Naval postritalna
Moarkhy.

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

ACCURACY ASSESSMENT FOR THE

 AUXILLARY TRACKING SYSTEMby
Michael P. Taylor
September, 1991
Thesis Advisor:
Robert R. Read
Approved for public release; distribution is unlimited.

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government
17. COSATI CODES 18 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD	GROUP	SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Auxiliary Tracking System (ATS) is being developed to allow for an accurate underwater tracking capability that can be deployed anywhere in the world. A simulation was created to determine the impact upon the relative accuracy of the system due to a normally distributed noise. The simulation was used to look at the impact of range between targets and the depth spacing of the suspended transducers on the relative tracking accuracy.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL Robert R. Read	22b. TELEPHONE (Include Area Code) (408) 646-2382	22c. OFFICE SYMBOL OR/Re

Approved for public release; distribution is unlimited.

Accuracy Assessment for the Auxillary Tracking System
by

Michael P. Taylor
Lieutenant, United States Navy
B.S., United States Air Force Academy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Abstract

The Auxiliary Tracking System (ATS) is being developed to allow for an accurate underwater tracking capability that can be deployed anywhere in the world. A simulation was created to determine the impact upon the relative accuracy of the system due to a normally distributed noise. The simulation was used to look at the impact of range between targets and the depth spacing of the suspended transducers on the relative tracking accuracy.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. ATS CONCEPT 2
A. GENERAL DESCRIPTION 2

1. Buoy System 3
2. Computer Site 3
B. SYSTEM OPERATION 4
III. SIMULATION DESCRIPTION 6
A. PROGRAM DESCRIPTION 6
3. Simulation Inputs 6
4. Solving for Times 7
5. Adding Noise 9
6. Solving for Transducer Locations 10
7. Solving for Target Locations 11
8. Collecting Statistics 14
B. SIMULATIONS CONDUCTED 14
9. Noise Values 15
10. Target Locations 15
11. Transducer Depths 15
IV. DATA ANALYSIS 16
V. CONCLUSIONS AND RECOMMENDATIONS 18
A. CONCLUSIONS 18
B. RECOMMENDATIONS 18
APPENDIX A 20
APPENDIX B 29
LIST OF REFERENCES 37
BIBLIOGRAPHY 38
INITIAL DISTRIBUTION LIST 39

I. INTRODUCTION

Within the last several years, the Navy has seen a tightening of the purse strings from congress, and as a result, must find more cost effective ways to perform the various missions that are still required. One area that has long been a concern is the limited number of underwater tracking ranges. Alternatives to the development of another fixed range must be considered because of the financial impact.

On the west coast, there are currently three areas where underwater tracking ranges are available. Washington, San Clemente, California, and Hawaii. With the limited number of sites and the other demands on range time for research and development, fleet ASW training opportunities are limited. Added to this is the fact that for many exercises, the units must transit to Hawaii simply because that is the only range available. The portable Auxiliary Tracking System (ATS) was conceived for these reasons.

The ATS has been designed as a truly portable underwater tracking range. This thesis will look at the theoretical tracking accuracy of the system currently under engineering development and testing at the Naval Undersea Warfare Engineering Station (NUWES).

II. ATS CONCEPT

A. GENERAL DESCRIPTION

With the recent improvements made in electronics and the Global Positioning Satellite System (GPSS), the dream of a portable tracking range now seems possible with current technology. The engineering development model consists of four underwater tracking buoys and a portable computer site. The buoys are deployed either from a ship or helicopter and are recoverable. For the four buoy system, deployment will be similar to that shown in Figure 1. The final system will consist of nine buoys to be deployed in various patterns based upon the needs of the system being tested.

Figure 1. ATS Deployment Configuration

1. Buoy System

The buoys used in the ATS will be free floating, self contained buoys. They will have a transducer suspended below at a predetermined depth (between 50 and 300 meters) used both for tracking the targets and locating the other units in the tracking range. The acoustic signal processor contained in each buoy will provide for the detection of the acoustic pings emitted by the other sources. The GPSS receiver in the buoy will provide the Latitude/Longitude and a very accurate time standard for the system. The on-board computer will control the GPSS receiver and acoustic signal processor, monitor the status of the buoy, perform a system up/down self test, time stamp and format the position data collected by the GPSS receiver and acoustic signal processor and send the data to the computer site via an RF data link.

2. Computer Site

The control station for the ATS range will be the computer site, which will be positioned on a ship located off the range, or on land if the range is set up in coastal waters. The computer site will be contained in a portable van allowing transport anywhere in the world either by ship or by cargo aircraft. The only support needed will be AC power, as the computer site will be self contained. The computer site will contain the $R F$ data link receivers, $R F$ voice
communications equipment, a GPSS receiver, the range tracking computers and peripherals, and other equipment as needed.

B. SYSTEM OPERATION

The concept embodied by the ATS is a "sing-around" self calibrating tracking range. This means that the buoys will locate each other. Each buoy has an acoustic pinger on the floating buoy and a transducer suspended below. In a two minute cycle, each buoy pinger will transmit an acoustic signal followed by each suspended transducer also transmitting an acoustic signal. The acoustic processor within each buoy will control the pinging cycle; a coded pulse will be used to identify the signal. The transit time of the signal will be known as each buoy will transmit a pulse at a specific time, and the reception time of the signal will be sent to the computer site via the RF link from the buoy that received the signal. From this, the transit time of the signal is known, and the range between the source and receiver is calculated by using the Sound Velocity Profile of the water mass. The signal from the buoy pinger to the transducer suspended below is used to calculate the depth of each transducer. The transit times from transducer to transducer are then used to calculate the slant ranges when the depth of each transducer has been determined. From this data, a range grid is set up as shown in Figure 2. The location of each transducer and the range grid will be updated every two minutes by this method.

Figure 2. ATS Range Grid

With a relative grid established, the system now determines the positions of the targets on the range. The ATS has three distinct frequency bands to utilize, by incorporating a Shift Frequency, Shift Keying (SFSK) processor and transmitter. The high frequency will be used for the sing-around calibration already described, and the mid and low frequencies will be used to track the torpedo and the target. The SFSK processor and transmitter is similar to the system used on the Quinalt Shallow Water range at NUWES.

III. SIMULATION DESCRIPTION

A. PROGRAM DESCRIPTION

A simulation program was written to determine the effects of a normal error on the transit times received at the computer site to investigate the accuracy of the ATS. The effects of shadow zones were not considered in the simulation due to the relatively short distances between any source and receiver pair. The simulation program has three main sections; solving for transit times, solving for positions, and collecting statistics.

1. Simulation Inputs The ATS simulation program requires three sets of inputs. The first set of inputs is the sound speed profile for the water mass. The program can accept up to 60 data points for the profile. The second set of inputs is the actual positions for the four buoys, the four suspended transducers and the two targets. The inputs are cartesian coordinate with buoy one being at the origin and buoy three establishing the $X-Z$ plane. The third set of inputs is for the number of replications desired and the standard deviation of the noise for the systems. The standard deviation is a function of the distance between the source and receiver, and within the program is modeled by changing the travel times in
each of three groups; buoy to transducer, transducer to transducer, and target to transducer.

2. Solving for Times

Once the inputs have been entered, the program solves for the actual transit time between each source and receiver pair. This is done by taking the slant range between each source and receiver (Equation 3.1) and dividing by the

$$
\begin{equation*}
\text { Range }=\sqrt{\left(X_{s}-X_{Y}\right)^{2}+\left(Y_{s}-Y_{r}\right)^{2}+\left(Z_{s}-Z_{r}\right)^{2}} \tag{3.1}
\end{equation*}
$$

effective sound speed between source and receiver. The effective sound speed is calculated by solving for the travel time for a vertically propagating wave in each layer. The travel times are summed between the source and receiver depths and the difference in depths is divided by the travel time to yield the effective sound speed between the source and receiver. The derivation of the equation is shown below and starts with the definition of the travel time (Equation 3.2).

$$
\begin{equation*}
t=\int d t=\int_{s_{0}}^{s} \frac{d s}{c(z)} \tag{3.2}
\end{equation*}
$$

The ray path within a constant gradient is defined as the arc of a circle of radius equal to σ (Equation 3.3 and 3.4) [Ref 1:p. 402].

$$
\begin{equation*}
d s=\sigma d \theta \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\sigma=\frac{c(z)}{g \cos \theta} \tag{3.4}
\end{equation*}
$$

Substitution of Equation 3.4 into Equation 3.2 yields Equation 3.5 and 3.6. The solution of the integral is shown in Equation 3.7

$$
\begin{gather*}
t=\int_{\theta_{0}}^{\theta} \frac{d \theta}{g \cos \theta} \tag{3.5}\\
t=\frac{1}{g} \int_{\theta_{0}}^{\theta} \sec (\theta) d \theta \tag{3.6}\\
t=\frac{1}{g}[\ln |\sec (\theta)+\tan (\theta)|] \tag{3.7}
\end{gather*}
$$

Separation of the terms yield Equation 3.8. Using snell's law [Ref 1: p. 401], as shown in Equation 3.9, and making the assumption that the sine terms cancel for a vertically propagating wave, Equation 3.8 can be reduced to Equation 3.10 .

$$
\begin{gather*}
t=\frac{1}{g} \ln \left|\frac{1+\sin \theta}{\cos \theta} \frac{\cos \theta_{\circ}}{1+\sin \theta_{\circ}}\right| \tag{3.8}\\
\frac{\cos \theta_{o}}{\cos \theta}=\frac{c\left(z_{o}\right)}{c(z)} \tag{3.9}\\
t=\frac{1}{g} \ln \frac{c\left(z_{2}\right)}{\left(c\left(z_{1}\right)\right.} \tag{3.10}
\end{gather*}
$$

By summing the travel times within each layer, the propagation time is found. If within a layer, the gradient is equal to zero, the program takes the vertical distance within the layer and divides by the sound speed within the layer to determine the time t. The effective sound speed is now found (Equation 3.11).

$$
\begin{equation*}
\text { effspd=} \frac{Z_{2}-Z_{1}}{t} \tag{3.11}
\end{equation*}
$$

Knowing the slant range and the effective sound speed between each source and receiver pair, the transit times for all pairs are determined (Equation 3.12).

$$
\begin{equation*}
\text { Time }=\frac{\text { Range }}{\text { effspd }} \tag{3.12}
\end{equation*}
$$

3. Adding Noise

When all of the transit times have been calculated and stored, the program begins the iteration cycle. The first step is the addition of the noise value to the transit times. This is done by taking a standard normal random variable and multiplying it by the transit time and the percentage value for the standard deviation. This results in a normal random variable with mean equal to zero and standard deviation equal to the given percentage of the transit time. This method was chosen because the transducer to transducer ranges and times
are typically 5 times greater than the pinger to suspended transducer times, and the error should be a function of range.

4. Solving for Transducer Locations

After the noise has been added to each of the transit times, the location of each transducer is calculated. The depth of each transducer is found first using the transit time from the buoy pinger to the transducer suspended below (i.e. buoy pinger one to transducer one). From this transit time and using the length of the cable as a starting point, the depth is determined through an iterative process by calculating the effective sound velocity between the pinger and the estimated depth of the transducer. The solution is then found by multiplying the transit time by the effective sound velocity. The resulting depth is then compared with the estimated depth, and when the difference between the two values is less than one foot, the program continues, otherwise the resulting depth is used for the estimated depth and the calculation is repeated. Once the four transducer depths are established, the range coordinate system is established using transducer one as the origin of the $X-Y$ grid and transducer three as the intersection with the horizontal axis (X-axis). There are two transit times for each range calculation made (transit time from transducer one to three and from transducer three to one), and the times are averaged. The slant range $(S R)$ is then found by calculating the effective sound velocity
between the two depths and multiplying by the average transit time between the two transducers. The horizontal distance (H) is calculated using Equation 3.13. The position of transducer

$$
\begin{equation*}
H=\sqrt{(S R)^{2}-\left(Z_{1}-Z_{2}\right)^{2}} \tag{3.13}
\end{equation*}
$$

two is found by using the horizontal ranges from transducers one and three and using the GPSS position of buoy two to determine which of two unique solutions is correct (the intersection of two circles). Transducer four is then located the same way using the positions and ranges from transducers two and three.

5. Solving for Target Locations

With the range coordinate system established and the location of all transducers found, we are positioned to calculate the location of the two targets. It is assumed that all four transducers receive the signal from each target. The location of the target is then calculated through a least squares method similar to one used by Larry Anderson at NUWES. The detailed procedures for the algorithm are presented below. Given the location of each transducer as (X_{i}, Y_{i}, Z_{i}) and the solution range between transducer i and the target $\left(R_{m i}\right)$ from the transit time, the location of the $\operatorname{Target}\left(\mathrm{X}_{\mathrm{T}}, \mathrm{Y}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}\right.$) is calculated. $R_{m i}$ is the measured slant range between target and transducer i, and R_{i} is the calculated slant range between target and transducer i as given by Equation 3.14. The

$$
\begin{equation*}
R_{i}=\sqrt{\left(X_{T}-X_{i}\right)^{2}+\left(Y_{T}-Y_{i}\right)^{2}+\left(Z_{T}-Z_{i}\right)^{2}} \tag{3.14}
\end{equation*}
$$

location of the target is then calculated with respect to minimizing the Sum of Squares of errors (SSE), where the SSE is defined by Equation 3.15. The calculated slant ranges (R_{i})

$$
\begin{equation*}
S S E=\sum_{i=1}^{4}\left(R_{i}-R_{m i}\right)^{2} \tag{3.15}
\end{equation*}
$$

are linearized around the trial value ($\mathrm{X}_{\mathrm{To}}, \mathrm{Y}_{\mathrm{To}}, \mathrm{Z}_{\mathrm{To}}$), shown in Equation 3.16, where $\left.\right|_{\text {omeans }}$ evaluated at point "o". The

$$
\begin{equation*}
R_{i} \propto R_{i_{o}}+\left.\frac{\partial R_{i}}{\partial X_{T}}\right|_{0}\left(X_{T}-X_{T_{o}}\right)+\left.\frac{\partial R_{i}}{\partial Y_{T}}\right|_{0}\left(Y_{T}-Y_{T_{o}}\right)+\left.\frac{\partial R_{i}}{\partial Z_{T}}\right|_{0}\left(Z_{T}-Z_{T_{o}}\right) \tag{3.16}
\end{equation*}
$$

partial derivatives are listed in Equations 3.17 through 3.19.

$$
\begin{align*}
& \left.\frac{\partial R_{i}}{\partial X_{T}}\right|_{0}=\frac{X_{T_{o}}-X_{i}}{R_{i_{o}}} \tag{3.17}\\
& \left.\frac{\partial R_{i}}{\partial Y_{T}}\right|_{0}=\frac{Y_{T_{o}}-Y_{i}}{R_{i_{o}}} \tag{3.18}\\
& \left.\frac{\partial R_{i}}{\partial Z_{T}}\right|_{0}=\frac{Z_{T_{o}}-Z_{i}}{R_{i_{o}}} \tag{3.19}
\end{align*}
$$

The linearized model is substituted into Equation 3.15 and the SSE is minimized with respect to ($\mathrm{X}_{\mathrm{T}}, \mathrm{Y}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}$). The resulting normal equations are put in matrix form as shown in Equation
3.20. The individual matrices are shown in Equations 3.21 through 3.23. Equation 3.20 is solved for the correction matrix (Equation 3.22) which when added to $\left(\mathrm{X}_{\mathrm{To}}, \mathrm{Y}_{\mathrm{To} \text {, }} \mathrm{Z}_{\mathrm{To}}\right)$

$$
\begin{align*}
& A X=B \tag{3.20}\\
& A=\left|\begin{array}{ccc}
\left.\sum \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} ^{2} & \left.\left.\left.\left.\sum \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} \sum \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0} \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} \\
\left.\left.\sum \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} & \left.\sum \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} ^{2} & \left.\left.\sum \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0} \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} \\
\left.\left.\left.\left.\sum \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0} \sum \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0} & \left.\sum \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0} ^{2}
\end{array}\right| \tag{3.21}\\
& X=\left|\begin{array}{c}
X_{T}-X_{T_{o}} \\
Y_{T}-Y_{T_{o}} \\
Z_{T}-Z_{T_{o}}
\end{array}\right| \tag{3.22}\\
& B=\left|\begin{array}{c}
\left.\sum\left(R_{m i}-R_{i o}\right) \frac{\partial R_{i}}{\partial X_{T}}\right|_{0} \\
\left.\sum\left(R_{m i}-R_{i o}\right) \frac{\partial R_{i}}{\partial Y_{T}}\right|_{0} \\
\left.\sum\left(R_{m i}-R_{i o}\right) \frac{\partial R_{i}}{\partial Z_{T}}\right|_{0}
\end{array}\right|
\end{align*}
$$

yields the improved target position $\left(X_{T}, Y_{T}, Z_{T}\right)$. If the sum of the squares of the corrections is less than some value epsilon, Equation 3.24, the iteration is stopped. Otherwise,

$$
\begin{equation*}
\left(X_{T}-X_{T_{o}}\right)^{2}+\left(Y_{T}-Y_{T_{o}}\right)^{2}+\left(Z_{T}-Z_{T_{o}}\right)^{2}<\epsilon \tag{3.24}
\end{equation*}
$$

the target position ($\mathrm{X}_{\mathrm{T}}, \mathrm{Y}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}$) is used for the next iteration in place of $\left(\mathrm{X}_{\mathrm{To}}, \mathrm{Y}_{\mathrm{To}}, \mathrm{Z}_{\mathrm{T}_{0}}\right)$ and the procedure is repeated until 50 iterations have been completed.

6. Collecting statistics

When the positions of the targets have been solved for, the errors are calculated. The distance between the actual and solution location of each target (Equation 3.25), and the distance in the relative position of the targets with respect to each other (Equation 3.26) are calculated.

$$
\begin{gather*}
T E_{i}=\sqrt{\left(X_{o i}-X_{s i}\right)^{2}+\left(Y_{o i}-Y_{s i}\right)^{2}+\left(Z_{o i}-Z_{s i}\right)^{2}} \tag{3.25}\\
R E=\sqrt{\left(\left(X_{o 1}-X_{o 2}\right)-\left(X_{s 1}-X_{s 2}\right)\right)^{2}+\ldots} \tag{3.26}
\end{gather*}
$$

$X_{o i}$ is the X-value for the true position of the ith target, $X_{s i}$ is the X-value for the solved position of the ith target, $T E_{i}$ is the True error for the ith target, and RE is the relative error between the two targets. The values for $T E_{i}$ and $R E$ are summed over the iteration loop and the programs final output is the mean and standard deviation of the true position error for each target and the relative position error between the two targets.

B. SIMULATIONS CONDUCTED

Three factors are considered as to the influence of the relative accuracy: Magnitude of the noise in the
measurements, the proximity of target one to target two, and whether the transducers are at equal or staggered depths.

1. Noise Values

Noise values are entered into the simulation by the standard deviation being a percentage of the true value. Values examined range between 0.1 and 1.0 percent.

2. Target Locations

The simulations were conducted for targets at close range (100 ft separation) and long range (3000 ft separation) to investigate the effects of target separation on the relative accuracy.

3. Transducer Depths

Some discussion has taken place as to the effects of staggering the transducer depths or having them all at an equal depth with the thought being would accuracy be gained by having the suspended transducers staggered at varying depths. Would this allow for better target resolution given the four slant ranges from the target to the transducers? Simulations were also conducted to draw a conclusion on the selection of transducers depths; equal depths or staggered depths with intervals of 100 feet.
IV. DATA ANALYSIS

Each of the four following cases were run using the simulation program with the noise values ranging from 0 to 1 percent. The performance goal for the ATS is 20 yards relative accuracy. The specifics of the four cases are as follows:

1. Case One: Transducers at equal depth (1000 feet) and targets at close range (100 feet).
2. Case Two: Transducers at equal depth and targets at long range (3000 feet).
3. Case Three: Transducers at staggered depths (100 foot intervals) and targets at close range.
4. Case Four: Transducers at staggered depths and targets at long range.

The results for the four cases are shown in Figure 3. The limit for the noise varies from 0.3 percent for cases two and four (targets at long range) to 0.4 percent for cases one and three (targets at close range).

Figure 3. Relative Error Plot

v. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The results from the simulation show that the system can not handle a lot of noise as currently designed. The staggering of the transducer depths did not appear to have an effect on the accuracy of the system. All four cases were relatively close for noise value where the relative accuracy exceeded 20 yards.

B. RECOMMENDATIONS

The accuracy assessment for the ATS is a very complex problem. This study has only focused on a few areas and a complete assessment of the system will require further study. From the initial results on the engineering development model, the outlook is very promising for the Navy to receive substantial benefits from its continued funding. Analysis of the data from the prototype buoys should reveal the magnitude of the noise, and the expected accuracy can then be determined. An additional area that should also be considered is to use telemetry data from the targets in the tracking problem. This could be utilized to provide the depth of the target and the velocity. By incorporating a Kalman Filter into the algorithm, it may be possible to reduce the impact
from a bad ping cycle. This would also necessitate looking at the accuracy of the depth sensors currently available.

The Auxiliary Tracking System should continue to be developed. Potential benefits for the Navy warrant the investment now, as current ranges are taxed to keep up with the demands placed upon them by the many users. As new weapons systems are developed, the ATS will allow more realistic operational testing to be conducted by allowing the weapons systems to be evaluated in various ocean types.

APPENDIX A

SIMULATION PROGRAM TO EVALUATE AUXILLARY TRACKING SYSTEM ABSOLUTE AND RELATIVE ACCURACY ASSESSMENTS BASED UPON A RANDOM NOISE WITH A GIVEN MEAN AND VARIANCE.

REAL*8 SEED

REAL*4 XBUOY, YBUOY,ZBUOY,XPHONE,YPHONE,ZPHONE,XTGT,YTGT,ZTGT,

+ MEAN1, VAR1, MEAN2, VAR2, MEANR, VARR, SRANGE, RANGE, NOISE,
+ TTIME1, HTIME1, BTIME1, TTIME, HTIME, BTIME, A, B INTEGER*4 BUOYS, MAXSSV, NCOUNT
DIMENSION XBUOY(4), YBUOY(4), ZBUOY(4), XPHONE(4), YPHONE(4),
$+\quad$ ZPHONE(4), $\operatorname{SRANGE}(6), \operatorname{BTIME}(4,4), \operatorname{HTIME}(4,4)$,
$+\quad$ PHONEX(4), PHONEY(4), PHONEZ(4), DEPTH(40), SSPVEL(40),
$+\quad \operatorname{XTGT}(2), \operatorname{YTGT}(2), \operatorname{ZTGT}(2), \operatorname{TGTX}(2), \operatorname{TGTY}(2), \operatorname{TTIME1}(2,4)$,
$+\operatorname{TGTZ}(2), \operatorname{BTIME}(4,4), \operatorname{HTIME}(4,4), \operatorname{TTIME}(2,4)$,
$+\quad \operatorname{TERROR}(2), \operatorname{TESQ}(2), \operatorname{TESUM}(2), \operatorname{TRANGE}(2,4)$
MAXSSV $=40$
BUOYS $=4$
ZCABLE $=1000.0$
CALL INPUT (NCOUNT, BTN, STN, TTN, SEED)
CALL PROFILE (MAXSSV,NUMSSV,DEPTH,SSPVEL)
CALL POSITS (XBUOY, YBUOY, ZBUOY, XPHONE,YPHONE,ZPHONE,
$+\quad$ XTGT,YTGT,ZTGT)
CALCULATE TRANSIT TIMES FOR BUOYS
DO 20 I = 1, 4
DO $10 \mathrm{~J}=1,4$
RANGE $=$ SQRT((XBUOY(I)-XPHONE(J))**2+(YBUOY(I)-YPHONE(J))**2 +
$+\quad($ ZBUOY (I) - ZPHONE(J))**2)
CALL HMVELOC(ZBUOY (I), ZPHONE (J),NUMSSV,DEPTH,SSPVEL, HMVEL) $\operatorname{BTIME}(\mathrm{I}, \mathrm{J})=$ RANGE/HMVEL
10 CONTINUE
20 CONTINUE
DO 50 I = 1, 4
DO $40 \mathrm{~J}=1,4$
IF (I .EQ. J) GOTO 30
RANGE $=$ SQRT((XPHONE (I)-XPHONE(J))**2+
$+(\operatorname{YPHONE}(I)-Y P H O N E(J)) * * 2+(Z P H O N E(I)-Z P H O N E(J)) * * 2)$
CALL HMVELOC(ZPHONE(I), ZPHONE(J), NUMSSV,DEPTH,SSPVEL,HMVEL) HTIME (I,J) = RANGE/HMVEL CONTINUE
30 CONTINUE
50 CONTINUE
DO 70 I = 1, 2
DO $60 \mathrm{~J}=1,4$
RANGE = SQRT((XTGT(I)-XPHONE(J))**2+(YTGT(I)-YPHONE(J))**2+
$+\quad($ ZTGT(I) $-2 P H O N E(J)) * * 2)$
CALL HMVELOC(ZTGT (I), ZPHONE(J),NUMSSV,DEPTH,SSPVEL, HMVEL)
$\operatorname{TTIME}(I, J)=$ RANGE/HMVEL
CONTINUE
70 Continue

DO 900 KOUNT=1, NCOUNT
79 CONTINUE
CC ADD NOISE
DO 71 I = 1, 2
$\mathrm{J}=\mathrm{I}+2$
CALL URAND (A,B,SEED)
$\operatorname{BTIMEI}(I, I)=\operatorname{BTIME}(I, I)+(A * B T N * B T I M E(I, I))$
$\operatorname{BTIME1}(J, J)=\operatorname{BTIME}(J, J)+(B * B T N * B T I M E(J, J))$
71 CONTINUE
DO 73 I = 1, 4
DO $72 \mathrm{~J}=1,2$
$\mathrm{K}=\mathrm{J}+2$
CALL URAND (A,B,SEED)
$\operatorname{HTIME}(I, J)=\operatorname{HTIME}(I, J)+(A * S T N * H T I M E(I, J))$
$\operatorname{HTIME}(\mathrm{I}, \mathrm{K})=\operatorname{HTIME}(\mathrm{I}, \mathrm{K})+(\mathrm{B} * S T N * \operatorname{HTIME}(\mathrm{I}, \mathrm{K}))$
CONTINUE
73 continue
DO $75 \mathrm{~J}=1,4$
CALL URAND (A,B,SEED)
$\operatorname{TTIME}(1, J)=\operatorname{TTIME}(1, J)+(A * T T N * T T I M E(1, J))$
$\operatorname{TTIME}(2, J)=\operatorname{TTIME}(2, J)+(B * B T N * T T I M E(2, J))$
75 CONTINUE
CALC BUOY POSITS
DO 80 I = 1, 4
PHONEX(I) = XBUOY(I)
PHONEY(I) = YBUOY(I)
80 CONTINUE
CALL HYDEPTH (ZCABLE, ZBUOY, NUMSSV, DEPTH,

+ SSPVEL, HMVEL, BTIME1, PHONEZ)
CALL RPHONE (SRANGE, HTIME1, PHONEZ, NUMSSV, DEPTH, SSPVEL, HMVEL)
CALL TWOD (SRANGE, PHONEX, PHONEY, PHONEZ, YBUOY)
CALC TARGET POSITS
DO $100 \mathrm{~J}=1,2$
TGTZ (J) $=400$
$\operatorname{TGTX}(J)=2000$
$\operatorname{TGTY}(\mathrm{J})=2000$
CALL TGTRANGE (TTIME1,TGTZ,ZPHONE,NUMSSV,DEPTH,SSPVEL, HMVEL,
+ TRANGE,J)
CALL THREED (J,TGTX,TGTY,TGTZ,PHONEX,PHONEY, PHONEZ,TRANGE)
100 CONTINUE
CC CALC TRUE ERRORS
ERFIX = 0.0
DO $150 \mathrm{~J}=1,2$
$\operatorname{TERROR}(J)=\operatorname{SQRT}((\operatorname{XTGT}(J)-\operatorname{TGTX}(J)) * * 2+(\operatorname{YTGT}(J)-\operatorname{TGTY}(J)) * * 2+$
$+\quad(Z \operatorname{TGT}(\mathrm{~J})-\operatorname{TGTZ}(\mathrm{J}))$ **2)
IF (TERROR(J) .GT. 1000.0) ERFIX = 1.0
150 CONTINUE
IF (ERFIX .EQ. 1) THEN
GOTO 79
ELSE
DO 200 J =1,2
$\operatorname{TESQ}(J)=\operatorname{TESQ}(J)+\operatorname{TERROR}(J) * * 2$
$\operatorname{TESUM}(J)=\operatorname{TESUM}(J)+\operatorname{TERROR}(J)$
200 CONTINUE
CC CALC RELATIVE ERRORS
RERROR $=\operatorname{SQRT}((X T G T(1)-T G T X(1)-X T G T(2)+T G T X(2)) * * 2+$
(YTGT(1)-TGTY(1)-YTGT(2)+TGTY(2))**2+
(ZTGT(1)-TGTZ(1)-ZTGT(2)+TGTZ(2))**2)
RESQ = RESQ + RERROR**2
RESUM $=$ RESUM + RERROR
ENDIF

```
    900 CONTINUE
CC CALC STATS ON TRUE ERRORS
CC TGT1 RESULTS
    MEAN1 = TESUM(1)/NCOUNT
    VAR1 = SQRT(ABS(NCOUNT*TESQ(1)-TESUM(1)**2))/(NCOUNT*(NCOUNT-1))
        TGT2 RESULTS
        MEAN2 = TESUM(2)/NCOUNT
        VAR2 = SQRT(ABS(NCOUNT*TESQ(2)-TESUM(2)**2))/(NCOUNT*(NCOUNT-1))
    CALC STATS ON RELATIVE ERRORS
        RELATIVE RESULTS
        MEANR = RESUM/NCOUNT
        VARR = SQRT(ABS (NCOUNT*RESQ-RESUM**2))/(NCOUNT*(NCOUNT-1))
        CALL OUTPUT (MEAN1, VAR1, MEAN2, VAR2, MEANR, VARR,
    + BTN,STN,TTN,NCOUNT)
    END
* INPUT SUBROUTINE TO ENTER IN SIMULATION VALUES *
****************************************************************
    SUBROUTINE INPUT (NCOUNT, BTN, STN, TTN, SEED)
    REAL*8 SEED
    OPEN (UNIT = 1, FILE = 'INPUT.DAT')
    READ (1,*) NCOUNT, BTN, STN, TTN, SEED
    CLOSE (UNIT = 1, STATUS = 'KEEP')
    RETURN
    END
* PROFILE SUBROUTINE TO ENTER SOUND VELOCITY PROFILE *
****************************************************************
    SUBROUTINE PROFILE (MAXSSV, NUMSSV, DEPTH, SSPVEL)
    REAL*4 DEPTH, SSPVEL
    INTEGER*4 MAXSSV, NUMSSV
    DIMENSION DEPTH(40), SSPVEL(40)
    OPEN (UNIT = 1, FILE = 'SSPROF.DAT')
    READ (1,*) NUMSSV
    IF (NUMSSV .GT. MAXSSV) THEN
                WRITE(*,*) ' MAXIMUM NUMBER OF SSP DATA POINTS EXCEEDED'
    ENDIF
    DO 10 I = 1, NUMSSV
        READ (1,*) DEPTH(I), SSPVEL(I)
    10 CONTINUE
        CLOSE (UNIT = 1, STATUS='KEEP')
        RETURN
    END
```

```
* POSITS SUBROUTINE TO ENTER BUOY, TRANSDUCER AND TARGET *
```

* POSITS SUBROUTINE TO ENTER BUOY, TRANSDUCER AND TARGET *
**
**
SUBROUTINE POSITS (XBUOY,YBUOY,ZBUOY,XPHONE,YPHONE,ZPHONE,XTGT,
SUBROUTINE POSITS (XBUOY,YBUOY,ZBUOY,XPHONE,YPHONE,ZPHONE,XTGT,
 + YTGT,ZTGT)
 + YTGT,ZTGT)
REAL*4 XBUOY,YBUOY, ZBUOY, XPHONE,YPHONE, ZPHONE
REAL*4 XBUOY,YBUOY, ZBUOY, XPHONE,YPHONE, ZPHONE
DIMENSION XBUOY(4),YBUOY(4),ZBUOY (4),XPHONE(4),YPHONE (4),
DIMENSION XBUOY(4),YBUOY(4),ZBUOY (4),XPHONE(4),YPHONE (4),
 + ZPHONE(4),XTGT(2),YTGT(2),ZTGT(2)
 + ZPHONE(4),XTGT(2),YTGT(2),ZTGT(2)
OPEN (UNIT = 2, FILE = 'BUOYLOC.DAT')
OPEN (UNIT = 2, FILE = 'BUOYLOC.DAT')
DO 10 I = 1, 4
DO 10 I = 1, 4
READ (2,*) XBUOY (I),YBUOY (I), ZBUOY (I),XPHONE (I),YPHONE (I),
READ (2,*) XBUOY (I),YBUOY (I), ZBUOY (I),XPHONE (I),YPHONE (I),
 + ZPHONE(I)
 + ZPHONE(I)
10 CONTINUE
10 CONTINUE
OPEN (UNIT = 1, FILE = 'TARGET.DAT')
OPEN (UNIT = 1, FILE = 'TARGET.DAT')
DO 20 J = 1, 2

```
    DO 20 J = 1, 2
```

```
        READ(1,*) XTGT(J), YTGT(J), ZTGT(J)
    20 CONTINUE
        RETURN
    END
    HMVELOC SUBROUTINE TO CALCULATE MEAN SOUND VELOCITY
    SUBROUTINE HMVELOC (ZPING, ZRCVR, NUMSSV, DEPTH, SSPVEL,HMVEL)
    REAL*4 ZPING, ZRCVR, DEPTH, SSPVEL, HMVEL, GRADNT, HMV1, HMV2,T
    INTEGER*4 I, J, K, INIT, FINAL, NUMSSV
    DIMENSION DEPTH(NUMSSV), SSPVEL(NUMSSV)
    ORDER THE DEPTH OF THE RECEIVER AND HYDROPHONE SO THAT THE
    RECEIVER IS THE DEEPER OF THE TWO DEPTHS.
    T = 0.0
    INTE = O
    IF (ZPING .GT. ZRCVR) THEN
        TEMP = ZPING
        ZPING = ZRCVR
        ZRCVR = TEMP
        INTE = 1
    ENDIF
    INTERPOLATE THE SOUND SPEED AT THE PINGER DEPTH
    DO 1 I = 2, NUMSSV
        IF (ZPING .GT. DEPTH(I)) GOTO 1
        GRADNT = (SSPVEL(I) - SSPVEL(I-1))/(DEPTH(I) - DEPTH(I-1))
        HMV1 = SSPVEL(I-1) + GRADNT*(ZPING-DEPTH(I-1))
        INIT= I
        GO TO 2
    1 CONTINUE
    INTERPOLATE THE SOUND SPEED AT THE HYDROPHONE DEPTH
    2 DO 3 J = 2, NUMSSV
        IF (ZRCVR .GT. DEPTH(J)) GOTO 3
        GRADNT = (SSPVEL(J) - SSPVEL(J-1))/(DEPTH(J) - DEPTH(J-1))
        HMV2 = SSPVEL(J-1) + GRADNT*(ZRCVR-DEPTH(J-1))
        FINAL = J-1
        GO TO 4
    3 CONTINUE
C
    CALCULATE THE HARMONIC SOUND SPEED BETWEEN THE PINGER AND THE
    HYDROPHONE
    4 IF (FINAL .LT. INIT) THEN
    SOURCE AND RECEIVER IN SAME GRADIENT
    TAKE AVERAGE OF TWO SOUND SPEEDS OF SOURCE AND RECEIVER
        GRADNT = (HMV2 - HMV1) / (ZRCVR - ZPING)
        IF (GRADNT .NE. 0.0) T = LOG (HMV2/HMV1)/GRADNT
        IF (GRADNT .EQ. O.0) T = (ZRCVR - ZPING)/HMV2
        HMVEL = T/(ZRCVR-ZPING)
    ELSEIF (FINAL .EQ. INIT) THEN
    SOURCE AND RECEIVER SPERATED BY ONE DEPTH GRADIENT
        GRADNT = (SSPVEL(INIT) - HMV1)/(DEPTH(INIT) - ZPING)
        IF (GRADNT .NE. O.O) T = LOG(SSPVEL(INIT)/HMVI)/GRADNT
        IF (GRADNT .EQ. O.O) T = (DEPTH(INIT)-ZPING)/SSPVEL(INIT)
        GRADNT = (HMV2-SSPVEL(FINAL))/(ZRCVR - DEPTH(FINAL))
        IF (GRADNT .NE. O.O) T = T + LOG(HMV2/SSPVEL(FINAL))/GRADNT
        IF (GRADNT .EQ. O.O) T = T + (ZRCVR-DEPTH(FINAL))/HMV2
        HMVEL = ABS((ZRCVR-ZPING)/T)
ELSE
```

```
        GRADNT = (SSPVEL(INIT) - HMVI)/(DEPTH(INIT) - ZPING)
        IF (GRADNT .NE. O.O) T = LOG(SSPVEL(INIT)/HMVI)/GRADNT
        IF (GRADNT .EQ. O.O) T = (DEPTH(INIT)-ZPING)/SSPVEL(INIT)
```

 DO \(5 \mathrm{~K}=\) INIT + 1, FINAL
 GRADNT \(=(\operatorname{SSPVEL}(K)-\operatorname{SSPVEL}(K-1)) /(\operatorname{DEPTH}(K)-\operatorname{DEPTH}(K-1))\)
 IF (GRADNT . NE. O.0) T = T+LOG (SSPVEL(K)/SSPVEL(K-1))/GRADNT
 IF (GRADNT .EQ. 0.0) \(T=T+(D E P T H(K)-D E P T H(K-1)) / S S P V E L(K)\)
 CONTINUE
GRADNT $=($ HMV2-SSPVEL (FINAL) $) /($ ZRCVR - DEPTH (FINAL) $)$
IF (GRADNT . NE. O.O) $T=T+L O G(H M V 2 / S S P V E L(F I N A L)) / G R A D N T$
IF (GRADNT .EQ. O.O) $T=T+(Z R C V R-D E P T H(F I N A L)) / H M V 2$
HMVEL $=$ ABS ((ZRCVR-ZPING)/T)
ENDIF
IF (INTE .EQ. 1) THEN
TEMP $=$ ZPING
ZPING $=$ ZRCVR
ZRCVR $=$ TEMP
ENDIF
RETURN
END
SUBROUTINE HYDEPTH (ZCABLE, ZBUOY, NUMSSV, DEPTH,
+ SSPVEL, HMVEL, BTIME, PHONEZ)
CC SUBROUTINE TO CALCULATE THE DEPTH OF THE HYDROPHONE BELOW THE
CC BUOY.
REAL*4 ZCABLE, ZBUOY, DEPTH, SSPVEL,HMVEL,BTIME,ZOLD, PHONEZ
INTEGER*4 NUMSSV
DIMENSION DEPTH(40), SSPVEL(40), PHONEZ(4), BTIME(4,4), ZBUOY(4)
DO 5 I = 1, 4
$2 B=2 B U O Y(I)$
ZOLD = ZCABLE
DO 3 KOUNT = 1, 10
CALL HMVELOC(ZB, ZOLD, NUMSSV, DEPTH, SSPVEL, HMVEL)
ZNEW = HMVEL * BTIME $(I, I)+2 B$
IF (ABS (ZNEW-ZOLD) .LT. 1.0) GO TO 4
ZOLD = ZNEW
3 CONTINUE
$4 \quad$ PHONEZ $(I)=$ ZNEW
5 Continue
RETURN
END
*
RPHONE SUBROUTINE TO CALCULATE RANGES BETWEEN TRANSDUCERS*

SUBROUTINE RPHONE (RANGE, HTIME, PHONEZ, NUMSSV, DEPTH, SSPVEL,
+ HMVEL)

CC

CC RANGE (1) = PHONE 1 TO PHONE 2
CC RANGE (2) = PHONE 3 TO PHONE 2
CC RANGE (3) = PHONE 1 TO PHONE 4
CC RANGE (4) = PHONE 3 TO PHONE 4
CC RANGE (5) $=$ PHONE 2 TO PHONE 4

RANGE (6) = PHONE 1 TO PHONE 3
REAL*4 RANGE, HTIME, PHONEZ, DEPTH, SSPVEL,HMVEL,T
INTEGER NUMSSV
DIMENSION RANGE(6), $\operatorname{HTIME}(4,4), \operatorname{PHONEZ}(4), \operatorname{DEPTH}(40)$, $+\quad \operatorname{SSPVEL}(40)$
DO 1 I = 1, 4
1 continue
$T=(\operatorname{HTIME}(2,1)-\operatorname{HTIME}(1,2) / 3.0) * 1.5$
CALL HMVELOC(PHONEZ(1), PHONEZ(2), NUMSSV, DEPTH, SSPVEL,
$+\quad$ HMVEL)

RANGE(1) $=T$ * HMVEL
$T=0.5 * \operatorname{HTIME}(2,3)+0.5 * \operatorname{HTIME}(3,2)$
CALL HMVELOC(PHONEZ(2), PHONEZ(3), NUMSSV, DEPTH, SSPVEL,
$+\quad$ HMVEL)
RANGE(2) $=T$ * HMVEL
$\mathrm{T}=0.5 * \operatorname{HTIME}(1,4)+0.5 * \operatorname{HTIME}(4,1)$
CALL HMVELOC(PHONEZ(1), PHONEZ(4), NUMSSV, DEPTH, SSPVEL,
$+\quad$ HMVEL)
RANGE (3) $=T$ * HMVEL
$\mathrm{T}=(\operatorname{HTIME}(3,4)-\operatorname{HTIME}(4,3) / 3.0) * 1.5$
CALL HMVELOC(PHONEZ(3), PHONEZ(4), NUMSSV, DEPTH, SSPVEL,

+ HMVEL)
RANGE (4) = T * HMVEL
$\mathrm{T}=0.75 * \operatorname{HTIME}(2,4)+0.25 * \operatorname{HTIME}(4,2)$
CALL HMVELOC(PHONEZ(2), PHONEZ(4), NUMSSV, DEPTH, SSPVEL,
+ HMVEL)
RANGE(5) = T * HMVEL
$T=0.25 * \operatorname{HTIME}(1,3)+0.75 * \operatorname{HTIME}(3,1)$
CALL HMVELOC(PHONEZ(1), PHONEZ(3), NUMSSV, DEPTH, SSPVEL,
+ HMVEL)
RANGE (6) = T * HMVEL
RETURN
END

TWOD SUBROUTINE TO CALCULATE TRANSDUCER POSITIONS
SUBROUTINE TWOD (RANGE, XP, YP, ZP, BUOYY)
REAL*4 RANGE, BUOYY
REAL*4 XP, YP, ZP, DX, DY, ANS, XSQR1, XSQR3,

+ YSQR1, YSQR3, RSQR1, RSQR3, RHS, DISCRIM, THETA, PHI
DIMENSION BUOYY(4), XP(4), YP(4), ZP(4), RANGE(6),
$+\operatorname{ANS}(2,2)$
$\mathrm{XP}(3)=\operatorname{SQRT}(\operatorname{RANGE}(6) * * 2-(2 P(1)-2 P(3)) * * 2)$
$\mathrm{YP}(3)=0.0$
$\mathrm{DX}=\mathrm{XP}$ (1) -XP (3)
$\mathrm{DY}=\mathrm{YP}(1)-\mathrm{YP}(3)$
RSQR1=RANGE (1)**2-(2P(1)-2P(2))**2
RSQR3=RANGE(2)**2-(2P(2)-ZP(3))**2
$\mathrm{XSQR1}=\mathrm{XP}(1) * * 2$
XSQR3=XP(3)**2
YSQR1=YP(1)**2
YSQR3=YP (3)**2
RHS $=(X S Q R 1+Y S Q R 1-X S Q R 3-Y S Q R 3+R S Q R 3-R S Q R 1) * 0.5$
IF (DY . EQ. O.O) THEN
THETA $=$ RHS/DX
$\mathrm{A}=1$
$\mathrm{B}=-2$ * $\mathrm{YP}(1)$
C $=($ THETA $) * * 2+X S Q R 1+Y S Q R 1-(2$ * THETA * XP(1)) - RSQR1
DISCRIM $=B^{* * 2}$ - (4 * A * C)

```
    ANS(1,2) = (-B + SQRT(ABS(DISCRIM)))/(2*A)
    ANS (2,2) = (-B/A - ANS (1,2))
    ANS (1,1) = THETA
    ANS (2,1) = THETA
ELSE
    THETA = RHS/DY
    PHI = DX/DY
    A = 1.0 + PHI**2
    B = 2*(YP(1)*PHI-THETA*PHI-XP(1))
    C = XSQR1 + (THETA)**2 + YSQR1 - RSQR1 - 2.0 * THETA * YP(1)
    DISCRIM = B**2 - (4 * A * C)
    ANS (1,1) = (-B +SQRT(DISCRIM))/(2*A)
    ANS}(2,1)=(-B/A - ANS(1,1)
    ANS(1,2) = THETA - PHI*ANS(1,1)
    ANS(2,2) = THETA - PHI*ANS (2,1)
ENDIF
    IF (ABS(ANS(1,2) - BUOYY(2)) .LT. 1000) THEN
    XP(2) = ANS(1,1)
    YP(2) = ANS(1,2)
ELSE
    XP(2) = ANS(2,1)
    YP(2) = ANS(2,2)
ENDIF
DX=XP(2)-XP(3)
DY=YP(2)-YP(3)
RSQR1=RANGE(5)**2-(ZP(2)-ZP(4))**2
RSQR3=RANGE (4)**2-(ZP(3)-ZP(4))**2
XSQR1=XP(2)**2
XSQR3=XP(3)**2
YSQR1=YP(2)**2
YSQR3=YP(3)**2
RHS = (XSQR1 + YSQR1 - XSQR3 - YSQR3 +RSQR3 - RSQR1)*O.5
IF (DY .EQ. O.O) THEN
    THETA = RHS/DX
    A = 1
    B = -2 * YP(2)
    C = (THETA)**2 + XSQR1 + YSQR1 - (2 * THETA * XP(2)) - RSQRI
    DISCRIM = B**2 - (4 * A * C)
    ANS(1,2) = (-B + SQRT(DISCRIM))/(2*A)
    ANS (2,2) = (-B/A - ANS (1,2))
    ANS (1,1) = THETA
    ANS (2,1) = THETA
ELSE
    THETA = RHS/DY
    PHI = DX/DY
    A = 1.0 + PHI**2
    B = 2*(YP(2)*PHI-THETA*PHI-XP(2))
    C = XSQR1 + (THETA)**2 + YSQR1 - RSQR1 - 2.0 * THETA * YP(2)
    DISCRIM = B**2 - (4 * A * C)
    ANS(1,1) = (-B +SQRT(ABS(DISCRIM)))/(2*A)
    ANS}(2,1)=(-B/A - ANS(1,1)
    ANS(1,2) = THETA - PHI*ANS(1,1)
    ANS (2,2) = THETA - PHI*ANS (2,1)
    ENDIF
IF (ABS(ANS(1,2) - BUOYY(4)) .LT. 1000) THEN
    XP(4) = ANS(1,1)
    YP(4) = ANS(1,2)
ELSE
```

```
            XP(4) = ANS (2,1)
            YP(4) = ANS(2,2)
            ENDIF
            RETURN
            END
TGTRANGE SUBROUTINE TO CALCULATE RANGE TO TARGETS
SUBROUTINE TGTRANGE (TTIME,TGTZ, ZPHONE,NUMSSV,DEPTH,SSPVEL, \(+\quad\) HMVEL, TRANGE, J)
REAL* 4 TGTZ,ZPHONE,DEPTH,SSPVEL, HMVEL,TRANGE,TTIME INTEGER*4 J, NUMSSV
DIMENSION TGTZ(2), ZPHONE(4),DEPTH(40), SSPVEL(40), TRANGE(2,4), \(+\quad \operatorname{TTIME}(2,4)\)
DO \(10 \mathrm{I}=1,4\)
CALL HMVELOC(TGTZ(J), ZPHONE(I), NUMSSV, DEPTH, SSPVEL, HMVEL) TRANGE(J,I) = TTIME(J,I) * HMVEL
10 CONTINUE RETURN
END
SUBROUTINE THREED (J,TGTX,TGTY,TGTZ, PHONEX, PHONEY, PHONEZ,RM)
REAL* 4 TGTX,TGTY,TGTZ, PHONEX,PHONEY, PHONEZ,PRPX,PRPY,PRPZ,
\(+\mathrm{XTO}, \mathrm{YTO}, \mathrm{ZTO}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 7, \mathrm{~A} 8, \mathrm{~A} 9, \mathrm{RO}, \mathrm{DR}, \mathrm{RM}\)
INTEGER*4 J, IN
DIMENSION TGTX(2),TGTY(2),TGTZ(2),PHONEX(4), PHONEY(4),
\(+\operatorname{PHONEZ}(4), \mathrm{RO}(4), \mathrm{RM}(2,4)\)
IN \(=0\)
5 continue
XTO=TGTX (J)
YTO=TGTY(J)
ZTO \(=\) TGTZ (J)
A1 \(=0.0\)
A2 \(=0.0\)
A \(3=0.0\)
A \(4=0.0\)
A5 \(=0.0\)
A6=0.0
A7 \(=0.0\)
\(\mathrm{A} 8=0.0\)
A9 \(=0.0\)
DO \(10 I=1,4\)
RO(I) = SQRT((XTO-PHONEX(I))**2+(YTO-PHONEY(I))**2+
\(+(\) (TO-PHONEZ (I))**2)
\(D R=R M(J, I)-R O(I)\)
PRPX = (XTO - PHONEX(I)) / RO(I)
PRPY = (YTO - PHONEY(I)) / RO(I)
\(\operatorname{PRPZ}=(Z T O-\operatorname{PHONEZ}(I)) / R O(I)\)
\(\mathrm{A} 1=\mathrm{A} 1+\mathrm{PRPX} \times \mathrm{PRPX}\)
A2 \(=\) A2 + PRPX*PRPY
A3 \(=\mathrm{A} 3+\mathrm{PRPX}\) *PRPZ
\(\mathrm{A} 4=\mathrm{A} 4+\mathrm{PRPY}\) *PRPY
A5 \(=\mathrm{A} 5+\mathrm{PRPY} * P R P Z\)
A6 = A6 + PRPZ*PRPZ
A7 \(=A 7+D R * P R P X\)
\(A 8=A 8+D R * P R P Y\)
```

```
                A9 = A9 + DR*PRPZ
            10 CONTINUE
        DETAO = A1* (A4*A6-A5*A5) -A2* (A2*A6-A5*A3) +A 3* (A2*A5-A4*A3)
        DETA1 = A7*(A4*A6-A5*A5) -A8* (A2*A6-A5*A3) +A9*(A2*A5-A4*A3)
        DETA2 = A1*(A8*A6-A9*A5) -A2*(A7*A6-A9*A3) +A3*(A7*A5-A8*A3)
        DETA3 = A1*(A4*A9-A5*A8)-A2*(A2*A9-A5*A7) +A3* (A2*A8-A4*A7)
        TGTX(J) = XTO + DETA1/DETAO
        TGTY(J) = YTO + DETA2/DETAO
        TGTZ(J) = ZTO + DETA3/DETAO
        IF (((DETA1**2+DETA2**2+DETA3**2)/DETAO).LT. 1.0 ) THEN
            GO TO 900
        ENDIF
        IN = IN + I
        IF (IN .GT. 25) THEN
            GO TO 900
        ENDIF
        GOTO 5
    900 RETURN
    END
* OUTPUT SUBROUTINE TO OUTPUT DATA RESULTS
    SUBROUTINE OUTPUT (MEAN1,VAR1,MEAN2,VAR2,MEANR,VARR,
    + BTN,STN,TTN,NCOUNT)
    REAL*4 MEAN1,VAR1,MEAN2,VAR2,MEANR,VARR,BTN,STN,TTN
    INTEGER*4 NCOUNT
    OPEN (UNIT = 8, FILE = 'OUTPUT3.DAT')
    WRITE(8,*) ' MEAN STAND DEV •
    WRITE(8,1000) MEAN1, VAR1
    WRITE(8,1001) MEAN2, VAR2
    WRITE(8,1002) MEANR, VARR
    WRITE(8,*) ' NUMBER OF ITERATIONS, BUOY TRANS TARGET
    WRITE(8,1003) NCOUNT, BTN, STN,TTN
    1000 FORMAT (' TRUE ERROR FOR TARGET 1 = ',F8.3, F8.4)
    1001 FORMAT (" TRUE ERROR FOR TARGET 2 = ',F8.3, F8.4)
    1002 FORMAT (. RELATIVE ERROR = , F8.3, F8.4)
    1003 FORMAT ( 3X,I6,15X, F8.4, F8.4, F8.4)
    RETURN
    END
* URAND SUBROUTINE TO GENERATE RANDOM NUMBERS
    SUBROUTINE URAND(A,B,SEED)
    REAL*8 SEED, PI, R1, R2
    PI=3.14159265358979
    R1=(SEED+PI)**504.D-2
    R1=R1-DINT(R1)
    SEED=R1
    R2=(SEED+PI)**504.D-2
    R2=R2-DINT(R2)
    SEED=R2
    R=SQRT(-2*LOG(R1))
    T=2*PI*R2
    A=R*SIN(T)
    B=R* COS (T)
    RETURN
    END
```


APPENDIX B

The following is the output data from the simulations conducted for each of the four cases discussed in Chapter IV. Case number 1:

BUOYLOC.DAT

0.0,	0.0,	5.0,	0.0,	0.0,	1000.0,
3000.0,	5196.0,	5.0,	3000.0,	5196.0,	1000.0,
6000.0,	0.0,	5.0,	6000.0,	0.0,	1000.0,
9000.0,	5196.0,	5.0,	9000.0,	5196.0,	1000.0,

TARGET. DAT
2036.0, 2036.0, 400.0,
1965.0, 1965.0, 400.0,

OUTPUT.DAT

		MEAN	STAND DEV	
TRUE ERROR FOR TARGET $1=$.002	.0000		
TRUE ERROR FOR TARGET $2=$.001	.0000		
RELATIVE ERROR	$=$.001	.0000	
NUMBER OF ITERATIONS,	$=$	BUOY	TRANS	TARGET
1000		.0000	.0000	.0000

		MEAN	STAND DEV
TRUE ERROR FOR TARGET $1=$	60.054	.0380	
TRUE ERROR FOR TARGET $2=$	59.780	.0383	
RELATIVE ERROR	$=$	45.545	.0260
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET	
1000		.0030	.0030
	.0030		

	ME		STAND DEV
TRUE ERROR FOR TARGET	$=80$	887	. 0530
TRUE ERROR FOR TARGET 2	80	616	0537
RELATIVE ERROR	61	654	0362
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0040	. 0040	- . 0040
			STAND DEV
TRUE ERROR FOR TARGET 1	102.065		. 0688
TRUE ERROR FOR TARGET 2	$=102$	172	. 0718
RELATIVE ERROR	78	586	. 0486
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0050	. 0050	. 0050
	MEAN S$=123.875$		STAND DEV
TRUE ERROR FOR TARGET 1			. 0910
TRUE ERROR FOR TARGET 2	12	837	. 0939
RELATIVE ERROR	98	655	. 0726
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0060	. 0060	O.0060
			STAND DEV
TRUE ERROR FOR TARGET 1	$=145$. 1044
TRUE ERROR FOR TARGET 2	$=146$	658	. 1133
RELATIVE ERROR	$=118$	392	. 0931
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0070	. 0070	. 0070
			STAND DEV
TRUE ERROR FOR TARGET	$=164$	285	. 1207
TRUE ERROR FOR TARGET 2	$=165$	526	. 1290
RELATIVE ERROR	13	519	. 1075
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0080	. 0080	. 0080
			STAND DEV
TRUE ERROR FOR TARGET 1	$=183$	286	. 1335
TRUE ERROR FOR TARGET 2	$=179$	448	. 1264
RELATIVE ERROR	$=15$	021	. 1197
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0090	. 0090	0.0090
			STAND DEV
TRUE ERROR FOR TARGET 1	$=198$	663	. 1406
TRUE ERROR FOR TARGET 2	19	931	. 1478
RELATIVE ERROR	$=17$	593.	. 1288
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0100	. 0100	. 0100

Case number 2:
BUOYLOC.DAT

0.0,	0.0,	5.0,	0.0,	0.0,	1000.0,
3000.0,	5196.0,	5.0,	3000.0,	5196.0,	1000.0,
6000.0,	0.0,	5.0,	6000.0,	0.0,	1000.0,
9000.0,	5196.0,	5.0,	9000.0,	5196.0,	1000.0,

TARGET.DAT
1000.0, 2000.0, 400.0, 3000.0, 4236.0, 400.0,

OUTPUT.DAT

| | | MEAN | STAND DEV | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| TRUE ERROR FOR TARGET $1=$ | .001 | .0000 | | |
| TRUE ERROR FOR TARGET 2 | $=$ | .002 | .0000 | |
| RELATIVE ERROR | $=$ | .001 | .0000 | |
| NUMBER OF ITERATIONS, | BUOY | TRANS | TARGET | |
| 1000 | | .0000 | .0000 | .0000 |

		MEAN	STAND DEV
TRUE ERROR FOR TARGET $1=$	23.314	.0147	
TRUE ERROR FOR TARGET 2	$=$	12.332	.0058
RELATIVE ERROR	$=19.779$.0111	
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET	
1000	.0010	.0010	.0010

		MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=$	46.881	.0300	
TRUE ERROR FOR TARGET 2	$=$	24.694	.0116	
RELATIVE ERROR	$=$	39.783	.0226	
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET		
1000		.0020	.0020	.0020

| | | MEAN | STAND DEV |
| ---: | :--- | :--- | :--- | :--- |
| TRUE ERROR FOR TARGET $1=$ | 71.010 | .0467 | |
| TRUE ERROR FOR TARGET $2=$ | 37.106 | .0175 | |
| RELATIVE ERROR | $=$ | 60.300 | .0355 |
| NUMBER OF ITERATIONS, BUOY | TRANS | TARGET | |
| 1000 | .0030 | .0030 | .0030 |

| | | MEAN | STAND DEV |
| ---: | :--- | :--- | :--- | :--- |
| TRUE ERROR FOR TARGET 1 | $=$ | 96.323 | .0673 |
| TRUE ERROR FOR TARGET 2 | $=$ | 49.592 | .0236 |
| RELATIVE ERROR | $=81.926$ | .0521 | |
| NUMBER OF ITERATIONS, BUOY | TRANS | TARGET | |
| IOOO | .0040 | .0040 | .0040 |

	MEAN		STAND DEV
TRUE ERROR FOR TARGET 1	$=122.9$	966.09	. 0913
TRUE ERROR FOR TARGET 2	$=62$.	. 0299	
RELATIVE ERROR	104	88 . 07	. 0721
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	.0050	.0050	. 0050
	MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=148$.	8.1136	
TRUE ERROR FOR TARGET 2	$=74$.	7.0364	
RELATIVE ERROR	127.	9.0906	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	.0060	.0060	. 0060
	MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=174$.	1.1362	
TRUE ERROR FOR TARGET 2	87.	7.0428	
RELATIVE ERROR	$=150.83$	9.1110	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	. 0070	.0070	. 0070
	MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=194$.	3.1489	
TRUE ERROR FOR TARGET 2	99	5.0498	
RELATIVE ERROR	169.3	7 . 1218	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	. 0080	. 0080	. 0080
	MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=209.38$	3.1497	
TRUE ERROR FOR TARGET 2	$=111.31$	6.0572	
RELATIVE ERROR	$=183.4$	9.1207	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	. 0090	. 0090	. 0090
	MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=232.7$	5.1665	
TRUE ERROR FOR TARGET 2	$=123.1$	7.0622	
RELATIVE ERROR	$=206.6$	0.1412	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET
1000	. 0100	.0100	. 0100

Case number 3:

BUOYLOC.DAT					
0.0,	0.0,	5.0,	0.0,	0.0,	1000.0,
3000.0,	5196.0,	5.0,	3000.0,	5196.0,	900.0,
6000.0,	0.0,	5.0,	6000.0,	0.0,	800.0,
9000.0,	5196.0,	5.0,	9000.0,	5196.0,	700.0,

```
TARGET.DAT
    2036.0, 2036.0, 400.0,
    1965.0, 1965.0, 400.0,
```

OUTPUT.DAT

		MEAN	STAND DEV	
TRUE ERROR FOR TARGET $1=$.002	.0000		
TRUE ERROR FOR TARGET $2=$.001	.0000		
RELATIVE ERROR	$=$.001	.0000	
NUMBER OF ITERATIONS,	BUOY	TRANS	TARGET	
1000		.0000	.0000	.0000

		MEAN	STAND DEV
TRUE ERROR FOR TARGET 1	$=$	21.890	.0139
TRUE ERROR FOR TARGET 2	$=$	21.668	.0138
RELATIVE ERROR	$=$	16.342	.0095
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET	
1000	.0010	.0010	.0010

		MEAN	STAND DEV
TRUE ERROR FOR TARGET 1	$=$	44.028	.0283
TRUE ERROR FOR TARGET 2	$=$	43.639	.0283
RELATIVE ERROR	$=$	32.941	.0193
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET	
1000	.0020	.0020	.0020

		MEAN S	STAND DEV
TRUE ERROR FOR TARGET 1	6	66.771	. 0445
TRUE ERROR FOR TARGET 2	6	66.268	. 0446
RELATIVE ERROR	5	50.214	. 0303
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0030	0.0030	0.0030
		MEAN S	STAND DEV
TRUE ERROR FOR TARGET 1	9	90.263	. 0629
TRUE ERROR FOR TARGET 2	8	89.303	. 0620
RELATIVE ERROR	6	68.667	. 0436
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGE
1000	. 0040	0.0040	0.0040

Case number 4:
BUOYLOC. DAT

0.0,	0.0,	5.0,	0.0,	0.0,
3000.0,	5196.0,	5.0,	3000.0,	5196.0,
9000.0,				
9000.0,	0.0,	5.0,	6000.0,	0.0,
9000.0,	5196.0,	5.0,	9000.0,	5196.0,

TARGET.DAT
1000.0, 2000.0, 400.0, 3000.0, 4236.0, 400.0,

OUTPUT.DAT

		MEAN	STAND DEV	
TRUE ERROR FOR TARGET 1	$=$.001	.0000	
TRUE ERROR FOR TARGET $2=$.001	.0000		
RELATIVE ERROR	$=$.001	.0000	
NUMBER OF ITERATIONS,	$=$	BUOY	TRANS	TARGET
1000		.0000	.0000	.0000

		MEAN	STAND DEV
TRUE ERROR FOR TARGET	$=$	24.415	. 0156
TRUE ERROR FOR TARGET	-	13.655	. 0068
RELATIVE ERROR	= 2	20.218	. 0114
NUMBER OF ITERATIONS,	BUOY	TR	S TARGET
1000	010	0.001	001

		MEAN	STAND DEV
TRUE ERROR FOR TARGET $1=$	49.162	.0319	
TRUE ERROR FOR TARGET $2=$	27.372	.0136	
RELATIVE ERROR	$=$	40.721	.0233
NUMBER OF ITERATIONS, BUOY	TRANS	TARGET	
1000		.0020 .0020	.0020

		MEAN	STAND DEV
TRUE ERROR FOR TARGET	7	74.694	. 0504
TRUE ERROR FOR TARGET 2	- 4	41.198	. 0208
RELATIVE ERROR	= 6	61.921	. 0372
NUMBER OF ITERATIONS,	BUOY	TR	, TARGE
1000	. 0030	0 . 003	0 . 0030

MEAN STAND DEV
TRUE ERROR FOR TARGET $1=102.194$. 0764
TRUE ERROR FOR TARGET $2=55.192$. 0283
RELATIVE ERROR $=84.955$. 0585
NUMBER OF ITERATIONS, BUOY TRANS TARGET 1000.0040 . 0040 . 0040

	MEAN		STAND DEV.1024
TRUE ERROR FOR TARGET 1	130	319	
TRUE ERROR FOR TARGET	69	366	. 0364
RELATIVE ERROR		312	. 0842
NUMBER OF ITERATIONS,	BUOY	TRANS	S TARGET
1000	. 0050	. 0050	0.0050
TRUE ERROR FOR TARGET 1			STAND DEV
	$=154$	690	. 1222
TRUE ERROR FOR TARGET 2	8	145	. 0447
RELATIVE ERROR	130	410	. 0952
$\begin{aligned} & \text { NUMBER OF ITERATIONS, } \\ & 1000 \end{aligned}$	BUOY	TRANS	S TARGET
	. 0060	. 0060	0.0060
TRUE ERROR FOR TARGET 1			STAND DEV
	$=183$	675	1501
TRUE ERROR FOR TARGET 2	97	235	. 0547
RELATIVE ERROR	15	063	. 1203
NUMBER OF ITERATIONS,1000	BUOY	TRANS	S TARGET
	. 0070	. 0070	0.0070
TRUE ERROR FOR TARGET 1			STAND DEV
	202	344	. 1559
TRUE ERROR FOR TARGET 2	$=112$	773	. 0695
RELATIVE ERROR	17	353	. 1238
NUMBER OF ITERATIONS,1000	BUOY	TRANS	S TARGET
	. 0080	. 0080	0.0080
TRUE ERROR FOR TARGET 1			STAND DEV
	$=221$	332	. 1593
TRUE ERROR FOR TARGET 2	12	445	. 0794
RELATIVE ERROR	19	134	. 1413
NUMBER OF ITERATIONS,1000	BUOY	TRANS	S TARGET
	. 0090	. 0090	0.0090
TRUE ERROR FOR TARGET 1			STAND DEV
	$=239$	836	. 1740
TRUE ERROR FOR TARGET 2	140	192	. 0861
RELATIVE ERROR	$=210$	705	. 1459
NUMBER OF ITERATIONS,1000	BUOY	TRANS	S TARGET
	. 0100	. 0100	0.0100

LIST OF REFERENCES

1. Kinsler, L. E., and others, Fundamentals of Acoustics, 3rd ed., John Wiley and Sons, 1982.

BIBLIOGRAPHY

Pacific Missile Test Range Technical Note 3430-45-73., An Improved Formula for Underwater Effective Sound Velocity, by Larry A. Anderson, December, 1973.

Anderson, L. A., Tracking Algorithms for the Auxiliary Tracking System (ATS), paper prepared for evaluation of ATS design review, 28 June, 1990.

Anton, H., and Rorres, C., Elementary Linear Algebra with Applications, John Wiley and Sons, 1987.

Naval Undersea Warfare Engineering Station Report 16623100006, Programmable Pinger Theory of Operation, by M. Barlow, July, 1985.

Naval Undersea Warfare Engineering Station Report 16623100147, SFSK Receiver Theory of Operation, by M. Barlow, July, 1985.

Hoover, S. V., and Perry, R. F., Simulation: A Problem-Solving Approach, Addison-Wesley Publishing Co., 1989.

Walpole, R. E., and Myers, R. H., Probability and Statistics for Engineers and Scientists, 4th ed., Macmillan Publishing Co., 1989.

Naval Undersea Warfare Engineering Station Program, ATS Survey Software Operating Procedures on HP 9000/550, June, 1990.

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145
2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Superintendent 1
Attn: Prof R.R. Read, Code OR/Re Naval Postgraduate School
Monterey, CA 93943-5000
4. Superintendent 1
Attn: Prof A.B. Coppens, Code PH/Cz Naval Postgraduate School
Monterey, CA 93943-5000
5. Commanding Officer 1
Attn: John Palsha, Code 70E3 Naval Undersea Warfare Engineering Station Keyport, WA 98345-5000
6. Commanding Officer 1
Attn: George Case, Code 70D1 Naval Undersea Warfare Engineering Station Keyport, WA 98345-5000
7. Commanding Officer 1
Attn: Larry Anderson, Code 70E2
Naval Undersea Warfare Engineering Station Keyport, WA 98345-5000
```
Thesis
T22165 Taylor
c.1 Accuracy assessment
for the Auxillary Track-
ing System.
```

Thesis
T22165 Taylor
c. 1 Accuracy assessment for the Auxillary Tracking System.

