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Abstract

Groupoids are mathematical structures that have proved to be useful in many areas,
ranging from category theory and differential topology and geometry to functional
analysis and operator algebras. In particular, one can associate a C∗-algebra to any
locally compact groupoid. Cayley graphs of groups are used in the construction of ex-
pander graphs, which are of great interest in computer science. This paper establishes
a bridge between groupoid theory and Cayley graph theory. The end goal is to use
both theories as tools for problems in both areas.

1 Introduction

We start with some definitions. The graphs we will be using are directed graphs, where an
edge from vertex v to vertex w is represented by the ordered pair (v, w). We allow loops
and are not prejudiced against multiple edges either. With this convention, we define our
Cayley graphs.

Definition 1.1. Let Γ be a group and let A ⊆ Γ, not necessarily closed under the group
operation. The Cayley graph of Γ under alphabet A, denoted Cay(Γ, A), is a graph with
vertex set V = G and directed edge set E = {(γ, aγ) : γ ∈ Γ, a ∈ A}.

We now define groupoids.

Definition 1.2. A groupoid is a set G of “arrows” or “morphisms” connecting elements in
an object set G(0), with the following structure:

1. There are maps s,t: G → G(0) which specify the source and target objects of each
morphism.

2. There is a partially defined multiplication operation on the morphisms. The multipli-
cation operates only on the set of composable pairs

G(2) = {(g, h) ∈ G × G : s(g) = t(h)}.
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This operation is required to be associative.

3. There is an identity map ε : X → G that associates a loop morphism to every element
of the object set.
That is, s(ε(x)) = t(ε(x)) = x for all x ∈ X .

4. Every morphism g ∈ G has an inverse morphism g−1 ∈ G such that s(g) = t(g−1)
and t(g) = s(g−1).

While there are many ways to form groupoids, one way is by the transformation groupoid
construction.

Definition 1.3. Let Γ be a group acting on a set X via a left action ·. Then the transforma-
tion groupoid T (Γ, X) (or T (Γ, X, ·) when the action is ambiguous) has object set X and
morphism set Γ×X , where a morphism (γ, x) has source s(γ, x) = x and target t(γ, x) =
γ ·x. The multiplication acts on the set of composable pairs G(2) = {((γ1, γ2 ·x), (γ2, x))}
via the product (γ1, γ2 ·x)(γ2, x) = (γ1γ2, x). We denote by T (Γ) the specific transforma-
tion groupoid formed by Γ acting on itself under the action of left multiplication.

With the idea that a groupoid is composed of morphisms that act as connected edges, it
seems natural to produce a graph from a groupoid.

Definition 1.4. Let A be a subset of G. We call A a groupoid alphabet. We define the
underlying graph of G with groupoid alphabet A, denoted U(G,A), to be the graph with
vertex set V = G(0), the object set of G, and directed edge set E = {(s(α), t(α)) : α ∈ A}.

2 Results

The Cayley graph is a way to form a graph from a group. The transformation groupoid is a
way to form a groupoid from a group. The underlying graph is a way to form a graph from
a groupoid. The following theorem ties these ideas together.

Theorem 2.1. Let Γ be a group and let A ⊆ Γ be an alphabet. Let A be the groupoid
alphabet A = {(a, γ) ∈ T (Γ) : a ∈ A}. Then U(T (Γ),A) ∼= Cay(Γ, A).

Proof. Since T (Γ)(0) = Γ and Cay(Γ, A) has vertex set Γ, both graphs have the same
vertex set. To show they have the same edge set, we first let (x, ax) be a edge in Cay(Γ, A)
for some x ∈ Γ, a ∈ A. Hence, the edge has source x and target ax. Thus, for the edge
to be in U(T (Γ),A), there must be an α ∈ A such that s(α) = x and t(α) = ax. But α
is an element (γ1, γ2) such that s(γ1, γ2) = γ2, and t(γ1, γ2) = γ1 · γ2 = γ1γ2. Hence, if
γ1 = a and γ2 = x, then the edge (s(α), t(α)) is the edge (x, ax), so (x, ax) is an edge in
U(T (Γ),A). Similarly, if α ∈ A is of the form (a, γ), then s(α) = γ and t(α) = aγ, so
the edge in U(T (Γ),A) is (γ, aγ), which is an edge in Cay(Γ, A). Therefore, the graphs
have the same edge set, so they are isomorphic.
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Through this result, we get a correspondence between groupoids and groups that we can
expand upon. One natural way to expand upon this correspondence is by building larger
groupoids and groups. We have a way of building larger groups through the semi-direct
product of two groups. A way to build larger groupoids is through a naturally defined
direct product of two groupoids.

Definition 2.2. Let G andH be two groupoids. Then the direct product G×H is a groupoid
with object set (G × H)(0) = G(0) × H(0), source map s(g, h) = (s(g), s(h)), target map
t(g, h) = (t(g), t(h)), and composable pair set

(G ×H)(2) = {((g1, h1), (g2, h2)) : (g1, g2) ∈ G(2), (h1, h2) ∈ H(2)}

with the product (g1, h1)(g2, h2) = (g1g2, h1h2).

We also recall the definition of a semi-direct product group [4].

Definition 2.3. Let Γ and Λ be groups and let φ be a homomorphism from Λ into Aut(Γ).
Let · denote the left action of Λ on Γ determined by φ. Then Γ oφ Λ is the set Γ × Λ with
the following multiplication:

(γ1, λ1)(γ2, λ2) = (γ1(λ1 · γ2), λ1λ2).

Γ oφ Λ is a group under this multiplication, and is called the semi-direct product of Γ and
Λ with respect to φ.

With a properly defined groupoid alphabet, we get the correspondence we want between
the semi-direct product group and the direct product groupoid.

Theorem 2.4. Let Γ oφ Λ be the semi-direct product group of groups Γ and Λ with respect
to the homomorphism φ. Let A = {(aΓ, aΛ)} ⊆ Γ × Λ be an alphabet for Γ oφ Λ. We
define the groupoid alphabet Aφ ⊆ T (Γ)× T (Λ) by

Aφ = {((aΓ(aΛ · γ)γ−1, γ), (aΛ, λ)) : γ ∈ Γ, λ ∈ Λ, (aΓ, aΛ) ∈ A}.

Let U(T (Γ)×T (Λ),Aφ) be the underlying graph of T (Γ)×T (Λ) with groupoid alphabet
Aφ. Then U(T (Γ)× T (Λ),Aφ) ∼= Cay(Γ oφ Λ, A).

Proof. Cay(Γ oφ Λ, A) has vertex set Γ × Λ, and U(T (Γ) × T (Λ),Aφ) has vertex set
(T (Γ)× T (Λ))(0) = T (Γ)(0) × T (Λ)(0) = Γ×Λ. Thus, the graphs have the same vertex
set. To show they have the same edge set, first we let (x, ax) be an edge in Cay(Γ oφ Λ).
That is, x = (γ, λ) and a = (aΓ, aΛ), with ax = (aΓ(aΛ · γ), aΛλ). But, the element
α = ((aΓ(aΛ ·γ)γ−1, γ), (aΛ, λ)) ∈ Aφ has source s(α) = (s(aΓ(aΛ ·γ)γ−1), s(aΛ, λ)) =
(γ, λ) = x and target t(α) = (t(aΓ(aΛ · γ)γ−1), t(aΛ, λ)) = (aΓ(aΛ · γ)γ−1γ, aΛλ) =
(aΓ(aΛ · γ), aΛλ) = ax. Hence, the edge (x, ax) is in U(T (Γ)× T (Λ),Aφ).
Similarly, if α ∈ Aφ is of the form ((aΓ(aΛ · γ)γ−1, γ), (aΛ, λ)), then s(α) = (γ, λ) and
t(α) = (aΓ(aΛ · γ), aΛλ), so the edge is in Cay(Γ oφ Λ). Thus, the graphs have the same
edge sets, and are therefore isomorphic.
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3 Applications

3.1 Expander Graphs

Now that we have established that we can create a groupoid alphabet that fits the semi-
direct product of any two groups, we can relate groupoids to expander graph applications of
Cayley graphs. In Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree
Expanders and Extractors by Reingold, Vadhan, and Wigderson [7], it was shown that a
new type of graph product, known as the zig-zag graph product, has the special property
that the zig-zag product of two expander graphs is always an expander graph. Later, the
paper by Alon, Lubotzky, and Wigderson [1] related this idea to Cayley graphs by showing
that under some special circumstances, the zig-zag product of two Cayley graphs of groups
is isomorphic to the Cayley graph of the semi-direct product of the groups. This is im-
portant because it revealed that for groups with generators known to yield good expander
graphs, a proper choice of alphabet on the semi-direct product group would yield a new
expander graph. With the results established in this paper, we have essentially the same
property with groupoids. If we have groups yielding expander graphs, we can choose the
proper group alphabet for the semi-direct product and construct a groupoid containing this
information so that the underlying graph with the correct groupoid alphabet is an expander
graph.

For example, suppose Γ and Λ are groups with alphabets AΓ and AΛ that yield Cay-
ley graphs that are good expanders. Under the alphabet A detailed in [1], we know that
Cay(Γ o Λ) is an expander graph. Using A, we can construct the groupoid alphabet A
such that U(T (Γ)× T (Λ),A) is an expander graph. This raises the question of whether it
may be possible to use groupoids to produce expander graphs in new ways.

3.2 Operator Algebras

On the other hand, it seems feasible that this connection could be used to attack problems
on the groupoid theory side as well. It is known that given a groupoid, together with a
suitable topological structure, one can construct a C∗-algebra [8]. As Paterson [6] states,
operator algebras are generally quite complex, so deriving an algebra from an object such
as a group or groupoid can be extremely useful. Motivated by the “noncommutative geom-
etry” program initiated by Connes [3], some authors have been studying the elements of
the groupoid C∗-algebra as quantum observables of one or many-particle systems. Since
we now have established a correlation between groupoids and Cayley graphs, it seems that
we now also consider possible relationships between Cayley graphs and certain operator
algebras, or even some particle systems on the graphs. Through this relationship, we may
discover a way to construct an operator algebra directly from a Cayley graph. It will be
interesting to see whether this program is related to the types of constructions being done
by operator algebraists, as in [5].
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4 Summary

In this paper, we have shown that there is a type of groupoid that encapsulates all of the
same information as a Cayley graph. With this result, we can use group theory or graph
theory to approach problems typically associated with groupoids, and we can use groupoid
theory to address problems for which Cayley graphs tend to be used.
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