = ^'TS; (53)

hence the velocity of sound would equal the velocity of a body falling

through a height equal to one half the height of n uniform atmosphere of

that substance.

This principle is applicable also to the vibration of elastic cords, and it

is found that

The velocity of rihratinn of an elastic cord equals llic relocity of a body

falling freely through a height equal to half the length of the saine cord

whose weight would equal the tension.

Similarly, for long waves, or waves on water whose depth is small

compared with the wave-length,

The veheity eqticils, avproximatehj , ths velocity of a lody falling freely

through a height equal to half the depth of the sea. (Ency. Britannica.)

It has been assumed that E and D remain constant in wave motion
;

but it has long been known that the results given by equation (53) for

gases do not agree with those found by experiment, and La Place showed

that the elasticity was increased by the action of the wave due to com-
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pression. It is necessary, therefore, to consider equation (53) correct

only for ultimate values ; or

Since

^ w w

(55)

60. To find tlie value of y, we have from equa-

tion (55)

r = ^-"; (56)

by means of wliich y may be found when the velocity of

sound in a gas of given weight and tension are known. "We

have
W 1 1 To .

p ~ pv ~^ Po'Vo' t:
'

..y = ^^-^, (57)

which reduces the determination of y to that of the velocity,

u, of sound in a gas at known temperature r
\ g^p^ v„ being

known.

61. The velocity of sound has been determined

by direct experiment with the following results :

Velocity per second.

In dry air at 0° C. Centimetres. Feet.

MM. Bravais and Martins 33237 1090.5

Hr. Moll, Van Beck, and Kiiytenbrouwer 33226 1090.1

The French Academy, 1738 33200 1089.2

" « " 1822 33120 1086.6

M. Eegnault 33070 1085.0

M. Le Roux 33066 1084.9

Mean. 33153 1087.7
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Again, if v be the velocity of sound, A the wave length

and 11 the number of waves (or the frequency of the waves)

in a second, then
y = ?! A.

By this means it has been found for the velocity of sound

in dry air at 0° C.
Centimetres. Feet.

By M. Dulong 33300 1092.5
" Hr. Seebeck 33277 1091.8

" M. Schneebeli 33206 1089.4

" Hr. Wertheim 33313 1093.0

Mean 33274 10.91.6

Hr. Kayser determined veiy accurately the wave length

A, by means of Professor Kundt's dust figures, correspond-

ing to a given tone of vibration, or frequency n, by which

means he found for
Centimetre?. Feet.

the velocity of sound in air at 0° C 3;'3250 1090.9

Mean of the eleven determinations 332( it) 1089. -4

The height of a homogeneous atmosphere of dry air at

0° C. as determined ])v Eegnault is 26214 feet; hence, the

theoretical velocity of sound in air, neglecting the effect of

wave condensation, A\'0uld be

V = 4/26214~>r32T2"= 91S.7 ft. per second;

/1()S!).4\'

^' = l^Isj/ = ^•^- *'^ = ^^*"' ^'"' ')• (^^)

This value of y is on the supposition that air is a perfect

gas, and the error resulting from this hypothesis is scarcely

apprecial)le, and certainly cannot affect the result S(_) much
as the errors of observation. The mean of such a large

number of good determinations is prohahly more reliable

than any single observation taken at random. This was the

original mode of finding the value of y, and the only one

known before the determination of Joule's equivalent. - It
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is nearly the same for all the permanent gases, as air,

hydrogen, oxygen and nitrogen.

63. To find the specific lieats of tlie sensibly
perfect gases. AVe found in equation (32) that

C, = y^^B; (59)

.-. (7, = -^ R. (60)

For air we have

C; =^^ 53.37 = 184.83:
40b

•^p

.-. Cp = 184.83 ~ 778 = 0.23757.

The mean of the values given by Regnault is 0.23751

{Relation des Exp., tome II., p. 101), the first four figures of

which agree with the results of our computation. Professor

Eanldne was the first to make this computation, in 1850,

using, however, y = 1.4, which gave c^ = 0.24. Up to

that time this was the most accurate determination of the

specific heat of air ; and when, soon afterward, the very

accurate and entirely reliable experiments of Regnault gave

very nearly the same result, Rankine's determination was

considered a crucial test of the correctness of the dynamical

theory of heat.

63. To find tlie nieclianical equivalent of
heat by means of the specific heat of a gas. From equa-

tion (59) we have

Cp = t/ Op = y _ I
-" i

. J=-J^A. (61)

/ - 1 Cp

Having found y by means of equation (58) without a

knowledge of the value of J, and R and Cp having been

found by Regnault, we have, by substitution,

^ 1406 53.37 ^^o ^ , .

^=106 X 0:2375= '78 foot-pounds
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on the scale of the air thermometer. If ^ = 53.21 we
find ./ = 776 for tlie probable mechanical equivalent on

tliL' absolute scale. The former equals 426.8 kilogram

-

metres. This was substantially the method originally used

l)y Mayer of Germany, by which means, in 184-2, he found

365 kilogram-metres, and IToltzman, in 1845, found 374.

The fact that Dr. Mayer assumed air to be a perfect gas,

and made no attempt to prove the correctness of the

assumption, added to the fact that the \'alue he obtained

was scarcely a rough approximation, has, in the eyes of

some historians, deprived him of the honor of being the

first to determine this important constant. Joule justl)' has

the credit of first determining it accurately. Mayer did not

Avork out the equations as above, but solved the problem in

tlie most elementary manner, the process for which is

worthy of special study. Thus, he considered that it re-

quired a certain amount of heat to increase the temperature

of a given amount of gas at constant volume—all of which

simply made the gas hotter, and if the gas expanded against

an external resistance it required more heat in order to

maintain the higher temperature—thus reviving the idea

of Eumford and Davy. Let one pound of air under the

pressure of one atmosphere, p pounds per square foot,

occujjy the volume v. The increase of volume for one

degree of temperature, 2^ being constant, will be v -=- r, and

hence the external work done will be ^^-— = R (equation

(2)). The heat absorbed at constant ^'olume will be l\,

and, at constant pressure, Cp, and the difference of these

amounts of heat does the W(jrk R, provided no internal

work is done ; hence,

J {c, - rv) = R

J - ^ i?

'•p — Cv^ {y — 1) <\

as before.
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64. The constants J, H, y, are so related as to serve as

mutual checks upon each other, but this relation does not

determine the exact values of any one of them. When de-

termined directly they are subject to small errors, due

chiefly to errors of observation, but the results are believed

to be correct within i of one per cent, and in some cases

the error is probably much less.

65. Other methods of detei'mining y. This

constant has been found by the principle of adiabatic ex-

pansion. Thus, equations (41) give

^ lag f — logp,
^ log v^ — log V

^ log t — log r^ ^

log t), — log V
"'"

log p - logjp.

logp — logp, —logT-^ log r,

To secure data for use in these equations, MM. Clement

and Desormes used a 20-litre glass globe closed by a stop-

cock A^ Fig. 29, and connected with

a- vertical glass tube B^ dipped into A

water, which acted as a manometer. C-KI

By means of an air-pump attached at f \p-,C„D

D a partial vacuum was produced in

the vessel, after which, by opening the

cock at A a very short time, air would

ISc^

rush in and produce the pressure of pig. 29.

the external atmosphere, and by com-

pressing that already in the vessel, raise the temperature
;

and after the cock was closed it cooled to that of the sur-

rounding temperature, and the pressure diminished. In the

preceding equations letj? = Po = the atmospheric pressure,

p^ the initial and_p its final pressure; then the temperature

being the same at the beginning and end of the experiment.
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we liave

'b ^ P.

or

log V, —logv = logp — log p, ;

^ %i?o -log p, _

^ log p - log p.

It was found in one of the exjJeriments that

j)„ = 1.0136, 7>, = 0.9953,^^ — l.OOSS

;

. .y = 1.3524.*
4

MM. Gay Lussac and Wilter modified this experiment by

forcing air into the vessel and allowing it to escape adiabati-

cally until the pressure in the vessel equalled that of the

external air. They found

p^ = 1.0096, ^>, = 1.0311:. _^? = 1.0155
;

.-. y ^ 1.3745.t

In this manner M. Hiru found 1.3S15, M. Dupre,

1.399, Hr. Weisbach, 1.4(i25, M. JMasson, 1.419 for air. For

carbon dioxide M. Masson found 1.30.

The discrepancy in the results arises chiefly from the fact

that the changes in pressure are not adiabatic, but the

inertia of the inflowing gas produced a compression exceed-

ing the normal value, resulting in a reaction tending to force

a portion of the air out again, producing an oscillating effect,

as shown by M. Cazin,+ who also found, by similar means,

the same value, 1.41, for air, oxygen, nitrogen, hydrogen

and carbon monoxide.

Hr. Kohlrausch sulistituted an aneroid for the manometer

used above, because more sensitive to pressiu-e, and found

r = 1.296 (Fogg. Ain)f/I,'». 1869, CXXXYL, 618). This

* Jour, df PhyKiqiie, LXXXIX. (1819), 428.

t Ann. de Ch. ei dc Phys., 1821, XIX., 436.

Xlhid., 1862, LXVI, 206.
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resialt was not considered good on account of the small

quantity of air used in the experiment, although the method
is considered an improvement on the preceding.

Dr. Rontgen in 1872 made a series of experiments with

a more perfect apparatus, containing a much larger quan-

tity of the gas, tlie mean of ten good experiments giving

y = 1.4053 for air (v7nV/. (1873), CXLVIII., 580).

The difficu,lty in these experiments of obtaining the ob-

servations for strictly adiabatic changes generally results in

too small a value for this constant.

66. Flow of gases. The flow oi perfect gases as af-

fected by the principles of thermodynamics was investi-

gated by Messrs. Joule and Thomson {Proc. Boy. Soc,

1856) and Weisbach {Civilingeneur, 1856). See the au-

thor's Analytical Mechanics, page 389.

Let w = the weight of a wait of volume,

p = the pressure at any point of the issuing jet,

Y = the velocity at the point wherep is measured

;

then, for a unit of section and distance d s the mass moved
will h& w d 8 -^ g and the work done by d 2-> will be

dpds = i'^d{Yy,

Z! - f'li-
'

'i g
~J w

If the cooling due to the expansion during discharge

follows the adiabatic law, then from equations (41) we have

Y- 1

V
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"which substituted above gives

1

where _p, is the tension just within the reservoir, and ih that

just outside. But the equation of a perfect gas reduces to

"l - ^^] ; (62)

^7 — 1 r„ ' \ r/

which in English units becomes

-^ i/ 1406 p,v, /, rF=/ 2X32.2 X^^~^»r.(l --;

= 14.933 / ^° r, (l - ^=) ;
(63)

and this for air becomes

r =: 14.933 y 53.21 r^ (l - -^)

3.93 -/t, ("i _LV nearly.108.!

If the flow be into a vacuum, j;„ = o ; .
•

. t^ = o, and

r= lus.93 4'!^^;

which at the temperature of melting ice becomes

r = 108.93 4 4iJ:i(36 = 2417 feet per second.

Making r^ = <? in equation (62) and comparing with equa-

tion (56) of Article 60, shows that the velocity of discharge

into a vacuum will be

^ r-1
times the velocity of sound in the gas at the melting point
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of ice, which for air becomes 2.214 X 1089.4 = 2417 feet

per second, which is less than half a mile per second.

67. The weight of gas escaping per second will be

1

w,Q = Tcp,s(''-iy-' a/IUL . _Io_flL^Ji\ (64)

in which

Q = the volume escaping measured outside the reservoir,

w^ = the weight of unity of volume outside the reservoir,

S = the section of the orifice, and

k = the coefficient of efilux.

Equation (64) is a maximum for

which for air becomes

A = 0.831, -^= 0.527, ^ = 1.577

The values of k as found by Professor Weisbaeh are :

Conoidal mouthpieces, of the form of the contracted vein,

with effective pressures

of from 0.23 to 1.1 atmospheres 0.97 to 00.99

Circular orifices in thin plates 0.55 to 0.79

Short cylindrical mouthpieces , . . 0.73 to 0.84

The same rounded at the inner end 0.92 to 0.93

Conical converging mouthpieces, the angle of

convergence being 7° 9' 0.90 to 0.99

EXERCISES,

1. For a perfect gas, if the temperature of the gas at the

outside of the orifice equals that of the reservoir, what will

be the velocity of exit ?
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2. Wliat is tlie initial velocity with which hydrogen

will flow into a vacuum from a vessel in which the tempera-

ture is 60° F. ?

3. What weight of air will flow from a very large vessel

in one second in which the internal pressure is 4 atmospheres

and temperature 100° F., the external, one atmosphere and

temperature 40° F., flowing through a short cylindrical tube

^ inch in diameter, the coefficient of discharge being 0.8 ?

Consider the vessel so large that the pressure may be con-

sidered constant during the discharge.

SUGGESTIONS FOR REVIEW.

What does B represent 1 In Fig. 20, may A be taken anywhere on the

T isothermal ? Draw several verticals between two isotliermals differing

by unity and show what areas must be equivalent if Ct be constant.

In Fig. 22, if the gas be compressed from state B to state A, show what

changes take place in the heat. Do the principles applicable to expansion

also hold for compression? What is a perfect gas? AMiat is a thermal capac-

ity ? Define the two more common specific heats. Can there be more than

two specific heats ? Illustrate. If a pound of air occupies 10 cubic feet, and

another pound 40 cubic feet, both at the same temperature, which will

absorb the more heat in having its temperature raised one degree ? De-

scribe Mayer's method of determining the mechanical equivalent of heat.

What gas has the greatest specific heat ? If the mechanical equivalent

were the heat necessary to rai.se the temperature of one pound of air one

degree, about what would be its numerical value ? Describe methods of

finding the value of y. What is the smallest value of y given in the text ?

the largest ? the value adopted ? How was the last one determined ?

Will the greatest volmne of a gas escape from an orifice when the velocity

of exit is greatest ? Will the greatest weight of gas escape when the veloc-

Ity is greatest ? Why not ?



CHAPTEE III.

IMPERFECT FLUIDS.

68. General discussion. Equations (A) are the

general equations for the heat absorbed by an imperfect

fluid, and for convenience are brought forward. They are

\d rJ

^ (d v\
dH= Kpd r — r \'S^) dp.

(^)

In the first of these equations the last term is the entire

work, both external and internal, due to an expansion d v,

so that if ^' be such a pressure that when multiplied by d v

would equal the entire work done, we have

P
\d tJ

(66)

which we call a virtual pressure. In Fig. 30, if v^ A ^ p
be the external pressure at the vol-

ume -y and temperature r, then will

some ordinate, as i), a, represent p\ and

hence

= «'-« = rteUp -p
\d r)

P
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v^ A B v^ = j 2> d V.

V, ah V, — It ( '-'-^ \ d v -{- cp (r).

AahB= £^\_r (^LIL) ^pl^dv + cp (r), (67)

the indicated integral being the latent heat due to expan-

sion, and cp (r) a function of the temperature, being the

latent heat due to an increase of temperature.

If K^ in the first of equations {A) is variable, then will a

pai't of the heat absorbed do internal work due to a change

of temperature. It appears, then, that the internal work

may be considered in two distinct parts : one due entirely

to change of volume, the other entirely to change of

temperat\Tre.

69. Let the temperature be constant during

expansion. This is a case of isotliermal expansion, and we
have d r ^ and r = t„ and the first of equations {A) be-

comes

^-/^
)

is to be found from the
\d.rlv

equation to the gas. In Fig. 31 let a h

be the path of the fluid, which will be

an isothermal of the substance, then will

t\ a h v^ be tlie external work done- dur-

ing expansion, and let aefh represent the internal work,

then will v^cfv., represent the total work done, and will be

the latent heat of expann'iryn ; and we have

ordinate to e f = />' = t, ( ~r- K

in which

FIG. 31.

v.efv.
d J.

d V,
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viah v,=
I p dv,

(69)

(70)

EXERCISES.

1. If equation (7) be the equation of an imperfect gas,

find the total work done during an isothermal expansion

from », to 2 v,. (Use equation (68).)

2. If a h, Fig. 31, be the isothermal of the gases in equa-

tion (7), and c d what it would be when a, /3 and y are each

zero, give the equations of ab, c d, ef, and the values of

v^a, a c and o e.

3. Given equation (7) to find the external work v, ah v„
Fig. 31, and the internal, a efb. (Equations (69) and (70)).

4. If the equation of the gas be » « = ^ r — — , show
TV

that ao ^ oe, Fig. 31, a J being the isothermal of the gas,

and d what the isothermal becomes when 1) is zero.

If one pound of carbonic acid gas at 300" F. expand

isothermally from 10 cubic feet to 20 cubic feet, find the

total work done, also the external and internal work. (Use

equations (6), (69) and (70).)

5. What will be the total internal work of expanding

two pounds of carbonic acid gas indefinitely at the constant

temperature of 200° F., the initial volume being 8 cubic

feet % (The limits of integration in equation (70) will be oo

and 8.)

Ans. 364 foot-j>oundi<.

6. The initial volume of a pound of carbonic acid gas

being 8 cubic feet, how much must it be compressed at the

constant absolute temperature of 600° F., so that the inter-

nal work shall equal the external work ?

7. If equation (4) be the equation of the gas, in which
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ff„ = —> «, = -—1 a. = —5» find the equation of an isother-

mal, the external work done during an isothermal expan-

sion, and the total work done.

Ans. for the total work,

70. Change of state in regard to aggregation. Let

the tenipfiratnre and pressure he constant, required the heat

absorbed.

For this case d r ^ o, and t (^L£\ will be independent of

V, hence ^'^ ^''

These conditions are realized during three physical

clianges—fusion, vaporization and sublimation.

71. Latent heat of fusion, or of liqaefaction.

Substances may be melted—changing from a solid to a liquid

state—under the constant pressure of the atmosphere, or

other pressure, and at a fixed temperature for that pressure

;

and during this change of state heat is absorbed which does

not affect tlie thermometer, and hence, according to the

definition, is called latent. Its value can be found only by

direct experiment. Having this value of // for any sub-

stance, which, for distinction, call Hf (noticing thaty is the

initial letter of fusion ), we may find

d T r (-»^ - -;
;,)

d^) =
—
W"' ^ ^

for which the rate of change of temperature per unit of

pressure may be calculated. If the volume t\ of the sub-

stance in the initial, or solid state, exceeds that in the ter-

d r
mmal, or liquid state, v^, then will be negative, and the

d )>
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temperature of fusion will be lowered by an increase of

pressure, a principle first pointed out by Professor James

Thomson {Edinburgh Trans.,'Yo\. XVI.). Water, antimony,

cast iron and some otlier substances, are more bulky in the

solid than in the liquid state ; and the melting point of all

such substances is lowered by pressure.

The latent heat of fusion of ice is l-i4 B. T. U., as deter-

mined by experiment or lii X 778 = 112032 foot-pounds

;

and this is the work which must be expended upon one pound

of ice at 32° F. in reducing it to liquid M'ater at the same

temperature, which work is necessary to completely break

down the crystalline structure of the ice. Conversely, it is

the equivalent of the heat-energy which must be emitted

from a pound of water and absorbed by surrounding objects

in changing water from the liquid to the solid state at 32°

F. Solids, under a definite pressure, have a corresponding

definite melting point, or point of fusion.

The following are some examples of the latent heat of

fusion

:
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If the specific heat of water wers constant, 144 pounds of

water at any temperature above 33° F. would have its tem-

perature reduced one degree in just melting one pound of

ice at 32°. The mixture aftvr melting would reduce the

temperature a little more.

The expansive force resulting from congealing water was

well illustrated by Major Williams in 1 7S6, at Quebec, Can-

ada, by filling an iron shell with water and driving an iron

plug weighing o\'er 2^ pounds into the fuse hole, and sub-

jecting it to an out-door temperature of — 18-1° F. ; when,

upon freezing, the plug was fired out and projected over 400

feet (Trans. Eoy. Soc. Edinburgh, II., 23).

EXERCISES

1. If for water we have

T = 4i)2.(i0° F.

/', = 0.(.)10n'2 cu. ft. per poimd
;

and for ice

r = 402.66° F.

1)^ = 0.0174 cu. ft. per pound,

and //f = 112032
;

how miich will the melting point of ice be lowered by a

pressure of one atmosphere, 2116.2 pounds per square foot?

(Use equation (72).)

Ans. 0.0128° F.

0.0071° C.

2. Required the pressure per square foot necessary to

lower the melting point of ice 1° F.

We have

dp _ Hf _ 113033 _
~~d'r~ 77^ :r^) - 493.66 X 0.00138 ^ ^^^''^^ "'^•

In this exorcise c? r is considered unity and dp = 164784 , or the sec-

ond member may be considered constant and the left member integrated

between limits, giving Pl^ZJ^— 161784. The notation of the preceding

exercise may be treated in a similar manner.
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3. If 1140 pounds pressure per square inch will lower the

melting point of ice from 32° F. to 31° F., diminishing the

volume of one pound 0.00138 of a cubic foot ; required tlie

latent heat of fusion of one pound of the ice.

Ans. 143.3.

4. Required the external and internal woi-k in melting ice

at 32° F. at atmospheric pressure.

The external work will be that done Iq lowering the atmosplu^re through

a distance equal to the decrease of volume in changing the state of ag-

gregation, or 3116.3 X 0.00138 = 3 foot-pounds, nearly. The total work
will be by using the result in exercise 3,

T^dD = 493.66 X 164784 X 0.00138 = 113033 ft.-lbs., nearly,
dr

and 3 pounds more due to atmospheric pressure.

Prom this it appears that the work is nearly all internal, and is more

than 86500 times the external work.

5. The pressure required to reduce the melting point of

ice 1° F. being 164784 pounds per square foot when the ini-

tial temperature is r = 492.66° F. ; find the diminution of

volume of one pound in changing from congealed to liquid

water.

6. Required the pressure necessary to reduce the melting

point of ice to — 18° C, assuming that the above formula

is valid so far below 0° C.

7. "What is the highest temperature at which ice can exist

indefinitely in a vaemim ?

73. Experimental veriflcation. Sir Wilham

Thomson, by a delicate and beautiful experiment, proved

that the melting point of ice was lowered by pressure {Phil.

Mag. (1850), III., XXXYIL, 123). A delicate thermometer,

constructed for the purpose, was enclosed in a vessel with

water and lumps of clear ice and an air gauge for measuring

the pressure. ' At atmospheric pressure the ice would not

melt if below 32° F., but it was found that when the con-
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tents of the vessel was subjected to pressure the thermome-

ter fell as the water assumed the temperature of the melting

point of ice corresponding to the increased pressure ; and

the observed results corresponded well with those calculated.

Professor Mousson made the following experiment : A
prism of steel, Fig. 32, was used, having a

cylindrical bore 0.71 cent. (0.28 inch), closed

at the lower end by a copper cone forced in

by a strong screw, and the upper end by a

long slightly conical copper plug a pressed

down by a steel piston by means of a strong

screw, and when in an inverted position

a small brass rod h was dropped in and the

bore filled with water. After being exposed

to cold at — 9.5° C. the protruding ice M'as

removed, the copper cone inserted and screwed up, and the

whole reversed and put into a freezing mixture at — 1S°

C, after which the upper plug was forced in at a pressure

roughly estimated at not less than 13250 atmospheres. When
the lower plug was removed the brass rod dropped out first,

showing that the ice had been melted, permitting the rod to

fall to the lower end. The pressure was more than five

times that re<|uired by theory to melt the ice, but the tem-

perature at which it melted is unknown.

73. It is natural to infer the oiipou'di' prlnfiple—that the

melting point of those substances which expand when fused

will be raised by compression, and this principle has been

verified by Mr. Hopkins {R'^p. B. A. (18.54), II., 56), as well

as by others. In Mr. Hopkins's experiments the instant of

fusion was determined by means of a small iron ball sup-

ported by the substance when solid, but which fell when, the

substance licjuefied
; and when supported it defiected a needle

which was suspended just outside the vessel, but the defiection

ceased wlien the ball fell. The temperature was determin-

ed by that of the oil in a bath in which the whole was im-



[73.] EXPERIMENTAL VERIFICATION. 93

mersed ; and the effective pressure was taken as the half

sum of the pressures which forced the piston inward and
that required to just permit it to return to its initial position,

\hus elminating the effect of friction.

The following results were found :

—

Preesure
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at 0° F., find its latent heat of fusion, the law being assumed

to hold good to that point ; and the amount less than at

32° F.

3. What must be the temperature of ice that there will be

no latent heat of fusion, and to what pressure must it be

subjected ^

Ans. T = - 256° F.

Pressure = — -I- 1 = 22500 at^nosvheres.
0.0128 '

^

If this could be realized there would be no mechauical distinction be-

low this temperature between solid and liquid water.

4. Assuming that experimental results may be used to the

.

extent implied in the questions here given, find the increase

of volume due to the fusion of spermaceti at 124° F.

For the ratio ot dp io dr considered as finite, see the preceding table

;

then we have

Hf 148 X TTS
Uj

,dp 537.4 X 81 16

dr ^"*^
140-124

5. The latent heat of fusion of solid water at 32° F. being

144 B. T. U. and its specific heat in the liquid state being

unity, find its specific heat in the solid state. (Equation (73).)

6. The specific heat of ice being (.».504 at 32° F., and the la-

tent heat of fusion 144 B. T. U., find the specific heat of water.

7. The specific heat of solid spermaceti being 0.32 and

considering its latent heat of fusion as 4G.4 B. T. U. at

12fi° F., find its specific heat in the liquid state. (Equation

(73).)

74. Latent heat of evaporation. It is found by
experiment that there is a definite boiling point for liquids

corresponding to the pressure to which they are subjected,

and from this condition they will pass into a vapor at that

temperature and pressure. Hence, equation (71) is direct-

ly applical)le to this case, and indicating this particular latent
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heat by H^ {e being the initial letter of evaporatiott), we have

^e = r (If) K - ^0, m
and J k^ = H^.

By determining the factors of equation (74) by experi-

ment, the value of H^ may be computed. M. Regnault de-

termined the value of h^ directly for water at a series of

boiling points from its freezing point to about 375° F., which

may be represented with great precision by the empirical

fonnula, in English units,

H^ = [1091.7 - 0.695 (T - 33) - 0.000000103 {T - 39.1)3 j ^ 773, (75)

or in French units,

/Je = [606.5 - 0.695 T - 0.00000033 {T - 4)^ ] 426.8. (76)

{2fe'moire Academie des Sciences, 1847. Trans. Roy.

Soi\, Edinburgh, Yol. XX.)
In practice it will be sufficiently exact" to use the follow-

ing :

—

h^ = 966 - 0.7 {T - 212)

= 1092 - 0.7 (r - 32)

= 1114.4 - 0.7 T
= 1436.8 - 0.7 T, B. T. U., (77)

or its equivalent,

II, = 751548 - 544.6 (T - 212)

= 867003 - 544.6 T
= 1117880 — 544.6 r, foot-pounds, (78)

= a — h T.

The latent heat of evaporation of some other siibstances

is given in the Addenda.

The exact value of the latent heat of evaporation of one

pound of water at the pressure of one atmosphere, as found

by Eegnault, is 966.1 B. T. U. = 751624 foot-poimds.

This is the worh necessary to simply change water from its

liquid state when av 2512" F. under the pressure of one at-
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mosphere to the condition of vapor at the same temperature

and pressure. ' Since water in the form of steam occupies

more space than as a liquid, the molecules must be farther

apart in the former than in the latter state, and hence, with-

out considering their exact condition in the two cases, it ap-

pears that it requires 751624 foot-pounds of energy to sim-

ply separate the molecules of a pound of water sufficiently to

produce steam. This amount of heat is absorbed and dh-

uppears without affecting the temperature ; and the same

amount reappears, or passes to other bodies, when it returns

to a liquid at that pressure.

Latent heat of evaporation of one pound of certain subBtancee at tlie pressure of

one atmosphere.
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of the vapor will be condensed until equilibrium be restored,

and, conversely, if the pressure be diminished more vapor

will be generated. To illustrate, if a cylinder containing a

piston were placed directly over a steam boiler having one

end open to the boiler, and the piston be forced inward, a

portion of the steam would be condensed, and if the piston

be drawn outward more steam would be generated—^the tem-

perature and pressure remaining constant while the volume

varied. This is known as Dalton's law (Stewart on Heat,

p. 143).

76. The relation betTveen pressure and tem-
perature of a vapor can be determined only by experi-

ment, as has been done by Regnault {Memoire de VAoade-

mie des Sciences, 1847; Comptes Eendus, 1854). His

results are represented quite accurately by the following

empirical formula, given by Eankine, and first published in

the Edinburgh Neio Philosophical Journal for July, 1849

{Phil. Mag., Dec, 1854).

com. logp = A — — — —^ i^^)

where A, B, C, are constants to be determined by experi-

ment. That author remarks that this formula is sufficiently

accurate for temperatures from —22° F. to 446° F. I'rom

(80) we find

^ = ~' (81)

JA-Iogp R_ B_
^ "•"

4 6« 2 6^

1^ = i^ (I- + ^) X 2.3026, (82)

^^ ^ ^ f^ _. ?^') X 2.3026. (83)
dr \ r ' r J

The following are the values of the constants for the
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viijKir of 'water (saturated steam) for degrees Fahrenheit and

pressures m. pounds per squarefoot :

A = 8.2S2U3, log B = 3.441474, log C = 5..5S3y73.

These values diflfer slightly from those gi\-en by Rankine,

because he used t„ = 493.2° F., while here r„ = 492.66° F.

Tlegnault's experiments also furnish the data for determin-

ing the constants for Alcohol, Ether, Bisulphide of Carbon

and Mercury.

7 7 . Volmue of vapor. From equations (74) and (83)

M'e have

r, =
^ '/i> (84)

d r

H.

which for saturated steam becomes, e<|uation (78),

1117880 - 544.6 r

r (f + ^) X 2.3020

from which 'i\, the volume of a pound of the steam, may be

determined. It will be found hereafter that the volume of

a pound of saturated steam at 212^, the pressure of one at-

mosphere being 29.9218 inches of mercury, is 26..50 cubic

feet, nearly, and the volume of one poiind of water at its

maximum density, 39.1° F., is 0.016O2 cubic feet; hence, a

pound of saturated steani under the j^ressure of one atmos-

phere occupies 16.54 times the volume of one poimd of

water at its inaximmn density. This increase is illustrated

by Fig. 33, in which the small square at the i^pper left-hand

corner represents the volume of one pound of water,

Vj = 0.01602, and the entire large sqiiare the volume occu-
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: 26.58, andpied by the steam produced from it at 212° F., v,

the large square

minus the small

one represents the

increase of vol-

iime in changing

the water to va-

por, v^ — ^v If

the boiling point

increases in tem-

perature, tlie vol-

^imS of steam de-

creases ; still with-

in the range of

ordinary practice

the volume of

water is so small

compared with that of the steam generated from it, the former

may be neglected, and we have with suiScient accuracy

'-'^-~^-
(86)

. dr
TS. Weight of vapor per cubic foot, sometimes

called the density of the vapor. Since a pound of the vapor

occupies v^ cubic feet, the iveight of a cubic foot of the

vapor will lie

1

Jf L be the latent heat of evaporation per cubic foot, then

L

w
L

d J)

d r

(87)

which is the reciprocal of equation (84).
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A series of values of pressures, j?, and

volumes, v, may be calculated by means of

equations (80) and (85), according to tbe

method shown in the following exercises 5

and 6 ; the results of which may form a table

like the one at the end of this volume for

" Saturated Steam." From these results the

heavy line in Fig. oZu has been constructed,

in which the ahscissas are volumes per pound,

and the ordinates, pressures per square inch.

Such a curve is called the curve of saturch

tion.

Assuming its equation to be

l>
y" = P, i'l" ;

- % P
log V,

PIG. 33a.

li p, = 14.7, «, = 26.59,

andy> = 60, v = 7.100, then « = 1.06470
;

or, p = 100, V = 4.403, n = 1.065837
;

or, J? = 160, V = 2.S30, ?i. = 1.065954;

or, jj = 200, V = 2.2ii4, n = 1.06551.

Mean u = 1.06550
;

. . J) v'-'""' = constant, (88)

or, 2^ -yiS = 484, (89)

p being pounds per square inch and v cubic feet per pound.

EXERCISES.

1. Required the latent heat of evaporation of water at

20° F., 60° F., 200° F., 400° F., and explain why it is less
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at the higher temperatures. (Equation (78), or tables of

saturated steam.)

2. If Regnault's law can be trusted so far, find the tem-

perature at which the latent heat of evaporation will be

zero for steam.

Ans. r = 2052° F. or T = 1592° F.,

or about the temperature of the melting point of brass,

above which there would be no difference between the

liquid and vaporous forms. This is called the critical teui-

peruturi', and has been determined experimentally for some

substances {PMI. Trans. (1869), CLIX., 575).

3. If the latent heat of evaporation of one pound of water

at the melting point of ice could be utilized in projecting

that pound vertically upward, how many miles high would

it ascend in a vacuum, considering gravity constant, and

g = 32.2 ]

4. Through what height must a 100-pound ball descend

in a vacuxim so that its energy if entirely utilized for the

purpose would just evaporate one pound of water at and

from 212° F.

5. Find the value of '-^ for saturated steam at 212° F.
d r

If we resort to tables of saturated steam, we find that Rankine's Table

VI. {Steam Engine) is not suitable for this purpose, because the tempera-

tures are for differences of 9" F. Several other tables give the pressures

for every degree. From one of these we find that at

311° F., the pressure is 14.406 lbs. per sq. in.

213° ' " " ' 14:696 " " " "

313° " " " " 14.991 " " " "

Hence, from 311° to 212° we have

-r^ = 0.390 X 144 = 41.76, approximately,

from 212° to 313°, we have

j^ = 0.395 X 144 = 43.48, approximately,
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the mean of which gives

'IP = 42.12,
d r

wliich is nearer correct, but cannot be exact. To find the correct value

directly, use equation (83), and we have

dp _ 2116.3 r .B 20 -I

dT - 673:66 L 673:66
"^ (673.66)0 ^ '^^

,5.80.530= 3116.3 X 3.3036 X -

673.66

= 43.06,

which is the value required.

6. Find the volume of a pound of saturated steam at

212° F., and the M'eight of a cubic foot of it.

From equation (Si) we have

'^'^ = ^'' + ;jj
J r

Water increases in volume 0.04775 per unit from that at its

maximum density to 212° F. ; hence,

r, = 0.01 tj( (2 X 1.04775 = 0.0167S — 0.017

M'ith suflicient accuracy.

Then

'^, = 0.017 + 5^^-^^ = 26.585 cu. ft.,

and

w — -- = 0.03762 lbs. per cu. ft.
'i\

(Rankine gives the following empirical formula for the vol-

ume of liquid water at any absolute temjierature.

/ r 500 \ \

If steam followed the law o^^ perfect gases, we could now
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find the volume of a pound of it at any temperature. For
we would liave

j^^_ 2116.2X26.5
r - 672.66 - «^-^7 >

.-.« = 83.37^- (89a)

7. Find the volume of one pound of saturated steam at

1200° F.

8. Find the volume of saturated steam at 212° F. gener-

ated from one cubic foot of water.

If Cj = 36. 6, as in Exercise 6, then will the required volume be 1659
cubic feet. Heretofore writers have used Rankine's results, giving 1644
or 1645. Observation has not fixed the e.vact value.

9. Find the external and internal work in changing one
pound of water into steam at and from 212° F., and their

ratio.

The volume of one pound of steam will be v^ = 36.585,
" " " " water at 313^ r., ui = 017,

B2 - u, = 36.568.

The entire work will be

r ^^ («2 - V,) = 672.66 X 42.06 X 26.568 = 751673.
"

'
966.1 X 778 = 751636.

These results would be identical if all the quantities were determined

with precision.

The external work consists in forcing the pressure of one atmosphere

through 36.568 feet, or

3116.2 X 26.568 = 56319 foot-pounds,

which deducted from the former, gives

751673 - 56319 = 695453 foot-pounds

for the internal work ; hence, the mternal work will be

695453 ^ j2 g^
56219

times the external for the conditions given in the problem.

78a. Isothermal of a liquid, its vapor and its

gas.



104 IMPEKFECT FLUIDS. [79-]

To illustrate, conceive that one ponnd of the liquid is

subjected to an immense pressure at K(.iiiie moderate tem-

perature, Tj^say 21^" F. Let .1, Fig. V,

represent thij state, the ordinate to wiiich

will represent the pressure, and the ab-

scissa the vohuue. Let the pressure l,e

gradually removed while the tempera-

ture is maintained constant — die vohnne

will increase slightly and the path of the

FIG. d. fluid may be represented by A J3, the

abscissa of J3 exceeding that of A.

Let I> be the state at which the liquid will boil at

the temperature r ; then at that pressure the volume

will increase, the temperature remaining constant, and

B C will represent the . path. Xi C let the pound bo

entirely vaporized and the pressure gradually removed, while

the temperature, r, is maintained constant ; then will the

path be the isothermal C r. The entire broken line A B C r

is an isothermal of the fluid. Let the operation be re-

peated at a higher temperature—the boiling point will be

reached at a state above and a little to the right of B, so that

a curve FE passed through such points may be called the

locus of ho'dlruj jjointH. Continuing the operation as be-

fore, and the state at which the pound will be evaporated

will be represented by a point above and to the left of L\

and the curve traced through all siTch points will be the

raroe of saturation E C (r, already described. These

cur\'es will meet at some point E, and the temperature of

that state is called the critical, temj/eruture.

79. An experimental determination of the

density of saturated steam was first made by Fairbairn and

Tate in 1800 {Phil. Truns. (London), CL., (ISOU), 185
;

CLIL, (1862), 591). The densities as thus found differed

from those previously found by Rankine from ^^^ to -^ of the

experimental values, thereby giving larger values above 242°
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F., and below some were larger and others smaller than the

experimental ones {Miscellaneous Soieiitific Papers, p. 423}.

In these experiments, the steam was in a statical condition,

while in Eegnault's experiments the steam was in rapid mo-

tion from the boiler to the condenser—differences of con-

dition which would naturally affect the results. The proper

value of J woiild also affect the result ; but the results ob-

tained by the two methods agree as nearly as one might ex-

pect under the circumstances. Rankine's Tables are in his

" Prime Movers," and those of Fairbairn and Tate, above

the pressure of one atmosphere, are in Richard's Steam, In-

dicator, Weisbach on the Steam Engine, and other works.

The apparatus employed by Fairbairn and Tate for deter-

mining the temperature of saturation consisted of two glass

globes connected by a bent tube below them. The tube was

filled with mercury, above which in the globes was the

liquid, one containing more than tlie other, tlien tlie globes

and tube were placed inside of a small boiler containing the

same liquid, and the whole heated. So long as the steam is

saturated the mercury in the tube will remain stationary, but

the instant that the smaller volume of Avater is all changed

to vapor (some water still remaining in the other), the mer-

cury will rise in that end of the tube nearest the globe in.

which all the water has 'been evaporated, as

after that, that steam becomes superheated,

and the rate of increase of pressui-e is greater

for saturated tl^an for superheated vapor. A.t

the instant of change the volume of the

steam will be tlie volume of the space above ^^^ gg^^

the mercury, and the temperature and pres-

sure of the steam in the globes will be the same as that in

the boiler, and hence may be readily measured.

80. Measurement of heights. The principles

TJeorir Wcaniqve de la Chaleur, 3'"" ^f'. (lS7o), II.
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here discussed furnish the means of determining altitudes.

Thus, if at any point on a hill or mountain the temperature

of boiling water be observed, the pressure of the atmosphere

at that place and time may be computed by means of equa-

tion (80), then will the height above the level of the sea be

A = 60346 log I^ feet, (90)

in which ^^ is the pressure of the atmosphere at sea-level,

2110.2 pounds per square foot.

(See the author's Elementary Merhanics, p. 328.)

81. Sublimation consists of a change from the solid

to the vaporous state without passing through the liquid

state. Experimental data in regard to this change are want-

ing, so that we are unable to make use of any analysis rep-

resenting this change.

83. Evaporation without ebullition. Experi-

ment indicates that evaporation takes place at all temperatures

for a great \-ariety of sid.istances, if not for all. ISnow and ice

e\'aporate at temperatures l)elow freezing, and many soUds

emit sufficient vapor to be detected by the sense of smell.

The evaporation of water in the atmosphere is the most im-

portant part of this subject. Water is elevated in the form

of mist in the atmosphere, forming clouds, by wliich means

water is re(Hstributed over the earth. Evaporation takes

place at the surface of bodies of water and is unaffected by

the conditions below, except so far as thej' modify the sur-

face. It is generally greatest at higher temperatures, al-

though otlier conditions modify this law. It is modified by

the hygrometrical conditions of the atmosphere, and is greater

during a wind than during a calm. It is greater during

summer than winter, and generallv greater durino; June and
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July tliaii for any otlier months of the year, but it is some-

times, though rarely, greater during August than for any
other mouth. It is greatly affected by locality, there being

sometimes a difference of several inches within a few miles.

It has been observed that one half an inch in depth has been

evaporated from a large pond in twenty-four hours in lati-

tude about 42° north, but this is an extreme case. The
amount is also very different for different years, the maxi-

mum exceeding the minimum by more than fifty per cent.

Twenty to thirty-five inches of evaporation per year is very

common, in which cases the amount
for June would range from about 2.S inches to 5.4 inches,

' July " " " " 3.0 " " 5.8

•• August " " « " 2.3 " " 5.3 "

' It is recorded that in July, 1875, near Boston, the evapo-

ration was 7.21 inches. (Much valuable information on this

subject was collected and published for the use of the court

in The Case in the Supreme Court of the State of New
York—General Term—Fifth Department—for an Applica-

tion by the City of Rochester to acquire certain rights to

draw water from Hemlock Lake, Vol. II., about 1884.

Also certain Tiroisactions of the American Society of Civil

Engineers, New York, particulai-ly a paper by Mr. D. Fitz-

gerald, Tmnsaethns, Vol. XV., 581, (1886).)

83. Assume the pressui'e and volume both
constant during the absorption of heat. These conditions

make dp — o, and d v ;^ o, in equations (A) ; hence,

dH= K, d r ^ K^dr;
.: K^ = X,.

Strictly speaking, these conditions are reahzed for only a

few exceptional cases, as water at its maximum density.

Generally, the volume changes during the absorption oi

heat under constant pressure, but for solids and liquids, the

change of volume under constant pressure, and of pressure

at constant volume is so small they may be considered as
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constant, and more especially so when it is considered that

the work due to these changes for these conditions is usually

very small compared with the energy expended in making

the substance hot. If C be the mean specific heat of a solid

or a liquid for a large range of temperatures, we have prac-

tically,

Ky = K^ — C.

Tables of si^ecifie heats of solids and liquids give values

for C only.

Specific heat of a few solids and liquids.

Substance.
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h = 0.504 (32 - T)+ 144+ 180 + 966 + 0.48 {T' - 212°)

= 1204.4 - 0.504 T + 0.48 T (92)

= 1200 + 0.5 {T" - T'), nearly.

EXERCISES.

1. Required the temperature after mixing 3 pounds of

water at 90° F., 10 pounds of alcohol at 30° F., and 20

pounds of mercury at 60° F.

2. Required the temperature of a mixture of 3 pounds of

ice at 10° F. with 12 pounds of water at 60 F., after the ice

melts, there being no loss of heat.

3. Required the resultant temperature of a mixture of 6

pounds of ice at 20° F. and one pound of steam at 225° F.

Here

0.504 X 6 X 13 + 864 + 6 (< - 32) = 0.48 X 13+ 966 + (312 - i).

4. Desiring to determine the approximate temperature of

the gases at the base of a chimney, a mass of iron weighing

8 pounds was placed in them, and after remaining a con-

siderable time was removed and submerged in 100 pounds

of water at 50° F., when it was found that the temperature

of the water was raised to 55° F. ; required the temperature

of the gases.

We have, nearly,

^ X 8 (i; - 55°) = 1 X 100 X 5
;

. •. t= 617° F., nearly.

5. How many pounds of water at 200° F. will be neces-

sary to reduce one pound of steam at 212° F. to water, and

leave the final mixture of water 212" F.

6. Required the temperature of a mixture of one pound

of ice at 32° F., one pound of water at 32° F., and one pound

of steam at 212° F.

Proceeding in the ordinary way, we have

144 + 2 (< - 32) = 966 -|- (213 - t) ;

.
. i = 866° F.,

an absurd result, since the mixture would have a higher temperature than

that of the hottest substance.
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The proper explanation is—only a part of the steam was condensed pro-

ducing water at 213° F. By a suificient pressure, however, it may all be

reduced to water.

T. In the preceding exercise how much steam was con-

densed forming water at 212° Y. and how much steam re-

mained uncondensed (

8. Eequired the resultant temperature of a mixture of 5

lbs. ice at 2S° F., 20 lbs. B,0 at 50° F. and 1 lb. steam at

212° F.

9. A mixture of i pounds of ice at 32° — t,, x pound.s of

water at G0° F. and s pounds of steam at t° F., produces a

temperature of T° F.; required «, and discuss the result.

We have
0.504 i U + 144 i + i (T - 32) = /(say),

0.48 s (U - 212°) + 966 s + s(313 - T) = S,

x{T- 60) = W;

••'^-
2' -60'

Now assume that

.'.' = i ; S > i and r > 60
;

S>I. T= 60; 8> I, T <Q0° (impossible), S < I, T < 60°, &o.

1(J. How many pounds of water at 212° will be necessary

by mixing with 5 pounds of alcohol at 40° F. to just make

the latter boil under a pressure of one atmosphere ?

85. Total heat of evaporation is a conventional

term to indicate the heat absurl)ed in raising a liquid from

a fixed temperature in the liquid state to the boiling point

and evaporating it at the latter temperature. It is the sum
of tlie sensible and latent heats above \\\q ji.ved temperature.

It is also called the total la-at of the vapoi\ and in reference

to water the total Jicat of ateaia . To find it, we use the first

of equations (^1), or

in which the first term of the second member is to be in-

tegrated fron. r, to r^, while the second term of that mem-
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ber is zero during that operation, and then the vahie of the

last term is found while r, remains constant, and hence is

H^, the latent heat of evaporation. The total value of H
will be the sum of these values ; hence, making K^ = 0,

the dynamic specific heat, we have

JI= C{r^-r:) + II,,. (93)

The lower ^>c'^? temperatiire is that of melting ice, unless

otherwise specified ; hence, in English units

7= = To

T, = r,+ T- 32°,

where T is the temperature on Fahrenheit's scale, and

11= C{T-S2) + II,, (94)

and for water C = 7Y8, and substituting the value of 7/^,

(page 95), we have

R = 178 [1091.7 + 0.305 {T - 32)]

= 849342 + 23Y (I' - 32)

= 841758 + 237 T. (95)

By means of this formula a table may be computed that

will give the " total heat of steam" above the melting point

of ice.

86. Evaporative iiovrer.—If the temperature at

which water is fed to a boiler be T° F., the foot-pounds

of heat which must be supplied in order to evaporate it

will be

// = 778 [1091.7 + 0.305 {T - 32) - {T, - 32)]. (96)

In determining the efficiency of a boiler, or the amount

of water evaporated by a pound of fuel, it is customary to

reduce the amount of evaporation which actually takes

placeyrom the temperature of the feed water at the temper-

ature of the steam to an equivalent amount at and from
212° F. (100° C). In the latter case 966 heat units are

absorbed, and making this the unit of evaporative power,

the evaporative power in any other case will be, nearly.
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1092 + .3 (r - 32) - (T; - 32)

966

0.3 {T - 212) 4- (212 - T,]

966
= 1 +

a form due to Eankine, who properly called the expression a

factor of eca^xiratioK. By assuming a series of values for

T and T^, a table may be formed of the factors by means of

whic-li the given conditions may readily be reduced to that

of the above vnit, and the actual evaporative power will be,

in foot-pounds,

778 X 966 X tabular number.

The preceding expression reduces to

1 +
14S.4 4- 0.3 T - T,

966
' (97)

by means of which the following table has been computed.

Factors of Evaporation.
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87. Superheated steam.—When the temperature

of a vapor for a given pressure is higher than the boiling

point for that pressure, the vapor is said to be superheated,

and is sometimes called " steam gas." Vapor may be super-

heated by separating it from its liquid and subjecting it to

a still higher temperature. Let the vapor be generated at

T, degrees and afterward heated to r^ degrees, then will the

heat absorbed above r^ degrees be,

H:=II,+ r^K, dr^II^ + a; (r, - rj. (98)

If the vapor be steam generated from water at T^ degrees

Fah. evaporated at '1\ degrees, and superheated at constant

pressure to T^ degrees,

R= 778 [(r, - To )+ 1121.7 - 0.695 T, + 0.4S{T^ ~ T,)]

= 778 [1131.7 - 0.175 T, - r„ +0.48 T.J. (99)

EXERCISES.

1. If one pound of coal will evaporate 10 pounds of water

at and from 212°, how many pounds would it evaporate

from 80° F. at 310° F. %

2. If, when the feed water is at 32° F. and the boiling

point at 410° F., one pound of coal evaporates 7 pounds of

water, how much ought it to evaporate at a,ud from 212°

F.?

3. Experiment proves that one pound of good coal, com-

pletely burned, will develop 14500 heat units (B. T, U.),

how naany pounds of water could one pound of such coal

evaporate at andfrom 212° F. if all its heat of combustion

were utilized for that purpose; under the pressure of one

atmosphere ?

Ans. 15.0 lbs.

4. Under what physical conditions cOuld one pound of
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Sucli coal as mentioned in Exercise 3 evaporate 20 pounds

of water ?

5. If the feed water be 32° F., what innst he the tempera-

ture and pressure that the " factor of evaporation" shall be

2.0 '.

6. Find the B. T. U. required to produce one pound of

saturated steam at 212° from water at 32°
;
and steam gas

at the same temperature from the same water, and compare

the results.

(Those who have not time to pursue the more abstruse part of the sub-

ject may omit to Art. 98, p. 143, except Art. 95, p. 126.)

88. Free expansion of gases. AYhen the exter-

nal pressure is much less than the expansive force of the

2;as during expansion, the expansion is said to he free. This

principle has been used for determining the difference be-

tween the absolute zero of the perfect scale and that of the

air thermometer. When a gas rushes freely from a vessel

under pressure into another cif lower pressure, the only work

done will be that of the fricti<jn through the passage and

among its own }iartieles, which process will generate heat

;

Ijut during the expansion in the second vessel the gas will be

cooled, and if there were no transmission of heat to or from

external bodies and the gas vfeve perfect the final tempera-

ture should be the same as the initial.

Joule made an experiment upon air, liy immersing in a

vessel of water two other ^'essels connected liy a pipe, one

of which- was filled ^vith air at 22 atmospheres and the

otlier exhausted of air ; after which, by opening a stop-

C(jck jn the connecting pipe, the air rushed from one

A'essel to the other, but no apparent change of temperature

was observed {Phil. Mag. (3), (lSi.5), XXYL, 376). M.

Ilirn, in 1865, made a more delicate experiment for the

same purpose, but without detecting any change in tempera-

ture {TJieorle Ilecrniique <le la. Chaleur, 3'^'""', I., 298).

Sir William Thomson in 1851 executed a much more
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delicate experiment. A porous plug, composed of a bunch

of fine silk—or, in some cases, of cotton—was inserted in a

long tube, and tlie difference of pressures on either side

was regulated by the amount of silk or cotton in the j)lug.

The air was forced through a box with a perforated cap

stuffed with cotton-wool, so as to prevent fluctuations, and

this pump was worked some time, so as to secure steady

action before records were made. The pressure and tem-

perature were kept nearly constant during the experiment.

The part of the tube beyond the plug was immersed in a

vessel of water, observations upon which determined the

amount of cooling (Thomson's Mathematical Papers^ pp.

333-45.5 ; Phil. Mag. (1852), (4), lY., 481). Since heat

will generally be abstracted, H will be negative, and the

second of equations (^4) becomes

- dH= K^dr -^'^ dp.
^ a t

Adding and subtracting v d p, ^e have

— d H = K^d t — (r -^ — v\ dp — V dp;

.-.H^K, (r -r,)+y(r '^^^- v) dp +f v dp. (100)

considering K^ as constant.

But integrating v dplij parts, between the limits of />, «,

and v^ p^, gives

The last term would be negative if the order of the Kmits

were reversed. But the work done upon the gas in forcing

it through the plug will be nearly the external work for the

sensibly perfect gases ; or

and substituting these in equation (100), gives
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f{r '~ - v'j djj = A'p (r, - T,) + v,2y, ~ v,p,. (101)

But this cannot be reduced, since r depends upon tlie

zero of the perfect scale, which we do not know ; we, how-

ever, know by experiment that it is not far from the zero of

the air tlierraometer ; hence, if t be the temperature from the

absolute zero of the air thermometer, we have from equa-

tion (2)

= i?, very nearly

;

J'V
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air thermometer. The difference is so small compared with

the distance from the melting point of ice as to render it

probable that the approximation is very close, supposed to

be within -^^ of the exact value.

Specific Heat.

90. General expression for specific heat.
The first of equations {A) gives

dH ^^ ,
fdp\fdv\ ,,„„,

which is a general expression for the sp. heat of any sub-

stance at the volume v and temperature r, the path of the

jhiid being arbitrary. Unless otherwise stated, the path is

assumed to be either parallel to, or perpendicular to, the

«-axis, giving rise to the conditions^ constant or v constant

;

hence, dp ^^ o or dv ^^ o, which in equations {A) give the

respective equations

/dH\
>d T

K„

as previously established in Articles 38 and 39.

91. Specific heat at a change of state of

aggregation. It has been shown that for fusion, evapo-

ration and sublimation the change of state takes place at a

fixed temperature corresponding to a given pressure for

each substance ; hence, for these cases we have

dr = o,dH->0\

.•.^p=^==o, (104)

similarly,

or the specific hmts at the change of state are infinite.
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93. Modified expression for the specific lieat.

The specilic heat uf substances which are capable of a large

expansion— conceived to be indefinitely large—admit, ac-

cording to the theoretical views of Rankine, of being ex-

pressed in two parts—a constant and

a variable part. To show this, let i,

Fig. 34, be the initial state of one

pound of the substance, t e &n isother-

mal for the substance, e d a consecutive

isothermal, K^ the sj^ecific heat at the

volume V, K^- the speciiic heat at the

volume v" . From the state h let the

temperature be increased d t, thus in-

creasing the pressure an amount J c ; from the state c ex-

pand it. doing the external work v c d r", at d abstract heat,

so as to reduce the temperature d t, reducing the pressure

to v" e, thence . compress it isothermally to J, doing work

v" elv upon the substance, then will the resultant external -

work be

i c de =
I

(Jjjdv;

and, according to the second laM', omitting the parentheses

indicating partial differentials,

a/'ex Tn.he 9)1. = r dr d V

'iib.^ c d rn^ :=: {r -\- d r)

''
(/ {j> + d2))

d V

dp

Also,

v7>^ dp
J-/v+r / ^dvdr+dr / j~^dv+dr

TO, 1) em,=z K^ d T,

m^ e d m^ = K^- d r ;

Fp

I drdvdr.
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And,

in^ 'bGm^-\-m, c d m^ — m^h e 7n,^ — m^edm^ = 'bGde;

hence, substituting and reducing,

K, = K^.-rJ^ ^dv-dr_l^ ^dv
v

Kemoving v" indefinitely to tlie right, we have -u" = oo

,

and then JCy- becomes IT^ , which, according to a theory of

Eankine, is constant for a constant state of aggregation,

'

according to which the preceding equation becomes

K^O+r r[^)dv, (105)

in which the last term is the rate at whicl^ the internal work

is done at the volume v and temperature r, due to a change

of temperature. It may be found more directly from equa-

tion (67) by differentiating it, considering r as the independ-

ent variable, giving

and dividing by d r gives the heat doing internal work per

unit of temperature, which is the same as that above when
the corresponding limits are assigned. Equation (105) being

the specific heat at the volume v and temperature t, we
have, for the heat absorbed at constant volume,

I-I^ \ K,dr = G{r^-r^J^ f ' / r''^,drdv,{106)

U '-^'^1 '^ CO

the last term of which may be integrated when the equa-

tion of the gas is given.

Similarly, if j!? and r be the independent variables, we
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would find

A;=C+i?-r r-^(fj)^^^, (107)
yy

and for an increase of temperature t, — r^, the heat absorbed

at constant pressure would be

11= K,dr={C+R){r-r;)-f''rri^^^drdp.{m)

93. The apparent specific heat is the total heat

absorbed by unity of weight in producing an increase of

temperature one degree, and includes that necessary to

make the substance hot as well as that doing the internal

work, and also the external in the case of constant pressure.

It is represented, for expansible gases, by the second mem-
bers of equations (105) and (107).

The real specific heat is that part of the apparent specific

heat which directly makes the substance hotter. It is rep-

resented by G in equation (105), and is called actual

energy.

The apparent specifio heat is the sum of the actual and

potential energies in the particular specific heat. Equations

(105) and (107) are the dynamic specific heats, and to find

them in ordinary units they must be divided by J.

Th5 theory of Rankine, referred to above, is " The real

specific heat of each substance is constant at all densities so

long as the substance retains its condition, solid, liqiiid, or

gaseous" {Po'lme Movers, p. 307). The correctness of this

theory has been questioned by Clausius, and in one place

Rankine says "it is ^roSaWy constant " {ibid., p. 250). The
theory is useful in showing the different effects probably

produced by the absorbed heat ; but it is of no service ex-

cept in expansible gases, and cannot be used in those cases

except where the equation of the fluid is known—and it is

known for only a few substances.



[93.] SPECIFIC HEAT. 121

EXERCISES.

1. Find the specific heat at volume v and temperature r for

the gases represented by the equation^ v ^ Er
We have

p = E
V T V

, 3 a= P -\ ;•

T V'

17.^'*'''= -tV '^=^

From this result It appears that the specific heat at constant volume

decreases as the temperature increases, for all gases represented by the

above equation, and approaches C as a limit.

2. Find the heat necessary to raise the temperature of one

pound of the gas of the preceding exercise from Tj to t, at

the constant volume v.

Equation (106) becomes

From this it appears that G -\ is the mean specific heat between t,

and Ti.

3. Find the heat aI)sorbed by one pound of CO, in rais-
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ing its temperature from 500° F. to 600° F. at the volume

8.5 cubic feet.

From equation (6), page 13, we have

R = 35, a = 481600,

and the preceding equation gives (0 being 182),

^=(^32+2SS)lOO = (133 + 0.3T7)100

= 13238 foot-pounds.

It will here be observed that the term due to internal work is very small

compared with tlie actual energy, and may properly be omitted, especially

when we consider in addition thereto that it is less than the errors of ob-

servation determining the number 132.

4. Find the apparent speciiic heat of the gases represented

by the equation j? v = Rr. (Use equations (105) and

(lOY).)

94. General expression for the difference of

specific heats.
In equation (103) the left member is the specific heat at

constant pressure, if j) be constant ; hence,

^. = ^' + '(^)(§^.

To make this more apparent, use both of equations {A),

which are

\dr I

dll^K^dr
p my^-'

subtracting, gives

o=,/c-i'.)..-[.(:^2).«+.(4^j.4

In Figure 35 let A r and ^ 6' be two consecutive isother-

mals and ^1 h the path of the fluid, A B perpendicular to the
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axis of volumes, A C parallel thereto, then, as shown by equa-

tion (20), will

—£-] d V = m.^Bim,;
r+,t(r

d V\ y
TOj h Cm^;

Vfc
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But for V constant d v = o',

fd v\

dt
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the coefficient of expansion at 77° F. being 0.00014 of its

volume per degree, and the coefficient of compression being
0.000046 of its volume for one atmosphere.

The volume of one pound of water at maximum density being 0.016
cubic feet, we have

f^)^'= (0.016X0.00014)^ = A.

Assuming tliat the rate of expansion for dS' {= 77 — 39) is uniform,
the volume at 77° F. will be

0.016 + 0.016 X 00014 X 33 r= 0.01609, nearly
;

hence, for a pressure of one pound per square foot we have

fd V
\ 0.01609 X 0.000046 351

dpj 3116.2 ~
lO''

.-.K -K^= 587.6 X Ats = 7.68 ;

.
•

. Cp - c^ = 0.0099.

A similar computation at 182° gives

Cp - c^ = 0.0360.

Adopting Regnault's values for the specific heat at constant pressure,

we find

„„„ , -„ = 1.0000
at 39° \

P
,

c^ = 1.0000

. «„o ,
c„ = 1-0016

at 77 \
P

-1.99171^ = 0.9

, c - 1.0042
'''''°^

' .0.9682

It will be observed that while the value of c^ increases with the temper-

ature e decreases, and hence the difference increases more and more as

the temperature increases. The exact numerical results here found ure

not to be relied upon, but they are approximately correct, and indicative

of a general law.

6. Show, both analytically and geometrically, that the

specific heat for constant pressure exceeds that at constant

volume.

7. Show that the term r / -7-4- d v disappears for gasea

whose equations (if any) are p v = H r -{- gj (v).
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95. Water is the only substance whose specific heat has

been accurately found for a large range of temperatures.

According to Regnault's experiments, there is a small increase

in the specific heat with every increase of tempera:ture above

32° F., but according to the very accurate experiments of

Professor Rowland, the specific heat of water decreases from
4° C. t(i '27° C, and may be approximately represented by
the empirical fornmla

c = 1 — 0.00052 (?; - 4) + 0.000003 {t — i)% (111)

in which i should not exceed 30° (\

Rankine's formula for representing Regnault's experi-

ments is

c = 1 + 0.000000309 {T - Sd.lf (Fah.), (112)

= 1 + 0.000001 (t - if* (Cent.).

M. Bosscha represents Regnault's experiments by the

formula
= 1 + 0.00022 t (Cent.). (113)

When the law of the specific heat is known, the number
of thermal units absorbed in raising a pound of the sub-

stance from T^ to T^ degrees will be

A = / od T,

JT
and the mean specific heat will be

li

T — T'

96. Another form of the general equation.
Substituting the value of K^, equation (105) in the first of

equations (J.) gives

n d' ]) dpdH=Cdr + TJ ^^(ir dv + r -^^d V. (114)

00-

Trans. R: S. E.. XX. (1851), 441.
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This is analyzed by Rankine as follows (Piime Movers, p. 313) ;—

"I. The variation of the actual heat of unity of weight of the fluid

CydT.
" II. The heat which disappearsj in producing work by mutual molec-

ular actions depending on change of temperature and not on change of

volume. .;

" III. The latent heat of expansion, t —£. d v, that is, heat which dis-

appears in performlnt^ work, partly by the forcible enlargement of the

vessel containing the'fluid and partly by mutual molecular actions de-

pending on expansion."

The integral of ^ the lagt equation would
,

if determined,

give the heat absorbed, in foot-pounds, in producing the

changes of temperature and volume ; but the integral can-

not be performed without th& equation of the path of the

fluid and the equation of the fluid. ,^

'

Still another form. Subtracting, ^^w, the, external

work done, from both members of the p-receding equation

gives ,' "••"'_-

0 {T,- )+ j?--+/m?^-'^"^)
in which each member is the excess

of the heat absorbed above the exter-,

nal work done. The several terms

may be represented, by Fig. 36, in

which ^ ^ is the path of the fluid,

A O an isothermal through ^A, and

A a represents the internal work

done during the isothermal expansion

AC. Then ,

IT =^ m, A B OT„

Cjpdv = v,AB V,-- v.AOv, -f A B O.

f fr f d r d V = a/reas represented ly the dotted lines

letween C to, and B m„
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C (''a
— ^,) =^m^G Bm^ — areas represented iy the dot-

ted lines,

O (r, - r.) + Jft '^j^drdv=^m,OBm,,

v^ a V, = '/n^ A Cm,;

-•. H —
I J) d V = m^ A £ m, — V, A -B V,

= A a c C -\- m, C B m^.

It is apparent that the second term of the second member
of equation (115) is the q) (t) of equa-

tion (67).

The internal work may be repre-

sented in another form. In Fig. 37

let A T, and B r, represent isother-

mals extended indefinitely, and con-

ceive that r^ A B T^ forms a closed

cycle, then will the resultant internal

work in passing around the cycle be

zero. Let ^S^y be the internal work done in passing from A
to B, y^S^ in passing from B to infinity, ^S^ in passing

from infinity back to A ; then

a'^b + ^,8^ - .S^ = 0. (116)

Let Ti be the isothermal through A, ts through B, Figs.

36 and 37, then, equation (115),

•*=/'•
('.('sf) -')-+/:/••' (S") —. <""

and from Fig. 37, /S^ being the potential energy at A, etc.

FIG. 37.

X)

f'v„

Sy, =
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these combined with equation (116) reduces (115) to

JI~ Jpdv = {0 r-S\- {0 r - &\, (120)

in which {€' t — S\h called the intrinsic energy of the

gas in the state £, and depends upon the state of the gas

only ; hence, the heat absorbed above that necessary to per-

form the external work equals tli'e increase of the intrinsic

energy.

EXERCISES.

1. If the equation of the gas hep v ^ li r , verify

the statement that the internal work is the same whether

the path be ^ C and C B, Fig. 36, or the indefinitely ex-

tended isothermals r^ and r^. (Equations (117), (118), (119).)

2. If the equation be the general one given by Kankine,

J? V E r — a„
a,

T V
&c., a„, «i, <5Sj, &c., being

constant, verify the fact that the internal work is the same,

whether A C and C ^ be the path, or whether the path be

along two isothermals through A and B, respectively, in-

definitely extended.

3. Test the same principle for the ideal gas wliose equa-

tion \sp v'' = c t, c being a constant.

4. Will the principle stated in Exercise 2 be true if the

equation of the gas were^ = -y r ?

5. Find the internal work done by ex-

pansion at constant pressure from v^ to v,

when the equation of the gas is^-y =

Br-—. ( (IIT), or (118) and (119).)
r V

Ans. 2 n
-^, V,

1

This is the value of the last term of equation (108). The

last term of equation (108) is not easily found directly, since
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J

it contains internal work due both to a cliange of ^-olunie

and temperature. Since r^ increases with t\ when j' is con-

stant, it follows from the jjreceding Answer tliat the internal

work increases with the expansion and approaches the

limit -—-, M'liich is a function of the initial state only, and
TO

decreases with the increase of tem^jerature. It may be in-

ferred from this—although we have by a more complete

analysis found—that the last term of equation (107j is not

only essentially negative but decreases, numerically, Avith in-

crease of temperature ; hence, the internal work of all ex-

pansible substances whose equation approximates to the form

21 c ^= R r increases with increase of temperature mi-

der constant pressure.

6. Find the real dynamic specific heat of carbonic acid

gas at the pressure of one atmosphere.

We have
17364

Cp = Ov + JJ = 133 + ^-gg = 167 foot-pounds.

1. Find the internal work of expanding C 0^ from 'i\ =
S.5 cu. ft. at r, = 500° F. to r, = 600° F. at a constant

pressure.

From equation (6) we have

y. = 35^- ^.8160Q -= 8047 lbs..

p^ =:

«.5 500 X (9iAf

35 X 600 481600
.

v^ 600 Ks'

. . ^2 = 10.23 cubic feet.

Substituting in the Answer of Exercise 5, gives

3 X 481600 I

gpQ ^ y - -
600 X 10.33 - ''^ foo'-pounds, nearly.

But this is the worli for an increase of 100 degrees of temperature
;

hence, the average will be 0.70 foot-pounds per degree of temperature.

This is less than ^J^ of the heat producing actual energy of the substance
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pfiv degree of temperature, as will be found by comparing this result with

that given in the preceding Exercise.

From the preceding analysis it appears that for ordinary

engineering purposes the specific heat of all substances may
be considered constant for a constant state of aggregatibn

;

and the most important element involving the imperfection

of the fluid is that due to a change of state of aggregation.

It, however, furnishes a wide field for scientific investigation.

97. Other forms of the general equations.
In Fig. 39 let the path A bhe intersected by equidistant iso-

thermals, of which r through A and

T -\~ d T through I are consecutive.

Through A draw the horizontal A a

and through 5 the vertical h a ; then

will the heat absorbed in passing from

A to a at constant pressure be

TO, Aam,^ = K^ d r,

excepting that d r \s not independent,

but is dependent upon d v, the abscissa

of h in reference to A, and hence we have

TO, A a TO., = Kp('—]d V.

Similarly the heat absorbed from a to I at constant vol-

ume will be

hence, ultimately, the heat absorbed in working from A to h

will be the sum of these, or

a form given by Zeuner (
Theorie Mecanique de la Chaleur,

p. 54Y). -

Substituting T^j found from equation (109) and
^-^J

PIG. 39.
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from the same, reduces tliis to

which may be found directly from equations {A) by elimi-

nating d T between them. This form is given by Clausius

(on Heat, p. 179).

Again, from equation {A)^ we have, foj r constant,

/^ H\ __ f,Ij)\ .

(It \ d vJr~ \d W '^ KdrJ'

and from equation (105)

in which r and « are the independent variables. Similarly,

from equation (A).^ and (107), we find

/'dll\ {dv\

d (djl\ _ _ (dl^)
dx> \dr)v- ~ ^ WrV'

d_ fd II\ _d_ (djr\ __ fd_v\
.

d T \ d }j ) T dp \ d r Jf~ \d r)
''

in which t and ]:> are the independent variables. These

forms are given by Clausius, though obtained in a very differ-

ent manner {MecJutniad Theory of Heat, Clausius (Browne's

translation), pp. 118, 119).

Again, from equation (109), we have
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y =
1 _ ^ i^\ {^^

/i; \d rJ Vd r)

a form used by Professor Eowland in liis paper on the Me-
chanical Equivalent of Heat, page 146.

Again, in Fig. 40 let r, be the temperature of the iso-

thermal A B, r^ that of j i, d H^ the

heat absorbed at t^ between the con-

secutive adiabatics A cp^ and h n ; then,

according to Article 40, equation (20),

we have
d H, (dp\ ,

r

dH„
T, \d tJ

FIG. 40.

from which, the second members being the same, we have

dll, dll,

^^ ~ '^. ~ '

Similarly, if t^ be the temperature of the isothermal d g,

r^ of y z, we would have
d H, d H,

0;

d K dH,

7= ^4

dH,
0,

or, considering heat emitted as essentially negative, all the

terms may be written with the plus sign, and, generally,

when a succession of operations are performed in Carnofs

cycle, we have^ dH
s -— = 0,

or, ultimately,

r-f 0.
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But any cycle may be divided into an indefinite number

of strips by adiabatics drawn across it, and by drawing iso-

thermals from their intersections with

tlie path to adjacent adiabatics, an in-

scribed polygon may be constructed

whose area may be made to differ from

that of the given cycle by less than

any assignable quantity ; hence, ulti-

mately, if the integral extend through-

out the entire cycle,

'' ^^ "
(122)

Fia. 41.

f^ 0.

If the integral be separated into two parts, one along

A a B, during which heat is absorbed, the other along the

B I A, during which heat is emitted, we have

^B
1 11

'A

r-^ d II

'b
-"

0.

Equation (122) is Thomson's generalization of the second

law. It was first published by Clausius in 1854 {Pogg.

Ann., Vol. XCIIL, p. .500
; Clausius ou Heat, p. '.to).

(The differential of a function of two or more independent

variables is saifl t<.i be an cfurf (]iif,j;iifiiil. Let

M I ie -\-N~<] y

be such an expression, in whichM and X may be functions

of x and y ; then it is shown by the calculus that the differ-

ential ofM ill regard to // equals the differential of ^ in

regard to x, or,
^j j^ _j^
(/ // (/ .'.

This principle has been successfully applied to many prob-

lems on heat, and of the early investigators, Thomson led

in this mode of analysis.)

Since it has been shown that the integral of is zero
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for a complete cycle, it is an exact differential, and may be
represented by a single symbol, as q), and we have

dH
r

hence, from (J.), we have

d II

d cp\

seeding principle, we lia-^

V \ T / d r \ d T/

Applying the preceding principle, we have

A
d'

or

which is the differential of equation (lOS). In differen-

tiating the left member, r is not a function of -y, since v is

constant during the change of temperature.

Finally^ let j£ = the internal energy of the substance

both actual and potential,

Z = the latent heat of expansion as a thermal capacity,

and other notation as previously given, then

dH= dE^'pdv = K,dr^Ld'u; (124)

..dE^K,dr-\-{L-p)dv. (125)

But when any substance is worked in a complete cycle

the resultant internal work is zero ; hence, dE is an exact

differential, and we have, omitting the parentheses of the

partial differentials,

dK^ d
-d^=d-^^-^y^
dK, _dJL ^dp

_ /-j^ge)
' ' dv ^ dr d t

Similarly, for r and f independent variables

dK^ dE
,
dv

dp d T ' d r
(127)
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Since is an exact difEerential, therefore will its value
T

^dr + -dv (128)
T ' T

(12!t)

also be an exact difEerential ; lience,

d K^ d L
do T ~ dr' T '

dj^_dl^ L
' ' do ~ dr r

obsewing that r in the left member is not a function of i)

;

hence, d t = \n that member, and by (126)

dp _ dJI, d E, _L
drr-'d^~~dv~l' *^^^^^

97a. The Thermodynamic Function, or En-
tropy. The function q) Eankine calls the thermodynamic

function. The differential of q), or d q), is the heat ab-

sorhedfor each degree of absolide temperature 'between zero

FIG. 42.

and r, while the substance is loorlvd along any pathfrom
apioint on one adiabatic to apoint on. tin' adjacent adiabatic.

First let the path be an isothermal, as A B, Fig. 42,

whose temperature is r.

Intersect the path by an indefinite number of ordinates

having jetween them the constant distance dv, and from
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the points of intersection a, h, a', V, &c^ draw adiabatics;

and across these draw tlie isothermals K D, J F, O II, &c.,

the successive ones differing by one degree, in which case

the temperature of C D will be t — 1, oi F F, r — 2, &c.

Then will d ep, for an expansion from state a to state h, be

d (p = cdfe;

for we have previously shown (Article 40) that the heat ab-

sorbed in working from a to J isothermally will be

dJI=yahz=^T \-r^) d v
;

dll (dp\ ,

but it was shown in the same article that isothermals equi-

distant in temperature divide the heat into equal parts

;

hence, cdfe in the figure will represent one of those equal

parts
;

d H
^ ^ ^ ^ {dp

Also,

d(p=^ahdc^=c df e = ef h g, &e.

And for an expansion from state A to state a, we have

dq)=^AacC= CceE^^EegG, &c.,

and similarly for other expansions. But c e E does not

equal cdfe, &c. For the sensibly perfect gases equation

(131) becomes

d CD = — dv,

according to which d cp diminishes as v increases, H and

d V being constant ; hence

Coe E> cdfe> dc' e'f,&c.,

and for v indefinitely large the area representing d cp van-

ishes ; and for v zero, d cp will be indefinitely large. The

indefinite integral of the preceding equation is

cp ^= Ji log V -\- C,

cdfe=zdcp
^[-j-f]

d V. (131)
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and foi- V = 1, we have

cp ^ = (p, (say)

;

.
•

. ^ — cp, = i? log V.

But the value of <p„ or (
',
is unknown, and it is imprac-

ticable to find the value of ^ ; a condition, howevei', which

is of little consequence, since it is only the difference of the

thermodynamic functions that is of any importance. Al-

though this illustration is for perfect gases, vet the principle

is the same for all substances. This princif)le may be par-

tially illustrated liy our notation for indicating heat ab-

sorbed during isothermal expansion. Thus, in Fig. 42, let

//a be the heat absorbed in expanding from some unknown
state Z on the isothermal A B to state ^1, and H^^ the heat

al is( )rbed in exjjanding isothermally from the same unknown
state to B ; then

-"B -"A = A-"B,

will be the heat absorbed in expanding isothermally from

A\xi B. A similar notation will apply to expansion accord-

ing to any law, the points L, A and B being on the same

path. Similarly, whatever be the unknown initial value of

cp, we may write

The sum of all the areas C c, c f, &c., between f ^and
D 7^ represents the heat absorbed for one degree of abso-

lute temperature for an expansion from state A to state B.
From equation (131), if r, be the constant temperature of

^1 B, we have by integration

^^^J^Ea ^ ^^ _ ^^ = CDFE= A BDC, &c.

But it is customary to compute the heat absorbed from the

initial state, A, in which case lit, = 0, and we have

A^fB—— — cp^— <pf^=z ^cp^.
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The value of the thermodynamic function for B will be

cp^ = LBDM,
and for ^1, ipA = L A CM

;

..cp^-cp^= ABDC= r^-^ d V.

Thus far we have considered v as the independent vari-

able, and deduced and interpreted d <p under that hypothesis.

Xo\v we will make <p the independent variable, in which

case '/ qj will be constant. This condition will be accom-

plished by drawing the successive adiabatics A cp^, a e,h f,
itc, in such a manner that the areas A a c C\ ah d c, &c.,

shall be equal, in which case we not only have

AacO=^ Ccei:=EegG,&c.,
but also

A a c O := ah d c ^= h a' o' d ^^ cdf f , &c.,

so that if the entire space, <p^AB cp^, be divided by iso-

thermals of which the successive ones shall differ by one

degiee of temperature, and adiabatics drawn in the manner

just described, all the small areas thus fanned loill he

equal.

Since Fig. 42 is used to illustrate two modes of divi-

sion, it should be observed that the two sets of adiabatics

will not coincide, but that there will be a less number be-

tween the initial and terminal adiabatics, A q>^ and B (p„ in

the latter mode of division, if the area A a o C be the same

in both cases. When d q) is. constant, the distance between

pairs of contiguous ordinates passing through the points

A,'a,h, &c., of the intersection of successive adiabatics, with

any isothermal, A B, will be governed by the law

fj V ^ (dp'\ (d^ \

•
• ,77 ~ \ dr'J \d iJ'
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wLioh for sensibly perfect gases becomes, observing that,

for this case, t ^ t',

(lv_p' r _ p\
d v' r' ]) jj

'

hence, the increments of the volume vary inversely as thd

pressures for those vohimes, or directly as the volumes.

The increments, then, become indefinitely large as the

adiabatics approach indefinitely near the axis v and dimin-

ish indefinitely as they approach the axis Op.
Let these adiabatics be numbered in the order of the

natural numbers, beginning with any arbitrary number, as

7 for yl <Pi, then will ae be 8; hd, 9, &c., and if the

terminal one, B cp^, be 12, the numher of spaces between

A q>^ and B (p^ will be

and the area

similarly,

12 - Y = 6,

ABDC=^ X AaoC;

GDFE= 5 X AacC\
&c. &c.

Generally, if i^a be the numher of the initial adiabatic

A 9>j, counting from any arbitrary zero, q)^ of B q)„ then

ABB C={9^- <Pa). ^i a G = CBFE\
and if r^ be the numher indicating the temperatiire of the

isothermal A B, and r^ of any lower isothermal, as E F,

then will the area

A BFE = (r, - r,) {cp^ - 9>a). AacC.
Let Aac Che the unit of measurement, which may be

arbitrarily chosen, and we finally have

A B FE = (r, - T,) (<Pb - (P^) = ,r, X a'^'b, (132)

in which, if the foot-pound be the unit of heat, the tlier-

inodyrbarnic function^ a^'bj will represent the numbee of

foot-pounds of heat ahsorhed by the substance per degree
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of temperature while expanding isothermally from any

adiabatic, A (p„ to another, B <p^.

If r, = 0, ^ve have

qj^ A'B cp^ = T^{(ps~ cp^.
_

(132a)

The natural zero-adiabatic is the ordinate Op, but be-

tween that and the initial adiabatic of any problem, as A <p„

there will be an infinite number of adiabatics including

areas equal to A a c C between the isothermals B A and

D C; hence from this zero the number between A and B
would be expressed by the difEerence between two infinites,

thus,

CO CC'
,

which is indeterminate. An arbitrary zero-adiabatic may
be assigned, but it is unnecessary so to do, since it is only

the difference of the thermodynamic functions that is

sought.

The form of the expression in the second member of

equation (132) is similar to that expressing the area of

a rectangle. Thus, suppose that in measuring a rectangular

field, AB I) 0,a, point is arbitrarily assumed in the side

A B prolonged, from which the corner A is a^ feet, and B, h

feet ; thefl will the length of that side be 5 — « feet long in-

dependently of the position of the point. Similarly, if the

corner I) he x yards from a point in the line ofB D, and

B, y yards from the same point, the area of the rectangle

will be
AB D C ={h-a){x-y) ft.-yds.,

the unit area being one foot wide and one yard long. If

differences of temperature only were used the position of

the absolute zero would be of little consequence.

Equation (132«) furnishes the following definition : The

difference between the numerical 'values of the thermodynam-

ic functions corresponding to two adiabatics is equal to

the quotient of the number offootpounds of heat absorbed
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or rejecteil hi ]:)aRii'tng along any isothermal from one of
tJtese adiahatics to the other, divided iy the absolute temper-

ature corresponding to that isotliermcd.

If the path of the fluid is not an isothermal, the same

principle is applicable, but ^ will vary, and r d cp cannot be

integrated, but the difference of the thermodynamic func-

tions may be determined in some cases. For instance, in

Fig. 12, we have
d JS^ t d q) =^ K^dT]

dll
, ^^ dr

ill which, if K^ be constant, we have

q>B — (Pk = -ff"v log --
;

while the heat absorbed will be

11=ft dcp — K,{r^ — r^.

When the path is arbitrary, the differential expression for

the thermodynamic function is

Clausius calls the expression

rdJT
^ T

"the entropy of the body,"* from the Greek word rponrj,

TransfonndtiMi, since it is a measure of the rate of the

transformation of heat from the source to the body per unit

of absolute temperature of the source, in passing from one

adiabatic to another. It is identical with Eankine's thermo-

dynamicfunction.

It will be observed that the spaces A B D O, CD F E,

&:c., are divided into the same number of strips by the

adiabatics through A, «, h, &c.; hence, cps — (p^ has the

same value for the space between any pair of isothermals,

* Mechanical Ttieory of Heat, p. 103.
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whether equidistant or not. If the state a approaches ^1,

ultimately coinciding with it, the spaces A a c C, C c e JS,

&c., vanish
; in other words, if the expansion be adiabatic,

no heat will be absorbed or emitted, and for this case

d qj ^ 0;

.
•

. 9? = constant y

that is, the entropy—or the thermodynamic function—of
an adiahatio is constant, and this is the characteristic

equation of an adiahatic. For this reason we have fre-

quently used the symbol (p to mark the adiabatic.

This property may be put in contrast with a property of

an isothermal in the following manner :

That property of a substance which remains constant

throughout such changes as are represented by an isothermal

line is the temperaticre. The constant property is that of

constant heat.

That property of a substance which remains constant

throughout the changes represented by an adiabatic line is

the Thermodynamic function, ov Entropy. This constant

property is the constant rate at which heat must be ab-

sorbed by a substance per unit of absolute temperature when
the path of the fluid is from any point on an adiabatic to a

point on the adjacent one.

98. Liquid and its vapor, combined. To find

the differential expression for the heat absorbed, we first

find the heat necessary to evaporate the d x part of one

pound, that is, a weight d x. For d v volume we have

dp
T d V

;dr

and if the volume of a pound of saturated vapor be v„ then

d V
^= d X.

If IF be the pounds of fluid of which dWbe evaporated,

then if <^ ^ be the heat absorbed for an increase d r oi
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temperature of the liquid and d x the weight evaporated,

we have
WdH=WGdr + dW. II„

or dJI=OdT-\-'^-S'e

= Cdr + dx H„ (133)

where x is the fractional part of a pound of the substance

vaporized. Integrating this, observing that the conditions

of the problem require that the higher temperature t^ must

be that at which the quantity x is evaporated, we have

//=6'(r.-r,) + ..•//„. (134)

If the substance be water, -we have

C= t/= 778 foot-pounds,

II, = 1117880 - .544.6 r.

Equation (134) is sometimes used in calorimeter tests for

determining the amount of water in steam. Thiis, t(j find

the per cent of water, we have from equation (134)

100 (1 - a) = 100
^-^'+^'(^>-^')--g

. ^i35-|

(See Addenda.)

EXERCISES.

1. By condensing the steam from a boiler into a reservoir

of water it was found that 600000 foot-pounds of heat had

been imparted to one pound of the steam above the temper-

ature of the feed water ; the temperature of the feed water

being 100° F. and the steam from the boiler 320° F., how
much liquid water did the steam contain 1

Here we have
Ti - r, = 320°,

C(r, - T,) = 171160 ft.-lbs.,

fie = 692000 " ' nearly, at 330° F.,

Biim = 863160
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Which is the foot-pounds of heat that the steam should have contained,
above 100° F. if it had all been evapoi'ated, but the test showed that

H = 600000

;

. . difference = 203160

;

. mnM ^
36316000 „„.••100(1-,.)= -3^^-= 88 per cent.

2. If the feed water be 100° F. and the temperature of
the steam be 338° F. and the heat absorbed above that of

the feed water, // = 900000 foot-pounds, required the

amount of water suspended in the steam.

Here,

C (r, - r,) = 238° X 778

= 185000

fie = 683000 ft. -lbs. at 338°,

sum = 868000 " "

which not being so much as was measured, the steam must have been
superheated.

99. The specific heat of saturated vapor
is not that at constant pressure nor that at constant volume,

but it is the heat necessary to raise the temperature of one

pound of the substance one degree when the steam remains

continually at the point of saturation. Conceive the tem-

perature of the entire mass to be increased an amount d r

and the volume an amount d v ; then will the heat exist

in the three following parts :—
1°. The heat absorbed by the liquid. The liquid not

evaporated will be W — w, using the notation of the pre-

ceding article, and the heat absorbed by it will be

(W-w) Cdr.

2°. The heat absorbed by the vapor. Let S be the dy-

namic specific heat of the saturated vapor of constant

weight, then will the heat absovbed by it be

w 8dt.

3°. An additional amount, d il\ of the liquid will be

evaporated both on account of the enlargement, d v, and the
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increase of temperature, il t, and tlie amoixnt of lieat ab-

sorbed will be
d w n,.

Hence, equation (^1), becomes

TT . fZ // = ( TT - w) C d r + v: S d r -{- d w II,
;

.-. dll ^ {I - sc) Cdr + X S It + H, <^ x, (135ff)

wliicli will be tlie beat al)S(jrl )ed 1 <x one pound of the entire

substance under the conditions imposed. All the quantities

in this e(_j[uation have been determined except ;S'.

To find <S', let apound of liquid

(water, for instancei be evapij-

rated at state ^i ; A D being

the volume ^vllen the ./th part

of the pound is evaporated, neg-

lecting the volume of the liquid

;

A ^tlie volume when the entire pound is evaporated, for

which X = 1. Let state B he d r higher than ^1, B t/i

the volume when the irth part is vapor, m ?i be the arbi-

trary increment of increase of the .'th volume, and B E
the volume of a pound of the vapor for the pressure B,

then (/ X = m n -^ B E. Draw the adiabatics and join

11 D. It is proposed to find the heat absorbed along the

path /( D. In working around the area A B n I) A (or

any other cycle) the heat absorbed minus the heat emitted

in foiit pounds will equal the area of the cycle.

AVe have

AD ^ X V.

cp^ A B (p^ = C d r (heat al )sorbed),

9^3 D A cp^=- X H^ (emitted),

cp^ B m 9?, = X II, -(- X \-7j—^j J ^ (absorbed),

cp^ m n q)^ ^ d X • H, -\-
d X . d H,

dr
rf T (in which the

last term being a difference of a lower order than the pre-

ceding tei'iu will be neijlected), and we have
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9*, m n q>^ = d X 11^ (absorbed).

9J3 D n (p^ = d II (which may be absorbed or emitted
depending upon the slope of nD; we will consider it as

emitted, then if in any case it is ahsorled the algebraic sign

will change).

X IB.—^dr=AD-djp = xv-d2y = tlie areaDA B n J)

. .dn= CdT-\-x (^^ -Ml) dT + ll,. dx;
\ dr T y

(136)

• ^= G+ x {^^-L -Ik\+lLi^; (137)
dr \ dr T J dr

which is the specific heat of a fluid in which the (1 — a;th)

part is liquid and the arth part of it is vapor, the path being

arbitrary.

If the weight of vapor remain constant during the change

of temperature, then d x = 0. If the entire pound be dry

saturated vapor during the change of state, then a. = 1 and

dx ^ 0, and dH -^ dr will be the specific heat of the

vapor kept at the point of saturation throughout the change

of state ; and the resulting value will be S in equation (135a)

;

.
/Ul = S = C + 'Ui^ - -^-^

(138)
d r d T r

or in heat units

s = c + ^^ - -* (139)

substituting <S'from (138) in (135a) will give (136).

For water c = 1, h, = 1436-8 — 0-7 r

;

143(> . s
.

•
. . = 1 - -^-, (140)

which will be negative for all values of t less than 1436° F.

above absolute zero, or 976° F. above the zero of Fahren-

heit's scale. The negative value may be thus explained :

—

If saturated steam be expanded in a, non-conducting

cylinder, a portion of it will condense, giving up its

B-or an analytical solution see Sir William Thomson's Math, and Phys..

Papers, Vol. I., pp. 145-207 ; Phil. Mag. (1852), IV.; Trans. R. Soe. Ed.,

1851.
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heat to the remainder of the steam, thus maintaining the

temperature corresponding to the pressure of saturation ; and

if it be compressed in such a cylinder, heat must be abstracted

if the pressure and temperature continually correspond to

those of saturation. If heat be not aljstracted in the latter

case the steam will be superheated, and the temperature will

exceed that corresponding to tlie pressure of saturated steam.

In regard to this Rankine said :
" This conclusion (the

li(|uefaction of steam) was arrived at contemporaneously and

independently Ijy M. Clausius and myself. Its accuracy

was subsequently called in question, chiefly on the ground

of experiments which show that steam after being wire-

drawn, that is to say, by being allowed to escape through a

narrow orifice, is superheated, or at a higher temperature

than that of liquefaction at the reduced pressure. Soon after-

ward, however, Professor AVilliaui Thomson proved that

these experiments are not rele^-ant against the conclusion in

question, by showing the difference between the free ex-

jinnsioii of an elastic fluid, in which all the power due to

the expansion is expended in agitating the particles of the

fluid, and is reconverted into heat, and the expansion of the

same fluid under a pr<:!<!<ure equal to its e>wn elasticity,

when the power developed is all communicated ' to external

bodies, such, for example, as the piston of an engine" {2fisc.

S<\ Papers, p. 30tl).

Professor Clausius said :
" The conclusion that the spe-

cific heat of saturated steam is negative was drawn by Pan-

kine and by myself independently at abotit the same time

{Theory of Heat, p. 135).*

100. Adiabatics of imperfect gases. This con-

dition requires that II — 0, .-. I II = in equations (^1),

giving

* Both papers were read in February, 1850— Rankine's in Edinburgh,

and Clausius' in Berlin.
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K̂^

^ = K^dr-r(-^-^djp\

In order to integrate the first of these, K^, and~ must

be known functions of r and v. K^ not only depends upon
the volume but is not a known function of r. Even grant-

ing that its general expression is given by equation (105), its

determination requires a knowledge of the equation of the

fluid, and that can be known only empirically, and hence

would apply only for the range of the experiments upon
which the formulas were based. We have, however, found

for carbonic acid gas, and for all other fluids investi-

gated, that the specific heat at constant volume for a con-

stant state of aggregation is, without a large error, constant

within the range of ordinary experience ; and similarly for

K^ ; hence, representing these by C^ and Cp, respectively,

we have

C.<lr=^-ri^^:)d..

r^''=^-i'Tr){d^)'^^>

C„dt = (141>

in which y must be constant for the range through which the

specific heats are considered constant. Assuming equatiou

(4) as the general equation of fluids, and considering that

«o = a, = —

!

a, = — ) &c.,
V
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in which J„, &„ Tj^ are constants to be determined by experi-

ment, we have

^ t, = i? r - -° - ^ -A - &c. (Ii2)

• • i^y = ^- + ?i? + 7^^ + ^^- = -^(^^y)'

wJ- 2pv-Rr ~-^'

and (141) becomes

Cy d r ^ r 2f d v,

Cp d T — r N dj}.

Y ^'^ ^Jl dlh

(U3)

which are the differential equations to the adiabatics for

imperfect gases. From (143)j /' can be eliminated by means

of equation (142), resulting in an equation involving r and

J) only ; and r from (liS)^ by means of the same equation

;

but the resulting equations will be too complex to admit of

integration, ;ui(l therefore the general finite equation to adia-

batics is unknown.

It is customary to assume that the equation of the adia-

batics for such sujierheated vapors as are used for engi-

neering purposes, as steam, is of the same form as that for

the sensibly perfect gases, at least, within the limits used

in practice ; and hence may be represented by the equation

p -I)' = (% (144)

in which y must be found for the particular substance,

and the particular state of that substance.

To find y for steam considered as a perfect gas, we
found in Article Y8 the volume of a pound of steam at 212°

JF. under the pressure of one atmosphere to be 26.5 cubic
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feet ; hence, if it followed the gaseous law down to 32°, the
volume at the latter temperature would be

Vo = 26.50 ~ 1.366 = 19.39 cu. ft.

;

.
•

. i>o ^'o = 19.39 X 2116.2 = 41033
;

•
•

• ^^^ = 83.28.

A"p = 0.i8 X 778 = 373.44,

X^ = 373.44 - 83.28 = 290.16,

••r = §=1-3, nearly; (145)

hence, the equation of the adiabatic for steam, considered as

a sensibly perfect gas, will be

2> v''' = p, v^'-' (146)

This value of y is used for superheated steam at all tem-

peratures.

But steam as used in the steam-engine is generally more
or less saturated, for which case Bankine used ^- for the

approximate value of y, so that for such cases the equation

of the adiabatic will be

10 v>

pv'^p.vy' (147)

Kankine was the first writer to give even an approximate

equation to the adiabatic of satm-ated steam. M. G. Schmidt,

in his Theorie des Machines a Vapeur, 1861, assumed that

steam comported like a perfect gas, and so assumed / = 1.4,

a value entirely without foundation, as shown by equations

(145) and (147), and which that author later abandoned.

In 1863 Grashof reviewed the. question, and found the

mean value of y = 1.1354.

Still later. Professor Zeuner, by a series of experiments

in which the initial pressures varied from 1 to 4 atmospheres,

final pressures from |- to 2 atmospheres, and in which the

specific quantity of initial vapor (or the per cent of the fluid
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in the cjliuder that was vapor before cut-off) was 0.70, 0.80,

0.90 ; found results from which lie concluded that

:

The value of y is dependent chiefly upon the initial

specific volume of the vapor.

That it is nearly constantfor the same initial state of the

vapor for all the pressures observed froTn one to four at-

mospheres.

That the value of y may he represented hy tJie einpirieul

formula
y = 1.035 + 0.100 ,i\, (148)

in which x, is the initial specific quantity of the vapor. This

formula is limited to values of x^ between 0.7 and 1 [The-

orie Mecanique de la Chaleur (1869), (329-335). In this

formula, if a', = 0.76, that is, if 21 parts in 100 of the

fluid is initially water, it gives y = 1.111, which is the con-

stant value proj^osed by Eankine. If equation (118) can be

extended to values of ,r, much less than 0.7, it appears that

the adiabatic for saturated steam approximates more and

more nearly to the isothermal of the perfect gas in which

;/ = 1 ; and for values of a\ less than 0.50, the two curves

will nearly coincide within the ranges of expansions used in

ordinary practice. Hence the curve of adiabatic expansion

of wet saturated steam approximates to that of the equi-

lateral hyperbola.

But when we consider the complex nature of the probleni

—the temperature of the surrounding walls being modified

by the nature of the metal, its thickness, its exposure exter-

nally ; the time of the exposure internally depending upon
the piston speed ; rendering it practically impossible to realize

exact adiabatic expansion—it is too much to expect any em-

pirical formula to cover all the cases of approximate adia-

batic expansion which might arise ; and we conclude, as did

Zeuner, that the empirical formula of Eankine, equation

(147), is sufficiently exact for theoretical or practical pur-

poses when the initial steam contains but little water.
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To find the equation to the adiabaticfor saturated vapor
when liquid is present, make d H — in equation (136),

and it reduces to

- —^ = <^
[
—) (148«)

Integrating between initial and general A B
limits gives

- Clog S^ = '^^iJk^ -""JL^

= x.v.
dp

.

' d T,
X V -^•

d r

D

F

FIG. 43.

^={^^^M+Olog^-.Y^ (149)

Eor steam O becomes J. Bj means of equation (86), if

c and Ae be ordinary thermal units,

d p
d t

and (149) may be written

X h.

r

^^-5.- + c%^. (149a)

In this solution the specific volume of the liquid is neg-

lected, since the volume of both the liquid and the vapor is

essentially that of the vapor. In equation (149) x^ v, =
6, Fig. 43, will be the volume of one pound of the satu-

rated steam and water at the beginning of expansion, and

so V the volume of the steam and water at any point of the

expansion £ C, corresponding to the temperature t or

d T
pressure j>. Eliminating -3— by means of equation (82),

and then r by means of (81), the result will be the equation

of the adiabatic £ O; but the second member will be too
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complex to be of practical value ; and the approximate

equation of Rankine (117) will be used instead. An im-

portant theoretical deduction may be made from the equa-

tion in its present form ; thus, if the steam be dry at B, the

point of cut off, »! will be unity, and making « « = m, we
have with the aid of (86),

which is positive for values of r^ less than 1136° F., the

same limit that makes equation (110) negative. This shows

that the volume of .steam and water will be less than the

specific volume, y, of steam only at the temperature r. This

is due to condensation, us stated in Article 99.

Let the initial volume of steam be one rvhic foot, its

weight will be — = vr^, and let ?" = — = the varialjle ratio

of exjpansion, then will equations (loD) and (ST) reduce to

r^l^{io,JloglyJ^^, (152)

by means of which the ratio of expansion may be
_
com-

puted.

101. Condensers. A condenser consists of a vessel

kept at a comparatively low temperature by means of cold

water, for the purpose of condensing steam. In the jet con-

denser a liquid spray is forced into the -^-essel, and for the

surface condenser the cold liquid circulates aljout the vessel

or through tubes in the vessel, producing a cold surface.

When the piston of the engine is very near the 'end of

its stroke, a communication being made between the steam

end of the cylinder and the condenser through the exhaust

passage, the steam rushes into the condenser, and the greater
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part of it is suddenly condensed—the pressure falling to

two pounds per square inch, more or less. Using the sub-

script 2 to indicate the conditions at the end of the stroke,

and 3 for those in the condenser at the end of the operation,

and discarding the effect of naolecular changes under varying

pressures, thus assuming that the heat abstracted will be the

difference in the heats in the initial and terminal strokes

(which will be approximately correct), equation (148) will give,

H ^J {T^ _ ro J^x^'.JI^^ .r, V,^ , (153)

for water and for the Fahrenheit scale, and is the heat

abstracted from a pound of steam in reducing its tempera-

ture from T, to T, degrees.

The steam end of the cylinder will remain practically at

constant volume during this change, and neglecting, as be-

fore, the specific volume of the water from which the

steam is generated, and assuming that the volume of the

space within which the change of temperature takes place

is constant during the change, we have

a?, -y, = x,v,= u„ (154).

and the preceding equation becomes

11= J {T, - T,) -f «, (^' - -^) . (155)

In a continuously working engine a constant mass of

vapor remains in the condenser at the end of each stroke,

the amount condensed being equal to that exhausted, and

i7e3 may be neglected in (155), for which case we have

JI=J{T,-T,) + v.,^^ (155«)

The pressure of the vapor in the condenser determines

its temperature, and that will be the inferior limit of tem-

perature at which the steam will be worked.
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EXERCISE.

Determine, approximately, the amount of water that must

pass through the condenser of a steam-engine per pound of

steam exhausted, having given T^ = 300° F. the temperature

of the steam in the cylinder as it exhausts into the condens-

er, x^ = 0.90 the fractional part of the steam and water in

the cylinder that may be considered as pure saturated steam,

the pressure in the condenser two pounds per square inch

absolute, the water entering the condenser at 60° F., and

leaving it at 100° F.

By means of a table of the properties of saturated steam, or by eqs.

(78), (85) and (95), we find, using approximations to the larger numbers.

Temperature of the condenser for 2 lbs. per sq. in., T3 = 136

From the problem, T^ = 300

T, ~ r, = 174
;

.
•

. /(Tj - Ta) = 174 X 778 = 185400 ft.-lbs.

Total heat of the steam at 300° will be 778 X 1173 = 913600

Heat in the water above 32°, 778 X 370 = 310000
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740000
2 - 778 "xTO ~ pounds, nearly.

Equation (155a) gives 34.7 lbs. ; that is, a condensing engine running

•with steam at 53 pounds gauge pressure will require about 35 pounds
of water for the condenser for every pound of steam condensed if the

temperature of the water be raised 40 degrees. If a greater difference

of temperature of the water at arriving and leaving be allowed, it would
require less water, or if the gauge pressure be liigher, it will require more
"water for the same difference of temperature.

The numerical computation of (155) will be facilitated by
a table of the latent heat of evaporation per cubic fooE, since

103. Isodiabatic Lines. Let CN and B M, Fig. 44,

be any two isothermals cut by.an arbitrary path A D. In pass-

ing from ^ to Z> a certain amount of heat will be absorbed,

represented by the area between D A and two adiabatics

drawn from A and D respectively, as shown in Article 34.

' It is possible to find another path, C ^, in working along

which the same amount of heat will be emitted as was ab-

sorbed along A D. To prove this, conceive an indefinite

number of isothermals between C JV and B M, and at the

points of division witli A D draw adiabatics ; then find

a point near C, which call s, on the isothermal next below

C D, such that when joined with C the area included be-

tween 3 C and two adiabatics through s

and C, respectively, will equal that be-

tween the corresponding pair at D.

Proceed in this manner with the next

isothermal, and so on to ^; then will

the area between B C and the adiabatics

through B and C respectively equal the

area between A D and the adiabatics

through A and J) respectively, which was to be proved. The

lines D A and B C are called isodiahatics in reference to

each other (Rankine's Misc. 8c, Papers, p. 346 ; Steam-

Engine, p. 345).
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To find the analytical condition, conceive i ' JS^ and £ M
to be consecutive isothermals, then the heat absorbed in

passing from A to D will be, from equation (^1),

dll= C;fZr + r (^) dv,

and that emitted along C B,

dll^ G,dr^t{'iPi\ dv,;
\d rj

which, according to the conditions of the problem, are to

be equal, giving

vs'hich relation i.s independent of the specific heat of the sub-

stance. For sensibly perfect gases we have

\d rl r V

drj r^ V,'

and by substituting above and integrating, we have

V = £ v^,

or

—
- = A, a constant

;

0-^'^)

P.
'

that is, the ratio of the pressures, or of the volumes, at the

respective points lohere the successive isothermals cut tlie

curves A D cmd B C must he constant.



CHAPTER IV.

HEAT ENGINES GENEKAL PRINCIPLES.

103. Efficiency.—Heat engines, in practice, work in

cycles, and when running under uniform conditions, the suc-

cessive cycles will be identical, in which ease the total effect

will be that produced in one cycle multiplied by the nuTn-

ier of cycles. It is, therefore, important to investigate the

properties of one cycle.

The efficiency of a plant is the ratio of the work which

the plant can produce to that of the energy supplied. Thus,

if the plant consist of a furnace and engine, it is the ratio

of the work it can do to the theoretical energy of the fuel

supplied to the furnace.

The efficiency of an engine is the ratio of the work it

can do to the energy of the heat absorbed.

In case of an hydraulic machine, it is the ratio of the work

it can do to the theoretical energy of the waterfall.

The measure of the eificiency does not involve the mag-

nitude of the machine, and, hence, is only an incidental

element in proportioning the , engine. If one pound of air

when worked in a cycle will produce a given amount of

work, two pounds will produce twice as much when worked

in a similar cycle. The proportions of an engine having a

given efficiency depend upon the amount of work to be

done in on'e cycle.

104. Perfect elementary heat engine.—An
engine receiving aU its heat at one temperature and rejecting

heat at one lower temperature, must pass through its series
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of changes of pressure and volume according to Carnot's

cycle. Such an engine is reversible. Is o such engine can

be constructed or operated, but as it would give the high-

est theoretical efficiency of any engine

working between the temperatures of

the source and refrigerator, it serves as

a theoretical standard of comparison,

and is referred to as a Perfect Ele-

msntary Heat Engine.

Let J., A^ B^ B,, Fig. 45, represent

a Carnot's cycle, according to which the

engine receives all its heat at the

temperature t^, being the temperature of the isothermal

A^ A., ; and rejects heat only at the temperature t,, being

the temperature of the isothermal B, B.^. Then will the

heat absorbed in expanding from state A^ to ^, at the con-

stant temperature r, be, according to equation (^4)„ page 48,

since d r will be zero,

^. = + r.

FIG. 45.

j:^
and the heat absorbed along the adiabatic A., B., will be

= 3?)^-K,dr-{- /

and the heat rejected along the isothermal B., B^,

and along the adiabatic B, A^,

= - / ''K^dr —
«i

&:)'-'

and the sum of these will give the heat transmuted into ex-

ternal work, since the cycle is complete ; hence,
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i?.-7/,=(,.-..)^'-(|^).,. (158)

The efficiency, according to the preceding article, will be

Since equations (J.) are general, and applicable to all

substances, the result must be equally general ; hence, the

efficiency of the jperfect elementary engine depends only

upon the highest and lowest temperatures between vjhich

it is iDorlied, and is independent of the nature of the

worhing substance.

If iron, or any other solid, could be worked between the

temperatures r, and r^, according to Carnot's cycle, it would

be just as efficient as if the substance were the most perfect

gas. The range of volumes through which solids expand

and contract is small, so that the work done in a cycle

would be comparatively small, and" the changes of temper-

ature are so slow as to preclude the use of such substances

in the construction^of heat engines. But this fact does not

affect the efficiency of the cycle.

The highest temperature at which the engine works can-

not exceed that of the source, for it is an axiom that heat

cam/not of itself flow from a hot body to one still hotter,

a principle stated by Clausius {Theory of Heat, p. 78).

Neither can it be worked at a lower temperature than

that of the refrigerator, for it is held as an axiom that a

heat engine cannot be worhed at a lower temperature than

that of the coldest of surrounding bodies, a principle stated

by Thomson {Math, and Phys. Papers, p. 181). These

axioms are the same in substance, and originally were

stated independently by the respective authors.

If any of the heat absorbed is at a lower temperature

than r„ while all is rejected at r^, the efficiency will be less
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than if it were all absorbed at the higher temperature.. To

show this, let r^ be the constant temperature of the second

source, then we would have

^.

B\

d V,

d V,

and the efficiency would be

which is less than the value of equation (159) so long as

^jis less than R^. A reversible engine has the highest

efficiency for the heat utilized, and the

perfect elementary heat engine has the

higliest efficiency of any engine work-

ing between the same limits of temper-

ature.

The principle of efficiency is applied

in the same manner, whatever be the

path of the fluid. Thus, if the cycle be

Aa B d A, Fig. 46, A M and B ^V

adiabatics indefinitely extended, then, according to Article

34, we have

H, = JSLAaBN,

E, = MAdBN;
MAaBN- MAdBN

O//^



A
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It might be iirged that some work would be expended

in forcing the mass of steam into and out of the cyhnder,

thereby producing less external work than the same heat

would do in case the changes were produced with a con-

stant mass of fluid in the engine. In regard to this pointy

it is sufficient to observe that, if the argument be valid,

the energy so absorbed is too insignificant compared with

the heat energy of the fluid, to be considered.

Actual engines do not produce the indicator diagrams

here assumed, and, hence, must be made the subject of

special investigation.

EXERCISES.

1. In an ideal elementary engine working one pound of

air, if the lowest pressure be that of one atmosphere,

2116.2 lbs. per square foot at B^, Fig. 45, the absolute

temperature of the refrigerator r^ = 550° {T, ^ 89.34° F.),

that of the source t, = 950° {T, = 489.34° F.), and the

volume swept through by the piston during each single

stroke 12 cubic feet; find the greatest and least volumes of

the air in the cylinder, the power developed in one end of

the cylinder during one cycle—or double stroke of the

piston—the heat absorbed, and the efficiency.

To find the largest volume, ?;„ we have, equation (3),

^ _ 53.21 r, ^ 53.21 X j50 ^ ^3^3 ^^^_ f,_

J9, 2116.2

To find J), and 'i\, the adiabatic A, B^, equation (41),

gives

7

y - 1 3.463

2>^ =i'.
(J)

= 2116.2 (^) = 14045 lbs.

2.463

^' = "*
(f

)

= 13.83 (^) = 3.60 cu. ft.
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To find the least volume, v^, the problem gives

V, - -u, = 12

;

. . ti, = 13.83 - 12 = 1.83 cu. ft.

And the isothermal A, A^ gives, equation (3),

^, V, = 53.21 X 950 = 50550 ft.-lbs.

. .2\ — 27630 lbs. per sq. ft.

:= 191.9 lbs. per sq. in.

Similarly,

-^' = ^ = ^ = -' = 1.97

;

. .p, — 4162 lbs.

-y, = 7.03 cu. ft.

The heat absorbed will be, equation (36),

_p, V, log -= = 34207 ft.-lbs.

The heat rejected will be

Yq
X 34207 = 19804 ft.-lbs.

;

and, hence, the work done in one cycle will be

34208 — 19804 = 14404 foot-pounds,

independent of the time.

The efficiency will be

14404 _
34208 ~ ^

'

according to which more than half the energy of the heat

is rejected by the engine. The ratio of the greatest to

the least volumes is

-* = 7i, nearly,

and of pressures,

-P-i = 13.
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2. In the preceding exercise, what must be tlie area of

the piston in order to operate one pound of air between

tlie limits assigned, the stroke of the p)iston being six

feet.

3. In Exercise 1, if the engine make 20 revohitions per

minute, what will be the horse-power developed on one side

of the piston *

4. If, in Exercise 1, two pounds of air had been used,

and the lowest j^ressure that of one atmosphere, the tem-

peratures being the same as those given in the exercise,

M'liat would have been the greatest and least volumes of air,

the volume swept througli by the jjiston l)uiiig 24 cu. ft.?

Would the efficiency be the same 'i Would the work have

been the same fijr the same volume swept through by the

pisti^n ?

5. If in an chnnentary air engine the highest jDressure be

150 pounds per square inch, the highest temperature 450° F.,

the lowest pressure 14.7 pounds per square inch, and lowest

temperature 60° F., what will be the volume swept through

by the piston per pound per stroke?

105. Regenerators consist of a chamber well filled

with thin plates of metal so arranged as to present a large

surface to the fluid and ofEer as little resistance to its

passage as possiljle. The fluid, . after escaping from the

engine by passing through this chamber to the refrigerator,

gives up a porticju of its heat tci the metal plates, the re-

frigerate ir final!}' al)sorbing the heat which is permanently

rejected ; after which, by passing back through the chamber

and being at a lower temperature than during its former

passage, it absorbs heat from the plates, thus requiring a less

amount from the source in order to raise it to the required

temperature. During the flow of the air from the cylinder

the plates act as a refrigerator, by abstracting heat from the

gas ; but during the return of the gas they act in the oppo

site sense, and hence become regenerators.
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If the temperature changed by insensible degrees in the

regenerator, the efficiency would be unafEected, but such not

being the case, they cause a loss of 5 or 10 per cent, even

when well proportioned. Their great advantage consists in

reducing the size of the cylinder, as will appear in the fol-

lowing exercise.

Assume that heat is absorbed at one temperature and re-

jected at another, as in the preceding case, but that the

change of pressure from one isothermal

to the other is effected at constant volume

by passing the air through a regenerator,

in which case the indicator diagram will

be represented by Fig. 48. If r^ be the

temperature of tlie isothermal B C, r^ of

A D, Cy the speciiic heat at constant vol-

ume, the heat absorbed in passing from A ''^*^- *^-

to B to C, if the operation were reversible, would be, equa-

tion {B)^, page 50,

//, ^ 6Ur. -rO + i^r. ^ '-^,

heat rejected,

-H, = - C\ (r, - r,) - 7? r,
"^

^-^
;

Jo. V

II 11^ = i? (r, - r,)
d V = ^(say),

which is the meGhcmical energy expended. But in deter-

mining the efficiency, the loss of heat in passing to and

fro through the regenerator must be added to H.^ ; since

that amount of heat must be drawn from the source and

is not accounted for in the preceding value of H^, and, rep»

resenting this by the expression
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in which «, is a fraction, C, — 0.169 X 778 = 131, we have

for

u
the etfic(encu = -rj—;

—

zrx\ / ,>

in which n will be ^ij, or yV; *^r whatever fraction repre-

sents the lieat lost by the regenerator.

EXERCISE.

In an air engine with a regenerator producing changes at

constant volume, let p^. v^; p^ v^ ; r^, t„ be the same as in

the first of the preceding exercises ; determine the ratio of

the pressures and volumes.

Considering the engine as perfect, the work done will

be the same as in Exercise 1, page 164, for the expansion

during the absorption of heat must be the same.

We will have,

p^ = 27H30,
J),
= 14045

;

v^ = 1.83 = v„ V, = 3.6. = v„ Fig. 48

;

then

- . ^^ 11
i?4 =i^. - =

jg X 14045 = 8132 lbs.,

J),
=p^-' =

]l X 27630 = 15996 lbs.

;

1'

V,

19

1.97,

^' = 3.40.

Comparing these results with the exercise referred to,

it appears that the greatest volume in that case was nearly

4 times the greatest volume in this ; hence, the volume of

the cylinder with the regenerator, under the conditions

imposed, need be only about one-fourth as large as withoiit
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106. Air engines have been made in which the

changes of temperature have been effected at nearly con-

stant pressure, and others in which the change takes place

at nearly constant volume. These conditions require special

forms of mechanism, which will be considered further on

;

but the work performed in a cycle may be computed from

the indicator card, as in Articles 104 and 105.

107. Heat engines, whether of air, or steam, or

other vapor, are assumed to transform a certain amount of

heat energy into work independent of the mechanism in-

volved. That is, aside from the friction of the engine

wastes due to leaks and clearance, it is immaterial whether

the engine be single-acting, double-acting, reciprocating, os-

cillating, rotary, disk, trunk, compound, or any other of the

many forms of engines used ; the work done will be the same

in all the engines by the same fluid worked between the

same limits of temperature.

Therefore, considering the engine as a heat engine only,

we have only to consider the thermal changes produced in

the working fluid during a complete cycle, invoh-ing the tem-

perature of the feed water, and the initial and final tem-

peratiires in the cylinder. But as a piece of mechanism, the

several forms have their mechanical advantages, which must

be considered in the light of practical mechanism. All the

details of the engine, such as the valve mechanism, the size

of the bearings, the strength of the parts, compactness, etc.,

belong to constructive mechanism, and are treated of in

works which consider these engines as machines.

In order to analyze a heat engine it is necessary to know
the law according to which it receives and rejects heat ; and

since, in actual engines, all these laws are not known, as-

sumptions in regard to them are made which are supposed

to be approximately correct.

108. Steam-engine.—Steam in the cyhnder works

under such a variety of conditions that a complete analysis
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requires the consideration of several hypotheses. Thus,

steam may be snperlieated, in which case it will expand,

approximately, like a perfect gas ; or it may be satui-ated,

in which case, by expanding without transmission of heat, it

may remain constantly at the point of saturation ; or by means

of a steam jacket, the steam, by being constantly suj^plied

with heat, may be considered as dry saturated steam. The

curve of expansion may be too complex to be analyzed

with great exactness. When steam enters the cylinder it may,

and generally will, be hotter than the walls of the cylinder,

and give up heat to the walls, thus reducing the pressure,

even if it does not actually condense any of the steam ; and

as the steam becomes cooler by expansion, the walls of the

cylinder will give up heat to the steam, thus raising its

pressure at the latter part of the stroke. The water in the

cylinder, if any, may also be re-evaporated. In either case

the restored heat taking place near the end of the stroke

does not compensate for the loss at the beginning, for the

former can act through only a small part of the stroke, and

as soon as the exhaust opens the restored heat escapes with

the steam and is lost. Water in the cylinder may result

from condensation of the saturated steam, as shown in

Article 99, or it may be carried over from the boiler with

the steam in the form of very small drops, as a spray. If

tlie cylinder be jacketed the walls will be kept at a more

nearly uniform tempei'ature, and thus condensation in the

cylinder be prevented, which is a great gain in the working

i.>f the engine. Condensation in the steam jacket does not

affect the working of the engine. The refinements result-

ing from these numerous conditions are beyond the reach of

analysis, because the laws governing their actions are un-

knowTi. This fact, however, is not seriously prejudicial to

analysis, for the hj'potheses assumed agree so nearly with

actual cases as to give results, not only approximately cor-

rect, but so nearly correct as to be reliable in ordinary
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practice. If, however, it becomes necessary to investigate

these refinements, or so-called exceptional conditions, the

problem of the steam-engine in this respect ceases to be

analijtical, and is essentially empiri<xd. It must not be in-

ferred that theory, even in this case, is useless, or is to be
ignored, for it is only by tlicvry that exceptions are known.

Theory gives the first grand approximation to the truth,

^vhen, by comparing the results with actual cases, the de-

fects in the theory become known, and thus, in turn, furnish

the means of correcting or amending the original theory
;

after which a second and nearer approximation may be made,

and so on, bringing the results of theory and of practice more
nearly to an agreement. A consideration of these many
conditions demands a special treatise ; we will consider only

a few special cases.

109. Ideal steam diagram.—Let A B GEF be

an ideal diagram of a steam-engine,AB
being the steam line at constant tem-

perature and pressure, BG the expan-

sion line, G E the fall in pressure at the

end of the stroke, due to the sudden ^

opening of the exhaust passage, E 7''the F

back pressure line, H the line of ab- Q ^
solute zero of pressures ; then OA= GB '^^- 49-

will be the total forward pressure up

to the point of cut-off, G II the forward pressure at the

end of the stroke, li E ^^ ^the back pressure.

The admission line A B is an isothermal of constant

pressure, and in this respect resembles the case described

in Articles 7-i and 77, in which a liquid was evaporated

under constant pressure at a constant temperature. In that

case more and more liquid was evaporated, producing more

and more steam, as the volume increased, while here more

and more steam enters from the source as the volume in-

creases. We might proceed, as with the perfect engine, to

C
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find the lieat absorbed and rejected throughout the cycle,

and take the sum ; but it is custonuiry to find the results

directly in terms of pressure and \'olume.

The Ideal diagram is one freed from all irregular and dis-

turbing causes, such as late opening for admission, initial

expansion, wire drawing at the point of cut-off, slow closing

of the port, irregularities in the expansion line B C, too

early opening of the exhaust near 0, a want of sufficient

opening at E, and of compression near F ; but such a dia-

gram represents the greater part of the work done, and by

applying theory to it a result approximately correct will be

obtained.

1 1 0. Isothermal expansion.—Assume that the

steam is superheated and the cylinder steam jacketed, then

will the expansion line be nearly isothermal. Assume it to

be exactly sr), and let

J?,
= A ^ G B, Fig. 49, be the initial pressure,

_^2 = B[ C\ the terminal pressure,

p^=^ H E. the back pressure,

j9 = any ordinate io B L\

0^ = G = the volume occupied by one pound of

steam in the cylinder up to the point of cut-ofE,

v^ =z II, the volume of one pound at full stroke,

r =
^)J

-^ -y, = ratio of expansion,

1) = any volume between G and H,

jp^ = the mean absolute pressure, being such an ideal

pressure as would if exerted throughout the

stroke produce the same work as that of the

variable pressures,

p^ = the mean effective pressure.

The equation oi B G will be, page 103,

pv =y>,v', = pr^ ^ J\T, (162)
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Saturated steam after being generated in a boiler is con-

ceived to be superheated in a separate vessel.

We have

area G B C 11 p dv = 2)^v^ log^ (163)

and

also,

AB G II^X),'o,{\^ log, r)
;

2>,.v,^ OABCE;
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Through LAMB and C draw adiabaties, then H^ =
q)^ L A (p^ = G {T^ — T^ = the heat absorbed by the

liquid before boiling = 778 (T, — T^) ; IT^ = 11^= (p^

A M cp, = 1117830 - 644.6 r^, (Eq. [78] ); 11,= <p,MB
cp^ = ^ {T^ — Tj) = the heat absorbed in producing su-

perheating = 0.48 X 778 {T, - T,) = 373 T, - 373 T, —
171953 ; TI^ ^ cp^ JB C <p^ ^^ the lat<;nt Jieat of expansion,

which equals the work done during isothermal expansion of

a gas considered perfect = j^i '^i
log /', Equations (36),

(163), which by (164) becomes

p^v, (^11^ -l\.

From equation (162)

373 r^ = 4rJ-i'i '^1 nearly.

.-. H = //. + //, + 7/3 + II, = <p, FA B Ccp,,

= 694816-4 -\-p, v/^:^ + 3^ ) - 140 r, - 778 T,. (171)

EXERCISE.

1. Let p), = 100 X 144 = 14400, T, = 450° r = 10,

p, = 2iX 144 = 360 lbs. ; T, = 110°.

Find T, = 327.6=,

r, = 910.66°,

^, V, = 76922
;

y, = 5.27

;

rv, = 52.7;

Pn, = 4766

;

j>, = 4396
;

U = 231757;

which is the effective work done by one pound of the steam

against the piston ; then, (171),

H = 1132730 ft.-lbs.,

which is the heat expended per pound of steam in the

cylinder.
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Pressiire equvoaletit to that heat—

»t = — = 21364 lbs.,

wHcli is sticL. an ideal pressure that if it worked agamst the

piston while it swept through the same volume as when

driven by the one pound of steam, it would do an amount

of work equal to the entire energy of the heat expended.

Efficiency of the steam—
U -P^ -P, _ 231517 _ 4756 - 360 _
H ^r~~lTl3350-"^136r~-^-^^^-

^^^^""^

111. Adiabatic expansion of dry saturated steam.

First, assume the approximate law

p V — p^v^ = constant. (172)

The work during expansion will be, Fig. 49,

OB GB = fj'pdv=p,v,(^9-9r-i\ (173)

and the total work per pound,

OABCH ^p,v, (iQ - 9 /-A

Terminal pressure, equation (172)

—

^' = ^- (174)

Meam, total forward pressure—
AB OH /lO 9 \ ,^^..

Mean effective pressure—
/lO 9 \

Work done per pound of steam—
^ =i?e^=i?,'y,(lO-9r'^) — p.i),. (177)



176 HEAT ENGINES. [111.]

Work doneper cubic foot qf steain adm'itted—

^ = rx>. = i',
(lO - 9 /--i) - rp,. (ITSj

Heat expended per pjound of Htecuii admitted—

•

Tins will be the heat supplied to the water per pound

above the temperature of the feed water ^Vw.s the latent heat

of evaporation, and is given by equation (93), which in

the present notation becomes

H = J(r.-rO + //e..

Eq. (78), =77S(r,-rO+867003-5i4.6r,. (179)

Heat expended per cuhlc foot of steam admitted

—

" 77s ... (r. - rj + L, (Art. 78). (ISO)

Efficiency of the steam—
U

(181)H ^ '

EXERCISE.

Let p, = 14400 lbs. ; r = 10 ;^, = 360 lbs. ; feed water,

110° F., as in the preceding exercise.

Then, omitting fractions of temperature after r„

T„ equation (80), = 788. 26°, using^.; .-. T, = 327.60°.

p«
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~ = 0.204. (181a)

113. Adiabatic expansion of saturated steam
according to the theoretical law. If the steam iiiitially have

a;, part of moisture, use equation (k) or (m), p. 192. If

initially dry, Fig. 49 and equations (150) and (86) give

ABCD= r^ udp=
I

'( Jlog, ^ -^ ^\ d r

= J [r, - r, (l + %e 7;)] + -^^ Kr (182)

For the work per potmd of steam working full cycle,

TJ^ A B CEF= J

r.

-^—-'H^,-\-{p,-p,)u,. (183)

The heat expended per pound of steam admitted to the

cylinder will be the same as in the preceding Article, or

H = /(r. -r,) + ^e. (184)

The efficiency will be

g- (185)

[Messrs. Gantt and Maury determined the Efficiency of Fluid Vapor

Engines according to tliis hypothesis—using these equations—for Water,

Alcohol, Ether, Bisulphide of Carbon and Chloroform {T/iesis, Ste-

vens Institute of Technology, 1884 ; Van Noatrand's Engin^ring Mag-
azine, 1884 (2), pp. 413-432)].

EXERCISE.

Let^, = 14400 lbs.
; p, = 360 lbs. ; T, = 110° F., as in

the preceding exercise, and p, = 1115 lbs., as found in that

exercise.
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If tlie ratio of expansion were given, j9j could be found

onl\' by a tedious approximation ; therefore, we have as-

signed the final pressure.

have.
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Mean total forward jyi'essure—
^V = 4170 + 360 = 4530 lbs.

It will be seen that there is little or no advantage in using

the exact, but more complex, formulas of this Article over

the approximate ones of the preceding Article.

The efficiencies found in the three preceding cases are :

—

For superheated steam, expanding isotliermally (ITl'O 0.205

For saturated steam, expanding adiabatioally, approximate law

(181a) 0.204
" " " " " theoretical law

(185ffi) 0.200

The effect on the efficiency by superheating is too small

to be of practical importance. As this fact appears to

be contrary to the popular opinion, it is well to observe

that the superheated steam in Article 109 is not used in the

most economical manner ; for a much larger amount of heat

is thrown away at the end of the stroke than in the example

of saturated steam, so that if it were utilized in heating

feed water, or worked in another engine, or used for any

other useful purpose, the efficiency of the plant would be in-

creased. Or if it had been expanded down to that of the

terminal pressure of the other cases, p^ = 1115 lbs., it

would have shown a greater efficiency ; but to accomplish

this result the ratio of expansion must be greater, other

data being the same. These considerations have reference

to the efficiency of the fluid only, but in considering the

efficiency of the plant, the size and cost of the engine enter

as elements of the problem. Thus, to do the respective

works, 231757 and 174931, deduced in two of the preceding

exercises, with two engines making the same number of

revolutions in the' same time, according to the conditions

assumed, the volume of the cylinder of the one supplied

with superheated steam must be larger than that supplied

with saturated steam in the ratio of the volume of a pound
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of superheated steam at admission to that per pound of sat-

urated steam, or, as

If. =1.20;

but the ratio of the works done will be

231757 _
174931 - -^•^^'

hence, per cubic foot of the cylinder capacities the former

engine will do

—— = 1.10 times
1.20

the work of the latter.

The engine using isothermal expansion and doing 231757

foot-pounds of work per pound of steam, if it uses the

pound per minute, will do

?^il^^- = 7.02
33000

horse-powers per pound of steam ; and, per liour, it will

require

19800(10

231757
= 8.51 pounds

per horse-power. The engine which expands adiabatically,

doing 174931 foot-pounds of work, would require

1980000 ,, „., ,——---— = 11.32 pounds
174931 ^

per horse-power per hour. These results are for perfect con-
,

ditions, no allowance having been made for wastes, clearance,

or initial condensation of steam. It is a very good plant that

does not consume more than seventeen pounds of feed

water per indicated horse-power per hour, although re-

liable records of some good tests show less than this amount.

Some multiple expansion engines have been reported as
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consmning about thirteen pounds, as determined from the

indicator card, but that mode of determining the weight of

steam does not allow for the condensation of steam. The

only reliable way is ''o weigh the water used. Thirty to

forty pounds is more common in practice.

The heat of combustion of a pound of pure carbon is 14500

B.T.U., and if it could all be utilized for the purpose it would

evaporate 14500 -~- 966 = 15 pounds of water at and from

212° ; hence, if the feed water be at 110° F. and boiling

point at 327° F., as in the two preceding exercises, it would,

according to the table on page 112, evaporate 15 -4- 1.14 =
13.15 pounds ; and to develop one I.H.P. per hour it would

reqiiire

11.32 ^ 13.15 = 0.861 pounds

of coal. This does not allow for waste in producing steam.

If the efficiency of the furnace be O.TO, it would require

0.861 ^ O.YO = 1.31 pounds of coal.

Case of no expansion. In many simple direct-act-

ing steam pumps, the full pressure of steam is maintained

throughout the stroke. For this case r = 1 in equation

(177), and the indicated work will be

TT={p.-p,)v,, (1855)

when V, is the volume of a pound of the vapor at the pres-

sure^,. The work done during the forward pressure will

be the external work'performed during evaporation at the

pressure^,, and is sometimes called the external latent heat of

vaporization. That part of the apparent latent heat which

performs disgregation work will be lost at the exhaust.

The volume of the cylinder, the piston making n single

strokes per minute for m horse-powers, will be

^ 330001;, m J. ,^„„ ,

V = ~— cu. ft. (185c)
n (J
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Water consumed ]3er indicated horse-power per hour,

TF=?^>1^ pounds. (1S.5./)

EXERCISES.

1. In a direct-acting steam pump, let the uniform gauge

pressure be 70 pounds and back pressure 16 pounds, feed water

60° F. ; required the work done per pound of steam, effi-

ciency, volume of the cylinder for one horse-power if there

be 50 double strokes per minute, and the water consumed.

^_ = 70 -f 14.7 ^ 81:.7,

-I, = 775.6, Eq. (81) ; or, T, = 315° F.

;

V, = 5.14, Eq. (86) or (89)

;

IT ^ 6S.7 X 141 X 5.14 = 50849 ft. lbs.,Eq. (1855)',

ir = 38.9 lbs. per hour, Eq. (lS5fZ)

;

V = aV cu. ft. = 52.4 cu. in., Eq. (ISbc)
;

H = 893844, Eq. (179)

;

^=0.057, Eq. (185),

or, the theoretical efiiciency of the fluid will be about 5.7

per cent.

In actual practice the loss from condensation and radi-

ation in these pumps is considerable, and the clearance is

not only relatively large but somewhat irregular— especially

in the smaller sizes, and it is found that the water consump-

tion ranges from 75 to 125 pounds per horse-power per

hour, with the pu8sil)ility of being outside these limits in

either direction. The mean average efficiencv for the ffi//<I

admitted (steam and water) will be for small pumps of this

class aboyt
-J-

of the theoretical, or,

JE= 0.019, approximately,

and, U = 17000 ft. lbs., approximately,

also, W= 120 lbs. of water per horse-power per hour.
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But the size of the cylinder need not be correspondingly

increased, for the condensed steam will occupy but little

volume.

The efficiency of the furnace, boiler and connections may
be taken at 50 per cent, giving for the entire plant

E' = 0.0095,

or about 1 per cent of the theoretical heat of the fuel burned

in the furnace.

It has been found by actual measurements that th9 average

duty (or the work which 100 pounds of coal can do) in

direct-acting pumps feeding 75 to 100 horse-power boilers,

with coal of good quality, may, in the absence of direct

experiment, be taken as lOOOOOOO foot-pounds. This is

100000 foot-pounds per pound of coal, or 100000 h- 778 =
128.5 thermal units, which is about y^-j- of the heat of com-

bustion of the average of commerical coal. The ef&ciency

of such a plant, then, is actually about 1 per cent of the heat

in coal of good quality. Such a plant will require from

9 to 15 pounds of coal per indicated horse-power per

hour.

2. In the preceding Exercise, if the stroke be five inches,

what will be the diameter of the cylinder ?

3. If, in a direct-acting steam pump, the gauge pressure

be 100 pounds, back pressure 16 pounds, feed water 90° F.,

find the efficiency of the fluid, and compare the result with

that in Exercise 1.

4. If, in Exercise 3, the gauge pressure be 40 pounds,

required the efficiency of the fluid.

5. Explain the several causes of the loss of the 99 per

cent (more or less)' of the heat of combustion as found in

these Exercises. What effect has the temperature of the

feed water upon the efficiency ?
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113a. General equations of vapor engines.
—Consider only one pound of fluid in the cylinder, and let

B Che the ciirve of saturation,

and E F any adiabatic in which

there is only a fraction of the

pound of vapor throughout the

expansion.

A B, Fig. 50tf., will represent

the volume of a pound of vapor at
PIG. 50«. '- ^ I

the absolute pressure O A = jy,

and absolute temperature t,, G /the volume at the absolute

temperature r and pressure G = p.

Let a?, = A E -=:- A B = the fractional part of the fluid at

the state Ethat is vaporized,

V, = A B, ,i\ V, — A E,

x= GB ^ GI,
V ^ G I, volume corresponding to the pressure G,

X V ^ G //,

f, the specific heat of the liquid,

Ae, the latent heat of evaporation at temperature r in ordi-

nary heat units, which will be

^ej at temperature r,.

Then will the equation of the adiabatic E F be, Eqs.

(86) and (149),

GH=xv = [c Jog, ^,+ -'-^^) ^, («)

'vhich may be put under the more symmetrical form

xh^
,

, T X, A„,
,

, T,
. \- locj^— =z + c log^—^ = a constant, {h)

in which r„ is any arbitrary temperature. Since the vapor

is to be continually saturated, this equation is limited to the

conditions that a?, must not be negative, and must be less

than iinity, and at the same time x, for any amount of

expansion, must be less than unity.
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Let subscript , be used for the terminal state F, then

?A? + c log. A =^ + c log.^.-

The difference between tlie initial and terminal weights

of vapor will be

x,-x, = x,- [c log,^ + ''^) T^) (c)

and this may be negative, zero, or positive. We will

designate those vapors whose specifie heats are negative as

" steam-like vapors," and those which are positive as " ether-

like vapors," steam and ether being typical of their respec-

tive classes.

If the fluid be water, then c = 1, and let x^ = 0.436 at

T = 800° F. (absolute), h. = 1436.8 - 0.7 t. Then equa-

tion (a) gives

for r = 900*, x = 0.404, r = 600, x = 0.450,

r = 800°, X = 0.436, r = 500, x = 0.436,

T = Y00°, X = 0.450, T = 400, ;» = 0.40Y,

r = 650, jB = 0.453, t = 200, x = 0.277
;

from which it appears that steam increased with the expan-

sion as the temperature fell from 900° to 650°, or from 340°

to 190° on the Fahrenheit scale ; and after that it decreased

continually with the temperature. This change of the

weight of steam can take place only by the evaporation of

water initially in the presence of the vapor, and by condensa-

tion later in the expansion. The converse is also true, that

if, in the initial state, only a fraction of the fluid be vapor,

the liquid may at first be evaporated by adiabatic compres-

sion, but it may reach a state beyond which it will he con-

densed hy adiabatic compression. Thus, in the example

above given, if at 600° F. (absolute) 45 per cent, of the fluid

be vapor, it will increase to 45.3 per cent., after which it

wiU condense indefinitely with adiabatic compression.
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If at 650° tliere be 45.3 per cent, of steam, the vapor will

condense both by adiabatic compression and expansion from

that state.

Tliis may be illustrated Ijy the annexed diagram, Fig.

50^, in which the relations are

greatly exaggerated. Let D E F
represent successive states of con-

stant steam M'eight, and A B C wn.

adiabatic of part liquid and vapor.

These curves may intersect each

other at two points a. and h ; above

a the -weight of vajjor in the adi-

--C batic will be less than at a, and
FIG. 50J. ^, 1. 1 . .m T 1 T ^

tJie adiabatic will lie to the left

oi I) E F, and below I it will lie below the curve of con-

stant steam weight. The adiabatic is less curved than tlie

curve of constant steam weight.

To find the minhnum, ireitjht of vapor such tJiat^ hy con-

tinued compression of steain-ll'ke vajmr, the liquixl will ie

continually evaporated.

In equation (5) first find the value of r that will make the

left member a minimum when a; = 1. Xeglecting all

powers of r above the first in the latent heat of evaporation,

Eegnault^s experiments give

r T

where a and h are constants depending upon the particular

fluid. Using this value, it will be found that the required

function is a minimum for

a

c

that is, r will be near the " temperature of inversion,"

which, in the case of steam, is about 14-36° F. (absolute), or

976° F. actual. Since the law of the latent heat of evapo-
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ration here given is not exact, end, even if it were, -Reg-

niuilt's experiments would not warrant the extension to

such high temperatures, we will discard fractions, and

treat the entire number, 1436, as if it were exact. Since

the adiabatic law is not applicable above this state, the

maximum condensation by adiabatic expansion will be

found by beginning at this state and expanding down to

the required temperature. In equation (c), letting a?, = 1,

f, = 1436, /u, = 1436-0.7 t, e = 1, then
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the curve of saturation passes through the state of the tem-

perature of inversion.

According to the preceding table, at r = 672°, if 72^ per

cent, is steam, compression will produce evaporation up to

1436°. If at T = 672° we assume 70 per cent, of steam, we

find the following results :

T = 672,
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temperature of Y90° F. ; another is tangent to tlie curve of

50 per cent, of steam at 240° F. ; and the fourth tangent to

the curve of 45.3 per cent, of steam at 190° F. absolute.

In order to show the properties on a small scale, it is

necessary to exaggerate tlie relations, thus distorting what

would be the correct figure.

An examination of ether will show that the results here

deduced for steam are not necessarily applicable to other

vapors. In " ethei'-like vapors " the temperature of inver-

sion is below ordinary temperatures ; and for such if «, = 1,

condensation will result from adiabatic compression for

temperatures above that of inversion. Thus, for ether,

omitting terms above the first power of r, we have from

Kegnault's experiments,

Ae = 93.3214 + 0.3870 t.

c = 0.517.

Hence, from equation. (139), page 147,

93 32
s = 0.517 = specific heat of the saturated vapor.

If s = 0, then r = 180° (absolute), or — 280° F. ; and

this is the temperature of inversion. Assuming any tem-

perature above this, as r^ = 520°, and x^ — 1 in equation

(a), then

0.5664 - 2.3026 %,~
^^

93.8214
,

^„r~
h 0.3870

From this it -appears that x will diminish as r increases,

and finally become zero for r = 915°, nearly.

There appears to be no proportion of vapor to liquid such

that they will be the same at two different states on an adia-

batic, as has been found for steam. It may be shown that

for any value of £»i,
x will decrease as r increases, showing
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that I'eevaporation does not take place during adiabatic com-

pression.

If the fluid be initially all liquid, then a?, = (K which in

equation (a) gives for the equation of A J, Fig. 50a,

or,

X = ^ log^ ^, (/)

This expression may in some cases have a maximum,
from which it appears that if the fluid be initially all liquid,

under adiabatic expansion the liquid may be evaporated

until the temperature is so reduced as to produce the maxi-

mum weight of vapor, after which the vapor will condense.

Thus, for steam c = 1, and if r^ == 800, 3: will be a maxi-

mum for T = ,350° (absolute), nearly, at which state x ^^'ill

be 0.24 ; or 2i per cent, of the liquid will have become

vapor. At 300°, x = 0.239 ; for r = 200°, x = 0.21. All

these latter temperatures are, however, so much below any

used in practice, that it is not probable that the formula for

evaporation will be applicable ; and we may assert, that,

within practical limits, steam will be continually generated

under adiabatic expansion, if in the initial state the fluid be

entirely water.

With ether, if initially liquid, evaporation will increase

witli adiabatic expansion until it all becomes saturated vapor,

after which it will superheat
;
provided that the liquid be-

comes vapor before the temperature of inversion is reached.

The numerical values of these results will be modified in

some cases considerably—if higher powers of the temper-

ature be included in the analysis.

The ratio of expansion will be

DF x„v, / >
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If, at the cut-off, B, the fluid be all vapor, as it may be
for steam-like vapors, then a;, = 1, and reducing by means
of equation (a) we have

^ = (c%e^ + —)^--' (A)

which is the equivalent of equation (152), page 154.

For ether-like vapors, if the final state is that of vapor
only, then x^ = 1, and substituting «, from equation (a)

gives

r =
— - c log,—] r, V,

(^)

The weight of ether vapor at £, the beginning of expan-

sion, in order that the pound of fluid shall be all vapor at

6', the end of the expansion, will be x^ in equation (a) when
X = 1, or

..={^-ciog,^y^- u)

In practice, the adiabatic expansion of steam-like vapors

may be approximately realized, but there is well-nigh an

insuperable difiiculty in securing the adiabatic expansion of

saturated ether-like vapors ; for, in the former case, if steam

be in the state of saturation at the instant of the cut-off, it

will continue to be saturated during expansion ; bi^t, with

the latter, if no ether liquid be present at the instant of cut-

off, the vapor will superheat during expansion, and instead

of realizing equation (a), the curve of expansion will be of

the form

p v^ = a constant,

in which n will be the ratio of the specific heat at constant

pressure to that at- constant volume. "We will continue to

consider the vapor as saturated.
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To find the worTc A EF D, Fig. 50a, p. 184, the expan-

sion E F being adiabatic, the vapor being saturated

tnroughout expansion, we have

= J c (r^ - r, - r, log,
^j + ^V^'*' ^"] ' ^^^

which becomes equation (182) if £», = 1.

If, in this expression, the value of x^ from equation (a) be

substituted, and subscript , be attached to those variables

which are without subscripts, we will have

Z7, = J- c r, —r^-r^log.
T, — r,

— tXj^ /ig2 (0

Equation {k) is better adapted for the discussion of steam-

like vapors, and equation (l) for ether-like vapors ; for in the

former x^ may be unity, and in the latter x, may be unity.

Ehminating log, —- from these equations by means of

equation (a) gives

U, = J
(''i - -^0 + «. K X^ /l,^ (m)

in which x^ and x, are limited as before.

If, during the return stroke, the fluid be refrigerated so

as to maintain the constant temperature r„ the pressure will

be uniform and equal CD ; and if at some point, as J, adia-

batic compression begins and is continued until the tempera-

ture is raised to t, at A, let x, be the weight of vapor at
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state A, then will the work done by co^'ipression be found

by simply changing as, to x,, since all the other quantities

remain as before

:

hence the work done in the cycle A EFJA will be

U, —U^ = J hJx^ — a'sj-

The heat absorbed will be

hence, the efficiency will be

U, - m r, - r.

{n)

E =

which is the same as that of the perfect elementary engine.

Neglecting compression and clearance, we have

n=AEFI)^{v^~jp:)X,v„

where jp^ — OD,p,= M, absolute pressures. If t, be

the temperature of the feed water, the heat expended will be

H = Jc (r, - r,) + X, ^en

where H^^ = J\^. Hence the efficiency will be

J \c (t^ — T^ — T^log —\ -^ —x-i hti \ -\- (p, — Pa) X, uj

E=- —
(0)

J c{Ti — Ti) + Xi h,i

From this result it appears that in the case of actual

engines, the specific heat of the working fluid and the latent

heat of evaporation both afEect the efficiency. If the feed
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water be at the temperature of tlie exhaust, then t, = r„

and the preceding expression may be reduced to

l"l 1"!

'''7;~—r—)+]}{p^-p)'^''
E= {p)

r, c (r, — Tj) + xt ?Ui

By retaining x^ and r/"„, equation {o) is appHcable both to

'' steam-lilvc" and " ether-Hli;e" vapors, only observing that

neither ,/_, nor o\ can exceed unity, and that they are related

to each other through equation (a).

To find tlie work done during adiabatic expansion when

the initial state A is that of liquid only, make x^ = in the

value of (7,, or x^ = in equation (/), giving

r, -.1 DJ= jc [^. - ^^ (i + H~)~\ (?)

and if the temperature at J be r^ then will A M L be found

by substituting r, for r^ in the preceding equation.

Actual engines do not expand down to the back pressure,

neither is the pound of fluid retained in the cylinder ; but

at the end of the expansion the exhaust is opened, and the

vapor escapes until the exhaust is closed at the point Z in

the back stroke. The adiabatic A L M'ill then be for only

a fraction of a pound of fluid. To find its equation let z

be the fraction of the pound of fluid, including both liquid

and vapor, then equation {a) gives

G-E = zxv = s{c log, ^ + ^^) ^^''. {r)

If the fluid be all liquid at A, then x^ = 0, and

0-K = zc ^loal^, .-.

h, ^ r
'

(«)

which reduces to equation (/), if s = 1 as it should.



i

-D

-F-



196 HEAT ENGINES. [112a.]

engine, by heating in the cylinder by hot pipes, or by inject-

ing some superheated vapor into a body of saturated vapor.

The object of superheating is to prevent condensation, to

diminish the back pressure by producing steam of less den-

sity, and to increase the efficiency of the fluid.

When steam is superheated to such an extent that it may,

witliout material error in practice, be treated as perfectly

gaseous, it is sometimes called steam gas. Experiments of

Hirn and others show that a very moderate amount of super-

heating produces steam gas ; from which it is inferred that

the formulas for steam gas will be practically correct for

ordinary superheated steam.

EXERCISE.

Find the work per pound of ether working in an engine

without clearance or compression, expansion complete, be-

tween the absolute pressures of 100 and 11.7 pounds per

square inch ; the ratio of expansion and the efficiency, the

fluid being entirely saturated vapor at the end of the expan-

sion, and the temperature of the liquid ether 60°.

Since expansion is complete, the final pressure, 14.7 pounds,

will equal the back pressure.

The specific heat of liquid ether is c = 0.517. To find

the initial and terminal temperatures we have, equation (SI),

1

^ a '^4 0' 2

in which for ether, A = 7.5641.

B = 2057.8, log B = 3.313425.

C = 164950, log C = 5.217355.

Hence, r, = 676, r, = 558 ; .
•

. T, = 216° F., T, = 9i

Latent heat of evaporation as determined by Eegnault,

/i, = 171.24 — 0.0487 T
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hence, for terminal state, since T.. = 0S°. . ..h^^ = liVi

for initial state, since T^ = 216°'.
. . .A„ = 139

Work, ABCD, Fig. 50«, ;n = 1 in Eq.(Z),ft.-lbs. U = 22200

Initial weight of vapor, Eq. (j), lbs :i\ = 0.92

Efficiency, Eq. (o), making .c, = 0.92, j), = 2h-
^' = ^.137

^'olnnie of a lb. of liqnid ether, en. ft v = 0.(i223

A'ol.of Ib.of vapor aty), = 100 lbs.,Eq.(84),cn. ft. v, = 2.98

• " " - " " ;>, = U.7 " " " " " V, = 12.62

Ratio of expansion, Eq. (/) r = 4.6

Jf there he a deanmce, and sufficient fluid be retained to

just fill the clearance by compression, as indicated by L A,

Fig. 50(/, tliis fluid will act as a cushion, and the energy in it

will be stored and restored with each stroke, and will not

form any part of the working fluid. In this case, freeing

the diagram of the effects of the cushion fluid, as in Stir-

ling's engine, page 224, u^ will be represented by a line

equal to J 0, in which case equation {rt) becomes ap-

plicable by subtracting from it a trilinear area, of which

the hypothenuse is the curved line J L, and the base the

projection of LJ on F E. But Wig mean effective pi'i'.t-

nitre will be diminished because the effective work per

revolution will be less, the back pressure being greater.

Ratio of expansion with clearance. A B CE L, Fig.

50c?, being the diagram described by the indicator, the cut-off'

being at B, A B will be the apparent steam line, and P B
the real steam line.

Let
F E

,/

AB = the appxirent ratio of expansion,

r = ^jyr, = t^® ^'^*^ ratio of expansion,

PA= -^F=r^i^= the ratio of the volume of clearance toF E
the piston displacement,

s = FE= the stroke of the piston

;

then
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PA
_ Q_C

_

FE-^ PA _ ^^TE_ 1+c _ r'^cr'
^ ~ PB~ AB +PA~AB PA ~T~~l^cr''

FE^ FE /'+ ''

{$)

.• .r <, r'.

r^ A A T, S A PPA=cs; AB = —; -j'^=cr'.
' r A B

The adiabatio A L will be for a fractional part of one

pound of the vapor, and if J. ^ be proportional to the

volume of one pound of the vapor, and A J terminates at

the end of the clearance, then will the weight of vapor re-

quired to produce A Zhe

. p of one pound = o r'

;

and the volumes will be in the same ratio at equal pressures.

Hence,
iVZ r' % __ h.\\-^

.

PA ^ ^7^1 ~ \^J
'

..J^Z^c.(f)^ (u)

which determines the point where compression must begin.

The mean effective pressure will be diminished, but, like

many other elements, the exact amount cannot be deter-

mined theoretically, except by a full solution of the problem

;

still a sufficiently near approximation may be found by

means of equation (176), page 175, which is

i'e =p. 10 - -." 1

in which r* will be between 1 and 2 for all ratios of expan-

sion used in practice, and when j?, is large compared with

_^3, p^ will vary, approximately, inversely as r. Hence, if

pj be the mean effective pressure with clearance, and p^
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without, we have, approximately.

The piston displacement per minute in doing the same

work as without clearance will be increased in the ratio

r' -^ r.

If the steam is completely exhausted during each return

stroke, the real volume of steam will be

P£ ^{l + cr')AB, {w)

or 1 -(- c / times the apparent volume.

The mean absolute pressure will also be diminished, to

find an approximate expression for which, conceive that the

piston displacement equalled the volume of the cylinder,

including the clearance ; then would the work done be

p^ (1 + c) u,.

But the work done in passing over the clearance would be

p,cu,;

and if pj be the mean absolute pressure, we have

Pm' «, = i^m (1 + c) u,—p,cu,;

Pm —Pm' = <!{P, - Pm)- {«>)

The expenditure of heat per pound of steam per stroke

without clearance, or with cushion space just filled by the

compression of vapor, being

H = B,^ -\. C (r, - T,), {y)

with clearance and complete exhaustion with each return

stroke wiU be, equations (w) and (y),

H (1 + r') = [^e. + <? (r. - rj] (1 + c r'). (s)

The efficiency of the fluid will also be diminished ; for

efective worTc with clearance _ pj — p, ,

effecti/oe worh without clearance p^ — p^
'
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and the expenditure of steam, and consequently of heat, is

greater witli cleurauue, as sliown hy equation {z), and

lieuee the ih'riu'iu/fin/i of the efficiency will be

E- E' = ^ ^-—^
, nearly.

Although the eifects due to these and otlier practical con-

sidcratiDUS cannot be thoroughly analyzed, yet tlieir dis-

cussiun bhows that they d(j not uppose, or rev(.:lutionize, the

general theory of the vapor engine—they simply modify
its results. ^V more complete knowledge of yapor engines

requires special experiments and a study of the engine itself

under yaried conditions. Theory teaches much, and we are

thankful that we know so much, and regretful that we know
so little.

113. Cut-off. With a given plant, if the cut-off be

early ni(_>re work may he done with a given amoimt of fuel

than if the cut-ufi: l)e late in the str<.)ke ;
and it is proposed

to find the cnt-off which shall give the UK.ist work })er pound

of steam' admitted t(j the cylinder. This prolilem may be

called the imint <// ciit-aff thit will proil iiix tJie ijreatest EJfi-

Cicnrij of Fluid.

"With a given plant, it may bepi'ojifised to find the point of

cut-off such that the owner may I'ealize the greatest profit

by selling the power pr(xluced. This condition will involve

the first co^t of the plant, attendance, repairs and deteriora-

tion. The deterioration may bu such that the cost of the

entire plant Avill be absorlied in the cour^e of a few years,

or if Sold during this time, it will be the .difference between

the oi'iginal cost and the amount I'eceived 1>y the sale. In

this case, if the cut-olf lie early fuel may be saved, hirt the

otlier clianges may make the co^t of the power delivered

more per dollar expended than if the cut-ofi: were later, thus

making it a jiroblem <jf maxima and minima. This may be

called the dnmer^s Pi'ulihm.

Again, in the plant of the pi'eceding case, the parts may
be improperly proi^ortioned : but if a ilcfinite amount of
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work is to be produced, the designer may be recpired to

proportion tlie plant so that the boilers shall be of the proper

size for working most economically for producing the re-

quired amount of steam, and the engine so proportioned

that by cutting olf properly the power produced shall cost

the least per dollar expended. If ent-ofl: be too late in this

case, moi'e steam will be refjuired, requiring larger boilers

and more fuel, while the engine may be smaller, thus cost-

ing less ; or if cut-ofE be too early, requiring less steam and

smaller boilers, the cylinder and every part of the engine

must be larger, costing more, so that this is a problem of

maxima and minima, and may be designated as the De-siijn-

er's f/'(il>Iein.

These and similar problems have received the general

title. The Jfost ^Economical Point of Cut-off.

A general solution of, the owner s problem was made by

Rankine, and is made the basis of the solution of the other

two. It is substantially as follows :

—

Let j>, = the initial absolute pressure in the cylinder per

square foot,

p^ = the mean absolute pressure,

F = the resistance of the engine other than the use-

ful load, including friction and back press-

ure,

h = the cost of producing unity of weight of steana

in unity of time (one hour), which consists of

the cost of fuel, repairs, wages of firemen, in-

terest on cost of boilers, and depreciation
;

Jc = interest on the cost of the engine, plus engi-

neer's wages, plus cost of reTpairs, plus depre-

ciation of value of engine, phis cost of waste

and oil, reduced to cost per square foot per

hour

;

A = area of the piston in square feet.

I = length of stroke in feet.
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n = the number of times the cylinder takes steam in

unity of time (one hour), once per revolution

for single-acting engines, and twice for dou-

ble-acting
;

I n = the number of linear feet swept through by the

piston in unity of time—one hour
;

V = the volume of unity of weight of steam at the

pressure j9„ taken from a table of " saturated

steam " or from equation (86), or (89)

;

W = weight of steam used by the engine in unity of

time—one hour,

v^ = the volume swept through by the piston in one

stroke,

«), = the volume swept through to the point of cut-

off,

r = the ratio of expansion = v, -i- v^

Z = an auxiliary quantity = J?„ 'y, -t- J>^ f , = the

ratio of the work done at full stroke, working

expansively, to the work done up to the point

of cut-off.

Then

Z=P:^ = £3r; (186)

.i?r = ^ Z. (187)

k A = the intei-est on the cost of the engine per hour

for the steam used, and

"^ ^ = the interest for each pound of steam used per

^ hour ; hence, the total cost per pound per

hour will be

A+4.
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The volume of W pounds of steam will be v W, and at

fuU stroke, r v W;

-•.Aln = rvW; "
(188)

and the preceding expression becomes

h -\- k J
—
n

The useful work per stroke will be

which per pound of steam per hour becomes

which by means of Equations (187) and (188) becomes

hence, the work done per unit of cost (one dollar) of steam

will be

Z--r
V {p.Z~ Ft) _ £^_ ^p,ln

, ,

,rv - hln
^

~ir (1^0)

' In k V ^

which is to be a maximum in reference to /• as a variable,

and will be a maximum when the factor

Z — — r

h I /; (191),

is a maximum. Equation (186) shows that Z is a function

of p^ and r ; but the form of the function p^ is not defi-

nitely known, depending, as has been previously stated,

upon the behavior of the steam in the cylinder—whether it

be dry, saturated, superheated, wire-drawn, &c. If the
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lucaii forward ])ressnre be found in a]iy manner as a fxmc-

tiou of /', a graphical solution may be made as follows :

Draw two axes, (J X and O J', and

construct tlie locus A B, Fig. 50, rep-

resenting Equation (IsO), by laving

off spaces Q on X to rejDresent

r and corresponding ordinates Q P
to rejn-esent Z. Through the origin

draw a line X, .such -that

Fie. 50. tan XOX = -,

then will any ordinate Q X be

OX = -r^
1\

XP Z-lr,
I'.

Avhich is the numerator of expression (191).

On the negative axis of 'rr lay off a distance

and at C erect a perpendicular intersecting X prolonged,

at D. Fr(.)m P draw a tangent to the locus A B, the point of

tangency being P, then will the corresponding abscissa, Q,

be that value of /•, which will make (191) a ma.ximmn. For,

the part PX oi any nrdinate between Z> J\" and 2) P will

be proportional to (' Q, its distance from C ' : but C Q is

the denominator of (191), and if the line PP be above

the tangent, nothing will be determined by it, and if below,

assume that it passes through some point, as A, on the

curve. For the ordinates between the diverging lines we
have

P X mvliuiite throtKjli A
G Q (discisi^d of A
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But the part of the ordinate helo^v A will be less than

that represented by the numerator of the second member
of this C(|uation, thus making the ratio less.

114. Special cases.

1st. Zet the expaufiioii he isothennal ; then will

f^=^(l + %e^O, (192)

as given in equation (165) ; and

Z=P^
r. (193)

From these equations the following table has been com-

puted, which is applicable to perfect gases, and snperlieated

steam working expansively at constant temperature.

r. ^- Z.
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constructed, and the value of r found therefrom will give

the required maximum for sensibly perfect gases.

2^. Let the expansion he adidbatic, according to the

approximate la'^.

Then

|= = i?-^Eq.(m),

and
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In regard to the Efficiency of Fluid, we have in equation

(191) h and h both zero, rendering that term indeterminate,

and equation (190) reduces to infinity, as it should, since

the cost of the steam is not included in the latter prob-

lem, which condition only requires the most work per

pound of steam entering the cylinder. This requires that

U={p^- F)r V, (194)

shall be a maximum, and this is equivalent to making the

numerator of the left member of (190) a maximum, and

this is a maximum when the ordinate P iT is a maximum,
giving Q for the corresponding value of r. Equation

(194) is easily reduced for a maximum for the isothermal

expansion of gases. For we have from equation (164)

TT^\^{l + log,r)-F' r V,

= iP. +i>. %e^ — Fr\ v„

which will be a maximum, when

r =
J, (195)

that is, the ratio of expansion must he such as to reduce

the terminal pressure to that of the iach resistance.

If frictional resistances be neglected, .7^ will represent the

back pressure, which will be that of the exhaust steam ; in

which case we have
p^rv,= p, V,

;

or

p, V, =p,v,;

or the work on the hack stroke will equal the work done

hefore cuiroff ; hence, the useful work will equal the latent

heat of expansion.

EXERCISE.

(The following exercise is an abstract of a paper by

Messrs. Wolff and Denton, Transaction of the American So-

ciety of Mechanical Engineers (1881), 147, 281, except that
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we assume that tlie engine was used 10 out of 24 hours,

while tht'y assunied that it was run continuously. It was

an example of a Buckeye non-conden.'>ing engine.)

^ -.. , \
-<i" diameter, i 7.3.3 lbs. gauge,

1. Cylinders ) ,,.„ . -. pressure 1 i ,
^ u^

( 4-b stroke, ^
( 14. < " air,

90.0 '• ahbolute.

lU reyolutions per minute, ^yorking 10 hours daily.

Assume clearance, f = 2.V per cent,

Condensation = 3(» per cent alioye that indicated,

Back pressure = 15.7 lbs.

Friction = 2.0 "

.-.F ^ 17.7 lbs.

Coal, 5 dollars per 2000 lbs.

Evaporation, 9 lbs. of water per pound of coal.

IVe have—

-

CHARGEABLE TO THE B:iLER :

If the engine w<jrk full stroke, and no allowance be

aiade for clearance and condensation, the cost of the coal

per hour will be
Vol 1 stroke feet. Double stroke. Wt. 1 cu. ft.

0.78.51 X (2(if X iS
j^.-^ X 2 X 000 X <i.211S.5 X

Lbs. of coal per lb. C'oyt of coal dol- Dollars per
of water. lare per lb. hour.

i X ^o-W = l<».il5

Add 2tV per cent for clearance .260

Sum = 10.075

Add 30 per cent of $10,675 for condensation. ... = 3.2(i2

Add wages of fireman (§2.25), laborer (§1.25) .. = 0.146

Interest on cost of boilers, 8500 X 0.06 ~ (365x24)= 0.05S

-r^ . .
1 8500

Depreciation, say t-j X qck y 9-1 ~ 0.082

Repairs, if $190 per year = 0.022

Sum = 14.185
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CHARGED TO THE ENGINE.

Assume cost of engine when set to be !p9(tOO.

Interest, 89u00 X 0.0(5 -h (305 X 2-i) = U.OfiS

"Wages of engine runner = 0.200

Depreciation, say ;^ of 9000 -^ (365 X 24-) . . = 0.042

Kepairs, say §150 per year = 0.017

Oil and waste, say = 0.030

Sum = 0.352.

Then,

F _ ir.T _ 1

j>^
~ 90.0" ~ 5.09

14.18.5 X 1T2S

^ ^ [re ^ 0.7854 X (26)-^ X 48 x"T X eoO'xT^SllSS 4 X 8 X 60t.

k V _n.3.5y X 144
'^^'~ ^

4.^
~

0.7854 X (2fi)2

= 40.47 = C.

OCX l = ^^^l = ^^^ = CD.
p^ 5.09

In Fig. 50, lay off 6> C = 40.47 and (7 i? = 7.95, and

from the point D thus found draw the tangent D P, and

from P let fall the perpendicular P Q, then will Q be

the ratio of expansion for this case, which, for adiabatic

expansion, will be

Q = 3.4.

In a class of forty students working independently and

with different scales, the results differed only by two or

three tenths, using the same law of expansion, a result near

enough for practice in the present state of the science. The

exact value may be found by trial and error, by substituting

in expression (191). (Addenda.)

(Literature. General solution by the late Professor Rankine, Phil.

J/ff^. (1854), 21, 176; Trans. Boy. Soc. Edinburgh, yo\.'X.'X..,Vnvill.;

Ship Buikliwj ; Mincellaneous Scientific Papers, pp. 288-299. The E)v-

gineer, 1866, April 2d, p. 248, gives a modification of liis graphical
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method. WollE and Denton, Transaction of the American Society of

Mechanical Engineers (1881), pp. 147-381 (and discussion by otliers in tlie

same Transactions); Trans. Inst. Civ. Eng., London, 1881-82, Vol. IX.,

Part II., 75, Part III., 44; American Engineer, 1881, June, July, Aug.,

Nov. Emery, Jour. Frank. Inst, May, 1875. Marks, ibid., 1880, '83,

'84. Thurston, ibid., 1880, '81, '83, '84. Wood, ibid.. May, 1884.)

2. Let the dimensions of tlie engines and cost of plant be

as in the jjreceding exercise, the gauge pressure 70.3 lbs.,

10 revolutions per minute, working 24- hours daily, conden-

sation 25 per cent, back pressure F. = IS lbs., coal, evap-

oration, oil, waste, and interest as in the preceding exercise

;

also wages, except that they are for 12 hours instead of 10
;

life of boiler 10 years, repairs $225 ; life of engine 20 years,

repairs of engine $175 per year ; engine to run 300 daj's of

the year ; find the most economical point of cut-ofE.

3'. If the cost of producing the steam be neglected, or h

= 0, in Exercise 1, find the proper point of cut-oft'.

4. In Exercise 1 if the " cost of the engine " be neg-

lected, or I- = 0, find the proper value for ?\ (Use the left

member of (190).)

115. Multiple expansions.—Engines are- made

with two or more cylinders, so arranged that after steam has

done some work in one cylinder it may be exhausted into

another, and from the second into the third, and so on, and

the expansions continued in the successive cylinders. If

two cyhnders are employed, the combination is called a com-

found engine ; if three cylinders, triple expanxion / if four,

quadruple expansion,. Since multiple expansions have come

into practice, it might be well to drop the term compound.,

and substitute double expansion. The cylinders may be

arranged in any desirable manner. If placed end to end,

having a common piston rod, they are called tandem. They

may be placed side by side, close to each other, or separated

many feet and connected by a large pipe. The cylinder

first recei^'ing steam is called the high pressure cylinder, and
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has the smallest piston displacement per stroke, and the

others the low pressure cylinders, each increasing in size as

they are more remote in the grade of expansion from the

high pressure. In triple expansions, the smaller cylinder is

called the high pressure, the next, the intermediate, and the

third or largest, the loio pressure cylinder. The high-press-

vxe cylinder may exhaust directly into the next one, or into

a receiver, and in the same manner from the next cylindei*,

and so on. In some cases double expansion is accomplished

in three cylinders, the high-pressure cylinder being between

the two low-pressure cylinders.

If the fluid retained its state of aggregation, there would

be no theoretical gain in expanding in two or more cylin-

ders over that of expanding in one between the same limits

of temperature ; but, on the other hand, there would be a

loss, for the spaces between the cylinders serve as clearances

which must be filled, with steam. Steam cards from multi-

ple-expansion engines clearly show this loss
;

yet experi-

ence proves that there is a gain of efficiency. This is chiefly

due to the fact that liquefaction of the steam is less when
expanded in several cylinders, for the walls of the cylinders

are kept at a more nearly uniform temperature, being more

nearly that at which the steam enters the cylinder.

There is also a mechanical advantage, since the initial

stress on the crank pins will not be so excessive. With
triple expansions, the initial stress on the crank pin may be

about one-half or one-third of what it would be if expansion

were made in one cylinder only.

This arrangement also produces a more uniform rotation

of the shaft, which in the case of vessels driven by propel-

lers is favorable to greater efiiciency of speed. So that if

a single expansion and a triple expansion should show the

same economy of fuel per horse-power, the triple expansion

in the same vessel ought to show greater economy of fuel

for a given mileage.
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116. Condensation.—The laws wliicli govern the

liquefaction of steam in the cylinder are not well known.

Theory recognizes three sources for the appearance of water

in the cylinder : fr.st, ^\•ater canned from the boiler to the

cylinder in the form of a spray, in A^'hich particles of liquid

water are mingled with the steam; i^rcoiul, lif[uefaction })ro-

duced hy the expansion of saturated steam; and, tliird,

liquefaction produced l>y the walls of the cylinder. The

first pertains chief! }' to the construction -and management of

the boiler; the second has Iteen discussed from a theoretica'

standpoint by Kankine and Clausius, as stated in Article 98

Kankine, in an example with assumed data, iji which tlm

ratio of expansion was ?>2\, found that nearly IS per cent

of the steam entering the cylinder was liquefied during ex

pansi(jn from this cause (J//.sc. Sr. Papers, p. 399). Theory

shows that superheated steam loses nothing from this cause'

so long as it remains al)Ove the condition of saturatinu, and

actual engines confirm this result. Calorimeter tests ol

steam-jacketed engines have shown a total loss from lique

faction of from 10 to 20 per cent.

The third has been discussed by Professor C'otterell in his

work on Tlie Sfi'iiin-Iuirjirie, pp. 21:fi-2(iy, in which he

shows that tliis may be the principal caiise of the loss of

cjficicnci/ of the fuid. The 1 ws of cimduction and radi-

ation are not sufficiently ^rell known to enable one to estab-

lish a complete theory of liquefaction in this regard ; and

if they were, the variations of temperature due to expansiou,

as well as the varying temperature of the walls from the be-

ginning to the end of the stroke, would greatly complicate

the problem.

If the liquefied water be deposited upon the inner sur-

face of the cylinder, as it will be in the third case, it will

facilitate the condiiction of heat, and the result will be very

different from the condition in which the water remains
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distributed tlirougliout tlie steam, as it is supposed to be in

the first and second cases named above.

Tlae reduction of temperature, due to the action of the

walls, would also have an influence upon the theory in-

volved in the second case, in a manner which has not yet

been considered.

Initial condensation is that which takes place during the

admission of steam, and is due chiefly to exposure to sur-

faces colder than the steam, and is independent of the

case investigated by Rankine. It can be reduced by keep-

ing the walls at nearly the temperature of the entering

steam, and hence may be nearly prevented by a steam-jacket,

and in other cases may be reduced by late cut-off and high

speed. The economy of high expansion is so well es-

tablished by theory and conflrmed by experience, when
condensation is avoided, that other means than that of a late

cut-off will be sought for preventing liquefaction.

Theory does not enable us to compute the amount of

condensation for any particular case ; it must, therefore, be

determined by direct experiment. A few examples are given

in the following notes.

NOTES.

117. Experiments on steam-engines:
(«.) IlirrHs exj>eriments.—By far the most complete set of

experiments scientifically conduced were those under the

direction of ]VI. Hirn, by MM. 0. Hallauer, W. Grosse-

teste, and Dwelshauverse Dery, begun in 1873, and extending

over several years. The results of the experiments are pub-

lished in the Bulletin Special of the SociSte Industrielle de

Mulhouse, 1876. Smith on Steam Using contains a sum-

mary of these experiments, pp. 188-285.

(5.) Wavy experiments.—Mr. B. F. Isherwood, while chief
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engineer of the United States Xavy, made extensive experi-

hieiits upon the boilers and engines of several steamships

of the navy, under the general direction of the Department

of the Xavy, which were published in two large volumes,

entitled Exjyerimentid Researches^ in Steam Engineering,

Philadelphia, 1863, 1S05.

l\Ir. Isherwood made the first attempt, so far as known,

t; 1 determine the amount of liquefaction of steam in un-

jaeketed cylinders for various ratios of expansion. The

experiments were made on the engines of the steamer

Michigan^ in ISlil, and showed a large amount of liquefac-

tion, incivasing at l<jw speeds and high expansiiins. These

wei'e discussed by Eankine, and published in the Proceed-

ings of the Institution of Engineers, Scotland, 1801-62.

{<.) ^Vacg e,ij)c/'i/nents—continjied.—Messrs. Emery and

Loring, in 1874, experimented on the engines of the United

States revenue steamers Eache, Eush, Z^r.rtrr, and (jalla-

tin, the reports for which were published Ijy the Go's-ern-

ment, and also in Engineering, Yols. XIX. and XXI.
From these and other experiments, some have c( )ncluded

that, for unjacketed cylinders, it will be sufficient to allow

for the' liquefaction of steam in the cylinder, due to all

causes

:

For full stroke, 12 per cent of the total feed water,

2 expansions, 23 " " " "

4 " 36 " " " "

6 " 54 " " " "

8 " 67 • " " '

10 " 72 " " " "

13 " 75 " " " "

{American Engineer, 1884, May 23, p. 207.)

For dry steam at high temperatures these allowances are

probably much too large, although they may sometimes be

realized with saturated vapor.

(jl) E.rj)erinients at the tStevens Etstitute. Messrs. Gately
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and Kletzseli experimented upon a Harris-Corliss engine hav-

ing an 18-incli cylinder, 4-2-inch stroke, for the purpose of

determining the laws of condensation under different condi-

tions. The engine was not jacketed, but was covered with

lagging and a non-conducting substance. They found that

if

y = cut-oflE = 0.13, then, cylinder condensation = a; = 0.50
" = 0.225 " " " " = 0.41
" = 0.33 " " " " = 0.34
" = 0.45 " " " " = 0.27
•' = 0.59 " " " " = 0.325

which values are well represented by the equation

{x + 0.12) (y + 0.44) = 0.3543.

If s = the area of the surface exposed in square feet and

X the per cent of condensation, as before, the experiments

gave

xz — 1.026 X — 4.7Y s = 221.36.

Yarying boiler pressures gave

p = pressure = 80.00 pounds, x = per cent cvl. condensation = 35.34
= 66.85 " " " " " =37.83
= 52.33 " " " " " = 36.84
= 37.00 " " " " " = 41.43
_ 22.30 " " " " " = 41.19

which may be represented by the equation

a; = 45 — 0.1266^.

{Graduation Them, 1884 ; Jour. Frank. Inst., 1885, Oct., Nov. and

Dec.)
~

Messrs. Blauvelt and Haynes, by calorimeter tests upon

the engines of the steamship Hudson of the Cromwell Line,

found in some cases only 10 per cent of liquefaction when
the cut-off was ^V- The pistons M^ere 48 inches in diam-

eter, stroke 6 feet ; steam-jacketed cylinder ; 800 horse-

power engine. {Thesis., 1886.)

The experiments of Mr. James S. Merritt upon a small

direct-acting steam pump, at various piston speeds, the di-
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jimeter of tlie steam cylinder being eight inches, and the

stroke about 9^ inches, gave the following results :

Doul3le Rtrokee
per minute.

10
20

80
40
50

Indicated horse-
power.

1.25

2.36

3.63

4.93

5.34

Water consumed
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about 600 horse-power, for over ten days, which ran with

16.3 pounds of feed water. {Am. /Soc. Mechanical Etuji-

neers, Discussion, Hartford meeting, p. 14.)

{h) In a three days' test of tlie steamship Para, having

triple-expansion engines, the actual weight of steam con-

sumed per I. H. P. per hour was ] 3.4 lbs. Adding 15 per

cent for initial condensation gives 15.4 lbs.; coal, 1.54 lbs.

per indicated horse-power ; evaporative power of the coal,

12.0 lbs. from and at 212° F. The Stella consumed 13.7

lbs. of steam per I. H. P., with 1.36 lbs. of coal whose,

evaporative power was 13.9 lbs. of water from and at 212"

F. {Proc. Institution Mech. Eng., 1886-87, pp. 492-506.)

(i) Large Ocean Steamers.

City of Borne.

Length, feet

Breadth, "

Displacement, tons. ...

Indicated H. P
Speed, miles per hour.

Coal, per day, tons

Coal per I. H. P

Cylinders •i^'i^'^-^'^^-

( Stroke, "
.

Steam pressure, lbs...

.

543.5

52.0

11230
11890

18.2

185
2 3

S
3 @ 46'

|3@86
72
90

Umtnia and
Ztruria.

500
57

9860
14331

20.3

315
3.1

@ 71

@ 105
72
110

Servia.

515
53

10,960
10,300

17
305

3

@ 73
@ 100

78

(j ) In the year 1840, the time of crossing the Atlantic

Ocean in a steamship was about 13 days.

The recent short passages have been

:

Citi/ ofRome 6 d.

Oregon 6 d.

Etrnria. 6 d.

{Scrihner's Magazine, 1887, p. 315.)

In 1887, beginning May 28th, the time of the Umbria

was 6 d., 4 h., 12 m. In 1888, beginning May 24th at

Queenstown, the time of the Etruria was 6 d., 1 h., 55 m.

18 h.
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Distance, 302S miles ; average speed, 20.7 miles per hour.

On June 1st the average speed was 24.08 miles per hour.

(k) Count de Pambour represented that the friction of an

engine increased with the load, the expression for the resist-

ance being of the form

B = n.-i-x a,

in which a? is a coefficient, greater than unity, Ji the varia-

ble load, and /?„ the resistance of the unloaded engine.

But Mr. Charles T. Porter, aliout 1$71, wrote that "ex-

periments with a friction brake have shown no aj)preciable

difference between the losses of power in friction when very

small and very large loads were driven by the same engine.

{American Machinist, Dec. 2.5, 1S8G, p. 8.)

The result of Porter's experiments has more recently

been confirmed by several other experimenters. {T/'ans.

Am. Soc. llech. Eng., Vol. VII., pp. 86-113.)

(l) The Stiletto is a torpedo boat 95 feet long, weighs

2Stons, develops -450 H. P., having 16 H. P. per ton of dis-

placement, works with 150 pounds pressure, ran 30 miles in

77 minutes, or an average of 23.7 miles per hour, passing

the JLiry I'otr,//, hitherto the fastest boat on the Xorth

Piver. The highest speed attained is not given. {The

Jlrch. Eng., June 27, 1885.)

{ill) The compound locomotives tried on the Boston and

Albany Railroad failed as economizers of fuel, and were

changed to the ordinary form.

{ni) Steam jiressure used in marine engines has gradually

increased at an average rate of more than two pounds per

year for many years. The following values are given in

Sc/'ibner's Magazine for May, 1887.
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1825 3 to 3 pounds.
1830 5 '
1835 8
1840 10
1845 14
1850 21
1855 25
1860 30
1865 40
1870 50
1875 60
1880 70
1882 80
1886 150 to 160

The writer does not clearly state why these particular

values are given. Some, though relatively few, steamships

carry 160 pounds pressure, and if this be the highest, then,

on the same plan, the highest- for preceding years ought to

have been given. Many locomotive boilers carry 160 pounds

pressure, and have done so for several years.

(o) Ideal efficiency. It is sometimes convenient for refer-

ence to have an ideal maximum efficiency for steam powers.

Assume, then, that the steam pressure is 200 pounds per

square inch by the gauge, and- that the back pressure is

one pound per square inch absolute, and that the forward

pressure decreases to one pound absolute ; then will the

temperature corresponding to the higher pressure be 388°

F. and to the lower 102° F. ; and the maximum efficiency

when working between these temperatures will be

388 - 102 _ 286 _
388 + 460 - 848 - ^•'^^^'

which is somewhat less than \. To realize this result

would, according to the approximate adiabatic law, require

about 118 expansions, which fact alone shows that such an

efficiency is far beyond existing possibilities in a working

engine. The waste of heat in the furnace of, say, 25 per

cent, loss of pressure between the boiler and the engine,

loss of heat at the exhaust, and other losses reduce the
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efficiency of steam ^slants below 15 per cent of the heat

energy of the fuel.

iP) QuadrupJe-cxjKinsion engines. In the Americcm

Machinist of December 3d, 188 7, is an article taken from

London Engineering, describing a system of qiiadruple-

expansion marine engines, which have been placed on sev-

eral new steamers. The boilers for these engines are de-

signed to carry 180 lbs. pressure. It is claimed that these

are 6 to 8 per cent more efficient than triple-expansion en-

gines.

{cj) Efficiency of x>lcmt. Take the case of the steamship

Ohio, of the International Steamship Company, which has

triple- expansion engines of 2100 I. IT. P., the gross tonnage

of the vessel being 3325 tons. The engines were guaranteed

to consume not more than 1.25 lbs. of coal per I. H. P. per

lioiir. The cylinders were 31 in., 46 in., 72 in., and 51 in.

stroke.

The trial trip developed an I. H. P. for 1.23 lbs. of coal.*

The caloritie capacity of this coal is not known to us, but it is

quite certain that on such a trial the best of coal would be used.

If the heat of combustion was 150tMj thermal units—
which is a vei'v high value—there M-ould have been ex-

pended
1.23 X 15000 = 18150 thermal units

per horse-power pjr hour, or

1845U X 778 = 14354100 foot-poimds

of energy to produce one horse-power, or

33001) X 00 = llisoooo foot-pounds

of work per hour, in which case the

l'.(800()0 r ^n-^
etjicwnc;/ ,>t plurd =

^^..-^^^^^^
= 0.13b.

or nearly 14 per cent.

* The Mechanical Engineer, Sept. 10th, 1887, pp. 49, .50, taken from

InrhiKtries
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If tlie coal contained 14000 thermal units—a fair value

for very good coal—the

-ffi y 7 ^ 1980000 ,_ , , „
efficiency ofplant =

^^^^^^^^
= 0.148,

or nearly 15 per cent.

The boilers would naturally be in excellent condition for

such a trial, and if they, including the steam connections up
to the steam-chest, gave an efficiency of 76 per cent, then

we would have for

13 8
efficiency of the engines only, \\ = 0.184 in former case

i

"^^^
0.197 " latter "

75

If the efficiency of the boiler and connections were 70

per cent—a fair value—the efficiency of the engines would

be 0.197 in the former case and 0.211 in the latter.

It is a remarkably good plant that will produce an indi-

cated horse-power with 1.23 pounds of the best coal,

While it is well known that such a trial may be so con-

ducted as to give a result too favorable to the conti-actors

—

by not giving proper credit to the heat generated just

before starting, or by letting the fires run too low at the

close, or by not standardizing the indicator, &c.—yet, on

the other hand, the proprietors of the vessel would naturally

check all the conditions so as to determine for themselves

if the terms of the contract were fulfilled. We therefore

feel some confidence that marine steam plants have been

made that have developed an actual efficiency of some 14

or 15 per cent ; and certainly the conventional 10 per cent

efficiency used by popular writers is exceeded in some

cases.

Tests of commercial coal taken at random show that the

heat of combustion frequently falls below 12000 thermal

units per pound. Ocean steamships have been reported as
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developing an I. H. P. per hour with 2.1 pounds of coal,

and in some cases with less than that amount ; hence if this

coal contained 12000 thermal units, the efficiency would be

19800000 _
196000000

~~
'

or over 10 per cent.

If the initial pressure in the cylinder were 160 pounds

to the square inch absolute (about 145 gauge pressure) and

back pressure 3 pounds, and the steam saturated, then

would the initial tempei-ature be 363° F. and the lower

142° F., and if this heat were used in a perfect elementary

engine between these limits, the efficiency would be

^^ 363-142 ^
363 + 460 '

and 70 per cent of this is 0.1876, which is nearly one of the

values found above.

(;') The torpedo boat Ariete, built for the Spanish Gov-

ernment, has twin screws and compound engines, 14J-", 24J",

by 15" stroke. Average Tjoiler pressure, 152 lbs., revolu-

lutions, 395 per minute, developing 155 H. P., and steam-

ing 24.9 knots (28.8 miles) for two hours continuously.

One measured mile was run at the rate of 26 knots (30.1

miles) per hour.

(s) Stearaer Anthracite, in 1880, had triple expansion en-

gines.

Pounds of water per I. H. P. per hour 21.68

Evaporation per lb. of coal at and from 212° 9.27

" " " " combustible " " 11.25

Steam-pressure in the boiler, gauge, lbs 216.5
" " " 1st cylinder, gauge, lbs 201.6

Terminal pressure in the 3d cylinder, gauge, lbs. . . . 9.55

Expansion, times 25.7

Coal per I. H. P. per hour, lbs 2.61
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HOT-AIR ENGINES.

119. Stirling's (or Laubereau's) Hot-air En-
gine. This engine was invented by Dr. Eobert Stirling

about tbe year 1816, and improved by his son, Mr. James
Stirling ; for the details of which see Proceedings of the

Institution of Civil Engineers, 1815. It was further im-

proved by M. Laubereau, the form of

which is shown in Fig. 51. It consists

of tM'o cylinders of different diame-

ters, having a free communication be-

tween them. The smaller piston, B,
Fig. 52, is the working piston, and

drives the engine. The larger piston

or plunger, A, is made chiefly of plaster

of Paris or other non-conductor of heat,

and is somewhat smaller than the bore

of the cylinder, so that the air may pass

freely past it. Also an annular space

about the cylinder is filled with thin plates or small wires

which heat quickly as the hot air passes among them,

and as quickly give up their heat to the cold air on its

return. This device is the regenerator referred to in

Article 105. The top of the cylinder at C may be made

double to admit of the passage of water ; or, what is bet-

ter, the upper end of the cylinder may be filled with an

extensive coil of small copper tubes through which water

is made to flow by means of a force-pump worked by the

engine, the object being to maintain a low temperature

in that end of the cylinder, and thus cool the air at that

end, and hence is called the refrigerator. The object of the

plunger is to transfer a mass of air from one end of the cyl-

inder to the other and back again, and so on alternately, which

is accomplished by the reciprocating motion of the plunger.

The plunger is sometimes called the displacing piston.

PIG. 51.



224 HEAT ENGINES. [130.]

The plunger, A, is operated l)y a cam so constructed and

arranged tliat Avhen the piston, U, is near its upper dead

point, the jjlunger will be driven very quickly to the lower

end of its stroke and remain there until the jjiston descends

to near its lower dead point, when the plunger will he

driven quickly to the upper end of its stroke.

The cylinder containing the plunger is called t/is receive/'.

The mass of air in the entire engine is constant, and is so

maintained by a small air-pump worked by the engine,

forcing air into the passage D. The mass of air in the

lower part of the receiver, and which is referred to as being

below the plunger, when the plunger and piston are at tho

upjier ends of their strokes, is called the wo/'k/'nr/ air, and alJ

the other air is called eunliion air. These masses of air artn

not separated, neither do they keep entirely separate fron.

each other, but intermingle somewhat. When both pistona

are at the upper ends of their strokes, the entire mass of air

will have its greatest volume, and that which we consider

workina: air will have its areatest volume ; but when the

plunger is up and piston down, some vi that ^\'hich ^ve call

(:'«a7(/(9;i «// will be forced into the lower part of the re-

ceiver, and thus become virtually working air. This latter

quantity will be variable, and will not be considered as

working air.

The cushion air will be at nearly uniform temperature,

and will Ije considered the same as that of the refrigerator.

To make this engine double acting requires two receivers

ha-^-ing plungers "working in opposite directions, one recei^•er

being connected with the upper end of the working cylin-

der and the other with the lower.

130. Theory of Stirling's Engine, or of a hot-
air engine in which changes of temperature
of the working fluid are made at sensibly con-
stant voluiue. In this analysis we avoid the refine-

ments which would result from following exact conditions
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by assuming ideal conditions, which will represent approxi-

mately the real ones. For this purpose we make the follow-

ing assumptions

:

(a) That the working air is that under the plunger when
both the piston and plunger are at the upper ends of their

strokes, and the working air is at its highest temperature.

(5) That the cushion air remains at constant temperature

—

thus neglecting the fact that a part of it enters the receiver

and virtually becomes working air.

(c) That the mass of working air is transferred instantly,

and that the changes of its temperature are also instanta-

neous.

{d) The air in the clearance at the lower end of the re-

ceiver is discarded, but might be included in the cushion air.

Other assumptions will be made as the subject is de-

veloped.

In . Fig. 53, let A represent the state of the working

fluid when at its least volume and greatest pressure ; in

which condition the temperature will be greatest and the

working- piston will be at the bottom of its stroke, the

W^k

FIG. 53.

volume in the receiver and clearances being R E. As

the working piston rises, the plunger remaining at the

top, the air will expand at a constant temperature to the

state . B, the path of the fluid being the isothermal A B.

Xow let the plunger be suddenly depressed—the working

air will at once be transferred to the upper end of the re-
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ceiver and there cooled by the refrigerator. If the piston

were stationary, the volume of the working air would di-

minish and its ]}ath would be some line inclined to the left

of B C\ but in order to secure the ideal condition of a

change of temperature at constant volume, conceive that the

motion of the piston is so regulated as to relieve the pres-

sure on the working air in such a way as to make the path

of the fluid a straight line, B O, perpendicular to the axis

of volumes.

To accomplish this, the working piston must sweep over

the volume JT Y while the pressure is falling from B to C.

"When the piston descends, sweeping over the volume Y W,
the working fluid will be compressed at the constant tempera-

ture of the refrigerator to the state D, the path being the

isothermal D. At the state Z>, let the plunger be sud-

denly raised to the top of the receiver, while the piston

moves according to such a law that the change of tempera-

ture will be made at constant volume. A B CD will be

an ideal diagram of the working fluid under the conditions

imposed. The motion here imposed upon the piston is only

a rough approximation to its actual motion.

Prolong B to P ; then will R P he the greatest vol-

ume of the working air, which, according to the hypothesis,

occupies the lower part of the receiver when the piston is

near the upper end of its stroke. Between the plunger,

when at the upper end of its stroke, and the piston, when at

its lower end, will be the space at the upper end of the

receiver, the space in the ports aud passage Z>, Fig. 52, and

the clearance below the piston B. Take P E io represent

the volume of these spaces. The diagram shows that with

this arrangement none of the so-called working air will

enter the working cylinder, and the latter may be kept cool

to facilitate lubrication. The volume P JE should, in prac-

tice, be small compared with the volume of the lower part of

the receiver, say from 5 to 15 per cent of the volume KB.
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To find the path of the cushion air, take R F^ A E\
then, according to supposition J, the equilateral hyperbola

FJ will be the isothermal representing the changes of

pressure and volume of cushion air. If the weight of

cushion air was the same as that of the working air, FJ
would fall upon D O; but as it is generally less, it is placed

below.

To construct the ideal indicator diagram, make AF^HF,
B N= KG, G Q = MT, B U= LH; then will E,

]V, Q, Uhe corners in the ideal diagram that should be de-

scribed by the working engine under the conditions imposed.

In an actual diagram the corners are rounded.

Tofind the efficienoy, let

Tj = the highest absolute temperature of the working air,

r, = the lowest " " " " « "

r := the ratio of expansion.

Since the gas is sensibly perfect, and the expansion along

A B, Fig. 53, is isothermal, we have, for the heat absorbed

from the furnace, equation (36),

E, = Rr^ log, J = J? r^ logr;

and for the heat rejected along G B,

H.^R T^. log ^-^ =Rr, Ugj
;

and for that absorbed along D A from the regenerator,

equation (37),

^s = C, (r. - rj,

and rejected along B C,

H, = C, (r,. - r,).

The heats E, and ff, cancel each other. In practice it is

found that a certain amount of energy is lost in the regener-

ator, as stated on page 167, which we represent by

n G^ (r, — T,).
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The lieat transmuted into work per pound of working

air per revolution will be

U^H, + B,- II, - //. = 122.5 (r, - r,) log.^r, (201)

foot-pounds.

If the regenerator were perfect, the efficiency would be

^=5-^^, (202)

which is the same as that of the jjerfect elementary engine.

Allowing for the imperfection of the regenerator, and let-

ting U be the work actually performed by the motor per

pound of air, we have

VE =
//, + 131 71 (r,-r,)'

TJie dlmeiisicnis of an engine must be found in design-

ing it.

Let, in Fig. 53,

jy, with the subscript of the letter at a corner of the

diagram, rej)resent the pressure at that corner

;

V, with the sa-me subscript, represent the volume
;

r^^KB-=^RA = ratio of expansion of the working

air
;

q^= R E^ R A = ratio of the total volumes in the

cylinders, passages, and clearances, when the work-

ing piston is on its lower dead centre to the least

volume of working air.

All the volumes have reference to one pound of working

air.

We have K B = r . E A,

or, ^b = ''^'a, (203)

^'e = <i 'Ai' q> r\

P E={q-r) V, ;

AE={q-l)v,; (204)

B r,= i\ v^ = 2h 'i\, (2), p. 11,
\ (206)
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If s be the ratio of the mass of working air to that of

the cushion air, and r, the absolute temperature of the iso-

thermal F •/, we have

R r^ = Pf. svi =pg. sVg=pi. s Vi, &c. (206)

Vi=:v,; 'Wd = -"a ; Pi=P^; pi =Pc- (207)

From these we find

—

(208)

(209)

(210)

«b Vc i>a _ i>d _ ^ _ -y.

V^ ^i
_

Pi Po «f
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Also

Ifass of cushion air v, , -.^ f, ^r>i/i\

XT ^ T-- ^ = = fe — 1)
—^- (21°)

Mass oj working mr v^ t^

Volume swept through hy the piston per pound of

working air per stroke—

1 + (l?
- 1) — - — (217)

If there be given, instead of the ratio of expansion, the

ratio of tlie volume swept through by the working piston to

V — V
that swept through by the plunger, or —3 2.^ then r may

be found from equation (21Y), giving

(218)

If q is not given, find an approximate value of V by mak-

ing q = /•, giving

; = 'h^i-'^ . 3_ + 1
; (219)

the correct value of which will be some^vhat less than the

value thus found, and q will be somewhat greater. Assume

q about 2 to 5 per cent more than the value of r found

from (219), and find the correct value of / from equation

(218).

If the pistoTi remained on its dead points while tlie

plunger was moving, and the plunger on its dead point

while the piston was moving, the indicator diagram, and the

diagram rej^resenting the changes in the working fluid,

would be as shown in Fig. 54. The approximate analysis of

this case presents no serious difficulty.

131. In designing an engine of the Stirling type,

the horse-power to be delivered and the number of revolu-
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tions per minute must be known, in addition to the data al-

ready assumed. The number of revohitions will be limited

by the piston speed and the length of stroke. The average

piston speed may be between 100 and 200 feet per minute.

One of Stirling's engines, having a four-foot stroke, was run,

in actual practice, at about 28 revolutions per minute, giving

an average piston speed of about 221 feet per minute.

An air engine, reported upon by M. Tresca, had a stroke

of 0.4 m. (1.3 ft.) and made about 90 revolutions per min-

ute, giving a piston speed of about 120 feet per minute.

The large air engines in the steamer Ericsson had an

average piston sjDeed of 108 feet per minute.

LetW = the number of revolutions per minute,

8 = the average piston speed,

I = the length of stroke of the piston,

A = number of horse-power required of the engine,

^Y = the work required of the engine per minute
;

then,

8='i]Sri (220)

W = 33000 h. (221)

Let w = the number of pounds of working air required

;

then, since the work done by one pound per revolution will

be theoretically, the value of U in equation (201), we have :

w ^ -^. (222)

But the actual work U will be less than the theoretical,

and we will assume it to be 0.7, the theoretical. (In de-

signing it is better to assume too small a fraction rather than

too large.) Then

33000 h ,„„„ ,

^ = 0.7 X 122.5 (r,-rOZo5;„.xir-
^^^^""^

If ?' be assumed, the weight of air in one cubic foot will

be, (205), (210),,
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— = -5^!— . (223)

The initial pressure, jp^^ may be assumed, since it can be

produced and maintained by the air pump in connection

with the lieat derived from the furnace.

The volume of ilie lower part of the receiver will he,

(223), (222),

^-^^ w cu. ft. (223a)

Assume the stroke of the plunger to be y I, in which y is

a fraction, say f, f, or |- ; and A its area ; then

y I . A = IV
;

... ^= 53.21 !1Il^. (-224)

The volume swept through by the piston per pound of

working air per stroke being given by equation (217) and

the stroke, I, having been assumed, we have for

, . V — V
the section, B, of the working cylinder, = ——=

—

- w,
c

or

^ = [l + (? -1) ~ - ^] ^> (217), (225)

in which q will exceed r, and will be assumed.

V — V
If —5— — be given, instead of /•, first find r approxi-

mately by equation (219) ; then assume q greater than r, and

find /' by (218), after which proceed as before.

The mean effective jiressure for the single-acting engine

is such an uniform pressure as would, if acting throughout

the upward stroke, do the same work as is done by the fluid

during one revolution of the engine. Since w pounds of air
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does the work w IT during this time, we have

EXERCISES,

1. Let T, = 600° F. ; T, = 120° F.
; _p, = 120 lbs. per sq.

in. ; stroke of working piston, 2^ feet ; 30 revolutions per

minute \
— ^ = ^ — the ratio of piston displacement

to plunger displacement ; and 5 horse-power be developed.

Find
Tj = 1060°

;
T, = 580°, omitting decimals.

^ = 1.83 ;
-^ = 0.55, nearly.

^2 1

r = 1.275, approximately, (219).

Assume q = 1.30
;

then r = 1.25, (218).

U = 5693 ft.-lbs., (201).

U = 0.453, (202).

^' = 0.317, if 0.7 F.

p^ = 17280 lbs. per sq. ft. (given).

«t,
= i.08 cu. ft., (210),.

v„ — -y. = 2.04 feet.
q a

Pounds of air^ w = 1.0, nearly, (222), theoretical,

or, w = 1.43 lbs., (222(2), practical.

Section ofplunger, A = -^— sq. ft., (224) ; and if y = -J,

then

Diameter' ofplunger = 2.46 feet.

Section ofpiston B = 1.17 sq. ft., (225).

Diameter ofpiston B = 1.23 feet.

Mean effective 2)ressnre, p^ — 2755 lbs. per sq. ft., (226).
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Find also the rumerical values of v^, v^, t\, y,, Vg, p^,,

and p^.

2. In a double-acting engine made by Stirling, hav-

ing a piston 16 inches diameter and a stroke of 4 feet,

making 28 revolutions per minute, it was found by calcula-

tion, and also by means of a friction brake, that the work

done per minute on the piston was 1670000 foot-pounds.

There were passed through the refrigerator 250 llis. of

water per minute, and its temperature was increased 18° F.

while passing. Assuming that the heat, except that doing

mechanical work, was absorbed by the water passing

through the refrigerator ; find the foot-pounds of heat al:)-

stracted by the water, the efficiency of the fluid, provided

seven tenths of the heat were abstracted by the refrigerator

;

the horse-power of the engine ; and the foot-pounds of heat

unaccounted for by the absorption of heat by the water in

the refrigerator.

3. In the engine described in the preceding Exercise, 83

pounds of coal were used per hour, possessing an estimated

thermal capacity of 11580 B. T. U. ; find the efficiency of

the plant ; also of the furnace, if that of the engine be ().3.

Ans. Efficiency ofpJaid^ 0.133.

Efficiency oifurnace^ 0.41.

From this it will be seen that the efficiency of the furnace

is considerably less than that of the steam boiler, which, in

good condition, may be assumed to be between i).i;o and
0.75. The efficiency of the plant is nearly equal to tliat of

the uKjst efficient steam plants of the present dav. See

page 201. But exact comparisons cannot be made, for the

thermal capacity of the coal is not known with sufficient

exactness, nor the comparative physical prcjperties iif air and
steam in regard to conductivity.

133. Ericsson's Engine, in which, the clainyes <>f

teiiipernture are made at constant pressure. About the

year 1833 John Ericsson constructed in Londiju a so-called
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" caloric engine," which attracted much attention, especially

from scientific men ; but it was not a commercial success.

JEis efforts at producing large engines of this class cul-

minated in making in New York, in 1853, a vessel of 2200

tons, called the Ericsson, ia which the motors consisted of

four immense caloric engines.* (For dimensions, see Exer-

cise 1, following.) After experimenting with these weaJc

giants—giants in size, but weak in power—they were aban-

doned ; but he produced another hot-air engine,^ which was

extensively introduced in various parts of the world ; still,

after a few years, many of them were removed and replaced

by steam engines. Their great bulk, the noise attendant

iipon their working, and the rapid destruction of their fur-

naces, were prejudicial to their general use. More recently

Captain Ericsson has designed a small hot-air pumping
engine, which is being extensively used, the principles of

which we will consider.

133. Description. Fig. 55 is an external view of a

small hot air, Ericsson pumping engine, and Fig. 5G is

a sectional view of the same. Within a cylinder of uni-

form bore are two pistons, A and B, of which B is the

driving piston and operates the mechanism in a manner so

clearly shown as not to need explanation. The lower piston,

A, which we will generally call the pl'unger, is made of

some substance which is practically a non-conductor of

heat. Its office is to transfer a body of air from the space

below it to the space above, and back again, and so on alter-

nately, and for this reason is known as the displacing, or

transferring, piston. In the position shown, the plunger A
is at the upper end of its stroke, and the piston B, being

governed in its speed by the crank I, is moving most rapidly,

and is driven by the expansion of the air in the lower part of

* Journal of Arts and Science, Sept., 1883.

f Contribution to the Centennial Exhibition, 1875, by John Ericsson,

pp. 425-38.
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tlie receiver il. The plunger remains nearly stationary', de-

scending but little while the piston completes its npward

stroke. The air in the npper part of the receiver is cooled

liy the Avater M'hich has been raised l)y the pump / circulat-

ing in the annular space ;» .?, so that the -water raised for

otlier useful purposes acts as a refrigerator of the engine.

I)uring the earlier part of the return stroke of the piston,

the plunger descends a little faster than the jDiston, main-

FIG. 55. PIG. 56.

taining a nearly uniform pressure upon the pistDU "while air

is transferi'ed from below the plunger to the space above,

the volume and temjjerature both decreasing. When the

piston has reached about the position shown in Fig. M< on

its downward stroke, the plunger will 1lave reaciiet1 tlie

hiwer end of its stroke and all the wijrking air \vill have

been transferred above and its temperature maintained at

its inferior limit while it is compressed by the completion
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of the downward stroke of the piston B ; after which the

plunger will rise to the position assumed at the beginning of

this description, during which the working air will be trans-

ferred to the lower part of the receiver, and its temperature

and volume both increased at nearly constant pressure.

The mass of air in the engine is constant.

124. Analysis. Fig. 57 is a copy of an indicator

diagram taken from a small engine of this class in Stevens

Institute of Technology. It will be seen that the changes

of temperature at constant pressure are clearly indicated,

FIG. 57.

and the isothermals, being nearly straight lines, show that

the variation of pressure is small compared with the change

of volume.

Assuming that the change of state from that of constant

pressure to that of constant temperature .is instantaneous,

the diagram of one pound of the working fluid may be rep-

resented by I) EFG, Fig. 58. F will represent the

state of the working fluid at its highest temperature, t„

greatest volume and least pressure ;
hence the plunger and

piston will both be at the upper ends of their strokes in the

ideal case ; and the mass of air below the plunger will be

considered 2&worUng air. and all the other air cushion air.

/i^will represent the volume of one pound of working air

at its highest temperature, and corresponds to the space

below the plunger. Let F F, to the same scale corre-

spond to all the space above the working air
;
then, will
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IF^ correspond to the entire volume of the cyhnder per

pound of working air. The cushion air being supposed

to remain at the inferior hmit of temperature, take /Z =
F F^ and construct the isothermal L K iov the temperature

r„ to represent thepath of the cushion air. Make i?Z>, =

KDE DiB

A—c2:4

PIG. 58. FIG. 59.

F

PIG. 60.

HK= EE„ G G, = IL\ then will I), F, F, G, be the

real indicator diagram of the engine. If Z>, falls to the

left of F, the pistoii at the lower end of its stroke will pass

into the space occupied by the working air at its greatest

volume.

Let Tj be the absolute temperature of the isothermal F F,

and Tj that of D G, and Cp the dynamic specific heat of air

at constant pressure ; then will the heat absorbed per

pound of air be, from state D to state F,

along F F,

alongF G,

along GD,

= B r„ log, -/, Eq. (36)

;

-zr,= Cp (r. - r,)

;

—H^= — JR r^ log, ;;

hence, the work done per pound of air per revolution, if
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the conditions were perfect, would be the sum of these, or

f^= 122.5 (r.-T,)Zo^.„r. (227)

Efficiency offluid with perfect regenerator,

^=^=--=^-^ (228)

or the efficiency would be the same as that of the perfect

elementary engine. There being no regenerator, the effi-

ciency of fluid, if working perfectly without radiation, will be

E=-^^- (228a)

If all the losses due to radiation and the refrigerator be

represented by n C^ (t, — rj, then the efficiency would be

^= ZJ I ^aF , ^

•

(2285)
.ZT, + 184«,(r, -r,) ^ '

The value of n is not known, but will exceed unity in this

class of engines, especially with very slow speed.

In this analysis, the pressure at state G will be assumed

to equal that of the atmosphere, although it may be some-

what less, as shown in Fig. 57 ; then if

p^ be the pressure per square foot of the atmosphere, r^

its absolute temperature, and v^ the volume of a pound
;

then
p.v^^R r„ (2)

;

(229)

.-.«,= 53.21 A
Let p and v, with subscripts, as in Article 120, represent

respectively the pressures and volumes at the corresponding

states ; then

A = i'a; Ps'v^ = Er,; (230)

Ps. r„
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from which it appears that if r, exceeds Ta, v^ will exceed

-Da. ^'ainay be taken, roughly, at 12^ cubic feet. If ?'be the

ratio of expansion, we have, making r — t, in Eq. (2),

p, _ Vt _ '>\

(231)

From the figure and equation (231), we have

Pi=^ Pi = Ph = A, ; Pi= p. =i^d, =i'e. = rp^. (232)

Yuhunes— working air,

Ti = — ; r,
r Ti r

(2S3)

Cushion air ; let q be the ratio of the entire volttme of air

in the cylinder to the greatest volume of working air, then

»i = I'll — 11, = (q — 1) r, ; Dk = — =
r r

Total volumes

—

(234)

V, V, + ^1 = (y - 1 + ^-) vr

r \ r^ J !•

-De: = —^ = -^ Vr
r i' )

Yoluine strept tlwough Jjy the piston per pound of iroel--

ing air per revolution—

2 (^V. - «dO = 2 (^ (r - 1) + 1 - ^)^' (236)

2fean effective 2'i'esHure pter unit area of the j>iston, or

energy expended per foot of volume swept through Ijy the

piston, distributed over two strokes

—

2 ((V,
- r„,j
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Mean totalforwardpressure—
v̂ ~v,+^Jog,r

Vf, - -"d,
'

Mean hack pressure—
P. =pu- p.- (239)

Greatest vol. workina air v, , /„ , „x
-n-r- -p—

;

^ = , nearly. (24:0)
Jr^tston displacement «,, — I'd,

Let

N be the number of revolutions per minute,

S, the average piston speed,

Z, the length of stroke of the working piston,

TF, the work in foot-pounds developed by the piston

per minute,

HP., the horse-power developed per minute,

w, the pounds of working air per revolution,

A., the area of the working piston
;

then
8= 'mri;
W =. 33000 HP

; (241)

w^w u ]sr=^<2,p^iA jsr. (242)

If the isothermals are so nearly right lines that they may
be considered as straight, the indicator diagram may be

treated as a trapezoid; hence, its area, referring to Fig. 58,

will be
GFX HI= G,F, X HI;

or, («, - V,) {p, - p,) = 53.21 (r, - r,) (r - 1), (243)

for the work done per pound of air per revolution.

EXERCISES.

1. In the steamer Ericsson, there were four single-acting

working cylinders, producing an aggregate of 300 horse-

power, as determined by an indicator. The pistons were

14 feet in diameter ; length of stroke, 6 feet ; revolu-
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tions, 9 per minute ; fuel, 1.87 pounds of coal per horse-

power per hour, the total heat of combustion of each pound

being estimated at 14000 thermal units.

Let
T, = 420° F., T, = 120° F.

From this data iind—

Mean efE. pressure, lbs. per sq. in. per double stroke. . 1.1.

Average piston speed, feet per minute lOS.

Vol. swept through by piston per I. H. P., ft. j^er min. 222.

Heat of combustion of one lb. coal

14U00 X 778 ft.-lbs. = 10892000.

Duty, 1 lb. coal. .33000 X 60 h- 1.87 ft.-lbs. = 1059000.

Efficiency of plant ...
33000_X 60 ^ ^^

-

^ ^ 1.87 X 14000 X 778

Theoretical efficiency of fluid, (228) E= 0.340.

Actual efficiency if 0.8 of theoretical 0.272.

Probable efficiency of furnace.0.0971 ^ 0.272 = 0.357.

Xotwithstandiug the good efficiency of the plant, the ex-

cessive size of the cylinders and other practical considera-

tions prevented the general introduction of this class of

engines for large powers.

2. Let the bore of the air cylinder of the pumping engine

shown in Figs. 55 and 56 be 6 inches, stroke of the working

piston, i?, 2^ inches, stroke of the plunger, 0, 5^ inches,

diameter of the plunger. 5f inches (length of the plunger

about 20 inches), being tiie dimensions of this engine in

the Institute. The piston at the lower end of its stroke

passes into the plunger space about one inch, and near the

juiddle of the stroke, as shown in Fig. 56, there is about -^-^

of an inch between the piston and plunger, thus re-

ducing the cushion air to a minimum. The furnace extends

upward about one half the length of the plunger, above

which the cushion air surrounds the plunger when at the

upper end of its stroke ; and as only that is effective work-
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ing air whicli is subjected hoth to the refrigerator and fur-

nace, the working air will be less in volume than that of tlie

plunger-displacement ; but the relation cannot be deter-

mined with accuracy. As nearly as we can determine in

this engine, we have

^^' ~ ^'' = 0.Y5, Eq. (240). (24:3(^)

Assume r, = 520 ; T, = 130° F. ; T, = 720° F. ; total

air volume per pound of working air at its greatest vol-

ume, q = 1 • 2 ; and 50 revolutions per minute.

Find :—

T, = 590 ; r, = 1180 ;
t^ - t, = 590 ;

- = 0.5.

Greatest vol. of a pound of working air,

(233), cu. ft vi
'= 29.67.

Greatest total volume, (235), Vt^ = 35.60.

Least total volume, (235),, or (243a) v^, — 11.35.

Volume swept through by the piston per

poxmd of working air per stroke, (243«),

cu. ft Vt, — Vi^ = 24.25.

Eatio of expansion, (235), or (236) r = l.s.

Work per lb. of air per revolution,

(227), ft. -lbs U ^ 1S45(.».

M. E. P., (237), (243a), (233),, lbs. per

sq. ft. double stroke p^, — 414.6.

M. E. P. for the single working stroke

of air, lbs. per sq. ft
I>-^
= 829.2.

M. E. P., for the single working stroke

of air, per sq. in J?^ = ^.^Q.

Area of working piston, sq. in 28.2744.

Work per revolution, ft.-lbs. .

28.2744 X 2^
_ g29.7 = 33,92.

1728

Work per minute, ft.-lbs 50 X 33.92 = 1696.

Horse-power 1696 ^ 33000 = 0.051.
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Efficiency, it n = 1 in Eq. {228a) F = 0.128.

Efficiency of plant if eff. of furnace be 0.3 0.037.

Pounds of working air, (211) w = 0.0018.

The pump described in this Exercise is used by the

students in their experimental course, and from one of

those I make the following abstract

;

At 50 rev. per m. indicated ^L E. P. was, lbs. per sq. in . . 5.42.

^ . ,, ,, 5.42 X 28.2744 X 2^ X 50
L work perm., ft.-lbs. .

y^
= 159(.

Indicated horse-power 1597 ~ 33000 = 0.0484.

Weight of gas, cu. ft. per hour 15.7.

Weight of one cubic foot of the gas 0.04584.

Calorific power, B. T. D". per lb 13650.
" « " " " " 'cu. ft 625.7.

1597 X 60

15.7 X 625.7 X 778

or about 1^ per cent.

This result shows the great loss of heat in this engine

without a regenerator. Either the furnace has an efficiency

of only about 0.1, or if its efficiency be 0.3, then n in equa-

tion (22Sff) should be between 3 and 4. If the efficiency

of the. furnace be about 0.2, then n must be 2 or more.

The effective power as determined by the water pumped
was 640 foot-pounds per minute ; hence the loss by leakage

and friction was estimated to be

or nearly 60 per cent.

Efficiency of plant, including iue\, engine and pump

,,. 'Zi.T .-. -0-00502;
15.7 X 625.7 X 778 '

or only one half of one per cent of the theoretical heat of

combustion of the fuel was utilized by the plant. This was

one of the best of fifteen experiments.
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The manufacturers guarantee that this size of jDump will

raise 200 gallons of water per hour 50 feet high with 18

cubic' feet of gas. This would give an effectual work of

.200 X ^ X ^ X 62A = 1383 foot-pounds. This is more
1728 60

^

than twice the amount found by the experiment above

cited ; but a part of the difference may be due to the fact

that more gas is required than was consumed in the experi-

ment, the quality of the gas, the condition of the engine,

etc. ; and the remainder—if any—to the art of advertising.

A very small power steam-engine with furnace and boiler

may require from 8 to 12 pounds of coal per horse-

power per hour, giving an indicated efficiency of some 2

per cent, more or less. The hot-air pumping engine is used

not on account of its superior efficiency, but ou account of its

greater economy and safety—there being no danger of ex-

plosion, and requiring but little expense for attendance.

135. Ratio of expansion to give a maximum
mean effective pressure. A general solution cannot be

made. We will assume some elements, and thus illustrate

the process for a particular case.

Let ff = 1.3 ;

'^'~ '""' = 0.8 ; m = -^
: and let 12i cubic

Vt r,

feet of air weigh a pound.

Then, (236)
m = 0.5 /' — 0.3.

With these conditions, and equations (227) and (237),

we have

122 5
i?. = -2o-^a(l-3 - 0.5r)%^r, (244)

which is a maximum for r. — 1.69, as may be found by
trial. The corresponding vabie of m will be

m, = 0.545.



246 HEAT ENGINES. [120.]

The value of ])^ in (244) will be zero for

r = ^ = 2.6,

under wliicli condition, the engine, if frictionless, would run

without doing work, and would simply change the states of

the working fluid. The mean effective pressure is unafEected

by the initial temperature ; simply the range of tempera-

tures being involved in the value of m, which may finally

be expressed as a function of r, as above. The work per

minute will depend upon the number of revolutions, and

heat must be supplied in sutficient quantity and with suffi-

cient rapidity to maintain the assumed temperatures.

Remark.—The application of tlie analysis in the two preceding articles

is very delicate, for there are so many physical conditions that cannot

be definitely determined, and a small change in any one of them may
produce a large change in the results. Thus, it will be seen that changing

the value of q from 1.2, as in the preceding Exercise, to 1.3 in this

Article, changes r from 1 75 to 1.69. (The value used in the E.x-

ercise is 1.8, being the nearest entire tenth, but its value is exactly 1.75.)

The "log ?•" will be changed in a greater ratio, thus affecting the final

result in a corresponding manner. The solution given shows that the

t',, — «j,
fraction is large when the engine is run at its best effect ; and if

it be assumed as 0.5 it would produce much less work per minute. The
greater the difference of the temperatures the greater the woik done per

pound of working air, and the greater the ratio of the absolute temjiera

tures the greater the eflSciency, other things being equal.

The working of the engine is quite as delicate as the analysis, it being

much affected by friction in the cylinder and stuffing boxes, and the con-

dition of the furnace.

136. Heat received and rejected only at con-
stant pressure. An .engine involving this principle

was proposed by Joule and Thomson {PJiil. Trans., 1S85),

but, so far as known, has not been con.structed. In this

engine the expansi(jn and compression of the fltiid woitld

be adiabatic. A BCD, Fig. 59, page 238, wonld be tlie

indicator diagram of such an engine, in which A B and J)

are ])ai-allel to the axis v, and B and A D are adiabatics.
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GAS ENGINES.

131. A gas engine is a hot-air engine in which the

cylinder containing the working air is also the furnace, heat

being produced by the rapid combustion of tlie fuel in the

cylinder— so rapid as to be called an explosion. The fuel

is an inflammable gas. When the piston is moving for-

ward in its stroke, air and gas are drawn into the cylinder,

and, at the proper time, the gas is ignited, an explosion

takes place, the air is suddenly heated and a high pressure

produced ; after which a part of the energy thus developed

is imparted to the piston during the remainder of the stroke,

and the other part is forced out of the cylinder at the ex-

haust.

The two most prominent systems which have been de-

veloped are : one in which the charge is fired with every

revolution, when the cylinder is about half full of air and

gas ; the other at each alternate revolution, when the piston

is near its remote dead point. In the former, the energy

developed can act on the piston during only about one half

of a single stroke ; while in the latter it will act during

nearly the whole stroke ; so that the latter ought to be, as it

is found to be in practice, much more efficient than the

former. Fig. 60, page 238, illustrates an ideal diagram of

the former engine.

In nearly all the more recent gas engines the piston

draws in the charge of gas and air during a full forward

stroke, then compresses it during the next backward stroke

;

and when just past the next dead point the gas is ignited

and the piston is driven by the energy thus developed dur-

ing the next forward stroke, and during the next backward

stroke the products of combustion are forced out ; thus requir-

ing two revolutions to complete a cycle. These are trunk

engines. Gas engines are made which take a charge at
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both ends of the cylinder and tluis reseinl:)le double-acting

engines, although, in reality, there is only one explosion

during each revolution. Others, like the Clerk engine,

compress the charge in an auxiliary cylinder which is fired

in one end of the wtirking cylinder with e\-ery revolu-

tion. Thus, while the steam-engine has been improved

by passing from single acting to double, C[uadruple, &c.,

acting during each revolution, the gas engine has been im-

proved hj jDassing from double to single acting during each

revolution, and, finally, t(_) one action during a bi-i'evolution.

138. Histoi'y. The origin of the gas engine is not

definitely known. It appears to be an outgi'owth of an effort

to use gunpowder as the ftiel, which substance was sug-

gested for this purpose as early as 16S0 by the celebrated

Huyghens. The gas engine proper was first patented in

England more than a .century later, ITOl, and, although in

the years following there were many impi-ovements and

many jjatents, yet it became of ni:i practical value until about

1860, during which year if. Lenoir cunbtructed in Paris the

first gas engine that was actually introduced into public use
;

and during the fi^•e years

immediately following several

hundred were u.--ed in France.

It was patented in England

by J. II. Johnson. It was of

the non-compression type, and

in its external appearance re-

semljled the ordinary double-

actingsteam-engine. The charge

was fired at each end durins:o
each revolution. It contained

no new principle, and its success ^vas the result of the care

and thoroughness with which the details were worked up.

A- section is shown in Fig. 61. Fig. 62 is an indicator

diagram taken from a two horse-power engine of this class,

J/Timr "Rnpni- dJuidci (j^UoiUll flm).

PIG. 61.
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Fig. 62.

as shown in tlie Journal of the IFranMin Institute, Vol.

LI., 1866, Feb., p. 176.

The length of the hne A B, Fig. 62, represents the length

of stroke of the engine, while the line itself is the atmos-

pheric line. Three lines are traced

representing the action at one end of

the cylinder during six revolutions.

From Atoh the charge was taken in at
'

atmospheric pressure, but from h to c,

the inlet valve being partly closed, the

pressure fell, and at o the valve closed, the charge was fired

and the pressure suddenly raised ; and the energy thus de-

veloped drove the piston to the end of its stroke. During

the return stroke the products of combustion are driven

out at atmospheric pressure.

In 1867 Otto and Langen exhibited their free piston

engine, of which Fig. 63 is an external view of one of this

class in Stevens Institute. The princi-

ple was not new, but its details were so

well worked up that it became a com-

mercial success. It acts by drawing in a

charge of air and gas during the iirst

few inches of its stroke, then the valve

is closed, the charge fired, and the pis-

ton, which is free, is shot upward, and a

partial vacuum formed within the cylin-

der, while the pressure of the atmos-

phere on the piston gradually brings it to

rest and then forces it downward. Dur-

ing the downward motion a pawl on the

piston rod engages a ratchet on'the main

shaft, thus imparting to the latter a

rotary motion, which is rendered nearly uniform by the fly-

wheel.

The idea of comjjressing the charge before explosion was

ind Langen irre Vmon Engine,

FIG. 63.
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mentioned as early as 1801, but the system now generally

used was patented by Barnett, an Englishman, in 1S3S, and

by Million, a Frenchman, in 1S61, and further developed

by M. Beau de Rochas in France and Sir C. "W", Siemens

in England, both in 1S62. The advantages of compression

liecame fully recognized by this time, and the jjrinciple has

]>een incorporated into nearly all gas engines constructed

since that date.

In ISTC M. Otto produced his " Otto Silent" engine,

which, for smoothness and quietness of running, and the

economy in the use of the gas fuel, far exceeded all j^i-e-

FIG. 64.

vious inventions of this class of engines, and in less than ten

years after its invention it is claimed that 1.5,000 were sold.

Xo new principle was incorporated, the success being en-

tirely dependent upon the skilful use of the principles de-

velojied by others. Fig. 01 is an external view of an " Otto,"

used in making experiments in Stevens Institute.

Successful gas engines of many varieties are now used.

.Vt the American Institute Fair, in the fall of 1S87, six

different types -v/ere exhibited by as many different invent-

ors
; among which was an " Otto" containing the most

recent improvements, some of which were exceedingly
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ingenious, and a " Baldwin" of recent invention, which for

silent running and uniformity of motion seemed to be all

that could be desired. All these engines outwardly re-

sembled the modern horizontal steam-engine. Some en-

gines of this class are duplex, some vertical, but mostly

horizontal.

The great improvement made in the gas engine is strik-

ingly illustrated by the fact that the first successful ones,

Lenoir's, consumed about 100 cubic feet of gas per indicated

horse-power per hour, while an Otto has consumed less than

20 cubic feet for the same power. Some of the earlier

engines consumed more than 100 cubic feet, and the latter

ones more generally require about 24 cubic feet. The low-

est figure given above was for a rich gas and an 8 H. P.

engine.

139. Some details. Between the piston at its dead

point and the end of the cylinder is a space not swept over

by the piston, called the combustion chamber y the volume

of which is 0.4, more or less, of the entire volume of the

cylinder.

The ily-wheel is large compared with the power developed

to insure more uniform running. The speed is also regu-

lated in part by a governor, which operates differently in

different engines. In some it cuts off a part of the supply

of gas with each charge ; in others it cuts off an entire

charge until the speed is prop_erly reduced ; and in still

others it closes the exhaust so as to retain a part, or all, of

the products of combustion of the previous explosion, thus

preventing a full charge of both air and gas being taken in.

The gas is ignited in various ways. A flame of gas, ex-

ternal to the cylinder, communicating with the interior by a

small orifice covered by the piston until the charge is taken

in and then uncovered during its regular stroke, has proved

to be efficient. The orifice may be so small as to remain

open during the explosion, but in the more recent engines
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the orifice is covered hy a valve. Tlie flame may be carried

a vei'y short distance in a cavity of a valve. Incandescent

metal, so rendered Ijy a flame or by an electric current, has

been successfully used. In some cases ignition lias been pro-

duced by an electric spark ; and in still others by chemical

action. This is an exceedingly important detail, and has

given inventors much trouble, as its action must not only be

certain, but must act promptly at a definital part of the

stroke, and, sometimes, more frequently tliau 90 times per

minute.

A space is provided for the circulation of water about the

cylinder, through the piston, and also through the cylinder

heads. This is rendered necessary to prevent injury to the

metal from the high temperatures due to the explosion.

Mr. Dugald Clerk made experiments upon gas exploded in

a closed vessel, determining the time of explosion and the

pressures resulting, from which the temperature was com-

puted by means of equation (1), page 11. He gives the

followiiii; results ;

MIXTURES OF AIR AXD OLDHAM COAL GAS.

TEMPERATURE BEFORE EXPLOSION, 17° C.
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at the instant of explosion, and, as Mr. Clerk says, are

merely averages ; and it may be taken, that coal gas mix-

tures with air give upon explosion temperatures ranging

from 800° C. (1500° F. nearly) to nearly 20OU" C. (3600°

F.), depending upon the . dilution of the mixture. Since

cast iron will melt when subjected to a prolonged heat ol

about 2000° F. (p. 89j, the heat of explosion would de-

stroy the working surface if it were not cooled by some
artificial means; bixt with the means employed, cylinders

have been used for years, and a wearing surface main-
tained as perfect as in the steam-engine. The glow result-

FIG. 65.

2ier.

ing from the explosion has been observed by inserting in

the cylinder a small tube containing a strong glass through

which one could look.

130. Theory. "We will consider the bi-revolution

compression system. Fig. 65 is an actual indicaitor diagram

taken from a 10 horse-power Otto engine during an experi-

ment in the Institute, except that we have added the part

A 1 CB to represent the combustion chamber, and reduced

the linear dimensions one half. It is a fair sample of many
others that were taken. A D ia the atmospheric line, 1 D
the stroke of the piston, A 1 the clearance, 2 5 the com-

pression line, 5 C the explosion line, C 7 the expansion line.

The explosion is nearly, but not quite, instantaneous, as
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shown \>y the line 5 C—the pistoji moving a very short

distance before the explosion is complete. During the tak-

ing in of the charge the pressure follows the line 1 2

;

during compression, the line 25 ; during explosion, the line

5 0; during expansion, the line 6' 7; during exhaust, 7S

;

during the fourth stroke the products of combustion are

forced out, following 81.

In suljjecting these operations to analysis, we proceed,

as before, to construct an ideal indicator diagram, in which

M'e assume that the explosion takes place instantaneously

at the remote dead point—that the expansion and compres-

sion lines are adiabatic—that the fall of

pressure at the end of the stroke takes

s^^ place without change of volume—and
^^^•- that the charge is taken in and expelled

at atmospheric pressure ; thus producing

—I

—^^~^*
a diagram like 0, 1, 2, 3, Fig. 66, in which

—

'

g" C represents the pressure of the atmos-

piG. 66. phere.

Letting the subscripts corresponding to

the corners of the diagram represent the corresponding

states
;
then will the heat energy developed liy the explosion

be the area 3012 indefinitely extended to the right between
the adiabatics U3 and 12 prolonged; the value of which
for each pound of the substance will l>e

//, = C; (r, - r„),

as in Exercise 3, page 6i. The heat rejected in passing

from state 2 to state 3 will be, similarly,

hence the efficiency will be

E = ^' ~-^' = ^1 — To - (-. - T3) _ ^ _ T, - Ta

Hi r, — To n — To

Since 'i\ = v, and t\ = v„ we have from equation (42), if y
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be constant, and the same for the curve of expansion as

for compression,

t, To'

n — T,
. r„ T,

,

7, — T„ T, r„ '

n . /«, ^^-^ r„-r,
•••^=l-f =1- i^

=1^; (246)

according to which it appears that the efHciency depends

only upon the ratio of the temperatures just before and just

after compression—or, generally, upon the temperatures at

the extremities of either adiabatic, but otherwise is inde-

pendent of the temperature of the explosion.

The work per pound will be

U,,. = II, -E^^C.l (r. - r„) - (r, - r,)
J. (247)

To find this work in terms ofp and v, we have pv = i? r as

in equation (2), and B={y — 1) C^, as in the answer to Ex-

ercise 7, page 59 ;
.-. C^r^ — -^° '""

, as at the top of page
y — 1

65, and similarly for j?„ -y,, r„ &c. ; hence,

fTib. =
-^ (P> ""i

- i'. «. — Po V, +J\ -".) (2*8)

This may be further reduced by means of equation (42),

and making Un = Ui^ ^ v, = the work done per cubic

foot of the mixture, r = -y, h- «„ the ratio of expansion,

and p, = p^ rT, we have

y — \ Ti

The mean effective pressure on a square foot of the pis-

ton, or the energy developed per foot of volume, distrib-

uted over four strokes, will be

p^^^E^^ -ll^ (250)
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Let iV" be the number of revolutions per minute ; S,

the average piston speed ; /, the lengtii of stroke ; JI-P, the

horse-power ; W, the work in foot-pounds developed bv

the piston per minute ; w, the pounds of the mixture at

each explosion ; A, the area of the piston ; then,

S= % XI;
W = 33000 IIP ^ 2pJAX' (251)

Work donepevpound per single stroke will Ije

Yolume swept over hy tlte piston per stroke

,
, 33000 IIF .„.o^

^' ' = -YWpT- ^'-'^

Volume swept over hij tJiepiston perpound of the mixture

per stroke

v,-v, = ^. (2.54)

131. The furnace. The smaller the combustion

chamber, compared with the volume swept over by the pis-

ton, the more efficient will be the charge, as shown by equa-

tion (246), since r, -h r^ will be smaller the smaller

-y.j -^ V, as shown by equation (42 1. But, on the other

hand, the smaller d„ = v^ is when the explosion takes place,

the greater will l)e p^ and r^ after the explosion, as shown

Ijy equation (2) ; but as the temperature of explosion is

very high in practice, there will be a practical inferior limit

to the size of the combustion chamber, which must be deter-

mined by a protracted use of the engine. In the " Otto,"'

with which experiments were made at the Institute, the

combustion chamber was 0.38 of the entire volume of the

cylinder, and about the same relation exists in some other

engines.
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The efficiency of the explosion, or, as we may say, the effi-

ciency of the furnace, is not perfect. Experiments made
by Mr. D. Clerk in closed vessels of fixed vohune, on the

supposition that the absolute temperature varied as the

absolute pressure at constant volume, found that the heat

evolved varied from 50 to 60 per cent of the theoretical

(The Gas Engine, p. 182) ; the latter being nearly the

highest value found in any case, while in many cases it is

considerably less than the former. Thus, for a mixture of

air and Oldham gas, he found

Fraction of gas, vol. ^, -^^, ^-^, ^\, \, \

Heating efficiency 0.40, 0.48, 0.50, 0.46, 0.40, 0.37.

This shows that the furnace efficiency diminishes with

the richness of the gas when the gas exceeds -^^ of the vol-

Txme of the mixture {ibid., p. 113). The table in Article 129

shows that the efficiency in that case varied from a little

below to a little above 50 per cent, when the initial tempera-

ture was 11° C. The initial temperature in the engine

will be considerably above this, which, added to the facts

that—the pressure in the cylinder may be less than that of

the atmosphere—a part of the products of combustion will

be retained—possible leakage—and imperfect action—make
it advisable, in the absence of actual measurements, to con-

sider the efficiency of the explosion as not more than 0.45

of that indicated by the chemical composition. The cause

of the large difference between the theoretical and actual

heat developed is not well known. It is found that, gen-

erally, the best results are obtained when the volume of

air is 6 or 7 times that of the gas, so that the volume of

the gas for each charge will be y or J of - the volume

swept over by the piston in 07ie stroke.

133. To find the work and efficiency in
terms of tlie tlieoretical energy of tlie gas.

Let A'o be the energy of the gas in thermal units, devel-
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oped by the explosion of one pound of tlie gas as deter-

mined from its cliemical composition, A'c tlie dynamic

equivalent, m the coefficient of reduction of its efficiency,

r,, r^, P„ P„, the temperatures and pressures, respectively,

which would result at the states 1 and 2, if the efficiency,

r/i, were unity, and the expansion adiabatic ;
and assuming

that the entire energy of the explosion is communicated to

the mixture, we have

and establishing an equation in the same manner as (247) we

have, for the indicated loork per pound of the mixture per

stroke of the explosion, or per bi-revolution of the engine,

?7. = mA-,[l-(^)^"']; (257)

hence, the indicated efficiency of the plant will be

E=m\^-{^-^Y~^^. (258)

133, The expansion and compression curves.
Since there is a iiow of heat from the working fluid to the

water jacket and the reverse, the curves will not be strictly

adiabatic, neither will they be isothermal. Their character

may be more accurately determined from a study of an

actual diagram. Assuming that they follow the law

p if = constant,

Messrs. Brooks and Stewart found, for the curve between

6 and 7, Fig. 65, x = 1.363 ; and for the compression curve,
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X = 1.335. Professors Ayrton and Perry, by an experi-

ment which they confess was not as accurate as the above,

found for the expansion curve, x = 1.479, and for the com-

pression curve, X = 1.804.* These results show that it is

much more nearly adiabatic than isothermal. The value of

y used in our analysis should be less than 1.4, the value for

air, because the presence of the hydrocarbon of the mix-

ture will reduce the ratio of the specific heats ; but since

the quantity of air predominates, we may, in the absence of

actual measurements, use y = 1.4. Air behaves so nearly

like a perfect gas that this value would be practically con-

stant, even for the highest temperatures, if the expansion

were adiabatic.

134. Experimental results. Messrs. Brooks and

Steward, during the summer of 1883, made a thorough test

of an Otto engine,f from which we make the following

abstract. Dimensions of the cylinder, 8J inches diameter, 14

inches stroke. The air and gas used in mixtures were both

measured by a gas metre, and it was found that when the.

volume of air used was Y.l times that of the gas, the best

indicated results were obtained. The diagram taken during

the 19th test is shown in Fig. 65, with the linear dimensions

reduced to one half their original value. During this test

it was found that

:

Vol. air _ ^ .^o .
Weight of air _ ^„ go

Vol. gas
'

'

Weight of gas

About one haL the heat of explosion was carried away by

the water jacket. The temperatures were computed by

means of equation (2), the volumes and pressures being

* Phil. Mag., 1884, (2), 65.

f Oraduation Them at Stevens Institvte of Technology, 1883
; Van

Nostrand's Engineering Magazine, 1884, Feb., pp. 90-104.
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meiiBured from the indicator diagram. The specific heats

of the mixture were computed to be

Cp = 0.2C.S ; c, = 0.196
; .

•
. ;k = 1-37.

The complete combustion of the gas, determined from its

chemical composition, gave 9070 calories per kilog., or

617.5 B. T. U. per cubic foot. From 23.5 to 25.6 cubic

feet of this gas were used per indicated horse-power.

The mean effective pressure was about 58 pounds per

square inch per stroke of the explosion ; and if there was

an explosion for every fourth stroke tlie average pressure

was 14J lbs. for every stroke. The average number of

revolutions was nearly 155 per minute.

Temperature of the exhaust gases, from 720° F. to 778° F.,

as determined by a pyrometer.

The indicated efficiency was 18 per cent of the total heat

of combustion of the gas, Knd the effectual efiiciency for the

plant, as determined by a brake, was 14|- per cent.

The experiments-upon tlie '' Otto," of various sizes and in

distant parts of the world, have been numerous, giving

efficiencies of 15, 16, 17, and 18 per cent.

From these results it will be seen that the explosive gas-

engine gives the liighest indicated efficiency for the plant

of any system thus far considered. For intermittent work

and cost of attendance, it has an advantage over the steam-

engine. On the other hand, the engines are much larger for

the same power, and are thus objectionable for very large

powers, and the cost of fuel for steady running is greater,

since a heat unit in the form of gas costs considerably more
in the market than a heat unit in the form of coal. Cir-

cumstances must decide what class of engines is most econ-

nomical for a particular case.

The following is an analysis by Professor T. B. Stillman, of Stevens

Institute, of the gas used by Messrs. Brooks and Stewart. The gas

was taken from the mains supplied by the Hoboken Gas Company :
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By volume.

H Hydrogen 395

CH, Marsh gas 373

N Nitrogen 083

CsHe, Average. . . .Heavy hydrocarbons 066

CO Carbonic oxide 043

Oxygen 014

HjOi.COj.HjS.iSsc.. Impurities, &c 027

1.000
By weight its composition is found to be :

Cu. Densi- Kilos, per W^t p.

metres. ties.* cu. m, unit.

H .395 X .087 = .035 .058

CHi .373 X .694 = .258 .426

N .083 X 1.215 = .099 .163

CsHe, Av'e .066 X 1.84 = .121 .200

CO .043 X 1.215 = .052 .086

.014 X 1.388 - .019 .031

H2O,, &c. .027 X -.8 = .022 .036

1.000 X .606 - .606 1.000

Heating Power of the Gas.

Upon complete combustion the gas develops heat per cubic metre, as

follows

:

Calories, Calories.

fromH 29060 X .035 = 1020
' CH4 11710 X .258 = 3020
" C3H.,&c. 11000 X .121 = 1330

" CO 2400 X .053 = 125

per cu. m. 5495c.

5495
and per kilog. gas „.„ = 9070 calories.

Expressed in British measures, one cubic foot of gas develops 617.5

heat units.

alk necessary for complete combustion and the products op

Combustion.

In order to determine the amount of air to be supplied for complete

* Schottler : Die Oasmaacliine, p. 77. By "density" is meant the

weight of one cubic metre in kilogrammes. As will be seen from the

above, one cubic metre of the gas in question weighs 0.606 kilos.
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combustion, it is Lecessary to nscertain the quantity of oxygen that is

taken into chemical combination by the several combustible constituent?

of the gas.

2H + = H,0
by volume 2 -|- 1=3
by weight 2 -)- 16 = 18

CH4 + 40 = CO^ + 3HjO
by volume 2+4=3 +4
by weight 16 + 64 = 44 +36

CsHa + 90 = 3CO2 + 3H,0

by volume 2 + 9 =6 +6
by weight 42 + 144 = 133 + 54

CO + O = CO2

by volume 2 + 1 =2
by weight 28 + 16 = 44

The combining proportions per unit of the several constituents is

By volume

—

IH + iO = IH.O
IOH4 + 20 = ICO. + 3H2O
ICsHe + 4^0 = 3CO2 + 3H,0
ICO + iO = ICOi

IH + 80 = 9H,0
ICH, + 40 = VC<^. + IHsO
ICaHs + ¥0 = ^iCO, + ?H,0
100 + 40 = VCOi

The volume of oxygen required for the combustion of 1 volume of

as is :

H .395 X * = .197

CH4 .373 X 2 = .746

CsHe .066 X 4i = .297

CO .043 X * = .022

By weight

—

1.262

less O in gas .014 l)14

1.248

Taking oxygen as 21 per cent in atmospheric air, the volume of air re-

quired is

= 5.94 per volume gas,
.21

or the entire volume is 6.94 times the volume of gas.
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Since air weighs 1.251 kilos, per cu. metre, the ratio by weiglit is

5.94 X 1251 ioo^ * 1

From the combustion of 1 unit weight of gas with 12.26 air there re-

sults 13.26 units weight of a mixture the composition of which will be :

(CH4) 426 X V = 1171)
COs -I (CsHe) 200 X ¥ = -629^ 1.93

(CO) 086 X^,'-= .135)

( (H) 058 X 9 = .5221
' '"") 426 X f = .958^

e) 200 X *= .257

i

HjO] (CH.) 426 X f= .?58[- 1.74

( (CsHe

T^r ( from the air 9.407

)

« e™
^

] in gas itself 163f
^°'

Impurities in gas 0.03

13.27

Per unit weight of mixture the composition will be :

CO, 146

H,0 131

N 721

Impurities 002

1.000

The volume which 13.27 kilos, of products of combustion will occupy

is found from the known volumes of the constituent gases as follows :

cu. m. per

kilos. kilo. cu. m.

CO2 1.93 X .524 = 1.011

H2O 1.74 X 1,28 = 2.227

N 9.57 X .823 = 7.876

Impurities .03 X ~.9 = .027

11.141

The products of combustion then occupy 11.141 cu. m. to every kilog.

of gas. To find the ratio per cu. metre of gas we have simply to multi-

ply by .606 the number of kilos, in a cubic metre, and we get 6.751 as

the result. As there is necessary 6.94 cu. m. of mixture of air and gas

to every cu. m. gas, it is seen that by combustion a contraction of 2.7

per cent takes place.

-When there is an excess of air present, as is always the case in prac-

tice, the contraction becomes less in proportion, and may be considered

to be about 2 per cent. In the following thermodynamic computations

no account is taken of this contraction.
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Specific Heats and their Ratio.

The specific heats of the products of combustion are determined from
the specific heats of the several component gases as follows

:

Specific heat at constant pressure (water = 1).

f
.3169 X .146 (COj) = .0317 ~|

,, _ .4805 X .131 (H.O) = .0629 ! „„.„
^P - .2438 X .721 (N) = .1758 f

'''''''

[ ~A X .002 (impurities) = .0008 J

Specific heat at constant volume (water 1).

r .1714 X .146 (CO2) = .0250 1
„ _ I .3694 X .131 (H=0) = .0484 I ,q„.
^' -

1 .1727 X .721 (N) = .1245 (
'^^°

[ -.3 X .002 (impurities) = .0006 J

The ratio of these specific heats is the exponent of adiabatic expansion,

and is found to be :

Cp _ .2712 _

Since there is always an excess of air present, these values will be
somewhat modified by that fact. From the metre records of test 19 the

ratio of air to gas by volume was found to be 6.63 to 1 ; by weight the

ratio is

6.63 X 1.251

1 X .606
18.68.

Since for complete combustion only 12.26 parts of air by weight are

needed, there are 1.42 parts in excess. The specific heats of air being

Cp = .2375 and Cv = .1684, the effect of the excess of air will be lo

reduce the specific laeat slightly.

„ _ (.2712 X 13.26) + (.2375 X 1.42)
^' -

14:68
= -^^^

r,
(.1985 X 13.26) + (.1684 X 1.42)

I'V — , I ao = -196
(.1985 X 13.
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B. T. TJ., volume of working air 7 times that of the gas,

weight of gas say -Jy of that of the air, efficiency of the

furnace 0.60 of the theoretical, y = 1.38. (These are

approximately the conditions of the engine and test in

Brooks and Stewart's experiments.)

We find-

Area of tlje piston,- sq. in = 56.75.

Piston displacement per stroke, cu. ft = 0.46.

Vol. of air taken in each fourth stroke, f of 0.46 = 0.402.

Pounds of air for each charge. . .\ .0.402 X 0.08 = 0.032.

Pounds of gas for 80 charges.. .^\ x 0.032 X 80 = 0.150.

"Work per lb. gas, eq. (257), ft.-lbs 0.60 X 778

X 16326 [1 - 0.380-38] = 2344970.

IHP. for the 0.15 lbs. gas
^344970 X 0.15 ^^ 33000

Indicated efficiency, (258) B = 0.185.

If TO = 0.55 we would have :

—

Indicated HP. for 0.15 lb. gas = 9.7.

Indicated efficiency ^=0.169.

These last results agree very nearly with the measured re-

sults of Brooks and Stewart—the horse-power being the

same and the efficiency about one per cent less than their

best result.

2. Required the horse-power, efficiency, pounds of air and

of gas per minute, of a gas-engine having a 10-inch cylin-

der, 16-inch stroke, making 150 revolutions per minute,

charge every fourth stroke, combustion chamber 0.4 of the

volume of the whole cylinder, heat of combustion of one

pound of the gas 18000 B. T. U., volume of working air

6^ times that of the gas, weight of the gas 0.55 that of an

equal volume of air, 12^ cubic feet of air to weigh a pound,

efficiency of furnace, 0.50, and y = 1.4.
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THE PETROLEUM ENGINE.

135. Naphtha Engine. In petroleum engines, the

working fluid is either petroleum, or some of its products.

Brayton's petroleum engine was a modification of that in-

ventor's gas-engine. The products of" combustion entered

the cylinder, and in this respect was similar to the gas-

engine ; but combustion was gradual, the indicator diagram

showing that it was made at nearly constant pressure up to

the point of cut-off. Mr. Clerk concludes from his ex-

periments with a 5 HP. engine that it utilizes about 6 per

cent of the heat of the ]petroleum. Professor Thurston,

from an experiment with one of these engines, concluded

that 32.06 cubic feet of gas were consumed per IHP.
;

but Mr. Clerk concludes that the same experiment shows a

consumption of 55.2 cu. ft. per IHP. per hour. {The

Gas Engine, p. 158.)

"We will consider only a recent form, called the Xaphtha

Engine, of which Fig. 67 is an external view. In this en-

gine the products of combustion do not enter the cylinder,

but the same substance is used for the fuel and working

fluid. A small plunger pump near D, but not shown in the

figure, worked by the engine, forces some liquid naphtha

into the boiler F at each revolution, a part of which is

conducted fi'om the boiler down the tube H to the combus-

tion chamber, or furnace, below the vah^e che.st A, and is

there burned. At E is an opening into the tube H through

which air may be forced to increase the rate of cijmljustion.

The heat of the burning naphtha vaporizes that remaining

in the boiler, and the vapor thus generated is used in the

engine in precisely the same manner as if it were steam

;

and the lav: of its action in the engine is precisely the

same as steam, as may be inferred from Fig. lis, which is a

copy of an indicator diagram taken liy Doty and Beyer,
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Fig. 67.

in the experiments referred to be-

low. The ratio of expansion, as here

shown, is about 2, but it may be

varied at pleasure. The drop, when
the exhaust opens at the end of the

stroke, is sudden, and the back pres-

sure and compression lines are good.

The depression of the steam line,

showing initial expansion, is prob-

ably due to the setting of the valve,

since the diagram from one of the

cylinders was free from this de-

fect.

If the diagram be freed of its irregularities and of

compression, it would be analyzed precisely like the steam-

engine, and the solution in Articles 110, 111, and 112 would

be applicable. Probably Article 110 represents the case

more nearly, since the cylinders are

very near the boiler, and receive heat

continually from it. But the analysis

cannot be carried out numerically, since

the physical properties of Xaphtha are

not sufficiently well known. The latent

heat of evaporation at varying pressures is not known,

nor the value of R in the equation p v =^ R r—if

indeed it is constant for the vapor. "We will, however,

after giving the results of some experiments, make an ap-

proximate solution.

136. Experiments. Messrs. Doty and Beyer made
experiments upon a naphtha engine, of which the following

is a summary of their report :*

Three single-acting trunk engines were connected to the

Fig. 68.

* Graduation Thesis of Paul Doty and Richard Beyer, Stevens Institute

of Teciinology, Hoboken, 1888. The livn Age, July, 1888.
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crank shaft, the cranks making successive angles of 120°

with each other. The lower ends of the coils constituting

the boiler were connected with the pump, and the upper

ends entered a common chamber.

Diameter of cylinders, each 3J inches.

Stroke of pistons, each 4J "

Piston displacement, each 37i cu. in.

Admission ports, each -^ x 2-^g inches.

Exhaust ports, each -fg x 2^ "

Diameter of pump IJ "

Stroke of pump If "

Travel of main valves, each f "

Clearance of cylinders, each 1.86 cu. in.

or 5J per cent of piston displacement.

Boiler, seven spirals of four coils each.

Coils, copper tubing outside diam f "

Height and diameter of coils, each 12 "

Burner had 26 openings, diam. of each i\ "

Heating surface 13 sq. ft.

RESULTS.

Average revolutions per minute, number 280.7.

Total Indicated HP. from the three cylinders 2.81.

Mean effective pressure, lbs. per sq. in. , about 3.5.

Naphtha burned per IHP. per hour, lbs 3.53.

Price of naphtha, June 5lh, cents per gallon 10.

Cost per HIP. per hour, cents 6.2.

Heating surface, square feet per IHP 4.3.

Water used to condense the exhaust naphtha, lbs. per IHP. per

hour 25594.

Increase of temperature of condensing water, degrees F 3.9.

Naphtha passing through condenser per hour, lbs 421.

Temperature of the stack, degrees P., about 685.

Specific gravily of the naphtha, that of water being unity 0.683.

One gallon weighed, pounds 5.69.

Assuming that the fapor was saturated, three elements of

this data give, for

the latent heat of eoiqxjration
25594 X 3.9

421

thermal units, at atiiios|)heric pressure.

207
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In order to determine the relation between the tempera-

ture and pressure of saturated vapor, these experimenters

devised a special thermometer with which they determined

the temperature of the vapor in the steam chest, and at the

same time determined the pressure by means of a pressure"

gauge. These measurements gave

for 35 lbs. gauge pressure a temp, of 225° F.

;

" 47 " " " " " " 24-2° F
" 60 " " " " " " 258° F.

Substituting in equation (80), page 9Y, these values of p
reduced to their equivalent in pounds per square foot, and

the corresponding temperatures reduced to the absolute

scale, and finding the values of A, B^ C, we have

/ ^^^1Q 889.4 625784 ,„.qs
log.^p = 6.4618 _ -,— ; (259)

in which

log,,B = 2.949092 ; log^^G = 5.796469.

Making^ = 2116.2 this formula gives r = 602.62° or T
— 141.96° F. JSTaphtha has not a fixed boiling point. In

an experiment it began to boil at 60° C, and as the more

volatile parts passed off, the temperature gradually in-

creased, and, in the course of twenty minutes, it raised to

68° C, giving a mean of 64° C. = 147° F. The value

found by the formula agrees, approximately, with the lower

observed temperature, 60° C. = 140° F.

To find the volume of one pound of the saturated vapor

of naphtha at atmospheric pressure, we have, from equation

(84), page 98,

V = 0.0234 + ^^'^ ^ '^'^' = 7.69 cu. ft.,-T 24035.5
'

in which 0.0234 is the value assigned for one pound of

liquid naphtha at 60° F.
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It was found that the naphtha, exposed to an atmospheric

j)ressure of 29.982 inches, at a temperature of 70° F.,

evaporated at the rate of 0.092094 lbs. per square foot per

hour.

Some of the values found by these experimenters differ

largely from those given by others. Thus, the boiling point,

as found by them, is between 116° F. and 167° F., but Box
On Heat, page 14, gives 306° F. on the authority of Ure.

The latter must be an error. They found the latent heat of

evaporation to be 23Y ; while Box, page IS, gives 184 on

the authority of Ure. If Ure's figures were reversed, giving

184° F. for the boiling point and 306 for the latent heat of

vaporization, they would appear more rational ; still we can-

not say what is correct. They give 0.683 for the specific

gravity at 60° F., while Rankine, in Table II. of the Steam

Engine, gives 0.848 at 32° F. ; and both cannot -be correct.

The discrepancies may be due in part to the difference in

the chemical composition of the different specimens. The
relation between the pressure and volume, given in equation

(259), is considered only approximate, not only on account

of the heterogeneous character of the substance, but also be-

cause it depends upon three experiments only, whereas there

should be a larger range of experiments in order to test its

accuracy and reliability. The results will, however, be sub-

jects for comparison for future experimenters.

137. Efficiency of the Naphtha Engine. In

the absence of a determination of the calorific power of the

naphtha used in the above experiment, we will assume that

the heat of combustion is 22n()i) thermal units per pound,

since its value would be 22274 if the composition were

For,

6 X 13 X 14544 = 1047168
14 X 1 X 62032 = 8f)S44K

86 )1915616( 22274.
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There was consumed 3.53 pounds of naphtha per IHP.
per hour, hence the indicated efficiency of the plant, inchid-

ing fuel, furnace, and engine, was

TT _ 33000 X 60 _~ 3.53 X 22000 X 778
~

'

or nearly 3f per cent. It is a good 3 horse-power en-

gine, that—including fuel, furnace, boiler and engine—
yields this efficiency. If the particular naphtha used were
richer in hydrogen than that assumed, or rather if its chemi-

cal composition gave 23000 thermal units, the efficiency

would be reduced to 3.1 per cent.

The cost of riinning, 6.2 cents per IHP. per hour, is

not a measure of the efficiency, but of the economy. A
steam-engine, run by the waste fuel of a saw-mill, may cost

nothing for fuel ; while the same engine run with anthracite

coal may cost many dollars daily for this item, while as a

heat engine the efficiency should be the same in the two

cases.

138. Efficiency of fluid. Any solution of this part

of the problem will necessarily be approximate, since some

of the data must be assumed ; and yet such a solution may
give some idea of its probable efficiency, and hence of the

efficiency of the furnace and boiler. Eegnault found the

specific heat of petroleum to be 0.434, and we will assume

it to be the same for liquid naphtha. The latent heat of

evaporation at atmospheric pressure is 237 B. T. U. per

pound, as found above ; but the law of change with tem-

perature and pressure is not known. As this value approxi-

mates more nearly to that of acetic acid than any other sub-

stance now before us (see Article 74 of Addenda), we
will assume, although otherwise quite arbitrary, that

K = 287 - 0.1 r. (2G0)

Let the initial temperature of the liquid be 58° F. ; the
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initial absolute pressure in the cylinder 60 lbs., at which the

temperature will be 239° F., Eq. (259) ; ratio of expansion,

2 ; back pressure, 10 poiinds ; and, in order to make as few

other assumptions as possible, consider the law of expansion

to be

p -yV- = constant,

and since the ratio of expansion is small, this cannot lead to

a large error.

Then,

l>^
= 60 X 141 = 8640 lbs. per sq. ft.

Eq.(86), ., = 778(237-0.1x239) ^,^^^_ ggj
2 3026 X 8640 (1^^*+ 1A_'' 16000

X

>- -'

\;oO T^ 49000 )

Eq (172), u,= 2.1S X 2 = 4.36 cu. ft. (262)
Eq. (177), ?7= 2.18 X 8640 (10 - 8.35) - 2304 X 4.36 = 31033 (263)

ft.-lbs. per pound of naphtha per stroke, or 26.4:0 thermal

units.

The cut-off being one half, the weight of vapor in the

three cylinders when half full will be

3 X 37.5 _ ^Q^^,,g ^,^^_

2 X 1728 X 2.18

Hence per pound per revolution the work done will be

21033 X 0.01493 = 314 foot-pounds.

The mean work per revolution in the preceding experi-

ment was

33000 X 2.S1

280.7
330 ft.-lbs.

which results agree sufRciently well when we consider that

in the ideal diagram there is no compression or clearance.

Mean efEective pressure, theory, (176),

2\ = 60 (5 - 4.16) — 16 = 34.4 lbs. per sq. in.
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Mean effective pressure from the experiment

—

-^« 3x37 • 5

330 {work per revolution)

~^ {piston displacement)

= 35.2 lbs. per sq. inch,

which is a very fair agreement binder the circumstances.

The heat supplied per pound will be, in thermal units,

equations (93) and (260),

h = c{T,- T,) + A,

= t).434 X 181 + 237 - 24 = 291. (264)

Efficiency of fluid, (263), (264)—

27.03

291
= 0.0928,

which we will call nine per cent.

Efficiency offurnace—

^1^ = 0.36,
0.09

or 36 per cent ; that is, 36 per cent of the theoretical heat of

combustion of the naphtha, as determined by its chemical

composition, is utilized bj the boiler. This is a good result

for so small a boiler.

139. Kemarks. In the design of this engine about

four square feet of heating surface per horse-power was

allowed. This is about one fourth of what would be al-

lowed in the design of a steam boiler. In the former

engine the boiler is completely filled with the flame of the

burning fluid, and thus is made quite efficient.

The naphtha engine has met with much favor for propel-
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ling steam launches and yachts. Their great compactness is

apparent from the preceding report
;
pressure is raised veiy

quickly not only on account of the low boiling point of

naphtha, but especially on account of its very volatile and

highly inflammable character when used for fuel. As soon

as the supply is cut off, the flame ceases, and no vapor is left

ill the boiler to be blown off or cooled down, as in the steam-

engine. As a fuel it is more conveniently stored in pipes

and vessels in the lower part of the boat than coal can be.

It appears to be quite as eflicient as a steam plant of tliis

power—if not more so. But every power has disadvan-

tages ; and this is objectionable for general purposes on ac-

count of the very volatile and inflammable.character of

the fluid, endangering as it might all combustible material in

its vicinity, and becoming more dangerous the greater the

quantity stored ; still it is especially adapted to launches.

140. Aninioiiia engines are those in which am-

monia vapor is used instead of steam. These engines are

condensing—a condition which is rendered necessary on ac-

count of the nature of the substance. Aqua-ammonia is in-

troduced into the boiler ; vapor is generated in precisely the

same manner as steam, and, after it is used in the engine, it

is condensed and pumped back into the boiler, thus using it

over and over.

Much interest has recently been excited in these engines

from the fact that ammonia has been siibstituted for steam,

using the same boiler and engine, and doing, it is claimed,

the same work Avith less fuel. It is asserted by some writers

that the science of Thertiiodynu'inios teaches that the effi-

ciency of an engine is independent of the nature of the Avork-

ing fluid when used between the same limits of temperature

;

and, hence, the above fact leads such to look with suspicion

upon the correctness of this part of the science. The fact

is, the bove statement is correct in only one very restricted

case, and that case is never realized in practice ; we will,
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therefore, state distinctly some of the principles established

by this science, bearing upon this part of the subject.

The efficiency of an engine is independent of the fkiid

used when worked hetween the same limits of absolute tem-

perature, PROVIDED ALL THE HEAT RECEIVED IS AT ONE TEM-

PERATURE AND ALL THAT IS REJECTED IS AT ONE LOWER TEM-

PERATURE, the mass of fluid in the engine being constant.

(See p. 161.)

If the substance could be worked in this way, steam, am-

monia, alcohol, &c., would be equally efficient. The fact

that there is a latent heat of evaporation of the substance

would not affect the truth of the statement. If water could

be worked according to this law, beginning with a tempera-

ture of 60° F., evaporated at 250° E., and raised to 300° F.,

the efficiency would be the same as if the substance were a

perfect gas, or

E^ 300 -60 ^^3-^^^
300 4- 460

This will be proved for a vapor in the Addenda, Article

112, from which it may readily be inferred to be true for

the more general proposition.

This gives the absolute maximum efficiency of any heat

engine.

But no engine works according to this law. In practical

vapor engines, the mass of working fluid is variable. In

such engines, it has been shown on page 193, Eq. (o), that the

effective work and the efficiency both depend upon the

latent heat of evaporation and the specific heat of the sub-

stance ; hence—
In practice, the efficiency of all vapor engines depends

upon the nature of the working fluid, and involves both the

latent heat of evaporation and the speciflc heat.

In a more complete theory of the vapor engine, involving

incomplete expansion, the mean speciiic heat of the fluid

and the latent heats of evaporation at the lower and higher
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temperatures are involved in such a complex manner as to

require a knowledge of their numerical values in order to

determine whether, theoretically, one fluid will yield a

higher efficiency than another.

Again, this science does not teach that the efficiency is

independent of the working fluid when worked between the

same limits of pressure.

To illustrate this principle, observe that in Articles 110

and 111, the work, equations (167) and (177), is expressed

in terms of pressure only ; hence, if the same pressures can

be obtained at lower temperatures, there may be a gain of

efficiency.

Saturated steam at 100 lbs. per sq. in. has a temp, of 327° F.
" « u |[g « u u a a <( « u 216° F

Dif. 111°

Saturated ammonia vapor at 100 lbs. per sq. in. has a

temp, of 57° F.

Saturated ammonia vapor at 16 lbs. per sq. in. has a

temp, of — 23° F.

Dif. 80°

The heat expended per pound of vapor above the lower

temperature will be

for steam, Eq. (184),

W = lUJ + II,;

and for ammonia

H = 80 <7+ //,.

If the indicated work, U, is the same in both cases, since

i7e is less for ammonia than for water and C also less than

J, the efficiency of fluid will be greater for the former than

the latter.

Again, theforimda for maximum efficiency, — ^'
is
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applitxible only to a constant mass offluid when worhing in

the engine ; and is not, in any sense, applicable to the plant.

The efficiency of the boiler and steam connections de-

pends upon the absorption of heat by the fluid, radiation

from the furnace, and radiation from the connections. It will

be seen from the preceding remarks that a given pressure

may be produced with ammonia at a much lower temperature

than with steam. Such being the fact, a lower temperature

may be maintained in the furnace, boiler, and connections,

and hence less heat would be lost by radiation. Our knowl-

edge of ammonia does not enable one to determine whether

it would absorb more heat in the same time than would

water ; if it would, the per cent of heat escaping up the

chimney would be less, and the direct efficiency of the

boiler thus increased. Admitting that an ammonia plant is

more efficient than a steam plant, we see that this science

explains the cause. But,

Again, this science teaches that a condensing engine is

more efficient than a non-condensing one, other conditions

being the same.

In the cases above cited that have come to the knowledge

of the author, where the ammqnia plant proved superior to

the steam plant, the steam-engines were non-condensing,

while the ammonia engines which replaced them were con-

densing. Had the original steam-engines been changed to

condensing engines there would have been an increase of

efficiency ; but a want of knowledge of certain physical

constants of ammonia prevent this science from determin-

ing with certainty whether the efficiency would have been

still further increased by substituting it for steam.

If the interest on the cost of a plant and the cost for re-

pairs be considered, a small plant involving a condens-

ing engine may not be as economical as with a non-

condensing one, although the former may be the more

efficient.
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Many conditions are involved in tlie choice of the work-

ing fluid, aside from its thermodynamic relations : as the

first cost, its effect on the working parts, its safety or

danger to life, and the charc.cter of the necessary mechanism.

141. A binary vapor-engine is worked by means

of two fluids, one more volatile than the other, the fluids

being worked in separate cylinders. If a surface condenser

of a steam-engine be cooled 1)y ether, the ether may be

vaporized by the heat given up by the steam, and made to

work a vapor-engine in precisely the same manner as steam

drives a steam-engine. The exhausted vapor of the vapor-

engine may be passed through a surface condenser cooled by
water, and pumped in its cooled condition into the con-

denser of the steam-engine, when the former operation may
be rej)eated.

A binary-engine is, tlieoretically, no more efficient than a

properly designed steam-engine consuming the same amount

of heat, and practically is not as economical on account

of unavoidaljle waste and extra cost of the mechanism. But

a steam-engine wasteful of heat may be improved by the

addition of an ether-engine. (Jluntiel Ju Conductcui' <]es

Machines a Ya/ieurs coniliinees^ M. du Tumbley, Lyons,

1850-51 ; Institution of Civil Engineers, February, 1859.)

143. Tlie products of combustion sometimes

form the working fluid. In these engines the entire prod-

ucts of combustion enter the cylinder. The principle of

their analysis is similar to the Ericsson's hot-air engine.

One of the most serious objections to this class of engines

is the fact that the solid parts of the working fluid, dust

and grit, wear out the working parts, with which thev come

in contact, rapidly. A recent attempt has been made by

MM. Bermier Brothers, Paris, t(j overcome this objection,

but us yet their engine is only an experiment. (Scientiflo

Americtm t'ii.'pplement, 1880, p. 11099.)
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THE STEAM-INJECTOR.

143. The injector is a device for feeding steam

boilers, in which steam is taken from the boiler, and, by
passing through the instrument, takes water with it, carrying

the water and condensed steam in a steady stream back

into the boiler. Fig. 69 shows an improved form of one of

this class of instruments. A valve W is secured to the rod

B, and has its seat on another valve X. ^ is a tube con-

taining these valves, and the passage of steam through the

Vj
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in a gradually contracting nozzle at a point 0, just beyond

C. By a slight movement of the handle II, steam issues

from the orifice (7, and a partial vacuum will be formed in

WJV, into which water will be forced by outside pressure,

and then forced through the delivery tube D, and -at first es-

cape through the waste orifice P, and as soon as a solid stream

escapes, a further movement of the lever II closes the orifice

P by the valve A" and opens the valve A' and a continuous

flow of water will then pass the check-valve into the boiler.

If too much water passes C some will enter the chamber

and force the piston XX back, thus throttling the water,

and if sufiicient water is not admitted the reduced pressure

at will cause the valve to move forward and permit more

water to flow in.

144. Theory of the steam-iiijector.
Let 1F„ = the weiglit of water required of the injector

per unit of time,

1[' = weight of steam required to force Tr„ into the

boiler. The heat in the steam above that of the feed-water

"\\dien forced into the boiler will be, in ordinary heat units,

considering the specific heat of the water as uniform and

e(|ual to unity, equation (134),

Wh =
[

(r. - r,) + ... K] W, (265)

and this will be the heat lost by this amount of steam in the

injector and which is assumed to be imparted to the feed-

water.

The heat imparted to the water, above that in the reser-

\o\T from which it is taken, will Be

ir. - r.) Tr„, (266)

where

T^ = the absolute temperature of the feed-water in the tank,

Tj = the absolute temperature of the water just after it has

passed the injector,

r, = the absolute temperature of the steam in the boiler.
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It will be shown hereafter that the work of lifting the

water from the reservoir to tlie injector and of forcing it

into the boiler together require only a small fractional part

of the heat energy lost by the steam in having its tempera-

ture lowered from that of the boiler to that of the mixture

of steam and water ; and, neglecting these two elements,

expressions (265) and (266) become equal, giving, in terms

of ordinary scales of temperature,

For our present purpose it will be sufficiently accurate to

assume that the steam supplied to the injector is pure satu-

rated steam, or a? = 1, and that equation (77) is sufficiently

exact, or

Ae = 111-4.4: - 0.7 T,.

To find the velocity of the water in the passage G, Fig.

70, let

p ^ the absolute pressure per unit in the boiler,

P^ = " " " " " of the atmosphere,

"F= the velocity of the water,

S = weight of unity of volume of the water = 62.1 per

cubic foot at ordinary temperatures,

then

Y^'^Tg ^:^. (268)

The value of S may be found with sufficient accuracy by

means of the formula at the foot of page 102, thus

(J = J- = I
,

(269)

0-008 (5-00 + —)

which, for 150° F., or 610° absolute, gives 6 = 61.2

'pounds, and this value might properly be used in equation
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(26S), but as 62.4 pounds, the weight at ordinary tempera-

tures, will not produce an error of 1 per cent in the veloc-

ity, and as by its use the resulting formula will be more

generally applicable to ordinary cases, we retain the latter.

Just after entering the chamber G, the water will be under

atmospheric pressure, and f^ = 2116.2 pounds per square

foot, and ^ g — 64.4. With these values, equation (268)

reduces to

Y 1.0158 V p - 2116.2 ft. per sec.

Ifp be in pounds per square inch,

Y = 12.1896 \' p
Ifp be in atmospheres,

Y--
~^

14.7 ft. peri

(270)

(271)

46.7355 \ p — 1 ft. per sec. (272)

If the diameter of the suction pipe F\iQ n times that of

the passage E, the velocity in it will be

YF„= ' (273)

To find the area of the openingE
for the passage of the water ; con-

sider that the steam passing through

the injector will have been con-

densed to liquid water, then will the

volume of the water and condensed

steam passing the opening per sec-

ond be (».01^ ( W -\- W^ cubic feet.

and if Tc be the area of this section, then

, _ 0.016 ( IF+ W^

The diameter will be

d=2 /^.

(274)

(275)
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Tofind the velocity of the steam issuing from the end of

the passage C, it will be necessary to find the pressure in

the condensing chamber. Let

J), be the pressure in the condensing chamber D,
ji„ the pressure of the atmosphere on the water in the

tank £,
h ^ C B, the height of the condenser above the water in

the tank,

y^, tlie velocity of the water at F, entering the condens-

ing chamber,

then

Y: = ^g [£i^ - a], (276)

in which h is negative because the water is raised instead of

being a positive head. From this may be found

j,^=p^^Sh-^\ (277)

The velocity of the steam T^ will be given by the general

equation for F, following equation (62), page 82, and after

substituting for r, and t, their values in terms of jp and v,

becomes

in which y has the value in equation (148), page 152. If

the steam contains no moisture, this beeouies

(279)F, = 23.2687 V ^ -y [l - (^)
°"^'].

The area of the cross-section at G will be

jji Yolume of steam per sec.
('9»n^

and the diameter will be

^, = 2 / ^. (281^
n
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The tvork done ly the injector will be that of forcing the

mixture of steam and water against the boiler pressure 2'

sufficiently far to make a displacement for W -\- TT^, pounds

of water. Since the steam will be subjected, externally, to

the atmosphere the resultant pressure against which the

water is forced will be the gauge pressure, or p — j\.

Hence, if jy be in pounds per square inch the work will be

U = 144 (j) - j9.) ( ir+ Tr„) 0.016 ft. lbs. (2S2)

The efficiency as a force-pump will be

^ ^ Worl done _ U_
,^^^.

Heat expended (r^ — t^ ~\- x h^) W J' ^ " '

The efficiency of the jjlant. If 1 pound of coal is

equivalent to q thermal units, and w pounds are required to

generate W pounds of steam from the temperature of the

feed-water, then

J
(J
w

and if all the heat of the coal could be utilized for generat-

ing steam and the steam were pure saturated, TJ' would be

the same as ^. But there is always a waste of heat in the

furnace and boiler. If the q thermal units would evaporate

n pounds of water at and from 212° F., if there were no

waste of heat, and in an actual boiler a pound of coal did

evaporate w, pounds under the same conditions ; then if T^

be the temperature of the feed-water and H the total heat

of steam at the temperature T^ of the boiler, then

Tr(H — T) = 906 n, w = 966 n ^ w = qw ^ ; (2S.5)

V n
• ~ ^IF(H - rj « ^ ^

The value of n may be, theoretically, from 11 to 15, de-

pending upon the composition of the coal, and n^ from 6 to



[144] THEORY OP THE STEAM-INJECTOR. 285

11, depending upon the composition of the coal and the effi-

ciency of the furnace.

Ths duty will he the work done per 100 pounds of coal,

or,

B = 100 X 144 X gauge preamre X

Volume
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the area of the section h of the passage E for the water, the

velocity of the steam Y, at C, the diameter of the suction-

pipe, its section, being 5 times that of the section h (which

is an average of actual values), the steam containing 10 per

cent of moisture, the feed-water in the tank being 60°, the

temperature of the mixture of water and condensed steam

120° before it is forced into the boiler ; also the ratio of the

velocity of the steam to that of the water, and the weight

of water to that of the steam.

We have

•p = 104.7, A = 4, T, = 60°, T^ = 120°, n = 5.

From steam table, or equation (81), page 97, find Ti = 330°. 9 F.

TFo = ?^ = 0.833 lbs. per second.
3600

A. = 1114.4 - 0.7 X 330.9 = 882.6, Eq. (77).

3-1 = 0.9 ; . . .r, h = 794.34.

Tf =
33i^!f_r"i2y+ 794 34

= 0.04982 lbs.. Eq. (267). Call this resultO.05.

^ = 16 6.W _
F = 12.1896 V90 = 115.63 ft.,vel. of water at .S and G, Fig. 70, Eq. (271).

J _ 0.016 (0.05 + 0.833) ^ q o0122 sq. ft. = 0.017568 sq. in., Eq. (274).
115.63

^ ^1
.

H V
y

d = 0.149 in., diameter of water passage E or G, Eq. (275).

p, = 2116.2 - 4 X 62.4 - 62.4 X (115.63)'^ 1845.87 lbs. per sq. ft.

625 X 64.4

= 12.818 ibs. per sq. in. at F, Eq. (277).

V = 4.217, volume of one pound of steam at 104.7 lbs., Eq. (86).

Fi = 23.2687 i/l04.7 X 144 X 4.217 fl - /_1M1? V'"""!

= 25725 ft. per sec. velocity of the steam at C. Eq. (278).

F, = 4.32 X 0.05 X 144 -j- 2572.5 = 0.0110 sq, in., Eq. (280).

rfi = 0.12, diameter of ste.im nozzle, Eq. (281).

Vel. nfHieam 2572.3

Vel. (if' water 115.63
22.

No allowance has been made in this computation for contraction or

frictional resistances, and hence the diameters must be made larger than

here found in order to deliver the assumed amounts. The diameters

should be about 1.1 to 1.2 times those here found.
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U= 144 X 90 X (0.833 0.05) X 0.016 = 183.099 ft. lbs., Eq. (282).

= 0.235 thermal units.

0.335
: 0.0046, Eq. (283), or the efficiency is less than one-~

1005 X 0.05

half of one per cent.

If 10 pounds of coal evaporates 1 pound of water at and from 212°

F., it will require, under the cpnditions of this exercise, to evaporate

0.05 pound of water,

0^(1182.8

-

966 X 10

60)
0.00581 lb.,Eq (285).

If the coal be equivalent to pure carbon, it would evaporate, with-

out loss of heat, 14500 ->- 966 = 15 lbs. at and from 213° P., and if one

pound in the plant actual] j' would evaporate 10 lbs., then would the effi-

ciency of the plant be

183.099 10.
15'778 X 0.05 (1183 - 60)

Duty = 1296000 X (16.6 X 0.016) X 10

0.00418 X - = 0.00279, Eq. (286)-

3443176 ft. lbs., Eq. (287).

TABLE I.

Giving certain relations when the delivery into the boiler is

1 pound op water per second, nbglkcting lift and work op

forcing the water into the boiler ; temperature op the
feed-water being 60° p., and of the mixture and steam be-

fore entering the boiler 160° p.

Gauge
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A.s the temperature 160° F. of the mixture of steam and water is near

the higher limit of reliable working of the injector, we take another case

of lower temperature.

TABLE II.

Giving ebsults from the same data as for Table I , except
THAT THE TEMPERATURE OF THE MiXTUKE IS ASSUMED TO BE
140° F.

Gauge
Pressure.
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Tor the diameter of the cylindrical water-passage, E,

equation (275),

./0.016 X If VlTo
f? = 2f ^23896^ r==^; (289)

that is, the diameter will vary directly as the square root of

the weight of water injected per second, and inversely as

the fourth root of the gauge boiler pressure.

The velocity of the steam, according to the preceding

tables, will be about half a mile per second.

The velocity of the water will be about 100 feet per sec-

ond.

The duty will be, if gauge pressure = 80, and 9 pounds

of steam be generated per pound of coal,

D = 1152000 X 12 X 0.016 X 9 nearly = 2000000 nearly.

Since there will be some frictional resistance and radiation,

and since 9 pounds of water are rarely evaporated at 80

pounds gauge, the duty would be somewhat less than

2000000.

Efficiency, equation (283),

^^ 14^ X 80 X 13 X 0.016 ^ o_Q0293, (300)
778 X 1059 X 1 )

V
;

which is about ^^ of 1 per cent. The efficiency of the

plant would be about y of 1 per cent as a pump.

146. Injector comiiarecl with Direct-Acting
Punii>. By comparing these results with those on page

182 it will be seen that the efficiency and duty of the in-

jector are much less than that of a direct-acting pump—being

about \ as efficient. This is for service as a pump. But as

a heat device, if there be no radiation nor lift of feed-water

the efficiency of the injector will be perfect / similarly, if
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all tlie exhaust heat from the direct-acting pump be re-

turned to the boiler, and there be no radiation, the heat

efficiency of the putnp will also be i^erfect ; and hence in

either case would coat nothimj for fuel. In both cases the

furnace (or boiler) heats the water from the temperature of

the feed to tliat of the boiler. If there be no losses from

radiation, the difference in the cost for fuel in running the

two devices will be that which furnishes the steam for run-

ning the pump for doing the same work, if this steam be-

wasted at the exhaust. To illustrate : the work done Ijy 1

pound of steam in the approximate cases above is that of

forcing 13 pounds of water against 80 pounds pressure,

and is

U =1U X SO X 13 X O.Old = 23!:>(; ft. lbs.

One pound of steam in the direct-acting pump will, at

about 70 or 80 lbs. boiler pressure, do the actual M-ork of

10,000 foot-pounds
;

hence, to do 2396 foot-pounds will require

2390 ^ 10000 = 0.21 lbs., nearly,

of steam ; hence, it requires, in this case, about 21 hun-

dredths as much steam to feed the boiler with a direct-act-

ing pump as with an injector. But this steam is saved by

the injector, and, we assume, is M'asted Ijy the pump. If

1 pound of coal generate St]- pounds of steam under a

pressure of 80 lbs. gauge, this waste will require 0.21 -^ S.5

= (1.0282 pounds of coal for every 12 pounds of feed-water

forced into the boiler. To evaporate this 12 pounds of

water will require 12 -^ 8.5 = 1.11 pounds of coal; hence,

the fractional part of the fuel required by the pump will be

0.0282 -^ 1.41 = 0.02,

or about 2 per cent of the fuel burned in the furnace.
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Or, if the engine requires 30 pounds of feed-water per

horse-power per hour, it will require

0.0282 X ff = 0.0705

pounds of coal to work the feed-pump per hour per horse-

power ; and if the plant requires 3^ pounds of coal per horse-

power per liour, then will the fractional part of the fuel re-

quired by the feed-pump be

0705

35000
= 0.0201,

or about 2 per cent of the fuel burned, as before found.

The low efficiency of the injector, as a pump, is due to
'

the fact that the high velocity of the steam is very suddenly

reduced to a comparatively low one by its impact against

the non-elastic water, and the kinetic energy lost by the

steam will be as the difference of the squares of the velocity

before impact and that after.

Considering the velocity of the steam as 25 times that of

the mixture, and the weight of the mixture as 13 times that

of the steam, the kinetic energy of the mixture will be

13 (^V)' = 0.0208

of the initial energy of the steam ; or 98 per cent of the

initial energy is lost by the change of velocity at E. The

2 per cent remaining is gradually diminished on account

of the decreasing velocity in the passage from G to Y.

The thermodynamic theory of the inspirator is the same

as that of the injector.

Steam-injectors are also used as pumps where intermit-

tent action is required, as in the hold of a ship, and in

mines ; also as ejector- condensers when attached to the

escape-pipe of a condensing engine to avoid the ,use of an

air-pump ; also as a gas-pump where it was more efficient

than as a water-pump ; also as a steam-blower ; and also in

the well-known case of the locomotive exhaust.
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THE PULSOMETER.

147. The Pulsoineter is a pump consisting prin-

cipally of two bottle-shaped chambers, ^1, A, joined together

side by side, with tapering necks bent toward each other,

uniting in one common upright passage, into which a small

ball, f\ is fitted so as to oscillate

with a slight rolling motion be-

tween seats formed in the junc-

tion.

These chambers als(:i connect hj

means of openings with the verti-

cal induction passage, D, having

valves, J^, E, and their seats, F, F.

The delivery passage, H, which

is common to lioth chambers, is

also constructed so that in the

openings that communicate with

each cylinder are placed valve-

seats fitted for the reception of the

same style of valves, G, G, as in the induction passage.

J represents the air chamber, cast with and between

the necks of chambers A, Al, and connects only with the in-

duction passage belo^v the -^-alves F, E.

A small brass air check-valve is screwed into the neck of

each chamber. A, A, and one into the vacuum chamber J,

so that tlK'ir stems hang downward. Those in the chamber

allow a small quantity of air to enter abo've the water, to

prevent the steam from agitating it on its first entrance.

Conceive that the left chamber is full of water; steam

passes to the left of the valve 6', and acting by its pressure

directly upon the upper surface of the water, forces the

water through the valve (r and into the air chamber J.

During this operation the chamber ^i is Ijeing filled, and

water by its momentum finally drives the valve C to the
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left, tlius cutting off steam communication with the left

chamber in which the steam condenses, forming a vacuum,

when water will be forced through the valve E l)y at-

mospheric pressure into the left chamber, while the steam

is forcing the water out of the right chamber. All the

steam entering the pump is condensed and forced out with

the other water; and the temperature of the discharged

water will be higher than that entering the pump.

148. Analysis. The work done by the pulsometer

will be that of lifting the water from the source to the

pump by the operation usually called "suction," and of

lifting this water and the condensed steam to the point of

delivery—neglecting losses, such as friction, contractions,

etc.

Let

Tr„ be the weight of water raised in a unit of time,

IF, the weight of steam used in the same time,

T„ the temperature of the water at the source,

r„ " " " " mixture,

T, " " " " steam,

/ie, the latent heat of evaporation of the steam,

A„, the height of the pump above the source,

/ij, " " " " delivery above the pump,

A, the total height = A, -|- A,.

Considering the specific heat of water as constant and

equal to unity, the heat lost by the steam will oe

TT (r - r. + A,),

and the heat gained by the water will be

and no allowance being made for radiation, these will be

equal

;
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1. - 1.
(301)

Observing tlie boiler pressure, and the temperature of the

water before and after mixture, the ratio of the weight of

the steam to that of the water may be determined.

The work will be

u= Tr„A„ + (Tr„ + ir)^. (302)

If the temperature of the feed-water be the same as that

of the source, or T„ then will the heat expended be

H = J 7r(r - r, + k) ; (303)

hence the eiSciency will be

If the work of lifting the condensed steam and frictional

resistances be neglected, then

^=j^^^y nearly. (305)

EXERCISES

1. By actual measurement 105000 gallons of water were

raised in ten hours with 274 pounds of coal a height of 38

feet, and drawn horizontally 600 feet. If 10 per cent be

allowed for resistances, find the work done in ten hours, the

weight of water raised per pound of coal and the horse-

power ; and if a pound of coal evaporated 7^ pounds of

water, find the pounds of coal required per horse-power per

hour, the weight of water raised per pound of steam, the

increase of temperature of the water pumped, assuming its

initial value to be 60° F., the gauge pressure 50 pounds, and

the efficiency, the feed-water also being 60° F.

If a gallon be 231 cubic inches, and a cubic foot be 62.3

pounds, then
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Weight of water, 105000 X ^^ X 62.2 lbs. = 873000.

Work for 10 Lours, 873000 X 38 X 1.10 ft. lbs. = 36491400.
" " 1 hour, 3649140.

Horse.-power, . .
'

. . . . 1.84.

Coal per horse-power per hour, lbs., . . . 14.8.

Water raised per pound of coal, lbs., . . 3186.

Pounds of steam, 274 X 7^, . . ; . 2000.

Water raised per pound of steam, lbs., . . 436.5.

Work done per pound of steam, ft. lbs., , . 18246.

Heat in the steam above 60° F., B. T. U., , 1137.

Increased temp, of water, 1137 -^ 436.5, Deg. F., 2.6.

Efficiency, jjJ^t_= »•»"'

Efficiency, Eq. (305), 0.0180

or less than 2 per cent. (See page 452.)

The assumption in regard to the evaporating power of

the furnace would make the efficiency of the furnace

about 56 per cent, making the efficiency of the entire plant

over 1 per cent.

Diameter of discharge pipe, if the coefficient of discharge

be 0.8 and velocity 4 feet per second,

, , „ . /1050()(J X t¥2V ^ 36000 . , „ „,d= 12 A/ -. ^ '
, J/ -—— inches 3.01.y 4 X 0.7854 X 0.8

A three-inch pipe was used.

Pressure producing a velocity of 5 feet per minute

against tlie atmosphere and a head of 38 feet of water,

pounds per square inch 31

2. If the temperature of the source be 60° F., of the

mixture 65° F., the gauge pressure 60 pounds, lift by suction

5 feet and lift above the pump 15 feet ; required the number
of pounds of water raised per pound of steam, the efficiency

;

also the horse-power if 300 pounds of steam are used per

hour. (These quantities are ideal.)
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COMPRESSED AIR-ENGINE.

149. A Compressed Air-Engiiie is an engine in

which the working fluid is common air under a high tension.

The air is usually compressed by a machine called an air-

compressor, to a tension of from 40 to 1000 pounds to the

square inch, and stored in an air reservoir, called a receiver,

from which it is taken for driving an engine. Any ordinary

steam-engine may he run Ijy compressed air ; the only prac-

tical difhculty being the tendency of the moisture in the air

to freeze, and thus choke the exhaust. The freezing may
be prevented by causing a circulation of -warm air about the

exhaust passage through channels especially provided ; and

without this the evil may be mitigated in a measure by a

proper form of the exhaust passage—gradually enlarging it

as it goes outward—and making it smooth, so that the ice, if

formed, will not adhere so firmly.

150. Analysis. We assume that the cylinder is

filled with air of uniform pressure and temperature up to

the point of cut-ofl:, that then it expands according to an

assumed law, then exhausts and a uniform back pressure

during the back stroke
; also that there is no clearance. The

diagram cleared from irregularities and

clearance will be similar to A B C E
FA, Fig. 72.

Letj9, be the absolute pressure A,

p^, the absolute pressiire II C at the

end of expansion,
'''2- '^

^>3, the absolute back pressure ^^,
y, the volume of a pound of air at the pressure j',,

n, « " « n a a ic ,-,

{a) Adiabatic expansion—incomplete. The work done
per pound at full pressure will be
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The work done per pound during expansion will be, Ex'
ercise 3, page 64, or the second equation in Article 56,

pdv= — C,
I

d T ^ C, {t^ - T,).r-
The negative work during the return stroke will be

i's'".

;

hence, in the cycle, the work done per pound will be

U= AB CEF= a (r, - r,) +iP, «. - y, v,. (306)

Since the fluid is considered perfect, we have, equations

(2) and (29),

p,v, = Iir,= (Cp - Q r„

p,v, = IiT^ = (Cp - 0,) r,
;

.
•

. Z7 = 6; (r, -r,) + {C,- Q (r, - r, £3). (307)

(h) Adiahatic expansion—complete. The back pressure

will be along C JD, and ^3 = p^, r, = r^, and

TJ= AB CD = Cp (r, - r,) = Jy c^ (r, - r,). (308)

(c) ijf zSAere 5e no expansion, ^^ = i>„ t, = t„ and

U={C,~ C,)(l- II) T, (309)

Equations (307) and (309) may be put in a more symmetrical form by
introducing an auxiliary t^, thus :

a (r, - r,) + (Cp - «) ("r, - r,-?i) = C, (r, - r.)
;

^x _ g Cp - g
_
ps 1 y-tp, ,„.„,

• • ?;-Cp+^r~ F==7+^~F.- ^^^^

Equation (309) will reduce to precisely the same value ; hence (307)

and (309) become

U= G,\ (1 -
^^)

n. (311)
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Making a table of values of — , having for argument ^, the computation

for the work may be much facilitated. Let y = 1.41, then :

Pi
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Then

p, v,=p,'o, = R T„ (313)
and

(314)

For the same cut-off, the isothermal will lie wholly above

the adiabatic, and U^ in equation (314) will exceed V in

equation (306). In order to secure isothermal expansion it

is necessary to heat the air in the cylinder during expan-

sion. It is not, however, practical to maintain a uniform

temperature in this way. The very low final temperature has,

however, in practice been prevented by working the air in

one cylinder through a part of the full range of pressures,

then exhausting into a receiver and there heating it, after

which it is worked in a second cylinder.

(e) &pansion isothermal and coraplde. In this case

the terminal pressure H C, Fig. 72, will equal the back

pressure HE; or p, = p^ in equation (314)

;

. •. O = D A B C = G B GH
= p, V, log^ r = 122.5 r hg,^ r. (315)

Weight of air per minute. Let W be the number of

pounds' of working air necessary to deliver 2V^ horse-powers

per minute, then, since TJ is the work in. foot-pounds per

pound of air,

W U = 33000 N\

_._^^330^_ (316)

Volume of the cylinder. If p„ v„, be respectively the

pressure and specific volume of the air before compression,

and if the temperature of the air entering the engine be the

same as before compression, then p^ «, = p^ -y,, and the final



300 COMPEESSED AIK-ENGIJSTE. [150.]

specific volume v^ may be found when the law and amount

of expansion are fixed. The terminal volume of W \wands

will be W v„ and this will equal the volume swept through

by the piston per minute, if there be no clearance. Let V
be the volume of the cylinder and n the number of single

strokes of the piston per minute, then for a double-acting

engine,

. V= ^g"'"-'

f,^
'^

.

^

(SlY)
2 n up.

ciency. In order to determine the efficiency, the full

cycle of operations must be known, and this involves the

law of compression, which \\\\\ be considered in the discus-

sion of the air-compressor. We know, however, if air were

compressed according to any law and expanded according

to the same law, there being no escape of heat by radiation

between the states of expansion and compression, that the

eflSciency would be unity ; but there would be no resultant

work, even neglecting the friction of the engine.

The above formulas being for perfect conditions must be

modified in order tn cimform to practice. Pernolet deter-

mined that the moisture in the air, when converteil into va-

por, did not materially afEect the theoretical results of con-

sidering the air as drv. The weight of air as determined

from equation (316j must be increased to all(_)W for clear-

ance, leakage, and imperfect working, as is done with the

steam-engine ; and this must be still further increased in

determining the weight of air before it enters the compres-

sor, to allow f<_)r the imperfect working of the compressor.

Compressed air-engines are frequently used where if

steam were used there would be excessive condensation, as,

in mines and other underground work, for driving drills,

pumps, hoisting engines and locomotives
; also for small in-

termittent powers.
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THE COMPRESSOR.

151. An air-compressor is a kind of air-pump for

receiving air at ordinary conditions, and after compressing

it to a liigher tension, forcing it into a vessel called a re-

•ceiver. It is not a motor, but requires a motor for driving

it. The principles of construction are substantially the

same as for an hydraulic pump, although in detail clear-

ance spaces must be as small as possible and the valves be

so made as to work with certainty. The valves are the most

important details, and have received a large amount of at-

tention from inventors and practical men. The best condi-

tion for the proper working of the air valves, both inlet and

exit, is to have them open and close by moving vertically

and automatically ; and for this reason the compression cyl-

inder has often been j)laced vertically, although vertically

moving valves are used with horizontal cylinders. In the

latter case, at least two valves at each end of the cylinder

are commonly used—one for inlet, the other for outlet.

When the cylinders are vertical, the compression cylinders

are frequently single acting, and are driven by a double-

acting steam cylinder. The steam cylinder may be vertical

or horizontal. In some cases the axes of the cylinders have

been inclined to each other, but the horizontal types are

most common. Other fluids than air may be compressed

in such a compressor.

Fig. Y3 is a view of

a duplex air-compressor

made by the author and

worked in a silver mine

in Colorado. The two

steam cylinders are at

the left hand, and the

other two are the com-

pression cylinders.

The cranks are so set that the steam in one cylinder will

FIG. 73.
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FIG. 74.

be at full pressure when the piston in the air cylinder on

the other side ^vill be near the end of its stroke where re-

sistance is greatest.

153. Analysis. Dm-ing the back stroke of the piston

the air iiows into the cylinder ; assume

that it has the uniform pressure D,

Fig. 74. During the return stroke the

pressure rises from C to B, and the air

is then forced into a receiver at a press-

ure which we assume to be uniform
and equal to A.

Letj^/, v^ r/ represent state G,

J},',
V,', r/ " ' B, the subscripts denoting

the states ordinarily used in this work, and the accents dis-

tinguishing them from the notation of an engine.

a. Adiabatic compression. The work will be, equation

(308),

U' = A B OB = C; (r/ - t/). (318)

For air Cp = 18477 (p. 53). We have, equation (42),

page 61,

(319)

where y = 1.4. From this the final temperature due to

compression may be found. Thus :

PrsAL Tempeeathees, the ihitial Tempeeatuee = 68° F., ok t =

Pi'
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The temperature exceeds that of boihng water under the

corresponding pressure before the tension reaches four

atmospheres.

V. Isothermal compression. Herej?/ «/ = p^ v^ ; and

n.,' = ABCD= p,' V,' - p,' 1),' +y"^,'' pdv = 123.5 T, %,„ ^'' (320)

which is equation (315). Equations (318), (819), (320), give

7-7/ 9 %.o^
-^ = -^ • li , nearly, (321)

which is less than unity for all practical cases ; hence iso-

thermal compression requires less wwk than adiabatic com-

pression between the samepressures.

Isothermal compression is secured approximately by in-

jecting water into the cylinder in the form of a fine spray

in sufficient quantity to absorb the heat due to compression.

The same result is secured less efficiently by performing

part of the compression in one cylinder, and allowing the air

to cool in a receiver, after which the compression is com-

pleted in another cylinder. If air is compressed adiabati-

cally, the heat lost between the compressor and the motor

represents lost energy. If no heat were thus lost, adiabatic

compression would be desirable.

Energy lost by radiation. If r^ be the final temperature

in the compressor and r, the temperature at the motor, then

•will the energy lost per pound be

Cp (r, - r^). (322)

Weight of water to be injected in order to reduce the

temperature a given amount. In order to secure isothermal

compression, the refrigerant would necessarily be indefi-

nitely large, for otherwise its temperature would be raised.

Let W be the pounds of water which miist be injected to
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reduce the temperature of one pound of air from T' to T^,

the temperature of the water being raisei] from T^ to T^.

Since the specific heat of water will be considered as unity,

we have

TFcr, - rj= <-p(r. -7;j. (323)

Yoliuiie of the <-rnnpresting cyliruler. If there were no

losses, the volume of the compressor cylinder would be the

same as that of a compressed-air motor doing the same w<.ii-k

as expended in compression, working under the same law of

expansion. Hence, if V be the volume of the compression

cylinder, W the pounds of air compressed Ity S' liorse-

powers per minute, C the work necessary to compress one

pound under an assumed law and force it into a receiver, n'

the number of single strokes of the engine, and t„' the initial

temperature of the air, then equation (317) gives

y, _ 33000 iT' 7? t/ __ TF^ i? r/

llodlfiGolions. The initial pressure in the cylinder, j/„',

will be less than that of the external air, for the valves will

offer some resistance to the inflow of air, and it would take

a short time to establish equilibrium, and the temperature of

the cylinder may expand the air. If there be any clear-

ance, all of the compressed air would not be forced into the

receiver. For these reasons, and also on account of the heat

lost by radiation, the volume of the cylinder should be con-

siderably larger than that found from equation (321). This

would be secured by assuming the horse-powers, X' . ex-

pended in compressing the air as proportionately larger than

the horse-powers ^Y, to be delivered by the motor, but so

many contingencies arise in practice that a definite rule can-

not be stated beforehand. Deficiency in size in the con-

struction may often be overcome in practice by increasing

the piston speed.
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153. Efficiency of compressor and engine. For
complete adiabatio expansion, equations (308) and (318) give

IL = -^ % = -S ^ V = —n approx. (325)< ~ < V fl-Ii!"] <

This operation may be illustrated bj^ Fig. 75. The air

will be taken into the compressor at

the absolute temperature r/ at C, then

compressed adiabatically to temperature

t/ at B, then forced into the receiver at

the constant temperature r/and pressure

f^. The work done by the compressor

per pound of air will be / CB R. The ^
pig. 75.

air then loses heat and enters the engine at A under the press-

ure^, =:^/ and a temperature r, and expands adiabatically to

Z>, the temperature being reduced to r^, where it is exhausted.

The work of the engine will \>& ID A H. The resultant

work will \iQ A B G D. If no heat were lost, the tempera-

ture at A would equal that at B, and that at D equal

that at C, or r, = r/, r^ = r^
\ . . E= \, or the efficiency

would be perfect. In this case, however, A D will fall on

B C, and the resultant work will be zero. The compression

might be along J) A and expansion along B C. Equation

(325) expresses the efficiency if the air enters the motor at

a less pressure than that of H A, and exhausts it at a higher

or lower pressure than that of C. In this case the cycle

will not be complete.

Mass of fltiid constant. In some operations, especially

in refrigerating machines, the mass of working fluid is

constant, the operation B A being effected by abstracting

heat, and D C by supplying heat. In this case, \i A D
and B C are adiabaties, the heat supplied along D will

be, per pound.^
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B. = C, (r/
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Find the weight of water wliich must be injected per stroke

at 55° F., that the temperature may not exceed 65° F. ; the

volume of the cyhnder of the engine, the point of cut-oif

of the engine that the expansion shall be complete, the

final temperature at the end of the stroke, and the efficiency

of the system.

First find the work which one pound of compressed air

will do. We have

T. = 60 + 460 = 520, ^, = 14.T X 5 = 73.5,^, = 14.7.

Final temperature, tj, 530 X ©?, degrees absolute 328.

degreesF —133.

Difference of temperatures, t^ —t^ 192.

Work per lb. of air, Eq, (308), 184.77 X 193, ft. -lbs 85476.

Work required per minute, 33000 X 5, ft. -lbs 165000.

Air required per minute, lbs 4.65.

Vol. cyl., Eq. (317), 4 65 X 53.31 X 338 H- (300 X 3116.3)cu. ft. 0.193.

Diameter, if stroke is li times the diameter, inches 6.55.

Ratio of expansion, ^ = (-Yh = (5)' 3.15.

Air to be supplied to compressor, 4.65 X 3, lbs. per minute 9.30.

per stroke, lbs 0.098.

Vol. air cyl., Eq. (834), 'i^^^f^^.f! - - ft 1.33.

Diameter, i£ stroke is 1^ times the diameter, inches 13.1.

Work per lb., Eq. (330), 133.5 X 530 X 0.699, ft.-lbs 44526.

Work per minute, 44536 X 9.8, ft.-lbs 414093.

Etficiency, 165000 -f- 414093 = 0J:0.

Water injected, 0.24 X 192 ^ 10, lbs. per lb. of air 4.61.

lbs. per stroke 4.61 X 0.093 0.43.

cu. in, per stroke 0.43 X 0.016 X 1738 11.89.

If the temperature be limited to 100° F., it would require

less than three cubic inches of water per stroke.

2. In the preceding exercise if the compression were

adiabatic, find the final temperature of compression, the

final pressure being 5 atmospheres, initial temperature of

the air, 65° F. ; also the efficiency.
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THE STEAM TURBINE.

155. steam turbines act on the same general prin^

ciples as liydranlic turbines ; an essential difference being

that water is considered non-compressible, while steam and

other vapors are compressible. A more general term for

this class of turbines would be elastic vapor tarhines.

They may be reacting, like the Barker mill, Whitelaw or

Scottish turbine, parallel flow, outwai-d or inward flow. One
is described in the Pneumatics of Hero of Alexandria.

Rankine also mentions an iuM'ard-flow turbine which was

used at the Glasgow City Saw [Mills, and was considered

equal in efficiency to an ordinary high-pressure engine

{Steam EiKjine, p. 53S). The claim, however, is not sus-

tained by any authentic exjjeriments. Very few of these

turbines appear to have been in use until quite recently ; now
they are being used to drive electrical dynamos, chiefly on

account of the very small space occupied by them and the

ease with which they may be located wherever desired. In

many cases they are wasteful of steam on account of the

clearance spaces permitting a part of the steam to pass

through the engine without doing work, but one quite re-

cently invented by Messrs. Dow appears to be a great im-

provement on previous engines of this class.

156. Balanced outward-flow steam turbine.
The turbine shown in Fig. 76 is the joint invention of J. H.

Dow and H. H. Dow, of Cleveland, Ohio. A A represents

the casing, or stationary part of the engine ; S B the rotat-

ing wheel firmly secured to the shaft C, and containing the

buckets or floats shown in the section D D, which are ar-

ranged in concentric circles ; and concentric with these and

between them are rings projecting from the stationary pai-t

of the engine through which are cut steam passages or

guides. Steam entering through the stationary part at E,
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passes both sides of

the rotating disk

FF, into tlie an-

nular cavity near

the centre, thence

outward through

passages in the an-

nular spaces be-

tween tlivj buckets,

and through the

buckets, finally es-

caping at the outer

circumference aiD,

and is conducted

away at the exhaust

at G.

It is balanced laterally by means of the disk F F, which

is firmly secured to the shaft C; so that if there be a lateral

movement, liowever small, the space on one side of the disk

will be reduced and on the other side enlarged, so that the

increased amount of steam entering the latter will force it

back to its normal position. It is claimed that this move-

ment may be limited to 0.002 of an inch. The energy of

the steam is gradually absorbed by the wheel as it passes

through it, thereby diminishing its pressure and causing ex-

-pansion, similar to that in a multiple-expansion engine,

there being six compoundings in this wheel.

FIG. 76

157. Analysis. Reactimi Turbine. These may be

constructed like the Barker mill, Scottish or Whitelaw tur-

bines, or other hydraulic turbines of this class. The section

of the orifices is very much smaller than that of the arms.

The reaction of the steam as it escapes from the arms im-

parts to them a rotary motion, and, consequently, as the

fluid'passes outward in the arms a rotary motion is imparted
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to it in common witli the arms
;

the fluid escaping in a backward

direction relative to the motion

of the oriiices. The velocity of

jpjg
„„ exit will depend upon the three

elements :

1. The pressure at the orifices due to the boiler pressure,

as if the arms were at rest

;

2. The additional pressure due to rotation, as if the orifices

were closed ; and

3. The velocity of the orifice relative to the earth.

The velocity of discharge relative to the earth will be the

resultant due to these three causes acting simultaneously.

On account of the compressibility of the fluid and the cen-

trifugal action, the density of the steam will increase from

the axis of rotation outward. The centrifugal force of

the liquid, if any, in the vapor will cause the liquid to flow

outward more rapidly than the vapor, and thus greatly com-

plicate the solution ; and it would be still further compli-

cated by considering the change of temperature and of re-

evaporation in passing outward along the arm. We will

assume that the steam is dry saturated or slightly super-

heated and the temperature uniform.

Let A, be a head producing the pressure at the entrance

to the arms where the weight of a unit of volume is w, and

pressure^.. At any distance p let the pressure be j) and

w tJie weight ui Uiiity i^i volume; uieii, &iiice luc \>eig;it

will be directly as the pressure, we have

p^ — h^ w^, J>
= fi, '"'• (328)

The variation of pressure will be due to the centrifugal

force of an element whose thickness is d p and base unity

;

. .d 2) = -d p.oo-' p, (329)
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where oj is the angular velocity per second. These equa-

tions give

Jj), f 9 KJo

^gh, -W, (330)
•

'

Jpi = p^ e = p^e ^ '

where p^ is the pressure at the orifice, F, the velocity of the

orifice, and T'the velocity due to the head A,. If F, = 0,

^, = ^j, as it should. The pressure due to the centrifugal

force will be

i'^ -i'. =i'.(gW
l)-

(331)

The interior pressure ready to produce velocity will be

f^ ;
now, if the orifice be opened into the atmosphere, the

resultant pressure will be^, — p„, when^„ is the pressure of

one atmosphere. The velocity of exit will be found from

equation (278), page 283, after making y = 1.3, as given in

equation (145), page 151 ; hence

y. = le.TOS
i/P'^'^l^-ifJ''^- (332)

Without rotation, the velocity relative to the orifice, or

the earth, would be

V, = 16.705 a/p.'"i
^,^X0.2307-

1-1-^ (333)

The orifices have a velocity oj p = F, opposite to F^

;

hence the velocity of dischg-rge relative to the earth will be

V=V,-Va. (334)

The pounds of steam discharged per second will be, equa-

tion (64), value of R, p. 103
;
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W=w,ks r= 1.8296 /[• sj>l^)
" v\t^' (335)

in wliicli k is the coefficient of discharge, 2\ the pressure in

the arm at tlie oriiice and is j)^ in equation (330), r, the tem-

perature outside and t, tlie tem'perature in the arm, tv^ the

weight of unity of volume at the section of greatest con-

traction, and IF the weight discharged per second at that

point.

The work done bj the reaction per second will be

— {v.-r;) F„

or per pound,

J7=1(F,-F3) F3. (336)

The energy expended will be that in the steam above the

temperature of the feed-water, and per pound will be,

"equations (93) and (Y7),

H = YT8 (llli.i + 0.305 T, - T,), (337)

where T^ is the temperature at the boiler in degrees Fahr-

enheit and T^ that of the feed.

The efficiency will be

1:= ^. (338)

The horse-powers will be

W V

EXERCISE.

1. In a reaction turbine having orifices 12 inches from

the axis of rotation, if the boiler pressure be 50 pounds

(gauge), section of all the orifices 0.02 of a square inch, coeffi-
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cient of discharge .50, velocity of the orifices one fourth the

theoretical velocity due to the steam pressure when the

engine is at rest ; find the work per second, the efficiency,

the temperature of the feed-water being 60° F., the horse-

power and the pounds of water used per horse-power per
hour.

From Eq. (8-1) or from steam tables, volume of

1 lb. of steam at 6-i.7 lbs. absolute, will be, cu. ft. 6.58,

Weight of a cu. ft., lbs 0.152.

Vel. of steam, no rotation (333), F, ft. per sec. .

.

2223.

Yeloeity of orifices i of 2223, V, 555.7.

devolutions per second 89.3.

" " minute 5358.

Pressure at axis where steam enters the arms 64.7.

Pressure at orifices, (330), jf„ lbs. per sq. in liO.

Vol. of 1 lb. steam at orifices 6.58 X 64.7 -^ 140, 3.04.

Vol. discharge relative to orifice, V„ (332) 2639,
" " " " the earth, V, - V, 2084.

Work per pound, U, (336), ft. lbs 35952.

Energy expended, H, (337), {T, = 297, T, = 60) 890732.

Efficiency (338), per cent 4.0.

Discharged per sec. if T, = 220°, Eq. (335), lbs.

,

0.0195.

Horse-powers •
1.27.

Steam per H. P. per hour, lbs 55.

This result appears to make the engine quite as efficient

as small non-condensing engines. Theoretically, the efficien-

cy would be high if the velocity of the orifices were half

that of the theoretical velocity of discharge, or twice that

assumed above, but the resistance of the air to the motion

of the arms would be so great as to consume the power of

the engine. At the velocity in this example the speed of

the orifices is over seven miles per minute. At 200 feet per

second, or about ten times the average highest piston speeds,

"the efficiency would be very low, not even considering
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prejudicial resistances. To be efficient the speed must be

high.

15 §. Oiitwartl-flow turbine of Fig. 76. The

best speed for the turbine requires that tlie fluid shall be

discharged with the least velocity—just sufiicient to escape

from the wheel. To accomplish this the steam must ex-

pand down nearly to the pressure of the atmosphere.

If the wheel is so constructed and operated that the steam

will expand without transmission of heat, the method of

Article 112 will be applicable, and work done per pound

of steam would be

U-- (i+%.
:-;) + -/(.I + (P,-Pi)''2, (340)

if there were no losses from friction, contraction, eddies or

clearances.

To determine the speed requires a definite knowledge of

its construction. A properly constructed wheel must run

at a definite speed for maximum efficiency, and it cannot be

correctly analyzed for speeds differing much from that, on

account of eddies or whirls being

induced, the effect of which cannot

be formulated.

Let 0, Fig. 78, be the centre of

the wheel, a g the inner rim, h e the

outer, a a guide, a h a bucket. If

there were no friction or eddies, the

analysis for several concentric circles

of buckets would be the same as if

all the work were done in one series

of buckets ; so we treat the case as

if the several series were devei-

Fioj. 78. oped into one. Let tlie initial ele-
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ment of the bucket at a be tangent to the radius af* oi
the wheel, a d&. tangent to the inner rim, a h tangent to the

guide c a ; also

d ah = a, the angle between the terminal element of a

guide and the inner rim of the wheel,

r, = (9 a, the inner radius of the wheel,

T", the velocity of the steam at a in the direction a h,

Vi, the tangential component of V,

i\, the radial component of V,

and the same letters with accents to indicate similar quanti-

ties at 5, the point of discharge ; also co, the angular velocity

of the wheel, and M = W ^ g, the mass of steam ilowing

through the wheel per second ; then

Vcos a = Vf, Vt tan a = v,;

V cos a' = Vt', Vt tan a' = v/.

The rim velocities will be, respectively,

f CO, r' 00 .

According to the principle of mechanics

—

the difference

of the moments of momenta of the fluid upon entering and
quitting the wheel into the angidar velocity of the wheel

equals the energy im.parted to the wheel—we have for the

work per second,

M{vtr — v; r') a>,

or per pound,
GOU ={vtr -v: t')~ (341)

and this should be approximately the value of equation

(340). In the foi-mer, much the greater part of the heat of

the steam is lost at the exhaust, while in the latter consider-

able energy may be lost in the kinetic energy of the steam

* In the Dow engine the buckets are straight and the angle at a acute.
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as well as that in the exhaust. In order that there be no

impact on entering the wheel, we have Vt = tv r, and if the

steam were discharged from the wheel radially, v^ ?•' would

be zero ; as a rough approximation let it be zero, then

Zr = ^ZL .

(342)

Let n be the ratio of the actual to the theoretical value of

TJ, then

00 r = V n g U. (34-3)

On account of condensation, clearance and friction, n for

non-condensing engines is from i to •^.
,

If the wheel does not run at best velocity, i\' ;' will not

be zero
; let it be 7 i\ r, in which 77 will have a different value

for every different -^'elocity ; also co r will not equal i't, let it

\)Q e oor; then

00 r
s {1 — rf) = ?i. IT

.- . o) r = \ ——^ (3M)
6 (1 -//

)

^ >

The number of revolutions per minute will be

N=^^- (345)

EXERCISES.

1. Consider a Dow steam turbine run with steam at 70

pounds boiler pressure (gauge), using 600 pounds of steam

per hour, the efficiency being one fourth tlie theoretical.

Assume that the gauge pressure at the engine is 67 pounds,

or about 4 per cent less than the boiler pressure, that the

terminal pressure is 17 pounds per square inch, the inner

radius, r = 1\. We have
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r. ==-- YY3, T, = 679, n,, = 778 X 894^ = 696000,

u^ = 21.9, ec[. (150), -m, -4- -y, = 4.05 = ratio of expansion.

"Work per lb. of steam, Eq. (340), ft. lbs., approx. . 88000.

Work per lb. as per bypothesis, ft. lbs 22000.

Steam per H. P. per hour, 1980000 ^ 25075 lbs,. 90.

Vel. of inner rim if ?y = 0. 1, w. = J, e = 4, ft. per sec. 223

Revolutions per minute 20452.

Horse-power, 600 -^ 90 6.7.

An engine made by the Messrs. Dow had turbine wheels

5| inches in diameter ; shaft, ^ inch diameter ; depth of buck-

ets, -^^ inch ; depth of guides also -^^ inch ; weight of moving
parts, 7 pounds, 7 ounces ; weight, including casing, 68

pounds ; highest measured speed with 70 pounds steam,

35000 revolutions per minute ; so that the velocity of the

circumference was nearly nine miles per minute.

An approximate computation of its regular daily perform-

ance at 70 pounds pressure gave about S horse-power with

about 75 pounds of steam per horse-power per hour, the

speed being about 25000 revolutions per minute. Accurate

measurements will doubtless modify these results.

2. Ee/juired the number of revolutions per minute neces-

sary to burst a cast-iron disk from the centrifugal force, the

moduhis of tenacity, T being 20000 and the diameter of

the disk 6 inches, there being a hole 1 inch in diameter at

the centre for the shaft, weight of a cubic inch J of a

pound.

Assume the centre of gravity of each half to be at r = 1.3

inches from the centre.

^ ^ 30 /57T- ^ 30 /5 X 32.2 X 20000 X 12 _
ny Wr ^ 1.3 X i (9 - i) ;r= " '^*'^"-



CHAPTEE Y.

EEFEIGEEATION.

159. A refrigerating macliiiie is a device for pro-

ducing relative cold. It lias been repeatedly shown in the

preceding pages that in any fluid doing work by expansion,

without transmission of heat, the temperature is lowered.

Advantage may be taken of this fact to produce a low tem-

perature. Let m 2f^ Fig. Y9, be the volume of a pound of

the fluid when the cylinder of a compressor is full ; let it be

compressed adiabatically to B
and at constant pressure to A

;

thence expanded adiabatically to

J and at constant pressure to C.

If the fluid be a compressible

gas, the temperature will de-

crease from B id A and increase

from t/ to 0\ but if it be a

vapor the temperature will be constant at constant pressure

—some or all of the vapor being condensed during com-

pression, and evaporation taking place during expansion.

In both cases heat must be abstracted from the working

fluid during the operation A B—the heat being carried

away by the cooling substance ; and absorbed by the work-

ing fluid during the operation J C—being taken from sur-

rounding substances. The latter result is the one sought,

and is made practical l)y placing the articles to be chilled in

a room whose walls are made practically impermeable to

the passage of heat, and abstracting heat from the room by

repeated operations like the one just described, the heat so
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carried out by -the working fluid being imparted to objects

outside said room.

160. Practical opei-ation. The practical operation

is shown in Fig. 80, which represents a vapor plant. Omit-

Condenser. .

Expantle^ Gets

^efrigerate'ti

ra^^w^lSn^^p^^^^=

ting minor details, it is as follows : The working fluid is taken

into one end of the compressor A during the back stroke of

the piston, the operation being represented by J G, Fig. 79,

the volume of a pound being m iV^when the cyUnder is full

;

during the forward stroke of the piston the fluid is com-

pressed, the operation being represented by C B, and at B
the valve is opened and the fluid forced into the coils of the

condenser B, Fig. 80. Water flows over the coils, reducing

the temperature, if the fluid be a permanent gas, and liquefy-

ing it if it be a vapor, the operation being represented by

B A.
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Tile heat absorbed by the water is wasted unless the

water is used for other piirposes. At the left of Fig. SO is

the refrigerating room (7, which should be enclosed on all

side.s, including roof and floor, with several inches in thick-

ness of sawdust, felt, or other non-conductor of heat. This

room contains many coils of pipe through which the fluid is

made to flow, the coils being in the centre of the room, or,

as is often the case, arranged about its walls. The fluid

passes from the condenser B to this room, where, by properly

adjusted cocks, it expands against a pressure, reducing the

temperature and pressure until the latter is that of the initial

iu the compress(jr ; the operation being represented by A J,

Fig. 79. During the back or return stroke of the piston

the fluid flows into the compressor at constant pressure, the

pressure being maintained by the heat in the refrigerating

room, the operation being J C. If the fluid be a gas, the

heat of the refrigerating room increases the heat of the gas,

the temperature at J being lower than that of the room ; but

for a vapor the pressure and temperature are maintained

constant l)y the evaporation of the liquid, its volume being

increased from D Jto D C.

It ^vilI be seen that only a part of the changes here de-

scribed are made in the compressor ; however, the inaicator

diagram (J B A ._/ represents the changes passed through by

the circulating fluid, and represents the work done by the

compressor.

Let the adiabatics B Cand A J\tQ extended indefinitely

to the right ; then will the heat taken from the working fluid

and carried away b}^ the condenser be (t A B F; and that

taken from the refrigerating room will be G J C F. The

operation is in effect that of taking the heat out of the re-

frigerating room, adding heat to that by the compressor, and

finally causing both heats to be carried away by the water

which passes through the condenser.

The operation of all refrigerating machines is essentially
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the same in principle : condense the gas or vapor, deprive it

of heat diminishing its volume, lower its temperature by
doing work, then expand it ; during the last operation heat

is supplied by the articles to be cooled, and produces the re-

frigerating effect.

The heat of the refrigerating room is carried out by the

circulating fluid to the condenser, where it is carried away by
the water of the condenser. During its passage thither heat

is added to the fluid by the work done upon it by the com-

pressor raising its temperature, and by removing both heats

at the condenser, the circulating fluid is put into a condition

to take up heat again as it passes through the refrigerating

room, so that the mass of circulating fluid may be constant.

The mechanical operation of transferring the heat may be

illustrated by the removal of water from a chamber at a

lowel level than that of surrounding objects. For instance,

conceive a mine having springs of water, and that the water

is to be kept at a low level ; or conceive a room nearly but

not quite water-tight submerged in a lake, and that the water

in the room is to be kept at a low level. By placing a pump
in the room the water may be raised, as fast as it accumulates,

to a higher level than that of surrounding objects, from

which point it will flow away naturally. If it be not raised

sufiiciently high it will not Jlow away. In the refrigerating

apparatus the compressor raises the temperature of the fluid

to a higher value than that of surrounding objects, thus en-

abling the heat to flow away ; and by exposing it for a suffi-

cient time it would escape by radiation vrithout the use of

VFater ; but the condensing water hastens the process.

161. Efficiency. It will be seen that a refrigerating

machine is a heat engine reversed. Instead of transmuting

heat into vi^ork, vs^ork is transmuted into heat.

Let 11^ = J^B A O, rig. 79, be the heat carried

away by the condenser H^ ^ F G J G the heat taken fi-om
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tlie refrigerating room and absorbed by the circulating

fluid ; then the work done by the compressor upon the

€uid will be //, - II,.

The general expression for the efficiency is

Energy ohtained (or work done)
~~

Energy expended ^' '

If the energy obtained be the heat removed from the re-

frigerating room, and the energy expended be the work done

on the fluid, then representing this efficiency by E^., we have

In practice this will exceed unity, a result due to the

peculiar unit to which the energy sought is referred. In

most cases the energy obtained is a part of the energy ex-

pended, which is not the case in the above assumption. If

the energy obtained be referred to the heat expended, the

expression will be less than unity. Thus, let

E' be the efficiency of the furnace compared with the

heat of combustion of the fuel,

E" , the efficiency of the engine, compared with the heat

energy delivered to it by the furnace,

E'" , the efficiency of the compressor referred to the en-

gine as unity,

E^, the efficiency of the refrigerating system compared

with the compressor as unity ; then will the efficiency of the

system be
E = E'. E" E'". E,. {US)

If the cycles were Carnot's, and no losses from clearance,

friction or leakage in the engine and compressor, and the

efficiency of the furnace be 0.70, then

E = 0.70
""' ~ ""'

• —^— (349)
^1 ^i *i
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in wliich r^ is the absolute temperature of the steam at the

furnace, t^ the temperature of the refrigerator of the en-

gine, T^ the temperature of the condenser, and r, the tem-

perature of the refrigerating room. The efficiency reahzed

is far less than this. It appears that the efficiency of n re-

frigerating machhie will increase as the temjperature of the

condenser decreases, and also as the temperature of the re-

frigerating room increases. This is also apparent from

general considerations, for the higher the temperature of the

refrigerating room is allowed to be, the greater aiuount of

heat will be carried away by a pound of the .circulating fluid,

in expanding at constant pressure, and the lower the tem-

perature of the condenser the less the work required of the

compressor in raising the temperature from r, to T^.

EXERCISE.

1. Let the efficiency of the boiler be 0.75, of the steam

utilized by the engine 0.15, of the engine compared with

one without friction or other waste 0.60, of the compressor

compared with one without waste 0.70, temperature of the

refrigerating fluid when it leaves the condenser 75° F.,

when it leaves the refrigerating room 5° F., and that 15 per

cent of the latter energy is lost, required the efficiency of

the plant. And if 1 pound of coal fed to the furnace de-

velops 12300 thermal units when completely burned, how
many pounds of ice at 32° F. may be formed from water

also at 32° F. for each pound of coal burned ?

We have

460 + 5E= 0.75 X 0.15 X 0.50 X 0.70 X —^- X 0.85 = 0.222,

or the efficiency is 22.3 per cent ; that is, for each thermal

unit contained in the coal fed to the furnace, 0.223 of a

thermal unit will be taken from the refrigerating room.
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If each poand of coal contains 12300 tliermal units, then

for each pound burned there will be

12300 X 0.222 = 2731

thermal units taken from the refrigerating room, and as l-tl

thermal units are required to congeal 1 pound of water at

32° (page 89), there may be congealed

2Y31 ~ l-ii = 18.96 pounds.

In this solution it is assumed tliat a C'ai'uot's cycle is per-

formed. If 25 per cent of the energy were lost instead of

15, the result would have been 10. >; pounds, and this is in

the vicinity of actual values. Later ^re will show how purely

theoretical results may be found. If this engine developed

a horse-power with 3^ pounds of coal per hour, then would

66.40 pounds of ice be made per horse-power per hour from

water at 32° F.

Compared with the work done by the compressor on the

circulating fluid, the efficiency would be

460 + 5
U^ = 0.85 —^^ = 5.646

;

that is, for every thermal unit of work done by the com-

pressor more than 5.6 thermal units would be removed from

the refrigerating room.

163. The circulating fluid. Thermodynamically,

any fluid may be the working fluid ; but there are certain phy-

Bical and practical considerations which determine a choice.

It must admit of a low temperature without congealing. Air

ofEers the advantage of being abundant, without cost, and

admitting of any desired range of temperature ; but its den-

sity being small, the required apparatus must be correspond-

ingly large. If vapors are used they must be capable of

vaporizing at low temperatures. Among the substances
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iised are ammonia, iV JZ,, sulphur dioxide, S, 0, methylic

ether, G^ 11^ 0, and sulphuric ether ; the first two of which

are the most common, and of these we will consider ammo-
nia especially. The general formulas will be applicable to

any vapor.

Generally brine—water thoroughly saturated with salt

—

circulates in the coils, the brine being cooled in a tank by

the ammonia, as above described. This saves a large amount

of ammonia. Brine may be produced" that will not congeal

until the temperature is below zero Fahrenheit.

163. Some properties of aiuinonia. Certain

properties of ammonia have been determined by Kegnault,

but his determination of the latent heat of vaporization and

the specific heat of liquefied ammonia were lost during the

reign of the Commune, in 1870 ; and these we will deter-

mine by computation founded on the results of experiment

and certain thermodynamic principles.

In Relation des Experiences, Vol. II., pp. 598-607, are

the results of Kegnault's experiments upon temperature and

corresponding pressure of saturated ammonia. These we
have plotted in Fig. 81, the ordinates to the dots represent-

ing the pressures, and the abscissas, temperatures. If the

law be represented by Rankine's formula, equation (80), p.

97, the value of G will be so small that its effect will be in-

appreciable, and the formula

2196
com. logp = 8.4079 - -—

;

(350)

2196

)r, if J? be pounds per square inch,

hg^^p = 6.2495 —

represents the results of the experiments with much accu-



326 REFRIGERATION. [163.]

racy from about — 20° F. to 100° F., or from about 18

pounds per square inch to 215 pounds.*

^0-30 30 40 60 80 100 130 140 160180

Temperatvres, Degrees Fahr.

FIG. 81.

The specifio heat of ammonia gas is 0.50836, which is a

little more than for steam (Eel. des Exp., II., p. 162).

Density of liquefied ammonia, that of water being unity.

* In the Transactions of the American Society of Meclianical Engineers

for 1889, I used the formula log p
9200

6.3469 -• and showed the dif-

ference between the computed and observed values. This formula is

nearer correct for higher pressures.
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Temp. Density. Dif. Authority.

At 15.5° C... 0.731 Faraday.
-10 ....0.6493 1

—63
- 5 ....0.6439

D'Andreoff: An. (3), 56, 317

(" Smithsonian Miscellaneous Col-

lections," Vol. XXXII.,

... .0.6364
—66

5 ....0.6398 y

10 ....0.6330
—70

15 ....0.6160
—71

30 ....0.6089 J

These may be expressed very nearly by the formula

3 = 0.6364 - 0.0014 t

= 0.6502 - 0.000777 T,
^^^^^

when t is degrees centigrade and T degrees Fahrenheit.

Density of the gas.—Eegnault gives, for the theoretical

density of the gas, 0.5894 {Bel. des Exp., Vol. II., p. 162),

but he also says :
" The real density of ammonia gas is cer-

tainly higher than the theoretical ; the only experimental

density of which I have knowledge gives 0.596 " {Ihid.,

Vol. III., p. 193). We will use the latter value.

Volume of ajjound of the gas at the melting-point of ice.

We have

Weight of litre of air at 0° C, 7'60'" .... 1.293187 grammes,

or weight of cu. metre of air at 0° C, 760"..1.293187 kilog.

{Hid., Vol. I., p. 162.) Hence the weight of one litre of

the gas at 0° C, 760"°-, will be

1.293187 X 0.596 = 0.770739 grammes,

and the volume of one gramme of the gas will be

1

0.770739
= 1.2973 Htres.
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Reducing this to the equivalent of one pound and cubic

feet gives

1.2973 "5^^ = 20.7985 cu. ft. per lb. = v^.

Value of R.

This is 89.343 ^ 778 = 0.114S3 of a thermal unit;

hence, at this state, equation (28), p. 49,

Av = 0.50836 - 0.11483 = 0.39352

;

(353)

.and, eqiiation (31)

y = 1.292
; (354)

and, although y will not be constant, it will practically be

so for the superheated gas.

164. To find the latent heat of evaporation
of Ammonia. From equation (74), p. 95,

in which v, is the volume of a pound of the liquid ; and as

this is small compared with the volume of a pound of the

vapor it may be omitted, and we have, omitting also the

subscripts,

/), = rv -^^ -- 778. (355)

From equation (350) we have

^ = 2196 X 2.302J £_ •

.
•

. Ae = 6.49922 =^—

.

(356)

At the state when
P^^Pl^^

89.343, we have
T To

7t, = 580.66.



[164.] LATENT HEAT OF EVAPORATION. 329

This result must be for a state where v > u ; for the general theory of

imperfect gases shows that for the same volume p + t is less for a small-

er pressure, and in this case at the pressure po the gas is superheated,

and at the point of saturation p will be less than pa ; hence tlw latent

heat of evaporation of ammonia must be less than 580.66 when the specifc

volume is 30.7985 cubic feet*

The general value otpii + t will be found from the equation of the

gas. In Vol. II. of Experiences, p. 153, Regnault has given the results

of liis experiments upon the elastic resistance of ammonia at the constant

temperature of 8.1' C. (46.58° F.). These

give the relations between the pressures

and volumes of the actual isothermal A C,

Fig. 83 ; the isothermal of the gas pass-

ing through A, if perfect, being A B.

These experiments reduced to volumes in

cubic feet per pound, and pressures in

pounds per square foot, are given in the

following table :

PIG. 83.

TABLE.

Relations between volumes and pbessurbs op ammonia gas at

THE tempekature 46.58° F.f
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Assuming io equation (4), p. 13, a„ = o, and neglecting all terms
after di, it may be written in the form

b
p V = a T ~

The first, sixth, and last experiments of the preceding table give for the

products p V, and the corresponding values v,

= pv - 45397.

= J) 11 = 45156.

= pv = 44529.

T (34.3716)°

b

T (18.365)°

b

r (11. 141)'

In these equations t = 507.34, and they give

a = 91 005, b = 16931 t, n = 0.97.

Letting a = 91, b = 16920 t, n = 0.97.

The equation ofth-e gas will he

P— — m — J^920
T TV

91 - ^^^ (357)

and hence, equation (356),

Tfie latent heat of ammonia is

, _ 5065.7 / 16920 \

= 592.52(1- ^,) (358)

We now proceed to find the latent heat for certain states of the fluid.

In Pig. 83, a represents the state of ammonia gas at the temperature of

melting ice under the pressure of one atmosphere, for which the volunie,

as found above, is 20.7985 cubic feet per pound ; that is,

oh = 20.7985, ha = 2116.3, r = 493.66.

Let state s represent the pressure and volume of the first experiment in

the preceding table, for which

t = 24.3716, t s = 1863.7 lbs. per sq. ft.

State e is the last in the table, for which

0,/ = 11.141, ^-^^ 3996.8.
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From s to « is the actual isothermal of the gas as determined by Reg-

nault's experiments for the

temperature of 46.68° F.

As tliis was the tempera-

ture of the water sur-

rounding the tube, the

temperature of the gas

may have been somewhat

less ; but we use this value

as exact. The isothermal

prolonged intersects the

curve of saturation in

TO.

To find the latent heat

of evaporation at c, having

the same volume as at a,

it is necessary to find the

temperature at this point.

Make

V = 30.7985

and equation (357) gives

P =
91 16920

20.7985 (30.7985)'-"

4.3753 r - 42.843;

which substituted in equation (350) gives

log (4.3753 r - 42.843) = 8.4079 - 2196

Bq. (350)

and equation (358) gives

. r = 426.6 ;
.-. T= - 34.0° F.

.p = 1823.7 lbs. per sq. foot.

= 12.7 lbs. per sq. inch
;

;j. = 578.96.

It was found above for this volume, 20.7985, that if j? + t were con-

stant down to the point of saturation, the latent heat would be 580.66, a

value exceeding that just found by only 1.70 thermal units—a difference

in the right direction, and of reasonable amount. This test being satis-

factory, we now apply it to other states.
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For the state immediately below s, on the curve of saturation, we
have

V = 24.373,

and with the same equations as in tlie preceding case, there results

T = 430.4 ; .
• 2 = _40».26F.,

p = 1531.1 lbs. per sq. ft. = 10.6 per sq. inch,

\ h, = 579.67 thermal units.

For state to,

T = 507.34, or r = 46°. 58 F.,

.and from the same equations

p = 11988 per sq. ft. = 83.35 per sq. inch,

V = 3.41 cubic feet,

Ao = 536.47 thermal units.

For the state for which

v = 8,

•we find
r = 4687; • r=8MF.,
p = 5379 per ft. = 86.8 per inch,

Ae = 550.53.

Assuming the form of expression adopted by Regnault for the latent

heat of evaporation of all substances,

7ie= (?- e ^-/^^ (359)

and, using in it the data for the three last cases just given, we have

536.47 = rf - 46 58 e - 3169 7 /,

550.53 = d- 8.1 (' - 6561 /,

579.67 = d+ 40 «- 1600/.

These give

d = 555.50, e = 0.61303, / = 0.000219,

and equation (359) gives the following as

A more convenientformula for the latent heat of evapo-

ration of ammon la

:

h, = 555.5 - 0.613 T - 0.000219 ^^ (360)

The latent lieat of ammonia vapor in the table at tlie end

of the volume lias been computed by means of this formula.
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165. Specific volume of liquefied aiiiinonia.

If the volume of a pound of water be 0.016 of a cubic foot,

then will the volume of a pound of liquid ammonia be,

equation (351),

V, = ^-^ ^. (361)
0.6502 - 0.000| T ^ '

This fornmla is sufficiently accurate for temperatures be-

tween — 5° F. and 100° F. A mean value gives about 41

pounds per cubic foot.

166. Specific volume of ammonia gas. From
equation (8i), page 98,

«« - ^. = TJT-
dT

By the aid of equation (350), after omitting the sub-

script 5, we have

V = —^ •-+'",. (362)
6.4993 2^^

The volumes in the table of the Properties of Saturated

Ammonia were computed from this equation. Since v^ is

small compared with v^ it may generally be omitted.

167. Isotliermals of ammonia vapor. If the

vapor be saturated, the isothermal will be parallel to the axis

of V, as A B, Fig. 74.

If the vapor be superheated, the equation will be (357),

after making r constant. It will be

M 16920 ,ofiqN
_p ^ = 91 r, - -^^ . (363)

The general equation of vapors in which the last term is

a function of v only, will be

p^ = ar-L. (364)
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168. Adiabatics of ammonia vapor. If the

vapor be continually saturated, tlie equation of the adiabatic

will be {a) or (5), page 184, or

u = xv = {c log^-^ + ^lA:.) IJi, (365)

in which u is the volume of the vapor and liquid when only

the ccth part of the liquid is vaporized ; but as, in our analy-

sis, the volume of the liquid compared with the vapor is

neglected, it really represents the volume of the a;th part of

a pound of vapor ; c is the speciiic heat of liquid ammonia,

the experimental value of which is

G = 1.22876.

If the vapor he superheated^ then the first of equations

(j4), page 48, and equation (364) give

dH=K,dr^r± dv.
V
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For ammonia gas, these become

^ = 9ll^M'"''^m^ (370)

the last of which is in terms of "^ and r as variables.

169. The specific heat of the saturated vapor of
ammonia of constant weight is negative. Equation (139),

page 14T, gives, omitting terms containing r",

837.5
s = .

T

If 0' = 1, this will be negative for values of r less than 837°,

or 377° F. ; hence, for the range of temperatures ordinarily

used in engineering practice, the specific heat of saturated

ammonia is negative, and the saturated vapor will condense

with adiabatie expansion, and the liquid will evaporate with

the compression of the vapor, and when all is vaporized will

superheat.

Thus, in Fig. 84, if B Cs be the curve of saturation, and

the vapor be compressed adiabatically from any point, as O,

on the curve of saturation, the adiabatie C I will rise above

B C, and if it be expanded from the same point it will fall

below Cs. Equation (370) is the equation of O /, and

(365) of Cir, the part below O.

170. Specific heat of liquid ammonia. As-

sume the volume m M, Fig. 84, of the pound of liquid to be

constant at all pressures, and let MDhe the absolute pres-
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^EE

sure at the absolute temperature r, B Cs, the curve of satu-

ration, I) II, A 6r, li F, IK, adiahatics.

Let the vapor be expanded from I) at the

pressure p and tempierature r until it is

all evaporated at state C, thence com-

pressed adiabatically to /, thence coni-

FiG. 84. pressed at constant pressure tn ^1, where

it is liquefied, thence by the abstraction of heat let the pres-

sure be reduced to D ; then

IIDA G + GAIK= IIJD CK+ D CIA.

Let the temperature of ^4 5 be r -|- d t, and of I,t -\- d t',

for the vapor from B to I will be superheated, its temjjera-

fure increasing with increase of volume ; then, if c be the

specific heat of the liquid,

III) A G = JcdT,
D C IA =vd p,

IIDCK ^ JK,
G A IK = GABF+ FB I K.

= Jh: +Jl'^{dr'^dT),

K — J^<! = — 'IK;
V dp dJi,. , /dr'

J d r (It ' \d t

Equation (30()| gives, since d r = J T,

d T '

From equation (o50) find

(372J

J
'1±
dr r'

Differentiating (371), after which change dr to dr' and

drop all subscripts in the second member, and (372) becomes

c -= 1.13136 + 0.000438 r-f-

D
6,49932 - 0.50836 X 2.3036 X 2196

397.13
112135

n..
73)
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As this investigation depends upon a comparatively small
range of volumes, from 11 to 24 (table on page. 329), and
assumptions in regard to the forms of the functions in equa-
tions (350) and the first equation on page 330, it may not be
very reliable for a large range of temperatures. We will

compute a value for a volume within the limits of the table,

and will take .values given on page 331, viz.

:

V = 20.7985, r = 426.6, T=-U° Y.,p = 1823.7 lbs.,

for which we find

c = 1.093.

The mean of eight determinations made by Dr. Hans von
Strombeck, chemist, gave

c = 1.22876.

The experimental value was determined when the tem-

perature of the liquid was about 80° F.

Refeigeeatin-q System with Vapoe Continually Sattp

BATED.

I'll. Work of the compressor and condenser.
In Fig. 85 let E F he any adiabatic, p„ r, apply to A JB^

P,, T, to D C, a?! the fraction of a

pound of vapor at state E, x, at

F, X, at A (when it is not zero),

83, at t/, V, the volume of a pound

of vapor at £, v^ the volume of a

pound under the pressure js, ; the

odd figures for subscripts belong-

ing to the upper line, and the

even to the lower.

The work of compression from ^to F, and of forcing it

into the condenser from ^to ^, will be, equation {m), page

192,

FIG. 85.

U'= A EFD = J o{T^,— r^)-\-x,h,^ — x^K, (374)
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In tlie expansion chamber tlie vapor expands against a re-

sistance, reducing the pressure from f^ to jp^ and tempera-

ture from Tj to T„ doing the work A D J, and, assuming

an adiabatic change, the expression for the work will be

found by writing gr^ for a?, and x^ for x^ in the preceding

equation, since all the other quantities will remain the same
;

U" = ABJ=J <- (^. — "^0+ <^. K — *4 K (375)

After the vapor is forced into the condensing chamber, its

specific volume is reduced by condensation from ^ ^ to A
(and for the sake of generalizing the analysis we assume for

the present that it is not reduced entirely to a liquid at A,
but that .r^ has a finite value), and the heat emitted from the

circulating fluid—and absorbed by the condenser—will be

the area between EA and the indefinitely extended adiabat-

ics A J and E F, or,

B, = J (a?. — 2-3) li^^
;

and the heat absorbed by the circulating fluid (ammonia or

brine), which is taken from the refrigerating room, will be

-H, = -J {x, - X,) Ae,

;

(376)
then,

U' - U" ^E,- H,.

Since the cycle is Carnot's, we have

{x, - X,) A„ _ (a?, —a?,) h^,
.

(377)
'1 s

The efficiency, referred to the work done by the com-

pressor, will be
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which is independent of the amount of Hquid evaporated,

as it should be. More heat, however, will be removed by
the work of the compressor if all- the liquid be evaporated

that is possible and leave it continually saturated ; that is,

if the fluid be vapor only at B ; and also if it be entirely

condensed at A. These conditions require that x^ — 1 and
ajj = ; and the equations for largest effect become

U' = J \^c (r, - T,) + /^e.
- ^. K, (379)

U" ^ j\c (r. - r,) - X, AeJ- (380)

//, = Jh,,. (381)

H, — J («, — a?,) Ae,. (382)

H,~ H, = J \K, - {x, - a;,) AJ =. U' - f7".(383)

(384)Eq. (365), x^=(^c log^ ^ +^) ij^

For 83, = 0, x,= c-^ log, ^. (385)

= 2.3026 c^ log,, ^.
"'62 ^1

These formulas solve the theoretical part of the problem

The temperature of the circulating fluid in the condense?

will be several degrees above that of the condensing

water, depending upon the amount of condensing surface

—

saj' about l(i° F. above ; and the temperature of the con-

densing water will depend upon external circumstances,

and may be 40° F. in winter and 60° F. to Y0° F. in sum-

mer. Also the temperature of the refrigerating room will

be higher than that of the circulating fluid— say some 10° F.

—depending upon the rapidity of the circulation and the

amount of surface of the pipes. For the manufacture of

ice, the refrigerating room is kept at a temperature of
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about 15° F., and that of the brine may be between 0° F.

and 5° F.

172. Volvinie of the compressor cylinder
per n pounds of ammonia per stroke.

Let T^ be the required volume in cubic feet and v tiie

volume of a pound of ammonia gas at the lower tempera-

ture, equation (362), then

V — n V. (S.sCi)

173. Volume of the compressor cylinder
to produce a ijiven refrujerating rffect.

Let Aj be tlie thermal units abstracted per pound of

ammonia,

q = n,h„ the required numl)er of thermal units to be ab-

stracted— which will also be a measure of the

refrigerating power,

Y, the volume swept over by the piston or pistons—con-

sidered single-acting—per revolution,

i\^, the number of revolutions per minute,

V, the volume of a pound of ammonia gas at the lower

temperature,

then

X V .

.-.7=41-. (387)

174. Duty. The duty of a refrigerating plant may
be referred to the number of thermal units required to melt

one pound of ice. The latent heat of fusion of ice at the

pressure of one atmosphere is 14i thermal units (page S9),

and if A, be the thermal units abstracted by the circulating

fluid per pound, then will the duty be

L'c-cnpucltij, lbs. = —^. (388)
1-14
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If referred to one pound of coal fed to the furnace, then

Ice-melting capacity
per lb. of fuel, lbs.

'

Pounds of

circulating

fluid per
liour

Specific

lieat

Range of

tempera
lure

144 X pounds of fuel per hour.

If w' pounds of coal evaporates W pounds of steam per

hour, then

WPounds of steam per lb. offuel = ---

,

(390)

which may be used in equation (389).

w

EXERCISES

1. How many thermal units will be removed from the

refrigerating room per pound of ammonia, the highest

average temperature of the liquid being 62° F., and that

after expansion — 1° F., the vapor being continually satu-

rated, and the specific heat of the liquid 1.06 ?

Omit 0.66 in the absolute temperature.

FromEq. (360), /t.a = 556.1.'

' " (384), (l.06X 2.3026%,og + ^)-
(385),

(383),

1.06 X 3.3026

459

532 7 556.1

459 ,„„ 523

,a'3 = 0.9308.

556.1 459'
Xi = 0.1135.

& = 455.16.

That is, each pound of ammonia will carry away 455.06 thermal units.

There must be taken into the compressor x^ = 93.08 per cent of vapor,

and therefore 6.93 per cent of liquid'. There must be Xi = 11.25 per

cent of liquid vaporized during the rise of temperature from — 1° F. to

62° F.

2. In the preceding exercise if the ammonia cools a brine

whose specific heat is 0.8, the lowest temperature of the

brine being 8° F., the highest 15° F., how many thermal

units will be removed by the brine per pound, and how
many pounds of brine will be required to absorb the heat of

one pound of the ammonia ?
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The heat imparted to the brine raises its temperature 15 — 8 = 7° F. ;

hence each pound will absorb 0.8 X 7 = 5.6 thermal units.

The ammonia imparts to the brine, equation (382),

7(2 = {x, - Xi) 556.1 = 454.06.

Let z be the pounds of brine necessary to absorb this heat in raising its

temperature one degree, then

0.8 X 72 = 454.06;

. , s = 81.17 pounds.

When brine is used, larger pipes or greater velocity of the brine will be

required than if ammonia only were used, and a lower temperature of

the ammonia will be required.

3. What will be the efficiency in Exercise 1 i

Equation (378) gives

That is, for every thermnl -unit of work done by tJw compressor, 7.28

thermal units will be 7'emrnvd from the cold room. If the work done by

the compressor be expressed in foot-pounds, and the heat removed be in

thermal units, then
7 28

£-, = -^ = 0.0093.
1 18

That is, for every foot-pound of work done by the compressor, 0.0093 of

a thermal unit will be abstracted from the cold room.

4. How many pounds of water will be required by the

condenser per pound of ammonia if condensed to a liquid

at 63° F., the temperature of the water being increased

from 50° F. to 64° F. '(

The heat surrendered by the ammonia will be 7h = 7i,i, equation (381);

and since the specific heat of water is unity, we have

y = ~ = 36.9 pounds.

5. How many cubic feet of water will be required in the

preceding exercise, per pound of ammonia ?

If less water is desirable, a greater range in its temperature must be

allowed, and if a less range of temperature, then more water will be

required.
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6. What must be the vohime of a single-acting compres-

sor cyHnder in Exercise 1 that it shall compress J of a pound
of ammonia gas with each stroke ? Equation (386).

7. In Exercise 1 find the highest and lowest pressures in

the compressor. Equation (350).

8. In Exercise 1 find the greatest and least specific vol-

umes of the gas. Equation (36-2).

9. In Exercise 1 find the external latent heat of evapora-

tion at the higher and lower temperatures. (This will be

p^ v^ andj>3 V.,— neglecting the volume of the liquid.)

10. Find the negative work done by the compressor dur-

ing one revolution and the positive work done by the one

pound of ammonia in Exercise 1.

Negative work, Eq. (379), V = 856577.

Positive work, Eq. (380), U" = 3283.

11. If a compressor have two cylinders of equal size, each

single-acting, diameter of each piston 18 inches, stroke 24

inches, ammonia gas entering at 0° F. and forced out at 62°

F., each 32 revolutions per minute; how many thermal units

will be removed from the cold room, no allowance being

made for losses and the ammonia gas continually saturated
;

what the indicated horse-power of the compressor, the

specific heat of liquid ammonia being 1.08 ?

Also, if 15 per cent be lost on account of clearance and

imperfect working of the compressor and 50 per cent of the

remainder due to losses in the refrigerating room ; how
many pounds of ice may be made from water at 62° F.

cooled to 32° and frozen and the ice cooled to 24° F., the

specific heat of the water being unity and of the ice 0. 50 i

Revolutions per hour

Volume of each cylinder « X 81 X 24 + 1728 cu. ft..

Working vol. displaced by pistons per hour, cu. ft. .

,

Specific vol. per lb. of gas at 0° F., Eq. (362), cu. ft.

Weight of gas compressed per hour, 2 ra F -*• », lbs

.

Vapor taken in per pound of fluid, Eq. (384)

n
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Liquid evaporated to reduce temperature, Eq. (385). .

.

:f4.= 0.111.

Latent liciit of evaporation at 0° F h,i = 555.5.

Refrigeration per pound, Eq. (382), tliermal units Aj = 456.1.

Condenser, heat removed, Eq. (381) hi— 517.5.

Work per pound, thermal units (hi — /tj) = 61.4.

" minute, thermal units (7(i — h^) W + 60 = 1.542.3.

Horse-power, 1543.3 + (33000 - 778) R. P. = 36.36.

Efficiency, Eq. (378) Ei = 7.42.

Heat removed from cold room per hour W h^ — 687400.

Effectual heat removed, 0.85 X 0.50 X 687400 = 292145.

Heat expended in freezing, per lb., 30 + 1 of 8 + 144, = 178.

Ice per hour, 392245 + 178, lbs = 1641.

Ice per horse-power per hour, lbs = 45.1.

The IHP. of the steam-engine should be about

36.86-^0.6 H.P.= 60.

Ice per IHP. would then be 45.1 X 0.6 lbs 27.

At 4 lbs. coal per IHP. per hour, lbs. of ice per lb.

coal = 6.8.

12. If 120000 pounds of brine passing through the cold

room per hour has its temperature increased 5.2° F., spe-

cific heat 0.80, at an expenditure of 2ftU() potmds of steam

generated by the burning of 2oO pounds of coal ; ho^v many
pounds of water may be frozen at and from 32° F. per pound

of coal burned ? Ans. 17..

(This data is almost exactly that of an actual case.)

Case in which the Gas is Supeeheated by C(iMPE:^ssio]sr.

175. Superheating. It will be seen from tlic pre-

ceding exercise that the adjustment of liquid to vap(.ii', in

order to insure the largest result per pound of ammonia

^ ^i must be delicate, and can hardly be

1^5 realized in practice ; we therefore will

Jv !
j\^K now assume that, when the compressor

u: I

I cylinder is full, the fluid is all gas, with no

irk liquid present, and is superheated at state
^"'' ' C. In compressing it adiabatically, let

the path be C I. If C were on the curve of saturation, the

Yapor would become superheated by adiabatic cijmpression.
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Let the state / be designated by accents, as v', jp', r'
;

and Cby double accents, as v",;p", r".

The work of compression and of forcing the gas out of

the compressor will be, by the aid of equation (368),

U' = 01

A

1 +A

< dp.

- b
1 + 11

— / „ p d V -\- p' v' — J}" v"

(391)

(392)

= a'L±Air' -r") b_ 1 +m
»"" n

' /t'

V.V'.

(393)

The last reduction may be effected by finding from (368) and (366)

p- „ _ p" ^" = a{r' -T")-b f^, - -k )

.

]
(394)

If the vapor be saturated at state _/, and/ jB be the adia-

batic of superheated vapor, the value of the work/'^ A D
will be found by substituting v„ t„ j)^-, respectively, for -y",

^'^y, giving

-^ . ^ 1 + 1, ,
, I 1+n {(7'\fBAD = a^{r -r:^.--^.^^W-) .(395)

If the vapor be superheated at state 6', its volume would

be given by equation (364), f and r being given. If it be

saturated, i), will be given, by equations (362) and (350)

when either^ or r are given, this r being r^ in (369), (370)

and (371), when the initial state of the adiabatic of the

superheated vapor is on the curve of saturation.

Since T is an adiabatic, equation (369) will give the

volume v' at state /, and (371) the pressure, for the temper-



346 REFEIGEKATION". [175.]

ature t'. Tliis pressure is assumed to be constant during

condensation ; during the first part, from / to B, the con-

densation is pi-oduced by a reduction of tlie temperature and

volume, until the temperature is that of saturation, r^, un-

der the pressure p^, while from B to A the temperature and

pressure are both constant, and the reduction of volume is

effected by the condensation of vapor to a liquid. Assuming
that the specific heat of the vapor is constant at constant '

pressure, then, for complete liquefaction, the heat abstracted

in the operation IA will be

A, = Cp (r' - r,) + 4, (396)

Assume that heat is abstracted from the liquid at constant

volume from state A, reducing the pressure from p^ to p„
and temperature from r^ to r^ ; the path of the fluid will be

A D, and the heat so abstracted will \>& HD A G. If this

^ ,
heat be abstracted from the circulating

. ^^ fluid in the cold room, then will the room

^ I iNiB absorb that amount of heat, and in the

B
I

[ evaporation and expansion afterward an

i
iTff— equal amount of heat must be supplied

PIG. 87. from the cold room at the lower tem-

perature before any useful amount can be absorbed by the

circulating fluid ; and \i H D j g\>e the amount so absorbed

we have
HI) A G = HBjg.

The heat emitted will be

H D A G = c {r, - r^).

Let H D j ghe the latent heat of evaporation in the a3„th

part of a pound of vapor at the temperature r^ ; then

K = (r, - r,). (397)'^ 6 "^ea

(This value of Xt is the same as x^ in (380), when m" = ; but exceeds

a, in Eq. (385).)
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The refrigeration per pound per revolution will be

K= gjCK,
= H DfF -HI>jg + Ff C K,
= K- (r, - r,) + 6-p (r" _ r,), (398)

= K + <^ {^ - r,) - (r, - r„) + c, {r" - r,),

= h - c (r, - T.) + Op (r" - T,), (399)

in which t„ is the absolute temperature of melting ice, and

h the total heat of vapor above r„ Article 85, Eq. (93).

Then equations (396) and (397),

1i, — K = K + Cf (^' — •^0 — h., — Cp (r" — r,) + e(r, — t,)

= ^i> A IK- Ae, - Cp (r" - r,)

= I) AIC;
.-. U' = J{h^-h,), (400)

which is the equivalent of eqiiation (391) or of (395).

176. The efficiency will be

EXERCISE.

If the inferior absolute pressure of the ammonia be 29

pounds per square inch, temperature when it leaves the

cooling coils and enters the compressor, 36° F., then com-

pressed adiabatieallj to a temperature of 117° F., then con-

densed to saturation and to a liquid at the constant pressure

corresponding to the 117° F., then admitted to the cooling

coils and the temperature reduced to that corresponding to

the initial absolute pressure, 29 pounds, then evaporated and

heated to the initial state ; find the thermal units of refriger-

ation and of condensation, the specific heat of the liquid

being 1.08 ; also the efiiciency.
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Retain results only to the nearest tenth.

Inferior temperature, Eq. (350).
.' t, = 458.7.

Hence, T, = - 1.9.

Absolute temperature at state C. 460.6 +36 •" = 496.6.

Superheating t" — r^ = 37.9.

Greatest volume of a pound, Eq. (857) torp = 4176, «" = 9.8.

At /, absolute temperature, 117 + 460.6 i- = 577.6.

" volume, Eq. (369) v' = 2.4.

" pressure, Eq. (370) p' = 118.

From B to A, absolute temperature, Eq. (350) tj = 527.8.

HeDce, Ti = 67.2,

Fall of temperature from .1 to X» Ti - Ti - 69.1.

Heat absorbed during this fall of temperature 1.08 X 69.1 = 74.6.

Latent heatof evaporationat— 1°.9 F., Eq. (360). A.j = 557.

•' " " " " 66.2, " " A.1 = 515.

Heat rejected during condensation, Eq. (396) hi = 540.8.

Refrigeration per lb. , Eq. (398) Aq = 500. 7.

"Work done by the compressor, per lb., Eq. (400). U = 31198.

Efficiency, Eq. (401) E^ = 12.5.

177. Experimental Results. The following data

and results are taken from tlie report of a test of a De La
Yergne refrigerating plant by Messrs. E. M. Anderson and

C. H. Page, Jr., having a norainal ice-melting capacity of

about 110 tons in 2J: hours. It was in its every day work-

ing condition and was run at about two-thirds its ordinary

capacity. Only the ice plant was involved in the experiment.

It consisted of two siugle-actingvertical compressor cylinders,

s driven by a horizontal double-acting Corliss engine, as shown
,in Fig. 80, a feed pump and k condenser. The test was

during 11 hours and 30 minutes. Two tests were made
of the boilers, as the first indicated such high elRciency

it was considered advisable to check the results. It will

be seen that the second test also gave a high efficiencv.

The second test was during 12 hours. All the instruments

used in the test were carefully standardized. (Thesis 1887.)

Fuel, Fuknace and Boilers.

There were two double return flue boilers arranged to run, automati-

cally, between 60 lbs. and 70 lbs. pressure (gauge).
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Fuel, Lehigh nut (anthracite), heat of combustiou, B. T. U.. .

.

13339.6.

Coal for 13 hours, lbs 4433.

Wood for starting 377 lbs. 0.4 coal equivalent, lbs. 150.8.

Coal, total equivalent, lbs 4573.8.

Unburnt coal, lbs 135.0.

Coal consumed, lbs 4447.8.

Combustible, total, lbs 3577.8.

Coal burned per hour, lbs 360.65.

Heat in 360.65 lbs. of coal, 360.65 X 13339.6 B. T. U 4533901.

Coal per H. P. per h. (3d test, H. P. vi^as 103.93) 3.6013.

Furnace, grate area, sq. ft 39.

Ratio of heating surface to grate surface 35.63.

Boilers, heating surface, sq. ft 1389.

Water fed per hour,, lbs 3559.7.

Evaporation per lb. coal fired, lbs 9.341.

" " " " " from and at 313° , 9.957.

" '" << << consumed 9.601.

" " -" " from and at 313" 10.336.

" " combustible, from and at 313° 13.703.

Average gauge pressure, lbs 66.0.

Temperature of fire-room, deg. P 81.

Average temperature of flue boiler, deg. F 319.38.

". fe6d-water " ", 180.3.

- Total ieat in-8559.7 lbs. steam above 180°.3 F., B. T, U.,

.

3661463.

•n.a= • ^t J V , * 366146300 ..
_

'

Efficiency of furnace and boiler, per cent, = „ -80.7.

"--...-- _< -J ,
- J (

Engine (Corliss). /'

Piston, diameter of, inches '.
33.

" stroke- " " ,..,.. 36.

" speed per minute, mean, ft. , 194.988.

Revolutions per minute, average . 31.730.

Average indicated horse-power 91.13.

Water consumed per IHF. per hour, lbs 34. 104.

S^TTi peri-HP. per hour, lis -.....;....-.. - 35.79.

SteSiHi-GMideBsea in the engine, per cent 34.35.

Average ratio of expansion 5.807.

Steam consumption by the feed-pump per hour, lbs 50.35.

" " " " engine per hour, lbs .. ; 3509.45.

Total heat in 3509.45 lbs. steam above 180°. 3 F., B. T. U. . .

.

3609479.

Heat changed to work per h., B. T. V., 103.93 X 1980000 + 778 == 361930.
'"

' „ ., 361930 „„„„,
Efficiency of fluid

3609479
~ 0.0731.
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Coal per I. H.P. per hour for engine and pump 3.60.

Combustible for I.H.P. per hour, lbs 2.91.

Compressor.

Number of cylinders, single-acting S.

Length of stroke, inches 36.

Diameter of pistons, each, inches 18.

Area head end of pistons, each, sq. in 354.47.

Average number of revolutions per m 31.730.

Piston displacement per strolie, cu. ft 5.301.

" hour, both, cu. ft 20179.

Volume of sealing oil per hour, cu. ft 143.8.

Volume filled with gas per hour, both, cu. ft 30036.

Indicated horse-power, mean 76.0898.

Heat eq. of wx)rk by compressor per hour, B. T. U 193645.

193645
EflBciency of compressor from coal . „. .. — 0.0407.

" " mechanism 0.755.

Temperature of ammonia entering compressor, Deg. P 57.7.

leaving " " 116.1.

Absolute pressure entering compressor, lbs 28.88.

leaving " " 132.01,

73e= ^p'.'QOG

IIP = ^6,0149

Jitmas-plx&T.ic.,XiixB .

VO-C vc-vnThX.-LTie,

.

Pig. 88 is an exact copy of one of the indicator cards taken from one

of the compressor cylinders. The lines nearly vertical at the upper part

of the diagram are due to the oscillations of the indicator spring.
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Rbfriqehation.

Pressure in cooling coil, lbs. absolute

Hence, temp, of liquid, Deg. F
Temp, compressed gas, Deg. F
" of gas entering the compressor, Deg. F

Rise of temperature due to compression, Deg. F
Latent heat of evaporation of 1 lb. at — 3.0 F. Eq. (360)

Superheating in cooling coils, 37.9° F. , B. T. U
Fall of temp, of liquid in cold room, Deg. F
Heat imparted to cold room by this fall, 1.08 X 69.1

Heat removed from cold room per lb., 556.7+ 19.27 — 74.95

Ammonia evaporated per hour, lbs

" " B.T.U
' Ice-meli ing capacity" per hour, lbs

" for 24 hours, tons (each 2000 lbs.). .

.

" per IHP. per hour, lbs

" lb. of coal (3.6013 per HP.), lbs. .

.

" 10 lbs. steam (182.6 + 9.601) lbs.

.

" lb. combustible (65.79 + 2.91), lbs.
" " lb. ammonia evap., lbs

- 2.0.

116.1.

57.7.

58.4.

556.7.

19.27.

69.4.

74.95.

501.02.

1669.5.

851811.

5995.

71.95.

65.79.

18.86.

19.03.

22.61.

3.59.

Efficiencies.

Efficiency of furnace and boiler (see above) 0. 807.'

steam utilized by engine (see above) 0.0721.

engine referred to coal 0.0582.

0.755.

0.0439.

compressor referred to engine (see above).

" " coal (775 X 0.0582)

, . ,. . , ^
851311

refngeration referred to compressor. . .

.

4.89.
193645

~

IHP. of engine 3.81.

boiler. ... 3. 67 X 0.0648 = 0. 238.

coal 0.286 X 0.807 = 0.192.

that is, for every thermal unit in the coal there was abstracted 0.19 of a

thermal unit from the cold room.

In actual ice-making, only about 30 to 45 per cent of the

pounds of ice-melting capacity can be produced as hard ice

suitable for commercial purposes, giving, in this case, be-

tween 5.0 and 7.5 pounds of hard ice.

The experiments of Professor M. Schroter gave from 19.1

pounds to 37.4 pounds of ice (net) per hour per indicated
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horse-power of the engine. (One result is given as 48.8

pounds, but the test was of too short duration to be reliable.)

If 4 pounds of coal were used per H. P. per hour, then

there would be produced about 4.8 to 9.3 pounds, net, per

pound of coal consumed.

Ledoux remarks that manufacturers estimate about 56

pounds per horse-power per hour measured on the driving-

shaft ; hence, if the delivered power be 0.80 of the indi-

cated, this would be equivalent to about 45 pounds of ice

per indicated horse-power. M. Schroter's tests, and the

following, bj Mr. Shreve, show that this is too high, if

commercial ice is intended.

The amount of ice made depends upon many conditions

:

as, clearances in the cylinders, friction of mechanism, speedl

of engine, losses along the pipes, losses in opening the valves,,

leakage, losses by unavoidable radiation, losses at cans bji

water unfrozen and ice cleavages; and, these being con

sidered, it seems advisal:)le, in designing, to assume less than

one-third the pounds of ice-melting capacity for the probable

pounds of commercial ice to be produced.

178. Test of an ice-making plant. An ice-

making plant of the Cincinnati Ice Manufacturing & Cold

Storage Cu. was tested in 1888, by Messrs. A. L. Shreve

and L. W. Anderson, chiefly to determine the amount of

solid ice which could be manufactured in 24 hours with the

plant running under normal conditions. The plant con-

sisted of two 25-ton (nominal) and one 50-ton ice-machines,

boilers, pumps, etc., used in actual ice-making. While the

machinery was doing its regular work, at a certain hour,

the steam pressure was observed to be 75 pounds (gauge),

and all the conditions of the furnace, engines, and plant

generally were observed, and the conditions continued as

nearly uniform as possible for 24 hours, during which time

108.87 tons (of 2000 lbs.) of ice were drawn, from which
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should be deducted nearly a ton on account of the terminal

condition being slightly different from the initial. The

actual ice weighed out at 75 pounds' steam pressure, then,

may be taken as 216,000 pounds.

The engines were not tested at the same time, so that the

ice p3r horse-power was not definitely known ; but an inde-

pandeat test of the boilers and engines was made prior to

the " capacity " test given above, from which it appears that

at 75 pounds' pressure, the three engines developed about

415 indicated horse-power ; according to which 21 pounds of

solid ice were weighed per indicated horse-power per hour.

The actual amount may have been several per cent more or

less. The machines were new and bearings large, and the

engine and" compressor absorbed an average of about 52 per

cent of the indicated horse-power of the engine.

Absoeption System.

179. The absorption system depends upon the

fact that water will absorb many times its volume of am-

monia gas ; at 59° F. it will absorb 727 times its volume.

This is a chemical action, and therefore generates heat. Ac-

cording to Favre and Silbernian, 925.7 B. T. U. will be

developed for each pound of gas absorbed. This action is

substituted for the compressor in raising the temperature of

the ammonia after leaving the cold room. According to

Carius, the coefficient of solubility of ammonia gas in water

is represented by the empirical formula {t being Deg. C.)

yS = 1049.62 - 29.4963 t -f 0.676873 f ~ 0.0095621 f
;

according to which the solubility diminishes as the temper-

ature increases and soon reaches a condition at which it

ceases to act ; and to insure continuous working the absorp-

tion chamber is cooled by water exteriially.

The process is illustrated in Fig. 89. A solution of aqua-

ammonia being in the generator A and heated by means of

steam passing through coils in this chamber, the vapor of
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ammonia is generated and rises, passing through tortnous

ways in the analyzer Cy thence to the condenser D. The

steam which rises in the analyzer G is partly condensed

as it approaches the upper end of the vessel and falls back

to the generator, and that which passes into the coils over

D is led back by the ammonia drip, so that nearly pure

ammonia gas enters the condenser D. Here the ammonia
is at its highest pressure and temperature, and its state may
be represented by B, Fig. 90, or by the upper right-hand

corner of the indicator diagram of Fig. 88. The ammonia

gas passes through coils of pipes

in the condenser, about which

circulates 'water ; the ammonia

being condensed to a liquid under

a constant pressure, the path of

the fluid being represented by

H ^1, Fig. 90. Tlie liquid passes

to the lower part of the coils,

or to a receiver especially provided, and thence through

a cock, by which the reduction of pressure is regulated as
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it passes into the cooler /?. The rediiction of pressure is

represented by A D, and of evaporation during the expan-

sion by D J. The liquid and a small amount of saturated

vapor is now in the cooler II, where the liquid vaporizes,

absorbing heat, the operation being represented by ./ C,

Fig. 90, or the corresponding line in Fig. 88. Tli6 brine,

'

which circulates in the cold room, is cooled by the cold am
monia as it passes through the cooler.

During the process of cooling the brine, the liquid am-

monia becomes a gas. The gas passes from the cooler II to

the absorber IT, the pressure in ^ being kept a little lower

than in H by the ammonia pump, shown at the right, which

draws its supply from ^and forces it into the generator A.
Into the absorber IT, water is forced and absorbs a large

volume of the gas, as stated above, generating heat, the oper-

ation for which being represented by £, Fig. 90, or the

compression line in Fig. 88. In this system pure water is

not used in the absorber, but instead thereof, water is drawn

from the lower part of the generator A by the pipe I, con-

taining but little ammonia, the mixture being called "weak
ammoniacal liquor." By the absorption of the gas, strong

aqua-ammonia is formed, which is pumped back into the

generator, and the operation repeated.

It will be seen that the operation completes a cycle, and

that the changes in the states of the ammonia are similar to

those in which a compressor is used ; hence, if there were

no losses of heat, except those described, the eiUciency would

be the same.

The vessel -ST is kept sufficiently cool to facilitate the

chemical action by means of water flowing over it.

180. Test of absorption plant. Professor J.

E. Denton made a seven days' continuous test of an absorp-

tion plant with the following i-esults.* Every element en-

* Trans. Am. Soc. Meeh. Erig. , Vol. X , May, 1889.
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tering into the problem was, as far as practlcaljle, directly

measii'red.

Average pressures, above atmosphere, generator, lbs. per. sq. in.. 150.77.

steam, " " " 47.70.

cooler, " " " 23.69.

" " " " absorber, " " " 23.4.

Average temperatures, Deg. P., Generator 272.

" " " Condenser, inlet 54J.

outlet 80.

" " " " range .

.

25|.

" Brine, inlet 21.20.

" outlet 16.14.

" " " " range 5 06.

" " " Absorber, inlet 80.

outlet 111.

" " " " range 31.

" " Heater, upi^er outlet to generator 212.

" ' " " lower " absorber. 178.

" " " " inlet from absorber 133.

" " Inlet from generator 272.

" " " Water returned to main boilers.

.

260.

Steam per hour for boiler and ammonia pump, lbs 1986.

Brine circulated per hour, cu. ft 1633.7.

' " " " " pounds 119260.

" Specific heat 0.800.

" Heat eliminated per pound, B. T. U 4.104.

" Cooling capacity per 24 hours, tons of melting ice 40.67.

" " " per pound of steam, B. T. U 243.

" Ice-melting capacity per 10 lbs. of steam, lbs 17.1.

Calorics, refrigeratin.g effect per kilo, of steam consumed 135.

Heat rejected at condenser per hour, B. T. U 918000.

"absorber " " " 1116000.

" consumedbygenerutor per lb. of steam condensed, B. T. U. 932.

Condensing water per hour, lbs 36000.

Condensing coil, approx. sq. ft. of surface 870.

Absorber ' " " " " "
, 350.

Steam " " " " " " 200.

I'ump, Ammonia, dia. steam cyl., in 9.

" " " ammonia cyl., in 8^.
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Pump, Ammonia, stroke, in 10.

" revolutions per minute 22.

Brine, steam cyl., diam., in 9i.

" brine cyl., " 8.

stroke, in 10

revolutions per m 70.

Effective stroke of pumps 0.8 of full stroke.

180a. Sulpliur Dioxide, (or Sulplmrons Acid).

The following relations have been found for this acid

:

Specific heat of the gas, 0.15483.

" " " " liquid, 0.4.

Relation between the pressure and temperature of the

saturated vapor,

, . „„„- 1439.0 235629 , ,

loff^ = 5.2330 5 {a)

Equation of the gas, or superheated vapor,

„^ ^^ 2457.45 ,..

Latent heat of vaporization,

h, = in.26 - 0.25605 T - 0.0013795 T\ (c)

Volume of a pound of the saturated vapor,

778 K ^
V = -+ «:

2.3026 1439 ,

1«5318 j? ' '

(^)

Yolume of a pound of the liquid,

0.016
V,
—

1.484 - 0.0015659 T'
{Trans. Soc. Mech. Eng., 1890.)

(^)



CHAPTER VI.

COJIBUSTION

181. Essential ijrinciple. Comhustion, chemi-

cally speaking, is tlie combination of chemical elements

producing heat. Burning, popularly speaking, is the re-

sult of a rapid combination of oxygen with other ele-

ments. Carbon and hydrogen are the chief elements of the

fuel used for engineering purposes. Sulphur, another ele-

ment, is frequently present, but is comparatively of little

value.

When two substances unite chemically, forming a sub-

stance different from either, it is said that a cJienacal affinity

exists between them. The diilerence between a mechanical

mixture and a chemical combination may be illustrated in

the case of gunpowder. The process of manufacture makes

a mechanical mixture of charcoal, sulphur, and nitre, but if

the gunpowder be fired a chemical combination results and

a large volume of gas is produced, generating a large

amount of heat and developing a strong elastic force ; and

the original substance entirely disappears and new sub-

stances composed of different combinations of the original

elements are formed.

Definite proportions. In every chemical compound a

definite and unvarying proportion of its elements exists

among themselves.

For instance, in water there is always 8 times as much
oxygen by weight as there is of hydrogen, so that in l()(t
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pounds of water there is 88.8 pounds of oxygen and 11.1

pounds of hydrogen. Any chemical compound of oxy-

gen and hydrogen in other proportions would be a sub-

stance entirely different from water ; or, if in the 100 parts

there were some other element, as carbon, the substance

would also be different from water.

The chemical equwalent or atomic weight is expressed l)y

a definite number, and the chemical principle of definite

proportions may be expressed in the form of the two follow-

ing laws

:

1. The proportions by weight in which substances com-

bine chemically can all be expressed by th^ir chemical

equivalents, or by simple multiples of their chemical equiva-

lents.

2. The chemical equivalent of a compound is the sum of

the chemi(;al equivalents of its constituents.

Perfect gases at a given pressure and temperature com-

bine in proportion to their volume.

Neglecting fractions the following are the chemical

equivalents for the principal elementary constituents with

which we have to deal in fuel and air :

TABLE I.
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affixing to each symbol, in the form of a subscript, tne num-

ber of its equivalents which enter into one equivalent of the

compound. Thus, water contains two chemical equivalents

of hydrogen to cue of oxygen, and is indicated by the ex-

pression Hj O ; and the constituents by weight will be 2 H
+ 16 O. Similarly, C 0„ carbonic acid, contains one equiva-

lent of carbon and two of oxygen, and by weight 12 C +
32 0.

The following table gives the composition of several sub-

stances :

TABLE II.

Name.

Air
Water
Ammonia
Carbonic oxide
Carbonic acid

defiant gas
Marsh gas or fire-damp.

Sulphurous acid
Sulphuretted hydrogen.
Bisulphide of carbon.
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temperature produced in the water by the burning of each

pound of the fuel in the furnace being a measure of the

" heat of combustion." The results of the experiments of

Favre and Silberman are given in the following table

:

TABLE III

Showing the total quantities of heat evolved bt the com.
pliete combustion of one pound of combustible with oxygen ;

ADAPTED FROM THE BESULTS OBTAINED BT FaVKE AND SlLBBS-

MAN. The unit of weight in this table being one pound,
and the unit of tejipbratuke one degree Fahr. (from 39°

TO 40°).

Substance.

Hydrogen
Carbouic oxide.
Marsh gas
Oleflant sas. . .

.

LIQUIDS.

Oil of turpentine
Alcohol
Spermaceti (solid)

Bisulphide of carbon ..

Carbon (wood charcoal)

Gas coke
Graphite from blast furnaces
Native Graphite
Sulphur (native)

Phosphorus (observed by Andrews.).

Formula.

H
CO
CH.
Gg H4

ClO Hi6
C, HeO

C 82

Product.

H,
CO,
C O2 .t H, O
C O2 & H2 O

C0,&H2 O
C Oj & H2 O
C O2 & Ht! O
U Oa & S O

(CO
CO,

S02
P205

Units of
heat.

63,032
4,325
33,513
21,343

19,533
12,931

18,616
6,122

4,451
14,544
14,485
13,973

14,035
4,048

10,715

The heat units in a pound of fuel will be nearly the sum
of the heat units of combustion of its constituents. Take,

for example, olefiant gas : According to Table II. the

chemical equivalents by weight are 14, of which 1 2 are carbon
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and 2, hydrogen ; or, -^- of the compound is carbon and 4

hydrogen. Then, from Table III., we find

i lb. H gives | of 62032 = 8862 B. T. U.

f lb. carbon gives f of 14554 = 12475 " " "

Total = 21537 " '^ '•

which is only 6 thermal units less than the value given in

the table, as deduced from experiment.

If the principal constituents are carbon, hydrogen, and

oxygen, it is found that the total heat of combustion in

B. T. U. will be given nearly by the following formula :

h = 14500 (C+ 4.28 {H - \ 0) ),

in which 4.28 = ——— , reduces the hydrogen to an equiva-
14500' J ir, 1

lent of carbon, and |- 6> is deducted from the hydrogen, for

it is assumed that the oxygen present unites with the hydro-

gen, forming water. Such substances are called hydro-

carbons.

The total heat of C9mbustion is usually computed from

its chemical analysis, as shown on page 261.

The following table gives the total heat of combustion of

-

certain fuels (see Journal of United Service Institution^

Eng., Vol. XI., 1867 ; Box On Heat, p. 60). The speci-

mens were of the best quality, and are too high for ordinary

practice. Commercial coal of similar grade would be about

0.7 to 0.8 of these values. Commercial Lehigh (anthracite),

analyzed at the Institute, gave 12229 B. T. U.



L183.J THE INCOMBUSTIBLE MATTER. 3G3

TABLE lY.

TOTAL HBAT OF COMBUSTION OF FUEL.

Fuel.
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Magnesia 0. 68

Potash and soda 1.08

Phosphoric acid 0.13

Sulphuric acid 0.24

Sulphur, combined 0.41

99.88

' The proportions vary greatlj with different fuels.

184. Air required for combustion. Consider

pure carbon. The chemical equivalent of oxygen is, ac-

cording to Table I., |f of that of carbon. If the carbon be

completely burned, C O^ is formed, so that the proportion

by weight will be f| of oxygen to 1 of carbon. According
to Table II., (.).23 of tlie air by weight is oxygen ; hence

Wcifjlit of air ]it'r lb. of carbon = ^| -4- 0.28 = 12 Ihs , injarly.

If the compound contains carbon, liydrogen and oxygen,

w^e will have, nearly,

We;;//it of II ir per 11. fuel = A = 12 r + 36 {II— ^ 0).

The following table, computed from this formula, is given

by Rankine.

TABLE V.

II.

III.

I. CnARCOAL—from wood.
" from peat.

.

CoKB—good
Coal—anthracite

dry bituminous. .

.

caliing.

cannel
dry long flaming.
lignite

IV. Peat—dry
V. Wood—dry
VI. Mineral Oil

0.93

0.80
0.94

0.915

0.87

0.85

0.75

84
0.77

0.70
0.58

0.50

0.85

H. O.

0.035
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Besides tlie air necessary to furnish the oxygen, some is

required for dilution, so as to secure a more free access of

air to the fuel. The above table shows that about 12 pounds

of air is required per poimd of fuel, and experiment indi-

cates that from 1^ to 2 times this amount is required in the

furnace for combustion and dilution. An excess of air

causes a waste of heat by transporting an unnecessary amount

of heat up the chimney, and a deficiency causes imperfect com-

bustion. Forced draft requires less air than a natural draft.

185. Forced draft. Most American sea-going steam-

ers have boilers designed to burn anthracite coal with natural

draft, and 5 to 5^ pounds of coal is burned per hour per

square foot of grate. Torpedo-boats, with bituminous coal

and forced draft of 6 inches of water, may burn 96 pounds

per square foot of grate per hour.

In a furnace in which 19 pounds of anthracite coal were

burned, a forced draft by means of a screw revolving in the

chimney was introduced, causing a burning of 38^ pounds

of coal, and a production of 80 per cent more steam than in

the former case. In 1847 Robert L. Stevens introduced

the plan of air-tight fire-rooms, by which means a forced

draft was produced by forcing^air into the room occupied

by the firemen.

186. Temperature of fire. If the volume be con-

stant, as in case of an explosion in a closed vessel, then will

the rise of temperature be given by equation (37), page 55
;

but if the pressure be constant, as in the ordinary furnace,

then will it be given by equation (38).

Take the case of pure carbon burned with 21 pounds of

air. The total heat of combustion will be. Table III., 11544

thermal units. This heat is expended in heating 25 pounds

of matter, of which 24 pounds is air, whose specific heat is

0.238, and one pound of carbonic acid gas, whose specific

heat is 0.217. Call the specific hea*-. of the mixture 0.237
;

then
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—14544_ ^ 2454° F.
25 X 0.237

The only measurement with a pyrometer which has come
to my notice gives a much lower temperature than is found

by this formula.

187. Height of chimney. The height of the

chimney to produce a natural draft must be such that the

difference between the weight of a column of the hot gases,

having one square foot for its base and height equal to the

height of the chinmey, and that of a column of equal height

of external air, shall produce the required velocity of air in

the chimney.

Let w„ be the weight of fuel burned in the furnace per

second,

V„, the volume of the air at 32° supplied per pound
of fuel burned,

T„, the absolute temperature at 32°,

A, the area of the cross-section of the chimney,

m, A -i- perimeter of chimney,

T„ the absolute temperature of the gases discharged

from the chimney,

w, the weight of a cubic foot of the hot gases,

I, the length from the furnace to the top of chimney,

u, the velocity of the current in the chimney per

second ;

then, if 24 pounds of air be supplied per pound of fuel,

F„ = 25 X 12 = 300 cu. ft.

u A — w^ V^-i = volume of gases per second
;

A r„

1w =li (0.OS07
, ^

r, K
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Aceordiug to Peclet, the head to produce the velocity u

for 20 lbs. coal bnmed per sq. ft. of grate per hour will be

2 ^ \ m J

Having A, the height of the chimney may be found.

Let H be the height of chimney,

Tj, the absolute temperature of the external air ; then

Weight of the column of air = 0.0807 .
'^ R.

" " " " " gases = (0.O8OY +^)-°-^.

''' "a column of gases of length h

= (0.0807+-^JJ»A;

. •
. fo.0807+— ^ -» {H-\-h)=^ 0.080Y -° H

;

V ^ 300^ r,
'

r,

..H = ^

0.96 -' - 1

The weight discharged per second will be

w t* = 1° (0.O8OY + ^\ Vh a/ 2^

13 + «-:^
' /yyt

constant

^0.96 1.

7>

This will be a maximum for

r --A--2lr •

'
- 0.48

~ 12 "

'

that is, the best chimney draft takes place when the absolute

temperature of the gas in tlie chimney is to that of the ex-

ternal air as 25 to 12.
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This in the preceding equation gives

A = //.

In the soMtion for a maximum, I is considered constant,

an assumption which affects the result by onlj a small

amount.

The height of a chimney is often determined by sur-

rounding circumstances, and sometimes by imagined con-

ditions of future use ; and in such cases are not subject to

computation.

In ordinary practice chimneys are from forty to one hun-

dred and twenty feet. Above one hundred feet the effect

of additional height is comparatively small.

The tallest chimney of which we have knowledge is 44:1.6

feet high, eleven feet and a half in diameter at the base,

and ten feet at the top. It was built by the Mechernich

Lead Mining Co. (Yan ISTostrand's E7ig. Mag., 1886, page

264). For dimensions of large chimneys, see Van Nostrand's

Ejig. Mag., September, 1883, page 216 ; also Trans. Am.
Soc. Civ. Engineers, 1885 ; also 'No. 1, Science Series, by

D. Van Nostrand.
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(Extract from an article by the author in the Philosophical Magazine for

November, 1885.*)

THE LUMINIFEROUS ETHER.

Two properties of the lumlniferous ether appear to be known and
measurable with a high degree of accuracy. One is its ability to transmit

light at the rate of 186300 miles per second,-)- and the other its ability to

transmit from the sun to the earth a definite amount of heat energy.

In regard to the latter, Herscliel found, from a series of experiments,

that the direct heat of the sun, received on a body at the earth capable of

absorbing and retaining it, is competent to melt an inch in thickness of

ice every two hours and thirteen minutes. This is equivalent to nearly

71 foot-pounds of energy per second.

In 1838 SI. Pouillet found that the heat energy transmitted from the

sun to the earth would, if none were absorbed by our atmosphere, raise

1.76 grammes of water 1° C. in one minute on each square centimeter of

the earth normally exposed to the rays of the sun. %

This is equivalent to 83.5 foot-pounds of energy per second, and is the

value used by Sir William Thomson in determining the probable density

of the ether. § Later determinations of the value of the solar constant by

MM. Sorret, Crova, and Violle have made it as high as 3.3 to 2.5 calories.

But the most recent, as well as the most reliable, determination is by Pro-

fessor S. P. Langley, who brought to his service the most refined ap-

paratus yet used for this purpose, and secured his data under favorable

conditions ; from which the value is found to be 2.8 ± calories
||
with

some uncertainty still remaining in regard to the first figure of the deci-

* Published in Van Nostrand's Engineering Magazine, January, 1886. Also Scienct

Series, No. 85.

t Professor Micheleon found the velocity of light to be 299740 kilometers per sec-

ond in air, and 299838 kilometers in a vacuiim, giving an index of refraction of

1 000266. (Journal of Arts and Science, 1879, Vol. XVIII., p. 390.)

X Comptes Bendus, 1838, Tom. VII., pp. 24-26.

I Trans. Roy. Soc. of EdinMrgh, Vol. XXI., Part I.

II
Am. Jaurn. of Arts and Science, March, 1883, p. 196. Also Comptes Bendus.
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mal. We will consider it as exactly 2.8 in this analysis, according to

which, there being 7000 grains in a pound and 15.432 grains in a gramme,

we have for the equivalent energy

2.8X15.432 9 772x144 ,„„^
TOOT- ^ 5 ^ 0.155 X 60 = ^^^ footPO^^^ds

per second for each square foot of surface normally exposed to the sun's

raj's, which value we will use. Beyond these facts, no progress can be

made without an assumption. Computations have been made of the

density, and also of the elasticity, of the ether founded on the most arbi-

trary, and in some cases the most extravagant, hypotheses. Thus, Her-

schel estimated the stress (elasticity) to exceed

17 X 10' = (17,000,000,000) pounds per square inch ;
*

and this high authority has doubtless caused it to be widely accepted as

approximately correct. But his analysis was founded upon the assump-

tion that the density of the ether was the same as that of air at sea-level,

which is not only arbitrary, but so contrary to what we should expect

from its non-resisting qualities as to leave his conclusion of no value.

That author also erred in assuming that the tensions 'of gases were as the

wave-velocities in each, instead of the mean square of the velocity of the

molecules of a self-agitated gas ; but this is unimportant, as it happens to

be a matter of quality rather than of quantity. Herschel adds, " Consid-

ered according to any hypothesis, it is impossible to escape the conclusion

that the ether is under great stress." "We hope to show that this con-

clusion is not warranted ; that a great stress necessitates a great density
;

but that both may be exceedingly small. A great density of the ether

not only presents great physical difficulties, but, as we hope to show, is

inconsistent with the uniform elasticity and density of the ether which
it is believed to possess ; and every consideration would lead one to ac-

cept the lowest density consistent with those qualities which would enable

it to perform functions producing known results.

In a work on the Physics of Ether, by S. Tolver Preston, it is esti

mated that the probable inferior limit of the tension of the ether is 500

tons per square inch, a very small value compared with that of Herschel's.

But the hypothesis upon which this author founded his analysis was

—

The tension of the ether exceeds the force necessary to separate the .

atoms of oxygen and hydrogen in a molecule of water ; as if the atoms

were forced together by the pressure of the ether, as two Magdeburg
hemispheres are forced together by the external air when there is a

vacuum between them. This assumption is also gratuitous, and is re-

jected for want of a rational foundation.

Young remarks :
" The luminlferous ether pervading all space is not

* FamUia7' Lectures^ p. 282.
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only highly clastic, but absolutely solid." * We are not certain in what

sense this author considered it as solid ; but if it be in the sense that the

,
particles retain their relative positions, and do not perform excursions as

they do in liquids, it is a mere hypothesis, which may or may not have a

real existence. If it be in the sense that the particles suffer less resistance

to a transverse than to a longitudinal movement, there are some grounds

for the statement, as shown in circularly-polarized light. Bars of solids

are more easily twisted than elongated, and, generally, the shearing re-

sistance is less than for a direct stress. It certainly cannot be claimed

that the compressibility of the ether (in case we could capture a quantity

of it) is less than that of solids.

Sir William Thomson made a more plausible hypothesis, by assuming

that " the maximum displacement of the molecules of the ether in the

transmission of heat energy was A of a wave length of light, the average

of which maybe taken as ^j^^^j of an inch." Hence the displacement

was assumed to be ^^xsJnoi; o^ ^i i'^'^'^ ! ^J means of which he found the

weight of a cubic foot to be f X 10"^° of a pound, f We also notice that

Hr. Belli estimated the density of the ether to be ^ X 10 ~" of a pound
; |

but M. Herwitz, assuriiing this value to be too small and Thomson's as

too large, arbitrarily assumed it as 10 ~ " of a pound per cubic foot ; but

arbitrary values are of small account unless checked by actual results.

We propose to treat the ether as if it conformed to the Kinetic Theory

of Gases, and determine its several properties on the conditions that it

shall transmit a wave with the velocity of 186300 miles per second, and

also transmit 133 foot-pounds of energy per second per square foot. This

is equivalent to considering it as gaseous in its nature, and at once com-

pels us to consider it as molecular ; and, indeed, it is difficult to conceive

of a medium transmitting light and energy without being molecular.

The Electromagnetic Theory of Light suggested by Maxwell, as well as

the views of Newton, Thomson, Herschel, Preston, and others, are all in

keeping with the molecular hypothesis. If the properties which we find

by this analysis are not those of the ether, we shall at least have deter-

mined the properties of a substance which might be substituted for the

ether, and secure the two results already named. It may be asked. Can

the Kinetic theory, which is applicable to gases in which waves al'e propa-

gated by a to-and-fro motion of the particles, be Applicable to a medium

in which the particles have a transverse movement, whether rectilinear,

circular, elliptical or irregular ? In favor of such an application, it may

be stated that the general formulae of analysis by which wave motion in

general, and refraction, reflection and polarization in particular, aie dis-

cussed, are fundamentally the same ; and in the establishment of the

« Ymmg's Wm-Ia, Vol. I., p. 416. t Phil. Mag., 1855 [4] IX., p.

:

% Cf . Fartschritte der Physik, 1869.
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equations the only hypothesis in regard to the path of a particle is—It

will move along the path of least resistance. The expression F' oc e-^ i

is generally true for all elastic media, regardless of the path of the indi-

vidual molecules. Indeed, granting the molecular constitution of the

ether, is it not probable'that the Kinetic theory applies more rigidly to it

than to the most perfect of the known gases ?
*

The 133 foot-pounds of energy per second is the solar heat energy in a

prism whose base is 1 square foot and altitude 186300 miles, the distance

passed over by a ray in one second ; hence the energy in 1 cubic foot

will be
133 4 , ^

,

...

186300-^^^) = Zy:w fo°'-P°"-'- (^^

Where results are given in tenth-units of high order, as in the last ex-

pression, it seems an unnecessary refinement to retain more than two or

three figures to the left hand of the tern ; and wo will write such expres-

sions as if they were the exact results of the computations.

If F be the velocity of a wave in an elastic medium whose coefficient

of elasticity, or in other words, its tension, is e and density &, both for the

same unit, we have tlie well-known relation

And for gases we have

/d e

\ 16'

= 6"

where y = 1.4 ; and tlie differential of the latter substituted in the

former gives

^=|/¥-

The tension of a gas varies directly as the kinetic energy of its mole-

cules per unit of volume. If v^ be the mean square of the velocities of

the molecules of a self-agitated gas, we have

(3 oc (J 'c', or v' =: .(' -X > (3)

where a; is a factor to be determined. Equations (2) and (3) give

»' = - VK (4)
}'

Assuming, with Clausius, that the heat energy of a molecule due to the

action of its constituent atoms, whether of rotation or otherwise, is a

multiple of its energy of translation, we have for the energy in a unit of

volume producing heat,

* See also remarks by G. J. Stoney, PhU. Mag., 1868 [4] XXXVl., pp. 132, 133.
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wheie y is a factor to be determmed. If c be the specific heat of a gas,

w its weight per cubic foot at the place where g = 33.3, J. Joule's me-

chanical equivalent, t its absolute temperature ; then the essential energy

of a cubic foot of the medium will hecwrj; and observing that w — gS,

we have

kyiv'' = cgSTj, (5)

which, reduced by (4), gives

ic gyr J ...

^y = —-fi
—

'

^^

the second member of which is constant for a given gas. To find its

value we have

Hydrogen. Air. Oxygen.
Specific heat,* 3.4093 0.3375 0.3175

^flm'ar"!^'*'!*'''''''"!'''''!! 4163 1090 1040

and g = 33.3, y = 1.4, J— 773. These, substituted in the second

member of (6), give

X y for hydrogen, 6.599
" air 6.706

" oxygen, 6.596

3)19.901

Mean, 6.63

This value, which is nearly constant for the more perfect gases, we pro-

pose to call the inodvlus of the gas, and represent it by ji \ and for the pur-

poses of this paper we will use

/i = 6.6.

This relation of the product s y being a constant, has, so far as we are

Informed, been overlooked by physicists, and is worthy of special notice,

since it determines the value of one of the factors when the other has

been found. Kjonig, Clausius,-!- and Maxwell give for x the constant

number 3, but variable values for y.\

We are confident that the value of x is not strictly constant ; or if it

is, it exceeds 3, since the effect of the viscosity of a gas would necessitate

a larger velocity to produce a given tension than if it were perfectly free

* Stewart on Heat, p. S!29.

t PhU. Mag., 1857 [4] XIV., p. 123.

% Theory of Heat, pp. 314 and 317. Maxwell states that the value for y is probably

equal to 1.634 for air and several of the perfect gases. This would make x = i nearly.
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from internal friction. For our purpose, it will be unnecessary to find

the separate values of x and y ; but if we have occasion to use the former

in maliing general illustrations, we will call it 3, as others have done

heretofore. If the correct value of .c exceeds 3, it will follow that the

velocity of the molecules exceeds the values heretofore computed.* Ac-

cording to Thomson, Stokes showed that in the case of circularly polar-

ized light the energy was half potential and half kinetic ;f in which case

y = 3, and therefore .r = 3.3.

The energy in a cubic foot of the ether at the earth being given by

(1) and (5), we have, by the aid of (4),

i,,,. = i/ly. = _A^^, (8)

4X1.4X2 2
^^^ (9)

' 3 X 10' X 6.6 X (186300 X5380)« 35X10'"

which is the mass of a cubic foot of the ether at the earth, and which
would weigh at the place where g — 32. 2 about

2
w = T-rjj of a pound, (10)

compared with which Thomson's value is less than 4000 times this value.

Thomson remarked that the density could hardly be 100,000 times as

small—a limit so generous as to include far within it the value given in

(9). According to equation (10), a quantity of the ether whose volume

equals that of the earth, would weigh about ^ of a pound. If a particle

describes the circumference of a circle in the same time that a ray passes

over a wave-length A, the radius of the circle will be, using equation (4),

' = i^ = ]/yr ^^=ii^,
1

or the displacement from its normal position will be about ^J^ of a wave
length, or about ixrwocr oi an inch at the earth.

Eliminating Fbetween (3) and (8) gives

8 4

3 // X 10' 10"
(11)

for the tension of the ether per square foot at the earth, and is equiva-

lent to about 1.1 of a pound on a square mile. The tension of the atmos-

phere at sea-level is more than 30,000,000,000 times this value. It some-

* Maxwell gives for the mean square of the velocitieB, or, in other words, the velocity

whose square is the mean of the squares of the actual velocities of the molecules, in feet

per second at 493 2° Y. above absolute zero, hydrogen 6232, oxygen 1572, carbonic oxide

y27(\, carbonic acid 1570. P/iiL Mag., 1873, p. 68. Our equation (4j gives for air 1593.

t Phil. Mag., 1855 [4] IX., p 37.
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what exceeds the tension of the most perfect vacuum yet produced by
artificial means, so far as we are informed. Crookes produced a vacuum
of .03 millionth of an atmosphere * without reaching the limit of the

capacity of the pumps
;
and Professor Rood produced one of ^ytrairnnnr

of an atmospliere \ without passing the limit of action of his apparatus.
The latter gives a pressure per square foot of .

14.7 X 144

390000000
~ ""<^°^ °^ " PO"""!. This, in round numbers, is 140 times

the value given in equation (11). Even at this great rarity of the atmos-

phere, the quantity of matter in a cubic foot of the air would be some
200 million million times the quantity in a cubic foot of the ether—such
is the exceeding levity of the ether.

Admitting that the ether is subject to attraction according to the

Newtonian law, and of compression according to the law of Mariotte,

we propose to find the relation between the density of the ether at the surface

of an attracting sphere and that at any oth^r point in space, providing

that the sphere be cold and the only attracting body, and the gas,con-

sidered the only one involved.

Let do, «o, Wo be respectively the density, elasticity and weight of a

unit of the medium, whether ether, air, or any other gas at the surface

of the sphere ;
S, e, w, the corresponding quantities at a distance z from

the surface of the sphere ; r the radius of the sphere, ga the acceleration

due to gravity at its surface; and g that at distance r -\- z from the centre

of the sphere. Then

W
_ Wo

9
"^

go

and

r'
= go

(r + zf

Co ,9o «o (?• + zf .„,
. . e = — •— w = — —

-a w. (la)
Mo g Mo ?•

But

de = — wdz'=— gSdz (IS)

de _ ffo (l„ r''

'
' e ~ eo ' (r + e)^

Integrating between e and eo, z and o we have

* On the Ylscosity of Gases at High Exhaustion, by William Crookes, P.E.S.,

PliU. Trans. Boy. Sac, Part II. (1881), p. 400 :
" Going up to an exliauation of .08 mill-

iontli of an atmoepliere, the highest point to which I have carried the measurements,

although by no means the highest exhaustion of which the pump is capable."

1 Joiii-n of Arts and Science. 1881, Vol. XXII., p. 90.
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e = eo i:
«°~ ' r + z, (14)

go 5o r g

cS = (S„ e e„ ' r + 3

.

(15)

Neglecting the attraction of tlie earth for the ether, and considering

the sun as the only attracting body, we have g<, at the sun 28.6 X 32.3,

and at the earth, z — 210 r, r = 441,000 miles, the sun's radius
;

d = -^ X lO-'"', equation (9), and e = -/j X 10-«
; and these, in (14)

and (15), give

28.6 X 32.2 X 2 X as X10« ^ 210
^ ^^^ ^ ^^= e„ £ 4 X 35 X 10" 211

(16)

and

1000000
, ,..,,

(5 = do £ nearly, (16

)

for the tension and density of the ether at the surface of the sun under

the conditions imposed. But the millionth root of e is practically unity
;

hence the elasticity and density at the sun is practically the same as at

the earth.

Now, starting at the sun with this result, and finding the density at a

distance s from it, then making z infinite, we shall get ahout the 995,000

root of £, the value of which is also sensibly equal to unity ; hence the

density at infinity would be sensibly the same as at the surface of the

sun, the difference in the densities at the sun and at infinity being less

than jjswkwBH part of that at the sun. In order to make the density vary

sensibly with the distance, the attraction of the central body must be

something like a million times as great as that of the sun, or have a

diameter a million times as large ; but there is no such known body,

therefore tJie density and tension of the ether riieiy be mntidered uniform

thronrjhfjut spa.ee. Such has been our conception of it, and it is an agree-

able surprise to find it so fully confirmed by analysis.

If the density were uniform, the weight of a given volume of it would

vary as the force of gravity. At the surface of the sun a cubic foot

would weigh [equation (10) multiplied by 28.6, or] 57 X 10 ~ '''; hence,

for a height h it would weigh

.57 p r' 57 rh
^ (^^^

10«y (r + e)' 10" r+ 7t

13
which for A = oo becomes —t~^ of a pound, which is the pressure upon a

square foot of the sun of a column of infinite height iinder the conditions
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imposed. This would compress the first foot of the column about

TinriTsoT of its length, and would cause a corresponding increase in the

density, the value of which, after this compression, will be found by

multiplying the value given in equation (9) by -r^jiiWinr, which will leave

the result sensibly the same as before. Hence, from this standpoint,

we again conclude that the density of the ether may be considered as

sensibly uniform throughout space, providing its temperature be essen-

tially uniform.

If we assume that the law of the resistance by which the ether opposes

the motion of a body varies as the square of the velocity of the body, we
are still unable to assign the coefficient which will give the numerical

value ; but it is safe to assume that the entire mass of the ether occupy-

ing the path of a body moving through it, will not have a velocity im-

parted to it exceeding that of the body ; but, to be on the safe side, we
will assume that It imparts a velocity equal to itself. The energy thus

imparted will be lost to the body. To simplify the case, consider a

planet moving in a circular orbit : r the radius of the planet, d its dis-

tance from the sun, 2) its specific gravity compared with water as unity,

»i the velocity in its orbit ; then the mass of ether occupying the place

of the planet during one revolution about the sun will be, using

equation (9),

which, multiplied by | iiv', will give the energy imparted to it. The
kinetic energy of a planet, neglecting its rotation, will be

^ ^ r^ X 63i J) X |-'^-

Dividing the former, after multiplying it by ^ v^'', by the latter, gives

^- A (18)
7 X lO-^i rD

for the fraction of the energy lost during one revolution about the sun.

Applying this to the earth, we have

d^r D = 93000000 -j- 3912 X 5i = 43000,

and (18) becomes

JoTs
"leaTly, (19)

for the fraction of the energy lost in one year ; and hence at this rate

would require more than 1,666,000 trillion (1,666,000,000,000,000,000,000)

years to bring it to rest.

Equation (18) is not applicable to the resistance offered to a comet, on

account of the elongated orbit of the latter .; but some idea of the effect

of the resistance of the ether to the movement of a comet may be found
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by considering what it would be if the orbit were circular, having for its

radius the perihelion distance. According to Professor Morrison, the

perihelion distance of the great comet (6), 1882,* was 716200 miles, its

aphelion distance will be 5,000,000,000 miles, the diameter of its nucleus

shortly before disappearing on the solar disk was 7600 miles, the velocity

at perihelion 295 miles per second, and at aphelion 75 feet per second.

But little is known in regard to the density of comets ; but, to be on the

safe side, we will assume it as toct tli^t of water. This data will reduce

(18) to 13 X 10— '^ for the fraction of energy lost during one of its revolu-

tions about the sun ; and as it would make a revolution in, say, 20 hours,

it would lose in one of our years about 57 X 10 ~ '* of its energy, at tr/tich

rate it would go on for 170 trillions of years. Similarly, at its aphelion

its mte of loss would be less than J X 10 — " of its energy in more than

2000 years—the time of one revolution in its orbit.

The most careful observations and calculations have failed to detect

any effect due to the resistance of matter in space ; and the above anal.vsis

shows that, within historic times, it has in any case scarcely amounted to

an infinitesimal, certainly not sufficient to be measured. And when we
consider that our assumptions have been very largely on the unfavorable

side, and, further, that the energy imparted to the ether may partlj', at

least, be restored to the body, we assume that its resistance never can be

measured. Laplace, when he found that the force of gravitation, if

propagated by an elastic medium, must have a velocity exceeding 100

million times that of light, concluded that astronomers might continue

to consider its action as instantaneous (Mk'aniqne Celeste, B. X. , ch. 8,

p. 22, 9035) ; so may we, with nearly as much conlidence, continue to

consider the resistance of the ether as nil.

Equation (6) gives

^ ^ 6.6(186300X5280)^ ^
2 X 32.2 X 1.4 X 772

'•' ^ '''

from which the specific heat of the ether may be found if its temperature

were known. M. Fourier, the first to assign a value to the tcinpeniitire

of space, assumed it to be somewhat inferior to the temperature at the

poles of the earth or about 50° C. to 60° C. below zero.f il. Pouillet,

considering the atmosphere as a diathermanous medium, capable of

absorbing in different degrees the radiant heat from the sun and the dark
heat from the earth, deduced for the heat of space—or, as he and Fourier

called it, the stellar heat—approximately,—142° Ct (— 287° F.), which

* MontMy Notices of tJte Eoycd Astronomical SockOj, Vol. 5L1V., 2, p. 54.

t Ann. der Ctiemie, Tome XVII., p. 155.

t Comptes ytendus, 1838, Vol. VII., p. 61. Ponillet's formula is

a' = 1.2&5 „
—

", - 0.489,
2 —
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is about 174° F. above absolute zero. It is well known that Pouillet's

data were imperfect, several important elements being neglected, notably

that of the humidity of the air ; still, it is not only the first, but, so far

as we know, the only attempt to formulate this relation. It served to

show what has since been indicated by more direct experiments, that the

temperature of space is very low. The delicate experiments of Professor

Langley, before referred to, show a great difference in the degree of

absorption by our atmosphere of different wave-lengths. The mean of

the values for nine different wave-lengths, treated by M. Pouillct's

formula, gives 139° F. above absolute zero, and the smallest value of

absorption, which was for the infra-red, gives only 71° F. above absolute

zero for the heat of space.

The heat of space may be considered as composed of three parts ;

(1) stellar heat, (2) the heat contained in the dark matter of space, (3) the

essential heat of the ether.

1. By the stellar heat we mean the heat received directly from the

stars. It is a matter of easy calculation that, if the 50,000,000 of stars

supposed to be visible with the most powerful telescopes were all at the

distance of the nearest fixed star {a Centauri), or 221,000 astronomical

units from the earth, and if each radiated the same amount of heat as

our sun, the intensity varying as the inverse squares of the distances, the

earth would receive from them all less than -^-^ as much heat as it now
receives from the sun. And when we consider that only a very few stars

are within measurable distances, and that the remote ones may be, when
compared with these, well-nigh infinitely distant, it is evident that the

amount of heat received from the stars is insignificant, and may be

discarded at the earth.

2. It is certain that there is a large amount of dark matter in space,

since the meteoric dust and meteorites must come from beyond our

atmosphere. The zodiacal light is supposed to be an evidence of meteoric

matter between the earth and sun. The tails of comets are visible by

some action of light upon some kind of matter. Matter in space not

exposed to the rays of the sun will be at about the same temperature as

the ether ; but if in the rays of the sun and destitute of an atmosphere

at the distance of the earth from the sun, its temperature would be very

low. If present laws can be extended so far, and the earth were without

an atmosphere, and the heat received were not conducted away, it has

been computed that the mean temperature at the equator would be about

in which b' = the absorptive power by the atmosphere of the sun's heat,

b = the absorptive power of terrestrial heat,

t' = the temperature of the stellar heat,

a = 1.0077.

If & = 1, its maximum, b' = 0.3, we find ;:' = - 235° C. (- 391° F.), or 71° F. above

absolute zero.
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— 70° C. (- 94° F.) ; and at the poles — 231° C.,* or 114° F. above abso-

lute zero. The last result Is obtained on the supposition that the poles

receive heat directly from the sun a part of the year ; it is further shown

that if the poles were never exposed to the rays of the sun, the tempera-

ture would fall to that of the ether of space. But the data are not uni-

form, and there is too large an extension of empirical formula to satisfy

one that the above numerical results are reliable : still they point more

and more strongly to a temperature not many degrees above absolute

zero.

8. By the essential heat of the ether we mean the temperature which

would be indicated by a thermometer graduated from absolute zero in a

room located in space beyond our atmosphere, whose walls were imper-

vious to the passage of external heat. It is the heat due to the self-

agitated ether, just as air has a temperature when not exposed to the

rays of the sun. If the ether be perfectlj- diathermanous to the sun's

rays, it will receive no heat, on account of the heat of the sun flowing

through it, though it may be heated from other sources. As direct

evidence of an extremely low temperature of space, we cite tlie facts in

regard to the meteorite which fell at Dharm.salla, India, Julv 14th, 1860.

f

" The most remarkable thing about it was, while the mass had been in-

flamed and melted at the surface, the fragments gathered immediately

after the fall and held for an instant were so cold that the fingers were

chilled. This extraordinary a.ssertion, which is contained in the report

with no expression of doubt, indicates that the mass of the meteorite re-

tained in its interior the intense cold of the interplanetary space, while

the surface was ignited in passing through the terrestrial atmosphere. '

'

Since this body had been exposed to the rays of the sun, its temperature

must have exceeded that of the space through which it passed, as well

as been warmed by the heat developed at its surface, from which it may
be inferred that it had been intensely cold. Direct investigations, given

above, indicate that this temperature is less than 200° F. above absolute

zero
; and we cannot assert that it is not less than 100° F. above, or even

much less.

But, however low be the temperature of the ether, it cannot be abso-

lutely cold, or, in other words, it must have a temperature above abso-

lute zero, for otlierwise it would be destitute of elasticity, and hence

incapable of transmitting a wave. This is .shown by eliminating T be-

tween equations (2) and (6), giving

i" „

i gij (21)

* Professional Papers of the Signal Service U. S. A., Waslungton, D. C, 1884, No.

XII., p. 54.

t Ccmptes Sendvs, 1861, Tome LIII., p. 1018.
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In •which If t = 0, e will be zero, all the other factors being hnite, and if

e = 0, then F = in (3). Indeed, this principle is so well recognized in

physics, that a proof in this place seems superfluous. Being unable, in

the present state of our knowledge, to do more than assign the probable

superior limit of the temperature, we will, for the purposes of this

analysis, assume r = 30° F. , absolute, being confident that the actual

value is between -^ of and 10 times this value. This value in equation

(30) gives

c = 46 X 10" = 4,600,000,000,000 (33)

for the specific heat of the ether, that of water being unity. This num-
ber so vastly—we might say infinitely—exceeds that for any known gas,

as to justify one, at first thought, in looking with suspicion upon the

applicability of the above analysis to this medium. Assumptions in re-

gard to the absolute temperature will scarcely impi'ove the appearance of

this number. If it be assumed that the absolute temperature be only

one degree, the number in equation (22) would be only twenty times as

large; and if the absolute temperature be assumed at 1000000° F. , the result-

ing specific heat would still be more than a million times as large as for

hydrogen. A few considerations of other properties of the ether may aid

one in being reconciled to this seemingly paradoxical result. Is the result

any more incredible than the fact, generally admitted, that every particle

of the ether, in transmitting a wave of light, continually makes 590000-

000000000 (6 X lO" nearly) complete cycles of movements every second,

for a wave-length of jt^j^j- of an inch ? The number of such complete

movements in air for the fundamental c is only 264 ; and hence the ratio

of the former to the latter of these numbers is nearly 2 X 10" The ratio

of the specific heat given in (22) to that of hydrogen is nearly IJ X 10",

which is not so different from that just given for the ratio of cyclical

movements in a second of the ether and air. The velocity of sound in

air at 493° F. above absolute zero is about 1090 feet per second ; but if

the temperature could be reduced to 20° F., absolute, the law being ex-

tended so far, the velocity would be only

/so"
r = 1090 r 493

= 217 feet

;

but the velocity of light is 982,000,000 feet per second, a number abojit 4i
million times the former, and near a million times that of the velocity

in air under ordinary conditions. The ratio of the mass of air in a cubic

foot at sea-level to that of a cubic foot of the ether as computed, far

exceeds any of these ratios. The fact is, the known qualities of the

ether in transmitting light and heat so far transcend those of any known
terrestrial substance, that we might anticipate the fact that, in regard to

magnitude, all its properties will be extremely exceptional when com-

pared with such substances. We must accept substantially the number
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in equation (22), or subject this medium to different laws than those of

gases.

We may deduce this result by another process ; thus, since the specific

heats of different gases are as the squares of the wave-velocities in the

respective substances, the other elements being the same, if the specific

heat of air be 0.23, we should have for the specific heat of the ether

, = 0.2B(=^^y= 46X10",

as before. The correct value of the specific heat of air, 0.3375, would

give over 47 X 10", and nearly 48 X 10"
; but these differences are quite

immaterial in this connection, the object being to check the former result.

On the other hand, in order that common air might be able to transmit

a wave with the known velocity of light, its specific heat being taken con-

stantly at 0.33, its temperature would be, according to equation (20),

92 V 10"
^ = -

n oo = ^ X lO" degrees F. (= 400,000,000,000,000° F.).

If the sun were composed of a substance having such specific heat, it

could radiate heat at its present rate for more than a hundred millions of

centuries without its temperature being reduced 1° F., exclusive of any

supply from external sources, or from a contraction of its volume. We
know only such substances in the sun as we are able to experiment with

in the laboratory; and if there be an exceptional substance in it, we have

no means at present of determining its physical properties. It is, more-

over, a question whether the ether constitutes an essential part of bodies.

We conceive of it only as the great agent for transmitting light and heat

throughout the universe.

On account of the enormous value of the specific heat, it will require

an inconceivably large amount of heat (mechanically measured) to in-

crease the temperature of one pound of it perceptibly. Thus, if heat

from the sun, by passing through a pound of water at the earth, would

raise the temperature 100° F. and maintain it at, say, 600° F., absolute,

it would, under similar conditions, raise the temperature of one pound of

the ether, if its power of absorption be the same as that of water,

46000000007 of 3, degree.

The distance of the earth from the sun being 310 times the radius of

the latter, the amount of heat passing a square foot of spherical surface

at the sun will be about 45000 times the heat received on a square foot at

the earth normally exposed to its rays, so that, under the conditions

imposed, the temperature would not be a billionth of a degree F. higher

at the sun than at the earth. This, then, is a condition favorable to a

sensibly uniform temperature, even if heated by the sun's rays. We are

now inclined to admit that the ether is not perfectly diathermanous to
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the sun's rays, but that its temperature, however small, may be due
directly to the absorption of the heat of central suns ; for we begin to

realize the fact that the ether may possess many of the qualities of gases,

such as a molecular constitution, and hence also mass, elasticity, specific

heat, compressibility, and expansibility, although the magnitude of these

properties is anomalous. We have already considered its compressibility

at the surface of the sun, due to the weight of an infinite column, and
found it to be exceedingly small ; now, it may be possible that the expan-

sion due to the excess of temperature of a small fraction of one degree at

the surface of the sun over that at remote distances will diminish the

density as much, or about as much, as pressure increased it, thereby

making the density even more exactly uniform than it otherwise would

be. According to what we know of refraction, it is impossible for a ray

of light to be refracted in passing through the ether only—at least, not

by a measurable amount ; for not only are the density and elasticity

practically uniform, but their ratio is, if possible, even more constant as

shown by equations (16) and (16'). But the freedom of the ether mole-

cules may be constrained, or their velocity impeded, by their entangle-

ment with gross matter, such as the gases and transparent solids ; in

which case refraction may be produced in a ray passing obliquely through

strata of varying densities.* Neither is it believed that the ether does,

or can, reflect light ; for if it did, the entire sky would be more nearly

luminous. The rays in free space move in right lines.

The masses of the molecules in different gases being inversely as their

specific heats, and as the specific heat of hydrogen is 3.4, and the com-

puted mass of one of its molecules
-J J X 10 ~ " f of a pound, we have for

* Professor Michaelson concludes from his experiments that the luminiferouB ether

has no perceptible motion in reference to the earth, in other words, it is at the surface

of the earth carried along with the earth the same as the atmosphere. (Paper read at

the meeting of the American Association for the Advancement of Science, 1887.)

i Stoney concludes that " it is therefore probable that there are not fewer than some-

thing like a unit eighteen (10* ^J of molecules in a cubic millimeter of a gas at ordinary

temperature and pressure" (Phil. Mag., 1868 [4] XXXVI., p. 141). According to the

Kinetic theory, the number of molecules in a given volume under the same pressure and

temperature is the same for all gases. The weight of a cubic foot of hydrogen at the

temperature of melting ice and under constant pressure being 0.005593 of a pound, and

as a cubic foot equals 38,315,000 cubic millimeters, the probable mass of a molecule of

hydrogen will he

0.005692 11

32.2 X 28315000 X 10" 18 X 10'-»
lb.

Maxwell gives --^, of a gramme = — lb., which is about 3/5 the value given abov«

(,PhU. Mag., 1873 [4], XLVI., p. 488).

The difference in these results arises chiefly from the calculated number of molecules

In a cubic foot of gas under ordinary conditions. Thomson gives as the approximate
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the computed mass of a molecule of the luminlferous ether,

11 3.4 1 ,^ ,091

18 X 10" 46 X 10" 23 X 10«

The mass of a cubic foot of the ether, equation [ii), divided by the mass

of a molecule, gives the number of molecules in a cubic foot, which

will be

" -
35 X 10" ^

1
- ta X 10 ,

1.^;

which call 10". This number, though large, is greatly exceeded by the

estimated number of molecules in a cubic foot of air under standard con-

ditions, which, according to Thomson, does not exceed 17 X 10'^, a

number nearly 17,000,000,000 times as large as that in equation (24) ; and

yet, at moderate heights, the number of molecules in a given volume of

air will be less than that of the ether.

Assuming that air is compressed according to Boyle's law, and is sub-

jected to the attraction of the earth, equation (15) will give the law of

the decrease of the density. Taking the density of air at sea-level at jjj
of a pound per cubic foot, Co = 14.7 lbs. per square inch, r = 20687000

feet, equation (15) becomes

<5 = TiTr X 10-345Fqr^. (2.5)

If 2 — 00 , (5 = ^j X 10 ~ ' * ^ , which would be the limit of the density,

and it is a novel coincidence that this limit is nearly identical with the

value found for the density at the height of one radius of the earth ac-

cording to the ordinary exponential law, wherein gravity is considered

uniform .
*

If the number of the molecules in a cubic foot follows the same law,

then at the height z there will be

17 X 10-^^?|:i + ^ (26)

probable number 17 X 10^*, which is about 3/5 the value given by Stoney. Thomson's

value would make the mass of a molecule of ether about — X 10~*° of a pound, which

is not much different from that found above.

* The ordinary exponential law results from dropping ~ compared with unity in equa*
r

tion (15), giving

g z ft. smiles

(5 - d„ e- S(h3i = (!„ 10 "60387 = ^xlO 11.44 .

in the last of which, if z = 3956, the exponent becomes 345.
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molecules per cubic foot. Similarly, the value of the length of the mean
free path would be *

o w 1 n 34S —I 6 inches.

By means of these values, the following table may be formed.

(27)

Height.
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so that at the height of 127 miles the tension would he less titan that of

the ether, the temperature being uniform.

The mean free path, according to the above law, in which gravity"

varies as the inverse squares is less, and for great heights much less, than

would be found according to the ordinary exponential law. Thus
Crookes states that the mean free path of a molecule at the height of 200

miles is about 10000000 miles ;
* but according to the above law it

becomes about 792000 miles.

If a cubic inch of air at sea-level were carried to the height of f the

radius of the earth, and then allowed to expand freely, so as to become
of the computed density of the atmosphere at that point, it would fill a

space of 4 X IC-" cubic miles, or a sphere whose radius is 2,398,000,000

miles, which is nearly equal to the distance of the planet Neptune from
the sun ; and there would be less than one molecule to the mile. Such
are some of the results of extending a law to extreme cases regardless of

physical limitations or of the Imi^erfection of the data on which it is

founded. For instance, a uniform temperature is assumed, and, im-

pliedly, an unlimited divisibility of the molecules. The latter is neces-

sary in order to maintain a law of continuity. But modern Investiga-

tions show that not only air, but all the gases, are composed of molecules

of definite magnitudes whose dimensions can be approximately deter-

mined ; and hence if there be only a few molecules in a cubic foot, and

much less if there be but one molecule in a cubic mile, it cannot be

claimed that the gas will be governed by the same laws as at the surface

of the earth.

We conclude, then, that a medium whose density is such that a volume
of it equal to about twenty volumes of the earth would weigh one pound,

and whose tension is such that the pressure on a square mile would be

about one pound, and whose specific heat is such that it would require

as much heat to raise the temperature of one pound of it 1° F. as it

would to raise about 2,300,000,000 tons of water the same amount, will

satisfy the requirements of nature in being able to transmit a wave of

liglit or heat 186800 miles per second, and transmit 138 foot-pounds of

heat-energy from the sun to the earth, each second per square foot of

surface normally exposed, and also be everywhere practically non-jesist-

ing and sensibly uniform in temperature, density and elasticity. This

medium we call the Luminiferous Ether.

ADDENDA.

Granting that the temperature of the ether, however low, is produced
by the heat from central suns passing through it, we may determine the

effect upon it of a change of temperature of the source of heat.

* PJal. Trans. Soy. Soc, London, 1881, Part 11., p. 889.
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The law for perfect gases is—continuing our notation

—

ev = Bt (36)

where R is 60 i)o -i- th, these values being initial. Since v will necessarily

be constant we see that e will vary as r, where r is the temperature of

the ether, and equation (31) becomes

constant,
%gJc r

as it should, since the mean density cannot change, the volume being

constant. This equation reveals no new truth, but is consistent with the

conditions which we anticipate in nature. The only way in which the

density can change by a diminution of elasticity of the sther, is to cause

it to be more dense near the attractive bodies, and more rare in space

more remote from them ; or, in other words, the ether would not be so

nearly uniform as at present.

Assuming the density as uniform while the elasticity changes, it

appears from equation (2) that the velocity of light through it will vary

as the square root of the elasticity. Thus, if the heat of our sun dimin-

ishes so as to become one fourth as intense as at present, and if the

elasticity of the ether also becomes one fourth as much as at present,

then will the velocity of light be one half as great as at present.

We may find tlie conditions which would cause a gas of the pressure

of our atmosphere at sea-level and of the same specific heat, to be as

nearly uniform throughout space as is the ether. This will be found

with sufficient accuracy for our purpose by finding such a value for d as

will make the numerator in equation (1.5), - „ „ „ „ „

,

, the same as given in

(16), where «o = 3116 the tension of the air per square foot. "We will

find

The volumes being inversely as the densities, the last result combined

with equation (36) shows that the required rarity (or density) may be

secured by a temperature 10"" times that of the present temperature. If

the absolute temperature be 500° when the pressure of the air per square

foot is 3000 pounds, then if it be heated to something like

500,000,000,000,000° F.,

the tension would be nearly uniform throughout space. A volume of

such air of the size of the earth would weigli less than ^-g of a pound at

a place where g = 33.3.
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SECOND LAW OP THERMODYNAMICS.

The second law of thermodynamics has, by different writers, beep
stated in a variety of ways, and, apparently, with ideas so diverse as not

to cover a common principle. For the convenience of the student in

considering this subject, we here quote some of the expressions which
have been given by certain authors.

Maxwell, in his Theory of Heat, p. 153, says, " Admitting heat to

be a form of energy, the second law asserts that it is impossible, by the
unaided action of natural processes, to transform any part of the heat of

a body into mechanical work, except by allowing heat to pass from that

body into another at a lower temperature. Clausius, who first stated the

principle of Carnot in a manner consistent with the true theory of heat,

expresses this law as follows i

"'It is impossible for a self-acting machine, unaided by any external

agency, to convert heat from one body to another at a higher temperature.'

" Thomson gives it a slightly different form :

" ' It is impossible, by means of inanimate material agency, to derive me-

chanical effect from any portion of matter by cooling it below the tempera-

ture of tite coldest of surrounding objects.'" The last quotation may be
found in Phil. Mag., 1853, IV. ; Thomson's Mathematical and Physical

Papers, p. 179 ; and Clausius's statement on p. 181.

Clausius considers this principle as " a new fundamental principle,"

and states it thus :
" Heat cannot pass from a colder to a hotter body

without compensation." (Mechanical Theory of Heat, Browne's transla-

tion, p. 78.)

It appears, so far as we can judge, that Maxwell has, gratuitously,

claimed for these writers the above statement for the second law ; for

not only they, but Rankine included, consider those statements as ax-

ioms. In regard to Rankine's views, see Miscellaneous Scientific Papers,

p. 449 ; Sieam-Engine, p. 234.

There would be a certain propriety in calling this the second law, and if

necessary establish a third, for it is the first principle in the order of de-

velopment involved in the physical operation of realizing Carnot's cycle,

in which the expansion being isothermal requires a supply of heat from
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a source, and experience shows that the temperature of the source must

at least equal that of the working substance, and in reality be intinitesi-

mally higher, since heat from a colder body will not make a hot body

hotter. But the question is not what might have been the second law,

but—what is it ? We quote from Rankine :

"The internal work is incapable of direct measurement. Here it is

that the second law becomes useful ; for it informs us how to deduce the

whole amount of work done —internal and external—from the knowl-

edge which we have of the external work. That law is capable of being

stated in a variety of forms, expressed in different ways, although virtu-

ally equivalent to each other. The most convenient form for the present

purpose appears to be the following :

To find the whole work, internal and externul, multiply the absolute tem-

perature at which the change of dimensions takes place by the rats per de-

gree at which tlie external work is varied by a small variation of tempera-

tare." (Raukine's Miscellaneous Scientific Papers, p. 434 ; Tlie Engineer,

June 28, 1867.)

This is substantially the statement of the second law in first ed., p.

33, since the Italicized extract just given is an expression for the heat

absorbed during an isothermal expansion. The form in the text was not

given because it was considered the ideally best statement of this law,

but because it had proved to be the most useful form for class-room in-

struction which the author had tried, and had the above sanction of Ran-

kine.

Rankine gives substantially the same statement in different places.

(Papers, pp. 309, 418, 427 ; Steam-Engine. p. 308, Art. 244
; p. 309, Art.

245.)

That Rankine recognized Carnot's principle of the elementary reversi-

ble engine as the second law is shown from the following extract :

" The law of efficiency of a perfect heat engine may be stated thus : If the

substance (for example, air or water) which does the work in a perfect heat

engine receives all tlie heat expended at one fixed temperature, and gives out

all the heat which renuUns unconverted into work at a. lower fixed tempera-

ture, tlis fraction of the vholeheot expeuxled which is concerted into exter-

nal work is expressed by dividing the difference between tlmse temperatures

by tlie higher of them, reckoned from the absolute zero. Xttw, this is, i:i

fact, tJie secondlaw of thermodynamics expressed in other words." (Miscella-

neous ,5V. Papers, p. 436 ; The Engineer, June, 1867.) Such being Ran-
kine's explicit statement, we may expect to find this principle implied,

if not expressed, in all his other statements.

One of the most condensed and obscure statements of this law by this

author is in his work on the Steam-Engine, p. 306, which is.
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" If the total actual heat of a homogeneous and uniformly hot substance

he conceived to be divided into any number of equal parts, the effects of those

parts in causing work to be performed are equal."

The obscurity exists chiefly in the fact that several principles involved

in the practical application of the law are not stated in tlie immediate

context, but are left for the reader to infer. It would be difficult, if not

impossible, to apply it, had not the author given a symbolic representa-

tion of it. He says :
" Let unity of weight of a homogeneous substance,

possessing the actual heat Q, undergo any indefinitely small change, so

as to perform the indefinitely small work d U. It is required to find how
much of this work is performed by the disappearance of heat. Conceive

Q to be divided into an indefinite number of indefinitely small parts,

each of which is S Q. (In his original paper he used d Q.) Each of

these parts will cause to be performed the quantity of work represented

by
d{dU)

consequently, the work performed by the disappearance of heat will be

„ d (d U)."

^ ~ d Q

The reduction from the former expression to the latter is equivalent to

an integration considering the fractional part as constant during the in-

tegration. This is vital, and it is accomplished, physically, by connecting

the working substance with a source possessing constantly the actual heat

Q. Possibly this is implied in the expression " uniformly hot substance " in

the law stated above ; but if not, the law seems to be defective in this par-

ticular, unless we resort to the only other alternative of considering the
" liomogeneous substance" as a perfect gas. Heat is absorbed in doing

work, and it is this heat, as heat, independent of any particular sub-

stance, that is to be divided into equal parts ; and, having this concep-

tion, it is apparent that each part of the heat will do the same amount of

work. It is difficult to determine the exact meaning of the expression

—

" It is required to find how much of this work is done by the disappear-

ance of heat ;" for, with isothermal expansion, not only all the external

work is done by the disappearance of heat, but the internal work also,

according to which the words " of this" should be expunged. Another

view, and probably the correct one, is,—it is required to find how much
of this work is done by the disappearance of an equal amount of heat.

If this be the intended meaning, then by referring to Fig. 13, p. 33, it

will be seen that the area represented by the upper strip A B c d is com-

mon both to that part of the external work Vi A B v^, and to the area

«i A B f^, representing the actual heat absorbed ; and, hence, in per-
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forming this element of external work, an equal amount of heat will dis-

appear. AB cd = d U= fd p d.'o; and d{d TI) = dpdv — Abgd.

But d p is !k direct function of t, being limited by the consecutive iso-

thermals ^1 B and d c ; and this fact is, by the calculus, indicated in the

following manner,

\d r)

and we have

. . Ab q d = d T
j

-—
]
d v,

or.

Then the second law above declares that if the increment of heat d Q
causes the work A b g d to he performed by the disappearance of an

equal amount of heat, then will the total heat absorbed, rpi A b n, be -r^
d y

times as much, giving

d(d U)
^ dQ

The "actual heat is divided into equal parts" by the successive iso-

thermals of the substance.

The explanation by Rankine of this operation is more satisfactory in

his original paper than in his Steam-Engine. {Misc. Se. Papers, p. 312.)

His general law of the transformation of energy—" Tfie effect of the

presence in, a substance of a quantity of actual energy, in causing trans-

formation of energy, is the sum of the effects of all its parts " {Steam En-

gine, p. 309)—implies that the office of the working substance is simply

to transfer actual energy from a source to a receiver of a potential form,

as when the heat of a furnace is transferred to work ; under which con-

ditions the actual energy of the working substance must be maintained

constant.

Sir William Thomson thus stated the second law

:

"Pkop. II. (Carnot and Clausius).

—

If an engine be such that, when

it is worked backioard, the physical and mechanical agencies in etery part

of its motions are all reversed, it produces as much mechanical effect as can

be produced by any thermodynamic engine, with tlie same source and re-

frigerator
, from a given quantity of heat." (Thomson's Papers, p. 178.)

Credit is here given to Clausius for a part, at least, of the fundamen-

tal principle involved, and hence it is unnecessary to consider his views.

We find, then, that three of the principal founders of the science of



SECOND LAW OF THERMODYNAMICS. 393

thermodynamics—Clauslus, Rankine, Thomson—give as the second law
the principle of Garnot'a ideal elementary reversible engine.

Unless the axioms of these writers, which are by Maxwell stated as the

second law, be considered as including the reversible engine, it appears
to be improper to consider them as the second law. These writers stated

them as axioms, and not as the second law.

The two laws of thermodynamics are the result of experience, guided

by scientific investigation. Rankine ssys :
" The laws of thermodynam-

ics, as here stated, are -simply the condensed expression of the facts of

experiment." {Misc. So. Papers, p. 437; Phil. Mag., Oct., 186.5.)

The statement of the second law referred to in this quotation is simply

the expression r _? d v written out in words ; and hence is equivalent
d r

to one of the preceding quotations, and also to the one on page 33 of

the text.

Another statement

:

The first law asserts a fixed, unvarying relation between heat energy

and the mechanical energy into which it is transmuted ; but in a work-

ing engine all the heat absorbed cannot be transmuted into work, and the

second law asserts that a certain fractional part of the- heat absorbed

may be transmuted into mechanical energy when the substance is work-

ed in Carnot's cycle.





ADDENDA.

[The articles In this Addenda are numbered the same as those in the

body of the work to which the subject-matter pertains.]

14. 16. Since air is not a perfect gas, the divis-

ions on an air thermometer will not be equal for equal in-

crements of actual heat absorbed by the air. The relation

between p, v, r, as used by Thomson and Joule, is given in

equation (7), page 13. The experiments of Regnault en-

able one to determine the constants. The results of these

experiments, generalized, enabled Sir William Thomson to

construct the following table, in which the degrees are for

the centigrade scale from to 300, and d is the relative

density of the air in the thermometer. If at 0° C. it be

under the pressure of one atmosphere, 760 mm., then will

d = 1, and the factors of d will be the fraction of one de-

gree on the centigrade scale by which the readings differ

from what they would if air were a perfect gas.

Temperature by
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22. Numerous equations have been proposed to represent the results

of experiments upon gaseous substances. Rankine's equation, (4), p. 13,

is the most general, and is sufficiently accurate for all substances used

in engineering practice. It seems a useless labor to construct equa-

tions that will represent with extreme accuracy the experiments made
by any person, for the results of different experimenters will differ,

and a formula that will agree nearly with one set will not agree with

others. If the experiments are reliable, like those of Regnault, the

formula, when plotted, should exhibit the law indicated by the ex-

periments, and give approximately the values found by experiment.

The formulae pertaining to steam will be given in Article 78. The
following are equations for carbonic acid gas.

Rankine—also Thomson and Joule—gave an equation of the form

p V = R T

{Phil. Trans., 1854, p. 336 ; 1862, p. 579.)

Hirn gave

(p + r) (a — X) = R t;

where x = "la somme de volumes des atomes ;"

r = " la somme des action internes."

{Theorie Mecanique ds la Ohaleur, 2' ed., i., p. 195 ;
3' ed., ii., p. 211.)

Racknel, in 1871 and 1872, gave the formula

where cj is a constant to be determined by experiment.

J. D. Van der Waals gave

^ = ^^ - ^'

in which if the unit of pressure is one atmosphere, and the unit of

volume that which a kilo, of carbonic acid occupies under the pressure

of one atmosphere at the melting point of ice, then

B = 0.003673,

a = 0.00874,

b = 0.0023.

Over de ConUnuiUit van den Gas en Vloeistoestand, Leinden, 1873,

p. 76, Op. cit., p. 76.

Clausius, in 1880, gave

p = R
X r (I. + jif

In which if the pressure be in kilogrammes per square metre, and vol-

ume in cubic metres, we have per kilogramme of carbonic acid,
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R = 19.273,

c = 5533,

a = 0.000426,

/3 = 0.000494.

This formula gave results agreeing remarkably well 'with those- of

observation. {Phil. Mag., 1880, (1), 401.)

33, 34, 35. Thermal lines. The more common
thermal lines are defined in the body of the book ; but the

following are sometimes used :

Isqpiestic, or Isohar lines are lines of equal pressure, and,

therefore, on the plane p v, are parallel to the axis of v.

Isometric lines are lines of equal volume, and their pro-

jections on the plane p v are parallel to the axis of p.

Isengeric, or Isodynam.io lines are lines of equal energy.

In this case the internal energy remains constant, and all

the heat absorbed during the change of state is transmuted

into external work. See top of page 129. If the gas be

perfect, the isengerio coincides with an isothermal.

Isentrojpio lines are lines of equal entropy, and hence

coincide with adiabatics.

40. Page 33. In order that the algebraic expressions

may be serviceable in numerical problems, the volume v^,

Fig. 13, must represent a definite mass of the working sub-

stance ; and we assume a unitr-m^ass ; and in English meas-

ures let it be 07\s found. Clausius, Zeuner, and others, in

some cases, include the internal work in the expression

—

internal energy ; but we prefer to apply the term worh to

all that part of the heat absorbed which is destroyed—put

out of existence for the time being—transmuted into an-

other form of energy ; and if any part remains, call it a

change of internal energy.

The second law is sometimes called, briefly, the revers-

ible engine ; or, more fully, an expression of the facts in-

vol/ved in the simple reversible engine. Isothermal expan-
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sion and compression are the first fundamenta] principles of

this law ; the second being the axiom of Thomson that—no

engine can be worked with, mechanical profit at a lower

teinperature than that of the coldest of surrounding objects
;

and since absolute cold cannot be produced in surrounding

objects, it follows that only a fractional part of the heat

absorbed can be transmuted into external work.

It is worthy of remark that during isothermal expansion

the heat of the working fiuid does no work ; it is merely an

agent for transmuting actual heat energy into work. If the

working fluid be a perfect gas, it will transfer the heat

directly from the source to the piston of the engine. If

the working fluid be an imperfect gas, a part of the heat

from the source will be transferred from the source to the

piston of the engine and transmiited into external work,

and the remaining part will be transmuted into internal

work, being the work necessary to overcome the resistance

of the particles in being separated during expansion. The
actual, or kinetic, energy of the working fluid remains con-

stant during isothermal expansion.

Page 34. Sir William Thomson has proposed two scales

of absolute temperatures. In the first scale it was pro-

posed to consider the difference of the temperatures of the

source and refrigerator as constant when the work done hy

a perfect engine on abstracting a unit of heat from the

source is constant, whatever lie the temperature of the heat

ahsorhed.

To get an idea of this principle, observe that in Fig. a,

the successive divisions represent equal works done in suc-

cessive elementary engines ; but the heat absorbed, (p^AB q>„

in doing the work A B c d, is more than cp^ d c qi^ in doing

the equal work d c ij. But the preceding principle re-

quires that the heat absorbed along y s must equal that

along A B, while the elementary works done in the cycles

must be the same ; therefore, to represent this case y 2 must
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be prolonged so that the area under it and between the two

adiabatics through its extremities shall equal qt^AB <p^, and

the elementary strip under y z must be

so narrow that its area shall equal A Bed.
To find the symbolic expression, let

H ^= (p^ A B q>, = the heat ab-

sorbed, in foot-pounds,

dII^=ABod = the heat trans-

muted into work,

dt ^ the difference of absolute

temperatures between the source and

refrigerator,

— = the fractional part of the heat absorbed that is

transmuted into work per unit of tempera^

FIG. a.

then

ture ;

the work =.fjilldt^^dll;
d H
Hdr — II.

But according to the principle above stated, /< is not only

independent of the temperature, but the ratio of the left

member is to be constant ;* hence ^i is constant, and we

have by integrating between the limits 7/, and H^ for heats,

and <i
and t^ for temperatures,

ti. «, - ii)

-that is, if the difierences on the scale of the thermometer

* Or integrating, we have :

Work
-r v-dt

But, in this scale, the work is a function of the diflerence of temperatures,

whatever be the temperature of i/i, and this condition requires that //

should be constant. Thi? relation is clearly shown in equation {a).
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increase arithmetically, the ratio of heats of the source

and refrigerator will increase geometrically.

The efficiency would be

Tr- = '-'
'

and the work done

or, the work will be the same for each degree on the scale

for the same amount of heat absorbed, regardless of its tem-

perature.

Let this scale have 180 divisions between the melting

point of ice and the boiling point of water ; then, since the

eificiency of the perfect elementary engine worked between

these temperatures is

E, - H„ 180 180 „^„^ ,— 0.2684 +

;

II.
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2.30258 log^^ ^^_^
/A = 0.00173 '

by means of which, if any degree T be given on the

Fahrenheit scale, the corresponding number t may be found

on Thomson's first absolute scale. li T = — 460.66,

^ = — 00 ; that is, the absolute zero of this scale is tninus

infinity. The higher the temperature T, more and more

degrees will be required to make a degree on the absolute

scale.

This scale is not practical. It was devised while Thom-
son held to the old theory of heat (or caloric), which

maintained that heat was material, and hence could not be

converted into work. He said :
" The conversion of heat (or

caloric) into mechanical effect is probably impossible, cer-

tainly undiscovered." {Phil. Mag., 1848, (2), 315.) Work
was then supposed to be derived from heat by letting it

down from a hot body to a cold one without diminishing

the quantity of heat
;
just as work is obtained from water

by letting it down from one level to a lower one while

passing through a motor without diminishing the quantity

of water.

{Phil. Mag., 1848, (2), 313 ; Trans. E. S. E., XX.
(1851), 273 ; Phil. Mag., 1852, (2), 106 ; Thomson's Papers,

Vol. I., p. 139.)

Making ;" = — gives, by integration,

or Thovason^s second scale. {Trans. li. S. E., 1854, p. 125;

Phil. Mag., 1856, (1), 216.) A comparison of this scale

with the air thermometer is given in Article 14 of this

Addenda.
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Page 38. In the third line from the top it will be ob-

served that the argument depends upon an inference,

"It is Inferred^'' &c. No absolute proof of equation (21)

has been made. Eankine deduced it in a short way, found-

ing it upon the hypothesis that

—

in a, given mass of a

siihstance the quantities of sensible heat are projjortimial to

tlievr absohde temperatures. {Misc. Sc. Papers, pp. 50,

56, 376, 377, 409; Phil. Trans., 1854.) Thomson and

Joule established it by a long and very delicate series of

experiments, determining that
fj.
= -, establishing this value

within :j-^j- of its actual value. Clausius, in his later work,

established it by a process of analysis, but it is somewhat

obscured by the more general equations in which it is in-

volved. Yet there is no question as to the correctness of

this equation ; for not only do Thomson and Joule's experi-

ments prove it to be as nearly mathematically exact as it ;s

possible by means of physical experiments, but it produces

substantially correct results when applied to various prob-

lams in this science ; and this is the best test of a physical

law. The Newtonian law of universal gravitation is accepted

as mathematically exact for all problems to which it is

aj)plied involving finite distances, although the law does not

admit of an absolute proof.

The hypothesis of Kankine, referred to above, was criti-

cised by Clausius, and Eankine modified it thus :
'' A

change of real specific heat, sometimes considerable, often

accompanies the change between any two of those condi-

tions" of solid, liquid, or gaseous. This definition was not

accepted by Clausius as correct. (Clausius On Heat, 1879,

pp. 345-348 ; Eankine's Prime Movers, p. 307 ; Phil.

Mag., Ser. 4, Vol. VII., p. 10 ; Pogg. Ann., Vol. CXX.,

p. 426 ; Phil. Mag., Ser. 4, Vol. XXX., p. 410.) If this

principle be not rigorously and universally exact, it is, so

far as known, correct within the limits of error of observa-
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tion for imperfect gases; and these are the substances to

which this science is very largely applied.

43. Page 43. During isothermal expansion at a given

temperature, t, a certain amount of external work will be

done, a,s V, d e v„ Fig. a, and a certain amount of internal

work which we assume is not yet known. If the same

amount of expansion be performed at a temperature r -\- dt,

the external work v^ A B v, will be done, and a certain

amount of internal work, which, as before, may be un-

known. One of the brilliant points in Kankine's establish-

ment of equation (21) was his conception that the differ-

ence between the external works for two equal isothermal

expansions in which the temperatures of the source differed

infinitesimally, being t in one case and r -\- d t in the other,

equalled the work done by an elementary engine for the

same isothermal expansion, the temperature of the source

being that of the higher temperature, r -\- d t, and of re-

frigerator that of the lower, or r. In other words, the in-

crement of external work due to an elementary increase of

the temperature of the source equalled the increased incre-

ment of the heat absorbed. Or the increment ^ ^ c ^ of the

heat q)^l) c <p^ equals the increment ^ ^ c <^ of the external

work v^ A B v^. This is equivalent to asserting that the

difference of the internal works done during the perform-

ance of the external works v^ d o v, and v^ A Ji v, is zero

;

or, at most, a difference of the second order compared with

the difference of external works.

As a verification of this principle for a particular case, let

the equation of the gas he p — H , ; then will the

area of one of any one of the strips in (p^ A £ (p, be

as already given in Exercise 2, page 44. The external work

for isothermal expansion will be

d T,,
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v,ABv.= I pdv = Rrlog- (

as in Exercise 4, page 45. Tlie differential of the latter in

regard to r gives

ABc'd^ dr,

which is the same as found above for d c ij.

43. In the Exercises on page 44, it must be under-

stood that they refer to a unit-mass, and when numbers
are given, they refer to one pound of the gas.

48. By consulting the records of Regnault's experiments,

one becomes impressed with the large amount of work done

by him and the extreme accuracy with which his experi

ments were made.

51, By a purely analytical relation between the physical

properties of a perfect gas, it has been shown that

y = \ -{- '^,_= 1.405285.

{Phil. Hag., 1885, (1), 520.)

58. Page 63. Air has been compressed to 500 pounds per

square inch for use in the Vincennes-Villa tramway, {La

Nature Sc. Am. Sup., 1888, Mar. 17, p. 10167.) Air has

been compressed to 1000 pounds per square inch for use in

dynamite guns.

58. Exercise 15, page 71.

H = aV^.

Equations (B) give

vdp-\-ypdv^rzan{y — X)v i— ' d v.

Let

V = X, p ~ y, P = -, Q = a n {y — 1) x^-^ = B X ^-^
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and the equation becomes

ll+ ^^=«.

where P and Q are functions of x. This is a differential equation of

tlie first order and first degree.

To find the Integral, first let Q = 0, then

— rPdx

y = e C„

where C. is a function of x instead of a constant of integration. Differ-

entiating,

dx ' dx " ' dx

—fp d

X

fp d

X

.•.Qdx—e .dG,; . . C. = /q e dx;

—fpdx fpdx
.

. y = e IQ e dx;

..p=
, I

'
i> -\-0v

Exercise 16 may also be reduced to the linear form, giving

_ 1

—-—5^-^

—

^T) A- G n I

"--yin-D^V
Exercise 17 gives the differential equation

dp _ na{y -V) if-' -J_P_,

~dn
~ n J(l - y)i>°-'- ®

71. Page 89. The melting point—or freezing point—of

liquid carbon disulphide — 116° C.

" absolute alcohol - 130.5° C.

Alcohol becomes viscid at — 129° C.

{PUl. Mag., 1884, (1), 490.)

7 a. Page 90. By experiment it has been found that the

melting point of ice is raised 0.0066° C. by a reduction of

pressure from 760 mm. to 5 mm. {PUl. Mag., 1887, (2),

295.)
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74. Of liquids and saturated vapor. Regnault

found the latent lieat of evaporation by determining the

total heat and the heat of the liquids independently, and

taking their difference.

Total heat of liqviids, being the numher of ther-

mal units necessary to raise the temperature of a unit-mass

from that of melting ice to t degrees centigrade, as deter-

mined by Eegnault, at atmospheric pressure.

Substance. Number of Thermal Units.

Water q = * + 0.00002 f -\- 0.0000003 ^.

Alcohol q = 0.54754 < +0.001123 (' 4- 0.000003 «'.

Ether q = 0.52901 1 + 0.0002959 tK

Chloroform q = 0.23335 t +0.0000507 P. }-(l)

Chloride oE carbon.. q =0.19788i! +0.0000906<'.

Acetic acid q = 0. .506408 1 -\- 0.000397 P.

Bisulphide of carbon q = 0.33533 i! +0.000083 «'.

The general law of these equations may be represented by the empir-

ical equation

q = fij, « + J, <» + Ci tK (3)

To reduce these to English units, we observe that q, the

numher of thermal units, is independent of the unit of

mass, or weight, since the ratio between the quantities of

heat, in this case, and the respective quantities of liquid ex-

perimented upon will be constant, but will be dependent

upon the thermometric scale.

Since the degree in the British thermal unit is -| that in

the French, the number of British thermal units will be

|- times the number of French units for the same temper-

ature ; and if T be the temperature on the Fahrenheit

scale we have
< = -|(r - 32) ;

hence, for water we would have, q denoting the ninnher of

B. T. U.,

5 = Iq = g- [§ (r -32) + 0.00003 [H^- 33)]-^ +0.0000003 [B (T- 33)]«];

and similarly for the other liquids. Substituting and re-

ducing, we have
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Substance. No, of B. T. U. at temp. T.

Water, g =
- 31.991656+ 0.99957333 2'+ 0.000003233 P + 0.0000000936 T\

Alcohol, q =
- 16.903314 + 0.509543 T + 0.00056407 T'

-(- 0,000000617384 r^.

Ether, g =
- 16.759986 + 0.518489 T + 0,00016439 2"".

Chloroform, q = }.(3)

- 7,406358 + 0.330547 1 + 0,00003817 2".

Chloride of carbon, q =
- 6.380619 + 0.194659 T + 0.00005033 TK

Acetic acid, q =
- 15.979005 + 493387 T + 0.00033055 2''.

Bisulphide of carbon, q =
- 7.480711 + 0.233314 2* + 0.00004555 TK

The general law will be

q = a,-\-b,T+c^T''-\-d,TK (4)

The figures in equations (3) were obtained by carrying

out the decimals to many more places, and then retaining

the above to the nearest unit for the right-hand figure.

The specific . lieat at any temperature will be the

differential coefficients of the preceding expressions, which,

for water, will be

d q - 1 + 0.00004 t + 0.0000009 f, (5)
cc t

per degree centigrade, and

pL= 0.999573 + 0.000004444 T -\- 0.00000027768 P, (6)

per degree Fahrenheit.

These results for water are not exactly the same as Ean-

kine's or Bosscha's, given in Article 95, but any one of them

is sufficiently exact for ordinary practice.

74, 85. Total lieat of vapor. This expression in-

cludes the heat imparted to the liquid in raising its tem-

perature from that of the melting point of ice to that at

which the vapor is generated added to the heat necessary to

evaporate the liquid at the higher temperature. The latent
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heat of evaporation includes both internal and external

work ; the external being the work of enlarging the volume

at the pressure corresponding to the higher temperature, and

may be represented by the work done by a pound of satu-

rated steam in pushing a piston against a constant resistance

up to the point of cut-off in an engine, and the internal,

that of overcoming the mutual attractions between the

molecules. Let h be the number of heat units necessary to

raise one kilogram of a liquid from 0° C. to a temperature t,

and vaporize it at that temperature ; then Regnault's ex-

periments may be represented by the following empirical

formulae :

Substance Number of heat unite in the " total beat
of vapor " in French thermal unite.

Water h = 606.50 -f 0.305 t.

ELher h = 94.00 + 0.45000 t - 0.00055556 f".

Acetic acid li = 140.50 + 0.36644 t - 0.000516 f^.

Chloroform li = 67.00 + 0. 1375 «.
!" ^''^

Ciiloride of carbon . . h = 53.00 + 0.14625 t — 0.000172 P.

Bisulphide of carbon, h = 90.00 + 0.14601 t — 0.0004123 P.

For English units, if h be the number of heat units m
one pound of the substance on the Fahr. scale, then for

water we would have

A z= 9 h = f [606.5 + 0.305 x |(r - 32)]

= 1091.7 + 0.305 {T — 32)

= 1081. 9i + 0.305 T\
.-. H= 841829 + 237.29 T,

which differs slightly from Eq. (95), page 111, because some
fractions were omitted in determining the latter. In this

manner we find the following results :

Substance
Number of B. T. U. in the " total heat of vapor "

of 1 lb., Fahr. scale, aboveO" F.

Water h = 1081.94 + 0.805 T.

Ether h = 154.4839481 + 46974324 T~ 0.000308633 T''.

Acetic acid. . h = 240.880363 -f 0.3847866 T - 0.000286666 TK
Chloroform., h = 116.2 + 0.1375 T.

Ch. of carbon h - 88.83215 + 0.1523655 T - 0.00009555 TK
B. of carbon. A = 157.093127+ 0.16066955 T- 0.0002390552^.

General equation
h = a, + b, T- Cs T-'. (8)

1.(7)



K9)

ADDENDA. 409

'74. Latent heat of evaporation. Subtracting the "heat
of the liquid " from the " total heat of the vapor " gives

the latent heat of evaporation ; hence

h^ = h — q;

and making the substitutions from above, we have the

following results

:

Latent heat of evaporation, being the No. of French
Substance. heat units in one Isilo. of the vapor

at the boiling point.

Water h. =606.5-0.695 t - 0.00002 1;=- 0.0000003;!'.

Ether h. = 94.0- 0.07901 <- 0.0008514 ^^

Acetic acirl.^ h. = 140.0 - 0.13999 t — 0.0009125 f.

Cliloroform.? h, = 67.0 - 0.09485 t — 0.0000507 f.

Chlo. of carbon. . h, = 53.0 - 0.05173 t - 0.0003536 f.

Bisulp. of carbon he - 90.0 - 0.08923 t - 0.0004938 f.

In English units these become

:

Latent heat of evaporation, being the heat necessary
Substance. to evaporate one pound of the substance at the

boiling point, in B. T. U.

"Water K= 1131.7 - 0.6946 T - 0.000002222 7" -
0.0000000926 T".

Ether K= 171.24 - 0.0487 T - 0.000473 2".

Acetic acid K = 356.86 - 0.1075 T - 0.000507 T".

Chloroform 7i, = 133.60 - 0.0930 T - 0.000283 ?'=.

Ohio, carbon /(. = 95.103 - 0.0423 T — 0.0001403 2''.

Bisulph. carbon. :K = 164.57 - 0.0716 T - 0.0003746 T'.

Alcohol A. = 527.04 - 0.92211 T - 0.000679 7 ".

General equation :

K= a> -btT- Ct T^ - dt T\ (11)

These for English units and absolute temperature on the

Fahrenheit scale become :

' Latent heat of evaporation in B. T. U. , absolute
Substance. temperature, t.

Water K = 1442.474 - 0.751472 r + 0.0013538 r' -
]

0. 0000000936 r^

Ether A. = 93.3214 + 0.3870 r - 0.000473 r^

Acetic acid A. = 197. 935 + 0. 3595 r - 0. 0005070 r\ ) (13)

Chloroform 7*. = 160.4934 - 0.0871 r - 0.0000283 r».

Chlo. of carbon. . A. = 85.0245 + 0865 r - 0.0001403 t\

Bisulp. carbon. . . A, = 140.1806 + 0.1810 - - 0.0003743 f.

General equation :

A. = as + J5 r + Cs t'' + d^ r'. (13)

y (10)
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The effect of retaining the smaller decimals will be ap-

parent by comparing the above results for water with the

corresponding ones on page 95. Those on the latter page

are considered sufficiently accurate for practice. None of

them can be relied upon for temperatures much outside of

those in the experiments upon which they are founded.

The two equations are not very different within the range

of temperatures ordinarily used in practice.

To find the heat which does the disgregation worh, we
must find the external work done during evaporation. This

may be done as follows : The pressure for the absolute tem-

perature of the vapor is, equation (80), page 97,

logp = ^ _ - - -.

We have computed the following constants by means of

Eegnault's experiments. They are for degrees Fahrenheit
and pounds per square foot

:

Fluid. A. log B. log C.

Steam 8.28203- 3.411471 5.588973

Ether 7.5641 3.3134249 6.2173549

Alcohol 8.6817 3.4721707 5.4354446

Bisulph. Carbon..7.4263 3.3274293 5.1344146

Chloroform 4.3807 B is 3.288394 negative. 6.1899631

Sulp. Dioxide... 7.3914 3.1580608 5.3667327

Xaphtha 6.4618 2.949092 5.796469

Ammonia 8.4079 3.34154

Mercury 7.9711 3.74293

For steam. For ether.

B = 2763.59, B = 2057.8,

C = 383683. C == 164950.

Now find the volume of a pound of the vapor by means

of equation (84), or the approximate one, (86). Thus,
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I

H^ Jh„

d r d r

The value of \ is given by equations (10) and (11), and
substituting, gives

a-h T - c T' ^

(f + ^-/) 2.3026

This is the outer work. The disgregation work will be

P = H, - p {v, - 1,;). (14)

Zeuner, by this laborious process, computed the disgre-

gation work for a range of temperatures, and for various

substances, and assumed, arbitrarily, that they followed the

law

P = a, — l,t -cj%

and determined the constants by means of his previous

computations, and obtained the following results :

1' or Ji^'ench units.

Ether p = 86.54 - 0.10648 1 - 0.0007160 f.

Acetic acid p= 131.63' — 0.20184;! — 0.0006280 f.

Chloroform .... p= 62.44 — 0.11282 1 - 0.0000140 f.

Chlo. of carbon p = 48.57 - 0.06844 1 - 0.0002080 f.

Bisulp. of carbon p = 82.79 — 0.11446 1 - 0.0004020 f.

For saturated steam, the outer work may be found very

nearly from a table of the properties of saturated steam,

by multiplying together the corresponding pressures and

volumes. The product will be p v^, Eq. (14). The temper-

atures being given in such a table, we may find the total

latent heat of evaporation by means of equation (78),

page 95.

Reduce the pressures to pounds per square foot, if neces-

sary ; and substitute in equation (14), to find the disgre-

gation work.
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The latent heat of evaporation, as commonly used, might

be called the apparent latent heat of evaporation ; and the

disgregation work, the real latent heat of evaporation.

Page 96. The latent heat of evaporation is reported

differently by different authors. Thus I find that one author

gives for oil of turpentine, 123, another, 133, and still an-

other, 184; and I have riot ascertained which is correct.

For ether, 164.0, 162.S. Alcohol, 3()4.8, 372.7, 385. Kaph-

tha, boiling point, 306, 141° F. ; latent heat of eva^joration,

184, 236.

Densities of some vapors compared with that of air when

near their boiling points :

Atmospheric air 1.000

Steam 0.6235

Alcohol vapor 1.6138

Sulphuric ether vapor 2..")86(}

Vapor of oil of turpentine 3.0130

Vapor of mercury 6. 976

The densities of vapors at the boiling points of the liquids

are approximately inversely as their latent heats of evapo-

ration.

Thus,
Density of vapor of alcohol — 1.6138 _ q ro

Density of steam = 0.6235

Zatent heat of evajKiration of steam — 966.1 _ ^ kq

Zafent heat tf evaporation of alcohol = 372.7

76. Ranldne, in his article On the Centrifugal Theory

of Gasrs,* deduces an equation of the form,

logp = a - -,

for the relation between the pressure p and absolute tem-

perature T of saturated vapor. It was found, according to

* ifw. Sc. Papers, p. 43 ;
Phil. Mag., Dec , 1851.
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Eegnault's experiments and others, to be accurate for a

limited range of temperatures only. Rankine then proceeded

to find an emjnrical formula that would represent more

accurately a greater range of temperatures, and was led, by

analogy, to try a third term containing the inverse square

of r, thus giving

7 A ^ G
logp =.A ~ — --,

wliieh was found to represent, quite satisfactorily, the re-

sults of experiments upon steam, mercury, alcohol, ether,

turpentine, and petroleum.

Some fifty, or more, formulas have been devised to ex-

press the relation between the pressure and temperature of

saturated steam ; all of which are sufficiently accurate for

certain small ranges of temperature and pressure. Ean-

kine's, given above, is the most accurate for a large range.

Some of the most celebrated of the other formulas are :

Dulong and Arago's, for pressures above four atmospheres

p- = (0.4873 + 0.013244 tf lbs. per sq. in.,

t being the temperature centigrade.

Mallet's, from 1 to 4 atniospheres,

nn + ty/75 + i!\« .

(15)

Tredgold's is the same, except that 175 is substituted for 111.78.

Pambour's, from 1 to 4 atmospheres, t ° C.

y 110.93

Roche's

p = c-^A'^y ^^^- p^' «i' '" (i^>

m-t-n t
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From 0° to 100° C.

l-/g p = a — b a^ -\- c /3', millimetres, (19)

in which a = 4.7384380 ; log b = 0.6116485 ; log e = 8.1340339 - 10
;

loga = 9.9967449 ~ W ; log 13 - 0.0068650.

From 100° to 230° C.

log p = a — b a" -\- c 13", (20)

in which ,,. = 5.4583895 ; log b = 0.4121470 ; log c = 7.7448901 - 10
;

log a = 9.99741212 - 10 ; log ^ = 0.007590697.

Zeuner, by a special investigation, deduced a formula applicable both

to saturated and superheated steam, which is

pi) = Rt - Cp", (21)

in which R = ^-^, although it is better to consider iJ, G, n, as con-

stants to be found from experiment. For steam this becomes

pv = 50.983 T - 193.50 p X, (22)

in which p is the pressure in kilograms per square metre, and » the spe-

cific volume in kilograms per cubic metre. This formula is suffi-

ciently accurate from 0.2 of an atmosphere to 15 atmospheres and, so far

as tested, gives good results for superheated steam.

Hr. Ritter, from a discussion of experiments by Hirn, proposed the

equation *

1=^4+ -^, (33)M' pv^ ^ '

in which
R = 4.653, 5= 1043800;

which gives values for v agreeing almost exactly with the results found

by equation (84), page 98. But it is too complex for analytical discus-

sions.

Unwin proposed the equation f

%„P = " - — (24)

= 7.5030-^,

for saturated steam ; in which p is in millimetres of mercury and

To = — 273, on the centigrade scale. This equation is nearly, but not

quite, as accurate as Raukine's ; and possesses some advantages for an-

alytical purposes. Unwin finds, for the latent heat of evaporation,

* Pogg. Ann. (3), iii. (1878), 447.

f On the relations of temperature, pressure and volume of saturated

steam.—P;w7. Mag., 1886, (1), 299-308.
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'^^ = '''- iT6os-Lpr m
and for the specific volume of saturated steam,

Also, for alcohol

;
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To find the constants i?, 5, n, requires three contempo-

raneous values of the variables p, v, r. I determined values

of y by assuming several values for ji and r by equation

('S5), page 98, and compared the results with the recent

tables of Professor Peabody, and in no case did they difEer

by more than .02 and in most cases they agreed exactly to

the second decimal figure—and this too notwithstanding he

used Regnault's equations for the relation between pres-

sures and temperatures, while I used Rankine's, being equa-

tion (SO), page 97 ; but using for constants ray own values

on page 98, instead of those computed by Rankine. So

close an agreement was not anticij^ated under these condi-

tions ; and where the difference was greatest it might pos-

sibly have been less had I used more decimals. I there-

fore use Peabody's tables -with confidence. I have, how-

ever, used t'j = 26.58 for the specific volume of saturated

steam at 212°, and pressure of 14.7 lbs. per square inch as

computed on page 102 ; but all other values I have taken

from the tables.

Using as arguments tlie three sets of values :

p, = U.I X 14i, p, = 100 X Hi, Ih = 160 X 144,

'0, — 26.»s, v,_ = 4.38, i\ — 2.83,

r, = 672.66 ; t^ = 788.16 ;
r, = 824.06

;

Ifind

R = 96.95, b = 18473, n = 0.22

;

giving the equation

1 S4YSpv= 96.95 r - -^ (33)

More decimals in the value of n would make v" slightly

larger, and as only two are retained, a comparative compen-

sation would be produced by increasing the value of the

numerator, and the result of a few trials justified this modi-

fication, and we finally have
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For saturated and superheated steam

,^ = 96.95 r - ^^, m
in whicli Pf will be in pounds per square foot, and v the

cubic feet per pound. If p be in pounds per square inch

and 1) the cubic feet per pound ; then

p,v = 0.6Y32 T - ^||A (35)

In order to test this equation, I made the following table

for saturated steam ; taking from the table the values of v

and T, and comparing the computed and tabular values

of p.

TEST OF EQUATION (34).
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SUPERHEATED STEAM.

Specific volumes.
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Page 10-tr, tlie external work done during the evaporation

of one pouud of the liquid will he j> X ^ O, ai the tem-

perature r. "When the abscissa between J^E and E O ia

zero, as at E, the corresponding temperature will be the

critical temperature for that substance.

Neglecting the external work due to the enlargement of

the volume of the liquid, the critical temperature will be

that temperature which will reduce the apixirent as well as

the real latent heat of evaporation to zero. For steam, the

first two terms of equation (12) of this Addenda gives

T = 1919 ; or r = 14:59° F.

The critical temperature of a few substances has been

found by experiment. Thus, it is for

Deg. C.

Carbon tetrachloride 292.5

Carbon disulphide 276.1

Acetone 246.1

{Pogg. Ann., ch., (1874), 303.)

Theory gives higher values than these. The critical

temperatures and pressures for twenty-one substances is

given in the PhilosophicalMagazine, 1884,(2), page 214.

Avenarius showed by experiment that over a certain

temperature fixed for each substance there is no distinction

between the liquid and vapor states, so that jiressure alone

will not cause a gas to liquefy.

79. In Kankine's tables the absolute zero was assumed

at 461.2 below ilie zero of Fahrenheit's scale, while those at

the end of this work are computed with 460.66.

85. See Article 75 of this Addenda.

96. Clausius claims to be the first to announce that in-

ternal work is a function of the initial and terminal states

on]y. (Clausius On Heat, page 35.)
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97. It will be a good exercise for the student to give

geometrical interpretations of the equations on page 132.

97 a. " Oil the dimermons of temperature in length, mass and time ;

and on the absolute C. G. S. unit of temperature" (Phil. Mag,, 1887, (3),

96). It is shown that, in accordance with Thomson's absolute scale, the

unit temperature would be that of ii perfect gas whose mean kinetic energy

per molecule was one erg.

HE— the mean kinetic energy of a molecule of the gas,

r = absolute temperature of a perfect gas,

A = a constant,

p = pressure per unit,

v = volume of a pound of the gas,

n = the number of molecules in a pound ;

then,

E = kT,

and making k = 1,

E = T.

But, equation (2) of Appendix, gives, if «'i = J- for 1 pound,

X p Vi = 1)^ = 'Z n E

;

hence, making x = i, and omitting the subscript, vre have

p 11 ^ i n E \

for the value of the temperature at 0° C, or — 273° C. absolute, C. G. S.,

and

tlte absolute unit = 373 -i- 2.5 X 10~" = about 10'* 0. degrees.

" Having seen that temperature is of the same dimensions as energy,

and knowing that the same is true of htnt, it follows that entropy, whose

dimensions are heat -^ temperature, is a purely numerical quantity ; and

the unit of entropy is therefore independent of all other physical units.

In fact, the entropy of a perfect gas increases by unity, when {without alter-

ing its temperature) it receives by conduction a quantity ofheat equal to tlie

mean energy of one of its molecules.

"

98. Priming or siiiierheatiiig. Equation (135),

page 141, may be put in a more customary form as fol-

lows :

Let

T^ = the temperature of tlie water at the boiling point

under the given pressure in degrees Fahr.,
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T^ = the temperature of the feed water, which is as-

sumed to be the same as that of the higher

temperature of the water supplying the calo-

rimeter.

T^ = the initial temperature of the water supplied to

the calorimeter.

h = the total heat of steam, being the heat units

necessary to raise the temperature of one

pound of water from 32° F. to the boiling

point and evaporating it at that point. Its

value may be found in special tables, or from

equation (134) after making a? = 1.

A, = the heat units in one pound of the water at the

boiling point above 32° F., which will be T^ —
32, nearly, but may be found more accurately

from Article 95, or more directly from suit-

able tables :

Aj = the heat units in one pound of the feed water

above 32° F.,

h = the heat units in one pound of the steam above

the temperature of the feed water as deter-

mined from a calorimeter,

w = the weight of the steam condensed in the calo-

rimeter,

Tr =
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Per cent of jyriming = 100
' —^^ ^

(-i)

= 100
J--,-

If this equation becomes negative there will have been

superheating.

In equation (5), h — A^ is the heat supplied above the

temperature of the feed water to produce one jiound of

W
saturated steam, and — {T^ — T^ is the heat supplied to

one pound of steam and water combined. If the entire

pound be steam at the point of saturation, this quantity

would equal the former and the expression would reduce to

zero. But if it exceeded the former there would have been

superheating, and the expression becomes negative. The
numerical difference between the two terms would be the

number of heat units of superheating, and this divided by
the specific heat of steam (0.4S) gives the number of de-

grees of superheating ; or

Deg. superheating = --j^ •

These two expressions may be partly combined in one,

thus ; if

1^
= h - A, - -~ (T; - T,)

;

(7j

then, if g be positive, we have

Per centpriming = 100 |-

;

and if g be negative.

Degrees of superheating = — = tttz >

disregarding the sign of g in the result.
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Accuracy in the calorimeter test requires a correction for

tlie heat transferred to the vessel and the vapor escaping at

the surface. The corrections will depend upon the size of

the vessel, its material and the manner of condiicting the

experiments, and do not admit of a general practical ex-

pression.

99. Specific lieat of saturated vapor. To ex-

plain more fully the fact that the specific heat of saturated

steam is negative, let g A h, Fig. c, be the morve of satu-

ration, and let A, on this curve, be

the state of the steam ; then it is

found that if it expands without

transmission of heat the curve of

pressures will fall below A i and

follow some line ?is A d (equations

(150) and (151), page 154, and below

equation (185fl), page 178). Some of "
^j^ (._

the steam will have been condensed,

so that there will be a less mass of vapor than at the state

A. In order, then, that the initial amount, one pound,

shall remain as steam during the expansion, heat must be

supplied to the steam. On the other hand, if the steam

be compressed without transmission of heat it will be su-

perheated and follow some line as ^ e ; and to make its

path coincide with A c, heat must be abstracted. Rankine

found, from aii inspection of actual curves of expansion

as shown on indicator diagrams, that the equation of the

curve of expansion was

J)
-yV = constant, nearly.

But we have previously found that the equation of the

curve of saturation is

p vi' — constant, nearly

;

which equations show that, if they have one common state.
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the curve of expansion will fall under tlie curve of satura-

tion, and the curve of compression rise above it, since it is

a steeper curve at the common point. This is true for ail

temperatures of steam less than about 970° F.

Ether engine. The speciiic heat of the saturated

vapor of ether will be equation (139), page 147,

and retaining only two terms of equation (12)„ of this

Addenda, we have

A, = 93.32 + 0.3870 r;

^« 93^+0.3870;
r

clr

We also have

= 0.3S70.

=z 0.517;

= 0.517 -
93.32

which is zero for

r = 180.5°
;

or, T = - 280° F
;

hence, for all temperatures above —280° F., s will be posi-

tive ; that is, the specifio heat of the mturatecl vapor of ether

is positivefor all temperatures occurring in practice.

This reverses certain conditions of the steam-engine.

Heferring to Fig. c, now let e A d \iQ the curve of satu-

ration of the vapor of ether ; then if the vapor be cortv-

pressed from the state A the path of the fluid will fall

helow A e, and heat must be si/pplied- in order that the

path shall be A e, that of saturation. On the contrary, if it

be expanded without transmission of heat, the vapor will be

superheated and its path will rise above A d ; and in order

that its path shall coincide with ^1 d, heat must be ab-

stracted.
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In the ether engine, if v^ be tlie volume of a pound of the

saturated vapor at a temperature t,, and it be compressed

until its temperature is t, then will the volume of the vapor

be, equation (150), page 154,

and the volume of the vapor condensed will be

u — u.

Other vapors may be examined in the same manner. (See

Yapor Engines in the following Article.)

Temperature of inversion. The temperature at

which the specific heat of the vapor becomes zero is called

the temrperature of inversion ; below which expansion will

cause condensation, and above which expansion will cause va-

porization, and the contrary, the specific heat being negative.

" JI, Hira* gave an experimental demonstration in 1863 of the con-

densation accompanying a sudden adiabatic expansion of dry saturated

steam, and tlius proved the negative sign of s' at low temperatures ; he

allowed steam to pass gently from a boiler, where it was generated under

5 atmospheres pressure, through a copper cylinder, 200 c. long and 15 c.

in diameter, the ends of which were closed by plates of glass, until all

air and condensed water had been driven out and the sides had attained

the temperature of the steam ; the exit-stopcock of the cylinder was then

shut, and, the cylinder being full of dry saturated steam, the connection

with the boiler was cut off and the exit-stopcock suddenly opened ; the

pressure at once fell, and the cylinder, which had previously appeared

perfectly transparent to an observer looking along its axis, became per-

fectly opaque from the formation of a cloud ; this cloud, however, soon

disappeared, heat being supplied by the vessel as it cooled from 152° C.

(the temperature of saturated steam under 5 ordinary atmospheres) to

100° C. (the temperature under 1 atmosphere).

M. Cazinf improved this apparatus by connecting the cylinder with

another in which a piston was movable, and placing the whole in an oil-

bath the temperature of which could be varied at will ; saturated vapor

in the one could then be allowed to suddenly expand into the other, or

* Bulletin de la Soc. industr. de MuWmsey cxxxiii. (1863), 139 ; Cosmos, xxii. (1863),-

413.

t 0. B. Ixii. (-1866), 66.
'
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when filling both could be suddenly compressed by the motion of the

piston. A cloud was always formed when steam expanded, but never on

its compression, and Avith carbon bisulphide the same occurred
;
on the

contrary, as noticed earlier by M. Hirn, ether vapor never condensed

during expansion, but always on compression, showing that its temper-

ature of inversion is below ordinary temperatures ; further, the temper-

ature of inversion appeared to be between 125° and 129° C. for chlo-

roform, and for benzine between 115° and 130° C. These results are in

keeping with theory, M. Regnault's formulse giving 790.2°, — 113°,

133.5°, 100° C. for the temperatures of inversion of carbon bisulphide,

ether, chloroform, and benzine respectively."

113. The results of Articles 110, 111, 112, illustrate the

fact that the efficiency, when the operation is in the cycles

there assumed, is less than that for Carnot's cycle when
worked between the same limits of temperature. The in-

itial pressures are the same in each of the three cases, being

f^ = 14400 lbs. The range of temperatures in the Exer-

cise on page 1Y4, for superheated steam, expanded isother-

mally, is

T, - T,=z 460 - 110 = 340.

Initial absolute temperature = 910.66
;

hence, if the heat absorbed had been worked in a Carnot's

cycle the efficiency would have been

^=9lo:66 = ^-^'"'

instead of 0.207 as given in equation (171«).

In the Exercises on pages 176 and ITS for saturated steam
expanded adiabatically, the initial and final temperatures are

the same, being

T, = 327.6, r, = 110

;

.-. T, - T, = 217.6,

r, = 460.66 + 327.6 = 778.66
;

T — T
. .

-J -^ = 0.267,

instead of 0.204 or simply 0.200. The latter is 75 per cent

of the former.
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ii the feed water were of the same temperature as the

exhaust steam, we would have

327.6 - 134

778.26
= .0.245,

B

-D
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extend to such a point B that, when expanded adiabatically,

reducing the temperature from r^ to t„, the liquid will not

be completely evaporated before the lower temperature is

reached. If the ether be completely evaporated at state B
it will be superheated when expanded adiabatically as shown

in Article 90 of this Addenda, and B iV-\vill be the adia-

baiic of an imperfect gas. Similarly, the point of com-

pression J will be further to the right for ether, and all

vapors whose specific heat is positive, than for those which

are negative.

The heat absorbed will be, equations (21) and (74),

n. = r. j^' I
<Iv = r. ^-^ (.3 - «.). (1)

The heat emitted from C to J will be

r,_

Making cl r^ = rZ t^ = </ r, we have,

//. = r, j^ (^„ - «.). (2)

ABcd= '^U:^-v:)^'^{v^-v,\ (3)

since the areas of all the strips formed by equidistant iso-

thermals between adiabatics will be equal, as shown in

Article 40, page 32.

The efficiency will Ije

II, " ;77^ r, ' (^)

which is the same as for the perfect elementary engine,

equation (159), page 161. This result might have beeo

anticipated, since the cycle is Carnot's.

97a. To represent geometrically certain rela-
tions.

Equations (A), page 48, or (123), page 135, give
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(I q) = d II (dp\ -.
, ^ d r

If T be constant during the expansion d v, we have d t z=

0, and

i<i'P)r=^{P^)^{dv),.

Dividing both sides hj d v gives-

<d qt(d^\
\d V Jr

/dp\
\d tA

The factor i-j^] is the rate of change of pressure per

unit of temperature, and therefore if the rate were uniform

during the change of unity of temperature from r to r -(- 1,

it would be the increase

of pressure due to an in-

crease of one degree of \
temperatilre. Draw two

parallel lines to represent

two isothermals differing

by unity. As in the cal-

culus, these lines may be

tangents to actual isother-

mals. Let a w and gp^Q a
the isothermals, differing

by one degree of tempera-

ture. At a let the pres-

sure bep ; then will

If the abscissa of h in ref-

erence to a\)B a e — d V,

then aof'b=-ac-ae —{-=^
•' \dr

t*i

d V.
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Let the straight line a g through a be an adiabatic (tangent

to an actual adiabatic). Divide ap into parts each equal to

d V, and through the points of division draw lines parallel

to a c, and through their points of intersection with a w
draw lines parallel to a g ; the spaces thus formed will be

equal ; and equal to a c fh, since they have the same base

and altitude. Hence

{d(p)T —aghh = a cfh — \j) (<^ '^)r-

Dividing by d v,

d V Jr \ d r!

Let a i represent unity of volume, or

a i — 1
;

then

aGyni=acXai=
(
j^j • 1,

which is the right member of the preceding equation.

( -^] is the number of d a>'s between r and r 4- 1 for an
\ d V/r

increase of volume equal to unity, and is equivalent to the

area agzm = acy7n;

_.(djp\ idp\
\dvl, \dr I;

as deduced above, analytically.

It will be observed that the subscript of the parenthesis

on one side of the equation is the same as the independent

variable on the other side ; that is, t is a subscript on the

left side, and the independent variable on the other. Writ-

ing the reciprocal of the preceding equation, and observing

a similar order of subscripts, we have.
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the geometrical interpretation of which we will proceed to

show.

The equation

<p =. a. constant

is the equation of an adiabatics, and the expression (——

)

implies the rate of cliange of temperature due to a change

in the pressure along the adiabatic a t. Let the pressure at

a be p, and at <,^ -j- 1, and a q, parallel to the axis of vol-

umes ; then
qt = 1.

The temperature at a being r, that at t will be r -j-
I
;?—

)*;

.
•

. change of temperature from « to ^ = 1-^ 1 .

The area a ghh = d tp; and if this area were extended

V 1 ^, its value would be

(f|)/^'\dpJ
and this *lso equals

q t . a e = 1 . d v^;

\d ep'p \dv L'\d <ph \dp j^

Assume any arbitrary area && a g Ik for an increase of

9> = 1. Since ( -^— ) is the increase of temperature for an

increase of unity of pressure, it is the temperature of the

isothermal t o above that of a ^

;

.
•

. area atnh =
\j^)^ {<P = !)•

The expression (-=— 1 is the abscissa of v for <p unity, and

hence is the abscissa of k in reference to a ; and this multi-

plied hy q t — 1, gives
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1 . (^— I = atn k;
\a (pip

hence the e(juality of the expressions.

The second equation of thermodynamics is

d H ^ d r ldv\ ,dcp= -^ = 0, — - Wp^^'
which becomes for r constant,

SI).\dph \drl^

If a and h be consecutive states on the isothermal, for an

increase of volume d v ^ a e, the pressure decreases an

amount a d = — dp.
dv\
d-r)= ^^'

where ap is the increase of volume in passing from one

isothermal, t, to another a unit higher, r -{- 1, measured

on a horizontal line ; and this multiplied by an ordinate q t

= p —
1, gives the area a t tip = a t v w. \~j~] is the

mimber of (p'a between two isothermals for aa increase unity

in^.
d(pr = al>hg=a ijp,

which divided hj — dp gives

— at Vjp — — \-— I = at V w.

Taking the reciprocal, we have

dp\ _ _ Id r

d <piv \dv

which may be geometrized in a similar manner.
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Thus, the right-hand member impHes the increase of

temperature for a change of unity of volume on an adia-

batic. Let a q = — v — — 1, and from q erect a pei"pen-

dicular to meet the adiabatic through a 2At\ then will the

increase of temperature at t above that at a be

\d vjj,

If the increase unity of <p be represented hy a g I k, then

atnk= l-j^] (<p = 1).
\d y)^

'^

Also
ld^\

\d (pjv

will be the ordinate of g above a, which multiplied by j' =
unity will give the same result as the preceding.

113. Cut-off. In the analysis on page 182 no account

is taken of the condensation of steam. In order to determine

approximately the modification of the preceding analysis

which would result from this cause, assume that sufficient

steam is admitted to produce the same pressure up to the

point of cut-ofE as if there were no condensation, and that

the mean effective pressure is the same ; then will all the

qiiantities in expression (191), page 183, remain the same

except r and k. The value of h will be increased, for larger

boilers may be required, and more fuel will be required,

and other incidentals may be increased. In the solution, if

k be increased, C, Fig. 50, page 184, will be increased,

and VD will be increased in like proportion, since

CD=-X C.
V

Hence, the point D will be found on the same line

NOD, prolonged ; but the more remote the point D is,

the further to the right will be the tangent point P, thus

requiring a later cut-ofE. In theory or practice, however,
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the eut-o£E in case of condensation will not be very mucli

larger than if there were no condensation. This case was

well discussed in the paper by Wolff and Denton in their

paper read before the Society of Mechanical Engineers, re-

ferred to on page 189. It appears from the examples

there given, that the first cost has an important influence on

the most economical point of cut-off, and that in stationary

engines the ratio of expansion should not be very high for

greatest economy—all elements involved being considered.

But in marine engines another element enters—that of

storage room for fuel. Here, all space saved by reducing

the amount of coal necessary for making a voyage may be-

come profitable by furnishing room for the storage of mer-

chandise, or, otherwise, lessening the non-paying burden of

the ship. Under these conditions very high expansions may
be economical when they would not be on land service,

where storage room is of no value.

Miscellaneous.
The following are some average results for the total heat of combustion

per pound of some liquid fuels. {Thesis, by James Beatty, Jr., Stevens

Institute, 188i, p. 73.) .
Petroleum 20,300 B. thermal units.

Coal gas 20,200"

Creosote 16,400
"

Asphalt 15,900"

Anthracite 14,500"

Carbon 14,450 "

Bituminous 14,200"

Lignite 11,800"

Peat 9,600"

Water gas 8,500"

Wood 6,800" " "

Generator gas 3,100" " "

Air liquefied at high pressures—say with about 40 atmospheres and at

— 142° C.—may be maintained in a liquid state at a pressure of one

atmosphere, provided the temperature be lowered to about — 191° C.

{Phil. Mag., 1885, (3), 463.)

This is similar to the action of steam. If steam be at a pressure of
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300 pounds to the square inch and temperature 390° F., it cannot he
liquefied by mere compression

; but if at that pressure the temperature
be diminished to 380°, it will liquefy, and the pressure may be gradually

removed down to one atmosphere, provided the temperature be reduced
to 213° F. or less.

Curve of boiling points of oxygen. The experiments of Wroblewski for

the boiling points of oxygen give the following results {Phil. Mag.,

1884, (1), 491)

:

PresBure.
^ Temperature.

Atm. Degrees C. Degrees P.

50 - 113 - 171.4

37.03 - 129.6 - 301.3

35.85 -131.6 -204.9

24.40 - 133.4 - 208.1

33.18 - 134.8 - 310.6

32.3 -135.8 -212.4

1 _ 184.0 - 299.3

These plotted on the plane of p and r would be the curve of saturation

on that plane.

Evaporation and dissociation. {Phil. Mag., 1887, (2), 196.

This is Part IV. of a series of articles upon liquids and vapors.)

Boiling points of gases at atmospheric pressure, or the points

of liquefaction of gases. M. S. Wroblewski has determined the follow-

ing values, the temperature being measured by means of a thermo-

electrical apparatus which was considered correct to within i of a degree

down to - 300° C.
Boiling Point at

Substance. Atmospheric Pressure.

Degrees.

C. F.

Air -194.3 -317.5
Oxygen, O - 184.0 - 299.2

Nitrogen, N - 193.1 - 315.6

Carbonic oxide, CO - 193.0 - 315.4

Ethyline -193.0 -315.4
(Phil. Mag., 1884, (1), 490.)

The conductivity of heat in several liquids is given in the Phil. Mag.,

1887, (2), 1-37. The conductivity of water is the highest of all those

reported. If that of water be 100, that of benzine is about 2P.8, p. 18.

If that of air be 00049 0. G. S., that of water will be 0.0645, p. 23;

and that of petroleum about 0.033 ; ether, 0.023 ; carbon disulphide,

0.016, p. 37. Accordingly, it appears that water is one of the best of the

liquids for absorbing heat in a boiler.
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Watt's law. The sum of the sensible and latent lieats of steam is

constant.

This is one of the earlier laws deduced from crude experiments, but

Regnault's experiments showed it to be erroneous. (Eq. (78), p. 95.

Also Browne's translation of Olausius On Heat, pp. 131-134.)

The mechauical equivalent of light, as determined by Ju-

lius Tliomsen, is about 13.28 foot-pounds per minute for one candle.

(Phil. Mag., 1865, Vol. XXX., p. 246.)

According to Moses G-. Farmer, it is about in.l foot-pounds per candle

per minute. (Am. Jour. Sc. and Arts, 1886. Vol. XLI., p. 214.)

Density of liquefled gases. The aensity of liquid hydrogen at

0° C. is 0.025 ; at - 23° C, 0.032 ; of liquid nitrogen at 0° C, 0.37 ;
of

liquid oxygen, 0.65 at 0° C. (Caillett and Hautefeuelle in Comples Hin-

dus, Vol. XCII, p. 1086.)

According to Wroblewski, the density of liquefied oxygen is 0.899 at

- 100° C, and 1.24 at - 200° C. [Comples Rendus, 103, 1010.)

The specific gravity of ice at 0° C. is 0.91886. {Smithsonian

Contributions, 1888, Vol. XXXIII., p. 40.)

Sulphurous acid. Latent heat of evaporation of sulphurous acid

is

;^, = 91.2 - 0.37 i calories,

very nearly from i! = — 10° C. to < = 70° C.

Density of the saturated gas is 00634 at 7.3° C. ; 0.4017 at 154.9° C.

Density of the liquid. 1.4338 at 0° C; 0.6370 at 155.05° C. {Cvmptes

Bendus, Vol. CIV., p. 1564.)

For more recent and more reliable values, see page 357, and paper by

the author in the Trans, of the Society of Mechanical Engineers, Vol.

XI., 1890.

Short trips across the Atlantic. In May, 1889, the City of

Paris crossed westward in 5 days, 23 hours and 7 minutes. In August,

eastward, in 5 days, 33 hours and 44 minutes ; westward, in 5 days, 19

hours and 18 minutes. In August, 1890, the Teutonic made a we.«tward

trip in 5 days, 19 hours and 5 minutes, and claimed to have sailed 40

miles farther than the City of Paris when the latter made her quickest

trip. The greatest reported speed of the latter exceeded that of the

former by 5 miles for 34 hours. In August, 1891, the Teutonic made a
trip in 5 days, 16 hours and 31 minutes. July, 18^2, City of Paris, 5 days,

15 hours, 58 minutes.

Vertical distribution of temperature in the atmosphere is

very variable. (Engineering [London], 1889, November, pp. 522, 566.)

Temperature of space has no sensiblesxistence. (S. P. Langley,
Phil. Mag., January, 1890, p. 33.) The mean temperature of sunlit lunar
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soil is mucli lower than has been supposed, and is most probably not

greatly above zero centigrade. (Jbid, p. 53.)

Heat transmitted through cast-iron plates pickled in nitric acid

is about 70 per cent, of clean untreated plates. (Carpenter, in Trans.

Soc. Meek. Encj'rs, 1890.

)

History of tlie gas-engiae. {Sdentifio American Supplement,

1889, p. 11,416.)

Steam-engine practice in 1884 by J. C. Hoadley, 0. E. {Trans.

Am. Asso.for Ad. of Science, 1884, pp. 289-359.)

While breatliing, a man consumes about 315 cubic feet of air per

hour, or about 17 pounds.

Page 74.—To show that the elasticity of the air equals its tension,

let p, be the pressure on unity of area, producing a compression A and I

the length of the colurnn ; then, from Besistance of Materials, wb
have

p,=Ej. (a)

For isothermal change we have

p 1) z= B T

;

•
. p dv = — V dp ;

or, making v = l, dti=~X and dp = pi, then

pX = Ip,

;

. », P ^
• •^ = —

'

which compared with equation (a) gives

p = M
If the change be adiabatic, then

pi) ^ a,

and by a similar process it will be found that

S!= yp.

Page 83.—To obtain equation (65), let r, be variable, and dropping

the subscript „ the variable factor in (64) will be

1

Squaring, differentiating, placing equal to zero, and equation (65) is

readily found.



iSS ADDENDA.

Page 103. EXERCISE 9 —Let Ov.hethe volume of

a pound of water ; when it is all evaporated, let it be v,

= 26.5 cubic feet. Let y, A represent the pressure of

one atmosphere = 2116.3

pounds per square foot;

then the external work

will he V, X v, A. Let

. v^ahethevif^tual'pressMre,

:rrr;;:r!&-ig_ whicli wouM, If workcd to

the volume v„ represent

both the external and in-
FIG. /.

ternal work ; then, in this exercise, A a will be 12.37 times

«i A. The heat absorbed in evaporating the pound ijf water

Mdll be represented by the area ^, A B cp^, which in this

exercise Avill be T510T2 foot-pounds.

The line ^ ^ is an isothermal of the vapor whose equa'

tion is of the form

^ =z o . -y -|- 5.

The value of p (or V) is given by equation (SO), page 97

;

or Ijy the equations on pages 413 and 414. The equation

of a h is of the same form, but for steam the last term will

be about 11 to 12 times t', ^1. The equations of the adia-

batics A q)^ and Bcp^ will be given by equation (149), page

l.")3, or equation {a), page 184.

Page 109. EXERCISE 1.—Let < be the required temperature; then

^vill the heat lost hy the water equal that gained by the other sub-

stances ; hence

3 (90 - «) = 10(i - 30) X 0.655 + 20 (C - 60) x -/j'; . .t = 49.56° F.

Another way of solving these problems, when there is no change of state,

as from solid to liquid, is to find the heat in all the substances above
some assumed initial temperature, and divide the result by the heat

necessary to raise the several substances one degree, as follows :

Since the substances are all liquid in this Exercise, we will treat them
as if they were liquid from and above 0° F.; then will the heat units in
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3 lbs. of water at 90° F. above 0° F. be 3 X 90 X 1

Bpeciflc heat of water is unity. In this

Sp.
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Assuming that the resultant mixture is liquid, we next find how much
heat would be necessary to raise the temperature of 7 lbs. from 0° to

water at 32°, we have

0.504 X 7 V 33 = 112.896 heat units.

7 '^ 144 = 1008.

Heat required 1120.896 " "

There will remain 1371.368 — 1120.896 = 250.472 thermal units, and

this would raise the temperature of the 7 lbs. of water 250.472 -t- 7 =
35.75 degrees ; hence the temperature will be 35.75 + 32 = 67.75 degrees

F., and as this is less than 212 degrees it is the result sought.

EXERCISE 5.—Let x be the required number of pounds, then

(312 - 300) .r = 966.

Page 120.—In order to reduce equations (107) and (108), it will be

necessary to find v in terms of p and r
; but the equations for imperfect

fluids usually being p =/ (r, «), the resolution in terms v will be more

or less complex. Thus, one of the simplest forms is that frequently

used in this work, pv = aT— — , which resolved in terms of 4> is a^ TV

radical of the second degree, and the -r^ is so complex that when multi-

plied hj dp the integral cannot be performed in finite terms. If, how-
ever, the equation be that given by Zeuner, equation (31), page 414, v

will be found as a simple function of r and p, and equations (107) and

(108) will be more easily reduced than (105) and (106).

Page 133,—To show tlie geometrical signification of

the quantities in the equation

/d v\ (d v\ ,

r+d T
let a 5 be the path of the fluid.

Intersect it by two consecutive

isothermals, r and t -\- dr, and

draw a d parallel to the v axis,

h G and a g parallel to the j> axis.

Then the total differential of v, or d v (which is the left

member of the equation), will be the abscissa of b in refer-

V
FIG. g.



ADDENDA. 441

ence to a, and the total d p will be the ordinate of 5 in

reference to a ; hence

dv = a c, dp = 5 c.

At a draw the tangent a h, and let a g =^ jp ^= 1, and

make a e =^h c and draw e f and y h parallel to a d, then

7 fd V
g h —

that is, if the isothermal were the straight line a h, then by
passing down it until j) = 1 = a ^, the abscissa ^ A in refer-

ence to a will be as written above. It not being generally

a straight line, take a e ^^ 1) c ^ d f, then, by the simi-

larity of triangles,

/ q h (d v\ ^ef —y—ae= —- dp.
a g \dpi r

Since a e is negative, being measured downward, we
really have

by construction. This is the first term of the second mem-

ber. In the third term (^ j would be represented by a d,

since p is constant, provided the isothermals were unity

apart ; but as they are only d r apart we have, on the prin-

ciple just given,

a d = { ^] a t;
\d T/p

hence,

dv = ac = ad-cd=^ (j^)/ ^ + idi)r {- ^P)-
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r+dr

If V be constant, the path of the fluid

will be perpendicular to the axis of v. Let

a of the preceding figure be moved ,to the

right until it falls on c, as shown in the

annexed figure, when total d v becomes

zero, and we have

d V = 0, ( -- ] d T =
\d T/p

d.
d V \

djj = — c d.

Page 132.—The equation

was deduced from equation (A), p. 48, by dividing botli members hjdv;
hence, in the right member the factor 1 should be retained in order to

malie the terms homogeneous, giving

in which 1 represents unity of volume.

In representing these quantities geometrically, we will for conven-

ience use straight lines, a method
strictly correct at a state.

Let A be the initial state, Vi

— Vi = 1, be the increase of

volume, ^4 B the isothermal through

A, or if the isothPimal be a curved

line, then A B will be tangent to

the isothermal, A cp^, B cp^i. adi-

abatics indefinitely extended ; then

qii AB i =(a
If a J be an isothermal one degree higher than ^1 B, then

(d'iA a :

and

{-A

A ah B = A a • Vi Vi = (4— ) • 1.
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If the area (pi A B gi^ be cut by isothermals CD, E F, etc., differing

by unity, then

Aal>B = ABDO= B F E, =, etc.,

and

Tlie next equation on page 133, becomes

dzKdvJT XdzVy \dTJ^
1.

In this case, the temperature of the working tluid is increased. Let A a

be the Increase of pressure for an in-

crease of temperature of one degree

and i'l Hi = 1. Then

I

—— 1 = tpi A B <Pi ; and tlie left
\dvjr
member is the heat necessary to be

added to that of cpi A B cps in order

to increase the temperature one de-

gree, and maintain it at that tempera-

ture while it works under the pres-

sure Vf a, through the space «, «s,

provided the pressure is increased fig. i.

uniformly with increase of temperature. The right member represents

the difference of the external works during the expansions at tempera-

ture r and r -\- 1 plus the difference of the internal works during the

same expansions. We have

/dp'

(a-=^-^-
The difference ol the internal works in expanding along the two

isothermals, A B and a b, respectively, equals the difference of the in-

ternal works along the paths A a and B b, respectively, and the latter is

as given on page 119,

Kb
d r'

Vi 1)
r'lP .1

The next equation on page 133 is

/dE\
&),"'+'/:m."-
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This represents the heat absorbed at constant volume for an increase

of one degree of temperature. It is, as shown by the right pember, the

heat which makes the substance hotter, represented by C, plus that which

does internal work. It may be represented on a diagram of energy by

the area <pi A B qii, in which ^ i? is the in-

crease of pressure due to an increase unity of

temperature and

C = Ki a B q>2.

The sum of these two quantities is the specific

heat fit state A.- The heat absorbed in raising the

temperature one degree will be, making rj =
r -|- 1 in equation (106), or

FIG. j.

C+.p.Aan: = C+/; + Y^r{2l<^ra..

The last term, generally, cannot be integrated with r and t, mOtually

dependent variables as they will be, except for isothermal expansion. The
internal work will be the same whether the expansion be isothermal or

adiabatio, if indefinitely extended ; for the two paths are asymptotic to

each other, and the initial states are the same, so that the two paths

will form a closed cycle.

Let A Ti and B r^ be two isother-

mals differing by unity ; then may the

difference of the internal works in

expanding along these isothermals be

represented by the shaded area A a )nj r,

and this area will equal the shaded one

in figure J, or

T, A a TOi = ip,, A a Ml.

PIG. k.

Conceiving the expansion to be isothermal, r will be constant during

the t!-integration, and v constant for the r-integration. If the equa-

a

I
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the value (-^— | is the heat absorbed for an increase of temperature

of one degree (or strictly it is the rate at which heat is absorbed per

degree of temperature) at constant volume, d ( -— ) is an element-

ary increase of this heat, and -—
{—f- ) is the elementary amount for

an increase of volume equal to unity. The value is more readily seen

from the right member. Referring to equation (105), page 119, it will

be seen that the right member is the heat absorbed in doing internal

work for an expansion unity of volume, provided it is uniform through-

out that volume. Therefore r I -^^ i may be considered as the ordinate

at any point whose abscissa is v of the shaded part <pi, A aui, or of

Ti Aami, the latter of which will be used in the solution of problems

since r will then be constant.

In the equation (page 133)

\dpjr \dT/f

the left member is the heat absorbed dur-

ing isothermal expansion for a fall of pres-

• sure equal to unity. Let A B be an isother-

mal, Bb = 1, then will

FIG. I

Let c e be an isothermal one degree higher than A B; prolong Ab ta

d, and draw B e parallel io Ad ; then

Ad =

Since b Bia negative, we have

\d r/p

AdeB=Ad-bB= (||-) {—!) = A c/ B = A Bhg;

..cp,AB<p. =r(-|^^)^ (-1)-

Page 134.-^The differential of a function of any number of vari-

ables may be found by well-known rules, the result being an exact dif-

ferential ; but it is often diflBcult to find the primitive of a differential.

A transformation is often necessary in order to render an equation or an
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expression an exact differential. Thus, the first member of the equa-

tion

xy dy -\- {1 -^y'')dx = 0,

is not an exact differential as it stands, for it does not satisfy the condi-

tion _i_£-' = d i—L-iZ; but multiplying the equation by 3 » it be"
d X dy

comes

and then

for it reduces to

3 j'
2/ (Z j^ + 3 (1 + 2/=) a d s = 0,

d_^-};^ ^ d [3g(l+y')]

dx dy '

ix y = ix y ;

and the integral will be

<f' (1 + y'} = r-

If the expression does not equal zero we may write it

d rp — JI d .V — JV d y — 0,

which is a differential equation of three variables, of which two may be

independent. Acci;rding to the theory of Differential Equations, the

last equation can be integrated if

JSd X 4- 2fdy = o

can be integrated (Boole's Dif. Eqa., 4th ed., page 376). An integrating

factor always exists for the latter equation, although it cannot always

be found. The equation

+ '(ll).
',H=Kydr-[-T(^) dv

on page 48 is an equation of three variables, of which r and v are inde-

pendent of each other. If

^d p\K,dr+rQl\ av^o

is integrable, then is the former equation also integrable. It has been

riters that the integrating factor ii

dcp = 'l^ = E. ii + ('11\
r T ^ \d rA

found by some writers that the integrating factor is —
; hence,

d »
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is integrable. For instance, substituting tlie value of JTv from page 119,

it may be found that

(p^ — q>x = C log T +/ (»).

Tlie function of « may be found in some cases when the equation of

the gas is linown. (Boole's Dif. Eqs., page 49.) The integral is of little

value except when the temperature is constant.

If a substance be worked in a cycle the resultant internal work will be

zero, and the resultant internal energy will be constant ; hence the

expressions

V
d E, d M — p dv.

page 135, etc., are exact differentials.

Page 142.—The tliermodynamic function of a perfect gas between

finite limits becomes

01q>2 — ipi ^J.+Iiioff^-

Let the expansion from «i to «a be iso-

thermal along A C. Let ED he an iso-

thermal one degree lower than A 0,

A cpi G cpa adiabatics ; then

AGDE=Bhg-

Equation (36), page 55, makes this evi-

dent. Take i''on the adiabatic through

B, one degree lower than the temperature ^^^- ™'

of B, and similarly for all points between i?'and I) and draw FD ; then

'oiog-= CBFD.

Let A B\ie any arbitrary path of the fluid ; between A and B draw

consecutive adiabatics, e d and / c, etc., and make efgh = abcd, etc.,

thus determining a point g, and in a similar manner find other points as

p 0, etc., and draw E g o F; then

ABFE= A CDE + CBFD."Pa
• (pi

Page 179.—The theoretical efficiency for each of the three cases

considered is about 20 per cent. But no allowances were made for

clearance, condensation, nor for the imperfection of the indicator diagram.

In order to reach more nearly to actual conditions, assume that clearance
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reduces the efficiency 3 per cent. ; condensation, say 25 per cent. ; imper.

fection of the diagram, say, 4 per cent. Then will the practical effi-

ciency be
0.97 X 0.75 X 0.96 = 0.70 nearly

of the theoretical value ; hence the actual would be

30 X 0,70 = 14 per cent,

which has been exceeded in practice, as shown on page 221.

Page 234r.—Exbecisb 2. If -fij of the heat is abstracted by the re-

frigerator, then 1% does work, and the eiflciency, neglecting friction and

leakage, will be 30 per cent.

If 1670000 be -?„-, then will the entire heat absorbed be 1670000 ~- 0.3

= 5566666 ft. lbs. The heat removed by the refrigerator will be 250 X
18 X 778 = 3501000 ft. lbs. ; hence, if the data is correct, the total

heat would be 1670000+ 3501000 = 5,171,000; and the heat unac-

counted for would be 5566666 — 5171000 = 395666 foot-pounds, which is

about 7 per cent, of the whole. The data are inconsistent unless it be

assumed that about 7 per cent is consumed by the friction of the engine.

During a test of a De La Vergne ice-making machine at Memphis,

Tenn., from July 21st to August 10th, 1888, 1,221,172 pounds of com-

mercial ice were produced by a consumption of 180.597 pounds of

bituminous coal
;
giving an average for the 30 days of 6.76 pounds of ice

per pound of coal. If the coal cost |4 per 2000 pounds, then would the

coal bill be gV of a cent per pound of ice.

Liatent heat of vaporization of Ammonia, NHg.—Dr.
Von Strombeck determined this value at 32.45° F. and Regnault found
the same at 53.01° F. (For the latter see a paper by Professor Jacobus

in the Trans, of the Am. Soc. Mech. Eng., vol. xii.) These results fur-

nish a check to the theoretical formula (360),. page 333. The following

are the results :

At 33.45° F. the author finds by Table VI Ae = 535.18

At 32.45° F. Dr. Von Strombeck finds h^ = 534.3

Difference 0.98

or about ^ of one per cent.

At 53° F. the author finds 7ie = 532.39

At 53° F. Regnault exp. gives h^= 521 . 64

Difference 0.75

or about \ of one percent.

These results indicate that Table VI. is practically exact.
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Latent Iieat oftlie vaporization ofSulphur Dioxide, SO,.

Deg, P.
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Test of a Pclsometek bt C. G. Atwater akd Charles B. Hodges,
OF THE Class op '91, Stevens Institute, under the supervision

of the Department of Tests. The pump was taken from the ordi-

nary stock of machines on hand, and was known as No. 6. Tests

were for three hours each.

Number of the Test.

Data and KEstiLTe.
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Test of the New York Hteia Ice-Making Plant, by A. 6.

HCPPEL, H. E. GrUISWOLD, AND WiLLIAM P. MACKENZIE, FOR
Graduating Thesis, 1893, under the supervision of the Department

of Tests of Stevens Institute :

Net ice made per pound of coal in pounds 7.13

Pounds of net ice per hour per horse-power 37.8

Net ice manufactured per day (12 hours) in tons 97

Average pressure of ammonia gas at condenser in pounds per

square inch above tlie atmosphere 185.2

Average bacls pressure of ammonia gas in pounds per square

inch above the atmosphere 15.8

Average temperature of brine in freezing tanljs in degrees

Pahr 19.7

Total number of cans filled per week 4,389

Ratio of cooling surface of coils in brine tank to can surface. 7 to 10

Ratio of brine in tanks to water in cans 1 to 1 .3

Ratio of circulating water at condensers to distilled water. . .26 to 1

Pounds of water evaporated at boilers per pound of coal 8.085

Total horse-power developed by compressor engines 444

Percentage of ice lost in removing from cans 2.2

APPROXIMATE DIVISION OF STEAM IN PER CENTS. OF TOTAL AMOUNT.

Conlpressor engines 60.1

Live steam admitted directly to condensers 19.7

Steam for pumps, agitator and elevator engines 7.6

Live steam for reboiling distilled water 6.5

Steam for blowers furnishing draught at boilers 5.6

Sprinklers for removing ice from cans . . . . , 0.5

Exercises.

1. Required the specific heat of air at 500° F. absolute, the path being

p ^ 10 11 (p, pounds per square foot ; v, volume of a pound in cubic

feet). The specific heat is the heat absorbed in raising one pound one

degree.

3. If the equation of a superheated vapor he p v = E t — Cp^ (see

p. 414) ; required the heat absorbed at the constant pressure pi in

expanding from u, to Vi.

3. If the equation of the gas he p v = R t — — and of the path of

the lluid, p = mv -{-n; required the heat absorbed in expanding from

state ui = 12, pi = 4000 to state v^ = 24, pi = 5000.

4. Find the internal and the external work of expanding the gas
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V = E T — at the constant pressure jh from ^\ to Vn, and leave the^ r v'

finul result without r.

5. Find the thermodynamic function for the gas whose equation is

p V = li T ; for isothermal expansion.

6. Find the velocity of discharge of a perfect gas from an orifice,

the temperature remaining constant. Also the weight per second.

7. Write a formula for the pressure of a saturated vapor in terms

of the volume of a pound.

8. Required the difference in the elevation of two stations at which

water boils at atmospheric pressure respectively at 213° F. and 180° F.

9. A vessel containing two cubic feet of fluid, one-fourth of which

by weight is steam and the remainder water ; required the work neces-

sary to compress the vapor to water—in one case adiabiatically, and in

another isothermally.

10. A frictionless piston, in an upright cylinder, rests on a pound of

water. Heal is absorbed under a pressure of 6 atmospheres absolute

until the piston has swept over two cubic feet, then expansion is

adiabatic until the pressure is reduced to two atmospheres absolute, then

compressed isothermally until by adiiibatic compression the vapnr will

be reduced to water at the initial pressure. Required (1) the ))eat ab-

sorbed
; (3) the clearance ; (3) the entire stroke of the piston

; (4) the heat

emitted during compression
; (5) the work done in the cycle

; (6) the

efficiency of the cycle.

11. Find difference of external works in expanding a gas adiabati-

cally and isothermally from «i to 3 Vi,

13. Find heat absorbed by a liquid in raising the temperature from
40° lo 200°, if specific heat c = 1 + a T^. It c = 1 — ,i {1' - T„). If

e = I -a{T- 2\f.

13. What is the specific heat of a gas at constant temperature ?

14. Find the thermodjmamic function for air from state r,, p^ to

rj, Pj, independently of v.

15. A single-acting engine (vertical) has one pound of fluid (water) at

the lower end, on which rests a frictionless piston. By the absorption

of heat the piston is raised against an absolute pressure of 9 atmospheres
until the volume swept over by the piston is twice the volume of the

dry saturated vapor at that pressure, then it expands adiabatically as u

perfect gas until the pressure is reduced to 3 atmospheres, then re-

frigerated at constant volume until the pressure is reduced to 2 atmos-
pheres, then refrigerated at constant pressure until the volume is such
that when compressed adiabatically it will be reduced to a liquid at

7 atmospheres, and its temperature then raised under a pressure of

9 atmospheres to the initial state.
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Find:

1. Indicator diagram.

3. Volume at the beginning of adiabatic expansion.

3. Degrees of superlieatiug.

4. Volume swept over by the piston.

5. Ratio of expansion.

6. Temperature at end of expansion.

7. Temperature at beginning of back strolie.

8. Degrees of superheating on back stroke.

9. Volume at end of refrigeration, so that when compressed adia-

batically it will all be reduced to liquid at 7 atmospheres.

10. Temperature at end of back stroke when fluid is reduced to

water.

11. Clearance.

12. Work done in the cycle.

13. Mean effective pressure.

14. Mean forward pressure.

15. Heat absorbed in the cycle.

16. Heat emitted.

17. Pounds of coal necessary to supply the heat for 100 cycles, if

each pound contains 14,500 heat units.

18. Pounds of water necessary to produce the refrigeration for 100

cycles—temperature ranging from 60° to 80°.

19. If length of stroke equals diameter of cylinder, find diameter of

cylinder

20. The ijouuds of water necessary to develop a horse power if piston

speed be 200 feet per minute.

21. The pounds of coal necessary to produce the horse power if a

pound of coal has 1200 heat units and the efficiency of the furnace be

0.70.

16. A variety of exercises may be made similar to the preceding. "We

suggest the following : Let the volume of the vapor be the fraction of a

pound. Let the expansion be entirely with saturated vapor and adia-

batic. Let it be the curve of saturation, or a straight line entirely

within the curve of saturation, or entirely without (superheated) ;
or a

line crossing the curve of saturation. Let the indicator card be entirely

within the curve of saturation and bounded by any assumed lines.

17. A pound of water at 60° F. is within a closed vessel containing

two cubic feet ; required the heat absorbed by the fluid in raising its

temperature 335° F.

From pp. 146 and 147 :

d E= CdT + xdH. '-dT + H.dx.
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Let

V = volume of mixture of liquid and vapor = 3 cubic feet.

i)i = specific volume of 1 pound vapor (see table).

«i = specific volume of liquid = 0.017 nearly for water.

Tlien,

dp

= (» — j)i)
Vi— «i a — b r

v,-i>,= ^'. (Eq. (84)) m--=a-hT,

dx =
,

-dVi^drii— ,, , ,_

Reduce and find,

£^=C(ra-ri)+ (j)-j)0 log —

fd p\ (d p\'

/ ^
, . I dr

a{v — Ti) I

18. If gas flows from one vessel into another througli a short pipe,

what must be the cross-section of the pipe that q pounds will flow in t

seconds at constant temperature ?

Let § and §' be the volumes of the vessels, k the section, P' and p'

the initial pressure, P' > p' , Pand^ the pressures at time t, ju the co-

eflicient of velocity, Fthe velocity at the time i, and w the weight per

cubic foot.

Then,
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These give

p«

t--']-t^^:'I
which integrated between o and t and o and g will give an equation
from which k may be found.

19. Find the path of a fluid considered as a perfect gas when the heat

absorbed xs n times the work done.

Make npdv —d Min equations in p. 50, and find

r — » (r - 1)

p V = B (a, constant).

Discuss making m = 1, 3, 5-9, oo . What value of n makes the path

a right line?

Specillc Heat of Aqua Ammonia.—The mean of six deter-

minations by Ludeking aud Starr gives 0.886 (Am. Jour. Arts and Sc).

The value found by Hans von Strombuck was 1.23876 (page 337),

which is nearly 50 per cent, larger than the above value. The value

found by theory is nearly the mean of the two. The above experi-

menters inform the author that they are not aware of any error in

their own work, neither do either know of an error in the work of

the other. This leaves the correct value in doubt, and one may con-

sider it as unity until determined by further experiments.
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TABLE II.

REDUCTION TABLES.

Conversion op English and Metric Units.

1 Foot = 0.3048 metre.

1 Litre (vol. of 1 kilog. water) = 0.2303 gal.

1 Gallon (vol. of 10 lbs. water) — 4.541 litres.

1 Kilogramme per sq. mm. = 1433.38 lbs. per sq. in.

1 Lb. per sq. inch = 703.0958 kilog. per sq. metre.

1 Grain = 0.0648 gram.

1 Foot-pound = 0. 1383 metre-kilog.

1 Atmosphere = 14.7 lbs. per sq. in. = 10334 kilog. per sq. metre =
39.933 inches, or 760 mm. of mercury = 33.9 ft., or lOi metres of

water.

1 Pound av. = 0.4536 kilog.

1 Calorie (kilog. water raised 1° C.) = 434 metre-kilog. = 3.9683B. T.U.
1 Eng. heat unit (lb. water raised 1° F.) = 778 ft.-lbs. = 0.354 calorie.

French Measures in Equivalent English Measures.

measures op length.

1 Millimetre = 0.03937079 inch, or about jjV inch.

1 Centimetre = 0.3937079 inch, or about 0.4 inch.

1 Decimetre = 3.937079 inches.

1 Metre = 39.37079 inches = 3.38 feet nearly.

1 Kilometre = 39370.79 inches.

MEASURES OP AREA.

1 sq. decimetre = 15.5006 sq. inches.

1 sq. metre = 1550.06 sq. inches, or 10.764 sq. ft.

MEASURES OP WEIGHT.
^

1 Gramme = 15.433349 grains.

1 Kilogramme — 15433.349 grains, 3.3046 lbs., or 3.3 lbs. nearly,

TWO UNITS INVOLVED.

1 Gramme per sq. centimetre — 2.048098 lbs. per sq. foot.

1 Kilogramme per sq. metre = 0.3048098 " "

1 Kilogramme per sq. millimetre = 3.048098 " "

1 Kilogramme metre = 7.33314 ft.-lbs.

= 7i ft.-lbs. nearly.

1 force de cheval — 75 kilogrammetres per second, or 5431 foot-

pounds per second nearlj'. 1 horse-power — 550 foot pounds per second.



462 TABLES.

TABLE in.

Liquids axd Solids.

W:i(er, pure (at 39M F.),
" sea, ordinary

Alcohol, pure
" proof spirit ,

Ether
Mercury
Naphtha
Oil; linseed
" olive
" whale
' of turpentine

Petroleum
Ice
Brass
Bronze
Copper
G.ild

Iron, cast

Iron, wrought
Leail

Platinum
Silver

Steel

Tin
Zinc.

Weight Of a cu-
bic foot of the

subetauce.

62.42.5

04. O.J

49..38
.57. IS

44.70
848.7.5

.53.04

58.68

57.12

57.63
54.31

54.81
57.5

487 to 533
524

537 to 556
1186 to 1324

444
480
713

1311 to 1373
65.5

490
463
486

Specific Grav-
ity.

S. G.
1.000
1.026
0.791

0.916
0.716

13.596
0.848

0.940
0.915
0.923
0.870

0.878
0.93

7.8 to 8.5

8.4

8.6 to 8.9

19 to 19.6

7.11

7.69

11.4

31 to 22
10.5

7.85

7.4

7.3

Expansion,
—LiquidB

per unit of
volume, So
lide per unit
of length,
from 32" to
212» F.

0.04775
0.05
0.1113

0.018153

5

0.08

0.08

d.'oY

.00216

.00181

.00184

.0015

.0011

.0013

.0029

.0009

.003

.0013

.0023

.00394

Specific
Heat.

C.

1.000

0.622

0..5i7'

0.033
0.434

.434

.504

.0951

.0298

.ii38

.0293

.0814

.0.557

.6.514

.0937
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TABLE lY.
Propebties op Gases Considekbd Pekpect.

Name of the Gas.

Atmospheric Air.
Oxygen
Nitrogen

,

Hydrogen
Chlorine
Bromine

Nitric Oxide
Carbonic Oxide. . .

.

Hydrocliloric Acid.

Carbonic Acid
Nitric Acid
Steam

Sulphuric Acid. . .

.

Hydro-sulphuric Acid
Carbonic Di-sulphide.

Carburetted Hydrogen
Chloroform
Olefiant Gas

Ammonia Gas
Benzine
Oil of Turpentine.

"Wood Spirit

Alcohol
Ether

Ethyl Sulphide.
Ethyl Chloride.

.

Ethyl Bromide.

.

Dutch Liquid. .

.

Aceton
Butyric Acid .

.

Tri chloride of Silicon

Tri-chloride of Phos-

)

phorus )"

Tri-chloride of Arsenic
Tetra-chloride of Ti-

tanium

Tetra-chloride of Tin . 8n CI.

II.

Chemical
Compo-
Bltion.

0,
N,.

H.
CU
Brj

NO
CO
HCl
CO,
N, O
H, O

SO2
as
CSj

CH,
H CI3

CsH.

NHa
C, He
ClO His

CH4 O
CjHaO
C4 HlO O
C4 Hio S
Ca H5 CI
Cj Hs Br

C, H. CU
CsHaO
C4 He O2

SiCls

PCI3

ils CI3

TiCl.

III.

Density.

1

1.1056
0.9713

0.0693
2.4503
5.4772

1.0384
0.9673
1.2596

1.5201
1.5341
0.6219

3.2113
1.1747
2.6258

0.5527
4.1344
0.9673

0.5894
2.6942
4.6978

1.1055
1.5890

2.5573

3.1101
3.2369

3.7058

3.4174
3.0036
3.0400

5.8833

4.7464

6.3667

6.6402

8.9654

IV.
i

V.
Specific Heat at
Constant Pressure

VI
I

VII,
Specific Heat at
C nstantVoliin^e

compared
Weight

for
Weight
with
Water.

0.2375
0.21751
0.24380

3.40900
13099

0.05553

0.2317
0.2450
0.1852

0.2169
0.2363
0.4805

0.1544
0.3433
0.1569

0.5939

0.1567
0.4040

0.5084
0.3754
0.5061

0.4580
0.4534
0.4797

0.4008
0.3738
0.1896

0.3293

0.4125
0.4008

0.1322

0.1347

0.1122

0.1390

0.0939

com-
pared
Volume
for Vol-

com-
pared
Weight

for

Weight
umewith ^.^^

^'^-
I

Wafer.

1 10.1689

1.013 0.1551

0.997 0.1727

0.993
1.248
1.380

1.013

0.998
0.983

1.39

1.45

1.36

1.44
1.30

1.74

1.38

3.73

1.75

1.26

4.26

10.01

2.13

3.03

5.16

5.25

2.57

3.96

3.30

3.48
5.13

3.27

3.69

3.96

3.61

3.54

2.411

0.0938
0.0439

0.1653
0.1736
0.1304

0.173

0.181
0.370

0.133

0.184
0.131

0.468
0.140

0.359

0.393
0.350
0.491

0.395
0.410
0.453

0.379
0.343
0.171

0.309

0.378
0.378

0.120

0.130

0.101

0.119

0.086

com-
pared

Volume
for

Volume
vith
Air.

1

1.018
0.996

0.990
1.350
1.395

1 018
0.997
0.975

1.55
1.64
1.36

1.63
1.39
2.04

1.54
3.43
3.06

1.37
5 60
13.71

3.60
3.87
6.87

6.99
3 21

3.76

4.34
4.50
6.83

4 21

3.39

3.77

4.67

4.59
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TABLE Y.

Saturated Steam.

p. Pressure per square inch.

T, Temperature degrees F. , Eq. (81), page 97.

!), Volume of a pound of saturated steam in cubic feet, equation

(84), in wliicii p is pounds per square foot.

w, Weiffht of a cubic foot of steam = — •

li, Tlie heat in one pound of liquid above 32° P. in thermal units,

equation (90), page 111. The values, however, are the direct results of

Eegnault's experiments.

he, The latent heat of evaporation in thermal units, equation (10),

page 409.

h, The total heat of steam above 32° F. being equal to A + he.

SATURATED STEAM.

p-



SATURATED STEAM.

SATURATED spe.tiU— Continued.
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INDEX.

AlJSoInte scale 9, 40, 401
" temperature 9, 116, 388
" zero 8, 10,116,401,419

Absolution system 353

Actual heat energy 4, 23

Adiabatic compression 185
" definition of 16
** equations for ammonia gas.. 334
" ** " imperfecfgases 148
" " " perfect " 61
' " " saturated steam,

153, 177, 192, 426
" *' ^* saturated vapor 184
" " " superlieated steam,

151

" expansion of saturated steam,

175, 177, 180, 192, 206
" lines 16

Air, a perfect gas 9

" an imperfect gas 13, 395

" compression of 404
*' compressor 63, 301

" elasticity of 74, 437

" engine 16, 169

" expansion of 8, 114

" friction of, in pipes 306

" required for combustion 262

" specific heat of 53, 383

" thermometer 7,116,395

Ammonia 325-356

engines 274

gas, density of 327

" equations of 330

" specific heat of 326, 463

" volume of pound. . . .327, 333

latent heat of 330
n It

•' evaporation., .328,

338, 348

liquid, density of 326

" specific heat of. 335, 467

" volume of pound. . . 333

pressure of .... 325

PAGS
Ammonia, saturated, table of 466

" some properties of 325-333
" superheated 344

tests of 348, 450
'

'

vapor, adiabatics of 334
" " isothermale of 333
" " saturated, specific

heat, 3.36, 456
" " specific volume 333

Ash 363

Atmosphere, pressure of 7
" height of homogeneous. . 76

Atomic weight 359

Binary vapor engine 278

Boiling point 91,104,435

Brine 325

British thermal unit (B. T. U.) 3,24

Caloric 3

Carbonic acid gas, equation of 13

Camot's cycle 17, 20, 36

" function '42

Centigrade scale 7

Change of state 88

Chemical equivalent 359

Chimney, height of 366

Circulating fluid 324

Clearance 197

Coal, heat of combustion of 221

" perhorse-powerperhour.181, 183,221

Combustion 358

' air required for 263.364

" heat of 181,220,360,4.34

Compound engine 210,222

Compressor, air 301

work of ; 3.37

Condensation : 212

Condensed steam due to expansion 178

Condenser 19, 154

" work of 3.37

Critical temperature 104, 418

Curve of saturation 100, 104
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'

' non-reversible 20

" reversible 20

Diagram, ideal of steam 171
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DifEereutial, exact 134, 146, 446

Disgregation, heat of 410, 413

Draft, forced 365

Duty of injector 285

" "• pump 18;B

" " refrigerating plant 340

Efficiency, definition 159

" effect of superheating on , . iro

" " " ppecific heat and

latent heat of evapora-

tion on 193,275
**

ideal ei9
" maximum, formula for 27G
" of boiler ill, 221
*' " comprc^'^Dr 3u5
" *' elementary enij;ine. . . ,33, IM
" *' engine.150, 193, 221, 2:2s, 239,

275
*' " injector 2.s4

*' •' naphtha engine 270

" plant.. .159. 183, 220, 287, 447
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" theoretical method of im-
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" expended, mechanical 167
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" measurement of 1

Engine, air 109,225,220,296
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" Binary 278
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*' Ericsson's hot-air 234
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" gas 247. 24S, 253

" heat 17, 159. 169

*' multiple expansion . .... 2ln

*' naphtha -2(ili, 270, 271

*' perfect elementary. 18, 19, 159, 101
*' steam. 1H9-184
"

Stirling^^ hot-air 22^,234

vapor 184, 424, 427
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Entropy 136-143

Equation, general, of fluids. . .48, 120, 131,

137, 426

of gas 10, 13, 330
' represented geometrically, 428,

442

Erics.'^nnV hot-air engine 234r-246

Escaping gas, weight of 83

Ether engine 424

" lumiiiiferous 369-387

" specific heat of 424

" temperature of 379
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" latent heat of.... 94, 111, 400,

412
" " " apparent,andreal 412
" total heat of 110
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Evaporative power Ill
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206, 253, 297
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419
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Fire, temperature of 3i-5

Flow of iiii>v> M
" steam 449

Fluid, circulating ;324

" imperfect 12. S5-158

" perfect 8, 40, 49-S4

Forced draught 365
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Freezing point of water 88, 91, 405
" " "alcohol 405

Friction of air in pipes 806

Fuels, heat of combustion of 484

Function, Camot's 43
'

' thernodynamic 136, 447'

Fundamental equations 48

Furnace 19, 256

Fusion, latent heat of B8

Gas analysis 861, 300
" boiling points of 435
" engine 247,437
" equationof 10
" flow of 81
" free expansion of 114
" heat of combustion of 261
" imperfect 12, 395
" perfect 8,40,49-84

Gases, table of properties of 463

General formulas 48, 126, 131, 443

Geometrical representation of formula?,

438, 442

Heat absorbed 5, 22, 138, 145, 193
" " general equation for... 49, 85
" " path arbitrary 57,85
" " pressure and volume con-

stant 107
" " pressure constant .56, 120, 131
" '" temperature constant . 54,86,

131
" ** volume constant.. 55, 119, 131

" energy 1, 2
" " actual 4
" engine 17,159,317
*' expended per poimd steam.. 173, 176,

177
" " " cubic foot steam. . . 176

" in liquid and vapor combined 143

" internal 4, 410
" latent 5, 94, 328, 411

" " of evaporation 94,311,410
" " " expaiision 5,38,86,127
" " " fusion 88

" measurement of 2
*' mechanical equivalent of 24, 77
*' nature of 1

'
' of combustion ..181, 220, 261 , 360, 434

" " disgregation 410

" "thesun 369

" total of steam 110, 407

" (I " several vapors 407

" transmitted through plates 437_

" velocity 2

PASS
Heights, measurement of 108

Horse-power per pound of steam 180

Hot-air engine, Ericsson's 334-246

Stirling's 233-234

Ice formed per hour per horse-power. . 334
" latent heat of fusion of 89
*' making plant 453
" melting point of 91

" specific gravity of 436

Imperfect fluids 12, 85-168
" gas 12, .395

Indicator diagram 20
" '' from compressor 350

Injector 279
" compared with pump 289
" theoryof 280

Internal work .4, 33, 85, 86, 119, 128, 390, 419

Intrinsic energy 120

Inversion, temperature of 186, 425

Isengeric lines 397

Isentropic " 16,397

Isobar " 897

Isodiabatic " 157

Isodynamic " 397

Isometric " 397

Isopiestic " 397

Isothermal expansion . 14, 54, 172, 805, 298,

398

lines 14, 103, 333, 397

Joule's equivalent 24

Latent heat. 5, 94, 328, 411

" " apparent^nd real 413
" " of evaporation. 94, 111, 406, 412
" " " expansion 5, 38, 86, 127

" *' "fusion 88

Law, first of thermodynamics ..." 27
" of Gay-Lussac 12
" " ^lariotte 12

" second of thermodynamics . . .82, 184,

389-393. 397

Light, mechanical equivalent of 436

" is transmitted 2,369

Lines, adiabatic 16

" isentropic 16

" isothermal 14

" thermal 13,397

Liquefaction, effect of pressure on 419
" of steam in cylinder 214

Liquefied gases, density of 436

Liquid and its vapor combined 143
" " solids, table of properties

of 462

" isothermal of a 103
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liOgarithmic tables 458

Lnminous ether. 369, 387
" " rarity of 375

Marine engines 316-219

Mariotte's law 12

Matter, incombustible 263

Mechanical equivalent of heat 24, 77
" mixtures 108

Melting point 88, 91, 92, 405

Miscellaneous 216

Multiple expansions 210

Naphtha engine 266

Otto gas engine 250

Oxygen, curve of saturation of 435

Path of fluid 14, 57, 85

Perfect gas 8,40,49-84

Practical considerations 195, 208

Pressure and temperature constant 97
^' " volume constant 107

" constant 29

equivalent to heat expended. 175

" mean effective 175,178,198
" mean total forward 175

" of steam of marine engines. 219

Priming 420

Pulsometer 292

Quadruple expansion 210, 220

Ratio of expansion 154, 172, 197, 245
" " " with clearance 197

Eeduction table 461

Kefrigerating machine 318, 450
" system, vapor saturated. 337

Refrigerator 19, 161, 223

Regenerator 166,223
Relative specific heats 53

Reversible engine 397

Saturated steam, adiabatic for... 153, 184
" " densityof 104
" " table of 464
" " formulie for 97
" " volume of 97
" vapor, specific heat of. .146, 423

Satiu-ation, curve of 100, 104, 435

Scale, absolute 9, 40, 401
" Thomson's 42, 398, 420

Solids, specific heat of, tables 108, 462

Sound, velocity of 76, 393

Source 19

Space, heat of 369

Specific gravity of ice 436
" heat. ... 29, 49, 63, 77, 117, 120, 407
" " apparent 120

" " at change of state 117

FAQE

Specific heat at constant pressure. .29, 122,

264

" " " " volume....31, 53,

264

constant 49

difference of 49, 122, 440

dynamic 120, 145

expression for..30, 31, 117-131
'

mean, expression for 126

of air 53, 382

" ammonia gas .326

liquid.... 837, 466

" any substance 117

" ether 424

*' luminiferous ether 382

*' saturated vapor . . .145, 423

" solids 108

" water 90, 126, 264

ratio of (7) ... . 64, 75, 264, 404

" *'" methods for de-

termining 79

real 120

relative 53

volume 10, 9°, 333
" of air 10

" " ammonia gas 333

State, change of 88

Steam, condensed, due to expansion. . 178

" efficiency of. ..175-178, 382, 193, 200

" engine 169, 213

" gas 113

" injector 279

" jacket 195

" liquefaction of 148

*' per hour per horse-power.. 180, 216

" practice 437

" pump 181

" relation of pressure to boiling

point of 94

" saturated 96
" " density of 104
" " expansionof .177, 184, 426
" " formulae for, 97, 411-4)4,

417
" " specific heat of... 146, 420

table of 464
" " total heat of. ...110,407
" ship records 218. 436
" specific heat of 463
" superheated 113, 417, 418
" " expansionof 172
" to find V for 150
" turbine 808
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steam, volume of pouna of 98

Stellar heat 879

Stirling's hot-air engine 22^-234

Sublimation 106

Sulphur dioxide 357, 436, 449, 468

Sun, heat of 369

Superheated steam 113

Superheating 195, 344, 421

Tables, gases, properties of 463
" logarithmic 458

" liquids and solid properties of 468
" reduction 461

" saturated ammonia 466
" " steam 464

" sulphur dioxide 468

Temperature 5

" absolute 9,116,398
" critical 104,418
" final, how to find 61, 298
" of fire 365
" " inversion 186, 425
" "space 436
'
' to change from F. to C . . . . 406

Terminal pressures 175

Test of absorption plant 355

" " naphtha engine 267

" " Otto gas-engine 259
'' ** pulsometer 452

" " refrigerating plant. .348, 352, 448

450
" " steamships 218-222

Thermal capacity 28

lines 13, 397

" unit 3

Thermodynamic function 136, 447
" surface 10

Thermodynamics, first law 27
" principles of....161, 275
" second law..32, 389-393,

397

Thermometer. 6, 7
" air 7
" " zero of 8

Triple expansion engines 210, 223

Turbine, steam 308

Unit of evaporative power IH
Vacuum, extent of 375

Vapor 9S

" combined with liquid 148

" densities compared with air 412

" engines 184, 424, 427
" " Binaiy 278
" ofammonia 333
" relation between pressure and
" temperature of 97
" specific heat of saturated 145, 493

" total heat of 94, 407

" volume of 98
" weightof 99

Velocity of gas 82
" "gravitation 878

" " heat 3

" light 2, 369

" " sound 75, 878

" " steam through pipe 195
" " water " " 281
" " " from orifice 283
" " wave 71-75

Virtual pressure 85

Volume of vapor 98

" specific 10

Water consumed per I. H. P 182

" expansion of 102

" maximum density of 3
" volume of one pound of 98

" weight of .....102,281

Watt's law 436

Wave, velocity of 71-75

Wiredrawing 195

Work 3

" done 19,390
" "by compression 193

" " " injector 284

" " per cu. ft. steam 173

" " "pound " ....175, 177, 180

" entire, due to expansion 85, 175

" extemal.23, 55, 56, 85, 1 18, 160, 390, 419
" " during evaporation 410

" " increment of, equal to

increment of heat ab-

sorbed 403

" internal. .4, 28, 85, 86, 119, ir3, 128,

890, 419, 488

Zero, absolute 8, 10, 116, 401, 409
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^ i6mo, mor. t 25

Wilson's (H. N.) Topographic Surveying Svo, 3 so

Wilson's (W. L.) Elements of Railroad Track and Construction i2mo, 2 00

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway Bridges . . Svo, 2 00

Burr and Falk's Design and Construction of Metallic Bridges Svo, s 00

Influence Lines for Bridge and Roof Computations Svo, 3 00

Du Bois's Mechanics of Engineering. Vol. II Snrall 4to, 10 00

Foster's Treatise on Wooden Trestle Bridges 4to, 5 00

Fowler's Ordinary Foundations Svo, 3 so

French and Ives's Stereotomy Svo, 2 £0

Greene's Arches in Wood, Iron, and Stone Svo, 2 so

Bridge Trusses Svo, 2 so

Roof Trusses Svo, i 25

Grimm's Secondary Stresses In Bridge Trusses Svo, 2 ^o

Heller's Stresses in Structures and the Accompanying Deformations Svo, 3 00

Howe's Design of Simple Roof-trusses in Wood and Steel Svo, 2 00

Symmetrical Masonry Arches Svo, 2 so

Treatise on Arches Svo, 4 00
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Johnson Bryati, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, lo oo
Merrlman and Jacoby's Text-book on Roofs and Bridges:

Part I. Stresses in Simple Trusses ; 3vo, 2 so
Part II. Graphic Statics 8vo, 2 50
Part III. Bridge Design 8vo, 2 50
Part IV. Higher Structures 8vo, 2 so

Morison's Memphis Bridge Oblong 4to, 10 00

Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches.

8vo, 2 00
Waddell's De Pontibus, Pocket-book for Bridge Engineers i6mo, mor, 3 00
* Specifications for Steel Bridges i2mo, 50
Waddell and Harrington's Bridge Engineering. (In Preparation.)

Wright's Designing of Draw-spans. Two parts in one volume 8vo, 3 50

HYDRAULICS.

Barnes's Ice Formation 8vo, 3 00

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from
an Orifice. (Trautwine) 8vo, 2 00

Bovey's Treatise on Hydraulics 8vo, 5 00

Church's Diagrams of Mean Velocity of Water in Open Channels.

Oblong 4to, paper, i 50
Hydraulic Motors 8vo, 2 00
Mechanics of Engineering 8vo, 6 00

Cofiin's Graphical Solution of Hydrauhc Problems i6mo, mor. 2 50
Flather's Dynamometers, and the Measurement of Power i2mo, 3 00
Folwell's Water-supply Engineering 8vo, 4 00
Frizell's Water-power 8vo, 5 00
Fuertes's Water and Public Health i2mo, i 50

Water-filtration Works i2mo, 2 50
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine^ 8vo» 4 00

Hazen's Clean Water and How to Get It Lar^^e i3mo. t 50
Filtration of Public Water-supplies Svo, 3 00

Hazlehurst*s Towers and Tanks for Water-works 8vo, 2 50
Herschers iiS Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits. 8vo, 2 00
Hoyt and Grover's River Discharge.. 8vo, 2 00
Hubbard and Kiersted's Water-works Management and Maintenance Svo, 4 00
* Lyndon's Development and Electrical Distribution of Water Power. . . .Svo, 3 00
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

Svo, 4 00
Merriman*s Treatise on Hydraulics 8vo, 5 00
* Michie's Elements of Analytical Mechanics 8vo, 4 00
* MoHtor's Hydraulics of Rivers, Weirs and Sluices gvo, 2 00
* Richards's Laboratory Notes on Industrial Water Analysis Svo, o 50
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply. Second Edition, enlarged Large Svo, 6 00
* Thomas and Watt's Improvement of Rivers 4to, 6 00
Turneaure and Russell's Public Water-supplies Svo, 5 00
Wegmann's Design and Construction of Dams. 5th Ed., enlarged 4to, 6 00

Water-supply of the City of New York from 1658 to 1895 4to, 10 00
Whipple's Value of Pure Water Large i2mo, i 00
Williams and Hazen's Hydraulic Tables Svo, i 50
Wilson's Irrigation Engineering Small Svo, 4 00
Wolff's Windmill is a Prime Mover. Svo, 300
Wood's Elements of Analytical Mechanics Svo, 3 00

Turbines Svo, 2 50
8



MATERIALS OF ENGINEERING.

Baker's Roads and Pavements Svo, 5 00

Treatise on Masonry Construction 8vOj 5 00

Birkmire's Architectural Iron and Steel 8vo, 3 50
Compound Riveted Girders as Applied in Buildings 8vo, 2 00

Black's. United States Public Works Oblong 4to, s 00

Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)
* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering Svo, 7 50
Byrne's Highway Construction 8vo, s 00

Inspection of the Materials and Workmanship Employed in Construction.

i6mo, 3 00

Church's Mechanics of Engineering 8vo, 6 00

Du Bois's Mechanics of Engineering.

Vol. I. Kinematics, Statics, Kinetics Small 4to, 7 50

Vol. II. The Stresses in Framed Structures, Strength of Materials and
Theory of Flexures Small 4to, 10 00

*Eckel's Cements, Limes, and Plasters , 8vo, 6 00

Stone and Clay Products used in Engineering. (In Preparation.)

Fowler's Ordinary Foundations 8vo, 3 50

Graves's Forest Mensuration 8vo, 4 00

Green's Principles of American Forestry i2mo, i 50
* Greene's Structural Mechanics 8vo, 2 50

Holly and Ladd's Analysis of Mixed Paints, Color Pigments and Varnishes

Large ramo, 2 50

Johnson's (C. M.) Chemical Analysis of Special Steels. (In Preparation.)

Johnson's (J. B.) Materials of Construction Large 8vo, 6 00

Keep's Cast Iron 8vo, 2 50

Kidder's Architects and Builders' Pocket-book i6mo, 5 00

Lanza's Applied Mechanics 8vo, 7 5o

Maire's Modern Pigments and their Vehicles i2rao, 2 00

Martens's Handbook on Testing Materials. (Henning) 2 vols 8vo, 7 So

Maurer's Technical Mechanics 8vo, 4 00

Merrill's Stones for Building and Decoration 8vo, 5 00

Merriman's Mechanics of Materials .Bvo, s 00

* Strength of Materials lamo, i 00

Metcalf's Steel. A Manual for Steel-users izmo, -^ 00

Morrison's Highway Engineering 8vo, 2 50

Patton's Practical Treatise on Foundations 8vo, 5 00

Rice's Concrete Block Manufacture 8vo, 2 Oq

Richardson's Modern Asphalt Pavements 8vo, 3 00

Richey's Handbook for Superintendents of Construction i6mo, mor. 4 00

* Ries's Clays: Their Occurrence, Properties, and Uses 8vo, 5 00

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 00

*Schwarz'sLongleafPine in Virgin Forest i^mo, i 25

Snow's Principal Species of Wood 8™' 3 5o

. ._ , !• r« ™^«* I2mo, 2 00
Soalding's Hydraulic Cement

Text-book on Roads and Pavements .^. ........... i2mo, 2 00

Taylor and Thompson's Treatise on Concrete. Plam and Reinforced 8vo, s 00

Thurston's Materials of Engineering. In Three Parts.
.

8vo, 8 00

Part I. Non-metallic Materials of Engineering and Metallurgy 8vo, 2 00

Part II Iron and Steel
*™' 3 So

Partm A Treatise on Brasses. Bronzes, and Other Alloys and their

„ .. ^ Bvo, 250
Constituents

Tillson's Street Pavements and Paving Materials ........
.
8vo, 4 00

Tumeauie and Mauler's Principles of Reinforced Concrete Constmcbon.. .8vo, 3 00

Waterbury's Cement Laboratory Manual i^mo, i 00
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Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on

the Preservation of Timber 8vo, ^ oo

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and

Steel 8vo, 4 00

RAILWAY ENGINEERING.

Andrews's Handbook for Street Railway Engineers = 3x5 inches, mor. i 25

Berg's Buildings and Structures of American Railroads 4to, 5 00

Brooks's Handbook of Street Railroad Location i6rao, mor, i 50

Butt's Civil Engineer's Field-book i6mo, mor. 2 50

Crandall's Railway and Other Earthwork Tables 8vo, i 50

Transition Curve i6mo, mor. i 50

* Crockett's Methods for Earthwork Computations 8vo, i 50

Dawson's "Engineering" and Electric Traction Pocket-book i6mOr mor. 5 00

Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 00

Fisher's Table of Cubic Yards Cardboard, 25

Godwin's Railroad Engineers' Field-book and Explorers' Guide. . . i6mo, mor. 2 50

Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-
bankments 8vo, I 00

Ives and Hilts'c Problems in Surveying, Railroad Surveying and Geodesy
i6nio, mor. i 50

Molitor and Beard's Manual for Resident Engineers i6mo, i 00

Nagle's Field Manual for Railroad Engineers i6mo, mor. 3 00

Philbrick's Field Manual for Engineers. , i6mo, mor. 3 00

Raymond's Railroad Engineering. 3 volumes.

Vol. I. Railroad Field Geometry. (In Preparation.)

Vol. II. Elements of Railroad Engineering 8vo, 3 50
Vol. III. Railroad Engineer's Field Book. (In Preparation.)

Searles's Field Engineering i6mo, mor. 3 00

Railroad Spiral i6mo, mor. i 50

Taylor's Prismoidal Formulae and Earthwork 8vo, 1 50
*Trautwine's Field Practice of Laying Out Circular Curves for Railroads.

i2nio. mor. 2 50
* Method of Calculating the Cubic Contents of Excavations and Embank-

ments by the Aid of Diagrams 8vo, 2 00

Webb's Economics of Railroad Construction Large i2ino, 2 30
Railroad Construction i6nio, mor. 5 00

Wellington's Economic Theory of the Location of Railways Small 8vo, 5 00

DRAWING.

Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 00
* " " *' Abridged Ed 8vo, i 50
CooUdge's Manual of Drawing 8vo, paper, i 00

Coolidge and Freeman's Elements of General Drafting for Mtchanical Engi-

neers Oblong 4to, 2 50
Durley's Kinematics of Machines '. .8vo, 4 00

Emch's Introduction to Projective Geometry and its Applications 8vo, 2 50
Hill's Text-book on Shades and Shadows, and Perspective 8vo, 2 00

Jamison's Advanced Mechanical Drawing 8vo, 2 00

Elements of Mechanical Drawing Svo

,

2 50
Jones's Machine Design

:

Part I. Kinematics of Machinery Svo, i 50
Part 11. Form, Strength, and Proportions of Parts Svo, 3 00

MacCord's Elements of Descriptive Geometry Svo, 3 oc
Kinematics ; or. Practical Mechanism Svo, 5 00
Mechanical Drawing 4to, 4 00
Velocity Diagrams. ... Svo, i 50
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Johnson's Treatise on the Integral Calculus Large i2mo. 3 00
Treatise on Ordinary and Partial Differential Equations. . Large x2mo, 3 50

KarapetoS's Engineering Applications of Higher Mathematics. (In Pre-

paration.)

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory)..i2mo, 2 00
*" Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 00
Trigonometry and Tables published separately Each, 2 00

* Ludlow's Logarithmic and Trigonometric Tables 8vo, i 00
Macfarlane's Vector Analysis and Quaternions 8vo, i 00
McMahon's Hyperbolic Functions Svo, i 00
Manning's Irrational Numbers and their Representation by Sequences and

Series i2mo, i 23
Mathematical Monographs. Edited by Mansfield Merriman and Robert

S. Woodward Octavo, each 1 00
No. 1. History of Modern Mathematics, by David Eugene Smith.

No. 2. Synthetic Projective Geometry, by George Bruce Halsted.

No. 3. Determinants, by Laenas Gifford "Weld. No. 4. Hyper-
bolic Functions, by James McMahon. IVo. 3. Harmonic Func-
tions, by WilUam E. Byerly. Wo. 6. Grassmann's Space Analysis,

by Edward W. Hyde. No. 7. Probability and Theory of Errors,

by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,

by Alexander Macfarlane. No. 9. Differential Equations, by
WilUam Woolsey Johnson. No. 10. The Solution of Equations,

by Mansfield Merriman. No. 11. Functions of a Complex Variable,

by Thomas S. Fiske.

"Maurer's Technical Mechanics 8vo., 4 00

Merriman's Method of Least Squares 8vo, 2 00

Solution of Equations 8vo, i 00

;Ricc and Johnson's Differential and Integral Calculus. 2 vols, in one.
Large i2mo, i 50

Elementary Treatise on the Differential Calculus Large i2mo, 3 00

"Smith's History of Modern Mathematics 8vo, i 00

* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One

Variable 8vo, 2 00
* Waterbury's Vest Pocket Hand-Book of Mathematics for Engineers.

2ffXsf inches, mor. 1 00

Weld's Determinations 8vo, i co

Wood's Elements of Co-ordinate Geometry. 8vo, z 00

Woodward's Probability and Theory of Errors 8vo. i oo

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING. STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice i2mo, 1 50

Baldwin's Steam Heating for Buildings i2mo, 2 50

Bair's Kinematics of Machinery 8vo, 2 50

* Bartlett's Mechanical Drawing 8vo, 3 00

* " " " Abridged Ed 8vo, i 50

Benjamin's Wrinkles and Recipes i2mo, 2 00

* Burr's Ancient and Modern Engineering and the Isthmian Canal 8vo, 3 50

Carpenter's Experimental Engineering 8vo, 6 00

Heating and Ventilating Buildings 8vo, 4 00

Clerk's Gas and Oil Engine Large i2mo, 4 00

Compton's First Lessons in Metal Working i2mo, i 50

Comoton and De Groodt's Speed Lathe i2mo

,

i 50

CooUdge's Manual of Drawing 8vo, paper, i 00

Coolifdge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 so
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3alkowski*s Physiological and Pathological Chemistry. (Orndorff) 8vOr 2 50
* Satterlee's Outlines of Human Embryology i2mo, 1 25
Smith's Lecture Notes on Chemistry for Dental Students 8vo, 2 50

Steel's Treatise on the Diseases of the Dog 8vo, 3 50
* Whipple's Typhoid Fever Large Z2mo, 3 00
WoodhuU's Notes on MiUtary Hygiene i6mo, i 50
* Personal Hygiene i2mo, i 00

Worcester and Atkinson's Small Hospitals Establishment and Maintenance,

and S -ggestions for Hospital Architecture, with Plans for a Small

Hospital i2mo, i 25

METALLURGY,

Betts's Lead Refining by Electrolysis 8vo, 4 00

Bolland's Encyclopedia of Founding and Dictionary of Foundry Terms Used
in the Practice of Moulding i2mo, 3 00

Iron Founder r2mo, 2 50
" '* Supplement z2mo, 2 50

Douglas's Untechnical Addresses on Technical Subjects i2mo, i 00

Goesel's Minerals and Metals: A Reference Book i6mo, mor. 3 00
* Iles's Lead-smelting ,,.... , . . . i2mo, 2 50

Keep's Cast Iron 8vOj 2 50
Le Chatelier's High-temperature Measurenzents. (Boudouard^-Burgess) i2mo, 3 00

Metcalf's Steel. A Manual for Steel-users Z2mo, 2 00

Miller's Cyanide Process i2mo, i 00

Minet's Production of Aluminium and its Industrial Use. (Waldo) . . ,i2mo, 2 50

Robine and Lenglen's Cyanide Industry. (Le Clerc) 8vo, 4 00

Ruer's Elements of Metallography. (Mathewson) (In Press.)

Smith's Materials of Machines i2mo, i 00

Tate aad Stone's Foundry Practice i2mo, 2 50

Thurston's Materials of Engineering. In Three Parts 8vo, 8 00

Part I. Non-metallic Materials of Engineering and Metallurgy . . . 8vo, 2 00

Part II. Iron and Steel 8vo, 3 50

Part III. A Treatise o'n Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Dike's Modern Electrolytic Copper Refining 8vo, 3 00

West's American Foundry Practice i2mo, 2 so

Moulder's Text Book i2mo, 2 50

Wilson's Chlorination Process i2mo, z 50

Cyanide Processes i2mo, i so

MINERALOGY.

Barringer's Description of Minerals of Commercial Value Oblong, mor. 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 00

Boyd's Map of Southwest Virginia Pocket-book form. 2 00

* Browning's Introduction to the Rarer Elements 8vo, i so

Brush's Manual of Determinative Mineralogy. (Penfield) 8vo, 4 00

Butler's Pocket Hand-Book of Minerals i6mo, mor. 3 00

Chester's Catalogue of Minerals 8vo, paper, r 00

Cloth, I 2S

* Crane's Gold and Silver 8vo, 5 00

Dana's First Appendix to Dana's New " System of Mineralogy. ."
.

.
Large 8vo, i 00

Manual of Mineralogy and Petrography i2mo 2 00

Minerals and How to Study Them i2mo. i so

System of Mineralogy Large 8vo, half leather, 12 so

Text-book of Mineralogy 8vo, 4 00

Douglas's Untechnical Addresses on Technical Subjects i2mo, i 00

Eakle's Mineral Tables - .•••• -Svo, i 2.s

Stone and Clay Fioducts Used in Engineering. (In Preparation.)
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Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50
Goesei's Minerals and Metals: A Reference Book i6nio,nior. 300
Groth's Introduction to Chemical Crystallography (Marshall) i2mo, i 25

*Xddmgs*s Rock Minerals .... Svo, 5 00

Johannsen ' s Determination of Rock-forming Minerals in Thin Sections 8vo, 4 00
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe. i2mo, 60

Merrill's Non-metallic Minerals: Their Occurrence and Uses 8vo, 4 00

Stones for Building and Decoration 8vo, 5 00

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.
Svo, paper, 50

Tables of Minerals, Including the Use of Minerals and Statistics of

Domestic Production Svo, i 00

* Pirsson's Rocks and Rock Minerals i2mo, 2 50
* Richards's Synopsis of Mineral Characters.- i2mo, mor, i 25
* Ries's Clays: Their Occurrence, Properties, and Uses Svo, 5 00

* Tillman's Text-book of Important Minerals and Rocks Svo, 2 00

MINING.

* Beard's Mine Gases and Explosions Large i2mo, 3 00

Boyd's Map of Southwest Virginia Pocket-Doo<t lorm 2 00

Resources of Southwest Virginia Svo, 3 00
* Crane's Gold and Silver Svo, 5 00

Douglas's Untechnical Addresses on Technical Subjects i2mo x jo

Eissler's Modern High Explosives Svo, 4 -*o

Goesei's Minerals and Metals : A Reference Book i6mo, mor. 3 00

Ihlseng's Manual of Mining Svo, 5 00
* Iles's Lead-smelting i2mo, 2 50
Miller's Cyanide Process i2mo, i 00

O'DriscoU's Notes on the Treatment of Gold Ores Svo, z 00

Peele's Compressed Air Plant for Mines Svo,

Riemer's Shaft Sinking Under Difficult Conditions. (Coming and Peele) . . .Svo,

Robine and Lenglen's Cyanide Industry. (Le Clerc) Svo,

* Weaver's Military Explosives Svo,

Wilson's Chlorination Process i2mo.

Cyanide Processes i2mo.
Hydraulic and Placer Mming. 2rf edition, rewritten i2mo.

Treatise on Practical and Theoretical Mine Ventilation i2mo,

SANITARY SCIENCE.

Association of State and National Food and Dairy Departments, Hartford Meeting,

1 906 Svo,

Jamestovp-n Meeting, 1907 Svo,

* Bashore's OutUnes of Practical Sanitation i2mo.
Sanitation of a Country House i2mo.
Sanitation of Recreation Camps and Parks i2mo,

Folwell's Sewerage. (Designing, Construction, and Maintenance) Svo,

Water-supply Engineering 8vo,

Fowler's Sewage Works Analyses j2mo,

Fuertes*s Water-filtration Works i2mo,

Water and Public Health i2mo,

Gerhard's Guide to Sanitary Inspections i2mo,
* Modern Baths and Bath Houses Svo,

Sanitation of Public Buildings i2mo,

Hazen's Clean Water and How to Get It. Large i2mo.

Filtration of Public Water-supplies Svo, 3 00

Kinnicut, Winslow and Pratt's Purification of Sewage. (In Press.)

Leach's Inspection and Analysis of Food with Special Reference to State

Control Svo, 7 00
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'Mason's Examination of Water. (Chemical and Bacteriological) i2mo, [ 23
Water-supply. (Considered Principally from a Sanitary Standpoint; . . 8vo, 4 00

* Merriman's biements of Sanitary Engineering &vo, 2 00

Ogden's Sewer Design lamo, ^ 00

Parsons's Disposal of Municipal Refuse 8vo, ^ 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis r2mo, i 30
* Price's Handbook on Sanitation r2rao, i 30
Richards's Cost of Cleanness. A Twentieth Century Problem i2mo, i 00

Cost ot Food. A Study in Dietaries i2mo, i 00
Cost of Living as Modi-ed by Sanitary Science lamo, i 00
Cost of Shelter. A Study in Economics i2mo, i 00

* Richards and Williams's Dietary Computer 8vo, i 30
Richards and Woodman's Air, Water, and Food from a Sinnitary Stand-

point 8to, 2 00

R;deal's Disinfection and the Preservation of Food. 8vo, 400
Sewage and Bacterial Purification of Sewage Svo, 4 00

Soper's Air and Ventilation of Subways Large i2mo, 2 50

Turneaure and Russell's Public Water-snnplies Svo, 5 co

"Venable's Garbage Crematories in America Svo, 2 00

Method and Devices for Bacterial Treatment of Sewage Svo, 3 00

Ward and Whipple's Freshwater Biology i2rao, 2 30

Whipple's Microscopy of Drinking-water Svo, 3 50
* Typhod Fever. Large i2mo, 3 00

Value of Pure Water Large i2mo, i 00

Winslow's Bacterial Classification i2mo, 2 30
Winton's Microscopy of Vegetable Foods Svo, 7 50

MISCELLANEOUS.

Smmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large Svo, 150
Ferrel's Popular Treatise on the Winds Svo, 4 00

Titzgerald's Boston Machinist i8mo, i 00

-Gannett's Statistical Abstract of the World 24mo, 73

Haines's Atnerican Railway Management i2mo, 2 50
'* Hanusek's The Microscopy of Technical Products. (Winfon) Svo, 500
Owen's The Dyeing and Cleaning of Textile Fabrics. (Standage). (In Press.)

Ricketts's History of Rensselaer Polytechnic Institut: 1824-1894.

Large i2mo, 3 00

Rotherham's Emphasized New Testament Large Svo, 2 00

standage's Decoration of Wood, Glass, Metal, etc r2mo, 2 00

-Thome's Structural and Physiological Botany. (Bennett) i6mo, 2 23

Westermaler's Compendium of (Jeneral Botany. (S<*neider) 8vo, 2 00

Winslow's Elements of Applied Microscopy i2mo, r 30

HEBREW AND CHALDEE TEXT-BOOKS.

Creen's Elementary Hebrew Grammar r2mo, i 23

Gesenius's Hebrew and Chaldee Lexicon to the Old Testamunt Scriptures.

(Tregelles) Small 4to- half mor. 3 oa
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