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Combining the hybridization and repurposing strategies, six
compounds from our in-house library and having a designed
hybrid structure of MBX-1162, pentamidine and MMV688271
were repurposed as potential antibacterial agents. Among,
compounds 1a and 1d elicited potential sub-µg ml−1 activity
against the high-priority antibiotic-resistant Gram-positive
members of ESKAPE bacteria as well as antibiotic-susceptible
Gram-positive bacteria. Furthermore, they showed potential
low µg ml−1 activity against the explored critical-priority
antibiotic-resistant Gram-negative members of ESKAPE
bacteria. In time–kill assay, compound 1a has effective 0.5
and 0.25 µg ml−1 antibacterial lethal concentrations against
MRSA in exponential growth phase. In silico investigations
predicted compounds 1a and 1d as inhibitors of the open
conformation of undecaprenyl diphosphate synthase involved
in bacterial isoprenoid synthesis. In addition, compounds 1a
and 1d were predicted as inhibitors of NADPH-free but not
NADPH-bound form of ketol-acid reductoisomerase and may
also serve as potential B-DNA minor groove binders with
possible differences in the molecular sequence recognition.
Overall, compounds 1a and 1d are presented as
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multifunctional potential antibacterial agents for further development against high- and critical-

priority Gram-positive and Gram-negative antibiotic-resistant ESKAPE bacterial pathogens as well
as antibiotic-susceptible Gram-positive bacterial pathogens.

1. Introduction
A doubtless fact is that microbial diseases including bacterial infections presented serious threats andmajor
challenges to health since the dawn of the history. Several ancient human mummies or remains show
infections by pathogenic bacteria such as Escherichia coli, Staphylococcus saprophyticus, Brucella melitensis,
Gardnerella vaginalis, Salmonella enterica and many others [1–3]. Despite the successful development of
antibiotics in the twentieth century which enabled effective combating of such bacterial diseases, no new
class was ever introduced since the 1980s [4,5]. Unfortunately, the evolvement of antimicrobial resistance
(AMR) coupled with the low discovery and introduction rate of novel and clinically effective
antibacterial agents over the past decades might be returning us gradually to the pre-antimicrobial era
[6]. Doubtless, the attrition of the usefulness of currently available antimicrobials poses heavy burdens
and results in a health crisis which is estimated to claim 10 million lives globally by year 2050 [7–9].
Consequently, it is urgent to develop new antimicrobial agents [10].

Based onmortality, burden, resistance, transmissibility, preventability and treatability, WHO Pathogens
Priority List Working Group disclosed in 2018 a list of bacteria with critical, high and medium priority for
new drug development [11]. The critical priority involved four bacteria: carbapenem-resistant Acinetobacter
baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant and third-generation
cephalosporin-resistant Klebsiella spp., and third-generation cephalosporin-resistant Enterobacter spp. Two
bacteria among the high-priority bacteria: vancomycin-resistant Enterococcus faecium and methicillin-
resistant Staphylococcus aureus, constitute with four critical-priority bacteria the ESKAPE bacterial
pathogens which are responsible for most of the life-threatening nosocomial infections [12]. Accordingly,
it is highly demanded to swiftly develop new antimicrobial agents combating these highly virulent and
multi-drug-resistant ESKAPE pathogens.

ESKAPE pathogens can escape from the action of antimicrobials through inactivating or altering drugs,
modification of the drug binding sites, altered permeability to reduce intracellular accumulation, and/or
formation of biofilm [13]. Circumventing resistance to existing drugs might be achieved via developing
new agents acting on new molecular targets as well as recruitment of polypharmacology by developing
multi-target agents that inhibit more than target [14,15]. Although the concept of developing multi-
target polypharmacologic agents is well acknowledged in the development of anti-cancer agents [16–20]
and anti-inflammatory agents [21], it is yet underexploited for development of antimicrobial agents and
limited examples exist.

It is well established that bacterial isoprenoid synthesis pathway differs from the pathway in human
and animals [22,23]. The facts that isoprenoid synthesis is dispensable for peptidoglycan synthesis
essential for integrity of bacterial cell wall, and, at the same time, bacterial enzymes involved in
isoprenoid synthesis are mostly different from those of human and animals suggests targeting
bacterial isoprenoid synthesis as a strategy for development of novel antibacterial agents [22,24]. The
bacterial enzyme undecaprenyl diphosphate synthase (UPPS) has been reported as a potential target
for development of novel antibacterial agents toward inhibition of bacterial isoprenoid synthesis and,
hence, impairing bacterial cell wall [22,24]. While there is a human version of farnesyl pyrophosphate
synthase (FPPS) homologous to the bacterial FPPS, a bacterial but not human version of UPPS exists.
Accordingly, a compound impacting UPPS might possess a desirable selectivity.

DNA replication and gene transcription are both essential processes for bacterial growth and
survival. Accordingly, selective targeting of bacterial DNA could be a promising strategy to develop
novel effective antibacterial agents. In fact, both processes require promotor sequences as starting sites
where DNA would unwind, and the processes would initiate recruiting nucleic acid polymerases and
transcriptases. Unlike human DNA in which the most abundant promotor sequences are GC-rich [25],
the most abundant promotor sequences in bacteria and parasites are AT-rich [26,27]. Consequently,
developing molecules that can recognize and bind to AT-rich repeated sequences might afford
potential antimicrobial agents [28–42]. Such a strategy might be augmented by the phenomenon of
sequence-dependent DNA shape where hydrogen bonds might be formed between B-DNA and minor
groove binding small molecules but not with side chains of many important DNA-interacting proteins
[43]. In addition, the minor groove of B-DNA AT-rich sequences are narrower, deeper and more
capable of establishing polar interactions than that of GC-rich sequences.
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Ketol-acid reductoisomerase (KARI) also known as acetohydroxyacid isomeroreductase (AHIR), is an

essential enzyme for synthesis of the three branched chain amino acids (L-leucine, L-isoleucine and
L-valine) which are important for bacterial survival [44]. While it exists in bacteria, fungi and plants,
there is no human or animal version of KARI [45]. Development of a KARI inhibitor would allow
targeting bacterial synthesis of branched chain amino acids and would produce selective antibacterial
effects. Consequently, it is an attractive strategy for developing novel and safe antimicrobial agents [46].
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2. Results and discussion
2.1. Repurposing rational
Repurposing (aka repositioning or reprofiling) is a well-acknowledged strategy in drug discovery that offers
several advantages including saving time, money and resources that are needed to develop novel drugs from
scratch [47–52]. This strategy is not limited to repurposing compounds for indications outside of clinically
approved therapeutic areas, but extends also to previously studied molecules that have not been approved
or even previously failed [19,53]. Several molecules were successfully rediscovered for novel clinical uses
by utilizing such a strategy. In lieu of the urgent need to achieve novel bacterial agents to overcome the
ever-increasing threats of bacterial multi-drug resistance (MDR), repurposing might be a good choice.

As above-mentioned, multifunctional molecules modulating multi-targets can help to overcomeMDR.
This approach might be augmented through inclusion of novel molecular targets among the addressed
multi-targets. Therefore, a multifunctional molecule modulating the novel antibacterial molecular
targets, UPPS and ketol-acid, as well as inhibiting DNA replication and gene transcription through
binding to minor groove of bacterial AT-rich DNA sequences might be a promising antibacterial agent
against MDR. Recently, MBX-1162 (figure 1), a 1,4-bis(1H-indol-2-yl)benzene scaffold bearing diamidine
moieties, was discovered as potential lead inhibitor of UPPS of S. aureus and E. coli for development of
novel antibacterial agents [24]. Interestingly, MBX-1162 was also found to be a minor groove binder
targeting bacterial DNA [54,55]. Meanwhile, pentamidine (figure 1), an antiparasitic drug possessing
1,5-bisphenoxypentane scaffold diamidine moieties, is a known DNA minor groove binder with
reported antibacterial activity [56]. In addition, pentamidine was found to inhibit KARI of E. coli [57].
Compound MMV688271, a 2,5-bisphenylfuran bearing diguanide moieties that has structural similarity
to the diamidine, is another interesting compound that inhibits KARI of Mycobacterium tuberculosis [58].
Considering compounds MBX-1162, pentamidine and MMV688271, they share common structural
features involving: (i) a central flat aromatic ring (phenyl or furan for MBX-1162 and MMV688271,
respectively) or alkyl chain (for pentamidine), (ii) two flat aromatic rings (indole rings for MBX-1162 or
phenyl rings for pentamidine and MMV688271) attached to the right and left of the central moiety, and
(iii) two amidine or guanidine moieties attached to the right and aromatic rings.

As molecular hybridization is a powerful approach in attaining multifunctional molecules
[16,19,21,59,60], we thought a hybrid molecule 1 (figure 1) of MBX-1162, pentamidine and
MMV688271 might target bacterial UPPS, KARI and DNA to elicit potential antibacterial activity
against MDR ESKAPE pathogenic bacteria. The structure of such hybrid molecule 1 might maintain
the left phenyl ring of pentamidine and MMV688271, while it incorporates the aromatic indol-2-yl
moiety of MBX-1162 but as a central feature instead of phenyl, furan or alkyl chain of MBX-1162,
MMV688271 and pentamidine, respectively. The maintained phenyl ring might be coupled to 5- or 6-
position of the central indole moiety while 2-position would be coupled to variable aromatic rings as
a replacement to the right phenyl ring of pentamidine and MMV688271 and the right indole ring of
MBX-1162. Finally, the two diamidine moieties would be placed on each of the introduced right
aromatic moieties and the left phenyl moiety. Searching our available in-house compounds library, we
have selected six compounds (figure 2) conforming to the proposed structure 1 (figure 1) that were
originally prepared as antiparasitic agents and took the mission of exploring possible repurposing of
these compounds as multifunctional antibacterial agents to combat pathogenic ESKAPE bacteria [61].
2.2. Biological evaluations

2.2.1. Evaluation of spectrum and minimum inhibitory concentrations against ESKAPE

To get insights into the activity spectrum of the compounds, a panel of bacterial pathogens was used
to assess minimum inhibitory concentrations (MICs) and activity spectrum which involved two
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Gram-positive and two Gram-negative MDR ESKAPE pathogenic bacterial strains, as well as two Gram-
positive and three Gram-negative antibiotic-susceptible pathogenic bacterial strains (table 1). Briefly, the
used Gram-positive antibiotic-resistant strains of ESKAPE involved: (i) the vancomycin-resistant
E. faecium (VRE; Antibiotic Resistance Isolate Bank #0572), which is resistant to vancomycin, penicillin,
ampicillin, doxycycline, levofloxacin, rifampin, teicoplanin and quinupristin/dalfopristin combination;
(ii) the methicillin-resistant S. aureus (MRSA; subsp. aureus COL), which is resistant to methicillin,
cefoxitin, linezolid, levofloxacin, erythromycin, penicillin and oxacillin. Meanwhile, the used Gram-
negative antibiotic-resistant strains of ESKAPE involved: (i) the carbapenem-resistant Enterobacterales
(CRE); K. pneumonia (Clinical Isolate #015), which is resistant to ampicillin, ampicillin/sulbactam
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combination, aztreonam, cefazolin, cefepime, cefotaxime, cefoxitin, ceftazidime, ceftriaxone, ciprofloxacin,

doripenem, ertapenem, imipenem, levofloxacin, meropenem, piperacillin/tazobactam combination,
tetracycline, tobramycin and trimethoprim/sulfamethoxazole combination; (ii) the carbapenem-resistant
A. baumannii (CRAB; Clinical Isolate no. 03-149.2) which is resistant to meropenem, polymyxin and
ampicillin/sulbactam combination. On the other side, the used antibiotic-susceptible strains involved E.
faecalis (Antibiotic Resistance Isolate Bank no. 0671) and methicillin-susceptible S. aureus (MSSA ATCC
25923) as Gram-positive bacterial strains, in addition to A. baumannii (ATCC 19606), P. aeruginosa
(Antibiotic Resistance Isolate Bank no. 0238) and E. coli (Antibiotic Resistance Isolate Bank no. 0017) as
Gram-negative bacterial strains. For comparison, the drugs vancomycin and gentamicin were used as
reference standards for Gram-positive and Gram-negative bacteria, respectively. The interesting outcome
of evaluation of MICs is included in table 1.

As expected, MIC value for vancomycin, the used reference drug against Gram-positive bacteria, was
relatively high against the antibiotic-resistant VRE, while it inhibited the growth of the used MRSA and
antibiotic-susceptible strains at low concentrations (1–2 µg ml−1, table 1). As also expected, MIC values
for gentamicin, the used reference drug against Gram-negative bacteria, were very high against
antibiotic-resistant strains, CRE and CRAB, while it was effective against antibiotic-susceptible E. coli
and P. aeruginosa but less active against A. baumannii. However, the CRAB isolate displayed a much
higher level of gentamicin resistance in comparison with the carbapenem-susceptible A. baumannii
(greater than 128 versus 8 µg ml−1, respectively, table 1). Interestingly, compound 1a, which features a
phenyl moiety as the right aromatic ring attached to the central indole ring at 2-position, while the
left aromatic phenyl ring is attached to 6-position, showed excellent activity against all tested
antibiotic-resistant and antibiotic-susceptible Gram-positive bacteria. It was found that all MICs of
compound 1a against VRE, MSSA and E. faecalis were in sub-µg ml−1 range and were even very
potent against MRSA, eliciting an MIC of 62.5 ng ml−1 (table 1). In addition, compound 1a was
potentially active against antibiotic-resistant Gram-negative bacteria CRE and CRAB showing single
digit µg ml−1 MIC values. But in comparison, it showed lower activity against tested antibiotic-
susceptible Gram-negative bacterial strains except for E. coli. Interestingly, comparing activity of
compound 1a against antibiotic-resistant (CRAB) versus antibiotic-susceptible strains of Gram-negative
A. baumannii, as well as antibiotic-resistant (MRSA) versus antibiotic-susceptible (MSSA) strains of S.
aureus, reveals that compound 1a is more potentially active against antibiotic-resistant strains in both
cases. Compound 1b, which has a single structure difference relative to compound 1a by possessing
the six-membered heterocyclic pyridyl moiety as a replacement of the right phenyl ring at 2-position
of the central indole, showed a potentially better activity than vancomycin against antibiotic-resistant
Gram-positive bacteria, comparable activity to vancomycin against antibiotic-resistant Gram-positive
bacteria, and much better activity relative to gentamicin against antibiotic-resistant Gram-negative
bacteria. It is noticeable that compound 1b showed a similar trend of activity as that of compound 1a
against antibiotic-resistant and antibiotic-susceptible Gram-positive and Gram-negative bacteria.
Nevertheless, it was less active than compound 1a, indicating that introduction of the more polar
nitrogen atom might be unfavourable. Meanwhile, compound 1c, possessing similar structure to
compounds 1a and 1b but having the five-membered heterocyclic furan moiety as a replacement of
the right aromatic ring at 2-position of the central indole, showed further decrease in activity but still
showing considerable activity against antibiotic-resistant rather antibiotic-susceptible Gram-positive
bacteria. Nevertheless, it lost potential activity against both antibiotic-resistant and antibiotic-
susceptible Gram-negative bacteria. Interestingly, the presence of the five-membered heterocyclic
thiophene instead of the furan moiety in compound 1d resulted in restoring the potential activity
against antibiotic-resistant and antibiotic-susceptible Gram-positive bacterial strain with MIC values
switching again to sub-µg ml−1 range (table 1). This could arise from the lower electronegativity
of sulphur relative to oxygen which results in lower polarity. The potential activity against
Gram-negative bacteria was also restored in compound 1d relative to compound 1c but was less than
potential compound 1a. Next, to identification that phenyl and thiophene as right aromatic ring at
2-position of indole afford potential compounds 1a and 1d, compounds 1e and 1f maintain these
moieties, respectively, but differ structurally by having the left phenyl ring attached to 5- instead of
6-position of the central indole ring, which translocates the indole nitrogen atom from the concave to
the convex edge of sickle shape of the molecule, resulting in substantial attrition of activity. This
indicates that the presence of indole nitrogen in the convex edge of the molecule might result in less
favourable interactions or prevent formation of favourable interactions that might be established if
present in the concave edge. Together, these findings suggest compound 1a as potential antibacterial
agent against antibiotic-resistant bacteria, especially against vancomycin-resistant E. faecium and
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methicillin-resistant S. aureus the high-priority bacteria; both are high-priority pathogens as disclosed by
the ‘WHO Pathogens Priority List’.
2.2.2. Time–kill dynamics of compound 1a

Following the identification of compound 1a as a potential antibacterial agent, especially against
antibiotic-resistant Gram-positive bacteria, eliciting nanogram m−1 inhibitory concentration against the
high-priority MRSA, it was interesting to explore its rate and extent of bacterial killing against MRSA.
Time–kill experiments provide critical insight into the pharmacodynamic effects of potential
antibacterials [62]. Accordingly, time–kill curves of MRSA over 24 h using variable sub-µg ml−1

concentrations of compound 1a were explored to interrogate killing and growth of MRSA as a
function of both time and concentration (figure 3a). In addition, the first-order growth rate constants
were calculated and plotted versus time for each used concentration and in absence of compound 1a
(figure 3b). The results showed that the untreated MRSA was growing in the exponential-growth
phase (log phase) over the first 6 h and maximum growth rate was reached. After 6 h, the growth rate
constant started to decline but remained positive suggesting transition of MRSA from exponential-
growth phase to enter into stationary phase. Given the information that antibiotic-susceptibility might
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be different in slowly dividing cells in stationary phase from rapidly dividing cells in exponential-growth
phase coupled with the fact that most antibiotics are effective only at exponential growth phase [63], it
would be important to understand which growth phase compound 1a would be effective against. As
revealed from results, the calculated first-order growth rate constants for 0.5 µg ml−1 concentration of
compound 1a were negative over the whole 24 h, and the number of living organisms (colony-
forming units) was still lower relative to the initial number, indicating lethal antibacterial activity.
However, the slope of the calculated first-order growth rate constants was larger over the period of
exponential-growth phase (up to 6 h) than that of the stationary phase. This might suggest that
compound 1a, like most antibiotics, is more effective against rapidly growing bacteria. Nevertheless,
the calculated negative first-order growth rate constant after 24 h indicates that compound 1a at
0.5 µg ml−1 concentration is still effective against MRSA in stationary phase. The lower 0.25 µg ml−1

concentration of compound 1a also triggered antibacterial lethal effects up to 4 h confirmed by the
calculated negative first-order growth rate constant. Meanwhile the 0.125 µg ml−1 concentration
elicited bacteriostatic effects at 4 h post treatment with almost zero calculated first-order growth rate
constant. Despite the 62.5 ng ml−1 concentration of compound 1a, it showed initial lethal antibacterial
activity in the first two hours, and its activity decreased rapidly overtime and started to approach the
negative control. These findings indicate that compound 1a demonstrates more efficacy against MRSA
in exponential-growth phase rather than the stationary phase with effective antibacterial lethal
concentrations of 0.5 and 0.25 µg ml−1. Thus, compound 1a might be a potential candidate for further
development.

2.3. In silico studies
As compounds 1a and 1d were identified as potential antibacterial agents, it was interesting to probe
their anticipated possible multifunctional activity. Accordingly, a computational study was initiated to
explore whether compounds 1a and 1d would be able to dock into UPPS, KARI and DNA as possible
biological targets, and what are their possible binding modes and interactions. The interesting
outcome is presented in the following sections.

2.3.1. Molecular docking simulation of compounds 1a and 1d with UPPS

Reported crystal structure of bacterial UPPS has shown to possess four potential binding sites (1–4)
(figure 4); any of them can be the binding site of a potential UPPS inhibitor [24,64]. If enough
concentration exists, four molecules of some bisphosphonate inhibitors were found to co-crystallize
binding to all of these four binding sites (PDB code 2E98; figure 4) [64]. Furthermore, UPPS can adopt
either an open or a closed conformation (in regard to α2 and α3 helices, figure 4b), which enables
substrates to bind and products release [24,65,66]. Accordingly, in silico molecular docking simulation
was addressed employing the open and the closed UPPS conformations (PDB codes: 2E98 and 1X06,
respectively) to probe whether compounds 1a and 1d could dock into UPPS and, if so, to which
binding site/conformer.

As shown in figure 5, the calculated results suggest that both compounds 1a and 1d docked to the
open conformation at binding site 4 with calculated favourable binding score of −7.05078 and
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−6.91088 kcal mol−1, respectively (figure 5). Interestingly, none of the retrieved docked poses for both
compounds contained predicted binding to any of the other sites 1–3. The calculated best docking
pose for compound 1a showed that its 4-carbamimidoylphenyl moiety at position 6 of the indole ring
was placed in binding site 4, while the 4-carbamimidoylphenyl moiety at position 2 was directed
towards the β-sheets. However, compound 1d accommodated the opposite direction placing its 5-
carbamimidoylthienyl moiety at position 2 in binding site 4, while the 4-carbamimidoylphenyl moiety at
position 6 was directed toward the β-sheets motif. The amidine moieties in both compounds established
hydrogen bonds with Ser55 in binding site 4 and with Ala142 in the β-sheets motif. In addition, the
central and the peripheral aromatic rings of both compounds established a network of favourable
hydrophobic Van der Waal and π-alkyl interactions which was lower for compound 1d. However, this
was partially compensated for by the formed additional hydrogen bond of the amidine moiety of
compound 1d with Leu67 in the β-sheets motif. By contrast to the open conformation, attempted docking
of both compounds 1a and 1d to the closed conformation did not afford any pose in which the docked
compounds can bind with any crucial residue of the binding sites 1–4. Accordingly, it might be deduced
that compounds 1a and 1d might bind exclusively to the open conformation of UPPS at binding site 4.
2.3.2. Molecular docking simulation of compounds 1a and 1d with KARI

Most of bacterial KARI belongs to class I, which has a chain involving less amino acid residues relative to
plant KARI, which belongs to class II that possess a chain with almost double amino residues [67].



(a)

(b)

interactions
Pi-Alkylvan der Waals

conventional hydrogen bond

interactions

Pi-Alkyl
Pi-donor hydrogen bondvan der Waals

conventional hydrogen bond
sulfur-X

Figure 6. Predicted binding of compounds 1a and 1d to dimeric NADPH-free KARI (green: first monomeric chain; blue: interwind C
domain of second monomeric chain; pink: NADPH): (a) predicted binding mode and interactions of compound 1a; (b) predicted
binding mode and interactions of compound 1d.
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Consequently, the functional unit of class I bacterial KARI consists of at least a dimer of two chains with the
active site formed by intertwined C domains of two chains [67]. In addition, two magnesium atoms and a
NADPH cofactor are essential for function of KARI. The structure of enzyme binding only magnesium
possesses solvent accessible open active site, which becomes more compact upon binding of NADPH.
Based on these two distinct structural features, two types of KARI inhibitors might exist; inhibitors of
NADPH-bound or KARI and inhibitors of NADPH-free KARI [68]. Considering these issues, in silico
molecular docking simulation was performed to assess whether compounds 1a and 1d could dock into
NADPH-bound or NADPH-free bacterial KARI. Accordingly, molecular docking to active site formed by
dimeric KARI structure (PDB code: 7kh7) in presence and in absence of NADPH. As figure 6 illustrates,
compounds 1a and 1d were able to dock into NADPH-free but not NADPH-bound KARI with
calculated favourable scores of −6.70963 and −6.59803 kcal mol−1, respectively. Both compounds were
bound to NADPH binding site (figure 6) suggesting them to act as competitive inhibitors of NADPH
binding KARI and consequently, act as KARI inhibitors. The peripheral carbamimidoylaryl moiety at
position 2 of the indole ring in both compounds 1a and 1d predicted binding modes were directed
towards the intertwined C domains of the second chain, establishing hydrophobic interactions in
addition to a hydrogen bond between Ser249 the amidine moiety of compound 1a. However, most
interactions of aryl rings at position 2 of the indole ring of compounds 1a and 1d, as well as the central
indole and the carbamimidoylaryl moiety at position 6, were contributed by first monomeric chain that
involved hydrogen bonds with the amidine moieties and with nitrogen of the indole, as well as several
hydrophobic interactions (figure 6). Considering these intricate favourable interactions network of
compounds 1a and 1d with NADPH-free KARI at the NADPH binding site, coupled with their inability
to dock into NADPH-bound KARI, suggests these compounds as possible inhibitors of KARI binding to
the NADPH-free but not NADPH-bound form.

2.3.3. Molecular docking simulation of compounds 1a and 1d with S. aureus DNA

An in silico molecular docking study of compounds 1a and 1d interactions with bacterial DNA was
addressed to probe for possible presence of a selective molecular recognition process. Thus,
compounds 1a and 1d were docked to a 105-mer sequence of S. aureus TY4, ETB plasmid DNA
(GenBank accession no. AP003088, sequence 19540–19644) which involve two sequence repeats.



(a) (b)

(c)

Figure 7. Predicted DNA binding sequences to compounds 1a and 1d over sequence 19540–19644 of S. aureus TY4, ETB plasmid
DNA (GenBank accession no. AP003088): (a) predicted binding poses of compound 1a to CTTTG sequence 19590–19594; (b)
predicted binding poses of compound 1d binding to TTTAAAC sequence 19558–19563; (c) predicted binding poses of
compound 1d binding to TTAAC sequence 19585–19590.
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Towards prediction of possible sites for binding, blind docking was initially conducted over the whole
sequence of the 105 pair bases. Next, a second docking simulation run was conducted over sequences
identified as possible sites to accommodate at least one of compounds 1a or 1b. While both
compounds were predicted not to bind minor groove of DNA in A-conformation form, the results
showed their possible minor groove binding ability to DNA in B-conformation form with predicted
binding score ranges of −8.12662 to −8.02435 and −8.09707 to −8.02777 kcal mol−1 over the best 10
poses of compounds 1a and 1b, respectively. Among the best 10 poses, compound 1a was bound in
six poses to CTTTG sequence 19590–19594 (figure 7a), while it showed only one pose for each of the
sequences TAAAT 19634–19638, CATTA 19622–19626, TAAAC 19560–19564 and GTATT 19551–19555.
On the other side, compound 1d was bound in five poses to TTTAAAC sequence 19558–19563
(figure 7b), bound in four poses to TTAAC sequence 19585–19590 (figure 7c), and only one pose for
TTATA sequence 19624–19628. These results suggest that both compounds 1a and 1d could be
potential DNA minor groove binder, and over the studied DNA 19540–19644 sequence, compound 1a
might bind mainly to CTTTG sequence 19590–19594, while compound 1d might bind mainly to
sequences TTTAAAC 19558–19563 and TTAAC 19585–19590. This might reflect the presence of a
significant difference in the molecular sequence recognition of B-DNA by compounds 1a and 1d and,
hence, their elicited biological activity.
3. Conclusion
In summary, novel hybrid compounds displayed excellent in vitro activity against clinically relevant
Gram-positive and Gram-negative bacteria, including high-priority pathogens MRSA, VRE, CRE and
CRAB. Out of the tested compounds, compounds 1a and 1d showed excellent activity at sub-µg ml−1

range against the high-priority antibiotic-resistant Gram-positive members of ESKAPE bacteria as well
as antibiotic-susceptible Gram-positive bacteria. In addition, compounds 1a and 1d demonstrated
potential activity at low µg ml−1 range against the used critical-priority antibiotic-resistant Gram-
negative members of ESKAPE bacteria but, interestingly, were less active against antibiotic-susceptible
Gram-negative bacteria. Studying the time–kill dynamics of the most prominently active compound 1a
against MRSA suggested potential activity against MRSA in exponential growth phase rather than the
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stationary phase with effective antibacterial lethal concentrations of 0.5 and 0.25 µg ml−1. In silico

investigations of possible interactions of compounds 1a and 1d with UPPS as one of the possible
molecular targets suggested they might bind exclusively to the open conformation of UPPS at binding
site 4 but not to other sites nor the closed conformation. In addition, in silico study of possible
interactions of compounds 1a and 1d with NADPH-free and NADPH-bound KARI suggested both
compounds as inhibitors of NADPH-free form of KARI. Furthermore, docking simulation study of
compounds 1a and 1d over 19540–19644 sequence of S. aureus TY4, ETB plasmid DNA demonstrated
both compounds as potential B-DNA minor groove binder but revealed differences in the molecular
sequence recognition of B-DNA by compounds 1a and 1d which might result in different biological
responses. Collectively, these findings present compounds 1a and 1d as potential agents for further
development against high- and critical-priority Gram-positive and Gram-negative antibiotic-resistant
ESKAPE bacterial pathogens as well as antibiotic-susceptible Gram-positive bacterial pathogens.
 os
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4. Experimental
4.1. Susceptibility testing
The minimum inhibitory concentrations (MIC) of each study compound were determined against the
investigated pathogens using broth microdilution as recommended by the Clinical and Laboratory
Standards Institute [69]. In brief, 96-well trays with a maximum volume of 0.5 ml per well were used
for susceptibility testing. On the day of each experiment, an overnight culture of bacteria was used to
create a turbidity-adjusted concentration of organism suspended in calcium- and magnesium-adjusted
Mueller–Hinton broth. Antibacterial stock solutions purchased from AK Scientific were created on the
day of each experiment, and a series of two-fold dilutions were used to create a concentration
gradient in rows of the tray. The initial inoculum of bacteria in each well was approximately 5 ×
105 CFU ml−1 suspended in 150 µl of total volume. Completed trays were covered in tape to prevent
desiccation, and visible growth was recorded after 18–24 h of incubation at 37°C. Study compounds
were evaluated along with vancomycin or gentamicin to ensure consistency with other laboratories.
All experiments were completed in quadruplicate. If the results of four experiments were evenly split
between two MIC values, then the MIC of the compound was reported as a range between the two
values. Compounds were used as dihydrochloride salts and the molecular formula of the salt was
used to calculate concentrations.

4.2. Time–kill experiments
Time–kill experiments were conducted following a methodology that was described previously [70].
Briefly, overnight cultures of bacteria were used to achieve a starting inoculum of approximately 1 ×
106 CFU ml−1 of organism investigated in a 50 ml conical tube. Calcium- and magnesium-adjusted
Mueller–Hinton broth was used as the nutrient source for the bacteria, and stock solutions of study
compounds were prepared on the day of each experiment to achieve 1×, 2×, 4× and 8× the MIC of the
study compound in 20 ml of total suspension. The conical tubes were incubated at 37°C with constant
shaking, and 100 µl samples were collected from the reaction vessels at 0, 2, 4, 6, 8 and 24 h, serially
diluted in saline, and plated onto Mueller–Hinton agar for viable cell counting. Colonies were
enumerated following 24 h of incubation at 37°C.

4.3. In silico simulation studies
In silico simulation studies were performed according to known protocols [71,72] using the known X-ray
crystal structures of open and closed UPPS conformations (PDB codes: 2E98 and 1X06, respectively),
dimeric KARI structure (PDB code: 7kh7), and known sequence of S. aureus TY4, ETB plasmid DNA
(GenBank accession no. AP003088, sequence 19540–19644), in presence and in absence of NADPH.

4.3.1. For docking study with UPPS

X-ray structure of open and closed conformations (PDB codes: 2E98 and 1X06, respectively) were
downloaded from protein data bank as PDB file format and prepared for the docking. Protein preparation
steps included deleting all solvent molecules and non-protein molecules and ions, adding hydrogen
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atoms and calculating charges to standard residues using AMBER ff14SB forcefield. The prepared ligands

were docked to binding sites, and the retrieved best poses were visualized and analysed.

4.3.2. For docking study with KARI

X-ray structure of dimeric KARI structure (PDB code: 7kh7) was downloaded from protein data bank as
PDB file format and prepared for the docking as described in §4.3.1 except for retaining NADPH
molecule. Two docking runs to the binding site were conducted; one run in the presence of NADPH
and the other run after deleting NADPH. The retrieved best docked poses were visualized and analysed.

4.3.3. For docking study with S. aureus DNA

An in silico molecular docking study of compounds 1a and 1d interactions with bacterial DNA was
addressed to probe for possible presence of a selective molecular recognition process. Thus,
compounds 1a and 1d were docked to a 105-mer sequence of S. aureus TY4, ETB plasmid DNA
(GenBank accession no. AP003088, sequence 19540–19644) was downloaded from GenBank and
converted into PDB format using BIOVIA Discovery Studio Visualizer. An initial blind docking run
was conducted over the whole 105 pair bases sequence followed by second run of docking to
sequences identified as possible sites to accommodate at least one of the employed ligands. The
retrieved results were visualized and analysed.
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