

Report No. 128

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES HELIUM ACTIVITY HELIUM RESEARCH CENTER

INTERNAL REPORT

RECALIBRATION OF LEEDS & NORTHRUP COMPANY G-2 MUELLER BRIDGE

SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE OF LEEDS & NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER SERIAL NO. 1586182

BY

Ted C. Briggs

Alvin R. Howard

Fundamental Research

PROJECT NO.

7005

January 1970

DATE

BRANCH

HD 9660 .H43 M56 no.128

AMARILLO, TEXAS

1119392203

HD 9460 , H63 M56 No.123

1

Report No. 128

HELIUM RESEARCH CENTER INTERNAL REPORT

RECALIBRATION OF LEEDS & NORTHRUP COMPANY G-2 MUELLER BRIDGE, SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE OF LEEDS & NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER, SERIAL NO. 1586182

By

Ted C. Briggs and Alvin R. Howard

Fundamental Research Branch

Project 7005

January 1970

BLM Library Denver Federal Center Bldg. 50, OC-521 P.O. Box 25047 Denver, CO 80225

A DE AN

/

CONTENTS

	Page
Abstract	3
Introduction	4
Mueller bridge calibration	5
Determination of platinum resistance thermometer ice point resistance	12
Discussion	25

TABLES

1.	Standard resistor measurements	8
2.	Data from comparison of Mueller bridge decades	13
3.	Decade step resistance values, legal ohms	16
4.	Mueller bridge, serial No. 1603629, dial reading corrections	21
5。	Resistance of platinum resistance thermometer, serial No. 1586182, at the triple point of water	23

RECALIBRATION OF LEEDS & NORTHRUP COMPANY G-2 MUELLER BRIDGE, SERIAL NO. 1603629 AND REDETERMINATION OF THE ICE POINT RESISTANCE OF LEEDS & NORTHRUP COMPANY PLATINUM RESISTANCE THERMOMETER, SERIAL NO. 1586182

By

Ted C. Briggs^{1/} and Alvin R. Howard^{1/}

ABSTRACT

An internally consistent Mueller bridge and a reliable value of the ice point resistance are required for the accurate determination of temperatures with a platinum resistance thermometer.

The decade steps of Mueller bridge, serial No. 1603629 were intercompared and the resistance of a standard resistor was measured. The triple point resistance of platinum resistance thermometer, serial No. 1586182 was measured in a commercial triple point of water cell.

From these measurements, corrections for each dial reading of the bridge were tabulated, and the ice point resistance of the platinum resistance thermometer was computed. The value for the ice point resistance agrees with a value reported by the National Bureau of Standards to 4 parts in 10^6 indicating extraordinary consistency.

1/ Research chemist, Helium Research Center, Bureau of Mines, Amarillo, Tex.

ł.

r.

INTRODUCTION

The Thermodynamics Section of the Bureau of Mines Helium Research Center has used a Leeds & Northrup Company (L & N) $\frac{2}{}$ model 8069-B,

2/ Identification of manufacturers does not constitute Bureau of Mines endorsement.

serial No. 1603629, G-2 Mueller bridge and a L & N model 8163-B, serial No. 1586182, platinum resistance thermometer for several years. The bridge and thermometer are used to accurately determine temperatures in the constant temperature bath of a Burnett compressibility apparatus.

Resistances of the decade steps of a Mueller bridge tend to change slightly with time; therefore, it is desirable to recalibrate the bridge occasionally in order to maintain maximum accuracy. The bridge was calibrated by the manufacturer during August 1962 and has not been recalibrated since that date.

Our platinum resistance thermometer (PRT) was recalibrated during September 1962 at the National Bureau of Standards (NBS). The previous calibration was done at L & N during February 1962. The thermometer ice point resistance was determined at the Helium Research Center by Briggs^{3/} in June 1964.

3/ Briggs, Ted C. Temperature Measurement With Leeds and Northrup Platinum Resistance Thermometer No. 1586182. Helium Research Center Internal Report 53, June 1964, 17 pp.

.

¢

The recent NBS thermometer calibration was carried out with a thermometer current of 1 milliampere while the older L & N calibration used a current of 2 milliamperes. To be consistent with the latest calibration, the ice point resistance was redetermined while using a thermometer current of 1 milliampere.

MUELLER BRIDGE CALIBRATION

A desirable, though not mandatory for PRT measurements, part of calibration of a Mueller bridge is to measure the resistance of a known standard. For this work, a Leeds & Northrup type 8070-B, serial No. 1192371, standard resistor was sent to the National Bureau of Standards for calibration. The NBS provided a value of 10.00965 legal ohms for the resistance at 25.0° C with a resistance uncertainty of 0.0004 percent^{$\frac{4}{}$}.

4/ National Bureau of Standards. Report of Calibration. Test No. 211.01/G-39946, Reference PO491399, Dec. 3, 1968. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

Within the 20° to 30° C temperature interval, the change of resistance with temperature for a standard resistor of the type used is accurately expressed by

$$R_{t_{15}} = R_{25} [1 + \alpha (t - 25) + \beta (t - 25)^2] .$$
 (1)

ж

.

The NBS calibration did not provide values for α and β for equation 1; so the standard resistor was sent to L & N. Leeds & Northrup Company supplied a value of 10.00963 ohms for the resistance at 25.0° C and the values

$$\alpha = +0.000006$$

 $\beta = -0.0000006$ $\frac{5}{}$

5/ Leeds & Northrup Company. Report of Calibration for Standard resistor, catalog No. 8070-B, serial No. 1192371. April 1969. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

The L & N calibration indicated a resistance uncertainty of 0.001 percent. The two standard resistor calibrations agree within 0.0002 percent at 25.0° C, which is quite good. We use the NBS value for the resistance at 25.0° C and the L & N values for α and β .

Before any standard resistor measurements were made, all bridge adjustments and tests were done as outlined in the manufacturer's manual (L & N No. 77-2-2-1 Issue 6). The ratio dial reading was 18.2 when the ratio arms were adjusted to equality. The bridge zero was measured with the deflections of the null detector and was determined to be -0.00002 ohms. The bridge zero is the average of the values obtained with the commutator in the N and R positions.

A Keithley Instruments model 147 null detector was used with the bridge.

~

.

Standard resistor No. 1192371 was connected to the bridge with No. 10 gage copper wire in the manner used for a four lead PRT. Resistance of the standard was measured by setting the 1-ohm decade in the 10 ohm (X) position and adjusting the lower decades to balance the null detector. Measurements of the standard resistor were made with the bridge commutator in the N and then the R positions, and the experimental observations are listed in table 1.

The value of the standard resistor so determined was substituted into the equation

$$X = R_{t,s} + Z - a_t \tag{2}$$

where

X = sum of the 10 coils in the 1-ohm decade

 $R_{t,s}$ = certified value in ohms of the calibrating resistor at temperature t

Z = zero correction of the bridge

at = reading of the lower decade settings.

Values of X were computed with equation 2 for the commutator in the N and R positions and the means of these two values for each determination are recorded in table 1.

The method used for the intercomparison of the Mueller bridge decades is outlined in the manufacturer's directions and in NBS

4

.

.

$R_N^{\frac{1}{2}}$	$R_{R}^{2/}$ t, °C ^{3/}		$R_{t,s}\frac{4}{4}$	x <u>5</u> /	Dev. from avg. X
10.00970	10.00956	24.85	10.00964086	9.99999086	-0.00001402
10.00969	10.00956	24.82	10.00963900	9.99999400	00001088
10.00969	10.00956	24.79	10.00963712	9.99999212	~.00001276
10.00969	10.00956	24.75	10.00963461	9.99998961	00001527
10.00969	10.00956	24.75	10.00963461	9.99998961	00001527
10.00970	10.00954	24.75	10.00963461	9.99999461	00001027
10.00970	10.00954	24.76	10.00963524	9.99999524	° ~ . 00000964
10.00970	10.00954	24.78	10.00963650	9.99999650	00000838
10.00971	10.00954	24.82	10.00963900	9.99999400	00001088
10.00971	10.00954	24.82	10.00963900	9.99999400	00001088
10.00971	10.00954	24.83	10.00963962	9.99999462	~.00001026
10.00962	10.00940	23.55	10.00955029	10.00002029	+.00001541
10.00965	10.00940	23.80	10.00956928	10.00002428	+.00001940
10.00966	10.00943	23.96	10.00958104	10.00001604	+.00001116
10.00967	10.00943	24.00	10.00958394	10.00001394	+.00000906
10.00969	10.00944	24.15	10.00959461	10.00000961	+.00000473
10.00970	10.00946	24.28	10.00960365	10.0000365	00000123
10.00970	10.00946	24.34	10.00960775	10.00000775	+.00000287
10.00970	10.00946	24.40	10.00961180	10.00001180	+.00000692
10.00972	10.00947	24.46	10.00961582	10.0000082	+.00000406
10.00971	10.00946	24.50	10.00961847	10.00001347	+.00000859
10.00971	10.00946	24.50	10.00961847	10.00001347	+.00000859
10.00971	10.00946	24.58	10.00962372	10.00001872	+.00001384
10.00973	10.00946	24.62	10.00962631	10.00001131	+.00000643
10.00973	10.00946	24.68	10.00963017	10.00001517	+.00001029
10.00972	10.00946	24.70	10.00963144	10.00002144	+.00001656

TABLE 1. - Standard resistor measurements

Average $X = 10.00000488 \pm 0.00000223$

1 43 E

Standard error of a single $X = \pm 0.00001137$

<u>1</u>/ R_N = bridge reading with the commutator in the N position <u>2</u>/ = bridge reading with the commutator in the R position R_R <u>3</u>/ t = temperature of standard resistor, ° C <u>4</u>/ $R_{t,s}$ = resistance of standard resistor at temperature t, legal ohms <u>5</u>/ Х = computed from equation 2, sum of the 10 coils in the 1-ohm decade, mean of values determined with the commutator in the N and R positions

	^			A 646 - 6 10
	•		*	ti vant për , nga ,
	N	¢.		<i>j</i> *
				₹. Es
			4	× 4,
			e de la compañía de la	1
	* 0 			1. · · ·
				÷. ż.
		· ·		tin the second
			No. 1 No.	
			No. Contraction	3. d. 1
				3
			G = 0	
				· · · ·
			•	
			· · · · ·	
			۰. ج	· · · · ·

1997 - 19

-

	an <u>yan y</u> and an 19
١	

literature $\frac{6-8}{}$ and briefly consists of the following:

- <u>6</u>/ National Bureau of Standards. Notes to Supplement Resistance Thermometer Certificates, January 1, 1949, 17 pp.
- <u>7</u>/ Brooks, Paul P. B. Calibration of Mueller Thermometer Bridges. National Bureau of Standards, October 1965, 39 pp.
- <u>8/</u>_____. Calibration Procedures for Direct-Current Resistance Apparatus. National Bureau of Standards Monograph 39, March 1, 1962, 53 pp.

"The method of calibration is to compare the resistance of each decade step with the resistance of the X (sum of all ten steps) of the next lower decade. This comparison is made by alternately including in the variable arm of the bridge either the step being calibrated or the X of the next lower decade. The lower decades of the bridge are used to make the variable arm balance an external resistance. From these alternate balances, a relation between the step being calibrated and the X of the next lower decade is obtained. The complete calibration consists of repeating this process for each decade step." 6/

The intercomparisons require external resistors that remain constant during the brief period required for each comparison. The absolute values of the external resistors need not be known. A L & N decade box and L & N Kohlrausch slide wire were used for the various external resistors required in the measurements.

-

.

-

$$l_1 + a_1 = 0 X + b_1$$
 (3)

$$l_2 + a_2 = 0.X + b_2$$
 (4)

$$l_{10} + a_{10} = 0.X + b_{10}$$
 (12)

where

 $l_1 = \text{the l-ohm coil in the first switch position}$ $l_2 = \text{the l-ohm coil in the second switch position}$. $l_{10} = \text{the l-ohm coil in the tenth switch position}$ 0.X = the sum of the ten 0.1-ohm coils of the 0.1-ohm decade

F •

Equations 3 through 12 are added to obtain

$$X + \sum_{n}^{10} a_{n} = 10 (0.X) + \sum_{n}^{10} b_{n}$$
 (13)

or

$$0.X = 0.1 \left[X + \sum_{n=1}^{10} (a_{n} - b_{n}) \right]$$
(14)

By using the value of 0.X computed from equation 14, we can obtain values for l_1 , l_2 ... l_{10} from equations 3 through 12.

The values obtained for l_1 , l_2 ... l_{lo} are combined to give the total series resistance at each position of the switch; i.e.,

$$1 = 1_{1}$$

$$2 = 1_{1} + 1_{2}$$

$$3 = 1_{1} + 1_{2} + 1_{3}$$

$$.$$

$$X = 1_{1} + 1_{2} + 1_{3} \dots 1_{10}$$

Similar equations may be written for the lower decades and we obtain:

$$0.0X = 0.1 \left[0.X + \sum_{n}^{10} (a_{n} - b_{n}) \right] , \qquad (15)$$

$$0.00X = 0.1 \left[0.0X + \sum_{n=0}^{10} (a_{.on} - b_{.on}) \right] , \qquad (16)$$

and

$$0.000X = 0.1 \left[0.00X + \sum_{n}^{10} (a_{.oor} - b_{.oon}) \right]^{10} .$$
 (17)

For the 10-ohm decade, the following equations apply:

$$10_1 + a_{10} = X + b_{10} \tag{18}$$

$$10_2 + a_{20} = X + b_{20} \tag{19}$$

$$1.0_{10} + a_{100} = X + b_{100} . \tag{27}$$

and the second s

12

•

and the second second

en an en ante a service de la companya de la compa

1. . . .

We know X and may therefore compute 10_1 , 10_2 ... 10_{10} and hence 10, 20, 30 ... X0 .

The complete bridge intercomparisons of decades was done three times and the experimental observations are recorded in table 2. Bridge current was 2 milliamperes, but was only applied long enough to obtain a null detector deflection.

The actual resistance of each decade step was computed for each of the three intercomparisons and the results are listed in table 3.

Corrections for the dial readings of Mueller bridge, serial No. 1603629 are listed in table 4. The corrections are added algebraically to the dial readings to obtain the true resistance in legal ohms.

The 0.0001-ohm decade was checked by deflections of the null detector and no corrections were indicated.

DETERMINATION OF PLATINUM RESISTANCE THERMOMETER ICE POINT RESISTANCE

A commercially available (Trans-Sonics, Inc.) triple point of water cell was used to determine the resistance of platinum resistance thermometer, serial No. 1586182 at the triple point of water.

The manufacturer claims that the triple point of water cell (TPWC) establishes a defining point of the International Practical Temperature Scale with an accuracy of better than 0.0005° C.

An ice mantle was frozen around the TPWC thermometer well with dry ice in accordance with the manufacturer's instructions, alcohol was placed in the thermometer well, the cell was placed in its insulating jacket, and the triple point of water resistance of the PRT was

7

.

*

4

TABLE 2. - Data from comparison of Mueller bridge decades

10 ohm decade	l ohm decade
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
0.1 ohm decade	0.01 ohm decade
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.001 of	um decade
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0006 \ b.001 = 0.00006 \\ 0003 \ b.002 = .00004 \\ 0007 \ b.003 = .00007 \\ 0006 \ b.004 = .00006 \\ 0005 \ b.005 = .00005 \\ 0006 \ b.006 = .00006 \\ 0007 \ b.007 = .00006 \\ 0006 \ b.008 = .00006 \\ 0006 \ b.009 = .00006 \\ 0005 \ b.010 = .00005 \\ \end{array}$

Run No. 1

the second se

7

T

4

	1
and the second s	
	,
	,

			10 ohm	decad	le				1 ohm c	lecade		
10 ₂ a 10 ₃ a 10 ₄ a 10 ₅ a 10 ₆ a 10 ₇ a 10 ₈ a	a a a a a a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a a b o a b a b	= 0 = = = = = = =	0.00671 .00820 .00479 .00591 .00236 .00576 .00282 .06713 .06210 .09088	b ₂₀ b ₃₀ b ₄₀ b ₅₀ b ₆₀ b ₆₀ b ₈₀ b ₉₀	= (0.00651 .00807 .00457 .00578 .00226 .00566 .00265 .06698 .06190 .09068	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00678 .00720	$b_{2} = b_{3} = b_{3} = b_{4} = b_{5} = b_{6} = b_{7} = b_{8} = b_{9} = b_{9}$	00. 00. 00. 00. 00. 00.	0836 0868 0760 0777 0679 0721 0629 0676 0318 0609
		0.	1 ohm d	lecade	9			0.	01 ohm (lecade		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a.1 a.2 a.3 a.4 a.5 a.6 a.6 a.7 a.8 a.9 a.9 a.9	= 0 = = = = = =	0.00483 .00300 .00497 .00288 .00497 .00238 .00509 .00370 .00384 .00153	b.2 b.3 b.4 b.5 b.6 b.7 b.8 b.9	= (0.00481 .00299 .00497 .00286 .00496 .00236 .00507 .00369 .00383 .00152	.012 a .013 a .014 a .015 a .016 a .017 a .018 a .019 a	1.02 1.03 1.04 1.05 1.05 1.06 1.07	= .000 = .000 = .000 = .000 = .000 = .000 = .000	58 b.01 53 b.02 56 b.03 58 b.04 71 b.05 53 b.05 56 b.07 57 b.08 57 b.09 74 b.10		0.00058 .00043 .00058 .00058 .00071 .00063 .00056 .00037 .00056
						0.001						

TABLE 2.	-	Data	from	comparison	of	Mueller	bridge	decades
				Contir	nue	d		

Run No. 2

0.001 ohm decade	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

			•	

--Continued

					Kull M), J							
	10 ohm decade						1 ohm decade						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00639 .00771 .00384 .00477 .00127 .00471 .00160 .00397 .00196 .03203	$\begin{array}{c} b_{20} \\ b_{30} \\ b_{40} \\ b_{50} \\ b_{50} \\ b_{60} \\ b_{70} \\ b_{80} \\ b_{90} \end{array}$		0.00617 .00759 .00364 .00466 .00116 .00463 .00147 .00384 .00173 .03182	$ \begin{array}{c} 1_{1} \\ 1_{2} \\ 1_{3} \\ 1_{4} \\ 1_{5} \\ 1_{6} \\ 1_{7} \\ 1_{8} \\ 1_{9} \\ 1_{10} \end{array} $			0.00821 .00823 .00696 .00717 .00634 .00620 .00608 .00553 .00261 .00619	ba ba b4 b5 b6 b7 b3 b9			0823 0824 0697 0719 0636 0621 0609 0554 0263 0619
		0.1 ohm	deca	de				0.0	01 ohm	dec	ade		
		.00454	b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9		0.00564 .00439 .00589 .00364 .00563 .00362 .00566 .00461 .00453 .00202	.019	ສູ ສູສູສ ສູສ ສູສ ສູສ	02 * 03 * 04 * 05 * 06 * 06 * 07 *	= .000 = .000 = .000 = .000	67 63 70 57 83 66 86 73	b 02 b 03 b 04 b 05 b 05 b 05 b 05 b 05 b 08 b 09		.00073
					0.001 of	om deca	ade						
		.001	la a l _a a l ₄ a	000 000	$\begin{array}{rcl} 1 &= 0.000\\ 2 &= .000\\ 3 &= .000\\ 4 &= .000\\ - &= .000\end{array}$	08 b.a	002		.00008 .00006				

.00110 a.010 =

.00003 b.010 =

.00001 .00006 .00007 .00008 .00006

.00003

Run No. 3

x

4

p.

TABLE 3. - Decade step resistance values, legal ohms

Decade	Resistance,	Resistance,		Resistance,	Average resistance
step	Run No. 1	Run No. 2		Run No. 3	
10	9.999805	9.999805		9.999785	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
20	19.999660	19.999680		19.999670	
30	29.999445	29.999465		29.999475	
40	39.999330	39.999340		39.999370	
50	49.999224	49.999244		49.999264	
60	59.999139	59.999149		59.999189	
70	69.998974	69.998984		69.999064	
80	79.998829	79.998839		79.998939	
90	89.998614	89.998644		89.998714	
X0	99.998399	99.998449		99.998509	
Decade	Dev. from av			from avg.,	Dev. from avg.,
step	Run No. 1			in No. 2	Run No. 3
10 20 30 40 50 60 70 80 90 X0	$\begin{array}{r} +0.000007\\000017\\000017\\000017\\000020\\000020\\000033\\000040\\000043\\000043\\000053\end{array}$) 7)) }	$\begin{array}{r} +0.000007 \\ +.000010 \\ +.000003 \\000007 \\ .000000 \\000010 \\000023 \\000030 \\000013 \\000003 \end{array}$		$\begin{array}{c} -0.000013\\ .000000\\ +.000013\\ +.000023\\ +.000020\\ +.000030\\ +.000057\\ +.000057\\ +.000057\\ +.000057\\ +.000057\\ +.000057\end{array}$

10 ohm decade

	0	
		• •
		~
		•
		:

TABLE 3. - Decade step resistance values, legal ohms--Continued

Decade	Resistance,	Resistance,		Resistance,	Average Resistance
step	Run No. 1	Run	No. 2	Run No. 3	
1	1.000010	1 (00001	1.000007	1.000006 ± 0.000003
2	2.000011	1.000001 2.000003		2.000005	$2.000006 \pm .000002$
3	3.000011		000014	3.000002	$3.000009 \pm .000004$
4	4.000012		00016	4.000010	$4.000013 \pm .000002$
5	5.000002		00017	5.000017	$5.000012 \pm .000005$
6	6.000003		00019	6.000015	$6.000012 \pm .000005$
7	7.000003	7.0	00020	7.000012	$7.000012 \pm .000005$
8	8.000004	8.000012 9.000013		8.000010	$8.000009 \pm .000002$
9	9.000004			9.000017	$9.000011 \pm .000004$
X	10.000005	10.0	00005	10.000005	$10.000005 \pm .000000$
Decade	Dev. from av	10	Dorr	from este	Dev. from avg.,
step	Run No. J	- · ·		from avg., un No. 2	Run No. 3
	10.00000	,			10.00001
1	+0.000004		~0.000005		+0.000001
2 3		+.000005		000003	000001 000007
	+.000002		+.000005 +.000003		000003
5	000001 000010		+.000005		+.000005
6	000009		+.000007		+.000003
7	000009		+.000008		.000000
8	000005		+.000003		+.000001
9	00000			+.000002	+.000006
X	.000000		.000000		.000000

1 ohm decade

TABLE 3. - Decade step resistance values, legal ohms--Continued

Decade step	Resistance, Run No. 1		stance, No. 2	Resistance, Run No. 3	Average Resistance
0.1	0.099989	0.099992		0.099993	$\begin{array}{c} 0.099991 \pm 0.000001 \\ .199989 \pm .000006 \\ .300000 \pm .000007 \\ .3999999 \pm .000001 \\ .500003 \pm .000001 \\ .600004 \pm .000006 \\ .699999 \pm .000008 \\ .799994 \pm .000008 \\ .799994 \pm .000004 \\ .899995 \pm .000003 \\ .999989 \pm .000001 \end{array}$
.2	.199978	.199994		.199995	
.3	.299987	.300006		.300008	
.4	.399996	.399999		.400001	
.5	.500005	.500001		.500004	
.6	.600014	.599993		.600006	
.7	.700013	.699985		.699999	
.8	.800002	.799987		.799992	
.9	.900001	.899989		.899995	
.X	.999990	.999991		.999987	
Decade	Dev. from avg	Dev. from avg.,		from avg.,	Dev. from avg.,
step	Run No. l	Run No. 1		n No. 2	Run No. 3
0.1 .2 .3 .4 .5 .6 .7 .8 .9 .X	-0.000002 000011 000013 000003 +.000002 +.000010 +.000014 +.000008 +.000006 +.000001	000011 000013 000003 +.000002 +.000010 +.000014 +.000008 +.000008		.000001 .000005 .000006 .000000 .000002 .000011 .000014 .000007 .000006 .000002	$\begin{array}{c} +0.000002 \\ +.000006 \\ +.000008 \\ +.000002 \\ +.000001 \\ +.000002 \\ .000000 \\000002 \\ .000000 \\000002 \end{array}$

0.1 ohm decade

	•	

5

-

TABLE 3. - Decade step resistance values, legal ohms--Continued

Decade step	Resistance, Run No. 1		stance, No. 2	Resistance, Run No. 3	Average Resistance
0.01 .02 .03 .04 .05 .06 .07 .08 .09 .0X	0.009995 .020000 .030005 .040010 .050005 .059999 .070004 .080009 .090014 .100009	.02 .03 .04 .05 .06 .07 .08	0003 0006 0010 0013 0016 0019 0023 0023 0026 0019 0012	0.010002 .020005 .030007 .040009 .050011 .060014 .070016 .080008 .090010 .100013	$\begin{array}{c} 0.010000 \pm 0.000003\\ .020004 \pm .000002\\ .030007 \pm .000001\\ .040011 \pm .000001\\ .050011 \pm .000003\\ .060011 \pm .000006\\ .070014 \pm .000006\\ .080014 \pm .000006\\ .090014 \pm .000003\\ .100011 \pm .000001\end{array}$
Decade step	Dev. from avg Run No. 1			from avg., n No. 2	Dev. from avg., Run No. 3
0.01 .02 .03 .04 .05 .06 .07 .08 .09 .0X	0.000005 000004 000002 000001 000006 000012 000010 000005 .000000 000002	+. +. +. +. +. +. +.		. 000003 . 000002 . 000003 . 000002 . 000005 . 000008 . 000009 . 000012 . 000005 . 000001	$\begin{array}{c} +0.000002 \\ +.000001 \\ .000000 \\000002 \\ .000000 \\ +.000003 \\ +.000002 \\000006 \\000004 \\ +.000002 \end{array}$

0.01 ohm decade

.

'nđ

•

TABLE 3. - Decade step resistance values, legal ohms--Continued

Decade	Resistance,	Resistance,	Resistance,	Average Resistance
step	Run No. 1	Run No. 2	Run No. 3	
0.001	0.001000	0.000999	0.001000	$\begin{array}{c} 0.001000 \pm 0.000000\\ .002007 \pm .000003\\ .003007 \pm .000003\\ .004007 \pm .000003\\ .005007 \pm .000003\\ .006007 \pm .000003\\ .007003 \pm .000001\\ .008004 \pm .000001\\ .009003 \pm .000001\\ .010003 \pm .000001\\ \end{array}$
.002	.002011	.002009	.002000	
.003	.003011	.003008	.003001	
.004	.004012	.004007	.004001	
.005	.005012	.005007	.005001	
.006	.006013	.006006	.006001	
.007	.007003	.007005	.007002	
.008	.008004	.008005	.008002	
.009	.009004	.009004	.009002	
.00X	.010005	.010003	.010002	
Decade	Dev. from avg		from avg.,	Dev. from avg.,
step	Run No. 1		Run No. 2	Run No. 3
0.001 .002 .003 .004 .005 .006 .007 .008 .009 .00X	$\begin{array}{c} 0.000000 \\ +.000004 \\ +.000004 \\ +.000005 \\ +.000005 \\ +.000006 \\ .000000 \\ .000000 \\ +.000001 \\ +.000001 \\ +.000002 \end{array}$		0.000001 +.00002 +.00000 .000000 000000 000001 +.000001 +.000001 +.000001 .000001	0.00000 00007 000006 000006 000006 000006 000001 000001 000001

	`	

. .

10 dial		1	dial	0.1 c	0.1 dial	
Reading	Correction	Reading	Correction	Reading	Correction	
10 20 30 40 50 60 70 80 90 X0	-0.00020 00033 00054 00065 00076 00084 00099 00113 00134 00155	1 2 3 4 5 6 7 8 9 X	$\begin{array}{r} +0.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \end{array}$	0.1 .2 .3 .4 .5 .6 .7 .8 .9 .X	<pre>~0.00001</pre>	
0.01 dial		0.001 dial		0.0001 dial		
Reading	Correction	Reading	Correction	Reading	Correction	
0.01 .02 .03 .04 .05 .06 .07 .08 .09 .0X	$\begin{array}{c} 0.00000\\ .00000\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\\ +.00001\end{array}$	0.001 .002 .003 .004 .005 .006 .007 .008 .009 .00X	$\begin{array}{c} 0.00000 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ +.00001 \\ .00000 \\ .00000 \\ .00000 \\ .00000 \\ .00000 \\ .00000 \end{array}$	0.0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .000X	0.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	

TABLE 4. - <u>Mueller bridge, serial No. 1603629</u>, <u>dial reading corrections</u>

Helium Research Center Internal Report No. 128 January 1970

. . .

*

t

-

measured with the bridge commutator in the N and then the R positions.

Resistance measurements were made about every ten minutes until the ice mantle began to float. Measurements were made during three days. Results from these measurements are recorded in table 5 where,

 R_N = bridge resistance reading (including null detector

interpolations) with the bridge commutator in the N position

 R_R = bridge resistance reading (including null detector

interpolations) with the bridge commutator in the R position

 R_T = average of the resistance readings in the N and R commutator positions after these readings have been corrected for bridge zero (the bridge zero is substracted) and the decade corrections of table 4 have been applied, R_T is the true resistance of the PRT at the triple point of water.

A constant current of 1 milliampere was supplied through the thermometer for the triple point measurements, and time was allowed for the reading to become constant before the resistances were recorded.

The thermometer was calibrated at the National Bureau of Standards $^{2/}$

9/ National Bureau of Standards. Report of Calibration. Platinum Resistance Thermometer Serial No. 1586182, Test No. G39579, Ref. No. 221.11/G-39579, September 1968. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

in terms of the 1948 International Practical Temperature Scale (IPTS-48) for the temperature range -183° to 500° C; therefore, temperatures determined with this PRT will be in terms of the IPTS-48.

30

-

	T	<u> </u>	1
R _N	R _R	R _T	Dev. from avg. R _T
25.54695	25.54545	25.54592	-0.00001
25.54695	25.54545	25.54592	00001
25.54695	25.54545	25.54592	00001
25.54695	25.54545	25.54592	∽.00001
25.54695	25.54545	25.54592	00001
25.54695	25.54545	25.54592	00001
25.54696	25.54540	25.54590	00003
25.54693	25.54540	25.54589	00004
25.54693	25.54540	25.54589	00004
25.54693	25.54540	25.54589	00004
25.54693	25.54542	25.54590	00003
25.54693	25.54543	25.54590	00003
25.54693	25.54543	25.54590	00003
25.54693	25.54543	25.54590	00003
25.54693	25.54543	25.54590	00003
25.54693	25.54543	25.54590	∽ .00003
25.54693	25.54543	25.54590	00003
25.54693	25.54543	25.54590	00003
25.54695	25.54547	25.54593	. 00000
25.54695	25.54545	25.54592	00001
25.54695	25.54545	25.54592	00001
25.54695	25.54545	25.54592	00001
25.54697	25.54545	25.54593	. 00000
25.54696	25.54546	25.54593	.00000
25.54696	25.54546	25.54593	.00000
25.54700	25.54547	25.54595	+.00002
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	+.00003
25.54700	25.54548	25.54596	+.00003
25.54702	25.54548	25.54597	+:00004
25.54702	25.54548	25.54597	+.00004
25.54702	25.54548	25.54597	+.00004
25.54702	25.54548	25.54597	+.00004
25.54705	25.54547	25.54598	+.00005
25.54700	25.54547	25.54595	+.00002
25.54700	25.54547	25.54595	+.00002

TABLE 5. - Resistance of platinum resistance thermometer, serial No. 1586182, at the triple point of water

+

e1

8 × 4

*

R _N	R _R	R. ₇	Dev. from avg. R _T
25.54700 25.54695 25.54695 25.54695 25.54695 25.54695	25.54547 25.54542 25.54542 25.54542 25.54542 25.54542 25.54542	25.54595 25.54591 25.54591 25.54591 25.54591 25.54591 25.54591	+.00002 00002 00002 00002 00002 00002

TABLE 5. - Resistance of platinum resistance thermometer, serial No. 1586182, at the triple point of water--Continued

Average $R_T = 25.54593 \pm 0.000004$

 $R_o = R_T / 1.00003984 = 25.54491 \pm 0.000004$ legal ohms

·

By definition, the ice point of water is 0.01 degree below the triple point; therefore, to obtain the ice point resistance we take

$$R_0 = \frac{R_7}{1.00003984} = \frac{25.54593 \pm 0.00004}{1.00003984}$$

$$R_0 = 25.54491 \pm 0.000004$$
 legal ohms

where

 R_0 = ice point resistance .

The number 1.00003984 is obtained from the interpolation table supplied in conjunction with the NBS calibration for PRT serial No. 1586182.

DISCUSSION

The corrections of table 4 differ significantly from the original L & N calibration $\frac{10}{}$ only for the 10-ohm decade, and are roughly double

10/ Leeds & Northrup Company. Certificate for Catalog No. 8069-B Resistance Thermometer Bridge, Serial No. 1603629. August 1962. On file at the Bureau of Mines, Helium Research Center, Amarillo, Tex.

the original corrections or a maximum change of about 1 part in 10^5 for this decade.

We feel that any resistance determined with the bridge will be known with an accuracy equal to, or better than, that originally claimed by the manufacturer, which was 0.00002 ohm for 1 ohm or less and 2 parts in 10^5 for a resistance greater than 1 ohm. 4.5 ×. The value determined for the ice point resistance agrees with the value determined at the NBS^{9/} to 4 parts in 10^6 , which may be partly fortuitous, but does give added confidence in our work.

The ice point resistance determined by this work differs from that of $Briggs^{3/}$ by 5 parts in 10^5 ; however, Briggs used a thermometer current of 2 milliamperes while a current of 1 milliampere was used by us. Also, we note that the precision of our ice point measurements was an order of magnitude better than that of Briggs due, at least in part, to a better null detector.

In summary, we feel that our temperature determinations, made with PRT serial No. 1586182 and Mueller bridge serial No. 1603629, will reproduce the IPTS-48 with an accuracy essentially dependent upon the accuracy of the NBS thermometer calibration.

Ľ

