UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES HELIUM ACTIVITY HELIUM RESEARCH CENTER

INTERNAL REPORT

RECALIBRATION OF LEEDS \& NORTHRUP COMPANY G-2 MUELLER BRIDGE
SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE
OF LEEDS \& NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER
SERIAL NO, 1586182

BY

Ted C. Briggs
Alvin R. Howard

BRANCH
Fundamental Research

HEL IUM RESEARCH CENTER INTERNAL REPORT

RECALIBRATION OF LEEDS \& NORTHRUP COMPANY G-2 MUELLER BRIDGE, SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE OF LEEDS \& NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER, SERIAL NO. 1586182

By

Ted C. Briggs and Alvin R. Howard

Fundamental Research Branch
Project 7005
January 1970

BLM Library
Denver Federal Center
Bldg. 50, OC-521
P.O. Box 25047

Denver, CO 80225

CONTENTS

Page
Abstract 3
Introduction 4
Mueller bridge calibration 5
Determination of platinum resistance thermometer ice point resistance 12
Discussion 25
TABLES

1. Standard resistor measurements 8
2. Data from comparison of Mueller bridge decades 13
3. Decade step resistance values, legal ohms 16
4. Mueller bridge, serial No. 1603629 , dial reading corrections 21
5. Resistance of platinum resistance thermometer, serial. No. 1586182 , at the triple point of water 23

-

RECALIBRATION OF LEEDS \& NORTHRUP COMPANY G-2 MUELLER BRIDGE, SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE OF LEEDS \& NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER, SERIAL NO. 1586182

By

Ted C. Briggs ${ }^{1 /}$ and Alvin R. Howard ${ }^{1 /}$

Abstract

An internally consistent Mueller bridge and a reliable value of the ice point resistance are required for the accurate determination of temperatures with a platinum resistance thermometer.

The decade steps of Mueller bridge, serial No. 1603629 were intercompared and the resistance of a standard resistor was measured. The triple point resistance of platinum resistance thermometer, serial No. 1586182 was measured in a commercial triple point of water cell.

From these measurements, corrections for each dial reading of the bridge were tabulated, and the ice point resistance of the platinum resistance thermometer was computed. The value for the ice point resistance agrees with a value reported by the National Bureau of Standards to 4 parts in 10^{6} indicating extraordinary consistency.

1/
Research chemist, Helium Research Center, Bureau of Mines, Amarillo, Tex.
$-6--\infty$
\qquad

\qquad
\qquad
\qquad
\qquad
 \qquad

INTRODUCTION

The Thermodynamics Section of the Bureau of Mines Helium Research Center has used a. Leeds \& Northrup Company (L \& N) ${ }^{2 /}$ model 8069-B,

Identification of manufacturers does not constitute Bureau of Mines endorsement.
serial No. 1603629, G-2 Mueller bridge and a L \& N model 8163-B, serial No. 1586182 , platinum resistance thermometer for several years. The bridge and thermometer are used to accurately determine temperatures in the constant temperature bath of a Burnett compressibility apparatus.

Resistances of the decade steps of a Mueller bridge tend to change slightly with time: therefore, it is desirable to recalibrate the bridge occasionally in order to maintain maximum accuracy. The bridge was calibrated by the manufacturer during August 1962 and has not been recalibrated since that date.

Our platinum resistance thermometer (PRT) was recalibrated during September 1962 at the National Bureau of Standards (NBS). The previous calibration was done at $L \& N$ during February 1962. The thermometer ice point resistance was determined at the Helium Research Center by Briggs ${ }^{3 /}$ in June 1964.

3/ Briggs, Ted C. Temperature Measurement With Leeds and Northrup Platinum Resistance Thermometer No. 1586182. Helium Research Center Internal Report 53, June 1964, 17 pp.

The recent NBS thermometer calibration was carried out with a thermometer current of 1 milliampere while the older $L \& N$ calibration used a current of 2 milliamperes. To be consistent with the latest calibration, the ice point resistance was redetermined while using a thermometer current of 1 milliampere.

MUELLER BRIDGE CALIBRATION

A desirable, though not mandatory for PRT measurements, part of calibration of a Mueller bridge is to measure the resistance of a known standard. For this work, a Leeds \& Nor thrup type 8070-B, serial No. 1192371 , standard resistor was sent to the National Bureau of Standards for calibration. The NBS provided a value of 10.00965 legal ohms for the resistance at $25.0^{\circ} \mathrm{C}$ with a resistance uncertainty of 0.0004 percent ${ }^{4 /}$.

4/

National Bureau of Standards. Report of Calibration. Test No. 211.01/G-39946, Reference P0491399, Dec. 3, 1968. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

Within the 20° to $30^{\circ} \mathrm{C}$ temperature interval, the change of resistance with temperature for a standard resistor of the type used is accurately expressed by

$$
\begin{equation*}
R_{t, s}=R_{25}\left[1+\alpha(t-25)+\beta(t-25)^{2}\right] \tag{1}
\end{equation*}
$$

The NBS calibration did not provide values for α and β for equation 1 ; so the standard resistor was sent to L \& N. Leeds \& Northrup Company supplied a value of 10.00963 ohms for the resistance at $25.0^{\circ} \mathrm{C}$ and the values

$$
\begin{aligned}
& \alpha=+0.000006 \\
& \beta=-0.0000006
\end{aligned}
$$

Leeds \& Northrup Company. Report of Calibration for Standard resistor, catalog No. 8070-B, serial No. 1192371. April 1969 On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

The $L \& N$ calibration indicated a resistance uncertainty of 0.001 percent. The two standard resistor calibrations agree within 0.0002 percent at $25.0^{\circ} \mathrm{C}$, which is quite good. We use the NBS value for the resistance at $25.0^{\circ} \mathrm{C}$ and the $\mathrm{L} \& \mathrm{~N}$ values for α and B.

Before any standard resistor measurements were made, all bridge adjustments and tests were done as outlined in the manufacturer's manual (L \& N No. 77-2-2-1. Issue 6). The ratio dial reading was 18.2 when the ratio arms were adjusted to equality. The bridge gero was measured with the deflections of the null detector and was determined to be -0.00002 ohms. The bridge zero is the average of the values obtained with the commutator in the N and R positions.

A Keithley Instruments model 147 null detector was used with the bridge.

Standard resistor No. 1192371 was connected to the bridge with No. 10 gage copper wire in the manner used for a four lead PRT. Resistance of the standard was measured by setting the 1 -ohm decade in the 10 ohm (X) position and adjusting the lower decades to balance the null detector. Measurements of the standard resistor were made with the bridge commutator in the N and then the R positions, and the experimental observations are listed in table 1.

The value of the standard resistor so determined was substituted into the equation

$$
\begin{equation*}
X=R_{t, s}+Z-a_{t} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
X= & \text { sum of the } 10 \text { coils in the } 1 \text {-ohm decade } \\
R_{t, \varepsilon}= & \text { certified value in ohms of the calibrating } \\
& \text { resistor at temperature } t \\
z= & \text { zero correction of the bridge } \\
a_{t}= & \text { reading of the lower decade settings. }
\end{aligned}
$$

Values of X were computed with equation 2 for the commutator in the N and R positions and the means of these two values for each determination are recorded in table 1 .

The method used for the intercomparison of the Mueller bridge decades is outlined in the manufacturer's directions and in NBS

TABLE 1. - Standard resistor measurements

$\mathrm{R}^{1}{ }^{1 /}$	$\mathrm{R}_{\mathrm{R}} \underline{2 /}$	$t,{ }^{\circ} c^{3 /}$	$\mathrm{R}_{\mathrm{t}, \mathrm{s}}$ [/	$\mathrm{x}^{5 /}$	Dev. from avg. X
10.00970	10.00956	24.85	10.00964086	9.99999086	-0.00001402
10.00969	10.00956	24.82	10.00963900	9.99999400	-. 00001088
10.00969	10.00956	24.79	10.00963712	9.99999212	-. 00001276
10.00969	10.00956	24.75	10.00963461	9.99998961	-. 00001527
10.00969	10.00956	24.75	10.00963461	9.99998961	-. 00001527
10.00970	10.00954	24.75	10.00963461	9.99999461	-. 00001027
10.00970	10.00954	24.76	10.00963524	9.99999524	-. 00000964
10.00970	10.00954	24.78	10.00963650	9.99999650	-. 00000838
10.00971	10.00954	24.82	10.00963900	9.99999400	-. 00001088
10.00971	10.00954	24.82	10.00963900	9.99999400	-. 00001088
10.00971	10.00954	24.83	10.00963962	9.99999462	-. 00001026
10.00962	10.00940	23.55	10.00955029	10.00002029	+.00001541
10.00965	10.00940	23.80	10.00956928	10.00002428	+. 00001940
10.00966	10.00943	23.96	10.00958104	10.00001604	+.00001116
10.00967	10.00943	24.00	10.00958394	10.00001394	+.00000906
10.00969	10.00944	24.15	10.00959461	10.00000961	+. 00000473
10.00970	10.00946	24.28	10.00960365	10.00000365	-. 00000123
10.00970	10.00946	24.34	10.00960775	10.00000775	+. 00000287
10.00970	10.00946	24.40	10.00961180	10.00001180	+. 00000692
10.00972	10.00947	24.46	10.00961582	10.00000082	+. 00000406
10.00971	10.00946	24.50	10.00961847	10.00001347	+. 00000859
10.00971	10.00946	24.50	10.00961847	10.00001347	+. 00000859
10.00971	10.00946	24.58	10.00962372	10.00001872	+. 00001384
10.00973	10.00946	24.62	10.00962631	10.00001131	+.00000643
10.00973	10.00946	24.68	10.00963017	10.00001517	+.00001029
10.00972	10.00946	24.70	10.00963144	10.00002144	+. 00001656

Average $X=10.00000488 \pm 0.00000223$
Standard error of a single $X= \pm 0.00001137$

1/ R_{N} = bridge reading with the commutator in the \mathbb{N} position
2/ R_{R} = bridge reading with the commutator in the R position
3/ t temperature of standard resistor, ${ }^{\circ} \mathrm{C}$
4/ $R_{t, s}=$ resistance of standard resistor at temperature t, legal ohms
5/ $\mathrm{X}=$ computed from equation 2 , sum of the 10 coils in the 1 -ohm decade, mean of values determined with the commutator in the N and R positions

1iterature ${ }^{\frac{6-8 /}{/}}$ and briefly consists of the following:

National Bureau of Standards. Notes to Supplement Resistance Thermometer Certificates, January 1, 1949, 17 pp.

1/ Brooks, Paul P. B. Calibration of Mueller Thermometer Bridges. National Bureau of Standards, October 1965, 39 pp.

8/ \qquad - Calibration Procedures for Direct-Current Resistance

Apparatus. National Bureau of Standards Monograph 39, March 1, 1962, 53 pp.

[^0]For the measurements with the 1 -ohm decade, the following equations apply:

$$
\begin{gather*}
1_{1}+a_{1}=0 . X+b_{1} \tag{3}\\
1_{2}+a_{2}=0 . X+b_{2} \tag{4}\\
 \tag{12}\\
1_{10}+a_{10}=0 . X+b_{10}
\end{gather*}
$$

where

```
1 = the l-ohm coil in the first switch position
1}\mp@subsup{1}{2}{}=\mathrm{ the 1-ohm coil in the second switch position
120 = the 1-ohm coil in the tenth switch position
0.X = the sum of the ten 0.1-ohm coils of the 0.1-ohm decade
    an}=\mathrm{ the readings of the lower decades (including null
    detector interpolations) necessary to obtain a balance
    when the step being calibrated is included in the variable
    arm of the bridge
    b
    detector interpolations) necessary to obtain a balance
    when the X position of the next lower decade is included
        in the variable arm of the bridge.
```

Equations 3 through 12 are added to obtain

$$
\begin{equation*}
x+\sum_{1}^{10} a_{n}=10(0 . X)+\sum_{1}^{10} b_{n} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
0 . x=0.1\left[x+\sum_{1}^{2 u}\left(a_{n}-b_{n}\right)\right] \tag{14}
\end{equation*}
$$

By using the value of $0 . X$ computed from equation 14 , we can obtain values for $l_{1}, l_{2} \ldots l_{10}$ from equations 3 through 12 .

The values obtained for $l_{1}, l_{2} \ldots l_{10}$ are combined to give the total series resistance at each position of the switch; i.e.,

$$
\begin{aligned}
& 1=1_{1} \\
& 2=1_{1}+1_{2} \\
& 3=1_{1}+1_{2}+1_{3}
\end{aligned}
$$

$$
x=1_{1}+1_{2}+1_{3} \ldots 1_{10}
$$

Similar equations may be written for the lower decades and we obtain:

$$
\begin{align*}
& 0.0 X=0.1\left[0 . X+\sum_{a}^{10}\left(a_{.0}-b_{0.0}\right)\right] \tag{15}\\
& 0.00 X=0.1\left[0.0 X+\sum_{\Omega}^{10}\left(a .0 a-b_{0 n}\right)\right] \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
0.000 \mathrm{x}=0.1\left[0.00 \mathrm{x}+\sum_{8}^{10}(\mathrm{a} .00 \mathrm{r}-\mathrm{b} .00 n)\right] . \tag{17}
\end{equation*}
$$

For the 10 -ohm decade, the following equations apply:

$$
\begin{align*}
& 10_{1}+a_{10}=x+b_{10} \tag{18}\\
& 10_{z}+a_{20}=x+b_{20} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
10_{10}+a_{100}=x+b_{100} \tag{27}
\end{equation*}
$$

$$
1 . \quad . \quad 3 \cdot 1 \cdot 24
$$

:

We know X and may therefore compute $10_{1}, 10_{2} \ldots 10_{10}$ and hence $10,20,30 \ldots x 0$.

The complete bridge intercomparisons of decades was done three times and the experimental observations are recorded in table 2. Bridge current was 2 milliamperes, but was only applied 1 ong enough to obtain a null detector deflection.

The actual resistance of each decade step was computed for each of the three intercomparisons and the results are listed in table 3.

Corrections for the dial readings of Mueller bridge, serial No. 1603629 are 1 isted in table 4. The corrections are àdded algebraically to the dial readings to obtain the true resistance in legal ohms.

The 0.0001 -ohm decade was checked by deflections of the null. detector and no corrections were indicated.

DETERMINATION OF PLATINUM RESISTANCE THERMOMETER ICE POINT RESISTANCE

A commercially available (Trans-Sonics, Inc.) triple point of water cell was used to determine the resistance of platinum resistance thermometer, serial No. 1586182 at the triple point of water.

The manufacturer claims that the triple point of water cell (TPWC) establishes a defining point of the International Practical Temperature Scale with an accuracy of better than $0.0005^{\circ} \mathrm{C}$.

An ice mantle was frozen around the TPWC thermometer well with dry ice in accordance with the manufacturer's instructions, alcohol was placed in the thermometer well, the cell was placed in its insulating jacket, and the triple point of water resistance of the PRT was

TABLE 2. - Data from comparison of Mueller bridge decades
Run No. 1

TABLE 2. - Data from comparison of Mueller bridge decades
--Continued
Run No. 2

TABLE 2. - Data from comparison of Mueller bridge decades

- - Continued

Run No. 3

TABLE 3. - Decade step resistance values, legal ohms
10 ohm decade

Decade step	Resistance, Run No. 1	Resistance, Run No. 2	Resistance, Run No. 3	Average resistance
10	9.999805	9.999805	9.999785	9.999798 ± 0.000007
20	19.999660	19.999680	19.999670	$19.999670 \pm .000006$
30	29.999445	29.999465	29.999475	29.999462 $\pm .000009$
40	39.999330	39.999340	39.999370	$39.999347 \pm .000012$
50	49.999224	49.999244	49.999264	$49.999244 \pm .000012$
60	59.999139	59.999149	59.9991 .89	$59.999159 \pm .000015$
70	69.998974	69.998984	69.999064	$69.999007 \pm .000028$
80	79.998829	79.998839	79.998939	$79.998869 \pm .000035$
90	89.998614	89.998644	89.998714	$89.998657 \pm .000030$
X0	99.998399	99.998449	99.998509	$99.998452 \pm .000032$
Decade step	Dev. from av Run No.	$\mathrm{Dev}_{\mathrm{R}}$	$\begin{aligned} & \text { from avg., } \\ & \text { N No. } 2 \end{aligned}$	$\begin{gathered} \text { Dev. from avg., } \\ \text { Run No. } 3 \end{gathered}$
10	+0.000007		000007	-0.000013
20	-. 000010		000010	. 000000
30	-. 000017		000003	+.000013
40	-. 000017		000007	+.000023
50	-. 000020		000000	+.000020
60	-. 000020		000010	+.000030
70	-. 000033		000023	+.000057
80	-. 000040		. 000030	+.000070
90	-. 000043		000013	+.000057
X0	-. 000053		000003	+.000057

TABLE 3. - Decade step resistance values, legal ohms--Continued
1 ohm decade

Decade step	Resistance, $\text { Run No. } 1$		$\begin{aligned} & \text { ance, } \\ & .2 \end{aligned}$	Resistance Run No. 3	Average Resistance
1	1.000010		001	1.000007	1.000006 ± 0.000003
2	2.000011		003	2.000005	$2.000006 \pm .000002$
3	3.000011		2014	3.000002	$3.000009 \pm .000004$
4	4.000012		016	4.000010	$4.000013 \pm .000002$
5	5.000002		017	5.000017	$5.000012 \pm .000005$
6	6.000003		19	6.000015	$6.000012 \pm .000005$
7	7.000003		20	7.000012	$7.000012 \pm .000005$
8	8.000004		212	8.000010	$8.000009 \pm .000002$
9	9.000004		13	9.000017	$9.000011 \pm .000004$
X	10.000005		005	10.000005	$10.000005 \pm .000000$
Decade step	Dev. from avg Run No.		$\begin{aligned} & \text { Dev } \\ & \quad \mathrm{Ru} \end{aligned}$	$\begin{aligned} & \text { rom avg., } \\ & \text { No. } 2 \end{aligned}$	Dev. from avg., $\text { Run No. } 3$
1	+0.000004		-0.000005		+0.000001
2	+.000005		-. 000003		-. 0000001
3	+. 000002		+.000005		-. 000007
4	-. 000001		+.000003		-. 000003
5	-. 000010		+. 000005		+.000005
6	-. 000009		+. 000007		+.000003
7	-. 000009		+.000008		. 000000
8	-. 000005		+.000003		+.000001
9	-. 000007		+.000002		+.000006
X	. 000000		. 000000		. 000000

TABLE 3. - Decade step resistance values, legal ohms--Continued
0.1 ohm decade

Decade step	Resistance, Run No. 1	Resistance, Run No. 2		Resista Run No.	Average Resi	istance
0.1	0.099989	0.099992		0.099993	0.099991 ± 0.000001	
. 2	. 199978	. 199994		. 199995	$.199989 \pm .00000$	
. 3	. 299987	. 300006		. 300008	$.300000 \pm .000007$	
. 4	. 399996	. 399999		. 400001	$.399999 \pm .00000$	
. 5	. 500005	. 500001.		. 500004	$.500003 \pm .000001$	
. 6	. 600014	. 599993		. 600006	. $600004 \pm .00000$	
. 7	. 700013	. 699985		. 699999	$.699999 \pm .000008$	
. 8	. 800002	. 799987		. 799992	. $799994 \pm .000004$	
. 9	. 900001	. 899989		. 899995	. $899995 \pm .000003$	
. X	. 999990	. 999991		. 999987	. $999989 \pm .000001$	
Decade step	$\begin{aligned} & \text { Dev. from avg., } \\ & \text { Run No. } 1 \end{aligned}$		$\begin{gathered} \text { Dev. from avg } \\ \text { Run No. } 2 \end{gathered}$		Dev. from avg. , Run No. 3	
0.1	-0.000002		+0.000001		+0.000002	
. 2	-. 000011		+. 000005		+.000006	
. 3	-. 000013		+.000006		+.000008	
. 4	-. 000003		. 000000		+.000002	
. 5	+.000002		-. 000002		+.000001	
. 6	$+.000010$		-. 000011		+.000002	
. 7	+.000014		-. 000014		. 000000	
. 8	+. 000008		-. 000007		-. 000002	
. 9	+.000006		-.000006		. 000000	
. X	+.000001		$+.000002$		-. 000002	

TABLE 3. - Decade step resistance values, legal ohms-"Continued
0.01 ohm decade

Decade step	Resistance, Run No. 1	Resistance, Run No. 2	Resistance, Run No. 3	Average Resistance
0.01	0.009995	0.010003	0.010002	0.010000 ± 0.000003
. 02	. 020000	. 020006	. 020005	$.020004 \pm .000002$
. 03	. 030005	. 030010	. 030007	$.030007 \pm .000001$
. 04	. 040010	. 040013	. 040009	$.040011 \pm .000001$
. 05	. 050005	. 050016	. 050011	. $050011 \pm .000003$
. 06	. 059999	. 060019	. 060014	$.060011 \pm .000006$
. 07	. 070004	. 070023	. 070016	$.070014 \pm .000006$
. 08	. 080009	. 080026	. 080008	$.080014 \pm .000006$
. 09	. 090014	. 090019	. 090010	$.090014 \pm .000003$
. 0 X	. 100009	. 100012	. 100013	$.100011 \pm .000001$
Decade step	Dev. from avg Run No. 1	Dev	com avg., No. 2	$\begin{gathered} \text { Dev. from avg } \\ \text { Run No. } 3 \end{gathered}$
0.01	-0.000005		000003	+0.000002
. 02	-. 000004		000002	+.000001
. 03	-. 000002		000003	. 000000
. 04	-. 000001		000002	-. 000002
. 05	-. 000006		000005	. 000000
. 06	-. 000012		000008	+.000003
. 07	-. 000010		000009	+.000002
. 08	-. 000005		000012	-. 000006
. 09	.000000		000005	-. 000004
. 0 X	-. 000002		000001	+.000002

TABLE 3. - Decade step resistance values, legal ohms--Continued 0.001 ohm decade

TABLE 4. - Mueller bridge, serial No. 1603629, dial reading corrections

10 dial		1 dial		0.1 dial	
Reading	Correction	Reading	Correction	Reading	Correction
10	-0.00020	1	+0.00001	0.1	-0.00001
20	-. 00033	2	+.00001	. 2	-. 00001
30	-. 00054	3	+.00001	. 3	. 00000
40	-. 00065	4	+.00001.	. 4	. 00000
50	-. 00076	5	+.00001	. 5	. 00000
60	-. 000084	6	+.00001	. 6	. 00000
70	-. 00099	7	+.00001	. 7	. 00000
80	-. 00113	8	+.00001	8	-. 00001
90	-. 00134	9	+.00001	. 9	-. 00001
X0	-. 00155	X	+.00001	X	-.00001
0.01 dial		0.001 dial		0.0001 dial	
Reading	Correction	Reading	Correction	Reading	Correction
0.01	0.00000	0.001	0.00000	0.0001	0.00000
. 02	. 00000	. 002	+.00001	. 0002	. 00000
. 03	+. 00001	. 003	+.00001	. 0003	. 00000
. 04	+.00001	. 004	+.00001	. 0004	. 00000
. 05	+.00001	. 005	+.00001	. 0005	. 00000
. 06	+.00001	. 006	+.00001	. 0006	. 00000
. 07	+. 00001	. 007	. 00000	. 0007	. 00000
. 08	+.00001	. 008	. 00000	. 0008	. 00000
. 09	+.00001	. 009	. 00000	. 0009	. 00000
. 0 X	+. 00001	. 00X	.00000	.000x	. 00000

Helium Research Center Internal Report No. 128
January 1970

measured with the bridge commutator in the N and then the R positions.

Resistance measurements were made about every ten minutes until the ice mantle began to float. Measurements were made during three days. Results from these measurements are recorded in table 5 where, $\mathrm{R}_{\mathrm{N}}=$ bridge resistance reading (including null detector interpolations) with the bridge commutator in the N position $R_{R}=$ bridge resistance reading (including null detector interpolations) with the bridge commutator in the R position $R_{T}=$ average of the resistance readings in the N and R commutator positions after these readings have been corrected for bridge zero (the bridge zero is substracted) and the decade corrections of table 4 have been applied, R_{p} is the true resistiznce of the PRI at the triple point of water.

A constant current of 1 milliampere was supplied through the thermometer for the triple point measurements, and time was allowed for the reading to become constant before the resistances were recorded The thermometer was calibrated at the Nathonal. Bureau of Standards

National Bureau of Standards. Report of: Calibration Platinum Resistance Thermometer Serial No. 1586182, Test No. Q39579, Ref. No. 221.11/G-39579, September 1968. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

$$
\text { TABLE 5. - Resistance of platinum resistance thermometer, } \quad \frac{\text { serial No. } 1586182 \text {, at the triple point of water }}{\text { ne }}
$$

R_{N}	$\mathrm{R}_{\text {\% }}$	R_{\top}	Dev. from avg. R_{T}
25.54695	25.54545	25.54592	-0.00001.
2.5 .54695	25.54545	25.54592	$\cdots .00001$
25.54695	25.54545	25.54592	-. 00001
25.54695	25.54545	25.54592	-. 00001
25.54695	25.54545	25.54592	-. 00001
25.54695	25.54545	25.54592	-.00001
25.54696	25.54540	25.54590	-. 00003
25.54693	25.54540	25.54589	-. 00004
25.54693	25.54540	25.54589	-. 00004
25.54693	25.54540	25.54589	-. 00004
25.54693	25.54542	25.54590	-. 00003
25.54693	25.54543	25.54590	$\cdots .00003$
25.54693	25.54543	25.54590	-. 00003
25.54693	25.5454 .3	25.54590	-. 00003
25.54693	25.54543	25.54590	-. 00003
25.54693	25.54543	25.54590	-. 00003
25.54693	25.54543	25.54590	-. 00003
25.54693	25.54543	25.54590	-. 00003
25.54695	25.54547	25.54593	. 00000
25.54695	25.54545	25.54592	-. 00001
25.54695	25.54545	25.54592	-.00001
25.54695	25.54545	25.54592	-. 00001
25.54697	25.54545	25.54593	. 00000
25.54696	25.54546	25.54593	. 00000
25.54696	25.54546	25.54593	. 00000
25.54700	25.54547	25.54595	+.00002
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	$+.00003$
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54 .596	+.00003
25.54702	25.54548	25.54597	f.00004
25.54702	25.54548	25.54597	+.00004
25.54702	25.54548	25.54597	$+.00004$
25.54702	25.54548	25.54597	+.00004
25.54705	25.54547	25.54598	+. 00005
25.54700	25.54547	25.54595	+.00002
25.54700	25.54547	25.54595	+.00002

TABLE 5. - Resistance of platinum resistance thermometer serial No. 1586182, at the triple point of water - Continued

R_{N}	R_{R}	R_{T}	Dev。from avg。 R_{T}
25.54700	25.54547	25.54595	+.00002
25.54695	25.54542	25.54591	-.00002
25.54695	25.54542	25.54591	-.00002
25.54695	25.54542	25.54591	-.00002
25.54695	25.54542	25.54591	-.00002
25.54695	25.54542	25.54591	-.00002

Average $R_{T}=25.54593 \pm 0.000004$
$R_{0}=R_{T} / 1.00003984=25.54491 \pm 0.000004$ legal ohms

By definition, the ice point of water is 0.01 degree below the triple point; therefore, to obtain the ice point resistance we take

$$
\begin{aligned}
& R_{0}=\frac{R_{-}}{1.00003984}=\frac{25.54593 \pm 0.000004}{1.00003984} \\
& R_{0}=25.54491 \pm 0.000004 \text { legal ohms }
\end{aligned}
$$

where

$$
R_{0}=\text { ice point resistance }
$$

The number 1.00003984 is obtained from the interpolation table supplied in conjunction with the NBS calibration for PRT serial No. 1586182.

DISCUSSION

The corrections of table 4 differ significantly from the original L \& N calibration ${ }^{10 /}$ only for the 10 ohm decade, and are roughly double

101
Leeds \& Northrup Company. Certificate for Catalog No. 806a-B
Resistance Thermometer Bridge, Serial No. 1603629. August 1962
On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

```
the original corrections or a maximum change of about 1 part in \(10^{5}\)
``` for this decade.

We feel that any resistance determined with the bridge will be known with an accuracy equal to, or better than, that originally claimad by the manufacturer, which was 0.00002 ohm for 1 ohm or less and 2 parts in \(10^{5}\) for a resistance greater than 1 ohm.

The value determined for the ice point resistance agrees with the value determined at the \(\mathrm{NBS}^{9 /}\) to 4 parts in \(10^{6}\), which may be partly fortuitous, but does give added confidence in our work.

The ice point resistance determined by this work differs from that of Briggs \({ }^{3 /}\) by 5 parts in \(10^{5}\); however, Briggs used 2 thermometer current of 2 milliamperes while a current of 1 milliampere was used by us. Also, we note that the precision of our ice point measurements was an order of magnitude better than that of Briggs due, at least in part, to a better null detector.

In summary, we feel that our temperature determinations, made with PRT serial No. 1586182 and Mueller bridge sericl No. 1603629 , wi11 reproduce the IPTS -48 with an accuracy essentially dependent upon the accuracy of the NBS thermometer calibration.```

[^0]: "The method of calibration is to compare the resistance of each decade step with the resistance of the X (sum of all ten steps) of the next lower decade. This comparison is made by alternately including in the variable arm of the bridge either the step being calibrated or the X of the next lower decade. The lower decades of the bridge are used to make the variable arm balance an external resistance. From these alternate balances, a relation between the step being calibrated and the X of the next lower decade is obtained. The complete calibration consists of repeating this process for each decade step." ${ }^{6 /}$

 The intercomparisons require external resistors that remain constant during the brief period required for each comparison. The absolute values of the external resistors need not be known. A L \& N decade box and L \& N Kohlrausch slide wire were used for the various external resistors required in the measurements.

