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THE plan upon which this work was originally cdmmen-

.ced, is continued in this second part of the course. As the

single object is to provide for a class in college, such matter
as is not embraced by this design is excluded. The mode
of treating the subjects, for the reasons mentioned in the pre-;
face to Algebra, is, in a considerable degree, diffuse. It was
thought better to err on this extreme, than on the other,
especially in the early part of the course.

The section on right angled triangles will probably be
considered as needlessly minute. The solytions might, in
all cases, be effected by the theorems which are given for
oblique angled triangles. But the applications of rectangn-
lar trigonometry are so nuierous, in navigation, surveying,
astronomy, &c., that it was deemed important, to render
familiar the various methods of stating the relations of the
sides and angles; and especially to bring distinetly into view
the principle on which most trigonometrical calculations are
founded, the proportion between the parts of the given tri-
angle, and a similar one formed from the sines, tangents, &c.,
in the tables.
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LOGARITHMS.

SECTION L

NATURE OF LOGARITHMS."

ArT. 1. THE operations of Multiplication and Division,
when they are to be often repeated, beceme so laborious,
that it is an object of importance to substitute, in their stead,
more simple methods of calculation, such as Addition and
Subtraction. If these can be made to perform, in an expe-
ditious manner, the office of multiplication and division, a
great portion of the time and labor which the latter processes
require, may be saved. S

Now it has been shown, (Algebra, 233, 237,) that powers
may be multiplied, by adding their ezponents, and divided,
by subtracting their exponents. In the same manner, roots
may be multiplied and divided, by adding and subtracting
their fractional exponents. (Alg. 280, 286.) When these ex-
poneuts are arranged in tables, and applied to the general
purposes of calculation, they are called Logarithms.

2. LOGARITHMS, vaEN, AR THE EXPONENTS oF
A SERIES OF POWERS AND ROOTS.t

In forming a system of logarithms, some particular num-
ber is fixed upon, as the base, radiz, or first power, whose
logarithm is always 1. From this, a series of powers is rais-
ed, and the exponents of these are arranged in tables for use.
To explain this, let the number which is chosen for the first

* Maskelyne’s_Preface to ’]‘a{lor’s Logarithms. Introduction to Hutton’s
Tables. Keil on Logarithms. Museres Scriptores Loilnrithmici. Briggs’ Log-
arithms. Dodson’s Anti-logarithmic Canon. Euler's Algebra.

t See note A.. R



2 ’ NATURE OF LOGARITHMS,

power, be represented by a. Then taking a series of pow-
ers, both direct and reciprocal, as in Alg. 207 ;

as, a® a’,al, 0% a" a3, a3 a4, &e.
The logarithm of a3 is 3, and the logarithm of &~ is —1,
ofaris1, of a2 is —2,
. of a® is 0, of a—3is —3,&ec.
Universally, the logarithm of a®is z.

3. In the system of logarithms in common use, called
Briggs’ logarithms, the number which is taken for the.radix
or buse is 10. 'The above series then, by substituting 10 for
a, becomes '

10+, 103, 107, 10,10, 10—, 10-2,"10-3, &ec.
Or 10000, 1000, 100, 10, 1, %, l5 tosm &C
‘Whose logarithms are
4, 3, 2 1 0 —1, —2, —3, &c.

4. The fractional exponents of roots, and of powers of
roots, are converted into decimals, before they are inserted
in the logarithmic tables. Sce Alg. 255.

2

The logarithm of a%', or a°-3333, is 0.3333,
' of a5, or a®-s45, is 0.6666,
of a¥, or @o-4395, is 0.4285,

of a'3,oras-e0ss, is 3.6666, &e.

These decimals are carried to a greater or less number of
places, according to the degree of accuracy required.

5. In forming a system of logarithms, it is necessary to
obtain the logarithm of each of the numbérs in the natural
series 1, 2, 3, 4, 5, &c.; so that the logarithm of any number
may be found in the tables. For this purpose, the radiz of
the system must first be determined upon ; and then every
other number may be considered as some power or root of
this. If the radix is 10, as in the common system, every
other number is to be considered as some power of 10.

That a power or root of 10 may be found, which shall be
equal to any other number whatever, or, at least, a very near
approximation to it, is evident from this, that the exponent
may be endlessly varied ; and if this be increased or dimin-
ished, the power will be increased or diminished.



NATURE OF LOGARITHMS. 3

If the exponent is a fraction, and the numerator be increas-
ed, the power will be increased ; but if the denominator be
increased, the power will be diminished.

6. To obtain then the logarithm of any number, according
to Briggs’ system, we have to find a power or root of 10
which shall be equal to the proposed number. The exponent
of that power or root is the logarithm required. Thus

7=100-8451 of 7is0.8451

20=101-3019 | therefore the | of 20 is 1.3010

30=10"-4771 { logarithm of 30is 1.4771
400=103-0030 | of 400 is 2.6020, &c.

7. A logarithm generally consists of two parts, an infeger
and a decimal. 'Thus, the logarithm 2.60206, or, as it is
sometimes written, 2+.60206, consists of the integer 2, and
the decimal .60206. The integral part is called the charac-
teristic or indez* of the logarithm ; and is frequently omitted,
in the common tables, because it can be easily supplied, when-
ever the logarithm is to be used in calculation.

By art. 3d, the logarithms of
10000, 1000, 100, 10, 1, .1, .01, .001, &e.
are 4, 3 2 1, 0,—1, —2, —3, &ec.

,As the logarithms of 1 and of 10 are 0 and 1, it is evident,
that, if any given number be between 1 and 10, its logarithm
will be between 0 and 1, that is, it will be greater than 0, but
less than 1. It will therefore have 0 for its index, with a
decimal annexed.

Thus, the logarithm of 5 is 0.69897.
For the same reason, if the given number be between

. 10 and 100, the log. ( 1 and 2, i. e. 1+4the dec. part.
100 and 1000, % will be < 2 and 3, 24-the dec. part.
1000 and 10000, | between { 3 and 4, 3+the dec. part.

‘We have, therefore, when the logarithm of an integer or
mixed number is to be fouund, this general rule:

* The term inder, as it is used here, may possibly lead to some confusion in
the mind of the learner. For the logarithm itself is the index or exponent of a
power. The characteristic, therefore, is the index of an index.

P



4 NATURE OF LOGARITHMS.

8. The indez of the logarithm is always one less, than the
number of integral figures, in the natural number whose loga-
rithm is sought : or, the index shows how far the first figure
of the natural number is removed from the place of units.

Thus, the logarithm of 37 is 1.56820.

Here, the number of figures being #wo, the index of the
logarithm is 1.

The logarithm of 253 is 2.40312.

Here, the proposed number 253 consists of three figures,
the first of which is in the second place from the unit figure.
The index of the logarithm is therefore 2.

The logarithm of 62.8 is 1.79796.

Here it is cvident tifat the mixed number 62.8 is between
10 and 100. The index of its logarithm must, therefore,
be 1. .

9. As the logarithm of 1 is 0, the logarithm of a number
less than 1, that is, of any proper fraction, must be negative.

Thus, by art. 3d,
The logarithm of p; or.1 is—1,
of iz or.01 is—2,
of ;457 or .00 is—3, &e.

10. If the proposed number is between 15 and +iss
its logarithm must be between —2 and — 3. 'To obtain the
logarithm, therefore, we must either swbfract a certain frac-
tional part from — 2, or add a fractional part to —3; that is,
we must either annex a negative decimal to —2, or a posi-
tive one to — 3.

Thus, the logarithm
of .008 is either —2 —.09691, or — 3+-.90309.* .

The latter is generally most convenient in practice, and is
more commonly written 3.90309. 'The line over the index

* That these two expressions are of the same value will be evident, if we sub-
tract the same quantity, 4-.90309 from each. The remainders will be equal, and
theregre the quantities from which the subtraction is made must be equal. See
note B.
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11. The negative index of a logarithm shows how far the
Jirst significant figure of the natural number, is removed
Jrom the place of units, on the right ; in the same manner as
a positipe index shows how far the first figure of the natural
number is removed from the place of units, on the left. (Art.
8.) Thus, in the examples in the last article,

The decimal 3 is in the first place from that of units,
6 is in the second place,
9 is in the third place;

And the indices of the logarithms are 1, 2, and 3.

12. Tt is often more convenient, however, to make the in-
dez of the lozarithm positive, as well as the decimal part.
This is done by adding 10 to the index.

Thus, for —1,9 is written; for —2, 8, &e.
Because —1+410=9, —2+410=8, &c.
With this alteration, )
1.90309 9.90309,
The logarithm { 590309 ; becomes < 890309,
3.90309 7.90309, &e.

This is making the index of the logarithm 10 too great.
But with proper caution, it will lead to no error in practice.

13. The sum of the logarithms of two numbers, is the log-
arithm of the product of those numbers; and the difference
of the logarithms of two numbers, is the logarithm of the
quotient of one of the numbers divided by the other. (Art. 2.
In Briggs’ system, the logarithm of 10 is 1. (Art. 3.) If there-
fore any number be multiplied or divided by 10, its logarithm
will beincreased or diminished by 1: ang as this is an in-
teger, it will only change the indez of the logarithm, without
affecting the decimal part.

-~



6 NATURE OF LOGARITHMS.
Thus, the logarithm of 4730 is 3.67486
And the logarithm of  101is 1.

The logarithm of the product 47300 is 4.67486
And the logarithm of the quotient 473 is 2.67486

Here the indez only is altered, while the decimal part re-
mains the same. We have then this important property,

14. The pEcIMAL PART of the logarithm of any number
18 the same; as that of the number multiplied or divided by
10, 100, 1000, &c.

Thus the log. of 45670, is 4.65963,
‘ 4567, 3.65963,

455.7, 2.65963,

45.67, 1.65963,

4.567, 0.659:3,

4567,  1.65963, or 9.65963,
04567, 2.65963, 8.65963,
. 004567, 3.65963, 7.65963.

This property, which is peculiar to Briggs’ system, is of
ﬁreat use in abridging the logarithmic tables. For when we
ave the logarithm of any number, we have only to change
the index, to obtain the logarithm of every other number,
whether integral, fractional, or mixed, consisting of the same
significant figures. - The decimal part of the logarithma of a
fraction found in this way, is always positive. For it is the
same as the decimal part of the logarithm of a whole num-
ber.
15. In a series of fractions continually decreasing, the
negative indices of the logarithms continually increase.
Thus,

In the series 1, .1, .01, .001,.0001, .00001, &c.
The logarithms are 0, —1, —2, —3, —4, —5, &ec.

If the progression be continued, till the fraction is reduced
to 0, the negative logarithm will become greater than any as-
signable quantity. The logarithm of 0, therefore, is infinite
and negative. (Alg. 447.)

16. It is evident also, that all negative logarithms belong
to fractions which are between 1 and 0; while positive loga-

"y



NATURE OF LOGARITHMS. N 7

rithms belong to natural numbers which are greater than 1.

As the whole range of numbers, both positive and negative,
is thus exhausted in supplying the logarithms of integral and
fractional positive quantities ; there can be no other numbers
to furnish logarithms for negative quantities. On this ac-
count the logarithm of a negative quantity is, by some wri-
ters, considered as impossible. But as there is no difference
in the multiplication, division, involution, &c. of positive and
negative quantities, except in applying the signs; they may
be considered as all positive, while these operations are per-
forming by means of logarithms ; and the proper signs may
be afterwards affixed.

17. Ifaseries of numbers be in GEOMETRICAL progression,
their logarithms will be in ARITHMETICAL progression. For,
in a geometrical series ascending, the quantities increase by
a common multiplier ; (Alg. 436.) that is, each succeeding
term is the product of the preceding term into the ratio.
But the logarithmn of this product is the sum of the logarithms
of the preceding term and the ratio ; that is, the logarithms
increase by a common addition, and are, therefore, 1n arith-
metical progression. (Alg. 422.) In a geometrical progression
descending, the terms decrease by a common divisor, and
their logarithms, by a common difference.*

&



8 4 LOGARITHMIC CURVE.

THE LOGARITHMIC CURVE.

19. The relations of logarithms, and their corresponding
numbers, may be represented by the abscissas and ordinates
of a curve. Let the line AC (Fig. 1.) be taken for unity.
Let AF be divided into portions, each equal to A C, by the
points 1, 2, 3, &c. Let the line a represent the radiz of a
given system of logarithms, suppose it to be 1.3 ; and let a?,
a3, &c. correspond, in length, with the different powegrs of a.
Then the distances from A to 1, 2, 3, &c., will represent the
logarithms of a, a*, a3, &c. (Art. 2.) The line CH is called
the logarithmic curve, because its abscissas are propogtioned
to the logarithms of numbers represented by its ordinates.
(Alg. 527.)

20. As the abscissas are the distangces from AC, on the line
AF, it is evident, that the abscissa of the point C is (), which
is the logarithm of 1= AC. (Art. 2.) The distance fram A to
1 is the logarithm of the ordinate a, which is the radiz of
the system. For Briggs’ logarithms, this ought to be ten
times AC. 'The distances from A to 2 is the logarithm of the
ordinate a2 ; from A to 3 is the logarithm of a3, &ec.

21. The logarithms of numbers less than a unit are nega-
tive. (Art. 9.) These may be represented by portions of the
line AN, on the opposite side of AC. (Alg. 507.) The ordi-
nates ¢!, a2, a—?, &c., are less than AC, which is taken
for unity ; and the abscissas, which are the distances from A
to —1, —2, —3, &c., are negative. :

22. If the curve be continued ever so far, it will never
meet the axis AN. For, as the ordinates are in geometrical
progression decreasing, each is a certain portion of the pre-
ceding one. They will be diminished more and more, the
farther they are carried, but can never be reduced absolutely
to nothing. 'The axis AN is, therefore, an asymptote of the
curve. (Alg. 545.) As the ordinate decrcases, the abscissa
increases ; so that, when one becomes infinitely small, the
other becomes infinitely great. 'This cgrresponds with what
has been stated, (Art. 15.) that the logarithm of 0 is infinite
and negative.
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+ 23, To find the equation of this curve,

Let a==the radiz of the system,
z=any one of the abscissas,
y =theycorresponding ordinate.

Then, by the nature of the curve, (Att. 19.) the ordinate
to any point, is that power of @ whose exponent is equal to
the abscissa of the same point; that is, (Alg. 528.)

y=a*"*

* Far other properties of the logarithmic curve, see Fluxions.
S

Famp .
?L



10 ) @ THE LOGARITHMIC TABLES,

SECTION IL
5

DIRECTIONS FOR TAKING LOGARITIIMS AND THEIR NUM-
»
BERS FROM THE TABLES." . .

ArT. 24. THE purpose which logarithms are intended to
answer, is to enable us to perform arithmetical operations
with greater expedition, than by the common methods. Be-
fore any one can avail himself of this advantage, he must
become so familiar with the tables, that he cag readily find
the logarithm of any number; and, on the other hand, the
number to which any logarithm belongs. :

In the eommon tables, the indices to the logarithms of the
first 100 numbers, are inserted. But, for all other numers,
the decimal part only of the logarithm is given ; while the

index is left to be supplied, @according to the principles in-

arts. 8 and 11. ,
10‘2)5. To find the logarithm of any number between 1 and

Look for the Proposed qmmbér, on the left; and against
it, in the next column, will be the logarithm, with its index.
Thus,

The log. of 18 is 1.25527. The log. of 73 is 1.86332.

26. To find the logarithm of any number between 100 and
1000 ; or of any number consisting of not more than three
significant figures, with ciphers annexed.

In the smaller tables, the three first figures of each num-
ber, are generally placed in the left hand column ; and the
fourth figure is placed at the head of the other columna

Any number, therefore, between 100 and 1000, may be
found on the left hand ; and directly qpposite, in the next
column, is the decimal part of its logarithm. To this the
tndex must be prefixed, according to the rule in art. 8.

* The best English Tables are Hutton’s in Svo. and Taylor's in 4to. In these,
the logarithms are carried to seven places of decimals, antf proportional parts are

placed in the margin. The smaller tables are numerous; and, when accurately
printed, are sufficient for common calculations:

L]

1Y
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The log. of 458 is 2.66087, The log. of 935 is 2.97081,
of 796 290091, "of 336 268659,
.
e
¢

«The log. of 6234 is 3.79477, The log. of 783400 is 5.89398,
of 5231 3.71858, of 6281000 6.79803.

28. To find the logarithm of a number containing MORE
than FOUR significant figures. - "

By turning to the tables, it will be seen, that if the differ-
ences between several numbers be small, in comparison with
the numbers themselves; the differences of the logarithms
will be nearly proportioned to the differences of the numbers.
Thus,

The log. of 1000 is 3.00000, Here the differences in the
of 1001 3.00043,  numbers are, 1,2,3, 4, &c.
of 1002 3.00087, and the corresponding dif-

- of 1003 3.00130, ferences in the logarithms,
. of 1004 3.00173, &ec. are 43, 87, 130, 173, &e.

Nosv 43 is nearly half of 87, one third of 130, one fourth
of 173, &ec. "

Upon this principle, we may find the logarithm of a num-
ber which is between two other numbers whose logarithms

¢ In Taylor’s, Hutton’s, and otler tables, four figures are placed in the left hand

column, and the 42k at the top offthe page.

[} ¢






THE LOGARITHMIC TABLES. o 13

The first term of the proportion will then be 10, or 100,
or 1000, &c. :

Ex. 1. Required the logarithm of 362572.

2Y. 1o find the logarithm of a DECIMAL FRACTION.

The logarithm of a decimal is the same as that of a whole
number, excepting the indez. (An. 14.) To find then the
logarithm of a decimal, take out that of a whole number con-
sisting of the sawe figures ; observing to make the negative
index equal to the distance of the first significant figure of
the fraction from the place of units. (Art. 11.)

The log. of 0.07643, is 2.88326, or 8.88326, (Art. 12.)
of 0.00259, 3.41330, or 7.41330,
of 0.0006278, 4.79782, or 6.79782.
30. To find the logarithm of a M1XED decimal number.
Find the logarithm, in the same manner as if all the fig-

ures were integers; and then prefix the index which belongs
to the integral part, according to atft8.

The logarithm of 26.34 is 1.42062.

The index here is 1, because 1 is the index of the loga-‘
rithm of every number greater than 10, and less than 10C
(Art. 7.) &

L)
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The log. of 2.36 is 0.37291, The log. of 364.2 is 2.56134,
~of 27.8  1.44404, of 69.42 1.84148.
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the logatithm obtained in. the result. This is evidently done,

by reversing the methods in the preceding articles.

Where great accuracy is not required, look in the tables
for the logarithm which is nearest to the given one; and
directly opposite, on the left hand, will be found the three

Jirss figures, and at the top, over the logarithm, the fourth

ﬁﬁ:ure, of the number required. This number, by pointing
off decimals, or by adding ciphers, if necessary, must be made
to correspond with the indez of the given logarithm, accord-
ing to arts. 8 and 11. : e

) The natural number belonging . *x

 to 3.86493 is 7327, to 1.62572 is 42.24,
to 290141  796.9, to 2.89116  0.07783.

In the last example, the index requires that tl first signi-
ficant figure should be in the second place from units, and
therefore a cipher must be prefixed. In other instances, it
is necessary to annex ciphers on the right, so as to make the
number of figures exceed the index by 1.*

The natural number belonging

- x
to 6.71567 is 5196000, to 3.65677 is 0.004537,
to 467062 46840, to 4.59802 0.0003963.

34. When great accuracy is required, and the given loga-
rithm is not exactly, or very nearly, found in the tables, it
will be necessary to reverse the rule in art. 28. :

Take from the tables two logarithms, one the next greater,
the other the next less than the given logarithm. Find the
difference of the two logarithms, and the difference of their
natural numbers ; also the difference between the least of the
two logarithms, and the given logarithm. Then say,

As the difference of the two logarithms,

To the difference of their numbers ;

So is the difference between the given
logarithm and the least of the other two,

To the proportional part to be added to
the least of the two numbers.
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Required the number belonging to the logarithm 2.67328.

Next freat. log. 2.67330. Itsnumb. 471.3. Given log. 2.67325
Next less 2.67321. Itsnumb.471.2. Next less 2.67321.

Diﬂ'erences 9 0.1 4

Then, 9 ; 0.1::4 ; 0.044, which is to be added
to the number 471.2

The number required is  471.244.

The natural number belonging ‘
to 4.37627 is 2378345,  to 1.73698 is 54.57367, °

to 3.69479. 4952.08, to 1.09214  0.123635.

~ 36. Correction of the Tables—The tables of logarithms
have been so carefully and so repeatedly calculated, by the
ablest computers, that there is no room left to question their
neral correctness. They are not, however, exempt from
e common imperfections of the press. But an error of this
kind is easily corrected, by comparing the logarithm with an
two others to whose sum or difference it ought to be equal.
Art. 1.
( Thug, 48 =24x2=16x3=12x4=8x6. 'Therefore, the
logarithm of 48 is equal to the sum of the logarithms of 24
B sy, . Therefors, the logarithm
=ty &e. erefore, the logari
of 3 is equal to the difference of the logarithms of 6 and 2, of
12 and 4, &ec. :

o
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SECTION III

METHODS OF CALCULATING BY LOGARITHMS.

Art. 36. Tue arithmetical operations for which loga-
rithms wére originally contrived, and on which their great
wtility depends, are chiefly multiplication, division, involution,
evolution, and finding the term required in single and com-
})ound proportion. ’%he principle on which all these calcu-

ations are conducted, is this : :

If the logarithms of two numbers be added, ti svm will
be the logarithm of the PrRoDUCT of the numbers; and,

If the logarithm of one number be subtracted from that of
another, the DIFFERENCE will be the logarithm of the avo-
TIENT of one of the numbers divided by the other.

In proof of this, we have only to call to mind, that loga-
rithms are the EXPONENTS of a series of powers and roots.
(Arts. 2, 5)) And it has been shown, that powers and roots
are snultiplied by adding their exponents ; and divided, by
subtracting their exponents. (Alg. 233, 237, 280, 286.)

MULTIPLICATION BY LOGARITHMS.

37. ADD Tne rocariTHMS ofF THE FACTORS: THE
SUM wiLL BE THE LoGARITHM oF THE PRODUCT.

In making the addition, 1 is to be carried, for every 10,
from the decimal part of the logarithm, to the index. (Art.7.)

Numbers. Logarithms, Numbers.  Logarithms.

Mult. 36.2 (Art. 30.) 1.55871 Mult. 640 2.80618
Into _18;4_ 0.89432 Into 2316 0.36474
Prod. 2838 2.45303 Prod. 1482 3.17092

The logarithms of the two factors are taken from the tables.
The product is obtained, by finding, in the tables, the natural
number belonging to the sum.s(Art. 33.)
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Mult. 89.24 1.95056 Mult. 134. 2.12710
Into 3.687 0.56667 Into 25.6 1.40824

Prod. 329. 251723 Prod. 3430  3.563534
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Multiply .00845 3.92686 or 7.92686
Into 1068. 3.02857  3.02857

Product 9.0246 095543  0.95543

The product of 0.0362 into 25.38 is 0.9188
of 0.00467 into 348.1 is 1.626
of 0.0861 into 0.00843 is 0.0007258

39. Any number of factors may be multiplied together, by
adding their logarithms. If there are several positive, and
several negative indices, these are to be reduced to one, as
in algebra, by taking the difference between the sum of those
which are negative, and the sum of those which are positive,
increased by what is carried from the decimal part of the
logarithms. (Alg. 78.) -

Multiply 6832 383455  3.83455
Inte  0.00863 3.93601 or 7.93601

And 0.651 “1.81358  9.81358
And 0.0231  2.36361 or 8.36361
And 62.87 1.79844  1.79844

Prod. 55.74 1.74619 1.74619

Ex. 2. The prod. of 36.4X7.82x68.91x0.3846 is 7544.

3. The prod. of 0.00629x2.647x0.082x278.8x0.00063 is
0.0002398.

40. Negative quantities are multiplied, by means of loga-
rithms, in the same manner as those which are positive. (Art.
16.) Baut, after the operation is ended, the proper sign must
be applied to the natural number expressing the product, ac-
cording to the rules for the multiplication of positive and
negative quantities in algebra. The negative index of a log-
arithm, must not be confounded with the sign which denotes
that the natural number is negative. 'That which the index
of the logarithm is intended to show, is not whether the nat-
ural number is positive or negative, but whether it is greater
or less than a unit. (Art. 16.)
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’
Mult. +36.42 166134  Mult. —2.681  0.42830
Into —67.31 1.82808 Into 4 37.24 1.67101

Prod. — 2451 338942  Prod.—99.84  1.99931

In these examples, the logarithms are taken from the tables,
and added, in the same manner, as if both factors were posi-
tive. But after the product is found, the negative sign is
prefixed to it, because -+ is multiplied into —. (Alg. 105.)

Mult. 0263 =~ 141996  Mult. 0.065 2.81291
Into 0.00894 395134 Into 0.693 1.84073

Prod. 0002351 3.37130  Prod. 0.04504 2.65364

Here, the indices of the logarithms are negative, but the
product is positive, because the factors are both positive.

Mult. —6259  1.79650  Mult. —68.3  1.83442
Into —0.00863 393601 Into —0.0096 3.98227

Prod. +4-0.5402 1.73251  Prod. +0.6557 1.81669




DIVISION BY LOGARITHMS.
1

41. From THE LocArRiTHM oF TRE DIVIDEND, SUB-
TRACT THE LoGgARITHM oF THE DIVISOR; Tur DIF-
FERENCE wiLL BE THE LOGARITHM oF THE QUO-
TIENT. (Art. 36.) :

Numbers. Logarithms. Numbers. Logarithms,
Divide 6238 3.79506 Divide 896.3 2.95245
By 2982 3.47451 By 9.847 = 0.99330

Quot. 2092 032054  Quot. 91.02 1.95915

42. The decimal part of the logarithm may be subtracted
as in common arithmetic. But for the indices, when either
of them is negative, or the lower one is greater than the upper
one, it will be necessary to make use of the general rule for
subtraction in algebra; that is, to change the signs of the
subtrahend, and then proceed as in addition. (Alg. 82.) When
1 is carried from the decimal part, this is to be considered
affirmative, and applied to the index, before the sign is
gha.nged. ' , ‘

Divide 0.8697  1.93937 or 9.93937
By 9865 ~ 199410  1.99410

Quot. 0.008316 394527  7.94527 '™

" In this example, the npper logarithm being less than the
lower one, it is necessary to borrow 10, as in other cases of
subtraction; and therefore to carry 1 to the lower index,
which then becomes +2. This changed to — 2, and added
to — 1 above it, makes the index of the difference of the log-
arithms — 3.

Divide 29.76  ¥1.47363 - '~ 1.47363
By 6254 3.79616°  3.79616

Quot. 0.00476 3.67747 or 7.67747
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.
Here, 1 carried to the lower index, makes it +4. This
changed to — 4, and added to 1 above it, gives —3 for the
index of the difference of the logarithms. .

Divide 6832 /083455 - © Divide 0.00634  3.80209
By 0362 §¥B5871.#By 6218 1.79365

Quot. 18873 227584  Quot. 0.000102 4.00844

In these examples, the sign of the divisor being different
from that of the dividend, the sign of the quotient must be

negative. (Alg. 123.)

Divide —0364 1.56110  Divide —685 183569
By —256 040824 By  +000# . 297313

Quot. +40.1422 T1.16286 Quot. —728.7 ?_.86%6

INVOLUTION BY LOGARITHMS.

44. Involving a quantity is multiplying it into itself. By
means of Insarithms, multiplication is performed by addition.
If, ther_, Ui~ logarithm of any quantity be added fo itself, the

-~
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lc()ignrithm of a power of that quantity will be obtained. But
adding e logarithm, or any other quantity, to itself, is mauliti-
plication. 'The involution of quantities, by means of loga-
rigllms, is therefore performed, by multiplying the loga-
rithms.

~

3.-Required the 6th power of 1.689
Root 1.689 . log.  0.22763
Index - 6

Power 23215 1.36578
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4. Required the 144th

Root 1.003

Power 1.539

Index

er of 1.003

3. Required the 6th power of 0.9977

Root 0.9977

Power 0.9863

log.
Index

4. Required the cube of

Root 0.08762

Power 0.0006727

log.
Index

1.99900 or 9.99900
6

"2794263 or 8.94260

6

T1.99400  9.99400

0.08762
3

182780  6.82780
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a

Power 6948 10)3.84186
Root 2.422 0.38418

4. Required the 100th root of 983.

Power 983  100)2.99255
Root 1.071 0.02992

« The division is performed here, as in other cases ol
mals, by l‘emOVing the decimal point to the left. ;
4

-

;B‘-

o
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6. What is the ten thousandth root of 49680000 ?

Power 49680000 10000)7.69618
Root 1.00179 0.00077

‘We have, here, an example of the great rapidity with which
arithmetical operations are performed by logarithms.

48. If the index of the logarithm is negative, and is not
divisible by the given divisor, without a remainder, a diffi-
culty will occur, unless the index be altered.

Suppose the cube root of 0.0000892 is required. The

logarithm of this is 5.95036. If we divide the index by 3,
the quotient will be —1, with — 2 remainder. This remain-
der, if it were positive, might, as in other*cases of division,
be prefixed to the next figure. But the remainder is nega-
tive, while the decimal part of the logarithm is positive ; so.
that, when the former is prefixed to t.ghe latter, 1t will make
neither +2.9 nor —2.9, but —2-+-.9. This embarrassing in-
termixture of positives and negatives may be avoided, by
adding to the index another negative number, to make it ex-
actly divisible by the divisor. 'Thus, if to the index —5 there -
be added —1, the sum —6 will be divisible by 3. But this
addition of a negative number must be compensated, by the
addition of an equal positive number, which may be prefixed
to the decimal part of the logarithm. The division may then
be continued, without difficulty, through the whole.

Thus, if the logarithm 5.95036 be altered to 6-1.95036
it may be divided by 3, and the quotient will be 2.65012.
‘We have then this rule,

49. Add to the index, if necessary, such a negative number
as will make it exactly divisible by the divisor, and prefix an
equal positive number to the decimal part of the logarithm.

1. Required the 5th root of  0.009642.
Power 0.009642 log.  3.98417

or 54298417

Root  0.3952 1.59683

2. Required the 7th root of  0.0004935.
Power 0.0004935 log.  4.69329

or 7)7+3.69329

Root 0.337 1.52761



PROPORTION BY LOGARITHMR, ) o7

50. If, for the sake of performing the division conveniently,
the negative index be rendered positive, it will be expedient
to borrow as many tens, as there are units in the number
denoting the root.
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or THE FIRST TErM. The remainder will be the logarithm
of the term required.

Ex. 1. Find a fourth proportional to 7964, 378, and 27960.

Numbers. Logarithms.

Second term 378 2.57749
Third term 27960 4.44654
) 7.02403
First term 7964 EOI 13
Fourth term 1327 3.12290

2. Find a 1th proportional to 768, 381, and 9780.

Second term 381 2.58092
Third term 9780 ?1.29034

6.57126
First term 768 2.88536
Fourth term 4852 3.68590

ARITHMETICAL COMPLEMENT.

53. When one number is to be subtracted from another,
it is often convenient, first to subtract it from 10, then to add
the difference to the other number, and afterwards to reject
the 10.

Thus, instead of a—»b, we may put 10— b+a—10.

In the first of these expressions, bis subtract.d from a. In
the other, b is subtracted from 10, the difference is added to
a, and 10 is afterwards taken from the sum. The two ex-
pressions are equivalent, because they consist of the same
terms, with the addition, in one of them, of 10—10=0. The
alteration is, in fact, nothing more than borrowing 10, for the
sake of convenience, and then rejecting it in the result.

Instead of 10, we may borrow, as occasion requires, 100,
1000, &c.

"Thus, @ —5=100—b4-a—100=1000—>b+a—1000, &c.

54. The DIFFERENCE between a given number and 10, or
100, or 1000, d~c., is called the ARITHMETICAL COMPLEMENT -
of that number. -



ARITHMETICAL COMPLEMENT.

']?:e arithmetical complement
one Tntegral figure, either with or
by subtracting the number from

gral ﬁgures, they are subtracted
000, &ec. P :

The arithmetical complement

of 6.24897 is 3.75103 of 2.70649 is 11.29351
of 298643  7.01357 of 3.64200 6.35800
of 0.62430 937570  of 9.35001 0.64999
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56. The principal use of the arithmetical complemeqt, is
in working proportions by logarithms; where some of the
terms are to he added, and one or more to be subtracted.
In the Rule of Three or simple proportion, two terms are to
be added, and from the sum, the first term is {p be subtracted.
But if| instead of the logarithm of the first term, we substi-
tute its arithmetical complement, this may be added to the
sum of the other two, or more simply, all three may be added
together, by one operation. After the index is diminished
by 10, the result will be the same as by the common method.
For subtracting a number is he same, as adding its arith-
metical complément, and then rejecting 10, 100, or 1000,
from the sum. (A% 53.)

It will generally be expedient, to place the terms in the
same order, in which they are arranged in the statement of
the proportion.

1. As 6273 a.¢. 620252 2. As 253 a. c. 7.59688

Isto 769.4 2.88615 Isto 6725  2.82769
So is 37.61 1.57530 So is 497 2.69636
To 4613 0.66397 To 1321.1 3.12093

Ex. 1. If the interest of $365, for 3 years and 9 months,
be £82.13; what will be the interest of $8940, for 2 years
and 6 months? : .

In common arithmetic, the statement of the question is
made in this manner.
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65 dollars ) - . . 8940 dollars )
o™ ¢ 8213 dollars - : § 955900

And the method of calculation is, to divide the product of
the third, fourth, and fifth terms, by the product of the two
first.* This, if logarithms are used, will be to subtract the
sum of the logarithms of the two first terms, from the sum
of the logarithins of the other three.

365 log. 2.56229
Trwo first terms 33.75 ° 057403

Sum of the logarithms 3.13632
Third term 8213, 191450
8940  3.95134

Fourth and fifth terms 3 e

Sum of the logs. of the 3d, 4th, and 5th, 6.26378
Do. 1st and 2d, 3.13632

Term required 1341 3.12746

6S. The calculation will be more simple, if, instead of
subtracting the logarithms of the two first terms, we add
their arithmetical complements. But it must be observed,
that each arithmetical complement increases the index of the
logarithm by 10. If the arithmetical complement be intro-
duced into fwo of the terms, the index of the sum of the loga-
rithms will be 20 too great; if it be in tAree terms, the index
will be 30 too great, &c.

365 a.c. 743771
Two first terms { 5.5 " " 9'19507
Third term 8213 191450

8940 3.95134
Fourth and fifth terms 2.5 0.39794

Term required 1341 2312746

The result is the same as before, except that the index of




) COMPOUND INTEREST.

Ex. 2. If the wages of 53 men for 42 days be 2200 doljars;
what will be the wages of 87 men for 34 days ?

53 men ), ..(87 men ),
42days€'2200"§34 daysg'

53 a. c. 8.27572
Two first terms 3 42 a. c. 8.37675

Third term 2200 3.34242

8|7 1.93952
Fourth and fifth terms % 34 153148

Term required 2923.5 3.46589

59. In the same mann%r, if the product of any number of
quantities, is to be divided, by the product of several others;
we may add together the logarithms of the quantities to be
divided, and the arithmeticnf complements of the logarithms
of the divisors.

Ex. If 20.67x346.2 be divided by 69.24x7.862x497 ;
what will be the quotient ?

. . 29.67 1.47232

69.24 a. c. 8.156964
Divisors 7.862 a.c. 9.10447

" 497 a. c. 7.30364
Quotient 0.03797 8.5794

In this way, the calculations in Conjoined Proportion may
be expeditiously performed.

o

COMPOUND INTEREST.

60. In calculating compound interest, the amount for the
first year, is made the principal for the second year; the
amount for the second year, the principal for the third year,
&c. Now the amount at the end of each year, must be pro-
portioned to the principul at the beginning of the year. If



the principal for the first year be 1 dollar, and if the amount
of 17dollar for 1 year=a; then, (Alg, 377.)

a : a?=the amount for the 2d year, or the prin-
cipal for the 3d ;

a? : a’=the amount for the third year, or the
principal for the 4th ;

a? : a*=the amount for the 4th year, or the prin-
cipal for the 5th.

l1:a::

That is, the amount of 1 dollar for any number of years is
obtained, by finding the amount for 1 year, and involving
this to a power whose index 4s equal to the number of years.
And the amount of any other principal, for the given time, is
found, by multiplying the amount of 1 dollar, into the num-
ber of dollars, or the fractional part of a dollar.

If logarithms are used, the multiplication required here
may be performed by addition ; and the involution, by mul-
tiplication. (Art. 45.) Hence,

61. To calculate Compound Interest, Find the amount of
1 dollar for 1 year ; muitiply its logarithm by the number
of years ; and to the product, add the logarithm of the prin-
cipal. 'The sum will be the logarithm of the amount for the

iven time. . From the amount subtract the principal, and
the remainder will be the interest.

If the interest becomes due kalf yearly or quarterly ; find
the amount of one dollar, for the half year or quarter, and
multiply the logarithm, by the number of half years or quar-
ters in the given time. :

If P=the principal,
a=the amount of 1 dollar for 1 year,
n=any number of years, and
A=the amount of the given principal for n years ; then,
A=a*xP.

Taking the logarithms of both sides of the equation, and
reducing 1t, so as to give the value of each of the four quan-
tities, in terms of the others, we have -

5
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1. Log. A==nXx log. a+ log. P.
2. Log. P=log. A—nx log. a.
_log. A —log. P.

3. Log. a -
4 n=log. A —log. P.
log. a.

Any three of these quantities being given, the fourth may
be found.

Ex. 1. What is the amount of 20 dollars, at 6 per cent.
compound interest, for 140 years?

Amount of 1 dollar for 1 year 1.06 log. 0.0253059

Multiplying by 100

' 2.53069

Given principal 20 1.30103
Amount required ‘ $6786 3.83162

2. What is the amount of 1 cent, at 6 per cent. compound
interest, in 500 years?

Amount of 1 dollar for 1 year 1.06 log. 0.0253059

Multiplying by 500

12.65295

Given principal 0.01 —2.00000
Amount $44,973,000,000 10.65295

More exact answers may be obtained, by using logarithms
of a greater number of decimal places. ’

o1 . ~
3. What is the amount of 1860 dollars, at 6 per cent. com-
pound interest, for 10 years ? Ans. 1790.80.

4. What principal, at 4 per cent. interest, will amount to
1643 dollars in 21 years? Ans. 721,
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5. What principal, at §per cent,, will amount to 962 dol-
larsin#years? Ans. 160.

6. At what rate of interest, will 400 dollars amount to
5691, in 9 years ? Ans. 4 per cent.

7. In how many years will 500 dollars amount to 900, at
5 per cent. compound interest ? Ans. 12 years.

8. In what time will 10,000 dollars amount to 16,288, at
5 per cent. compound interest ? Ans. 10 years.

9. At what rate of interest, will 11,106 dollars amount to
20.000 in 15 years? Ans. 4 per cent.

10. What principal, at 6 per cent. compound interest, will
amount to 3188 dollars in 8 years ? Ans. $2000.

T >
11. What will be the amount of &90 dollars, atﬁ/ per cent.
compound interest, in O.years, if the interest is converted
into principal every kalf year? | - Ans. 2167.3 dollars.

12. In what time will 'a sum of money double, at 6 per
cent. compound interest ? Ans. 11.9 years.

13. What is the amount of 5000 dollars, at 6 per cent.
compound interest, for 28} years? Ans. 25.942 dollars.

INCREASE OF POPULATION. °

61. . The natural increase of population in a country,
may be calculated in the same manner as compound interest;
on the supposition, that the yearly rate of increase is regu-
larly proportioned to the actual number of inhabitants.
From the population at the beginning of the year, the rate
of increase being given, may be computed the whole increase
during the year. This, added to the number at the begin-
ning, will give fthe amount, on which the increase of the
sccond year is to be calculated, in the same manner as the
first year’s interest on a sum of money, added to the sum

-~
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itself, gives the amount on which the interest for the second
year is to be calculated.

If P =the population at the beginning of the year,
a=1-the fraction which expresses the rate of increase,
n=any number of years ; and
A=the amount of the population at the end of » years;

then, as in the preceding article,

A=ga"xP, and

1. Log. A=nxlog. a+log. P.
2. Log. P=log. A—nxlog. a.

3. Log. a=log. A;log. P.
L nlogA—lozP
log. a.

Ex. 1. The population of the United States in 1820 was
9,625,000. Supposing the yearly rate of increase to be ;;th
part of the whole, what will be the population in 1830 ?

Here P=9,625,000. n=10. a=1473;=33.

And log. A=10xlog. 33 +log. (9,625,000,
Therefore, A=12,860,000, the population in 1830.

2. If the number of inhabitants in a country be five mil-
lions, at the beginning of a century ; and if the yearly rate
of inerease be J';; what will be the number, at the end of
the century ? ' Ans. 132,730,000.
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log. 9,625,000 —log. 7,240,000
10

Therefore, a=1.029 ; and ;2§,, or 2.9 per cent. is the rate
uf increase.

Here log. a=

5. In how many years, will the population of a country
advance from two millions to Yive millions; supposing the
yearly rate of increase to be ;1;? Ans. 47} years.

6. If the population of a country, at a given time. be seven
millions; and if the yearly rate of incrcose be j,th; what
will be the population at the end of 35 years?

7. The population of the United States in 1800 was
5,306,000. What was it in 1780, supposing the yearly rate
of increase to be 5 ?

8. In what time will the population of a country advance
{)l;)m four millions to seven millions, if the ratio of increase
3_1
Too *

9. What must be the rate of increase, that thc}i‘-‘populatiOn
of a place may change from nine thousand to fifteen thou-
sand, in 12 years ?

If the population of a country is not affected by immigra-
tion or emigration, the rate of increase will be equal to the
difference betwecn the ratio of the births, and the ratio of the
deaths, when compared with the whole population.

Ex. 10. If the population of a country, at any given time,
be ten millions ; and the ratio of the annual number of births
to the whole population be !, and the ratio of deaths .\,
what will be the number of inhabitants, at the end of 60
years ?

Here the yearly rate of increase= .\, — = .1,
And the population, gt the end of 60 years =31,750,000.

The rate of increase or decrease from tmmigration or
emigration, will be equal to the difference between the ratio
of immigration and the ratio of emigration ; and if this differ-
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ence be added to, or subtracted from, the difference between
the ratio of the.births and that of the deaths, the whole rate
of increase will be obtained.

If P=the first term,

A =the last term,

n =the number of periods;
Then will A=P x27 (Alg. 439.)
Or log. A=log. P+nxlog. 2.

Ex. 1. If the descendants of a single pair double once in
25 years, what will be their number, at the end of one thou-
sam% years ?

The number of periods here is 40.
And A = 2x24 °=2,199,200,000,000. -
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2. If the descendants of Noah, beginning with his three
sons and their wives, doubled once in 20 years for 300 years,
what was their number, at the end of this time ?

Ans. 196,608.

3. The population of the United States in 1820 being
9,625,000 ; what must it be in the year 2020, supposing it to
double once in 25 years? Ans. 2,464,000,000.

4. Supposing the descendants of the first human pair to
double once in 50 years, fer 1650 years, to the time of the
deluge, what was the population of the world, at that time ?

EXPONENTIAL EQUATIONS.

62. An ExPoNENTIAL equation is one in which the letter
expressing the unknown quantity is an ezponent.

Thus, a*= b, and z°= bc, are exponential equations. These
are most easily solved by logarithms. As the two members
of an equation are equal, their logarithms must also be equal.
If the logarithm of each side be taken, the equation may then
be reduced, by the rules given in algebra.

Ex. What is the value of z in the equation 3%=243?

Taking the logarithms of both sides, log. 3°=log. 243.
But the logarithm of a power is equal to the logarithm of
the root, multiplied into the index of the power. (Art. 45.)

Therefore (log. 3)xz=1og. 243; and dividing by log. 3.

log. 243 238561 _
2= o5 3 0771z =5 SO that 3:=213

63. The preceding is an exponential equation of the sim-
plest form. Other cases, after the logarithm of each side is
taken, may be solved by T'rial and Error, in the same man-
ner as affected equations. iAlg. 503.) For this purpose, make
two suppositions of the value of the unknown quantity, and
find their errors; then say,

.
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As the difference of the errors, to the dif-
ference of the assumed numbers ;

So is the least error, to the correction required
in the corresponding assumed number.

Ex. 1. Find the value of 7 in the equation z¢= 256.
Taking the logarithms of both sides (log. z) X = log. 2566.
Let x be supposed equal to 3.5, or 3.6.

By the first supposition. : By the second supposition.
z=35, and log. z=0.54407 =3.6, and log. z=0.56630
Multiplyingby 3.5 Multiplying by 3.6
(log. z)xz=1.90424 (log. ) Xz=2.00268
log. 256=2.40824 log. 256=2.40824
Error —0.50400 Error  —0.40556
Difference of the errors 0.09844 ‘

Then, 0.09844 : 0.1 : : 0.405656 : 0.4119, the correction.
This added to 3.6, the second assumed number, makes the
value of z==4.0119.

To correct this farther, suppose z==4.011, or 4.012.

By the first supposition. By the second supposition.

z=4.011, and log. z=0.60325 z=4.012, and log. +=0.60336
Multiplying by ~ 4.011 Multiplying by 4.012

log. z)xz=2.41963 slog. z)xz=2.42068
og. 256=2.40824 og. 256=2.40824

Error +0_61~1?9 Error +6101274
Difference of the errors 0.00105 '

Then, 0.00105 : 0.001 : : 0.01139 : 0.011 very nearly.

Subtracting this correttion from the first assumed number
4.011, we have the value of z=4, which satisfies the condi-
tions of the proposed equation ; for 4+=256.

2." Reduce the equation 4z7=100z3, Ans. z=5.

3. Reduce the equation 2#=9z.
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Rejecting 1 from each side of the equation, multiplying by
¥, (Alg. 159.) and dividing by the compound factor into
which z is multiplied, we have

z=Lo g. N=P—in'+in® —int+ &ec.

h_1h2 Lt 1h3s __1hal &~

A

z +.7;’ +.1:3 T zs &
n=ft+5ta3Tositasas T &
Or, as by the notation, n +1=N = a7,
1 z? zd z* A &
o=ltrtstaatyzatasgst &
If then z be taken equal to 1, we have

1.1 1 1
k a=l+l+otsstazatasgst &
Adding the first fifteen terms, we have
2.7182818284

Which is the base of Napier’s system, correct to ten places
of decimals,

* See note D,

-

o
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Napier’s logarithms are also called Ayperbolic logarithms,
from certain relations which they have to the spaces between
the asymptotes and the curve of an hyperbola; although
these relations are not, in fact, peculiar to Napier's system.

67. The logarithms of different systems are compared with
each other, by means of the modulus. As in the series

(N—1) —KN—1)2-Hj(N —1)—§(N—1)1 dee.
(a—1)—i{a—1)*+} (a—1)3—} (a —1)*+ &ec.
which expresses the logarithm of N, the denominator only is
affected by a change of the base a ; and as the value of frac-

tions, whose numerators are given, are reciprocally as their.
denominators : (Alg. 360. cor. 2.)

The logarithm of a given number, in one system,

Is to the logarithm of the same number in another system ;
As the modulus of one system,

To the modudus of the other.

So that, if the modulus of each of the systems be given,
and the logarithm of any number be calculated in one of the
systems ; the logarithm of the same number in the other sys-
tem may be calculated by a simple proportion. Thus, if M
be the modulus in Briggs’ system, and M' the modulus in
Napier’s ; ! the logarithm of a number in the former, and I’
the logarithm of the same number in the latter; then,

M:M::1:1,
Or, as M' =1,
M:1::2:1.

Therefore, 1=I'x M ; that is, the common logarithm of a
number, is equal to Napier's logarithm of the same, multiplied
into the modulus of the common system.

To find this modulus, let a be the base of Briggs’ system,
and ¢ the base of Napier’s; and let l.e denote the common
logarithm of @, and I'a denote Napier’s logarithm of a.

Then, M :1::la : l.a. Therefore, M-ij-—a;

But in the common system, a =10, and l.a=1.

So that, M-l,—ll-(-)-, that is the modulus of Briggs’ system, is

equal to 1 divided by Napier’s logarithm of 10.
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Again, M : 1::le: le
But as e denotes Napier’s base, l'.e=1.

So that M = L., that is, the modulus of the common
tem, is equal to the common logarithm of Napier’s base.

Therefore, either of the expressions, l.¢, or l,l—amay be used,
to convert the logarithms of one of the systems into those of
the other. -

The ratio of the logarithms of two numbers to each other,
ts the same in one system as in another. If N and n be the
4wo numbers ; , .

Then, IN:IN::M: M
In:ln::M: M
Therefore, IN :ln::I.N:in

/? COMPUTATION OF LOGARITHMS.

68. The logarithms of most numbers can be calculated by
approximation only, by finding the sum of a sufficient number
of terms, in the series which expresses the value of the loga-
rithms. According to art. 65.

Log. N=Mx((N—1)—}(N—1)2+4-}(N —1)3, &c.)
Or, puttiug as before, n=N —1,
Log. (14 n)=M (n—in?+in® —in+int — &e.)

But this series will not converge, when » is a whole num-
ber, greater than unity. To convert it into another which
will converge, let (1—n) be expanded in the same manner
as (1+n), (Art. 65.) The formula will be the same, except
that the odd powers of » will be negative instead of positive.

‘We shall then have,

Log. (14+n)=M(n—in*+in’—Iin*+ins—&ec.)
Log. (1—n)=M(—n —}n?—}n’—in*—ins—&e.)

Subtracting the one from the other, the even powers of n
disappear, and we have

M (2n+4-3nb4ins +4n7+ &e.)
or
2M (wepn2+4jns+in1+&e.)
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But this, which is the difference of the logarithms of
14-n)and (1—mn) is the lo%nmhm of the quaotient of the one
iv 1ded by the other. (Art. 36.)

That is, Log. —:L—2M(n+,n°+}n‘+«}n’+&c.

l A Y
.Nowput R .
41 _Z
1+n z—l z—~1 = .
» Then, 1 1 I 2—2 22

Therefore, subatxtntmg — - for li: and ;—L]—' for n, we
have

z 1 0 1 1 1 N
Log 2:2"'2M((z 31 BTy &c')
Or, (Art. 36.)

‘ T, 1 1
Log. z—log.(z—2)=2M ((z L 7o | ER - o ) T

+&c.) .

Therefore,
1 1

1
Log. z=log: (s—2+2M (15 =yt 5 iy s iy
+ &c.)
This series may be applied to the computation of any
number greater than 2.

To find the logarithm of 2, let z=4,
Then, (3—1)=3, and the precedmg series, after transpos-
¢ ing log. (2 —2) becomes ,

1
Log. 4—log. 2—2M(—1—3 st 35+7 37,&0)

But as 4 is the square of 2; log. 4=2 log. 2. (Alg. 44.)
So that log. 4 —log. 2=1log. 2. We have then
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' 1 1 1 1 1
Log. 2=2M(gtggs gz trgrtogeh &)

‘When the logarithms of the prime numbers are computed,
the logarithins of all other numbers may be found, by simply -
adding the logarithms of the factors of which the numbers
are composed. (Art. 86.)

69. In Napier’s system, where M =1, the logarithms may
be computed, as in the following table.

[
& ‘ NAPIER’S OR HYPERBOLIC LOGARITHMS. w
1.1 .1 1 '
Log. 2=2 (3"'@"‘5’37"‘@’ &c) =0.693147
1,1 11
. Log. 4=21log. 2. =1.386294

: 1.1 1 1
Log. 5=log. 3+2 (Z‘*'s“.@*‘@ e &c) ~1.609438

Log. 6=log. 3+log. 2. =1.791759
1,1 1 1
Log. T=log. 542 ( sHeteeHrew &c.) =1.955900
Log. 8=log. 4+log. 2. =2.079441
Log. 9=2 log. 3. =-2.197224
Log. 10=log. 5-log. 2. ==2.302585
&e.  &ec. &ec.

70. To compute the lo%lnrithms of the common system, it
will be necessary to find the value of the modulus. This is
equal to 1 divided by Napier's logarithm of 10, (Art. 67.)
that is,

1

2.302585 =.43420448.
"Phis number substituted for M, or twice the number, viz.

86858896 substituted for 2M, in the series in art. 68. will
enable us to calculate the common logarithm of any number.
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COMMON OR BRIGGS' LOGARITHMS.

Log. 386858896 (2+3 5 tse z,+7 5 &.c.)
Log. 4=2 log. 2.

Log. 5=log. 10 —log. 2=1 —log. 2.

Log' 6=1log. 3+log. 2.

34 ?6 88»&&6'36"56"76” )
W 2Aq
+log. 5.

Log. 8=3 log. 2.
Log. 9=2 log. 3.
Log. 10

=0.301030

~0.477121

=(.602060
=0.698970 »

=0.778151+, -

=0.845098

==0.903090

=(0.954243

==1.000000
&e.
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TRIGONOMETRY.

SINES, TANGENTS, SECANTS, &¢.

ART. 71. TRIGONOMETRY treats of the relations of the
sides and angles of TriaNGLEs. Its first object is, to deter-
mine the length of the sides, and the quantity of the angles.
In addition to this, from its principles are derived many in-
teresting methods of investigation in the higher branches of
analysis, particularly in physical astronomy. Scarcely any
department of mathematics is more important, or more exten-
sive in its applications. By trigonometry, the mariner traces
his path on the ocean ; the geographer determines the latitude
and longitude of places, the dimensions and positions of coun-
tries, the altitude of 1nountains, the courses of rivers, &c., and
the astronomer calculates the distances and magnitudes of
the heavenly bodies, predicts the eclipses of the sun and
moon, and measures the progress of light from the stars.

72. Trigonometry is either plane or spherical. 'The for-
mer treats of triangles boundeé’ by right lines ; the latter, of
triangles bounded by arcs of circles. :

Divisions of the Circle.

73. In a triangle there are two classes of quantities which
are the subjects of inquiry, the sides and the angles. For
the purpose of measuring the latter, a ¢tircle is introduced.

®he periphery of every circle, whether great or small, is
supposed to be divided into 360 equal parts called degrees,
each degree into 60 minwules, each minute into 60 seconds,

1

*
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each second into 60 thirds, &c., marked with the characters
" " &ec. Thus, 32°24' 13" 22" is 32 degrees, 24 min-
utes, 13 seconds, 22 thirds.*

A dcgrec, then, is not a magnitude of a given length ; but
a certain portion of the Wh‘(i)Te circumference of any circle. *
It is evident, that the 360th part of a large circle is greater
than the same part of a small one. O the other hand, the
number of degrees in a small circle, is the same as in a large
one.

The fourth part of a circle is called a quadrant, and con-
tains 90 degrees. "

74. T'o measure an angle, a circle is so described that i‘i
center shall be the angular point, and its periphery shall cu
the two lines which include the angle. The arc between the
two lines is considered a measure of the angle, because, by
Euc. 33. 6, angles at the center of a given circle, have the
same ratio to each other, as the arcs on which .they stand.
Thus the arc AB, (Fig. 2.) is a measure. of the angle ACB.

It is immaterial what is the size of the circle, provided it
cuts the lines which include the angle. Thus, the angle
ACD (Fig. 4.) is measured by either of the arcs AG, ag:
g‘é)r ACD is to ACH, as AG to AH, or as ag to ah. (Euc.

. 6.

75.)In the circle ADGH, (Fig. 2.) let the two diameters
AG and DH be perpendicular to each other. 'The angles
ACD, DCG, GCH, and HCA, will be right angles ; and the
periphery of the circle will be divided into four equal parts,
each containing 90 degrees. As a right angle is subtended
by an arc of 90°, the angle itself is said to contain 90°.
Hence, in two right angles, there are 180°; in four right
angles, 360 ; and in any other angle, as many degrees, as in
the arc by which it is subtended.

76. The sum of the three angles of any triangle being
equal to two right angles, (Euc. 32. 1.) is equal to 180°.
Hence, there can never be more than one obtuse angle in a
tlrézar;gle. For the sum of two obtuse angles is more than

77. The coMPLEMENT of an arc or an angle, is the differ-
ence between the arc or angle and 90 degrees.

The complement of the arc AB (Fig. 2.) is DB; and the
complement of the angle ACB is DCB. The complentent
of the arc BDG is also DB.

* SeenoteE. s
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The complement of 10° is 80°, of 600 is 300,
of 20° is 70°, of 120° is 30°,
of 50° is 400, of 170° is 80°, &c:
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Thus, BG (Fig. 3.) is the sine of the arc AG. -For BG is
a line drawn from the end G of the are; perpendicular to the
diameter AM which passes through the other end A of the
arc. :

. Cor. The sine is half the chord of double the arc. The®
sine BG is half PG, which is the chord of the arc PAG,
double the arc AG. :

83. The VERSED SINE of an arc is that part of the diam-~
eter which is between the sine and the arc.

Thus, BA is the versed sine of the arc AG.

84. The TANGENT of an arc, is a straight line drawn
perpendicular from the extremity of the diameter whic
passes through onc end of the arc, and extended till it me
a line drawn from the center through the other end.

Thus, AD (Fig. 3.) is the tangent of the arc AG.

85. The secaNT of an afc, is a straight line drawn from
the center, through one end of the arc, and extended to the
tangent which is drawn from the other end.

Thus, CD (Fig. 3.) is the secant of the arc AG.

86. In 1'rigonometry, the terms tangent and secant have
a more limited meaning, than in Geometry. In both, indeed, .
the tangent fouches the circle, and the secant cuts it. Butin -
Geometry, these lines are of no determinate length ; whereas,
in "I'rigonometry, they extend from the diameter to the point
in which they intersect each other.

87. The lines just defined are sines, tangents, and secants
of arcs. BG (Fig. 3.) is the sine of the arc AG. But this
arc subtends the engle GCA. BG is then the sine of the arc
which subtends the angle GCA. This is more concisely
expressed, by saying that BG is the sine of the angle GCA.
And universally, the sine, tangent, and secant of an arc, are
said to be the sine, tangent, and secant of the angle which
stands at the center of the circle, and is subtended by the arc.
‘Whenever, therefore, the sine, tangent, or sccant of an angle
- is spoken of; we are to suppose a circle to be drawn whose
center is the angular point; and that the lines mentioned be-
long to that arc of the periphery which subtends the angle.

88. The sine and tangent of an acute angle, are opposite
to the angle. But the secant is one of the lines which ir-
clude the angle. Thus, the sine BG, and the tangent AD,
(Fig. 3.) are opposite to the angle DCA. But the secant: CD
is one of the lines which include the angle.
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89. The sine complement or cosiNe of an angle, is the
sine of the comPLEMENT of that angle. 'Thus, if the diame-
ter HO (Fig. 3.) be perpendicular to MA, the angle HCG is
the complement of ACG ; (Art.77.) and LG, or its equal CB,

¢ is the sine of HCG. S;irt. 82.) It s, therefore, the cosine of
GCA. On the other hand, GB is the sine of GCA, and the
cosine of GCH. :

So also the cotangent of an angle is the tangent of the
complement of the angle. Thus, HF' is the cotangent of
GCA. And the cosccant of an angle is the secant of the
complement of the angle. 'Thus, CI' is the cosecant of GCA.

ence, as in a right angled triangle, one of the acute

lngles is the complement of the other; (Art. 77.) the sine,

tangent, and secant of onc of these angles, are the cosine,
co-tangent, and cosecant of the other.

90. The sine, tangent, and secant of the supplement of an
angle, are each equal to the sine, tangent, and secant of the
angle itself. It will be seen, by applying the definition (Art.
82.) to the figure, that the sine of the obtuse angle GCM is

_ BG, which is also the sine of the acute angle GCA. Itshould
be observed, however, that the sine of an acute angle is op-

* posite to it; while the sine of an obtuse angle falls without
the angle, and is opposite to its supplement. 'Thus BG, the
sine of the angle MCG, is not opposite to MCG, but to its
supplement ACG. '

The tangent of the obtuse angle MCG is MT, or its equal
AD, which is also the tangent of ACG. And the secant of
MCG is CD, which is also the secant of ACG.

91. But the versed sine of an angle is not the same as that
of its supplement. The versed sine of an acute angle is
equal to the difference between the cosine and radius. But
the versed sine of an obtuse angle is equal to the sum of the
cosine and radius. Thus, the versed sine of ACG is AB=AC
—}lgg (Art. 83.) But the versed sine of MCG is MB=MC
+BC. S

Relations of Sines, Tangents, Secants, §c., to each other.

92. The relations of the sine, tangent, secant, cosine, &c.,
to each other, are easily derived from the proportions of the
sides of similar triangles. (Euc. 4. 6.) In the quadrant ACH,

Fig. 3.) these lines form three similar triangles, viz. ACD,

CG or LCG, and HCF, For,in each of these, there is one
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right angle, because the sines and tangents are, by definition,
perpendicular to AC; as the cosine and cotangent are to
CH. 'The lines CH, BG; and AD, are parallel, because CA
makes a right angle with each. (Euc. 27.1.) For the same ,
reason, CA, LG, and HF, are parallel. The alternate angles
GCL, BGC, and the opposite angle CDA, are equal ; (Euc.
29. 1.) as are also the angles GCB, LGC, and HFC. The
triangles ACD, BCG, and HCF, are therefore similar.

It should also be observed, that the line BC, between the
sine and the center of the circle, is parallel and equal to the
cosine ; and that LC, between the cosine and center, is par-
allel and equal to the sine; (Euc. 34. 1.) so that one may be-
taken for the other, in any calculation. .

93. From these similar triangles, are derived the following
proportions ; in which R is put for radius,

sin for sine, cos for cosine,
tan for tangent, cot for cotangent,
sec for secant, cosec for cosecant.

By comparing the triangles CBG and CAD,

1. AC : BC: : AD : BG, thatis, R : cos: : tan : sin.

2.CG:CD::BG : AD R : sec: :sin ; tan.

3.CB:CA::CG:;: CD cos : R::R ; sec.
Therefore R2= cos X sec.

/v By comparing the triangles CL.G and CHF,

4. CH ; CL: : HF : LG, thatis, R : sin: : cot : cos.

5. CG ; CF: :LG ;: HF R : cosec : : cos : cot.

6. CL ;:CH: :CG : CF sin : R: : R ; cosec.

Therefore R3=sin X coscc.

By comparing the triahgles CAD and CHF,

7.CH : AD: :CF : CD, thatis, R : tan : : cosec : sec.
8. CA:HF::CD : CF R : cot: : sec ; cosec.
9. AD ; AC::CH : HF tan ; R: : R ; cot.

Therefore R2=tan X cot.

It will not be necessary for the learner to commit these
proportions to memory. But he ought to make himself so
familiar with the manner of stating them from the figure, as
to be able to explain them, whenever they are referred to.
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94. Other relations of the sine, tangent, &c., may be dun-
ved from the proposition, that the square of the hypothenuse
is equal to the sum of the squares of the perpendicular sides.
(Euc. 47. 1.)

In the nght angled triangles CBG, CAD, and CHF,
(Fig. 3.)

Demonstration.

1. In the quadrant ACH, (F'ig. 5.) the arc AH is 90°. The
sine of this, according to the definition, (Art. 82.) is CH, the
radius of the circle. ‘

2. Let AS be an arc of 60°. Then the angle ACS, being
measured by this arc, will also contain 60°; (Art. 75.) and
the triangle ACS will be equilateral. For the sum of the
three angles is equal to 180°. (Art. 76.) From this, taking
the angle ACS, which is 60°, the sum of the remaining two
is 120°. But these two are equal, because they are subtended
by the equal sides, CA and CS, both radii of the circle.
Each, therefore, is equal to kalf 1209, that is, to 60°. All the

&; Sin? is here put for the square of the sine, cos? for the square of the cosine,
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angles being equal, the sides are equal, and therefore AS, the
chord of 602, is equal to CS, the radius.

. 3. Let AR be an arc of 45°. AD will be its tangent, and
the angle ACD subtended by the arc, will contain 45°. The
angle CAD is a right nngle, because the tangent is, by defi-
nition, perpendicular to the radius AC. (Art. 84.) Subtract-
ing ACD, which is 45°, from 90°, (Art. 77.) the other acute
angle ADC will be 45° also. Therefore the two legs of the
triangle ACD are equal, because they are subtended by equal
angles ; (Euc. 6. 1.) that is, AD the tangent of 45°, is equal
to AC the radius.

Cor. The cotangent of 45° is also equal to radius. For
the complement of 45° is itself 45°. Thus, HD, the cotan-
gent of ACD, (Fig. 5.) is equal to AC the radius.

96. The sinc of 30° is equel to Aalf radivs. For the sine
of 30° is equal to half the chord of 60°. (Art. 82.cor.) But
by the ‘Preceding article, the chord of 60° is equal to radius.
Its half, therefore, which is the sine of 30°, is equal to half
radius.

Cor. 1. The cosine of 60° is equal to half radius. For the
cosine of 6(° is the sine of 30°. (Art. 89.)

Cor. 2. The cosine of 30°=3v3. For

Cos ? 30°=R ?—sin* 30Cm]1—}==3.
Therefore,
Cos 30°=v 3=1v3.

. 1
0.
96. b. The sine of 45 75 For

Ri=1=sin?® 45°4-cos? 45=2sin* 45°
1.
vz
97. The chord of any arc is a mea;i'-proportional, between
the diameter of the circle, and the verseif sine of the are.
Tet ADB, (Fig. 6.) be an arc, of which AB is the chord,
BF the sine, and AF the versed sine. The angle ABH is a

right_angle, (Euc. 31. 3.) and the triangles ABH, and ABF,
are similar. (Euc. 8. 6.) Thercfore,

AH ; AB: : AB : AF.

Therefore, Sin 45°=v }==
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That is, the diameter is to the chord, as the chord to the
versed sine.

In Fig. 6th, let the arc AD=qa, and ADB=2a4. Draw BF
perpendicular to AH.  'This will divide the right angled tri-
angle ABH into two similar triangles. (Euc. 8. 6.) The an-
gles ACD and AHB are equal. (Euc. 20. 3.) Therefore the
four triangles ACG, AHB, FHB, and FAB, are similar ; and
the line BH is twice CG, because BH ;: CG : : HA : CA.

The sides of the four triangles are,
AG=sin a, CG=cos @,  HF=vers. sup. 2a,
AB=2sinae, BH=2cos a, AC=the radius,
BF=sin 2¢, AF=vers2a, AH=the diameter.

A variety of proportions may be stated, between the homo-
logous sides of these triangles: For instance,

By comparing the triangles ACG and ABF,
AC : AG: : AB ; AF,thatis, R :sina: : 2sina : vers2a
AC : CG: : AB : BF, R:cosa: :2sina:sin2a
AG : CG: : AF : BF, Sina : cosa :: vers2a ; sin 2a

Therefore,
Rxvers 2a=2sinza
Rxsin 2a =2sin axcos a
Sin axsin 2a=vers 2axcos a

By comparing the triangles ACG and BFH,

AC : CG:: BH : HF, thatis, R:cosa::2cosa: vers.sup. 2a
AG:;CG::BF:HF, Sina:cosea::sinZ2a : vers.sup.2a.

Therefore,

Rxvers. sup. 2a=2 cos*a
Sin axvers. sup. 2a=cos axsin 2a
&e. &e.

That is, the product of radius into the versed sine of the
supplement of twice a given arc, is equal to twice the square
of the cosine of the arc.

And the product of the sine of an are, into the versed sine
of the supplement of twice the arc, is equal to the product of
the cosine of the arc, into the sine of twice the are, &c. &c.

8
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/ THE TRIGONOMETRICAL TABLES.

ArT. 98. To facilitate the operations in trigonometry, the
sine, tangent, secant, &c., have been calculated for eve
degree and minute, and in some instances, for every second,
of a quadrant, and arranged in tables. These constitute
what is called the Trigonometrical Canon* 1t is not ne-
cessary to extend these tables beyond 90° ; because the sines,
tangents, and secants, are of the same magnitude, in one of
the quadrants of a circle, as in the others. 'Thus the sine of
30° is equal to that of 150°. gArt. 90.)

99. And in any instance, if we have occasion for the sine,
tangent, or secant of an obtuse angle, we may obtain it, by
looking for its equal, the sine, tangent, or secant of the sup-
plementary acute angle.

100. The tables are calculated for a circle whose radius is
supposed to be a unit. It may be an inch, a yard, a mile, or
any other denomination of length. But the sines, tangents,
§-c., must always be understood to be of the same denomina-
tion as the radius.

101. All the sines, except that of 909, are less than ra-
dius, (Art. 82, and Fig. 3.) and are expressed in the tables by
decimals.

Thus the sine of 20° is 0.34202, of 60° is 0.86603,
of 40° is 0.64279, of 89° is 0.999S5, &c.

‘When the tables are intended to be very cxact, the decimal
is carried to a greater number of places.

The tangents of all angles less than 45° are also less than
radius. (Art.95.) But the tangents of angles greater than
45°, are greater than radius, and are expressed by a whole
number and a decimal. 1t is evident that all the secants also

¢ For the amstruction of the Canon, see Section VIII.
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must be greater than radius, as they extend from the center,
to a point without the circle.

102. The numbers in the table here speken of, are called
natural sines, tangents, &c. They express the lengths of
the several lines which have been defined in arts. 82, 83, &e.
By means of them, the angles and sides of triangles may be
accurately determined. But the calculations must be made
by the tedious processes of multiplication and division. To
avoid this inconvenience, another set of tables has been pro-
vided, in which are inserted the logarithms of the natural
sines, tangents, &c. By the use of these, addition and sub-
traction are made to perform the office of multiplication and
division. On this account, the tables of logarithmic, or as
they are sometimes called, artificial sines, tangents, &c., are
much more valuable, for practical purpose, than the natural
sines, &c. Still it must be remembered, that the former are
derived from the latter. The artificial sine of an angle, is the
logarithm of the natural sine of that angle. The artificial
tangent is the logarithm of the natural tangent, &c.

103. One circumstance, however, is to be attended to, in
comparing the two sets of tables. 'The radius to which the
natural sines, &c., are calculated, is unity. (Art. 100.) The
secants, and a part of the tangents are, therefore, greater than
a unit ; while the sines, and another part of the tangents, are
less than a unit. When the logarithms of these are taken,
some of the indices will be positive, and others negative ;
(Art. 9.) and the throwing of them together in the same table,
if it does not lead to error, will at least be attended with in-
convenience. To remedy this, 10 is added to each of the
indices. (Art. 12.) They are then all positive. Thus the nat-

ural sine of 20°is 0.34202. The logarithm of this is 1.53405.
But the index, by the additidn of 10, becomes 10 —1=9.
The logarithmic sine in the tables is therefore 9.53405.*

Directions for taking Sines, Cosines, §c., from the tables.

104. The cosine, cotangent, and cosecant of an angle, are
the sine, tangent, and secant of the complement of the angle.
(Art. 89.) As the complement of an angle is the difference
between the angle and 90, and as 45 is the half of 90; if
any given angle within the quadrant is greater than 45°, its

s Or the tables may be supposed to be calculated to the radius 10000000000,

whose logarithm is 10.

L
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complement is less ; and, on the other hand, if the angle is
less than 45°, its complement is greater. Hence, every co-
sine, cotangent, and cosccant of an angle greater than 45°,
has its equal, among the sines, tangents, and secants of angles
less than 45°, and v. v. 4

Now, to bring the trigonometrical tables within a sma
compass, the same column is made to answer for the sines of
a number of angles above 45, and for the cosines of an equal
number below 45°.

Thus 9.23967 is the log. sine of 10, and the cosine of 80°,
9.53405 the sine of 20°, and the cosine of 70°, &c.

0 The tangents and secants are arranged in a similar manner.
ence,

105. T% find the Sine, Cosine, Tangent, &c., of any num-
ber of degrees and minutes.

If the given angle is less than 45°, look for the degrees at
the top of the table, and the minutes on the left ; then, oppo-
site to the minutes, and under the word sine at the head of
the column, will be found the sine; under the word tangent,
will be found the tangent, &c.

'The log. sin of 43° 25/is 9.83715 The tan of 17° 20" is 9.49430

of 17°200 9.47411 of 8246/ 9.1S812
The cos of 170200 9.97982 The cotof 17° 20/ 10.51:570
of 8°46/ 9.994190 of 8°4¢6’ 10.81188

The first figure is the index ; and the other figures are the
decimal part of the logarithm.

106. If the given angle is between 45° and 90°; look for
the degrees at the bottom of the table, and the minutes on
the right ; then, opposite to the minutes, and over the word
sine at the foot of the column, will be found the sine; over
the word tangent, will be found the tangent, &c.

Particular care must be taken, when the angle is less than
45, to look for the title of the column, at the zop, and for the
minutes on the left ; but when the angle is between 45° and
909, to look for the title of the column at the bottom, and for
the minutes, on the right.

The log. sine of 81° 21’ is 9.99503
The cosine  of 72° 10/ 9.4%60%
The tangent  of 54° 40/ 10.14941
The cotangent of 63° 22!  9.70026
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107. If the given angle is greater than 90>, look for the
sine, tangent, &c., of its supplement. (Art.%%,)

The log. sinc of 96 41/ is 9.99699
The cosineof  171° 16/ 9.99494
The tangentof  130° 26/ 10 (16952
The cotangent of 156° 22! 10.35894

108. To find the sine, cosine, tangent, &c., of any number
of degrees, minules, and sEcoNDs.

In the common tables, the sine, tangent, &c., arc given
only to every minute of a degree.* But they may be found
to seconds, by taking proportional parts of the difference of
the numbers as they stand in the tables. For, within a single
minute, the variations in the sine, tangent, &c., are nearly
proportional to the variations in the angle. Hence,

To find the sine, tangent, &c., to seconds : Tauke out the
number corresponding to the given degree and minute; and
also that corresponding to the next greater minute, and find
their difference. Then state this proportion ;

As 6, to the given nunber of seconds;

So is the difference found, to the correction for the seconds.

This correction, in the case of sines, tangents, and secants,
is to be added to the number answering to the given degree
and minute; but for cosines, cotangents, and cosecants, the
correction is to be subtracted ;

For, as the sines iucrease, the cosines decrease.

Ex. 1. What is the logarithmic sine of 14° 43/ 10"?

The sine of 14° 43/ is 9.40490
of 14° 44’ 9.40538

Difference 48

Here it is evident, that the sine of the required angle is
greater than that of 14° 43/, Lut less than that of 14° 44/,
And as the difference corresponding to a whole minute or

.* In the very valuable tables of Michael Taylor, the sines and tangents are
given to every s
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60" is 48 ; the difference for 10" must be a proportional part
of 48. That is,

60 ;10 : :48 : 8
the correction to be added to the sine of 14° 43,

Therefore the sine of 14° 43’ 10/ is 9.40498.
2. What is the logarithmic cosine of 32° 16/ 45/'?

The cosine of 32° 16/ is 9.92715
of 320 171 9.92707

Difference 8

Then, 60" : 45" : : 8 : 6 the correction to be subtracted
from the cosine of 32° 16/.
Therefore the cosine of 32° 16/ 457 is 9.92709.

The tangentof  24° 15/ 187 is  9.65376
The cotangent of 31° 50/ 5! is 10.20700
The sine of 58° 14 32! is  9.92956
The cosine of 53° 10/ 26/ is 9.75670

If the given number of seconds be any even part of 60,
as 1, 1, 1, &c,, the correction may be found, by taking a like
part of the difference of the numbers in the tables, without
stating a proportion in form.

109. 7o find the degrees and minutes belonging to any
given sine, tangent, §c.

This is reversing the method of finding the sine, tangent,
&ec. (Art. 105, 6, 7.)

Look in the column of the same name, for the sine, tan-
gent, &c., which is nearest to the given one; and if the title .
be at the /ead of the column, take the degrees at the fop of
the table, and the minutes on the left ; but if the title be at
the foot of the column, take the degrees at the bottom, and
the minutes on the right.

Ex. 1. What is th number of degrees and minutes be-
longing to the logarithmic sine 9.62863 ?

The nearest sine in the tables is 9.62865. The title of
sine is at the head of the column in which these numbers are
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found. The degrees at the top of the page are 25, and the
minutes on the left are 10. The angle required is,,therefou
25° 10/. . TR

The angle belonging to

the sine 9.87993 is 49° 20/ the cos  9.97351 is 19° 48/
the tan 9.97955 43°39’ the cotan 9.75791 60° 12
the sec 10.65396 77° 11’ the cosec 10.49066 18° 51/

110. 7o find the degrees, minutes, and SECONDSs, belong-
ing to any given sine, tangent, §c.

-'This is reversing the method of finding the sine, tangent,
&ec., to seconds. (Art. 108.)

First find the difference between the sine, tangent, &c.,
next greater than the given one, and that which is next less;
then the difference between this less number and the given
one ; then

As the difference first found, is to the other difference;

So are 60 seconds, to the number of seconds, which, in the
case of sines, tangents, and secants, are to be added to the
degrees and minutes belonging to the least of the two num-
bers taken from the tables; but for cosines, cotangents, and
cosecants, are to be subtracted.

Ex. 1. What are the degrees, minutes, and seconds, be-
longing to the logarithmic sine 9.40498?

Sine next greater 14° 44/ 9.40538  Given sine 9.40498
Next less  14° 43/ 9.40490  Next less  9.40490

Difference 48 Difference . 8
Then, 48 : 8: : 60" ; 10", which added to 14° 43/, gives
14° 43/ 10/ for the answer.

2. What is the angle belonging to the cosine 9.09773 ?

Cosine next greater 82° 48’ 9.09807 Given cosine 9.09773
Next less  82° 49/ 9.09707 Next less 9.09707

Difference 100 Difference 66
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Then, 100 ; 66 : : 60" : 40/, which subtracted from 82°
49/, gives 82° 48/ 20/ for the answer.

It must be observed here, as in all other cases, that of the
two angles, the less has the greater cosine.

The angle belonging to

the sin 9.20621 is 9° 15’ 6/ the tan 10.43434 is 69° 48’ 16/
the cos 9.98157 16° 34/ 30" the cot 10.33554 24° 47/ 16/

Method of Supplying the Sccants and Cosecants.

111. In some trigonometrical tables, the secants and cose-
cants are not inserted. But they may be easily obtained from
the sines and cosines. For, by art. 93, proportion 3d,

cos xsec=R32,

That is, the product of the cosine and secant, is equal to
the square of radius. But, in logarithms, addition takes the

_place of multiplication ; and, in the tables of logarithmic

sines, tangents, &c., the radius is 10. (Art. 103.) ’fherefore,
in these tables,

cos+sec=20. Or sec=20 —cos.

Again, by art. 93, proportion 6,
sin xcosec=R32,
Therefore, in the tables,
sin+cosec=20. Or, cosec=20—sin. Hence,

112. To obtain the secant, subtract the cosine from 20;
and to obtain the cosecant, subtract the sine from 20.

These subtractions are most easily performed, by taking
the right hand figure from 10, and the others from 9, as in
finding the arithmetical complement of a logarithm; (Art.
55.) observing however, to add 10 to the index of the secant
or cosecant. In fact, the secant is the arithmetical comple-
ment of the cosine, with 10 added to the index.

For the secant =20 —cos.
And the arith. comp. of cos =10 —cos. (Art. 54.)

. So also the cosecant is the arithmetical complement of the
sine, with 10 added to the index. The tables of secants aud
cosecants are, therefore, of use, in furnishing the arithmetical

.



THE TRIGONOMETRICAL TABLES 65

complement of the sine and cosine, in the following simple
manner : .

113. For the arithmetical complement of tfie sine, subtrac
10 from the index of the cosecant; and for the arithmetical
complement of the cosine, subtract 10 from the index of the
secant.

By this, we may save the trouble of taking each of the
figures from 9.



SECTION IIL

SOLUTIONS OF RIGHT ANGLED TRIANGLES.

ArT. 114. I~ a triangle there are siz parts, three sides,
and three angles. In every trigonometrical calculation, it is
unecessary that some of these should be known, to enable us
to find the others. The number of parts which must be
given, is THREE, one of which must be a siDE.

If only two parts be given, they will be either two sides, a
side and an angle, or two angles ; neither of which will limit
the triangle to a particular forin and size.

If two sides only be given, they may make any angle with
each other ; and may, therefore, be the sides ofy a thousand
different triangles. Thus, the two lines a and b (Fig. 7.) may
belong either to the triangle ABC, or ABC!, or ABC!. So
that it will be impossible, from knowing two of the sides of a
triangle, to determine the other parts.

Or, if a side and an angle only be given, the triangle will
be indeterminate. Thus, if the side AB (Fig. 8.) and the
angle at A be given ; they may be parts either of the triangle
ABC, or ABC/, or ABC".

Lastly, if two angles, or even if all the angles be given,
they will not determine the length of the sides. For the tri-
angles ABC, A’/B/C!, A"B/"C!', (Fig. 9.) and a hundred others
which might be drawn, with sides parallel to these, will all
have the same angles. So that onc of the parts given must
always be a side. If this and any other two parts, either
sides or angles, be known, the other three may be found, as
will be shown, in this and the following section.

115. Triangles are either right angled or oblique angled.
The calculations of the former are the most simple, and those
which we have the most frequent occasion to make. A great
portion of the problems in the mensuration of heights and dis-
tances, in surveying, navigation, and astronomy, are solved by
rectangular trigonometry. Any triangle whatever may be
divided into two right angled triangles, by drawing a perpen-
dicular from one of the angles to the opposite side.
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116. One of the six parts in a right angled triangle, is al-
ways given, viz. the right angle. This is a constant quantity;
while the other angles and the sides are vatiable. It is also
to be observed, that, if one of the acute angles is given, the
other is known of course. For one is the complement of the
other. (Art. 76, 77.) So that, in a right angled triangle,
subtracting one of the acute angles from 90° gives the other.
There remain, then, only four parts, one of the acute angles,
and the three sides, to be sought by calculation. 1If any two
t?cf these be given, with the right angle, the others may be

und.

117. To illustrate the method of calculation, let a case be
supposed in which a right angled triangle CAD, (Fig. 10.)
has one of its sides equal to the radius to which the trigo-
nometrical tables are adapted.

In the first place, let the base of the triangle be equal to
the tabular radius. Then, if a circle be described, with this
radius, about the angle C as a center, DA will be the tangent,
and DC the secant of that angle. (Art. 84, 85.) So that the
radius, the tangent, and the secant of the angle at C, consti-
tute the three sides of the triangle. The tangent, taken from
the tables of natural sines, tangents, &c., will be the length
of the perpendicular ; and the secant will be the length of
the hypothenuse. If the tables used be logarithmic, they will
give the lozarithms of the lengths of the two sides.

In the same manner, any right angled triangle whatever,
whose base is equal to the radius of the tables, will have its
other two sides found among the tangents and secants. Thus,
if the quadrant AH, (Fig. 11.) be divided into portions of
15° each ; then, in the triangle

CAD, AD will be the tan, and CD the sec of 159,
In CAD!, AD! will be the tan, and CD' the sec of 30°,
In CAD/!, AD" will be the tan, and CD'* the sec of 43°, &c.

118. In the next place, let the hAypothenuse of a right
angled triangle CBF, (Fig. 12.) be equal to the radius of the
tables. 'Then, if a circle be described, with the given radius,
and about the angle C as a center ; BF will be the sine, and
BC the cosine of that angle. (Art. 82.89.) Therefore the sine
of the angle at C, taken from the tables, will be the length
of the perpendicular, and the cosine will be the length of the
base. '
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And any right angled triangle whatever, whose hypothe-
nuse is equal to the tabular radius, will have its other two
sides found among the sines and cosines. Thus, if the quad-
rant AH, (Fig. 13.) be divided into portions of 15° each, in
the points F, F/, F', &c.; then, in the triangle,

CBF, FB will be the sin,and CB the cos, of 15°,
In CB'F/, F'B' will be the sin,and CB' the cos, of 30°,
In CB/"F'!, F'B!! will be the sin, and CB'’ the cos, of 45°, &ec.

119. By merely turning to the tables, then, we may find
the parts of any right angled triangle which has one of its
sides equal to the radius of the tables. But for determinin
the parts of triangles which have not any of their sides equ
to the tabular radius, the following proportion is used :

As the radius of one circle,

To the radius of any other ;

So is a sine, tangent, or secant, in one,

To the sine, tangent, or secant, of the same number
of degrees, in the other.

In the two concentric circles AHM, a/m, (Fig. 4.) the arcs
AG and ag, contain the same number of degrees. (Art. 74.
The sines of these arcs are BG and bg, the tangents AD an
ad, and the secants CD and Cd. 'The four triangles, CAD,
CBG, Cad, and Cbg, are similar.” For each of then, from
the nature of sines and tangents, contains one right angle ;
the angle at C is common to them all ; and the other acute
angle in each is the complement of that at C. (Art. 77.) We
have, then, the following proportions. (Euc. 4. 6.)

‘1. CG : Cg: :BG : bg.

That is, one radius is to the other, as one sine to the other.
2. CA ;: Ca: :DA : da.

That is, one radiusis to the other, as one tangent to the other.
3. CA:Ca::CD: Cd

That is, one radius is to the other, as one secant to the other
Cor. BG : bg::DA : da: :CD : Cd.
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That is, as the sine in one circle, to the sine in the other;
8o is the tangent in one, to the tangent in the other; and so
is the secant in one, to the secant in the other.

This is a general principle, which may be applied to most
trigonometrical calculations. If one of the sides of the pro-
posed triangle be made radius, each of the other sides will be
the sine, tangent, or secant, of an arc described by this radius.
Proportions are then stated, between these lines, and the fab-
ular radius, sine, tangent, &ec.

120. A liue is saicf to be made radius, when a circle is
described, or supposcd to be described, whose semi-diameter
is equal to the line, and whose center is at one end of it.

121. In any right angled triangle, if the HYPOTHENUSE

" be made radius, one of the legs will be a sINE of its opposite

angle, and the other leg a cosINE of the same angle.

Thus, if to the triangle ABC (Fig. 14.) a circle be applied,
whose radius is AC, and whose center is A, then BC will be
the sine, and BA the cosine, of the angle at A. (Art. 82, 89.)

If, while the same line is radius, the othor end C be made
the center, then BA will be the sine, and BC the cosine, of
the angle at C.

122. If either of the LEGs be made radius, the other leg
will be a TANGENT of its opposite angle, and the hypothenuse
will be a SECANT of the same angle; that is, of the angle
between the secant and the radius.

Thus, if the base AB (Fig. 16.) be made radius, the center
being at A, BC will be the tangent, and AC the secant, of
the angle at A. (Art. 84, 85.)

But, if the perpendicular BC, (Fig. 16.) be made radius,
with the center at C, then AB will be the tangent, and AC
the secant, of the angle at C.

123. As the side which is the sine, tangent, or secant of
one of the acute angles, is the cosine, cotangent, or cosecant
of the other; (Art. 89.) the perpendicular BC (Fig. 14.) is
the sine of the angle A, and the cosine of the angle C; while
the base AB, is the sine of the angle C, and the cosine of the
angle A.

f the base is made radius, as in Fig. 15, the perpendicular
BC is the tangent of the angle A, and the cotangent of the

--angle C; while the hypothenuse is the secant of the angle A,

and the cosecant of the angle C.
If the perpendicular is made radius, as in Fig. 16, the base
AB is the tangent of the angle C, and the cotangent of the
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a.ngle A; while the iypothenuse is the secant of the angle C,
and the cosecant of the angle A.

124. Whenever a right angled triangle is proposed, whose
sides or angles are required ; a similar triangle may be form-
ed, from the sines, tangents, &c., of the zables. (Art. 117,118.)
The parts required are then found, by stating proportions be-
tween the similar sides of the two triangles. If the triangle
gmposed be ABC, (Fig. 17.) another, abc, may be formed,

aving the same angles with the first, but differing from it in
the length of its sides, so as to correspond with the numbers
in the tables. If similar sides be made radius in both, the
remaining similar sides will be lines of the same name ; that
is, if the perpendicular in one of the triangles be a sine, the
perpendicular in the other will be a sine; if the base in one
be a cosine, the base in the other will be a cosine, &e.

If the hypothenuse in each triangle be made radius, as in
Fig. 14, the perpendicular bc, will be the tabular sine of the
angle at @ ; and the perpendicular BC, will be a sine of the
equal angle A, in a circle of which AC is radius.

If the base in each triangle be made radius, as in Fig. 15,
then the perpendicular bc, will be the tabular tangent of the
angle at &; and BC will be a tangent of the equal angle A,
in a circle of which AB, is radius, &c.

125. From the relations of the similar sides of these trian-
gles, are derived the two following theorems, which are suffi-
cient for calculating the parts of any right angled triangle
whatever, when the requisite data are furnished. One 1
used, when a side is to be found ; the other, when an angle
is to be found.

THEOREM 1.

126. When a side is required ;
AS THE TABULAR SINE, TANGENT, &C., OF THE
SAME NAME WITH THE GIVEN SIDE,
To THE GIVEN SIDE;
So 1S THE TABULAR SINE, TANGENT, &C., OF THE
SAME NAME WITH THE REQUIRED SIDE, -
To THE REQUIRED SIDE.

It will be readily seen, that this is nothing more than a
statement, in general terms, of the proportions between the
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similar sides of two triangles, one proposed for solution, and
the other formed from the numbers in the tables.

Thus, if the hypothenuse be giver, and the base or perpen-
dicular be required ; then, in Fig. 14, where ac is the tabular
radius, bc the tabular sine of q, or its equal A, and ab the
tabular sine of C; (Art. 124.)

ac : AC: : bc : BC, thatis, R : AC: :sin A : BC.
ac ;: AC: :ab: AB, R:AC::sinC: AB.

In Fig. 15, where ab is the tabular radius, ac the tabular
secant of A, and bc the tabular tangent of A ;

ac : AC: : bc : BC, thatis,scc A : AC: :tan A ¢ BC.
ac : AC: :ab: AB, secA : AC::R : AB.

In Fig. 16, where bc is the tabular radius, ac the tabular
secant of C, and ab the tabular tangent of C;

ac ;: AC: :bc ;: BC, thatis,sec C : AC: : R : BC.
ac : AC: :ab: AB, secC : AC::tanC ; AB.

Taeorem II.
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It will be observed, that in these theorems, angles are not
introduced, though they are among the quantities which are
either given or required, in the cu?culation of triangles. But
the tabular sines, tangents, &c., may be considered the rep-
resentatives of angles, as one may be found from the other,
by merely turning to the tables. ,

128. In the theorem for finding a side, the first term of the
proportion is a tabular number. But, in the theorem for
finding an angle, the first term is a side. Hence, in applying
the proportions to particular cases, this rule is to be observed ;

To find a s1DE, begin with a tabular number,
To find an ANGLE, begin with a side.

Radius is to be reckoned among the tabular numbers.

129. In the theorem for finding an angle, the first term is
a side made radius. As in every proportion, the three first
terms must be given, to enable us to find the fourth, it is evi-
dent, that where this theorem is applied, the side made radius
mu+t be a given one. But, in the theorem for finding a side,
1t i 1ot necessary that either of the terms should be radius.
Heuce,

130. To find a s1DE, ANY side may be made radius.
To find an ANGLE, @ GIVEN side must be made radius.

It will generaily be expedient, in both cases, to make radius
one of the terms in the proportion ; because, in the tables of
ratural sines, tangents, &c., radius is 1, and in the logarith-
mic tables it is 10. (Art. 103.) A

131. The proportions in Trigonometry are of the same

-nature as other simple proportions. The fourth term is found,

therefore, as in the Rule of Three in Arithmetic, by multiply-
ing together the second and third terms, and dividing their
product by the first term. 'This is the mode of calculation,
when the tables of natural sines, tangents, &c., are used.
But the operation by logarithms is so much more expeditious,
that it has almost entirely superseded the other method. In
logarithmic calculations, addition takes the place of multipli-
cation ; and subtraction the place of division. .
The logarithms expressing the lengths of the sides of a
triangle, are to be taken from the tables of common loga-
rithms. The logarithms of the sines, tangents, §-c.,are found
in the tables of artificial sines, &c. The calculation is then
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madé by adding the second and third terms, and subtract-
ing the first. (Art. 52.) .

132. The logarithmic radius 10, or, as it is written in the
tables, 10.00000, is so easily added and subtracted, that the
three terms of which it is one, may be considered as, in etfect,
reduced to two. 'Thus, if the tabular radius is in the firs
term, we have only to add the other two terms, and then take
10 from the index ; for this is subtracting the first term. If
radius occurs in the second term, the first is to be subtracted
from the third, after its index is increased by 10. In the
same manner, if radius is in the third term, the first is to be
subtracted from the second.

133. Every species of right angled triangles may be solved
upon the principle, that the sides of similar triangles are pro-
portional, according to the two theorems mentioned above.
There will be soae advantages, however, in giving the ex-
amples in distinct classes.

There must be given, in a right angled triangle, 17 of the
parts, besides the right angle. (Art. 116.) These may be;

1. The hypothenuse and an angle ; or
2. The hypothenuse and a leg; or

3. A leg and an angle ; or

4. The two legs.
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To find the perpendicular, then, by Theorem I, we have
this proportion ; v

ac; AC: :bc : BC. .
Or R:; AC: :Sin A : BC.
‘Whenever the terms Radius, Sine, Tangent, &c., occur in
a proportion like this, the tabular Radius, &c.,1s to be under-
stood, as in Arts. 126, 127.
The numerical calculation, to find the length of BC, may

be made, either by natural sines, or by logarithms. See Art.
131.

By natural Sines.
1:45::053484 : 24.068=BC.
- Computation by Logarithms. '
As radius 10.00000

To the hypothenuse 48 1.65321
So is the Sine of A 32° 20/ 9.72823
To the perpendicular 24.068 1.38144

Here the logarithms of the second and third terms are add-
ed, and from the sum, the first term 10 is subtracted. (Art.
132.) The remainder is the logarithm of 24.068=BC.

Subtracting the angle at A from 90°, we have the angle at
C=57° 40/. (Art. 116.) Then to find the base AB;

ac ; AC: :ab : AB
Or R: AC: :Sin C ;: AB=38.023.

Both the sides required are now found, by making the
hypothenuse radius. The results here obminex may be veri-
fied, by making cither of the other sides radius.

If the base be made radius, as in Fig. 15, the perpendicular
will be the fangent, and the hypothenuse the secant of the
angle at A. (Art. 122.) Then,

SecA : AC: :R : AB
R:AB::Tan A : BC

b



RIGHT ANGLED TRIANGLES: 75

By miaking the arithmetical calculations, in these two pro-
portions, the values of A and BC, will be found the same
as before. .

If the perpendicular be made radius, as in Fig. 16, AB
Willxl be the fangent, and AC the secant of the angle at C.
Then,

SecC: AC: :R : BC
R:BC::TanC : AB

Ex. 2. If the hypothenuse of a right angled triangle be
250 rods, and the angle at the base 46° 30/; what 1s the
length of the base and perpendicular ?

18. The base is 172.1 rods, and the perpendic.181.35.

Case IL

= 3 The hypothenuse The angles and
135. Given g And one leg ’ g to find ; The other leg.

.47 Ex. 1. If the hypothenuse ((Fig. 18.) be 35 leagues, and
~ the base 263 what is the length of the perpendicular, and the
quantity of each of the acute angles ?

To find the angles it is necessary that one of the given
sides be made radius. (Art. 130.)

If the hypothenuse be radius, the base and perpendicular
will be sines of thejr opposite angles. Then,

AC : R: : AB'; Sin C=47° 58Y/
And to find the perpendicular by theorem I ;
R:AC: :Sin A : BC=2343

If the base be radius; the Fcrpendicular will be tangent,
and the hypothenuse secant of the angle at A. Then,

AB:R::AC : Sec A
R: AB::Tan A ; BC

In this example, where the hypothefiuse and base are

given, the angles can not be found by making the perpendic-
wlar radius. For to find an angle, a given side must be

made radius. (Art. 130.)
» /f

-y

~
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136. Ex. 2. If the hypothenuse g‘ig. 19.) be 54 miles, and
g::se perpendicular 48 miles, whatWare the angles, and the
?

Making the hypothenuse radius.

AC:R::BC:SinA
R:AC::8SinC: AB

;I‘he numerical calculation will give A=62° 44’ and AB
-=24.74.
Moaking the perpendicular radius.
BC:R::AC : SecC
R:BC::TanC : AB

The angles cannot be found by making the base radius,
wheun its length is not given. '

Case IIL

. The angles. The hypothenuse,
137. Given 3 And one Ieé' g to find 3 And the other leg.

Bx. 1. If the base iPig. 20.) be 60, and the angle at the
base 47> 12/, what is the length of the hypothenuse and the
perpendicular ?

‘}n this case, as sides only are required, any side may be
radius.

Making the Aypothenuse radius.
SinC : AB: : R : AC=8331
R : AC: :Sin A ; BC=6438
Making the base radius.
R:AB::8Sec A : AC
R:AB::Tan A ; BC
Mukfng the perpendicular radius.

TanC : AB: :R : BC
R:BC::SecC: AC
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138. Ex. 2. If the perpendieular (Fig. 21.) be 74, and the
angle C 61° 27, what isthe length of the base and the hypo-
thenuse ?

Making the Aypothenuse radius.
SinA ;BC::R: AC
R: AC::sinC : AB
Making the base radius.
Tan A : BC: :R : AB
R:AB::sec A ; AC
Making the perpendicular radius.

R :BC::secC: AC
R :BC::tan C ;: AB

'The hypothenuse is 154.83 and the base 136.

Case IV,

. The base, and ( The hypothenuse
139. G!vens Pcrpendi(’:nlnr zto find { And the angles. ’
o -
Ex. 1. If the base (Fig. 22.) he 384. and the perpendicular
/99192, what are the angles, and the hypothenuse ?
In this case, one of the legs must be made radius, to find
an angle ; because the hypothenuse is not given.

Making the base radius.
AB: R: :BC ; tan A=34° 4/
R:AB::scc A ; AC=342.84
Making the perpendicular radius.

BC:R::AB: tanC

R:BC::secC: AC

Ex. 2. If the base be 640, and the perpendicular 480, what
are the angles and hypothenuse ? .
Ans. The hypothenuse is 800, and the angle at the base
36° 52/ 1211,
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Ezamples for Practice

# . .
1. Given the hypothenuse 68, and the angle at the base
39° 1775 to find the base and perpendicular.
2. Given the hypothenuse 850, and the base 594, to find
the angles, and the perpendicular. ,
3. Given the hypothenuse 78, and perpendicular 57, to find
the base, and the angles. &€ )
144 4. Given the base#33; and the angle at the base 642 1-&,
to find the hypothenuse and perpendicular.
6. Given the pent']pendicular 632, and the angle at the base
81° 36/, to find the hypothenuse and the base.
6. Given the base 32, and the perpendicular 24, to find the
hypothenuse, and the angles.

140. The preceding solutions are all effected, by means of
the tabular sines, tangents, and secants, Bat, when any #wo
sides of a right angled triangle are given, the third side may
be found, without the aid of the trigonometrical tables, by
the proposition, that the square of the hypothenuse is equal to
the sum of the squares of the two perpendicular sides. (Euc.
47. 1. .

If tzle legs be given, extracting the square root of the sum
of their squares, will give the hypothenuse. Or, if the hypo-
thenuse and one leg be given, extracting the square root of
the difference of the squares, will give the other leg.

Let A=the hypothenuse
==the perpendicular ; of a right angled triangle.
=the base ,
Then h2=b34-p1, or (Alg. 296.) h=v b1+ p2
By trans.  b2=h?—p3,0r b=vh:—ps
And pr=hi—b?, or p=vh3—b?
Ex. 1. If the base is 32, and the perpendicular 24, what is
the hypothenuse ? Ans. 40.
2. If the hypothenuse is 100, and the base 80, what is the
perpendicular? Ans. 60.

3. If the hypothenuse is 300, and the perpendicular 220,
what is the base ? °

Ans, 300 —2202=4160, the root of which is 204 nearly.
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141. Tt is generally most convenient to find the difference
of the squares by logar#hms. But this is not to be done by
subtraction. For subtraction, in logarithms, performs the
office of division. (Art. 41.) If we subtract the logarithm of
b2 from the logarithm of A%, we shall have the logarithm,
not of the *ifference of the squares, but of their quotient.
There is, however, an indirect, though very simple method,
by which the difference of the squares may be obtained by
logarithms. It depends on the principle, that the difference
of the squares of two quantities is equal to the product of the
sum and difference of the quantities. (Alg. 236.) Thus,

h2 —b3 =(h+b)x(h—b)

as will be seen at once, by performing the multiplication.
The two factors may be multiplied by adding their loga-
rithms, Hence,
. 142. To obtain the difference of the squares of two quanti-
ties, add the logarithm of the swm of the quantities, to the
logarithm of their difference. After the logarithm of the
difference of the squares is found; the_square root of this
difference is obtained, by dividing the logarithm by 2.
{Art. 47.) :

Ex. 1. If:the h’y«po.thenuSe be 75 inches, and the base 45,
what is the length of the perpendicular ?

Sum of the given sides 120 log. 2.07918

Difference of  do. 30 147712
Dividing by 2)3.55630
Side required - 60 1.77815

: J/ If the hypothenuse is 135, and the perpendicular 108, V
. ‘what is the length of the base ? Aus. 8L




SECTION IV.

¢ BOLUTIONS OF OBLIQUE ANGLED TRIANGLES.

ARrrT. 143. TnE sides and an§les of oblique angled trian-
gles may be calculated by the following theorems.
x

THEOREM I

In any plane triangle, THE SINES OF THE ANGLES ARE AS
THEIR OPPOSITE SIDES, : :

Let the angles be denoted by the letters A, B, C, and their
opposite sides by a, b, ¢, as in Fig. 23 and 24. From one of
the angles, let the line p be drawn perpendicular to the op-
posite side. This will fall either withm or without the tri-
angle. . -

T Let it fall wickin as in Fig.23. Then, in the right an-
gled triangles ACD, and BCD, according to art. 126, .

R:b::sinA:p.
R:a::sinB:p
Here, the two ezfremes are the same in both propoMions.

The other four terms are, therefore, reciprocally proportional :
(Alg. 387.%) that is,
' a:b::sinA :sinB.

2. 1et the perpendicular p fall without the triangle, as in
Fig. 24. Then, in the right angled triangles ACD and
BCD;

R:b::sinA:p
R:a::sinB:p

Therefore as before,

a:b::sin A ;sinB.

* Euclid 23 5.

a -
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Sin A is here put both for the sine of DAC, and for that
of BAC. For, as one of these angles is the supplement of
the other, they have the same sine. (Art. 90.)

The sines which are mentioned here, and which are used
in calculation, are tabular sines. But the proportion will be
the same, if the sines be adapted to any other radius. (Art.
119.)

Taeorenm I

144. In a plane triangle,
As THE SUYl OF ANY TWO OF THE BMDES,
T'0 THEIR DIFFERENCE ;
S0 15 THE TANGENT OF HALF THE SUM OF THE
OPPOSITFE. ANGLES;
TO THE TANGENT OF IALF THEIR DIFFERENCE.

Thus, the sum of AB and AC, (Fig. 25.) is to their differ-
ence ; as the tangent of half the sum of the angles ACB and
ABQC, to the tangent of half their difference.

Demonstration.

Extend CA to G, making AG equal to AB; then CG is
the sum of the two sides AB and AC. On AB, set off AD, equal

. to AC; tl the difference of the sides AB and AC.
The su 70 angles ACB and ABC, is equal to the
sum of A JC; because each of these sums is the

supplemci.. vx vares. (Art. 79.) But as AC=AD by construc-
tion, the angle ADC=ACD. (Fuc. 5. 1.) Therefore ACD is
half the sum of ACB and ABC. As AB=AG, the angle
AGB=ABG, or DBE. Also, GCE, or ACD=ADC=BDE.
(Euc. 15. 1.) Therefore, in the triangles GCE, and DBE, the
two remaining angles DEB, and CEG, are equal ; (Art. 79.)
So that CE is perpendicular to BG. (Euc. Def. 10. 1.) If then
CE is made radius, GE is the tangent of GCE, (Art. 84.) that
is, éhe tangent of half the sum of the angles opposite to AB
and AC. ‘

If from the greater of the two angles ACB and ABC, there
be taken ACD their half sum; the remaining angle ECB
will be their half difference. (Alg. 341.) 'The tangent of this
angle, CE being radius, is EB, that is, the ¢ mgent of hal
the difference of the angles opposite to AB and AC. We
have then,

w9

1
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CG=the sum of the sides AB and AC;

DB=their difference;

G E=the tangent of half the sum of the opposite angles;
EB=the tangent of half their difference.

But by similar triangles, .
CG : DB : GE : EB. Q.E.D.

Tuaeorexm IIIL

145. If upon the longest side of a triangle, a perpendicu-
lar be drawn from the opposite angle

AS THE LONGEST SIDE,

T'o THE SUM OF THE TWO OTHERS

S0 1S THE DIFFERENCE OF THE LATTER,

To THE DIFFERENCE OF THE SEGMENTS MADE BY
THE PERPENDFCULAR.

In the triangle ABC, (F'ig. 26.) if a perpendicular be drawn
from C upon AB;

AB : CB£CA: : CB—CA : BP —PA"

Demonstration.

Describe a cirele on the center C, and with the radius BC.
Through A and C, draw the diameter LD, and extend BA to
H. Then by Euc. 35. 3.

ABxAH=ALXAD
Therefore,
AB ; AD:: AL : AH
But AD=CD+CA=CB+CA
And AL=CL —CA=CB—CA
And AH=HP —PA=BP —PA (Euec. 3. 3))

If, then, for the three last terms in the proportion, we sub-
stitute their equals, we have,

AB : CB4CA: : CB—CA : PB—PA.

146. It is to be observed, that the greater segment is next
the greater side. If BC is greater than AC, (Fig. 26.) PB is

* See note F.
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greater than AP. With the radius AC, describe the arc AN.
I{I‘he segmer:t NP=AP. (Euc. 3. 3.) But BP is greater than

P. :
147. The two nts are to each other, as the tangents
of the opposite angles, or the cotangents of the adjacent an-
gles. For, in the right angled triun%es ACP, and BCP,
(Fig. 26.) if CP be made radius, (Art. 126.)

R :PC::Tan ACP : AP
R : PC: : ' Tan BCP : BP

Therefore, by. equality of ratios, (Alg. 384.%)
Tan ACP : AP : : Tan BCP : BP

That is, the segments are as the tangents of the opposite
angles. And the tangents of these are the cotangents of the
adjacent angles A and B. (Art. 89.)

Cor. The greater segment is oppdsite to the greater angle.
And of the angles at the base, the less is next the greater
side. If BP is greater than AP, the angle BCP is greater
than ACP; and B is less than A. (Art. 77.)

148. To enable us to find the sides and angles of an oblique
angled triangle, three of them must be given. (Art. 114.)

These may be, either

1. Two angles and a side, or

2. T'wo sides and an angle opposite one of them, or
3. Two sides and the included angle, or

4. The three sides.

The two first of these cases are solved by theorem I, (Art.
143.) the third by theorem II, (Art. 144.) and the fourth by
theorem III, (Art. 145.)

149. In making the calculations, it must be kept in mind,
that the greater side is always opposite to the greater angle,
(Euc. 18, 19. 1.) that there can be only one obtuse angle in a
triangle, (Art. 76.) and, therefore, that the angles opposite to
the two least sides must be acute.

* Euc. 11. 5.
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Case L.

9
150. Given,

Two angles, and The remaining angle, and
Aside, = g to find 3 The other two sidcs.

The third angle is found by merely subtracting the sum
of the two which are given from 180°. (Art. 79.)

The sides are found, by stating, according to theorem I,
the following proportion ;

As the sine of the angle opposite the given side,

To the length of the given side ;

So is the sine of the angle opposite the reguired side,
To the length of the rcquirctrs)ide.

As o side is to be found, it is necessary to begin with a
tabular number. '

. Ex. 1. In the triangle ABC, (Fig. 27.) the side b is given
32 rods, the angle A 56° 20/, and the angle C 49° 10/, to find
the angle B, and the sides a and c.

The sum of the two given angles 56° 20/4-49° 10/'=105°
307; which subtracted from 180°, leaves 74° 30/ the angle B. -

Then, . :

. .171..(8nA :a
sxnlaz.b..gsmmc

Calculation by logarithms.

As the sinc of B 74° 30!  a.c. 0.01609

To the side b 32 1.50515
So is the sine of A  56° 20/ 9.92921
To the side a 27.64 1.44151
Asthesineof B 74°30' a.c. 0.01609
To the side b 32 1.50515
So is the sine >f C  49° 10/ 9.87887

To the side ¢ 25.13 1_406—ﬁ
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There will be the same ambiguity in the numerical calcu
lation. 'The answer found by the proportion will be the sine
of an angle. But this may be the sine, either of the acute
angle AB'C, or of the obluse angle ABC. For, BC being
cqual o B'C, the angle CB'B is equal to CBB/. Therefore
ABC, which is the supplement of CBB, is also the supplement
of (1¥B. But the sine of an angle is the same, as the sine
of it2 supplement. (Art. 90.) The result of the calculation
will, therefore, be ambiguous. In practice, however, there
will generally be some circumstances which will determine
whether the angle required is acute or obtuse.

If the side opposite the given angle be longer than the
other given side, the angle which is subtended by the latter,
will necessarily be acute. For there can be but onec obtuse
angle in a triangle, and this is always subtended by the long-
est side. (Art. 149.)

If the given angle be obtuse, the other two will, of course,
be acute. There can, thercfore, be no ambiguity in the
solution.

Ex. 1. Given the angle A, (Fig. 28.) 35° 20/, the opposite
side a 50, and the side% 70; to find the remaining side, and
the other two angles.

To find the angle opposite to b, (Art. 151.)
a:sinA::b:sinB

The calculation here gives the acute angle AB/C 54° 3!
50", and the obtuse angle ABC 125° 56/ 10/". 1If the latter
be added to the angle at A 35° 20/, the sum will be 161° 16/
107, the supplement of which, 18° 43/ 50", is the angle ACB.
Then in the triangle ABC, to find the side c=AB,

SinA ; a: :sinC ; ¢=27.76

If the acute angle AB/C 54° 3! 50! be added to the angle
at A 35° 20", the sum will be 89° 23’ 50, the supplement
of which, 90° 36’ 10/, is the angle ACB'. Then, in the tri-
angle AB'C,

Sin A ; CB': :sin C ; AB/'=86.45.

o
Ex. 2. Given the angle at A, &9-35', (Fig. 29.) the side b
b ﬁhnnd the side a 32 to find the side ¢, and the angles B
C. i/

70
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a :sin A: :b ; sin B=52° 45/ 28!
Sin A ;a: :sinC : ¢=72056

The sum of the angles A and B, is 116° 20/ 25!, the sup-
plement of which, 63° 39/ 35, is the angle C.

In this example the solution is not ambiguous, because the
sige opposite the given angle is longer than the other given
side.

Ex. 3. In a triangle of which the angles are A, B, and C,
and the opposite sides a, b, and ¢, as before ; if the angle A
be 121° 40/, the opposite side a 68 rods, and the side b 47
rods; what are the angles B and C, and what is the length
gt(') t3he sidec? Ans. B is 36° 2/ 41, C 22°17 56, and ¢

In this example also, the solution is not ambiguous, be-
cause the given angle is obtuse.

7 J‘/ Case III.
153. Given,

T'wo sides, and to find } The remaining side, and
The included angle, The other two angles.

In this case, the angles are found by theorem II. (Art. 144.)
The required side may be found by theorem 1.

In making the solutions, it will be necessary to observe,
that by subtracting the given angle from 180°, the swm of the
other two angles is found ; (Art. 79.) and, that adding half
the difference of two quantities to their half sum gives the
greater quantity, and subtracting the half difference from
the half sum gives the less. (Alg. 341.) The latter proposition
may be geometrically demonstrated thus; ‘

Let AE, (Fig. 32.) be the greater of two magnitudes, and
BF the less. Bisect AB in D, and make AC cqual to BE.
Then,

AB is the sum of the two magnitudes ;
CE their difference ;
DA or DB lLalf their sum ;
DFE or DG half their difference ;
But DA-+DE =AF the greater magnitude,
And DE--DE =BE the less.

Ex. 1. In the triangle ABC, (Fig. 30.) the angle A is given
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P s Z_ S
2&9—/14', the side b&,‘md the side c-G%t; to find the angles B
and C, and the side a.

The sum of the sides b and ¢ is 63439=92

And their difference 53—39=14
The sum of the angles B and C=180"—26° 14'=153° 46/
And kalf the sum of B and C is 76° 53/
Then, by theorem II,
(b+4c) : (b—c): : tan }(B+C) ; tan }(B~C)
To and from the half sum 76° 53/
Adding and subtracting the half difference 33 8 50
‘We have the greater angle 110 1 50
And the less angle 43 4 10

As the greater of the two given sides is c, the greater angle
is C,.and the less angle B. (Art. 149.)

To find the side a, by theorem 1.
SinB: b::sin A : a=24.94.

790 o
Ex. 2. Given the angle A 1/619 30/, the side b ég,’;t{dﬂw
side.c #U9; to find the angles B and C, and the side a.

/% Bis 30° 574!, C 47° 32}/, and a 144.8.

Case IV.

154. Given the three sides, to find the angles. :

In this case, the solutions may be made, by drawing a per-
pendicular to the longest side, from the opposite angle. This
will-divide the given triangle into two right angled triangles.
The two segments may be found by theorem III. (Art. 145.)
There will then be given, in each of the right angled trian-
gles, the hyrothenuse and one of the legs, from which the
angles may be determined, by rectangular trigonometry.

Art. 135.
{ Ex. 1. )In the triangle ABC, (Fig. 31.) the side AB is 39,
AC 33,and BC 27. What are the angles ?
Let.a perpendicular be drawn from C, dividing the longest
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side AB into the two scgments AP and BP. Then, by
theorem 111,

AB: AC+BC: : AC—BC ;: AP—BP

Ezamples for Practice.

1. Given the angle A 54° 30/, the angle B 63° 10/, and the
side @ 164 rods; to find the angle C, and the sides b

AV and c.

/
/
!

5 2. Given the angle A 45° 6/, the opposite side a 93, and the
; side b 108; to find the angles B and C, and the side c.
3. Given the angle A 67° 24/, the opposite side a 62, and the
side b 46 ; to find the angles B and C, and the side c.
4. Given the angle A 127° 42/, the opposite side a 381, and
the side b 184 ; to find the angles B and C, and the side c.
12

g
3 "-'

39
o vau

ny
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6. Given the side b 58, the side ¢ 67, and the included angle
A=36°; to find the angles B and C, and the side a.

6. Given the three sides, 631, 268, and 546; to find the
angles.

155. The three thcorems demonstrated in this section, have
been here applied to oblique angled triangles only. But they
are equally applicable to right angled triangles.

Thus, in the triangle ABC, (Fig. 17.) according to theo-
rem I, (Art. 143.)

SinB : AC: :sin A ; BC

This is the same proportion as one stated in art. 134, ex-
cept that, in the first term here, the sire of B is substituted
for radius. But, as B is a right angle, its sine is equal to
radius. (Art. 95.)

Again, in the triangle ABC, (Fig. 21.) by the,same theo-
rem;

Sin A : BC: :sin C : AB

This is also one of the proportions in rectangular trigo-
nometry, when the hypothenuse is made radius.

The other two theorems might be applicd to the solution
of right angled triangles. But, when one of the angles is
known to be a right angle, the methods explained in the pre-
ceding section, are much more simple in practice.*

* For the application of Trigonometry to the Mensuration of Heights and Dis-
tances, sce Naviguton and Surveying.
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rides about the equal angles proportional. (Euc. Def. 1. 6.
'T'hus a land surveyor, in plotting a field, makes the sever:
lines in his plan to have the same proportion to each other,
as the sides of the ficld. For this purpose a scale of equal
parts may be used, of any dimensions whatever. If the sides
of the field are 2, 5, 7, and 10 rods, and the lines in the plan
are 2, 5, 7, and 10 tnches, and if the angles are the same in
each, the figures are similar. One is a copy of the other,
upon a smaller scale.

So any two right lined figures are similar, if the angles are
the same in both, and if the number of smaller parts in each
side of one, is equal to the number of larger parts in the cor-
responding sides of the other. 'The several divisions on the
scale of equal parts may, therefore, be considered as repre-
senting any measures of length, as fect, rods, miles, &c. All
that is necessary is, that the scale be not changed, in the con-
struction of the same figure; and that the several divisions
and subdivisions be properly proportioned to each other. If
the larger divisions, on the diagonal scale, are units, the smaller
ones are tenths and hundredths. If the larger are tens, the
smaller are units and tenths.

159. In laying down an angle, of a given number of de-
grees, it is necessary to measure it. Now the proper measure
of an angle is an arc of a circle. (Art. 74.) And the measure
of an arc, where the radius is given, is its chord. For the
chord is the distance, in a straight line, from one end of the
arc to the other. 'Thus the chord AB, (Fig. 33.)is a measure
of the arc ADB, and of the angle ACB.

To form the line :if chords, a circle is described, and the
lengths of its chords determined for every degree of the quad-
rant. These measures are put on the plane scale, on the line
marked CHO.

160. The chord of 60° is equal to radins. (Art. 95.) In
laying down or measuring an angle, therefore, an_arc must
be drawn, with a radius which is equal to the exdlt from 0
to 60 on the line of chords. There are
scale, two lines of chords. Either of the:
but the angle must be measured by the same
the radius is taken.

161. To make an angle, then, of a give
grees ; from one end of a straight line as a
a radius equal to the chord of 60° on the li
scribe an arc of a circle cutting the straight
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point of intersection, extend the chord of the given number
of degrees, applying the other extremity to the arc; and
through the place of meeting, draw the other line from the
angular point.

If the given angle is obtuse, take from the scale the chord
of half the number of degrees, and apply it fwice to the arc.
Or make use of the chords of any two arcs whose sum is
equal to the given number of degrees.

« Aright angle may be constructed, by drawing a perpen-
diculer without using the line of chords.

Ex. 1. To make an argle of 32 degrees. (Fi%; 33.) With
the point C, in the line CH, for a center, and with the chord
of 60° for radius, describe the arc ADF. Extend the chord
of 32° from A to B; and through B, draw the line BC. Then
is ACB an angle of 32 degrees.

@ 2. 'To juzke an angle of 140 degrees. (Fig. 34.) On the
line G, with the chord of 60°, describe the arc ADF ; and
extend the chord of 70° from A to D, and from D to B. The
arc ADB=709x2==140°.

On the other hand :

162. To measure an angle; On the angular point asa
center, and with the chord of 60° for radius, describe an are
to cut the two lines which include the angle. The distance
between the points of intersection, applied to the line of
chords, will give the measure of the angle in degrees. 1f the
angle be obtuse, divide the arc into two parts.

Ex. 1. To measure thé angle ACB. (Fig. 33.) Descrite
the arc ADF, cutting the lines CH and CB. The distance
AB, will extend 32° on the line of chords.

2. To measure the angle ACB. (Fig. 34.) Divide the arc
ADB into two parts, either equal or unequal, and measure
each part, by applying its chord to the scale. The sum of
the two will he 140°.

163. Besides the lines of chords, and of equal parts, on the

are also lines of natural sines, tangents,

ed Sin,, Tan. and Sec.; of semitangents,

f longitude, marked Lon. or M. L.; of

Rhu. or Rum., &c. 'These are not neces-

rical construction. Some of them are usec

«d some of them, in the projections of the
Sphere.



o4 GROMETRICAL CONSTRUCTION OF TRIANGLES.

164. In Navigation, the quadrant, instead of being gradua-
ted in the usual manner, isdivided into eight portions, called
Rhumbs. 'The Rhumb line, on the scale, is a line of chords,
divided into rhumbs and quarter-rhumbs, instead of degrees.

165. The line of Longitude is intended to. shew the num-
ber of geographical miles in a degree of longitude, at differ-
ent distances from the equator. It is placed over the line of
chords, with the numbers in an inverted order: so that the
figurc above shows the length of a degree of longitude, in,
any latitude denoted by the figure below.* Thus, at the
equator, where the latitude is 0, a degree of longitude is 60
geographical miles. In latitude 40, it is 46 miles ; in latitude
60, 30 miles, &c. :

166. The graduation on the line of secants begins where
the line of sines ends. For the greatest sine is only equal to
radius ; but the secant of the least arc is greater than radiusae

167. The semitangents are the tangents of kalf the given
arcs. 'Thus, the semitangent of 20° is the tangent of 10°.
The line of semitangents is used in one of thaprojections of
the sphere.

168. In the construction of triangles, the sides and angles
which are given, are laid down according to the directions in
Arts. 158, 161. 'T'he parts required are then measured, ac-
cording to Arts. 158, 162. The following problems corres-
pond with the four cases of oblique angled triangles; (Art.
148.) but are equally adapted to right angled triangles.

169. Proe. . The angles and one side of a triangle being
given; to find, by construction, the other two sides. :

Draw the given side. From the cnds of it, lay off two of
the given angles. Extend the other sides till they intersect ;
and then measure their lengths on a scale of equal parts.

Ex. 1. Given the side b 32 rods, (Fig. 27.) the angle A 56°
20/, and the angle C 49° 10/; to construct the triangle, and
find the lengths of the sides @ and c.

Their lengths will be 25 and 271.

2. In aright angled triangle, (Fig. 17.) given the hypoth-
enuse 90, and the angle A 32° 20/, to find the base and per-
pendicular.

The length of AB will be 76, and of BC 48.

* Sometimes the line of longitude is placed under the line of chords.
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3. Given the side AC 68, the angle A 124°, and the angle
C 37°: to construct the triangle.

170. Pros. II. Two sides and an opposite angle being giv-
en, to find the remaining side, and the other two angles.

Draw one of the given sides; from one end of it, lay off
the given angle; and cxtend a line indefinitely for the re-
quired side. From the other end of the first side, with the re-
maining given side for radius, describe an arc cutting the in-
definite line. The point of intersection will be the end of
the required side.

If the side opposite the given angle be less than the other
given side, the case will be ambiguous. (Art. 152.)

Ex. 1. Given the angle A 63° 35/, (Fig. 29.) the side b 32,
and the side a 36.

The side AB will be 36 nearly, the angle B 52° 45}/, and
C 63° 394 v

2. Given the angle A (Fig. 28.) 35° 20/, the opposite side
a 25, and the side b 35.

Draw the side b 35, make the angle A 35° 20/, and extend
AH indefinitely. From C with radius 25, describe an arc
cutting Al in B and B’. Draw CB and CB/, and two trian-
gles will be formed, ABC and AB'C, each corresponding
with the conditions of the problem.

3. Given the angle A 116°, the opposite side a 38, and the
side b 26 ; to construct the triangle.

17L. Pros. IIl. Two sides.and the included angle being
given ; to find the other sidzs and angles.

Draw one of the fiven sides. From one end of it lay off
the given angle, and draw the other given side. Then con-
nect the extremities of this and the first line.

Ex. 1. Given the angle A (Fig. 30.) 26° 14/, the side ) 78,
and the side ¢ 106; to find B, C, and a.

The side a will be 50, the angle B 43° 44/, and C 110° 2.

2. Given A 86°, b 65, and ¢ 83; to find B, C, and a.

172. Prog. IV. The three sides being given ; to find the
angles.

Draw one of the sides, and from one end of it, with an ex-
tent equal to the second side, describe an arc. From the
other end, with an extent equal to the third side, describe a
second arc cutting the first; and from the point of intersec-
tion draw the two sides. (Euc. 22. 12’

Ex. 1. Given AB (Fig.31.) 78, AC 70, and BC 54, to find
the angles.
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08 GUNTER'S SCALE.

portions of a line 2 fect long, the logarithms of numbers
between 1 and 100.

On Gunter’s scale, the lme of the logarithms of numbers
begins at a brass pin on the left, and the divisions are num-
bered 1, 2, 3, &c., to another pin near the middle. From this
the numbers are repeated, 2, 3, 4, &c., which may be read
20, 30, 40, &¢. The logarithms of numbers between 1 and
10, are represented by portions of the first half of the line;
and the logarithms of numbers between 10 and 100, by por-
tions greater than half the line, and less than the whole.

176. The logarithm of 1, which is 0, is denoted, not by
any extent of line, but by a point under 1, at the commence-
ment of the scale. The distances from this point to different
parts of the line, reprcsent other logarithms, of which the
figures placed over the several divisions are the natural
numbers. For the intervening logarithrs, the intervals be-
twecen the figures, are divided into tenths, and sometimes into
smaller portions. On the right hand half of the ccale, as the
divisions which are numbered are fens, the subdivisions are
units.

Ex. 1. To take from the scale the logarithm of 3.6; set
one foot of the compasses under 1 at the beginning of the
scale, and extend the other to the 6th division after the first
figure 3.

2. For the logarithm of 47; extend from 1 at the begin-
ning, to the 7th subdivision after the sccond figure 4.*

177. It will be observed, that the divisions and subdivis-
ions decrease, from left to right; as in the tables of loga-
rithms, the differences decrease. 'The difference between the
logarithms of 10 and 100 is no grezter, than the difference
between the logarithms of 1 and 10.

178. The line of numbers, as it has been here explained,
furnishes the logarithms of all numbers between 1 and 100.

And if the indices of the logarithms be neglected, the same
scale may answer for all numbers whatever. For the deci-
mal part of the logarithm of any number is the same, as that
of the number multiplied or divided by 10, 100, &c. (Art.
14.) In logarithmic calculations, the use of the indices is to
determine the distanee of the several figures of the natural
numbers from the place of units. (Art. 11.) But in those
cases in which the logarithmic line is commonly used, it will

* If th compasses will not reach the distance required ; first open them so as
to take off half, or any part of the distance, and then the rgmaining part.
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not generally be difficult to determine the loeal value of the
ures in the result.

179. We may, therefore, consider the point¢ under 1 at the

left hand, as representing the logarithm of 1, or 10, or 100;
or %, Of 115, &c., for the decimal part of the logarithm of
each of these is 0. But if the first 1 is reckoned 10, all the
succecding numbers must also be increased in a tenfold ratio;
so as to read, on the first half of the line, 20, 30, 40, &c¢.,and
on the other half, 200, 300, &c.

The whole extent of the logarithmic line,

is from1 to 100, ~or from 0.1 to 10,
or from 10 to 1000, or from 0.01 to 1,
or flom 100 to 10000, &c. or from 0.001 to 0.1, &c.

Different values may, on different occasions, be assigned to
the several numbers and subdivisions marked on this line.
But for any one calculation, the value must remain the same.

Ex. Take from the scale 365.

As this number is between 10 and 1000, let the 1 at the
beginning of the scale, be reckoned 10. Then, from this
point to the second 3 is 300 ; to the 6th dividing stroke is 60;
and half way from this to the next stroke is 5.

180. Multiplication, division, &c., are performed by the
line of nu:mbers, on the same principle, as by common loga-
rithms. Thus,

To multiply by this line, add the logarithms of the two
factors; (Art. 37.) that is, take off, with the compasses, that
length of line which represents the logarithm of one of the
factors, and apply this so as to extend forward from the-end
of that which represents the logarithm of the other factor.
The sum of the two will reach to the end of the line repre-
senting the logarithm of the product.

Ex. Multiply 9 into 8. 'The extent from 1 to 8, added to

that from 1 to 9, will be equal to the extent from 1 to 72, the

product.

181. To divide by the logarithmic line, subtract the loga-
rithm of the divisor from that of the dividend ; (Art. 41.)that
is, take off the logarithm of the divisor, and this extent set
back from the end of the logarithm of the dividend, will reach
to the logarithm of the quotient.

Ex. Divide 42 by 7. The extent from 1 to 7, set back
from 42, will reach to 6, the quotient.

182. Involution is performed in logarithms, by multiplying

}@? Serd

r\
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the logarithm of the quantity into the index of the power;
(Art. 43.) that is, by repeatirg the logarithms as many times
as there are units in the index. "T'o involve a quantity on
the scale, then, take in the compasses the lincar logarithm,
and double it, treble it, &c., according to the index of the pro-
posed power.

Ex. 1. Required the squarc of 9. Extend the compasses
from 1 to 9. Twice this extent will reach to 81, the square.

2. Required the cube of 4. The extent from 1 to 4 rcpeat-
ed three times, will reach to 64 the cube of 4.

183. On the other hand, to perform evolution on the scale;
take half, one third, &c., of the logarithm of the quantity, ac-
cording to the index of the proposed root. .

Ex. 1. Required the square root of 49. Half the extent
from 1 to 49, will reach from 1 to 7, the root.

2. Required the cube root of 27. One third the distance
from 1 to 27, will extend from 1 to 3, the root.

184. The Rule of Three may be performed on the scale,
in the same manner as in logarithms, by adding the two
middle terms, and from the sum, subtracting the first term.
(Art. 52.) But it is more convenient in practice to begin by
subtracting the first term from one of the others. If four
quantities are proportional, the quotient of the first divided
by the second, is equal to the quotient of the third divided by
the fourth. (Alg. 364.) '

Thus,if @ $ b: : ¢ : d, then;==

But in logarithms, subtraction takes the place of division ;
so that,
log.a—log.b=log.c—log.d. Or,log.a—log.c=log.b—log.d.

Hence,

185. On the scale, the difference between the first and
- second terms of a proportion, is equal to the difference between
the third and fourth. Or, the difference between the first
and third terms, is equal to the difference between the second
and fourth.

The diffcrence between the two terms is taken, by extend-
ing the compasses {from one to the other. If the second term
be greater than the first; the fourth must be greater than the
third ; if less, less. (Alg. 395.") Therefore if the compasses

* Euc. 14. 5.

2» and ‘:-_—3. (Alg. 380.)
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extend forward from left to right, that is, from a less number
to a greater, from the first term to the second ; they must
also extend forward from the third to the fourth. But if they
extend backward, from the first term to the second; they
must extend the same way, from the third to the fourth.

Ex. 1. In the proportion 3 ; 8: : 12 ; 32, the extent from
3 to 8, will reach from 12 to 32; Or, the extent from 3 to
12, will reach from 8 to 32. ,

2. If 54 yards of cloth cost 48 dollars, what will 18 yards

cost ?
64 :48::18 : 16
The extent from 64 to 48, will reach backwards from 18
t 16. '

3. If 63 gallons of wine cost 81 dollars, what will 35 gal-

lons cost ?
63 :81::35: 45
_ 'The extent from 63 to 81, wul reach from 35 to 45.

The Line of Sines.

186. The line on Gunter’s scale marked SIN. is a line of
logarithmic sines, made to correspond with the line of num-
bers. The whole extent of the line of numbers, (Art. 179.)

is from1 to 100, whose logs. are 0.00000 and 2.00000,
or from 10 to 1000, whose logs. are 1.00000 and 3.00000,
or from 100 to 10000, whosc logs. are 2.00000 4.00000,

the difference of the indices of the two extreme logarithms
being in each case 2.
Now the logarithmic sine of 0° 34/ 22! 41/ is ~ 8.00000
And the sine of 90° (Art. 95.) is 10.00000

Here also the difference of the indices is 2. If then the
pont directly beneath one extremity of the line of numbers,
be marked for the sine of 0° 34/ 22" 41/; and the point
bencath the other extremity, for the sine of 90°; the interval
may f(urnish the intermediate sine; the divisions on it being
made to correspond with the decimal part of the logarithmic
sines in the tables.*

s Tu represent the sines less than 34’ 22” 41", the scale must be extended or
the left indefimtely. For, as the sine of an arc_apprcaches to 0, 1ts logarithm,
which is negative, increases without limit. (Art. 15.)
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The first dividing stroke in the line of Sines is generally
at 0° 40/, a little farther to the right than the beginning of
the line of numbers. The next division is at 0° 50 ; then
begins the numbering of the degrees, 1, 2, 3, 4, &c., from left
to right. :

The Line of Tangents.

187. The first 45 degrees on this line are numbered from
left to right, nearly in the same manner as on the line of
Sines.

The logarithmic tangent of 0° 34/ 22! 35/"" is 8.00000

And the tangent of 45°, (Art. 95.) 10.00000

The difference of the indices being 2, 45 degrees will
reach to the end of the line. For those above 45° the scale
ought to be continued much farther to the right. But as this
would be inconvenient, the numbering of the degrees, after
reaching 45, is carried back from right to left. The same
dividing stroke answers for an arc and its complement, one
above and the other below 45°, For, (Art. 93. Propor. 9.)

tan : R: : R ; cot.
In logarithms, therefore, (Art. 184.)
tan —R=R —cot.

That is, the difference between the tangent and radius, is
equal to the diffirence between rudius and the cotangent: in
other words, one is as much greater than the tangent of 45°,
as the other is less. In taking, then, the tangent of an arc
greater than 45°, we are to suppose the distance between 45
and the division marked with a given number of degrees, to
be added to the whole line, in the same mauner as if the line
‘were continued out. In working proportions, extending the
compasses back, from a less number to a greater, must be
considered the same as carrying them forward in other cases.
Sec art. 185,

Trigonometrical Proportions on the Scale. -

188. In working proportions in trigonometry by the scaie;
the extent from the first term to the middle term of the same
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from 45° to 57° 40/; yet, as this is from a less number to a
greater, they must extend forward on the line of numbers.
(Arts. 185, 187.)

4. In art. 135, - 35 : R::26 : sin 48°
The extent from 35 to 26 will reach from 90° to 48°.
5. In art. 136, R : 48: :tan 27}° ; 243

The extent from 45° to 2719, will reach from 48 to 243,

6. Inart. 150, ex.1. Sin 74°30’ : 32 : : sin 56 20/ ; 274,

g‘olrv other examples, see the several cases in Sections IIL
and IV,

190. Thongh the solutions in trigonometry may be effect-
ed by the logarithmic scale, or by geometrical construction,
as well as by arithmetical computation ; yet the latter method
is by far the most accurate. The first is valuable principally
for the expedition with which the calculations are made by it.
The sccond is of use, in presenting the form of the triangle
to the eye. But the accuracy which attends arithmetical
operations, is not to be expected, in taking lines from a scale
with a pair of compasses.*

* See note G.
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194. In the first gquadrant AB, the sine, cosine, tangent,
&c., are considered all positive. In the second quadrant
BD, the sine P'S/ continues positive ; because it is still on the
upper side of the diameter AD, from which it is measured.
But the cosine, which is measured from BH, becomes nega-
tive, as sooh as it changes from the right to the left of this
line. (Alg. 507.) In the third quadrant the sine becomes
negative, by changing from the upper side to the under side
of DA. 'T'he cosine continues negative, being still on the left
of BH. In the fourth quadrant,the sine continues negative.
But the cosine becomes positive, by passing to the right of
BH.

195. The signs of the tangents and secants may be deriv-
ed from those of the sines and cosines. "The relations of
these several lines to each other must be such, that a uniform
method of calculation may extend through the different quad-
rants. ) :

In the first quadrant, (Art. 93. Propor. 1.)

Rxsin
cos

The sign of the quotient is determined from the signs of
the divisor and dividend. (Alg. 123.) The rudius is consid-
ered as always positive. 1If then the sine and cosine he both

itive or both negative, the tangent will be positive. But

if one of these be positive, while the other is negative, the
tangent will be negative.

R : cos: :tan : sin, that is, Tan=

Now by the preceding article,
In the 2d quadrant, the sine is positive, and the cosine
negative.
The tangent must therefore be negative.
In the 3d quadrant, the sine and cosine are both negative.
The tangent must therefore be positive.
In the 4th quadrant, the sine is negative, and the cosine
positive.
The tangent must therefore be negative.
196. By the 9th, 3d, and 6th proportions in Art. 93.

. R
1. Tan : R:: R : cot, thatis C°t=‘tn—n'
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Therefore, as radius is uniformly positive, the cotangent

must have the same sign as the tangent.
a3

2. Cos : R: : R : sec, that is, Scc=R—.
, cos .

The secant, therefore, must have the same sign as the
cosine.

3
sin”

_ The cosecant, therefore, must have the same sign as the
sine. ' ' ‘ ' ?
The versed sine, as it is measured from A, in one direction
only, is invariably positive. ' o

197. The tangent AT (Fig. 36.) increases, as the arc ex-
tends from A towards B. See also Fia. 11. Near B the in-
crease is very rapid; and when the difference between the
arc and 90°, is less than any assignable quantity, the tangent
is greater than any assignable quantity, and is said to be
infinite. (Alg. 447.) If the arc is ezactly 90 degrees, it has,
strictly speaking, no tangent. For a tangent is a line drawn
perpendicular to the diameter which passes through one end
of the arc, and extended till it meets a line proceeding from
the center through the other end. (Art. 84.) But if the arc is
90 degrees, as AB, (Fig. 36.) the angle ACB is a right angle,
and therefore A'T is parallel to CB ; so that, if thesc lines be
extended ever so far, they never can meet. 8till, as an are
infinitely near to 90° has a tangent ‘infinitély great, it is fre-
quently said, in concise terms, that.the tangent of 90° is infi-
nite. ' =

In the second quadrant, the tangent is, at first, infinitely
great, and gradually dirinishes, till at D it-is reduced to
nothing. 1In the third guadrant, it increases again, becomes
infinite near H, and is reduced to nothing at A.

The cotangent is inversely as the tangent. It is therefore
nothing at B and H, (Fig. 36.) and infinite near A and D.

198. The secant increases with the tangent, through the
first quadrant, and becomes infinite near Bj it then diminishes,
in the second quadrant, till at D it is equal to the radius CD.
In the third quadrant it increases again, becomes infjnite near
H, after which it diminishes, till it becomes equal to radius.

The cosecant decreascs, as the sccant increases, and . v.
It is therefore equal to radius at B and H, and infinite near
A and D. :

3. 8in : R: : R : cosec,that is, Oosgc=R
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+199. The sine incrcases throngh the first quadrant, till at
B (Fig. 36.) it is equal to radius. ~ See also Fig. 13. 1t then
diminishes, and is reduced to nothing at D.” In the third
quadrant, it increases again, becomes cqual to radius at H,
and is reduced to nothing at A.

The cosine decrenses through the first quadrant, and is re-
duced to nothing at B. In the second quadrant, it increases,
till it becomes equal to radius at D. It then diminishes again,
is reduced to nothing at H, and afterwards increases till it be-
comes equal to radius at A.

In all these cases, the arc is supposed to begin at A, and
to extend round in the direction ofp BDH.

200. The sine and cosine vary from nothing to radius,
which they never exceed. The secant and cosecant are
never less than radius, but may be greater than any given
length. The tangent and cotangent have every value from
nothing to infinity. Each of these lines, after reaching its
greatest limit, begins to decrease; and as soon as it arrives at
its least limit, begins to increase. Thus, the sine begins to
decrease, after becoming equal to radius, which is its greatest
limit. But the secant begins to increase after becoming equal
to radius, which is its least limit.

201. The substance of several of the preceding articles is
comprised in the following tables. The first shows the signs
of the triconometrical lines, in each of the quadrants of the
circle. The other gives the values of these lines, at the ex-
tremity of each quadrant.

Quadrant 1st 24 3d  4th

Sine and cosecant + + —_— —

Cosine and secant U — +

Tangent and cotangent + - + —_

0° 90° 180° 270° 360°
Sine 0 r 0 r 0
Cosine r 0 r 0 r
Tangent 0 lod 0 o 0
Cotangent o 0 o 0 o<
Secant r o« r e d r
Cosecant o« r o r o

Here r‘is put for radius, and  for infinite.

202. By comparing these two tables, it will be scen, that
each of the trigonometrical lines changes from positive to ne-
gative, or {from negative to positive, in that part of the circle
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. in which the line is either nothing or infinite. Thus, the tan-
gem changes from positive to negative, in passing from the
rst quadrant to the second, through the place where it is in-
finite. It becomes positive again, in passing from the second
quadrant to the third, through the point in which it is‘hothing.
203. There can be no more than 360 degrces in any circle.
But a body may have a number of successive revolutions in
the same circle ; as the earth moves round the sun, nearly in
the same orbit, year after year. In astronomical calculations,
it is frequently necessary to add together parts of different
revolutions. The sum may be more than 360°. Bnt a hody
which has made more than a complete revolution in a circle,
is orfty brought back to a point which it had passed over be-
fore. So the sine, tangent, d&c., of an arc greuter than 3609,
is the same as the sine, tangent, &c., of some arc less than
360°. If an entire eircumference, or a number of circum-
ferences, be-added to any arc, it will terminage in the same
Foint as before. So that, if C be put for a whole circum-
erence, or 360>, and z be any arc whatever ;
sin z=sin (C+z)=sin (2C4z)=sin (3C+=z), &e.
tan z=tan (C4-z)=tan (2C+z)=tan (3C+z), &c.

204. It is evident also, that, in a number of successive rev-

olutions, in the same circle; ’
The first quadrant must coincide with the 5th, 9th, 13th, 17th,

'The second, with the 6th, 10th, 14th, 18th, &e.
'The third, with the : 7th, 11th, 15th, 19th, &ec.
The fourth, with the 8th, 12th, 16th, 20th, &c.

205. If an arc extending in a certain direction from a given
point, be cousidered positive ; an arc extending from the same
point, in an opposite direction, is to be considered negative.

& (Alg.507.) Thus, if the arc extending from A to S, (Fig. 36.)
be positive ; an arc extending from A to 8!/ will be negative.*
The latter will not terminate in the same quadrant as the
other; and the signs of the tabular lines must be accommo-
dated to this circumstance. Thus, the sine of AS will be

sitive, while that of AS'’ will be negative. (Art. 194.)

hen a greater arc is subtracted from a less, if the latter be
positive, the remainder must be negative. (Alg. 58, 9.)

TRIGONOMETRICAL FORMULE.

206. From the view which has here been taken of the
changes in the trigonometrical lines, it will be easy to see, in

”~
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what parts of the circle ench of them increnses or decreases. ,

But this does not determine their exact values, except at.the
extremities of the several quadrants. In the anafytical in-
vestigations which are carried on by menns of these lines, it
is necessary to calculate the changes produced in them, by a
fiven increase or diminution of the arcs to which they be-
ong. In this there would be no difficulty, if the sines, tan-
gems, &c., were proportioned to their arcs. But this is far
rom being the case. If an arc is doubled, its sine is not ex-
actly doubled. Neither-is its tangent or secant. We have
to inquire, then, in what manner the sine, tangent, &c., of one

arc may be obtained, from those of other arcs-already known. .

The problem on which almnost the whole of this brafeh of
analysis depends, consists in deriving, from the sines and co-
sines of two given arcs, expressions for the sine and cosine
of their sum and difference. For, by addition and subtrac-
tion, a few aras may be so combined and varied, as to pro-
duce others of almost every dimension. And the expressions
for the tangents and secants may be deduced from those of
the sines and cosines.

——

Ezpressions for the siNE and cosINE of the suM and DIF-
FERENCE of arcs.

207. Let a=AH, the greater of the given arcs,
And b=HL=HD, the less. (Fig. 37.)

"~ Then a+b=AH+4HL=AL, the sum of the two arcs,
And a—b=AH—HD=AD, their difference.

Draw the chord DL, and the radius €H, which may be
represented by R.  As DH is, by construction, equal to HL ;
DQ is equal to QL, and therefore DL is perpendicular to
CH. (Euc. 3. 3.) Draw DO, HN, QP, and LM, each perpen-
dicular to AC; and DS and QB parallel to AC.:

From the definitions of the sine and cosine, (Arts. 82, 9.)
it is evident, that

of AH, that is, sin a=HN,
of HL, sin )=QL,
of AL, sin (a+b)=LM,
of AD, sin(a—b)=DO,

The sine
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But it will be seen, from the figure, that :

*  QP+BL=BM+BL=LM=sin (a+b), .
QP—BL =QP —Q8=DO=sin (a—-b)

# CP—QB=CP —PM=CM=cos (a+b)
CP+QB=CP+ SD =CO=cos (a—b)

208. If then, for the first member of each of the four equa-
tions above, we substitute its value, we shall have,

sin a cos b+sin b cos a
—_—

IL sin (a_b)ssm a cos I;{—-sin b cosa &

cos a cos b—sin a sin b
R
IV. cos (a_b)acos a cos I;{+sm asind
Or, multiplying both sides by R,

R sin (a+b)=sin a cosb+sin b cosa
R sin (a—b)=sin a cos b—sin b cos a
R cos (a+b)=cos a cos b—sin a sin b
R cos (a—b)=cos a cos b+sin a sin b

L sin (a+b)=

IIL c(;s (a+b)=

That is, the product of radius and the sine of the sum of
two arcs, is equal to the product of the sine of ther first arc
into the cosine of the second - the product of the sine of the
second into the cosine of the first. )

The product of radius and the sine of the difference of two
_ ares, is equal to the product of the xe of the first arc intp Py
the cosine of the second — the prodact of the sine of the
second into the cosine of the first.

The product of radius and the cosine of the sum of two
arcs, is equal to the product of the cosines of the arcs — the
product of their sines. L

The product of radius and the cosine of the difference of g :
two arcs, is equal to the product of the cosines of the arcs 4- ;‘é
the product of their sines.

These four equations may be considered as fundamental
* propositions, in what is called the Arithmetic of Nines .and
Cosines, or Trigonon:etrical, Analysis.
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Ezpressions for the sine and cosine of a DOUBLE are.
-«

209. When the sine and cosine of any are are given, it is
easy to derive from the equations in the preceding arficle, ex-
pressions for the sine cosine of denble that arc. As the
two ares @ and b may be of any dimensions, they may be
supposed to be equal. Substituting, then, a for its equal b
the first and the third of the four preceding equations will
become, ‘

.-

R sin (a+a)=sin @ cos ¢4-sin a cos a
» R cos (@-+a)=cos a cos a—sin g sin @

That is, writing sin? a for the square of the sine of a, and
cost a for the square of the cosine of a, .

I. R sin 2g=2sin a cos a
IL R cos 2a=cos? a—sin? a.

Ezpressions for the sine and cosine of HALF a given are.

. 210. The arc in the preceding equations, nat being neees-
b sarily limited to any particular value, may be half a, as well
’ as a. Substituting then 4a for a, we have,

‘ R sin a=2sin ja cos ia
R cos a=cos? ja—sin? ia

Putting the sum of the squares of the sine and cosine equal

@ to the square of radiusg (Art. 94.) and inverting the members

of the last equation, -

cos? ja+-sin? jamR? )
cos? ja—sin? 4a=R cosa

‘44 If we subtract one of these from the othep, the terms con-

¢.-® taining cos? §a will disnpglear; end ¥ we add them, the
T terms containing sin?ja will dissppear Hherefore

Rsinsja=R*—R cos &

M’“-Rx’b +B cos @

r

b/
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Dividing by 2, and extracting the root of both sides,
L sin ja=vjR*—4Rxcos a
II. cos ja=viR2+}R xcos a
Ezpressions for the sines and cosines of MULTIPLE arcs.

211. In the same manner, as expressions for the sine and
cosine of a double arc, are derived from the equations in art,
208 ; expressions for the sines and cosines of other multiple
arcs 1pay be obtained, by substituting successively 2a, 3a, &c.,
for b, or for b and a both. Thus,

RS

R sin. 4a=R sin (a+3a)=sin a cos 3a+sin 3a cos a

R sin 3a=R sin (a42a)=sin a cos 2a-+sin 2a c& a
R sin 5a=R sin (a+4a)=sin a cos 4a+sin 4a cos a
&e.

R cos 3a=R cos (a+2a)=cos a cos 2a—sin a sin 2a

R cos 4a=R cos (a+3a)=cos a cas 3a—sin a sin 3a

R cos ba=R cos (a{-4a)=cos a cos 4a—sin a sin 4a
c.

1L

Ezpressions for the PRoDUCTS of sines and cosines.

212. Expressions for the products of sines and cosines may
be obtained, by adding and subtracting the four equations in
art. 208, viz. ,

R sin (a4b)=sin a cos b4sin b cos a -
R sin (a—b)=sin a cos b—sin b cos
R cos (a+b)=cos a cos b—sin a sin b
R cos (a—b)=cos a cos b+sin a sin b

' Adding the first and second,
R sin (@4-b)4-R sin (a—b)=2 sin @ cos b
Subtracting the second from the first,
R sin (a+b)—R sin (a—b)=2 sin b cos a .
. 'Adding the third and fourth, 22
" R cos (a—b)+R cos (a+b)=2 cos a cos b -
Subtracting the third from the fourth,
" R tos(a—b)—R cos (a-+b)=2 sin a sin b

i
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Bat by art. 94, if redius is 1,
cos* ba=1—sin® b, and cos* g=1—sin® a
Substituting, then, for cos* b and cos*® g, their values, mul-
tiplying the factors, and reducing the terms, we have,
sin (a+b)xsin (a—b)=sin® a—sin? b
O¢, becanse the difference of ¢the squares of two quantities

is equal te the product of their sum and difference, (Alg.
235.)

sin (a4d) X sin (a—b)==(sin a-sin b)x (sin a—sin b)
That i:;_the product of the sine of the sum of two arcs, into

the sine of their difference, is equal to the product of the sum
of their sines, into the difference of their sines.

Ezpressions for the TANGENTS of arcs.

216. Expressions for the tangents of arcs may be derived
from those already obtained for the siues and cosines. By
art. 93, proportion 1st,

R :tan::cos ; sin

. R cos tan  sin R xsin
That is, TR T and —R—a ,and tan o5
Tt R sin (a+b)
us, lan (B+b) —COS (a:i-b) .

A If, for sin (a+b) and cos (a+b) we substitute their values,
as given in Art. 208, we shall have,

R (sin a cos b+sin bcos a)
cos aos b—sin a sin b
217. Here, the value of the tangent of the sum of two arcs
is expressed, in terms of the sines and cosines of the arcs. To
exchange these for terms of the tangents, let the numerator
and denominator of the second member of the equation be

both divided by cos a cos . This will not alter the value of
the fraction. (Alg. 140.) ‘

The numerator, divided by cos a cos b, is
R (sin @ cos b-+sin b cos a) sin a  sin b
c0s a<os b =B(emaToont 6)"““ attand

tan (a+-b)=
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And the denominator, divided by cos a cos b, is

cosacosb—sinasind sine sinb tanag tan b
—— —.—.—.-l-— — - _ .-1._._ "‘X"‘\‘
cosa cosb cosa cos b R R-

tan a 4-tan b

Theycfore, tan (a-b)= VYL

1— Ri

The denominator of the fraction may be cleared of the
divisor R, by multTyiug both the numerator and denomi-
nator into R2. And if we proceed in a similar mauner to
find thie tangent of «—b, we shall have,

218, L tan(a+bymr (W attan b)

R2 (tan @ —tan b)
Retftana tan d

1L tan (a+b)=

If the arcs a and b are equal, then substituting } a, @, 2a,

3a, &c., as in Art. 210, 211.

R (2tan}a)

Ri—tan* fa

R2 (2tan a)

R?_—tan* ¢

R?(tan a4-tan2a)

R* —tan a tan 24’

 tan a=tan (ja-+a)=

tan 2a=tan (a+a)=

tan 3a~=tan (a+2a)=

219. If we divide the first of the equations in Art. 214, by
the secoud ; we shall have, after rejecting 4R? from the nu-
merator and denominator, (Alg. 140.)

sin § (s+d)cos § (s—d) _sin s+sind
sit 4 (s—d)cos }(s+d) sin s—sind
But the first member of this equation, (Alg. 155.) is equal to
.. sin §(s+d) cos i(s—d) tan i(s+d R
cos ggc+:3 sin ifs —:d;_——if _“)xm_n-{(}:—d)' (Art.216,)
Therefore,
sin s+sin d_tan § (s+d)
sin s—sin d tan § (s—d)
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220. According to the notation in Art. 214, s stands for the
sum of two arcs, and d for their difference. But it is evident
that arcs may be taken, whose sum shall be equal to any arc
a, and whose difference shall be equal to any arc b, provided
that a be greater than b. Substituting, then, in the preceding
equation a for s, and 6 for d,

sin a+-sin b tan } (a+b) Or
sin a—sin & tan § (a—b) '
sin a+sin b : sin a—sin b : : tan § (a+b) : tan § (a—b.)

That is, The sum of the sines of two arcs or angles, is to
the difference of those sines ; as the tangent of half the sum
of the arcs or angles, to the tangent of half their difference.

By Art. 143, the sides of triangles are as the sines of their
opposite angles. It follows, therefore, from the preceding
proposition, (Alg. 389.) that the sum of any two sides of a
triangle, is to their difference ; as the tangent of half the sum
of the opposite angles, to the tangent of half their differcnce.

This is the secoud theorem applied to the solution of ob-
lique angled triangles, which was geometrically demonstrated
in Art. 144.

Expressions for the cotangents may be obtained by putting

R
cot=- = (Ar. 93)

_R* R:—tanatambd
tan (a+b)  tan attan b

Thus, cot (a+b)= (Art. 218.)
Substitutiog - fortan a,and X fo o
Substituting cot g T tan a,and —- j for tan b, |
R2 R3 .
2 e
cota’ cot b
cot (a+b) = _R.ThRa_
cota cotd
Multiplying both the numerator and denominator by cot a

cot b, dividing by R?, and proceeding in the same manner,
for cot (a—b) we have,

cot a cot b—Rs

L oot (o= — ot oot a
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cot acot b+R?
L. cot (a—b)= ot @

220. b. By comparing the expressions for the sines,.':d
cosines, with those for the tangents and cotangents, a great
variety of formula may be obtained. Thus, the tancent of
the sum or the difference of two arcs, may be expressed in
terms of the cotangent.

Putting radius =1, we have (Arts. 93, 220.)
1 L cotd cot'b:flcot a

L tan (a-+b)—~ ot (aF0) oot @ ot b—1
1 - ceot bcot a
II. tan (a——b) cot (a,—b) cot g cot b+1
By Art. 208,

sin (a+b) sm a cos b-+sin b cos a
sin (a—b) sin @ cos b—sin b cos @

Dividing the last member of the equation, in the firss place
by cos a cos b, as in Art. 217, and then by sin a sin b, we
hnve

sm (a +b) tan a+tan b cot btcota .

sin (a—b) tan a—tan b cotb—cot a .

In a similar manner, dividing the expressions for the co-

sines, in the first place by sin b cos a and then by sin a cos b,

we obtain
¥

cos (a-l-b) cot b—tan @ cot a—tan b
cos (a—b) cotb+tan @ ~cot a-+tan b

¢
Dividing the numerator and denominator of the expression
for the tanoent of a, (Art. 218.) by tan {a, we have
ta 2
r.
a= cot ia—um ia

These formulee may be multiplied almost mdeﬁmtcly, by
combining the expressions for the smes; tangents, &c. 'T'he

K
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vIPe (bt —a'y
p= 2% [

This gives the length of the perpendicular, in terms of the
sides of the triangle. ~ But the area is equal to the product of
the base into half the perpendicular height. (Alg. 518.) that
is,

S=iep=}vib'c'—(b+c—a®)

Here we have an expression for the area, in terms of the
sides. But this may be reduced to a form wuch better
adapted to arithmetical computation. It will be scen, that
the quantities 4°c?, and (y*+-c>—a?)® are both squrares ; and
that the whole cxpression under the radical sign is the differ-
ence of these squares. But the difference of two squares is
equal to the product of the sum and differenc@ of their roots.
(Alg. 235.) Therefore, 4b*%c—(b*+c*—a?)® may be resolved
into the two fuctors,

2bc+ (b*+c*—a?) which is equal to (b+c)*—a*
2bc—(b%+c*—a?) which is equal to a*—(b--c)?

Each of these also, as will be seen in the expressions on
the right, is the difference of two squares; and may, on the
same principle, be resolved into factors, so that,

3 (b+-c)*—a*=(b+c+a)x(b+c—a)
a?—(b—c)*=(a+b—c)x(a—b+x)

Substituting, then, these four factors, in the place of the
quantity which has been resolved to them, we have,

B=1v(b+c+a)X(b+c—a)x (a+b—c) X (a—d+c

* The expression for the perpendicular is the same, when one of the angles 18
obtuse, as in Fig. 24. Let AD =d. * #
—bt—c34-a?

Then a*=b?4¢*+42¢d. (Euc. 12, 2.) And d= >

_b!_cﬂ_'_a! L] bl+c§_ai 2
Therefore, g2t 157 *_( o )(Alg.219)
And p—ﬂbgc,_(gjc’—a')’ os ab:;e.
' 16
Q’“






SECTION VIIL.

COMPUTATION OF THE CANON.

ARrT. 223. THE trigonometrical canon is a set of tableg
containing the sines, cosines, tangents, &c., to every degrec
and minute of the quadrant. In the computation of these
tables, it is common to find, in the first place, the sine and
cosine of one minute; and then, by successive additions and
multiplications, the sines, cosines, &c., of the larger ares.
For this purpose, it will be proper to begin with an arc,
whose sign or cosine is a known portion of the radius. The
cosine of 60°is equal to Lalf radius. (Art. 96. Cor.) A formula
has been given, (Art. 210,) by which, when the cosine of an
arc is known, the cosine of Aalf that arc may be obtained.

By successive bisections of 60°, we have the arcs

30° 0° 28/ 7n 30m

15° 0 14 3 45

7° 307 0 7 1 52 30

30 45/ 0 330 66 15

10 52r 301 0 1 45 28 7 30

0° 56/ 15" 0 O 521 44/ 3imgsmm
By formula 11, art. 210,

cos ja=viR?4iRxcosa
If the radius be 1, and if @==60°, b=30°, c=15°, &c. ; then
cos b=cos da=v 3+ X 3 =0.8660254
cos ¢==cos 1b=+v}+}cos b=0.9659238
cos d=cos jc=v4+3cos c=0.9914449
oS emcos §d=v}+|3cosd=0.997S589
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Proceeding in this manner, by repeated extractions of the
square root, we shall find the cosine of

0° 07 5211 44111 31111 451111 to be 0.99999996732
And the sine (Art. 94.)=v1—cos 2 =0.00025566346

This, however, does not give the sine of one minute exact-
ly. 'The arc is a little less than a minute. But the ratio of
very small arcs to each other, is so nearly equal to the ratio
of their sines, that one may be taken for the other, without
sensible error. Now the circumference of a circle is divided
into 21600 parts, for the arc of 1’; and into 24576, for the
are Of 09 0’ b2 44"! 3!III 4

" Therefore,
21600 ; 24576::0.00025566346 ; 0.0002908882,
which isthe sine of 1 minute very nearly.*

And the cosine =v1 —sin3? ={1.9999999577.

224. Having computed the sine and cosine of one minute,
we may proceed, in a contrary order, to find the sines and
cosines of larger arcs.

Making radius =1, and adding the two first equations in
art. 208, we have

sin (a4b)+sin (a—b)=2 sin a cos &
Adding the third and fourth,

cos (a+-b)+-cos (a—b) =2 cos a cos b

Transposing sin (a—b) and cos (a—b)

I sin (a4b)=2 sin a cos b—sin (a—b)
IL cos (a+b) =2 cos a cos b—cos (a—b)

If we put b=1/, and a=1' 2!, 3/, &c. successively, we shall
have expressions for the sines and cosines of a series of arcs
increasing regularly by one minute. Thus,

¢ See note H.
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sin (1'4+1/)=2 sin 1/xcos 1'—sin 0==0.0005817764,
sin (2/+1/)=2 sin 2'xcos 1'—sin 1/a20.0008726645,
sin (3'+1/)=2 sin 3/xcos 1'—sin 2'=0.0011635526,

&e. &e. '

cos (1/411)=2 cos 1/xcos 1’—cos 0 =0.9999998308,

cos 2'+1'§=2 cos 2/xcos 1'—cos 1/=0.9999996192,

cos (3/+11)=2 cos 3'xcos 1/—cos 2'=0.9999993230,
&e. - &ec. '

The constant rultiplier here, cos 1/ is 0.9999999577, which
is equal to 1—0.0000000423.

225. Calculating, in this manner, the sines and cosines
from 1 minute up to 30 degrees, we shall have also the sincs
and cosines from 60° to 90°. For the sines of arcs between
0° and 309, are the cosines of arcs between 60° and 90°. And
the cosines of arcs between 0° and 30°, are the sines of arcs
between 60° and 90°. (Art. 104.)

226. For the interval between 30° and 60°, the sines ard
cosines may be obtained by subtraction mercly. As twice
the sine of 30° is equal to radius &Art. 96,) by making a==
309, the equation marked 1, in Article 224, will become

sin (30°+b)=cos b—sin {30°—0.)
And putting b=1/, 2!, 3!, &c., successively,
sin (30° 1/)=cos }’—sin (29° 59')
(302 2')=cos 2'—sin (29° 58')
(302 3')=cos 3'—sin (29° 577)
&ec. &e.

If the sines be calculated from 30° to 607, the ensines will
also be obtained. For the sines of arcs between 30° and 45°,
are the cosines of arcs between 45° and 60°. And the sines
of arcs between 45° and 60°, are the cosines of arcs between
30° and 43°.% (Art. 96.)

227. By the methods which have here been explained, the
natural sines and cosines are found.

The logarithms of these, 10 being in each instance added
to the index, will be the artificial sines and cosines by which
tlr(i)%m‘;ometrical calculations are commonly made. (Arts.

2,3.) -

228. The tangents, cotangents, secants,and cosecants, are
easily derived from the sines and cosines. By Art. 93,

@ See note I.

ro

»n
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R : cos::tan ¢ sin cos : R::R : see
R :sin::cot : cos sin ; R::R : cosec
Therefore,

i 32
The tangent= Bfﬁl The secant==1i-
cos N8
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SECTION IX. '

PARTICULAR SOLUTIONS OF TRIANGLES.®

ARrT. 231. Anv triangle whatever may be solved, by the
theorems in Sections 111. 1V. But there are other methods,
by which, in certain circumstances, the calculations are ren-
dered more expeditious, or more accurate results are obtained.

The differences in the sines of angles near 90°, and in the
cosines of angles near 0°, are; so small as to leave an uncer-
tainty of several seconds in the result. 'The solutions should
be varied, so as to avoid finding a very small angle by its co-
sine, or one near 90° by its sine.

'The differences in the logarithmic tangents and cotangents
are least at 45°, and increase towards cach extremity of the
quadrant. In no part of it, however, are they very small. In
the tables which are carried to 7 places of decimals, the least
diffcrence for one second is 42. Any angle may be found
within one second, by its tangent, if tables are used which
are calculated to seconds. ,

But the differences in the logarithmic sines and tangents,
within a few minutes of the beginning of the quadrant, and
in cosines and tangents within a-few minutes of 90°, though
they are very large, are too sinequal to allow of an exact de-
termination of their corresponding angles, by taking propor-
tional parts of the differences. Very small angles may be
accurately found, from their sines and tangents, by the rules
given in a note at the end.t

232. The following formulee may be applied to richt an-
gled triangles, to obtain accurate results, by finding the sine
or tangent of kalf an arc, instead of the whdle.

In the triangle ABC (Fig. 20, Pl. IL.) making AC radius,

AC : AB::1 : Cos A.
By conversion, (Alg. 389, 5.)
AC: AC—AB::1: 1—Cos A.

® Simpson’s, Woodhouse’s, and Cagnoli's Trigonometry.  t See note K.

i
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Therefore,

ACAEL‘E- 1—cos A=2 sin® §A. (Art.210.)
! Or,
AC—AB
T 2AC
Again, from the first proportion, adding and subtracting
terms, (Alg. 389, 7.)

AC+ADB ; AC—AB::14cos A : 1—cos A.
Therefore,
AC—AB 1—cos A .
kc—;l-_ A.B- [:I:EOS—A =tan QA. (PagelZO.)
Or,
Tan M-v(

Sin §A=v(

AC—AB
AC+AB

233. Sometimes, instead of having two parts of a right an.
gled triangle given, in addition to the right angle ; we have
ouly one of the parts, and the swm or difference of two others.

In such cases, solutions may be obtained by the following
proportions :

By the preceding formulee, and Arts. 140, 141,

AC—AB

1. Tan?® A= ACFAB
2. BC*=(AC—AB) (AC+AB)
Multiplying these together, and extracting the root, we

have
’ Tan $A x BC=AC—AB
‘I'herefore,
I Tan 3A : 1:: AC—AB : BC

That is, the tangent of half of one of the acute angles, is to
1, as the difference between the hypothenuse and the side at
the angle, to the other side.

If, instead of multiplying, we divide the first equation above
by the second, we have

Tanja_ 1

BC ~ AC+AB

~
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Thercfore,
IL1: t?nn M”lA(XE%BEE'BgO
in, in the triangle ig.
A“m'AB:I?oO:I::um'A ’
Therefore,
AB+4+BC : AB—BC::1+4tan A : 1—tan A

129
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234. The followin% solutions may be applied to the third
and fourth cases of oblique angled triangles ; in one of which,
two sides and the included angle are given, and in the other,
the three sides. See pages 87 and 88.

Case 111

In astronomical calculations, it is frequently the case, that
two sides of a triangle are given by their logarithms. By
the following proposition, the necessity of finding the corres-
ponding natural numbers is avoided.

" Turorem A. In any plane triangle, of the two sides which
include a given angle, the less is to the greater ; as radius
to the tangent of an angle greater than 45°:

And radius is to the tangent of the excess of this angle
above 45°; as the tangent of half the sum of the opposite
angles to the tangent of half their difference.

In the triangle ABC, (Fig. 39.) let the sides AC and AB,
and the angle A, -be given. ‘- Through A draw DH perpen-
dicular to AC. Make AD and AF each equal to AC, and
AH cqual to AB. And let HG be perpendicular to a line
drawn from C through F. , :

Then AC ; AB::R ; tan ACH.
AndR : tan (ACH—45°): : tan  (ACB+-B) : tan § (ACB—B)

Demonstration.

In the right angled triangle ACD, as the acute angles are
subtended by the equal sides AC and AD, each is 45°. For °
the same reason, the acute angles in the triangle CAF are
cach 45°. Therefore, the angle DOF is a right angle, the
angles GFH and GHF are each 45°, and the line GH is
- equal to GF and parallel to DC.

In the triangle ACH, if AC be radius, AH, which is equal
to AB, will be the tangent of ACH. Therefore,

AC : AB::R ; tan ACH.

In the triangle CGH, if CG be radius, GH, which is equal
to F'G, will be the tangent of HCG. Therefore,

s .. R tan (ACH—45%):: CG : FG
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> .And, as GH and DC are parallel, (Euc. 2.6.) =
CG : FG:: DH : FH.

But DH is, by construction, equal to the sum, and FH to
the difference of AC and AB. And by theorem II, (Art. 144.%
the sum of the sides is to their difference ; as the tangent o
half the sum of the opposite angles, to the tangent of half
theig difference. Therefore, :

R': tan (ACH-—45°) :: tan 3(ACB+B) : tan 3(ACB=B)

4? Ex. In the triangle ABC, (Fig. 30.} given the angle A=
262 14/, the side AC=39, and the side AB=535-°

b o
AC 39 1.5910646 R R 1)
AB 53 17242759 Tan 8° 39/ 97 ' 91823381
R 10. Tan §(B-+C) 76° 53/ 10.6326181

Tan 53°39 9/ 10.1332113 Tan $(B~C)33°8' 50 9.8149562

The same result is obtained here, as by theorem II, p. 75.

To find the required side in this third case, by the theo-
rems in section 1V, it is necessary to find, in the first place,
an angle opposite one of the given sides. Bat the required
side may be obtained, in a different way, by the following
proposition. :

Tueorem B. In a plane triangle, twice the product of
any two sides, is to the difference between the sum of the
squares of those sides, and the square of the third side, as
ra‘;lius to the cosine of the angle included between the two
sides.

In the triangle ABC, (Fig. 23.) whose sides are a, b, and ¢, '

bc : b2+c?—a?:: R : cos A

For in the right angled triangle ACD, b :d::R :cos A
Multiplying by 2c, 2bc ; 2dc::R : cos A
But, by Euclid 13. 2, : 2dc=b24-c? —a?
Therefore, ' 2b¢ : b34c?—a® :: R : cos A.

The demonstration is the same
as in the triangle ABC, (Fig. 24.
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than b24-e2 § (Buc. 12. 2.) 8o that the cosine of A is negative.
See art. 194.

From this theorém are derived expressions, both for the
sides of a trinngle, and for the cosines of the angles. Con-
verting the last propottion into an equation, and proceeding
in the same mantier with the other sides and angles, we have

¢ the following expressions :

For the angles. - . Fpr thewsides.
Cos A-Rx{'—'—’*—'-;%;—“—" a=v, b:-;-c’—-.g‘i"_‘i’{”,‘*,‘)
CosB-Rx‘ii';;c_b’ by a!w'hgi‘ﬁ?fi”ig
Cos C—Rxa—’iz}-%:c—’ c-V(a’+b’_2_a‘L;;9iS

"T'hess formulss are useful, in many trigonometrical inves-
tigations ; but are not well adapted to logaritbmic computa-
tion. :

Oasg IV.
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This, by the reductions in page 122, becomes

~ VBRx2 (h—a)x2(h—b)x2(h—0)
. P 2¢ :

Substituting this value of p, and reducing,

Sin A-%—?vh(h—a)(h—b)(h-—c)

The arithmetical calculations may be made, by adding the
logarithms of the factors under the radical sign, dividing the
sum by 2, and to the quotient, adding the logarithms of radius
and 2, and the arithmetical complements of the logarithms
of b and c. (Arts. 39, 47, 59.)

Ex. Given a=134, =108, and ¢=80, to find A, B, and C.

For the angle A. ' . " For the angle B.
A 161 log. 22058259 = 13.9365053
k—e 27 log 1.4313638 a134 ac 78728952
h—b B3 log. 1.7'25‘2159 c 80 ac _}_96?_!9
h—e 8l '*'2_;':“__?” Sin B. 9.0063105

o 6354783 B=53°42 ¥
RX2 log. 10.3910300 For the angle C.
13.9365053 13.9365033

b 103 e.c 17.966762 a 134 s c 7.8728952
c 80 ac 80960100 b 103 a.c 7.9065762
Sin A. 9.9999915 Sin C. 9.7769767
Am=89°38 31" C = 36° 39’ 20"

. h—b) (h—c
sin ja=Ry NG
. h—a)(h—c

Tagoren D.{ Sin jB=Rv L—'Zﬁ_—)

. h—a) (h—b -

By Art. 210, 2 Sin *jA=R*—Rxcos A.
Substituting for cos A, its value, as given in page 132,

. . b14-6%—a?
2 Sm’}A-R’ —R’X—-Q‘r

« ‘This is the logarithm of the ares of the triangle. (Art. 222)

et
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at —p3 —cs

2b¢ b34c?—a?

gy AMd—RIX—gp —=Rix—0p

2bct+a? —br—c? .
2bc

But 2bc+a* —b? —c*=at—-(b—c)?=(a+b—c) (a—b+c)

A 233.)
lguttmg then k= } (a+b-+¢), reducing, and extracting ;
(h—b) (h—e)

But R2=R2x

'I‘hemforc, 2SinsjA=R1x

Sin JA=Rvi——

Ex. Given q, b, and ¢, as before, to ﬁnd A and B.

For the angle A.

h—b B3 1.72427139
h—c 81 1.0348°0
b 108 a. c. 7.96115762
c 80 a. c. 8.09691C0

2)i9.0962471
Sin A 9 9481235

A=§9° 38 31"

For the angle B.

h—a 21 .'1.4313638
h— 81 1.£034850
a 134 a. c. 7.8728952
3 60 a. c. 80369-00

2)19.3096540
Sin §B 96518210

B=53° 42 9"

k (h—a)

Tureorem E. { Cos QB th(h"’b)'

Cos §C= Rv--— —-Q

By Art. 210, 2(,os §A=R’+Rxcos A
Substituting and reducing, as m the demonstration of the
last theorem,
2bc+b24-c3 —a* (b+c+a) (b+c—a)
20 2bc

2Cos’§A-=R’x

Putting h=} (a+b+=<), reducing and éxtracting,

Cos A th(hc ?)

Ex. Given the sides 134, 108, S0; to find B and C.
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For the angle B.

& 161 2.2068259
h—b 53 1.7242759
a 134 a c 7.8723952
e 80 a. c. 8.0969100

2)19 9009070
Cos {B 9.9504535
B=53° 42 9"
- (A—D) (h—c)
Tan JA=Rv-—- Ti(h—a)
(h—a) (h—c)
Tm-:onsmF Tan }B=Rv- I(h—b)
(h—a) (h—b)
Tan {C= Rv_ﬂhlcT_

The tangent is equal to the product of radius and the sine,
divided by the cosine. (Art. 216.) By the last two theorems,
then, _

(A —-b) (h —c) +th (h—a)

=Rz2v b

R sin 1A
Tan }A= ~oos 4a

(h —b)(h—¢)
Th(h—a)

Ex. Given the sides as before, to find A and C.

That is, tan }A=Rv*——=

For the angle A.

h—b 53 1.7242759
h—c 81 1.904850
h—a 27 a.c. 8.5636352
h 161 a.c. 17931741

For the angle C.

h—a 271 1.4313638
h—b B3 1.7242759
h—c Sl a.c. 8.0915150
h* 16l a.c 7.7931741

2)19.9945712 2)19.0403268 -
Tan 3A 9.9972856 Tan {C 9.520.644 K 4
A=8993% 31" C = 36° 39’ 20" ) it
The three last theorems give the angle required, withont "-4
ambiguity. For the half of any angle must be less than 90°, ”

Of these different methods of solution, each has its adva f
tages in particular cases. It is expedient to find an mwh '
sometimes by its sine, somstimes by its cosine, and soine-
times by its tangent.

By the first of the four preceding theorems, marked C, 1,
E, and F, the calculation is made for the sine of the whole
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Substituting these values, for n and its powers, in the first
series above, we have

D==——5b 3—5 abcﬂ-a’d
a’

- 14b% —2lab2c+3asc?+6a%bd —ade

a’

E

These are the values of the co-efficients A, B, C, &c., in
the assumed serics

n=Az+Bz3+Czr4+Dzri4+-Exri4, &e.

Applying these results to the logarithmic series; (Art. 66.
p. 43.)

z=n —}ini+in® —ini+jns —, &c.
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in which
a=1, b=—}, c=}, d= —1, 6=},
we have, in the inverted series,
fi=Ar+{+Bz24Czs4 Dzt +Ez 4, &e.

1
--‘—- L P,
A=y=1 D 234
Be—bm=}
Cm2b* —acm Bl
23 2.3.4.6
Therefore,
z? =3 ¢ zs
n=st5tastesitesas &
Note E, p. 50.

According to the scheme lately introduced into France, of
dividing the denominations of weights, measures, &c., into
tenths[,liundredths, &ec., the fourth part of a circle is divided
into 100 degrees, a degree into 100 minutes, a minute into
100 seconds, &c. The whole circle contains 400 of these
degrees; a plane triangle 200. If a right angle be taken
for the measuring unit ; degrees, minutes, and seconds, may
be written as decimal fractions. Thus, 36° 5/ 49/ is 0.360549.

' 10°=9°
According to the French division { 100’ =54’ } English.
. 1000/"=324"

Nore F, p. 82.

If the perpendicular be drawn from the angle opposite the
longest side, it will always fall within the triangle ; because
the other two angles must, of course, be acute. But if one
of the angles at the base be obtuse, the perpendicular will fall
+ without the triangle, as CP, (Fig. 38.)

In this case, the side on which the perpendicular falls, is
to the sum of the other two; as the difference of the latter,
to the sum of the segments made by the perpendicular.
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THE SECTOR..

This consists of two equal scales movable about a point as
a center. The lines which are drawn on it are of two kinds;
some being parallel to the sides of the instrument, and others
diverging from the central point, like the radii of a circle.
The latter are called the double lines, as each is repeated
upon the two scales. The single lines are of the same
nature, and have the same use, as those which are put upon
the common scale ; as the lines of equal parts, of chords, of
latitude, &c., on one face; and the logarithmic lines of num-
bers, of sines, and of tangents, on the other.

The double lines are

A line of Lines, or equal parts, marked "Lin. or L.

A ling of Chords, Cho. or C.
A line of natural Sines, Sin. or 8.
A line of natural Tangents to 45°, Tan. or T.
A line of tangents above 45°, : Tan. or T.
* A line of natural Necants, Sec. or S-
A line of Polygons, Pol. or P.

The double lines of chords, of sines, and of tangents to
45°, are all of the same radius; beginning at the central
point, and terminating near the other extremity of each scale;
the chords at 60°, the sines at 90°, and the tangents at 45°.
(See Art. 95.) The line of lines is also of the same length,
containing ten equal parts which are numbered, and which
arc again subdivided. The radius of the lines of secants,
and of tangents above 45°, is about one fourth of the length
of the other lines. From the end of the radius, which for
the secants is at 0, and for the tangents at 459, these lines
extend to between 70° and 80°. The line of polygons is
numbered 4, 5, 6, &c., from the extremity of each scale, to-
wards the center.

The simple principle on which the utility of these several
pairs of lines depends is this, that the sides of similar trian-
gles are proportional. (Euc. 4. 6.) So that sines, tangents,
&ec., are furnished to any radius, within the extent of the
opening of the two scales. Let AC and AC' (Fig. 40.) be
any pair of lines on the sector, and AB and AB! equal portions
of these lines. As AC and AC' arc equal, the triangle ACC/
is isosceles, and similar to ABB'. Therefore,

AB : AC:: BB ;: CC.
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Distances measured from the center on either scale, as AB
and: AC, are called lateral distances. And the distances be-
tween corresponding points of the two scales; as BB/ and
CC!, are called transverse distances.

Let AC and CC’ be radii of two circles. Then, if AB be
the chord, siue, tangent, or secant, of any number of degrees
in one; BB’ will be the chord, sine, tangent, or secant, of
the same number of degrees in the other. (Art. 119.) Thus,
to find the chord of 307, to a radius of four inches, open the
sector 80 as to make the transverse distance from 60 to 60, on
the lines of chords, four inches ; and the distance from 30 to
30, on the same lines, will be the chord required. To find
the sine of 28°, make the distance from 90 to 90, on the lines
of sines, equal to.radius; and the distance from 28 to 28 will
be the sine. To find the Zangent of 37°, make the distance
from 45 to 45, on the lines of tangents, equal to radius ; and
the distance from 37 to 37 will be the tangent. In finding
secants, the distance from 0 to 0 must be made radius. (Art.
201.

T%) lay down an angle of 34°, describe a cirele, of any con-
venient radius, open the sector, so that the distance from 60
to 60 on the lines of chords shall be equal to this radius, and
to the circle apply a chord equal to the distance from 34 to
34. (Art. 161.) For an angle above 60°, the chord of kalf the
number of degrees may be taken, and applied zwice on the
arc, as in Art. 161.

"T'he line of polygans contains the chords of arcs of a circle
which is divided into equal portions. 'Thus, the distances
from the center of the sector to 4, 5, 6, and 7, are the chords
of 1, 1,1, and } of a circle. The distance 6 is the radius.
(Art. 95.) This line is used to make a regular polygon, or to
inscribe one in a given circle. Thus, to make a pentagon
with the transverse distance from 6 to 6 for radius, describe
a circle, and the distance-from 5 to 5 will be the length of
one of the sides of a pentagon inscribed in that circle.

The line of lines is used to divide a line into equal or pro-
portional parts, to find fourth proportionals, &c. Thus, to
divide a line into 7 equal parts, make the length of the given
line the transverse distance from 7 to 7, and the distance from
1 to 1 will be one of the parts. To find 2 of a line, make the
transverse distance from 5 to 5 equal to the given line; and
the distance from 3 to 3 will be 3 of it.

In working the proportions in trigonemetry on the sector,
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the lengths of the sides of triangles are taken from the line
of lines, and the degrees and minutes from the lines of sines,
tangents, or secants. Thus, in Art. 135, ex. 1,

35 : R::26 : sin 48°.

To find the fourth term of this proportion by the sector,
make the lateral distance 35 on the line of lines, a transverse
distance from 90 to 90 on the lines of sincs; then the lateral
distance 26 on the line of lines, will be the transverse distance
from 48 to 48 on the lines of sines.

For a more particular account of the construction and nses
of the Sector, see Stone’s edition of Bion on Mathematical
Instruments, Hutton’s Dictionary, and Robertson’s Treatise
on Mathematical Instruments.

Nore H. p. 124.

The error in supposing that arcs less than 1 minute are
proportional to their sines, cannot affect the first ten places
of decimals. Let AB and AB' (Fig. 41.) each equal 1 min-
ute. 'The tangents of these arcs BT and B'T are equal, as
are also the sines BS and B’S. The arc BAB' is greater
than BS 4 B'S, but less than BT+ B/T. Therefore BA is
greater than BS, but less than BT : that is, the difference be-
tween the sine and the arc is less than the difference between
the sine and the tangent.

Now the sine of 1 minute is 0.000290888216
And the tangent of 1 minute is 0.000290888204

The difference is 0.0000000000012

The difference between the sine and the arc of 1 minute
is less than this; and the error in supposing that the sines
of 1/, and of 07 52/ 4411 3111 4511111 ‘are proportional to their
arcs, as in Art. 223, is still less.

Nore L p. 125.

There are various ways in which sines and cosines may be
more ezpeditiously calculated, than by the method which is



To find a small arc from its logarithmic siNE.

To the sum of the constant quantity 5.3144251, and the
given logarithmic sine, add one third of the arithmetical
complement of the logarithmic cosine. 'The remainder di-
minished by 10, will be the logarithm of the number of sec-
onds in the arc.

19
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To find a small ars from its logarithmic TANGENT.

From the sum of the constant quantity 5.3144251, and the
given logarithmic tangent, subtract two thirds of the arith-
metical complement of the logarithmic cosine. The remain-
der, diminished by 10, will be the logarithm of the number
of secouds in the arc.

For the demonstration of thesa rules, sec Woodhouse’s
Trigonometry, n. 189



Digitized by GOOS[@



148

NATURAL SINES AND TANGENTS.

"D.M.| Sine. | Tangent.| Cotangent. | Cosine. | D. M.
0° 07,0.000000({0.0000000} Infinite. |1.0000000{9U° 0f
10| 0029089 0029089,343.77371 [0.9999958 50
20| 0058177 0058178|171.88540 9999831 40
30| 00S7265 00S7269(114.58865 9999619, 30
40| 0116353{ 0116361| 85.939791 | 9999323 20
0° 50/ 0145439 0145454| 68.750087 | 9998942/89° 10/
1° 0r10.0174524/0.0174561) 57.289962 10.999847789° 0/
10| 0203608 0203650, 49.103881 | 9997927 50
20| 0232690( 0232753 42.964077 | 9997292 40
30| 0261769 0261859, 38.188459 | 9996573 30
40| 0290847 0290970 34.367.71 | 9995770 20
1° 60 0319922 0320086| 31.241577 | 99948S1(88° 10/
2° 010.0348995|0.0349208 28.636253 [0.9993908/S8° 0/
10| 0378063 0378335 26.431600 | 9992851 50
20| 0407131 0407469 24.541758 | 99917(9 40
30| 0436194 0436609 22.903766 | 9990482 30
40| 04652531 0465757| 21.470401 | 9989171 20
20 507 0494308 0494913) 20.205553 | 9987775/87° 10/
3° 010.0523360,0.0524078| 19.C81137 [0.9986295/87° 0/
10] 0552406 0553251| 18.074977 | 9984731 50
20, 0581443 0582434| 17.14$9337 | 9983082 40
30| 0610485 0611626] 16.549<55 | 9981348 30
40| 0639517 640829 15.604784 | 9979530 20
3° 50/| C6US344| 0670043 14.924417 | 9977627:86° 10/
4° (1 0.06975650.0699268] 14.300666 [0.9975641(86° ¥
10| 0726380 0728503 13.726738 | 9973569 50
20| 0755589 0757755 13.196883 | 9971413 40
30| 0784591 07S7017| 12.706205 | 9969173 30
40| 0813587 0816293| 12.250505 | 9966849 20
4° 5| 0842576| 0845583| 11.826167 | 9964440/85° 10/
6° 0r0.0871557|0.0874S87| 11.430052 |0.994194785° 0/
10| 0900532 0904206| 11.059431 | 9959370 50
20| 0929199 0933540, 10.711913 | 9956708 40
30| 0958458 0962890 10.385397 | 9953962 30
40| 0987408 0992257 10.078031 | 9951132 20
52 50| 1016351| 1021641 9.78S1732| 994S217{S4° 10/
D.M.| Cosine. |[Cotangent| Tangent. Sine. D. M.
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D. M. Sine. Tangent. | Cotangent. | Co-ine. | D. M.

|11°  070.1908090/0.1943803| 5.1445540 10.9816272{79° 0/

6° 070.10452850.10564042( 9.5143645 |0.994521984° O/
10| 1074210, 1080162 9.2553035 | 9942136 50
27| 1103126/ 1109899 9.0098261| 9938969 40
30| 1132032 1139356 8.7768874| 9935719 30
40| 1160929) 1168832 8.5555468| 9932384 20
6° 50| 1189816| 1198329 8.3449558 | 992806583° 10/

7 0r0.12186930.1227846| 8.1443464 |0.9925462:S3° 0O/
10| 1247560, 1257384 7.9530224| 9921874 60
20| 1276416 1286943|7.7. 03506 | 9918204 40
30| 1305262 1316525| 7.5957541| 9914449 30
40| 1334096| 1346129 7.4287064 | 9910610, 20

50 1362919 1375757 7.2687:255| 9906687 82° 10/

8° 070.13917310.1404C85| 7.1153697 [0.9902681/82° 0O/
10| 1420531 1435084) 6.9682335| 959859:) 50
20| 1449319| 1464784 6.52694::7 | 9894416 40
30| 1478094| 1494510} 6.6911562| 9891159 30
40| 1606857 1524262 6.560%538| 9S85817 20

80 50 1535607 1554040] 6.4348428 | 983139281° 10/

9° 070.1564345 0.1583844; 6.3157515 [0.9S76S83!81° 0/
10| 1593069 1613677] 6.1970279 | 9572201 50
20| 1621779 1643537| 6.0844381| 9867615 40
30| 1650476] 1673426 5.9757644 | 9862856 30
401 1679159| 1703344| 5.8708042| 9858113 20

9° 50¢| 1707828 1733292 5.7693688| 9853087(80° 10/

10° 070.17364820.1763270 5.6712818 10.984807880° ('
10| 1765121 1793279| 5.5763786 | 9812985 50
20| 1793746| 1823319 5.4845052| 9S37808; 40
30( 1822355 1853390 5.3955172| 9832549 30
40| 1850949 1883495/ 5.3092793| 9827206 20
10° 507| 1879528| 1913632 5.2256647 | 9821781|79° 1(/

10| 1936636| 1974008| 5.0658352 | 9810680 50
20| 1965166/ 2004248| 4.9%94027 | 9805005 40
30| 1993679 2034523|4.9151570| 9799247 30
40| 2022176/ 2064834| 4.8430045| 9793406 20
11° 507 2060655 2095181 4.7728368 | 97S7483(78° 10/

D. M. | Cosine. |Cotangent| Tangent. Sine. D. M.




150 NATURAL SINES AND TANGENTS.
[D.M. | Sine. | Tangent. | Cotangent.| Cosine. | D. M,
12° 07:0.2079117(0.2125566| 4.7046301 |0.978147678° 0/
10| 2107561 2155988 4.6382457 | 9775:187 50
20| 2135088 2186148 4.56736287| 9769215 40
30| 2164396{ 2:216947|4.5107085| 9762960 30
40| 2192786| 2247485|4.4494181| 9756623 . 20
122 50| 2221158| 2278063| 4.3896940| 9750203(77° 10/
13° 010.2249511|0.2308682 4.3314759 0.9743701(77° 0O
10| 2277844| 2339342) 4.2747066| 9737116 50
20| 2306159| 2370044 4.2193318| 9730449 40
30| 2334454 2400788} 4.1652998| 9723699 30
40| 2362729 2431575]4.1125614| 9716867 20
130 507 2390984 2462405|4.0610700| 9709963/76° 10/
14° (/0.2419219,0.2493280| 4.0107809 |0.9702957(76° 0/
10| 2447433 2524200 3.9616518 | 9695879 50
20| 2475627 2555165 3.9136420| 9688719 40
30| 2503800, 2586176 3 8667131 | 9681476 30
40| 2531952 2617234, 3.8208281 | 9674152 20
14° 507 2560082 2648339| 3.7759519 | 9666746(75° 10/
15° 01/0.2588190 0.2679492 3.7320508 |0.9669258/75° 0f
10| 2016277 2710694 3.6890927 | 9651689 50
20| 2644342 2741945| 3.6470467 | 9644037 40
30| 2672384] 2773245 3.6058835| 9636305 30
40| 2700403] 2804597| 3.5655749 | 9628490 - 20
15° 50/ 2728400; 2835999 3.5260933 | 9620594[74° 10/
16° 010.2756374.0.2867454| 3.4874144 0.96126171& o
10| 2784324] 2893961| 3.4495120| 9604558 50
20| 2812251| 2930521 3.4123626 | 9596418 40
30| 2840153 2962135| 3.3759434| 9588197| 30
40| 2868032 2993803! 3.3402326 | 9579895 20
16° 507| 2895887| 3025527| 3.3052091 | 9571512/73° 10/
17° 070.2923717,0.3057307| 3.2708526 [0.956304873° 0/
10| 2951522 3089143} 3.2371438 | 9554502 50
20| 2979303; 3121036| 3.2040638| 9545876 40
30| 3007058 3152988 3.1715948| 9537170 30
40| 303478S] 3184998 3.1397194| 9528382 20
17° 50r| 3062492 3217067 3.1084210| 9519514(72° 10/
D. M. | Cosine. [Cotangent.| Tangent. Sine. D. M.
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D. M. Sine. | Tangent. | Cotangent.[ Cosine. | D. M.

18° 00.3090170]0.3219197| 3.0776835 |0.9510565 72° (!
10| 3117822 3281387|3.0474915| 9501536 50

- 2)| 3145448 3313639 3.0178301| 9492426 40
30| 317:3047) 3345953 2.9886850 | 9483237 30

40| 3200619 3378330 2.9600422 | 94734966 20
1182 501 3228164| 3410771)2.9318835 | 9464616 71° 10/

19° 070.32556820.3443276, 2.9042109 [0.9455186,71° 0’
10| 3283172 3475846| 2.8769970| 9445675 60
20| 3310634 3508483 2.8502349 | 9436085 40
30| 3338069, 3541186|2.82391:29| 9425415 30

. 40| 3363475 3573956| 2.7980198 | 9416665 20

19° B507f 3392852 3606795| 2.7725448 | 940683570° 10/

20° 0/0.3420201)0.3639702| 2.7474774 |0.9396926/70° 0f
o0 10 3447521 3672680 2.7228076 | 9336938] 50
“. 20| 3474812 3705728 26985254 | 9376869 40
- 30| 3502074 3738847, 2.6746215| 9366722 30
. 40| 3529306 3772038 2.6510867 | 9356495 20
20° 50/| 3556508 3805302|2.6279121| 9346189/69° 10/

21° 0/0.3583679/0.3838640| 2.6050891 [0.9335804/69° 0
+.-10 3610821r 3872053| 2.5826094 | 9325340, 50
-~ 200 3637932 3905541| 2.5604649 | 9314797 40

.30 3665012 3939105| 2.5386479 | 9304176 30

-« 40| 3692061| 3972746/ 2.5171507 | 9293475 20

21° 507] 3719079 4006465  2.4959661 | 9282696/68° 10!

220 0.3746066/0.4040262| 2.4750869 |0.0271839,68° 0!
. - 10| 3773021 4074139| 2.4545061 | 9260902 50
2. 200 3799944 4108097)2.4342172| 92498S8| 40
30| 3826834 4142136| 2.4142136| 9238795 30
. 40| 3853693 4176257 2.3944889 | 9227624 20
22° 50/| 3880518 4210460 2.3750372 | 9216375/67° 10/

23° (70.3907311/0.4244748) 2.3558524 [0.9205049(67° 0/
1 -~ 10| 3934071 4279121)2.3369287 | 9193644 50
4 20| 3960798 4313579 2.3182606 | 9182161 40
P:-’I' 30| 3987491 4348124) 2.2998425| 9170601 30
40

A 4014150] 4382756/ 2.2816693 | 9158963 20
93° 501 4040775 4417477] 22637357 9147247|66° 10/

D. M. | Cosne. |[Cotangent.| Tangent. Sine. | D. M.
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D.M. Sine. Tangent. | Cotangent.[ Cosine. | D. M.
30° 070.5000000/0.5773503| 1.7320508 |0.8660254i60° ¢/
10| 5025170] 5812353| 1.7204736 | 8645673 50

20| 5050298 5851335/ 1.7090116| 8631019 40

30| 5075384| 5890450 1.6976631 | 8616292 30

40| 5100426 5929699 1.6864261 | 8601491 20
30° 50| 5125425 5969084] 1.6752988 | 8585619|59° 10/
31° 0//0.5150381/0.6008606| 1.6642795 |0.857167359° 0/
10| 5175293 6048266| 1.6533663 | 8556655 50

20| 5200161 6088067| 1.6425576 | 8541564 40

30| 5224986/ 6128008 1.6318517 | 8526402 30

40| 5249766/ 6168092 1.6212469| 8511167 20
31° 50/| 5274502 6208320| 1.6107417 | 8495860/58° 10!
32° 070.5299193 0.624S694/ 1.6003345 |0.8480181/58° 0/
10| 5323839 6289214 1.5900238 | 8465030 50

20| 5348440, 6329883 1.57980:79 | 8449508 40

30| 5372996/ 6370703|1.5696856| 8433914 30

40| 5397507| 6411673 1.5596552 | 8418249 20
320 60/ 5421971 6452797|1.5497165| 8402513/57° 10/
33° 010.54463900.6494076| 1.5398650 |0.8386706/57° O/
10| 5470763 6535611 1.5301023 | 8370527 50

20| 5495090, 6577103| 1.5204261 | 8354878 40

30| 5519370, 6618S56!1.5108352| 8338858 30

40| 5543603 6660769( 1.5013282| 8322768 20
33° 50| 5567790| 6702845| 1.4919039 | 8306607|56° 107
34° 0/0.55919290.6745085) 1.4825610 |0.8290376/56° ¢
10| 5616021 67874921 1.4732983 | 8274074 50

20| 5640066 6830066|1.4641147 | S257703 40

30| 5664062 6872810 1.4550090 | 8241262 30

40| 5688011| 6915725| 1.4459801 | 8224751 20
34° 50/ 5711912/ 6958813 1.4370268| 8208170!55° 10
35° 0r0.5735764/0.7002075| 1.42814S0 |0.8191520{55° 0’
10| 5759568 7045515] 1.4193427 | 8174801 50

20| 5783323 7089133} 1.4106098| 8158013 40

30| 5807030 7122931|1.4019483| 8141155 30

40| 5830687 7176911|1.3933571| 8124229 20
35° 50/ 5854294] 7221075| 1.3848353| 8107234154° 10/

D. M. | Cosine. |Cotangent| Tangent. Sine. D. M.

20
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NATURAL SINES AND TANGENTS. 155
D. M. | Sine. Tangent. Co;.angent. Cosine. | D. M.
42° (10.6691306/0.9004040] 1.1106125 [0.7431448/48° 0/
10| 6712895 9056851{1.1041365| 7411953 50
20| 6734427 9109940 1.0977020| 7392394 40
30| 6755902 9163312|1.0913085| 7372773 30
40| 6777320 9216969 1.0849554| 7353090 20
42° 50| 6798681 9270914|1.0786423 7333345&? 10/
43° 01,0.6819984/0.9325151| 1.07236S7 |0.7313537147° O/
(10| 6841229 9379683 1.0661341 | 7293668 50
? 20| 6862416/ 9434513|1.0599381 | 7273736 40
30| 6883546 9489646(1.0537801 | 72563744 30
40| 6904617) 9545083 1.0476598 | 7233690 20
43° 501 6925630, 9600829] 1.0415767 | 7213574/46° 10/
44° 07/0.6946584/0.9656888| 1.0355303 [0.719339S(46° 0O
10| 6967479 9713262| 1.0295203 | 7173161 50
20| 6988315 9769956(1.0235461 | 7152863 40
30| 7009093 9826973 1.0176074| 7132504 30
' 40| 7029811 9884316{1.0117038| 7112086 20
44° 501 7050469 9941991] 1.0058348 | 7091607(45° 10/|.
45° (/(0.7071068/1.0000000( 1.0000000 {0.7071068/45° 0/
D. M. | Cosine. |Cotangent.| Tangent. Sine. D.M.

The Secants and Cosecants, which are not inserted in this
table, may be easily supplied. If 1 be divided by the cosine
of an arc, the quotient will be the secant of that arc.

228.) And if 1 be divi

the cosecant.

a
ded by the sine, the quotient will be



Digitized by GOOS[@



Pr 1.

TRICONDM ETRY,

x\~~
- ©
o
] byny “
NS N
o
s N
-
8/ 2
3l - §
~ M <
A ] [

AJocelin ScM H.




=

THE NEW Y- .
{PUBLIC LIR: Ax

ABTOR, LEweX
THEYN COupnntaany
Rt e— e ‘ e

Rl

-~ ——




-

TRIGONOMETRY

Mdoin e, NH.




-

-«4
3!

Ty

g
ABTON, ( ey
Yioew ¢

:"J:\'DA’-,""" _',

bl ]



A
PRACTICAL APPLICATION
oF

THE PRINCIPLES OF GEOMETRY

70 THE
k4

MENSURATION

OF
SUPERFICIES AND SO

BEING
THE THIRD PART
oF

A COURSE OF MATHEMATICS,

ADAPTED TO THE METHOD OF INSTRUCTION IN THE
AMERICAN COLLEGES. ‘

BY JEREMIAH DAY, D.D. LL.D.
" PRESIDENT OF YALE COLLEGE.

1

NEW HAVEN:
PUBLISHED BY DURRIE AND PECK.
NEW YORK—ROBERT B. COLLINS,
254 PEARL STREET.

'18:3.




THE NLW YORK
PUBLIC LiBRARY

ASTOR, LENOX AND

NS
TILDEN FOUNDATIO!
1916

ENTERED,
According to Act of Congress, in the year 1831, by
JEREMIAH DAY,
In the Clerk’s Office of the District of
CONNECTICUT.

e o TN
Sltereo
Ftalltlf.ﬁ %ﬁﬁfpux-




THE following short Treatise contains little more than an
application of the principles of Geometry, to the numerical
calculation of the superficial and solid contents of such
figures as are treated of in the Flements of Euclid. As the
plan proposed for the work of which this number is a part,
does not admit of introducing rules and propositions which
are not demonstrated; the particular consideration of the
areas of the Conic Sections and other curves, with the con-
tents of solids produced by their revolution, is reserved for
succeeding parts of the course. The student would ke ">
profited by applying arithmetical calculation, in a mechani-
cal way, to figures of which he has not yet learned even the
definitions. But as this number may fall into the hands of
some who will not read those which are to follow, the prin-
cipal rules for conic areas and solids, and for the gauging of
casks, are given without ‘demonstrations, in the appendix.
Those who wish to take a complete view of Mensuration, in
all its parts, are referred to the valuable treatise of Dr. Hutton
on the subject.
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SECTION L

AREAS OF FIGURES BOUNDED BY RIGHT LINES.

ArT. 1. THE following definitions, which are nearly the
same as in Euclid, are inserted here for the convenience of
reference. ,

I. Four-sided figures have different names, according :to
the relative position and length of the sides. A para
gram has its opposite sides equal and parallel; as ABCD.
(Fig. 2.) A rectangle, or right parallelogram, has its opposite
sides equal, and all its angles right angles; as AC. (Fig. 1.)
A square has all its sides equal, and all its angles right
angles; as ABGH. (Fig. 3.) A rhombus has all its sides
equal, and its angles oblique ; as ABCD. (Fig. 3.) A rhom-
boid has its opposite sides equal, and its angles oblique; as
ABCD. (Fig. 2.) A trapezoid has only two of its sides par-
allel; as ABCD. (Fig.4.) Any other four sided figure is
called a trapezium.

II. A figure which has more than four sides is called a
polygon. ~ A regular polygon has all its sides equal, and all
1ts angles equal.

III. The height of a triangle is the length of a perpen-
dicular, drawn from one of the angles to the opposite side ;
as CP. gFig. 8.) The height of a four sided ﬁfure is the per-
pendicular distance between two of its parallel sides ; as CP.

Fig. 4.

( IV. 'l)‘he area or superficial contents of a figure is the
space contained within the line or lines by which the figure
is bounded.

2. 1n calculating areas, some particular portion of surface
is fixed upon, as the measuring unit, with which the given
figure is to be compared. This is ¢ )
a square inch, a square foot, a square
son, determining the quantity of sur
squaring i, or finding its quadrat
square or number of squares to whicl

~




2 MENSURATION OF PLANE SURFACES.

3. The superficial unit has generally the same name, as
the linear unit which forms the side of the square.

The side of a square inch is a lincar inch;

of a square foot, a lincar foot;
of a square rod, a linear rod, &c.

There are some superficial measures, however, which have
no corresponding denominations of length. The acre, for
instance, is not a square which has a line of the same name
for its side.

The 10llowing tables contain the linear measures in com-
mon use, with their corresponding square measures.

Linear Measures. Square Measures.
12 inches =1 foot. 144 inches =1 foot.
3 feet ==l yard. 9 feet =1 yard.
6 feet =l fathom. 36 feet =1 fathom.
164 feet =1 rod. 2721 feet =1 rod.
5} yards ==1 rod. 30} yards =1 rod.
4 rods =] chain. 16 rods =1 chain.
40 rods =1 furlong. 1600 rods =1 furlong.
320 rods ==1 mile. - 102400 rods =1 mile.

An acre contains 160 square rods, or 10 square chains.

By reducing the denominations of square measure, it will
be seen that

16q. mile=640 acres=102400 rods=27S78400 feet=4014489600 inches.
1 acre=10 chaing=160 rods=43560 feet—=6272640 inches.

The fundamental problem in the mensuration of superfi-
cies is the very simple one of determining the area of a right
parallelogram. The contents of other figures, particularly
those which are rectilinear, may be obtained by finding par-
allelograms which are e&ual to them, according to the princi-
ples laid down in Eucli

PROBLEXM 1.

To find the area of G PARALLELOGRAM, 8 e, rhombus, or
£ v rhomboid. e ’

4. MULPIPLY THE LENGTH BY THE PERPENDICULAR
HEIGHT OR BREADTH.

It is evident that the number.of square inches in the par-
allelogram AC (Fig. 1.) is equal to the number of lirear
inches in the length AB, repeatcd as many times as there are
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inches in the breadth BC. For a more particular iflustration
of this see Alg. 511—514. '

The oblique paral am or rhomboid ABCD; (Fig. 2.)
is equal to the right parallelogram GHCD. (Euc. 36. 1.) The
area, therefore, is equal to the length AB multiplied into the
perpendicular height HC. And the rhombus ABCD, (Fig. 3.)
1s equal to the parallelogram ABGH. As the sides of a
square are all equal, its area is found, by multiplying one of
lZe sides into itself.

Ex. 1. How many square feet are there in a floor 234 feet
long, and 18 feet broad ? Ans. 23}x18=423.

2. What are the contents of a piece of ground which is 66
feet square ? Ans. 4356 sq. feet=16 sq. rods.

3. How many square feet are there in the four sides of a
room which is 52 feet long, 17 feet broad, and 11 feet high ?
' ‘ Ans. 858.

Arr. 5. If the sides and angles of a parallelogram are
given, the perpendicular he’L2ght may be easily found by trig-
onometry. Thus, CH (Fig. 2.) is the perpendicular of a right
angled triangle, of which BC is the hypothenuse. Then,

Trig. 134.
(Trig ) R:BC::sinB: CH.

The area is obtained by multiplying CH thus found, into
the length AB. o

Or, to reduce the two operations to one,

As radius,
To the sine of any angle of a parallelogram ;
So is the product of the sides including that angle,
To the area of the parallelogram.
BCxsin B

For the area=ABXCH, (Fig.2.) But CH= —R

Therefore,

The area-‘&’dsgﬂ. Or, R :sin B: : ABXBC: the area.
Ex. If the side AB be$8-rods, BC grods, and the angle
B 68°, what is the area of the parallelogram ?

60
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As radius ' 10.00000

T'o the sine of B 63° 9.94988
So is the product of AB 68 1.76343
Into BC (Trig. 39.) 42 1.62325

To the area 2170.5 sq. rods 3.33656

2. If the side of a rhombus is 67 feet, and one of the angles
73°, what is the area ? Ans. 4292.7 feet.

6. When the dimensions are given in feet and inches, the
multiplication may be conveniently performed by the arith-
metical rule of Duodecimals; in which each inferior denom-
ination is one twelfth of the next higher. Considering a foot
as the measuring unit, a prime is the twelfth part of a foot ;
a second, the twelfth part of a prime, &c. It is to be observ-
ed, that, in measures of length, inches are primes ; but in-
superficial measure they are seconds. In both, a prime is yy
of a foot. But {4 of a square foot is a parallelogram, a foot ~
long and an inch broad. The twelfth part of this is a square
inch, which is 1} of a square foot.

Ex. 1. What is the surface of a board 9 feet 6 inches, by
2 feet 7 inches.

r
9 b
27

P

18 10
6 5 11

24 3 117, or 24 feet 47 inches.
= < - T
2. How many feet of glass are there in a window 4 feet 11
inches high, and 3-feet-5-inches broad ? 4 v 3 -
Ans. 16F. 9/ 7/, or 16 feet 115 inches.

7. If the area and one side of a parallelogram be given, the
other side may be found by dividing the area by the given
side. And if the area of a square be given, the side may be
found by eztracting the square root of the area. This is
merely reversing the rule in art. 4. See Alg. 520, 521.

Ex. 1. What is the breadth of a piece of cloth which is 36
yds. long, and which contains 63 square yds.
Ans. 13 yds.
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. 2. What is the side of a square piece of land containing
289 square rods 7 - KB
3. How many yards of carpeting-1}¥ard wide, will cover
a floor 30-feet long and 224 -broad 7 7 g
4o Ans. 30x224 feet=10x74=75yds And 75+1}=60.
. 4. What is the side of a square which 1s equal to a paral-
lelogram 936 feet long and 164 broad? 7 ¢ 4)n 1

97 5. How many panes of 8 by 10 glass are there, in a win- ! ¢
dow 5 feet high, and 2 feet 8 inches broad ?

e
PROBLEM II. v

' 'i» To find the area of a TRIANGLE.

8. Rure I. MULTIPLY ONE SIDE BY HALF TIIE PERPEN-
PPREGLAR FROM THE OPPOSITE ANGLE. Or, multiply half the
" side by the perpendicular. Or, multiply the whole side by
" the’perpendicular, and take half the product.
..The area of the triangle ABC, (Fig. 5.) is equal to }
- PCXAB, because a parallelogram of the same base and height
is equial to PCxAB, (Art. 4.) aud by Euc. 41, 1, the triangle
is half the parallelogram.
. Ex. 1. If AB (Fig. 5.) be 65 feet, and PC 31.2, what is the
‘area of the triangle ? Ans. 1014 square feet.
" 2. What is the surface of a triangular board, whose base is

8feet2inches, and perpendicular fneight 2 feet 9 inches? 4 i
9. b Ans. AF. 4/ 3/ or 4 feet 51 inches.

9. If two sides of a triangle and the included angle, are
given, the perpendicular on one of these sides may be easily
ound by rectangular trigonometry. And the area may be
calculated in the same manner as the area of a parallelogram
in art. 5. In the triangle ABC, (Fig. 2.)

R:BC::sinB: CH

And because the triangle is half the parallelogram of the
same base and height,
As radius,
To the sine of any angle of a triangle H
So is the product of the sides including that angle,
To twice the area of the triangle. (Art. 5.)
Ex. If AC (Fig. 5.) be 39 fect, AB 65 feet, and the angle
at A 63° 7/ 48/1, what is the area of the triangle ?
Ans. 1014 square feet.
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9. b. If one side and the angies are given ; then

As theproduct of radius the sine of the angle opposite
the given side,

T'o the product of the sines of the two other angles;

So is the sqaare of the given side,

T'o twice the area of the triangle.

If PC (Fig. 6.) be perpendicular to AB.
: R:sinB::BC: CP
sin ACB : sin A:: AB: BC

Therefore, (Alg. 390, 382.)

R xsin ACB : sin A xsin B:: ABXBC ;: CPxBC::
AB? : ABXCP=twicethe area of the triangle. )
Ex. If one side of a triangle be 57 feet, and the angles at
the ends of this side 50° and 60°, what is the area?
: Ans. 1147 sq. feet.

10. If the sides only of a triangle are given, an angle may
be found, by oblique trigonometry, Case 1V, and then the per-
pendicular and the area may be calculated. But the area
may be more directly obtained, by the following method.

RuLE I1. When the three sides are given, from half their-
sum subtract each side severally, multiply together the half
sum and the three remainders, and extract the square root
of the product. ’

If the sides of the triangle are a, b, and ¢, and if A=half
their sum, then

The area=v hx(h—a)x(h—b)x(h—c)
For the demonstration of this rule, see Trigonometry, Art.
221. ‘
If the caleulation be made by logarithims, add the loga-

rithros of the several factors, and half their sum will be the
logarithm of the area. (Trig. 39, 47.)

Ex. 1. In the triangle ABC, (Fig. 5.) given the sides a 52
feet, b 39, and ¢ 65 ; to find the side of a square which has
the same area as the triangle.

i(a+b+c)=A=T78 h—b=39
h—a=26 h—c=13

Then the area=+v 78 X26 X39x13=1014 square feet.
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By logarithms. ’
'The half sum =78 1.89209
First remainder =26 1.41497
Second do. =39 1.59106 -
Third do. =13 1.11394
' 2)6.01206
The area required =1014 2)3.00603

Side of the square =31.843(T'rig.47.) 1.50301

2. If the sides of a triangle are 134, 108, and 80 rods, what
is the area ? Ans. 4319.

3. What is the area of a triangle whose sides sl 264,
and feet 2

11. In an equilateral triangle, one of whose sides is a, the
expression for the area becomes
v h X(h—a)X(h—a) X (h—a)
But as i=3a, and A—a=3a—a=14a, the area is
v iaxijaXiaxia=v%at=1a? v3 (Alg.271.)
That is, the area of an equilateral triangle is equal to } the

square of one of its sides, multiplied into the square root of
3, which is 1.732.

Ex. 1. What is the area of a triangle whose sides are each
34 fect ? Ans. 5004 feet.

2. If the sides of a triangular field arc eac’ods, how
many acres does it contain ?

PROBLEM III.

T find the area of a TRAPEZOID.

21. MULTIPLY HALF THE SUM OF THE PARALLEL SIDES
INTO THEIR PERPENDICULAR DISTANCE.

The area of the trapezoid ABCD), &Fig. 4.) is equal to half
the sum ofthe sides AB and CD, multiplied into the perpen-
dicular distance PC or AH. For the whole figure is made
up of the two triangles ABC and ADC; the area of the first
of which is equal to the product of half the base AB iuto the
perpendicular PC, (Art. 8.) and the area of the other is equal
to tll)xg product of half the base DC into the perpendicular AH
or PC.

8¢ 2¢2

L

/4-0
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Ex. If AB leig. 4.) be 46 feet, BC 31, DC 38, and the
angle B 70°, what is the area of the trapezoid ?

R : BC::sin B : PC=29.13. And 42x29.13=1223}.

2. What are the contents of a field which has two parallel
sidegg¥¥ndgf@M¥ods, distant from each oth ?

- ! 3 D
1 37/¢  erosEm1v.
To find the area of a TRAPEZIUM, or of an irregular
POLYGON.

13. DIVIDE THE WHOLE FIGURE INTO TRIANGLES, BY
DRAWING DIAGONALS, AND FIND THE SUM OF THE AREAS
OF THESE TRIANGLES. (Alg. 519.

If the perpendiculars in two triangles fall upon the same
diagonal, the area of the trapezium formed of the two trian-
gles, isequal to hn'¢** » r- - 1ct of the diagonal into the sum
of the perpendic . uix

Thus the area of the trapezium ABCH, (Fig. 6.) is
$BHXAL4-{BHXxCM=4BHXx(AL+CM.)
Ex. In the irregular polygon ABCDH, (Fig. 6.)

. . \ . 9.
if the dmgonalss CH=—32, 2nd the perpen culars g§=3§

The area=18x14.6 416 x7.3=379.6.

14. If the diagonals of a trapezium are given, the area may
be found, nearly in the same manner as the area of a paral-
lelogram in Art. 5, and the area of a triangle in Art. 9.

In the trapezium ABCD, (Fig. 8.) the sines of the four an-
gles at N, the point of intersection of the diagonals, are all
equal. For the two acute angles are supplements of the
other two, and therefore have the same sine. (Trig. 90.)
Putting, then, sin N for the sine of each of these angles, the
areas of the four triangles of which the trapezium is compos-
ed, are given by the following proportions; (Art. 9.)

BNXAN : 2area ABN

e sin N ..) BNXCN : 2area BCN
R:einN::0 DNYCN : 2area CDN
DNXAN : 2area ADN
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And by addition, (Alg. 388, Cor. 1.*)
R :sin N:: BNXAN+BNXCN+DNxCN+DNxAN : 2

ur,

II. From hkalf the sum of all the sides, subtract each side
severally, multiply together the four remainders, and extract
the square root of the product.

If the sides are a, b, ¢, and d ; and if A=half their sum;

The area=+v (h—a) X (h—b) X (h—c) X (h—d) L

» Euclid 2, 6. Cor. '23 + Euclid 14. 5.
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12 MENSURATION OF PLANE SURFACES.

As Radius,

To half of one of the sides of the polygon ;
So is the cotangent of the opposite angle,
To the perpendicular from the center.

Ex. 1. If the side of a regular hexagon (Fig.7.)be 38
inches, what is the area?

The angle BCP=y; of 360°=30°. Then,
R : 19:: cot 30° ;: 32.909=CP, the perpendicular,
And the area=19x32.909x6=23751.6

2. What is the area of a regular decagon whose sides are
each 62 feet? Ans. 29576.

17. From the proportion 1n the preceding article, a table
of perpendiculars and arcas may be easily formed, for a series
of polygons, of which each side is a unit. Putting R=1,
(Trig. 100.) and n=the number of sides, the proportion be-
comes ~

1:4::cot 3;;? : the perpendicular
So that, the perp.=4cot 32%)

And the arca is equal to half the product of the perpen-
dicular into the number of sides. (Art. 15.)
Thus, in the trigon, or equilateral triangle, the perpendic-

ular=4§cot §%~= } cot 60°=0.2886752.

And the area=0.4330127.

o]
In the tetragon, or square, the perpendicular=4% cot 3600

8
e=} cot 46°=0.5. And the area=1.

In this manner, the following table is formed, in which the
side of each polygon is supposed to be a unit.
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A TABLE OF REGULAR POLYGONXS.

Nameos. Sides. ! Angles. | Perpendiculars. Arcas, -
Trigon, 3 | 60° | 02886752 | 0.433012
Tetragon, 4 | 45° | 0.5000000 | 1.0000000
Pentagon, 5 | 36° | 0.6881910 | 1.7204774
Hexagon, 6 | 30° | 0.8660254 | 2.5980762
Heptagon, 7| 255 | 1.0382501 | 3.6339121
Octagon, 8 | 225 | 1.2071069 | 4.8284271
Nonagon, 9 | 20° | 1.3737385 | 6.1815242
Decagon, 10 | 18° | 1.5388418 | 7.6942088
Undecagon, 11 [ 164 1.7028439 | 9.3656399
Dodecagon, 12 ‘5° 1.8660252 | 11.1961524

By this table may be calculated the area of any other reg-
ular polygon, of the same number of sides with one of these.
For the areas of similar polygons are as the squares of their
homologous sides. (Euc. 20, 6.)

To find, then, the area of a regular polygon, multiply the
square of one of its sides by the area of a similar polygon
of which the side is a unit.

Ex. 1. What is the arca of a regular decagon whose sides
are each 4083-rods? / / ¢ Ans. £0050.6 rods.

2. What is the area of a regular dodecagon whose sides
are each 87 feet?
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SECTION IL*

THE QUADRATURE OF THE CIRCLE AND ITS PARTS.

Arr. 18. Definition I. A circLE is a plane bounded by a
line which is equally distant in all its parts from a point
within called the center. The bounding line is called the
circumference or periphery. An arc is any portion of the
circumference. A semi-circle is half, and a quadrant one
fourth, of a circle.

1. A Diameter of a circle is a straight line drawn through
the center, and terminated both ways by the circumference.
A Radius is a straight line extending from the center to the
circumference. A Chord is a straight line which joins the
two extrenities of an arc. ¢

IIL. A Circular Sector is a space contained between an arc
and the two radii drawn from the extremities of the arc. It
may be less than a semi-circle, as ACBO, (Fig. 9.) or greater,
as ACBD.

1V. A Circular Segment is the space contained between an
arc and its chord, as ABO or ABD. (Fig.9.) The chord is
sometimes called the basc of the segment. 'The height of a
segment is the perpendicular from the middle of the base to
the are, as PO. (Fig. 9.)

V. A Circular Zone is the space between two parallel
chords, as AGHB. (Fig. 15.) It is called the middle zone,
when the two chords are equal.

VI. A Circular Ring is the space between the peripheries
of two concentric circles, as AA/, BB'. (Fig. 13.)

VII. A Lune or Crescent is the space between two circu-
lar arcs which intersect each other, as ACBD. (Fig. 14.)

19. The Squaring of the Circle is a problem which has
exercised the ingenuity of distinguished mathematicians for

* Wallis's Al-lfebm, Legendre’s Gevmetry, Book 1v, and Note 1rv. Hutton’s
Mersuration, Horseley's Trigonometry, Book 1, Sec. 3; Introduction to Euler's
Analysis of Infinites, London Phil. Trans. Vol. vi, No. 75, Lxv,, p. 476, Lxxx1v, p.
217, and Hutton’s abridgment of do. Vol. 11, p. 547.
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Taking then .000255663465 for the length of the arc, mul-
tiplying by 24576, and retaining 8 places of decimals, we
have 6.2831S531 for the whole circumference, the radius be-
ing 1. Half of this,

3.14159265
is the circumference of a circle whose radius is }, and diam-
eter 1.

22. If this be multiplied by 7, the product is 21.994or 22

nearly. So that,

Diam : Circum::7 : 22, nearly.

If 3.14159265 be multiplied by 113, the product is
354.9999+, or 353, very nearly. So that,

Diam : Circum :: 113 ; 355, very nearly.

The first of these ratios was demonstrated by Archimedes.

There are various methods, principally by infinite scries
and fluxions, by which the labor of carrying on theapproxima-
tion to the periphery of a circle may be very much abridged.
The calculation has been extended to nearly 150 places of
decimals.* But four or five places are sufficient for most
practical purposes.

After determining the ratio between the diameter and the
cinicu(rinference of a circle, the following problems are easily
solved. .

PROBLEM.

To find the cIRCUMFERENCE of a circle from its diameter.
23. MuLTIPLY THE DIAMETER BY 3,14159.t
Or,

Multiply the diameter by 22 and divide the ﬁ)roduct by 7.
Or, multiply the diameter by 355, and divide the product by
113. (Art. 22.) Y7o

Ex. 1. If the diameter of the earth be#l-géo miles, what is
the circumference ? ‘ Ans. 249128 miles.

2. How many miles does the earth move, in revolvin
round the sun ; supposing the orbit to be a circle whose di-
ameter is 190 million miles? Ans. 596,902,100.

* See note A. t In many cases, 3.1416 will be sufficiently accurate.
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3. What is the circumference of a circle whose diameter is
769843 rods ?

PROELEM II.

To find the DIAMETER of a circle from ils circumference.
24. DIVIDE THE CIRCUMFERENCE BY 3.14159.
Or,

Multiply the circumference by 7, and divide the product by
22. Or, multiply the circumference by 113, and dividg the
product by 355. (Art. 22.)

Ex. 1. If the circumference of the sun be 2,800,000 miles,
what is his diameter ? . Ans. 891,267, & &

2. What is the diameter of a tree which is~84 feet round ? 7, -

25. As multiplication is more easily performed than divis-
ion, there will be an advantage in exchanging the divisor
3.14159 for a multiplier which will give the same result. In
the proportion

-3.14159 : 1 :: Circum : Diam.

to find the fourth term, we may divide the second by the
first, and multiply the quotient into the third. Now, 1+
3.14159=0.31831. If, then, the circumference of a circle be
multiplied by .31831, the product will be the diameter.* ¢ % (, 2

Ex. 1. If the circumference of the moon be 6850 miles,
what is her diameter ? . Ans. 2180. -

2. If the whole extent of the orbit of Saturn be 5650 mil-
lion miles, how far is he from the sun ?

3. If the periphery of a wheel be 4 feet 7 inches, what is
its dianeter ?

3

PROBLEM III.

To find the length of an ARc of a circle.

26. As 360°, to the number of degrees in the arc ;
8o is the circumference of the circle, to the length of the arc.

The circamference of a circle being divided into 360°,
(Trig. 73.) it is evident that the length of an arc of uny less
number of degrees must be a proportional part of the whole.
v

* See note B.
24
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Ex. What is the length of an arc of 169, in a circle whose
radius is'5Q feet? J ¢
The circumference of the circle is 314.159 feet. (Art. 23.)
Then 360 ¢ 16 : : 314.159 : 13.96 feet.

2. If we are 95 millions of miles {rom the sun, and if the
earth revolves round it in 3651 days, how far are we carried
in 24 hours? Ans. 1 million 634 thousand miles.

27. The length of an arc may also be found, by multiply-
ing the diameter into the number of degrees in the arc, and
this Yroduct into .0087266, which is the length of one degree,
in a circle whose diameter is 1. For 3.14159 + 360=0.0087266.
And in differerit circles, the circumfereuces, and of course the
degrees, are as thiediameters. (Sup. Euc. 8, 1.) o p”9 o

Ex. 1. What is the length of an arc of 49945’ in a circle
whose radius is68-rods? 2 &0 Ans. 12.165 rods.

2. If the circumference of the earth be 24913 miles, what
is the length of a degree at the equator ?

28. The length of an arc is frequently required, when the
number of degrees is not given. But if the radius of the
circle, and either the chord or the height of the arc, be
known ; the number of degrees may be easily found.

Let AB (Fig. 9.) be the chord, and PO the height, of the
arc AOB. As the angles at P are right angles, and AP is
equal to BP; (Art. 18. Def. 4.) AO is equal to BO. (Euc. 4,
1.} Then,

BP is the sine, and CP the cosine,
OP the versed sine, and BO the chord; z of half the arc AOB.

And in the right angled triangle CBP,

. n..S{BP : sin BCP or BO
CB:R:: CP : cos BCP or BO

Ex. 1. If the radius CO (Fig. 9.)=25, and the chord AB
=433 ; what is the length of the arc AOB? :

CB : R::BP : sin BCP or BO==60° very nearly.
The circumference of the circle =3.14159x50=157.08.
And 360°:60°::157.08: 26.18=OB. Therefore, AOB=52.36.

2. What is the length of an arc whose chord is 3464, in a
circle whose radius is 1282 ¢ ¢ Ans. 261.8.

g V7
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29. If only the chord and the height of an arc be given,
the radius of the circle may be found, and then the length
of the are. ,

If BA (Fig. 9.) be the chord, and PO the height of the arc
AOB, then (Euc. 35. 3.)

BP: BP?
| DP or" And DO ‘ OP4-DP OP+OP -

That is, the diameter is equal to the height of the arc, +
the square of half the chord divided by the height.

The diameter being found, the length of the arc may be
calculated by the two preceding articles.

Ex. 1. If the chord of an arc be 173.2, and the height 50,
what is the length of the arc ? :

The diameter =50 %5(?_, =200. 'The arc contains 120°,

(Art. 28.) and its length is 209.44. (Art. 26.)

: o
2. What is the length of an arc whose chord is 1{20, and
height-4675- 0 Ans. 160.8*

PROBLEM IV.
To find the AREA of a CIRCLE.

30. MuLTIPLY THE SQUARE OF THE DIAMETER BY THE
DECIMALS ,7854.

Or,

MULTIPLY HALF THE DIAMETER INTO HALF THE CIR-
cvMFERENCE. Or, multiply the whole diameter into the
whole circumference, and take ! of the product.

The area of a circle is equal to the product of half the
diameter into half the circumference; (Sup. Euc. 5, 1.) or
which is the same thing, 1 the product of the diameter and
circumnference. If the diameter be 1, the circumference is
3.14159; (Art. 23.) one fourth of which is 0.7851 nearly.
But the areas of different circles are to eaeh other, as the
sqnares of their diameters. (Sup. Euc. 7, 1.)t The area of
any circle, therefore, is equal to the product of the square of

* See note C. t Euclid 2, 12.
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1ts diameter into 0.7834, which is the area of a circle whose
diameter is 1. .

Ex. 1. What 1s the area of a circle whose diameter is 623
feet ? Ans. 304836 square feet.

2. How many acres are there in a circular island whose
diameter is 134 rods? /2 2 Ans. 75 acres, and 76 rods.

3. If the diameter of a circle be 113, and the circunference
355, what is the area? Ans, 10029.

- 4. How many square yards are there in a circle whose
diameter is 7 feet ?

31. If the circumference of a circle be given, the arca may
be obtained, by first finding the diameter ; or, without finding
the diameter, by multiplying the square of the circumference
by .07958.

For, if the circumference of a circle be 1, the diameter =
1+3.14159=0.31831 ; and ! the product of this into the cir-
cumference is .07958 the area. But the areas of different
circles, being as the squares of their diameters, are also as the
squares of their circumferences. (Sup. Euc. 8, 1.)

Ex. 1. If the circumference of a circle be 136 feet, what
is the area ? Ans. 1472 feet.

2. What is the surface of a circular fish-pond, which is 8-/ vo
rods in circumference ?

32. If the area of a circle be given, the dinmeter may be
found, by dividing the area by .7854, and extracting the
square root of the quotient.

This is reversing the rule in art. 30.

Ex. 1. What is the diameter of a circle whose area is
380.1336 feet ?

Ans. 380.1336+.7854=484. And v 484=22.

2. What is the diameter of a circle whose arca is 39:6352 &~

33. The area of a circle, is to the area of the circumscribed
square ; as .7354 to 1; and to that of the inscribed square
as .7834 to 4. ‘

Let ABDF (Fig. 10.) be the inscribed square and LMNO,
the circumscribed square, of the circle ABDF. The area of
the circle is equal to AD?x.7854. (Art. 30.) But the arca of

the circumscribed square (Art. 4.) is equal to ON?=AD?,
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And the smaller square is half of the larger one. For the
latter contains 8 equal triangles, of which the former contains
oaly 4.
Ex. What is the area of & square inscribed in a circle
whose area is-1597 Ans. .7854 : 4::389 : 101.22.
Q0% 209

PROBLEM V.
To find the area of a SECTOR of a circle.

34. MULTIPLY THE RADIUS INTO HALF THE LENGTH OF
THE ARC. Or,

As 360, To THE NUMBER OF DEGREES IN THE ARC;

So-I1s THE AREA OF THE CIRCLE, T0 THE AREA OF THE

SECTOR.

It is evident, that the area of the sector has the same ratio
1o the area of the circle, which the length of the arc has to
the length of the whole circumference; or which the number
of degrees in the arc has to the number of degrees in the cir-
cumference. 1%

Ex. 1. If the arc AOB (Fig. 9.) be #28°, and the diameter
of the circle 226; what is the area of the sector AOBC?

The area of the whole circle is 40115. (Art. 30.)

And 360° ; 120°:: 40115 : 133712, the area of ‘the sector.
2. What is the area of a quadrant whose radius is 621 ?
3. What is the area of a semi-circle whose diamecter is 3287
4. What is the area of a sector which is less than a semi-

circle, if the radius be 15, and the chord of its arc 12?

Half the chord is the sine of 23° 343/ nearly. (Art. 28.)

The whole are, then, is 47° 9y

The area of the circle is 706.86

And 360°; 47°9}/ : : 706.86 : 92.6 the area of the sector

5. If the arc ADB (Fig. 9.) be Y4 degrees, and the radius
of the circle il%‘what is the area of the sector ADBC ?

PROBLEM VI.
To find the area of @ SEGMENT of a circle.

35. FIND THE AREA OF THE SECTOR WHICH HAS THE
SAME ARC, AND ALSO THE AREA OF THE TRIANGLE FORMED
BY THE CHORD OF THE SEGMENT AND THE RADII OF THE
SECTOR.
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THEN, IF THE SE6MENT BE LESS8 THAN A SEMI-CIRCLE,
SUBTRACT THE AREA OF THE TRIANGLE FROM THE AREA
OF THE SECTOR. BuT, IF THE SEGMENT BE GREATER
THAN A SEMI-CIRCLE, ADD THE AREA OF THE TRIANGLE TO
THE AREA OF THE SECTOR.

If the triangle ABC, (Fig. 9.) be taken from the sector
AOBG, it is evident the difference will be the segment AOBP,
less than a semi-circle. And if the same triangle be added
to the sector ADBC, the sum will be the scgment ADBP,
greater than a semi-circle. '

The area of the triangle (Art. 8.) is equal to the product of
half the chord AB into CP, which is the difference between
the radius and PO the height of the segment. Or CP is the
cosine of half the arc BOA. If this cosine, and the chord of
the segnient are not given, they may be found from the arc
and the radius.

r
Ex. 1. If the arc AOB (Fig.9.) be {900, and the radius
of the circle be 4#8 feet, what is the area of the segment
AOBP? A1 :

In the right angled triangle BCP,
R : BC::sin BCO : BP=97.86, half the chord. (Art.28.)

The cosine PC=}CO (Trig. 96, Cor.) =56.5
The area of the sector AOBC (Art. 34.) =13371.67
T'he area of the triangle ABC=BPxPC = 552897
The area of the segment, therefore, = 78427

2. If the base of a segment, less than a semi-circle, be 10
feet, and the radius of the circle 12 feet, what is the area of
the segment ?

The arc of the segment contains 49} degrees. (Art. 25,
The area of the sector =61.89 Art. 34.)
The area of the triangle =54.564

And the area of the segment = 7.35 square feet.

3. What is the area of a circular segment, whose height is
19.2 and base 70? Ans. 947.86.
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4. What is the area of the segment ADBP, (Fig. 9.) if the
base AB be 195.7, and the height PD 169.5?
. Ans. 32272

36. The area of any figure which is bounded parily by

~ arcs of circles, and partly by right lines, may be calculated,

by finding the areas of the segments under the arcs, and then
the area of the rectilinear space between the chords of the
arcs and the other right lines.

Thus, the Gothic arch ACB, (Fig. 11.) contains the two
segments ACH, BCD, aud the plane triangle ABC.

" Ex. IfAB (Fig. 11.) be 110, each of the lines AC and BC
100, and the height of each of the segments ACH, BCD
10.435; what is the area of the whole figure?

The areas of the two segments are 1404
The area of the triangle ABC is 45934

And the whole figure is 5997.4

A PROBLEM VII.

To find the area of a circular zoNE.

37. FrROM THE AREA OF THE WHOLE CIRCLE, SUBTRACT
THE TWO SEGMENTS ON THE SIDES OF THE ZONE.

If from the whole circle (Fiig. 12.) there be taken the two
segments ABC and DI'H, there will remain the zone ACDH.

Or, the area of the zone may be found, by subtracting the
segment ABC from the segment HBD: Or, by adding the
two small segments GAH and VDG, to the trapezoid ACDH.
See art. 36.

The latter method is rather the most expeditious in prac-
tice, as the two segments at the end of the zone are equal.

Ex. 1. What is the area of the zone ACDH, (Fig. 12.) if
AC is 7.75, DH 6.93, and the diamater of the circle 8 ?

* For the method of finding the areas of segments by a table, see note D.
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The area of the whole circle is 60.26
of the segment ABC 17.32
of the segiwent DFH 9.82
of the zone ACDH 23.12
2. What 1s the area of a zone, one side of which is 23.25,
and the other side 20.8, in a circle whose diamcter is 24 ?
v Ans. 208.
38. If the diameter of the circle is not given, it may be
found from the sides and the breadth of the zone.
Let the center of the circle be at 0. (Fig. 12.) Draw ON

perpendicular to AH, NM perpendicular to LR, and HP per-
peudicular to AL. Then,

AN=}AH, (Euc. 3. 3.) MN=}(LA+RH)
LM=4LR, (Euc. 2. 6.) PA=LA—RH. .

The triangles APH and OMN are similar, becanse the
sides of one are perpendicular to thase of the other, each to
each. Therefore,

PH : PA:: MN : MO
MO being found, we have ML —MO=0L.
And the radins CO=v OL*+CL®. (Euc. 47. 1.)

Ex. If the breadth of the zone ACDH (Fig. 12.) be 64y/ ¢
and the sides 6-8-and 64 what is the radius of the circle ?

PA=345%3-01" Aud, MN=§(34+3)=32.
Then, &4 : 0.4::3.2 : 02=MO. And, 32 —0.2=3=0L

7 %nd the radius CO=v3 1 (3.4) "= 4.534.
PROBLEM VIII.

To find the area of a LUNE or crescent.

39. FIND THE DIFFERENCE OF THE TWO SEGMENTS
WHICH ARE BETWEEN THE ARCS OF THE GQRESCENT AND
ITS CHIORD.

If the segment ABC, (Fig. 14.) be taken from the segment
ABD; there will remain the lunc or crescent ACBD.

Ex. If the chord AB be 88, the height CH 20, and the
height DH 40 ; what is the area of the crescent ACBD ?
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The area of the segment ABDis 2698
of the segment ABC 1220

of the crescent ACBD 1478

PROBLEM IX,

To find the area of & RING, included between the peripheries
of two concentric circles.

40. FIND THE DIFFERENCE OF THE AREAS OF THE TWO
CIRCLES.

Or,

Multiply the product of the sum and difference of the two
diameters by .7854.

The area of the ring (Fig. 13.) is cvidently equal to the
difference between the areas of the two circles AB and A'B'.

But the area of each circle is equal to the square of its
diameter multiplicd into .7854. (Art. 30.) And the difference
of these squares is equal to the product of the sum and differ-
ence of the diameters. (Alg. 235.) Therefore the area of the
ring is equal to the product of the sum and difference of the
two diameters multiplied by .7854. h

Ex. 1. If AB (Fig. 13.) be 221. and A'B’ 106, what is the
area of the ring ?

Ans. (221°x.7854)—(106*x.7854)=29535.
2. If the diameters of Saturn’s larger ring beMOOO and

/7 %-196;,000 miles, how many square miles are there on one side

of the ring ?
Ans. 395000x15000%.7854 =4,653,495,000. .

PROMISCUOUS EXAMPLES OF AREAS.

Ex. 1. What is the expense of paving a street 20 rods long,
and 2 rods wide, at 5 cents for a square foot?
' Ans. 5444 dollars.

5
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2. If an equilateral triangle contains S
as there are inches in one of its sides ; what is the area of
the triangle ?

Let z=the number of square feet in the area.

Thenlf2-=the number of linear feet in one of the sides. )
And, (Ast. 11) o= 3 (Z) xv3= 2" xv3
nd, (Art. 11.) z=;(i§) X V3= X V3.

Reducing the equation, z=%7-—g=332.55 the area.

3. What is the side of a square whose area is equal to that
of a circle 452 feet in diameter ?

Ans. v(452)7%.7854=400.574. (Art. 30 and 7.)

4. What is the diameter of a circle which is equal to a
square whose side is 36 feet ?

Ans. v(36)2+0.7854=40.6217. (Art. 4. and 32.) .

5. What is the area of a square inscribed in a circle whose
diameter is 133 feet ?

140 Ans. 8712 square feet. (Art. 33.)

6. How much carpeting, a yard wide, will be necessary to
cover the floor of a room which is a regular octagon, the
sides being-gefeet each ? _ Ans. 34! yards.

7. If the (!Jggonnl of a square be $6-feet, what is the area?
Iy Ans. 128 feet. (Art. 14.)

. 8. If a carriage wheel fotfr—feet in diameter revolve 308 4 ¢?
' times, in going round a circular green; what is the area of
the green ?
Ans. 41541 sq. rods, or 25 acres, 3 grs. and 341 rods.

. --*9, What will be the expense of papering the sides of a
room, at 10 cents a square yard ; if the room be 21 feet long,
18 feet broad, and 12 feet {igh; and if there be deducted 3
windows, each b feet by 3, two doors 8 feet by 43, and one
fire-place 6 feet by 43? Ans. 8 dollars 80 cents.

2
10. If a circular pond of water 4&rods in diameter be sur-
rounded by a gravelled walk-84 feet wide ; what is the area
of the walk? 1,://*/,.-1 Ans. 164 sq. rods. (Art. 40.)
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/
11. If f (Fig. 17.) the b€ 2F the isosceles triangle
VCD, be 68 feet, and the area 1300 feet; and if there be cut
off, by the line LG parallel to CD, the triangle VLG, whose
area 15-434 feet ; what are the sides of the latter triangle ?
6y Ans. 30, 30, and 36 feet.

12. 'What is the area of an equilateral triangle inscribed in
a circle whose diameter is $%-feet ?
¥ Ans. 878.15 sq. feet.

13. ftka circular piece of land is enclosed by a fence, in
which 6 rails make a rod in length; and if the field con-
tains as many square rods, as there are rails in the fence;
what is the value of the land at 126 dollars an acre ?

74- Ans. 94248 dollars.

14. If the area of the equilateral triangle ABD (F'ig. 9.) be
219.5375 feet; what is the area of the circle OBDA, in which
the triangle is inscribed ?

The sides of the triangle are each 22.5167. (Art. 11.)
And the area of the circle is 530.93.

15. If 6 concentric circles are so drawn, that the space be-

tween the least or 1st, and the 2d is 21.2058,
- between the 2d and 3d 35.343,
between the 3d and 4th 49.4802,
between the 4th and 5th 63.6174,
between the 5th and 6th 77.7546;

what are the several diameters, supposing the longest to be
equal to 6 times the shortest ?
Ans. 3, 6,9, 12, 15, and 18‘.2 s
16. If the area between two concentric circles be 1362:64
square inches, and the diameter of the lesser circle be 18 -5 .’
inches, what is the diameter of the other ?

17. What is the area of a circular segment, whose height
is-9y and base 847 &
/0 100
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SOLIDS BOUNDED BY FLANE SURFACES.

ArT. 41. DEeFINITION 1. A prism is a solid bounded by
plane figures or faces, two of which are parallel, similar, and
equal ; and the others are parallelograms.

1I. The parallel planes are sometimes called the bases or
ends ; and the other figures, the sides of the prism. The
latter taken together constitute the lateral surface.

III. A prism is right or oblique, according as the sides are
perpendicular or oblique to the bases. .

1V. 'I'he keight of a prism is the perpendicular distance
between the planes of the bases. In a right prism, therefore,
the height is equal to the length of one of the sides.

V. A Parallelopiped is a prism whose bases are parallelo-

ams. .

VL A Cube is a solid bounded by six equal squares. Itis
a right prism whose sides and bases are all cqual.

VIiI. A Pyramid is a solid bounded by a plane figure call-
ed the base, and several triangular planes, proceeding from
the sides of the base, and all terminating in a single point.
These triangles taken together constitute the lateral surface.

VIII. A pyramid is regular, if its base is a regular polygon,
and if a line from the center of the base to the vertex of the
pyramid is perpendicular to the base. This line is called
the azis of the pyramid.

IX. The height of a pyramid is the perpendicular distance
from the summit to the plane of the base. In a regular pyr-
amid, it is the length of the axis.

X. The slant-height of a regular pyramid, is the distance
from the summit to the middle of one of the sides of the basc.

X1. A frustum or trunk of a pyramid is a portion of the
solid next the base, cut off by a plane parallel to the base.
The height of the frustum is the perpendicular distance of
the two parallel planes. The slant-height of a frustum of a
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regular pyramid, is the distance from the middle of one of
the sides of the base, to the middle of the corresponding side
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PROBLEM 1.
To find the soLIDITY of @ PRISM.

43. MULTIPLY THE AREA OF THE BASE BY THE HEIGHT,

This is a general rule, applicable to parallelopipeds whether
right or oblique, cubes, triangular prisms, &c.
As surfaces are measured, by comparing them with a right
arallelogram (Art. 3.); so solids are measured, by compar-
m%fthem with a right parallelopiped.
ABCD (Fig. 1.) be the base of a right parallelopiped, as
a stick of timber standing erect, it is evident that the number
of cubic fcet contained in one foot of the height, is equal to
the number of square feet in the area of the base. And if
the solid be of any other height, instead of one foot, the con-
tents must have the same ratio. For parallelopipeds of the

same base are to each other as their heights. l(Sup. Euc.9.3.)

The solidity of a right parallelopiped, therefore, is equal to
the product of its length, breaach, and thickness. See Alg.
523.

And an oblique parallelo(fgped being equal to a right one
of the same base and altitude, (Sup. Euc. 7. 3.) is equal to the
area of the base multiplied into the perpendicular height.
This is true also of prisms, whatever be the form of their
bases. (Sup. Euc. 2. Cor. to 8, 3.)

44. As the sides of a cube are all equal, the solidity is found
by cubing one of its edges. - On the other hand, if the solid
contents be given, the length of the edges may be found, by
extracting the cube root. .

45. When solid measure is cast by Duodecimals, it is to be
observed that inches are not primes of feet, but thirds. If
the unit is a cubic foot, a solid which is an inch thick and a
foot square is a prime; a parallelopiped a foot long, an inch
broad, and an inch thick is a second, or the twelfth part of a
prime; and a cubic inch is a third, or a twelfth part of a
second. A linear inch is ; of a foot, a square inch ;};of a
foot, and a cubic inch ;5 of a foot.

Ex. 1. What are the solid contents of a stick of timber
which is 3+ feet long, 1 foet~3-inches broad, and.9-iaches
thick? 9§12 Ans. 29 feet 9/, or 29 feet 108 inches.

- &

7 I_/‘,'I——
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2. What is the solidity of a wall which is 22 feet long, 12
feet high, and 2 feet 6 inches thick ?
Ans. 660 cubic feet.

3. What is the capacity of a cubical vessel which is 2 feet
4 - —3inches deep?
Ans. 11F. 4’ 8" 3!, or 11 feet 675 inches.

4. If the base of a prism be 108 square inches, and the
height 36 feet, what are the solid contents?
Ans. 27 cubic feet.

5. If the height of a square prism be 21 feet, and each side
of the base 10} feet what is the solidity ?
The area of the base =101x10:1=1063 sq. feet.
And the solid contents=106] X2} =240} cubic feet.

6. If the height of a prism be 23 feet, and its base a regu-
lar pentagon, whose perimeter is 18 feet, what is the solidity ?
Ans. 512.84 cubic feet.

46. The number of gallons or bushels which a vessel will
contain may be found, by calculating the capacity in inches,
gndhttlxen dividing by the number of inches in 1 gallon or

ushel.

The weight of water in a vessel of given dimensions is
easily calculated ; as it is found by experiment, that a cubic
foot of pure water weighs 1000 ounces avoirdupois. For the
weight in ounces, then, multiply the cubic feet by 1000 ; or
for the weight in pounds, multiply by 623.

Ex. 1. How many ale gallons are there in a cistern which
I~ istifeer9-inches deep, and whose base is 4—feet-2-inches
square ?
The cistern contains 352500 cubic inches ;
And 352500+ 282=1250.

2. How many wine gallons will fill a ditch 3 feet 11 incnes
wide, 3 feet deep, and 462 feet long ? Ans. 40608.

* 3. What weight of water can be put into a cubical vessel
4 feetdeep ? Ans. 4000 lbs.

)
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PROBLEM 1II.

To find the LATERAL SURFACE of @ RIGHT PRISM.

47. MULTIPLY THE LENGTH INTO THE PERIMETER OF
THE BASE.

Each of the sides of the prism is a right parallelogram,
whose arca is the product of its length and breadth. But the
breadth is one side of the base ; and therefore, the sum of the
breadths is equal to the perimeter of the base.

Ex. 1. If the base of a right prism be a regular hexagon
whose sides are each 2 feet 3 inches, and if the height be 16
fect, what is the lateral surface?  Ans. 216 square feet. '

If the areas of the two ends be added to the lateral surface,
the sum will be the whole surface of the prism. And the
superficies of any solid bounded by planes, is evidently equal
to the areas of all its sides.

Ex. 2. If the base of a prism be an equilateral triangle
whose perimeter is-b-fect, and if the height be 1¥ feet, what
is the surface? /4~ i»

The area of the triangle is 1.732. (Art. 11.)
And the whole surface is 105.464.

PROBLEM I1IL.

To find the soLIDITY of @ PYRAMID.

48. MULTIPLY THE AREA OF THE BASE INTO } OF THE
HEIGHT. ’

The solidity of a prism is equal to the product of the aren
of the base into the height. (Art. 43.) And a pyramid is } of
a prism of the same base and altitude. (Sup. Euc. 15, 3. Cor.
1.) Therefore the solidity of a pyramid whether right or ob-
lique, is equal to the product of the base into 1 of the perpen-
dicular height.

Ex. 1. What is the solidity of a triangular pyramid, whbse
height is 60, and each side of whose base is 4 ? P

The area of the base is ~ 6.928" ~
/8 And the solidity is s,-» 138.56.

2. Let ABC (F'ig. 16.) be one side of an oblique pyramid
whose base is § feet square ; let BC be-28 feet, and make an +
angle of ¥8 degrees with the plane of the base ; and .lg-CP
be perpendicular to this plane. What is the solidity of the
pyramid 1»3 ) oy

~ ‘ ',
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In the right angled triangle BCP, (Trig. 134.)
R : BC::sin B:: PC=18.79.
And the solidity of the pyramid is 225.48 feet.

3. What is the solidity of a pyramid whose perpendicular
height is 72, and the sides of whose base are 67, 54, and 40?7
’ Ans. 25920.
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3- What is the lateral surface of a regular pyramid whose
axis is 12 feet, and whose base is 18 feet square ?
Ans. 540 square fect.
The lateral surface of an obligue pyramid may be found,
by taking the sum of the areas of the unequal triangles which
form its sides.

PROBLEM V.
T find the soLIDITY of a FRUSTUM of a pyramid.

50. ADD TOGETHER THE AREAS OF THE TWO ENDS, AND
THE SQUARE ROOT OF TIIE PRODUCT OF THESE AREAS; AND
MULTIPLY THE SUM BY } OF THE PERPENDICULAR HEIGHT
OF THE SOLID.

Let CDGL (Fig. 17.) be a vertical section, through the
middle of a frustum of a right pyramid CDV whose base is a

2
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equal to the product of half the slant-height into the sum of
the perimeters of the ends.
1 4”

Ex. If the slant-height of a frustum of a regular octagonal
pyramid be 43-feet, the sides of one end-&-feet each, and the
sides of the other end 3-feet each; what is the lateral surface?

3 Ans. 1344 square feet.

52. If the slant-height be not given, it may be obtained
from the perpendicular height, and the dimensions of the two
ends. Let GD (Fig. 17.) be the slant-height of the frustum
CDGL, RN or GP the perpendicular height, ND and RG the
radii of the circles inscribed in the perimeters of the two ends.
Then, PD is the difference of the two radii :

And the slant-height GD=v(GP*++PD3).

Ex. If the perpendicular height of a frustum of a regular
hexagonal pyramid be 24, the sides of one end 13 each, and
the sides of the other end 8 each ; what is the whole surface?

v(BC* —BP*)=CP, (Fig. 7.) that is, v(132—6.53)=11.258

And v8:—4: = 6.928
The difference of the two radii is, therefore, 4.33
The slant-height = v (242 +4.337)=24.3875
The lateral surface is 1536.4
And the whole surface, 2141.75

53. The height of the whole pyramid may be calculated
from the dimensions of the frustum. Let VN (Fig. 17.) be
the height of the pyramid, RN or GP the height of the frus-
tum, ND and RG the radii of the circles inscribed in the per-
imeters of the ends of the frustum.

Then, in the similar triangles GPD and VND,
DP : GP:: DN : VN.

The height of the frustum subtracted from VN, gives VR
the height of the small pyramid VLG. The solidity and
lateral surface of the frustum may then be found, by sub-
tracting from the whole pyramid, the part which is above the
cutting plane. 'This method may serve to verify the calcu-
lations which are made by the rules in arts. 50 and 51.
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Ex. If one end of the frustum CDGL (Fig. 17.) be 98-feet /¢
¢ © square, the other end-60 feet square, and the height RN 36- ¢ »
feet; what is the height of the whole pyramid VCD: and

what are the solidity and latcral surface of the frustum ?
DP=DN—GR=45—30=15. And, GP=RNt=36.

Then, 15 : 36 ::45 : 108=VN, the height of the whole
pyramid.

And, 108 —36="72=VR, the height of the part VLG.

The solidity of the large pyramid is 291600 (Art. 48.)
of the small pyramid 86400

of the frustum CDGL 205200

The lateral surface of the large pyramid is 21060 (Art. 49.)
of the small pyramid 9360

of the frustum . 11700

NDANT DAy TrTYY
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to HBC. This will divide the whole wedge into two parts
MBHG and AMG. The latter is a pyramid, whose solidity
(Art.48.) is } bAx(L—1) ’
The solidity of the parts together, is, therefore,

3R+ 100 X (L—1)=1bA31 + ;DR L —3bh 2l =} bh X (2L + 1)

If the length of the basc be less than that of the edge, it is
evident that the pyramid is to he subtracted from half the
parallelopiped, which is equal in height and breadth to the
wedge, and equal in length to the edge.

: The solidity of the wedge is, therefore,

$0hl—1bh X (1—L)=13bh 31—} bh 21+ ;bh 2L =1bhx (2L41)
Ex. 1. If the base of a wedge be 35 by 15, the edge 53,

and the perpendicular height 12.4; what is the solidity ?

Ans. (T0455)x 15)::2'4=3875.

2. If the base of a wedge be%'}' byg; the edgegél, and the
perpendicular height 42; what is the solidity ?
V72 Ans. 5040.

/o —

PROBLE,})? VIII.

To find the soLIDITY of a rectangular PRISMOID.

- 55. To THE AREAS OF THE TWO ENDS, ADD FOUR TIMES
THE AREAOF A PARALLEL SECTION EQUALLY DISTANT FROM
THE ENDS, AND MULTIPLY THE SUM BY } OF TIIE HEIGHT.

Let L and B (Fig. 21.) be the length and breadth of one end,
land b  the length and breadth of the other end,
M and m  the length and breadth of the section in the
middle.
and & the height of the prismoid.
The solid may be divided into two wedges, whose bases
are the ends of the prismoid, and whose edges are L and 4
The solidity of the whole, by the preceding article, is

yBhx(2L+1)43bhx (214 L)=1h(2BL+Bl+2bl+ L)
As M is cqually distant from L and /,

2M=L+],2m=B+b, and 4Mm=(L+1) (B+b)=BL+ Bl +
[DL+H.
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THE FIVE REGULAR SOLIDS.

56. A SOLID IS SAID TO BE REGULAR, WHEN ALL ITS
SOLID ANGLES ARE EQUAL, AND ALL ITS SIDES ARE EQUAL
AND REGULAR POLYGONS.

The following figures are of this description ;

1. The Tetraedron, four triangles ;

2. The Hezaedron or cube, whose six squares ;

i. %lﬁe gci;zedmzz, sides are elglllt triangles ; )
4. The Dodecaedron, twelve pentagons ;
5. The Icosaedron, twenty triangles.*

Besides these five, therc can be no other regular solids.
The only plane figures which can form such solids, are tri-
angles, squares, and pentagons. For the plane angles which
contain any solid an]%le, are together less than four right an-
gles or 360°. (Sup. Euc. 21,2.) And the least number which
can form a solid angle is three. (Sup. Euc. Def. 8, 2.) If they
are angles of equilateral ¢riangles, each is 60°. 'The sum of
three of them is 180°, of four 240° of five 300°, and of siz
360°. The latter number is too great for a solid angle.

The angles of squares are 90° each. The sum of three of
these is 270°, of four 360°, and of any other greater number,
still more.

The angles of regular pentagons are 108°each. The sum
of three of them is 324°; of four, or any other greater num-
ber, more than 360°. The angles of all other regular poly-
gons are still greater.

In a regular solid, then, each solid angle must be contained
by three, four, or five equilateral triangles, by three squares,
or by three regular pentagons.

57. As the sides of a regular solid are similar and equal,
and the angles are also alike; it is evident that the sides are
all equally distant from a central point in the solid. If then,
planes be supposed to proceed from the several edges to the
center, they will divide the colid into as many equal pyra-
mids, as it has sides. 'The base of each pyramid will be one
of the sides; their common vertex will be the central point;

and their height will be a perpendicular from the ceuter to
one of the sides. ‘

* For the geometrical construction of these solids, see Legendre’s Geometry
Appendix to Books vi1 and vir.
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PROBLEM IX.
To find the SURFACE of a REGULAR SOLID.

58. MULTIPLY THE AREA OF ONE OF THE SIDES BY THE
NUMBER OF SIDES.
Or, .
MULTIPLY THE SQUARE OF ONE OF THE EDGES. BY THE
SURFACE OF A SIMILAR SOLI

As all the sides are equal, me
of them, multiplied by the nu rea
of the whole.

Or, if a table is prepared, contaming tne suriaces o1 the
several regular solids whose linear edges are unity ; this may
be used for other regular solids, upon the principle, that the
areas of similar polygons are as the squares of their homolo-
gous sides. (Euc. 20. 6.) Such a table is easily formed, by
multiplying the area of one of the sides, as given in art. 17 by
the number of sides. Thus, the area of an equilateral tri-
angle whose side is 1, is 0.4330127. 'Therefore, the surface

Of a regular tetraedron =.4330127x4 =1.7320508.
Of a regular octaedron =.4330127x8 =3.4641016.
Of a regular icosaedron =.4330127x20=8.6602540.
See the table in the following article.
Ex. 1. What isthe surface of a regular dodecaedron whose
edges are each 85 inches?
I8 The area of one of the sides is 1075.3.
" And the surface of the whole solid =1075.3x12=12903.6.

2. What is the surface of a regular icosaedron whose
are each 1027 Ans. 90101.3.

PROBLEM X.
To find the SOLIDITY of @ REGULAR SOLID.

59. MULTIPLY THE SURFACE BY 1 OF THE PERPENDICU-
LAR DISTANCE FROM THE CENTER TO ONE OF THE SIDES.
Or,
MULTIPLY THE CUBE OF ONE OF THE EDGES, BY THE
SOLIDITY OF A SIMILAR SOLID WHOSE EDGES ARE 1.

As the solid is made up of a number of equal pyramids,
whose bases are the sides, and whose height is the perpendic-
27 ,

ol A
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Ev What is the solidity of a regular octaedron whose
edges are each 32 inches? Ans. 15447 inches.




- 48

SECTION IV.*

THE CYLINDER, CONE, AND SPHERE.

Arr. 61. DeFINITION I. A right cylinderis a solid descri-
bed by the revolution of a rectangle about one of its sides.
The ends or bases are evidently equal and parallel circles.
And the azis, which is a line passing through the middle of
the cylinder, is perpendicular to the bases.

The ends of an oblique cylinder are also equal and paral-
lel circles; but they are not perpendicular to the axis. The
height of a cylinder is the perpendicular distance from one
base to the plane of the other. In a right cylinder, it is the
length of the axis.

II. A right cone is a solid described by the revolution of a
right angled. triangle about one of the sides which contain the
right angle. The base is a circle, and is perpendicular to
the azis, which proceeds from the middle of the base to the
vertex.

The base of an oblique cone is also a circle, but is not per-
pendicular to the axis. The height of a cone is the perpen-
dicular distance from the vertex to the plane of the base. In
a right cone, it is the length of the axis. The slant-height
of a right cone is the distance from the vertex to the circum-
ference of the base.

III. A frustum of a cone is a portion cut off by a plane
parallel to the base. The height of the frustum is the per-
pendicular distance of the two ends. The slant-height of a
frustum of a right cone, is the distance between the periphe-
ries of the two ends, measured on the outside of the solid ; as
AD. (Fig. 23.)

IV. A sphere or globe is a solid which has a center equally
distant from every part of the surface. It may be described
by the revolution of a semicircle about a diameter. A radius
of the sphere is a line drawn from the center to any part of

* Hutton’s Mensuration, West's Mathematics, Legendre’s, Clairaut’s, and Ca-
mus’s Geometry.
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the surface. A diameter is & 1ine passing through the center,
and terminated at both ends by the surface. The circumfer-
ence is the same as the circumference of a circle whose plane
passes through the center of the sphere. Such a circle is
called a great circle.

V. A segment of a sphere is a part cut off by any plane.
The height of the segment is a perpendicular from the mid-
dle of the base to the convex surface, as LB. (Fig. 12.)

VI. A spherical zone or frustum is a part of the sphere in-
cluded between two parallel planes. It is called the middle
zone, if the planes are equally distant from the center. The
height of a zone is the distance of the two planes, as LR.
(Fi&. 12.%)

1. A spherical sector is a solid produced by a circular
sector, revolving in the saime manner as the semicircle which
describes the whole sphere. 'Thus, a spherical sector is de-
scribed by the circular sector ACP (Fig. 15.) or GCE revolv-
ing on the axis CP.

VIIL. A solid described by the revolution of any figure
about a fixed axis, is called a solid of revolution.

PROBLEM 1.

To find the CONVEX SURFACE of @ RIGIIT CYLINDER.

62. MULTIPLY THE LENGTH INTO THE CIRCUMFERENCE
OF THE BASE.

If a right cylinder be covered with a thin substance like
paper, which can be spread out into a plane; it is evident that
the plane will be a parallelogram, whose length and breadth
will be equal to the length and circumference of the cylinder.
The area must, therefore, be equal to the length multiplied
into the circumference. (Art. 4.)

Ex. 1. What is the convex surface of a right cylinder
which is 42 feet long, and 15 inches in dianeter?
Ans. 42x1.25x3.14159=164.933 sq. feet.

* According to some writers, a spherical segment is either a solid which is cut
off from a sphere by a single plane, or one which is included between two planes:
and a zone 18 the suzface of either of these. In this sense, the term zone is com
monly used in geography.



MENSURATION OF THE CYLINDER. 45

2. What is the whole surface of a right cylinder, which is
2 feet in diameter and 36 feet long ?

The convex surface is 226.1945
The area of the two ends (Art. 30.)is  6.2832
" 'The whole surface is 2324777
3. What is the whole surface of a right cylinder whose
axis is?%, and circumference 07.3}0?2. Ans. 6624.32.

63. It will be observed that the rules for the prism and
pyramid in the preceding section, are substantially the same,
as the rules for the cylinder and cone in this. 'There may be
solme advantage, however, in considering the latter by them-
selves.

In the base of a cylinder, there may be inscribed a poly-
gon, which shall differ from it less than by any given space.
(Sup. Euc. 6. 1. Cor.) If the polygon be the base of a prism,
of the same height as the cylinder, the two solids may differ
less than by any given quantity. In the same mauner, the
base of a pyramid may be a polygon of so many sides, as to
differ less than by any given quantity, from the base of a
cone in which it is inscribed. A cylinder is therefore con-
sidered, by many writers, as a prism of an infinite number of
sides; and a cone, as a pyramid of an infinite number of
sides. For the meaning of the term ¢ infinite,” when used ir.
the mathematical sense, see Alg. Sec. xv.

PROELEM 1I.

To find the soLIDITY of @ CYLINDER.

64. MuLTIPLY THE AREA OF THE BASE BY THE HEIGH1T

The solidity of a parallelopiped is equal to the product of
the base into the perpendicular altitude. (Art. 43.) And a
para.lelopiped and a cylinder which have equal bases and
altitudes are equal to each other. (Sup. Euc. 17. 3.)

Ex. 1. What is the solidity of a cylinder, whose height is
121, and diameter 45.2?

Ans. 45.22x.7854 x121=194156.6.
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2. Whatis the solidity of a cylinder, whose height is 424 %/ 2 P
and circumference 3482 9 4- 4- ~ Ans. 15630837.

3. If the side AC of an oblique cylinder (Fig. 22.) be 27,
and the area of the base 32.61, and if the side make an angle
of 62° 44/ with the base, what is the solidity ?

R : AC::sin A : BC=24 the perpendicular height.
And the solidity is 782.64.

4. The Winchster bushel is a hollow cylinder, l-%finches
in diameter, and 8 inches deep. What is its capacity ?
The area of the base=(18.5)?x.7853982 =268.8025.
And the capacity is 2150.42 cubic inches. See the
table in Art. 42.

PROBLEM III

T find the CONVEX SURFACE of @ RIGHT CONE.

¢ .. {+ 65. MULTIPLY HALF THE SLANT-HEIGHT INTO THE CIR-
CUMFERENCE OF THE BASE.

If the convex surface of a right cone be spread out into a
plane, it will evidently form a sector of a circle whose radius
is equal to the slant-height of the cone. But the area of the
sector is equal to the product of half the radius into the
length of the arc. g}’rt. 34.) Or if the cone be considered as
o pyramid of an infinite number of sides, its lateral surface is
equal to the product of half the slant-height into the perim-
eter of the base. (Art. 49.)

Ex. 1. If the slant-height of a right cone be 82 feet, and
the diameter of the base 24, what is the convex surface ?
Ans. 41x24x3.14169=3091.3 square feet.

"2
2. If the axis of a right cone be 48, and the diameter of
the base #2, what is the whole gurfz_lce_'.l
The slant-height = v/(367+487)=60. (Euc. 47. 1.)
The convex surface is 6786
The area of the base 4071.6

And the whole surface 10857.6
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3. If the axis of a right cone be 16, and the circumference
of the base 75.4 ; what is the whole surface ? ,
Ans. 1206.4.

PROBLEM 1V.

To find the sOLIDITY of @ CONE.

66. MULTIPLY THE AREA OF THE BASE INTO } OF THE
HEIGHT.

The solidity of a cylinder is equal to the product of the
base into the perpendicular height. (Art. 64.) And if a cone
and a cylinder have the same base and altitude, the cone is }
of the cylinder. (Sup. Euc. 18.3.) Or if a cone be considered
asa &Fyramid of an infinite number of sides, the solidity is
Z%u to the product of the base into 1 of the height, by art.

Ex. 1. What is the solidity of a right cone whose height
is 663, and the diameter of whose base is 101 ?

’ Ans. 1017x.7854x221=1770622.

2. If tl?e' axis of an oblique cone be ]339,7 and make an
angle of 86° with the plane of the base ; and if the circum-
ference of the base be-3585, what is the solidity ?

2 FAN Ans. 1233536.

PROBLEM V.
T% find the cONVEX SURFACE of @ FRUSTUM of a right cone.

67. MULTIPLY HALF THE SLANT-HEIGHT BY THE SUM OF
THE PERIPHERIES OF THE TWO ENDS.

This is the rule for a frustum of a pyramid ; (Art.51.)and
is equally applicable to a frustum of a cone, if a cone be con-
sidered as a pyramid of an infinite number of sides. (Art. 63.)

Or thus,

Let the sector ABY (Fig. 23.) represent the convex surface
of a right cone, (Art. 65.) and DCYV the surface of a portion
of the cone, cut off by a plane parallel to the base. Then
will ABCD be the surface of the frastum.
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Let AB=g, DC=}, YD=d, AD=#h.
Then the area ABV=}ax(k+d)=4jah+}ad. (Art. 34.)
And the area DCV =}bd.

Subtracting the one from the other,

The area ABDC=4ah+ tad—4bd.
Butd:d+h::b: a.(Sup.Euc.8.1.) Therefore jad—3bd=}bk.
The surface of the frustum, then, is equal to
4ak+-4bh. or thx(a+0)

Cor. The surface of the frustum is equal to the product of
the slant-height into the circumference of a circle which is
equally distant from the two ends. Thus, the surface ABCD

(kig. 23.) is equal to the product of AD into MN. For MN
is equal to half the sum of AB and DC.

Ex. 1. What is the convex surface of a frustum’of o right
cone, if the diameters of the two ends be 44 and 385 and the
slant-height 84-2¢ ¢~ 4 ‘Ans. 10169.8.

2. If the perpendicular height of a frustum of a right cone
be 24, and the diameters of the two ends 80 and 44, what is
the whole surface ?

Half the difference of the diaxﬁeters is 18.
And Vv 1824242 =30, the slant-height, ( Art. 52.)

The convex surface of the frustum is 5843
The sum of the areas of the two ends is 6547

And the whole surface is 12390

PROBLEM VI.

T find the soLIDITY of a FRUSTUM of a cone.

68. ADD TOGETHER THE AREAS OF THE TWO ENDS, AND
THE SQUARE ROOT OF THE PRODUCT OF THESE AREAS; AND
MULTIPLY THE 8UM BY -5- OF THE PERPENDICULAR HEIGHT.

This rule, which was given for the frustum of a pyramid,
(Art. 50.) is equally applicable to the frustum of a cone; be-
cause a cone and a pyramid which have equal bases and
altitudes are equal to each other.
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Ex. 1. What is the solidity of a mast which is 72 feet long,
2 feet in diameter at one end, and 18 inches at the other ?
Ans. 174.36 cubic feet.

2. What is the capacity of a conical cistern which is 9 feet
deep, 4 feet in diameter at the bottom, and 3 feet at the top ?
Ans. 87.18 cubic feet=652.15 wine gallons.

3. How many gallons of ale can be put into a vat in the
form of a conic {?'ustum, if the larger diameter be?-feet, the
smaller diameteng-feet, and the depth;&feet ?

: &

PROBLEM VII.

To find the SURFACE of a SPHERE.
69. MULTIPLY THE DIAMETER BY THE CIRCUMFERENCE.

Let a hemisphere be described by the quadrant CPD,
(Fig. 25.) revolving on the line CD. Let AB be a side of a
regular polygon inscribed in the circle of which DBP is an
arc. Draw AO and BN perpendicular to CD, and BH per-
pendicular to AO. *Extend AB till it meets CD continued.
The triangle AOV, revolving on OV as an axis, will describe
a right cone. (Defin. 2.) AB will be the slant-height of a
Jrustum of this cone extending from AO to BN. om G
the middle of AB, draw GM parallel to AO. The surface of
the frustum described by AB, (Art. 67. Cor.) is equal to

ABxcirc GM.*

- From the center C draw CG, which will be perpendicular
to AB, (Euc. 3. 3.) and the radius of a circle inscribed in the
polygon. The triangles ABH and CGM are similar, because
the sides are perpendicular, each to each. 'Therefore,

HBorON ;: AB::GM ; GC:: circ GM : circ GC.

So that ON xcirc GC=ABXcirc GM, that is, the surface
of the frustum is equal to the product of ON the perpendicu-
lar height, into circ GC, the perpendicular distance from the
center of the polygon to one of the sides.

* By circ GM is meant the cixcumfergnsce of a circle the radius of which is GM.

r
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In the same manner it may be proved, that the surfaces
produced by the revolution of the lines BD and AP about the
axis DC, are equal to

NDxcirec GC, and CO xcirc GC.
The surface of the whole solid, therefore, (Euc. 1.2.) is equg.l to
CDxXecirc GC.

The  demonstration is applicable to a solid produced by
the revolution of a polygon of any number of sides. Buta
polygon may be supposed which shall differ less than by any
given quantity from the circle in which it is inscribed; (Sup.
Euec. 4. 1.) and in which the perpendicular GC shall differ
less than by any given quantity from the radius of the circle.
Therefore, the surface of a hemisphere is equal to the product
of its radius into the circumference of its base; and the sur-
Sace of a sphere is equal to the product of its diameter into
ils circumference.

Cor. 1. From this demonstration it follows, that the surface
of any segment or zone of a sphere is equal to the product of
the height of the segment or zone into the circumference of
the sphere. The surface of the zone produced by the revolu-
tion of the arc AB about ON, is equal to ON xcirc CP. And
the surfage of the segment produced by the revolution of BD
about DN is equal to DN xcirc CP.

Cor. 2. The surface of a sphere is equal to four times the
area of a circle of the same diameter ; and thercfore, the con-
vex surface of a hemisphere is equal to twice the area of its.
base. For the area of a circle is equal to the product of half
the diameter into half the circumference; §Art. 30.) that is,
to } the product of the diameter and circumference.

Cor. 3. The surface of a sphere, or the convex surface of
any spherical segment or zone, is equal to that of the circum-
scribing cylinder. A hemisphere described by the revolution
of the arc DBP, is circumscribed by a cylinder produced by
the revolution of the parallelogram DdCP. The convex sur-
face of the cylinder is equal to its height multiplied by its
. circumference. (Art. 62.) And this is also the surface of the
hemisphere.
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So the surface produced by the revolution of AB is equal
to that produced by the revolution of ab. And the surface
produced by BD is equal to that produced by bd.

D3x5236.

2. The base of the circumscribing cylinder is equal to half
the circumference multiplied into half the diameter ; (Art.30.)
that 1s, if C be put for the circumference,

b 1CxD; and the solidity is }0xD?.
; Therefore, the solidity of the sphere is
! 3 of 1CxD2=D2x}C.

\0
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3. In the last expression, which is the same as CxDxiD,
we may substitute S, the surface, for CxD. (Art. 69.) We
then have the solidity of the sphere equal to

Sx3D.

Or, the sphere may be supposed to be filled with small
pyramids, standing on the surface of the sphere, and having
their common vertex in the center. 'The number of these
may be such, that the difference between their sum and the
sphere shall be less than any given quantity. The solidity
of each pyramid is equal to the product of its base into 1 of
its height. (Art. 48.) The solidity of the whole, therefore, is
equal to the product of the surface of the sphere into ! of its
radius, or 1 of its diameter.

71. The numbers 3.14159, .7854, .5236, should be made
perfectly familiar. The first expresses. the ratio of the cir-
cumference of a circle to the diameter ; (Art. 23.) the second,
the ratio of the area of a circle to the square of the diameter
(Art. 30.); and the third, the ratio of the solidity of a sphere
to the cube of the diameter. The second is 1 of the first, and
the third is } of the first.

As these numbers are frequently occurring in mathematical
investigations, it is common to represent the first of them by
the Greek letter . According to this notation,

*=3.14159, 17=.78514, 37=.5236.
If D=the diameter, and R=the radius of any circle or sphere;
Then, D=2R D2=4R? D3=8Rs.

‘And #D ) . 2 1xD? ) =the area of 1#D*
Or,27R g ~the penph.orrR, i the circ. or ;:-Rﬁ Z —the
solidity of the sphere.

Ex. 1. What is the solidity of the earth, if it be a sphere
7930 miles in diameter ? : :
Ans. 261,107,000,000 cubic miles.

2. How many wine gallons will fill a hollow sphere 4 feet
in diameter ?

Ans. The capacity is 33.5104 fect=2502 gallons.

3. If the diameter of the moon be 2180 miles, what is its
solidity ? Ans. 5,424,600,000 miles.
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72. If the solidity of a sphere be given, the diameter may
be found by reversing the first rule in the preceding article ;
that is, dividing by .6236 and eztracting the cube root of the

~~sntinmé
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R : CG::sin ECG : GM=CN=1578.9 the height of
half the zone.

The surface of the whole zone is 78669700.

3. What is the surface of each of the temperate zones?
The height DN=CP—CN—PD=2058.1
And the surface of the zone is 51273000,

The surface of the two temperate zones is 102,546,000

of the two frigid zones 16,342,800

of the torrid zone 78,669,700

of the whole globe 197,558,500
PROBLEM X.

To find the soL1DITY of a spherical SECTOR.

74. MULTIPL.Y THE SPHERICAL SURFACE BY 1 OF THE
MKADIUS OF THE SPHERE.

The spherical sector, (Fig. 24.) produced by the revolution
of ACBD about CD, may be supposed to be filled with small
pyramids, standing on the spherical surface ADB, and ter-
minating in the point C. Their number may be so great,
that the height of each shall differ less than by any given
length from the radius CD, and the sum of their bases shall
differ less than by any given quantity from the surface ABD.
The solidity of each is equal to the product of its base into 1
of the radius CD. (Art. 48.) Therefore, the solidity of all of
them, that is, of the sector ADBC, is equal to the product of
the spherical surface into 1 of the radius.

Ex. Supposing the earth to be a sphere 7930 miles in di-
amcter, and the polar circle ADB (Fig. 15.) to be 23° 28/
from the pole; what is the solidity of the spherical sector
ACBP? Ans. 10,799,867,000 miles.
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The first term here is 42X =73, half the height of the seg-
ment multiplied into the area of the base; (Art. 71.) and the
other h3X}=, the cube of the height multiplied into .5236.

If the segment be greater than a hemisphere, as ABD;
(Fig. 9.) the cone ABC must be added to the sector ACBD.

Let PD=/A the height of the segment,
Then, PC=A—R the axis of the cone.

The sector ACBD=2~/AR*
The cone==xr3X}(h—R)=1xhr:—lxr:R
Adding them together, we have as before,
The segment =2 »hiR?* —1»r?R+1xhrs,

Cor. The solidity of a spherical segment is equal to half
a cylinder of the same base and height 4- a sphere whose di-
ameter is the height of the segment.  For a cylinder is equal
to its height multiplied into the area of its base ; and a sphere
is cqual to the cube of its diameter multiplied by .5236.

Thus, if Oy (Fig. 15.) be half Oz, the spherical segment
produced by the revolution, of Ozt is equal to the -cylinder
produced by tvyz + the sphere produceg by Oyzz ; suppos-
ing each to revolve on the line Oz.

Ex. 1. If the height of a spherical segment be 8 feet, and
the diameter of its base 25 feet ; what is the solidity ?

Ans. (25)*x.7854x4 +82X.5236=2231.58 feet.

2. If the earth be a sphere 7930 miles in diameter, and the
polar circle 23° 28’ from the pole, what is the solidity of one
of the frigid zones? Ans. 1,303,000,000 miles.
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PROBLEM XII.
To find the soLIDITY of a spherical ZONE or frustum.

76. FROM THE SOLIDITY OF THE WHOLE SPHERE, SUB-
TRACT THE TWO SEGMENTS ON THE SIDES OF THE ZONE.
Or,

ADD TOGETHER THE SQUARES OF THE RADII OF TNE
TWO ENDS, AND } THE SQUARE OF THEIR DISTANCE ; AND
MULTIPLY THE SUM BY THREE TIMES THIS DISTANCE, AND
THE PRODUCT BY .5236.

If from the whole sphere, (Fig. 15.) there be taken the two
segments ABP and GHO, there will remain the zone or frus-
tum ABGH.

Or, the zone ABGH is equal to the difference between the
segments GHP and ABP.

Let gg:g g the heights of the two segments.

D= { the radii of their bases.

DN=d=H—% the distance of the two bases, or
the height of the zone.

Then the larger segment==4 = HR*4- } » H3
And the smaller segment=4xhrs+}=h2 i (Art. 75.)

Therefore the zone ABGH=}»(3HR*+H?3*—3kr2 —h?)
By the properties of the circle, (Euc. 35, 3.)
ONxH=R32. Therefore, (ON+H)xH=R2+H:
or, OP-E?T‘;E
r3t-hs
h
Therefore, 3Hx(r*+A*)=3hX(R2+H31.)

Or, 3Hy*+3HA* —3JR?—3AH"~0. (Alg. 178)

In the same manner, OP=
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To reduce the expression for the solidity of the zone to the
required form, without altering its value, let these terms be
added to it: and it will become

}=(3HR*+-3Hr? —3AR*—3hr:+H?*—3H*A+{-3HAh*—R3)
Which is equal to
}rX3(H—h) X (R3+4-r24-}(H—h)?)

Or, as } equals .5236 (Art. 71.) and H—# equals d,

The zone =.5236 x3dx (R*+r3+1d?)

Ex. 1. If the diameter of one end of a spherical zone is 24
feet, the diameter of the other end 20 feet, and the distance
of the two ends, or the height of the zone 4 feet ; what is the
solidity ? Ans. 1566.6 feet.

oo

2. If the earth be a sphere 7938 miles in diameter, and the
obliquity of the ecliptic 232-884; what is the solidity of one
of the temperate zones? ¢ 1°  Ans. 55,390,500,000 miles.

3. What is the solidity of the torrid zone?
Ans. 147,720,000,000 miles.

The solidity of the two temperate zones is 110,781,000,000

of the two frigid zones 2,606,000,000
of the torrid zone 147,720,000,000
of the whole globe 261,107,000,600

4. What is the convex surface of a spherical zone, whose
breadth is 4 feet, on a sphere of 25 feet diameter?

5. What is the solidity of a spherical segment, whose
height is 18-foet, and the diameter of its base 48 feet?
1 ' $-D
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4$- 1~
6. If a metallic globe filled with wine, which cost as much
| § at&dollars a fgnllon, as the globe itself at-48-cents for every
square inch of its surface ; what is the diameter of the globe?
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SECTION V.

ISOPERIMETRY."

ART. 77. It is often necessary to compare a number of

different figures or solids, for the purpose of ascertaining
which has the greatest area, within a given perimeter, or
the greatest capacity under a given surface. 'We may have
‘occasion to determine, for instance, what must be the form
of a fort, to contain a given number of troops, with the least
extent of wall ; or what the shape of a metallic pipe to con-
vey a given portion of water, or of a cistern to hold a given
iquant’zty of liquor, with the least expense of materials.
' 78. Figures which have equal perimeters are called Iso-
perimeters. When a quantity is greater than any other of
the same class, it is called a mazimum. A multitude of
straight lines, of different lengths, may be drawn within a
circle. But among them all, the diameter is a mazimum.
Of all sires of angles, which can be drawn in a circle, the
sine of 90° is a mazimum. s

When a quantity is less than any other of the same class,
it is called a minimwm. Thus, of all straight lines drawn
from a given point o a given straight line, that which is per-
fwndicular to the given line is a minimum. Of all straight
ines drawn from a given point in a circle, to the circumfer-
ence, the mazimum and minimum are the two parts of the
diameter which pass through that point. (Euc. 7, 3.)

In isoperimetry, the object is to determine, on the one
hand, in what cases the area is a mazimum, within a given
¥erimeter; or the capacity a mazimum, within a given sur-

ace : and on the other hand, in what cases the perimeter is
a minimum for a given area, or the surface a minimum, for
a given capacity. ¥

* Emerson’s, Simpson’s, and Legendre’s Geometry, Lhuillier, Fontenelle, Hut-
ton’s Mathematics, and Lond. Phil. Trans. Vol. 76.

el
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PROPOSITION I.

79. An IsosceLes TRIANGLE has a grcater area than
any scalene triangle, of equal base and perimeter.

1f ABC (Fig. 26.) be an isosceles triangle whose equal sides
are AC and BC; and if ABC! be a scalene triangle on the
same base AB, and having AC'+4+BC'=AC-+BC; then the
area of ABC is greater than that of ABC'.

Let perpendiculars be raised from each end of the base,
extend AC to D, make C'D' equal to AC/, join BD, and draw
CH and C'H' parallel to AB.

As the angle CAB=ABC, (Euc. 5, 1.) and ABD is a right
angle, ABC4+CBD=CAB+CDB==ABC+CDB. Therelore
CBD=CDB, so that CD=CB; and by construction, C'D'=
AC!.  The perpendiculars of the equal right angled triangles
CHD and CHB arc equal; therefore, BH=4BD. In the
same manner, AH'=}AD’. The line AD=AC+4BC=AC/
+BC'=1'C'+BC’. But D'C’+BC/>BD!. (Euc. 20, 1.)
Therefore, AD>BD’; BD> AD/, (Euc. 47, 1.) and $BD>
4AD'. But {BD, or BH, is the height of the isosceles trian-
gle; (]Art. 1.) and $AD’ or AH/, the height of the scalene
triangle ; and the areas of two triangles which have the same
base are as their heights. (Art. 8.) Therefore the area of
ABC is greater than that of ABC!. Among all triungles,
then, of a given perimeter, and upon a given base, the isosce-
les triangle is a mazimum.

Cor. The isosceles triangle has a less perimeter than any
scalene triangle of the same base and area. The triangle
ABC! being less than ABC, it is evident the perimeter of the
former must be enlarged, to make its area equal to the area
of the latter.

PROPOSITION II.

80. A triangle in which two given sides make a RIGHT
ANGLE, has a greater area than any triangle in which the
same sides make an oblique angle.

If BC, BC/, and BC" (Fig. 27.) be equal, and if BC be
perpendicular to AB; then the right angled triangle ABG,
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has a greater area than the acute angled triangle ABC/, or
the oblique angled triangle ABC!".

Let P/'C’ and PC" be perpendicular to AP. Then, as the
three triangles have the same base AB, their areas are as their
heights ; that is, as the perpendiculars BC, P'/C’, and PC¥.
But BC is equal to BC', and therefore greater than P/C’.
(Euc. 47. 1) BC is also equal to BC", and therefore greater
than PC/.

PROPOSITION III.

81. If all the sides EXCEPT ONE of a polygon be given,
the area will be the greatest, when the given sides are so
disposed, that the figure may be INSCRILED IN A SEMICIR-
CLE, of which the undetermined side is the diameter.

If the sides AB, BC, CD, DE, (Fig. 28.) be given, and if
their position be such that the arca, included between these
and another side whose length is not determined, is a mazi-
mum ; the figure may be inscribed in a semicircle, of which
the undetermined side AE is the diameter.

Draw the lines AD, AC, EB, EC. By varying the angle
at D, the triangle ADE may be enlarged or diminished, with-
out affecting the area of the other parts of the figure. The
whole area, therefore, cannot be a mazimum, unless this
triangle be a mazimum, while the sides AD and ED are
given. But if the triangle ADE be a mazimum, under these
conditions, the angle ADE is a right angle; (Art. 80.) and
therefore the point D is in the circumference of a circle, of
which AE is the diameter. (Euc. 31, 3.) In the same manner
it may be proved, that the angles ACE and ABE are right
anglesy and therefore that the points. C and B are in the cir-
cumference of the same circle. .

The term polygon is used in this section to include ¢ri-
angles, and four-sided figures, as well as other right-lined

gures.

82. The area of a polygon, inscribed in a semicircle, in the
manner stated above, will not be altered by varying the order

of the given sides. Y
The sides AB, BC, CD, DE, ( 8.) are the chords of
so many arcs. The sum of thes®Arcs, in whatever order

they are arranged, will evidently be equal to the semicircum-
ference. And the segments between the given sides and ,

"" ~

2
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arcs will be the same, in whatever part of the circle they are
situated. But the area of the polygon is equal to the area of
the semicircle, diminished by the sum of these segments.

83, If a polygon, of which all the sides except one are
given, be inscribed in a semicircle whose diameter is the un-

etermined side; a polygon having the same given sides,
cannot be inscribed in any other semicircle which is either
greater or less than this, and whose diameter is the undeter-
mined side.

The given sides AB, BC, CD, DE, (Fig. 28.) are the
chords of arcs whose sum is 180 degrees. %ut in a larger
circle, each would be the chord of a less number of degrees,
and therefore the sum of the arcs would be less than 180°:
and in a smaller circle, éach would be the chord of a greater
number of degrees, and the sum of the arcs would be greater
than 180°.

PROPOSITION 1IV.

84. A polygon INSCRIBED IN A CIRCLE has a greater
area, than any polygon of equal perimeter, and the same
number of sides, which cannot be inscribed in a circle.

If in the circle ACHF, (Fig. 30.) there be inscribed a poly-
gon ABCDEFG ; and if another polygon abedefg (Fig. 31.)
be formed of sides which are the same in number and length,
but which are so disposed, that the figure cannot be inscribed

_in a circle; the area of the former polygon is greater than
that of the latter.

Draw the diameter AH, and the chords DH and EH.
Upon de make the triangle deh equal and similar to DEH,
and join ak. 'The line ak divides the figure abcdhefls into
two parts, of which one at least cannot, by supposition, be
inseribed in a semicircle of which the diameter is AH, nor
in any other semicircle of which the diameter is the undeter-
mined side. (Art. 83.) It is therefore less than the corres-
ponding part of the figure ABCDHEFG. (Art.81.) And
the other part of abcdhefg is not greater than the correspon-
ding part of ABCDHEFG. Therefore, the whole figure
ABCDHEFG is greater than the whole figure abcdhefg.
If from these there be taken the equal triangles DEH and
deh, there will remain the polygon ABCDEFG greater than

the polygon abcdefg.
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Cor. A regular polygon has a less perimeter than any other
polygon of equal area, and the same number of sides.

For if, with a given perimeter, the regular polygon is
greater than one which is not regular ; it s evident the pe-
rimeter of the former must be diminished, to make its area
equal to that of the latter.

PROPOSITION VII.

88. If a polygon be DESCRIBED ABOUT A CIRCLE, the
areas of the two figures are as their perimeters.

Let ST (Fig. 32.) be one of the sides of a polygon, either
regular or not, which is described about the circle LNR.
Join OS and OT, and to the point of contact M draw the
radius OM, which will be perpendicular to ST. (‘Euc. 18,3.
The triangle OST is equal to half the base ST' multiplie
into the radius OM. (Art. 8.) And if lines be drawn, in the
same manner, from the center of the circle, to the extremities
of the several sides of the circumscribed polygon, each of the
triangles thus formed will be equal to half its base multiplied
into the radius of the circle. Therefore the area of the whole
polygon is equal to half its perimeter multiplied into the
radius: and the area of the circle is equal to half its circum-
ference multiplied into the radius. (Art. 30.) So that the two
areas are to each other as their perimeters.

Cor. 1. If different polygons are deseribed about the same
circle, their arcas are to each other as their perimeters. For
the area of each is equal to half its perimeter, multiplied into
the radius of the inscribed circle.

Cor. 2. The tangent of an arc is always greater than the
arc itself. 'The triangle OMT"(Fig. 32.) is to OMN, as MT
to MN. But OMT is greater than OMN, because the former
includes the latter. Therefore, the tangent MT is greater
than the arc MN. .
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PROPOSITION VIIIL.

89. A circLE Ras a greater area than any polygon of
equal perimeter.

If a circle and a regular polygon have the same center, and
equal perimeters; each of the sides of the polygon must fall
partly witkin the circle. For the area of a circumscribing
polygon is greater than the area of the circle, as the one in-
cludes the other : and therefore, by the preceding article, the
perimeter of the former is greater than that of the latter.

Let AD then (Fig. 32.) be one side of a regular polygon,
whose perimeter is equal to the circumference of the circle
RLN. As this falls partly within the circle, the perpendicu-
lar OP is less than the radius OR. But the area of the poly-
gon is equal to half its perimeter multiplied into this perpen-
dicular (Art. 16.); and the area of the circle is equal to half
its circumference multiplied into the radius. (Art. 30.) The
. circle then is greater than the given regular polygon ; and
therefore greater than any other polygon of equal perimeter.
(Art. 87.)

Cor. 1. A circle has a less perimeter, than any polygon of
equal area.

Cor. 2. Among regular polygons of a given perimeter, that
which has the greatest number of sides, has also the great-
est area. For the greater the number of sides, the more
nearly does the perimeter of the polygon approach to a coin-
cidence with the circumference of a circle.*

PROPOSITION IX.

90. A right prisM whose bases are REGULAR POLYGONS,
has a less surface than any other right prism of the same
solidity, the same altitude, and the same number of sides.

If the altitude of a prism is given, the area of the base is
as the solidity (Art. 43.); and if'$hg number of sides is also
given, the perimeter is a minimu en the base is a regular

Bo.o kl-‘g)r a rigorous demonstration of this, see Legendre’s Geometry, Appendix to
iv.

”~
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polygon. (Art. 87. Cor.) But the latera. surface is as the per-
imeter. (Art. 47.) Of two right prisms, then, which have the
same altitude, the same solidity, and the same number of
sides, that whose bases are regular polygons has the least
lateral surface, while the areas of the ends are equal.

Cor. A right prism whose bases are regular polygons has
a greater solidity, than any other right prism of the same
surface, the same altitude, and the same number of sides.

PROPOSITION X.

91. A right cYLINDER has a less surface, than any right
prism of the same altitude and solidity.

For if the prism and cylinder have the same altitude and
solidity, the areas of their bases are equal. (Art. 64.) But the
perimeter of the cylinder is less, than that of the prism (Art.
89. Cor. 1.); and therefore its lateral surface is less, while the
areas of the ends are equal.

~ Cor. A right cylinder has a greater solidity, than any
right prism of the same altitude and surface.

PROPOSITION XI.

92. A cusBE has a less surface than any other right paral-
lelopiped of the same solidity.

A parallelopiped is a prism, any one of whose faces may be
considered a base. (Art. 41. Def. L. and V.) If these are not
all squares, let one which is not a square be token for a base.
The perineter of this may be diminished, without altering
its area (Art. 87. Cor.); and therefore the surface of the solid
may be diminished, without altering its altitude or solidity.
&Art. 43, 47.) The same may be proved of each of the other

aces which are not squares. 'The surface is therefore a
sminimum, when all the faces are squares, that is, when the
solid is a cube.

Cor. A cube has a greater solidity than any other right
parallclopiped of the same surface. ,
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Then the surfaces of C and P are as their bases (Art. 47.
and 88.); which are as the bases of C’ and P/, (Sup. Euc. 7,
1.); so that,

surfC:surfP::baseC;baseP: :baseC' ;baseP! : : surfC! ;. surfP!

But the surface of C is, by supposition, equal to the surface
of C!. 'Therefore, (Alg. 395.) the surface of P is equal to the
surface of P.  And by the preceding article,

80lidP : s0lidC : : surfP: surfC i surfP: surfC’: : solidP : solidC’

But the solidity of P is greater than that of P/. (Art. 92,
Cor.) Therefore, the solidity of C is greater than that of C.

Schol. A right cylinder whose height is equal to the diam-
eter of its base, is that which circumscribes a sphere. It is
also called Archimedes’ cylinder ; as he discovered the ratio
of a sphere to its circumscribing cylinder ; and these are the
figures which were put upon his tomb.

Cor. Archimedes’ cylinder has a less surface, than any
other right cylinder of the same capacity.
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PROPOSITION XVI,

97. A sPHERE has a greater solidity than any regular
polyedron of equal surfuce.



101. Multiply the product of the transverse and conjugate
axes into .7854. : :

Ex. What is the area of an ellipse whose transverse axis
is 36 feet, and conjugate 287 Ans. 791.68 feet.

PROBLEM II.

To find the area of a SEGMENT of an ellipse, cut off by a
line perpendicular to either azis.

102. If either axis of an ellipse be made the diameter of a
‘circle ; and if a line perpendicular to this axis cut off a seg-
ment from the ellipse, and from the circle;

The diameter of the circle, is to the other axis of the ellipse;
As the circular segment, to the elliptic segment.

* For demonstrations of theso rules, see Conic Sections, Spherical Trigonom-
etry, and Fluxions, or Hutton’s Mcnsuration.






74 APPENDIX.

The series converges so rapidly, that a few of the first
terms will generally give the correction with sufficient exact-
ness. This correction is the difference between the hyper-
bola, and a parabola of the same base and height.

Ex. If the base of a hyperbola be 24 feet, the height 10
and the transverse axis 30; what is the arca ?

The base X 2 the height is 160.
The first term of the series is 0.016666
The second 0.000692
The third 0.000049
The fourth ) &W
Their sum 0.017313
This into 2bh is 8.31
And the area corrected is 151.69
PROBLEM VI.

. To find the area of a SPHERICAL TRIANGLE formed by three
arcs of great circles of a sphere.

106. As 8 right angles or 7209,
To the cxcess of the 3 given angles above 180°;
So is the whole surface of the sphere,
To the area of the spherical triangle.

Ex. What is the area of a spherical triangle, on a sphere
whose diameter is 30 feet, if the angles are 130°, 102°, and
68°? Ans. 471.24 feet.

PROBLEM VII.

To find the area of @ SPHERICAL POLYGON formed by arce
A of great circles.

107. As 8 right angles, or 720°,
To the excess of all the given angles above the pro-
duct of the number of angles—2 into 180°;
8o is the whole surface of the sphere,
To the area of the spherical polygon.
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Ex. What is the area of a spherical polygon of seven sides,
on a sphere whose diameter is 17 inches; if the sum of all
the angles is 1080°? . Ans. 227 inches.

PROBLEM VIII.

To find the lunar surface included between two great circles
i of a sphere.

108. As 360°, to the angle made by the given circles;
So is the whole surface of the sphere, to the surface
between the circles.

Or,

. ’
The lunar surface is equal to the breadth of the middle
part of it, muitiplied into the diameter of the sphere.

Ex. If the earth be 7930 miles in diameter, what is the
surface of that part of it which is included between the 65th

and 83d degree of longitude ?
Ans. 9,878,000 square miles.

PROBLEM IX,

To find the solidity of a sPHEROID, formed by the revolution
of an ellipse about either azis.

109. Multiply the product of the fixed axis and the square
of the revolving axis, into .5236. :

Ex. 1. What is the solidity of an oblong spheroid, whose
longest and shortest diameters are 40 and 30 feet ?

Ans. 40x302x.5236=18850 feet.

2. If the earth be an oblate spheroid, whose polar and
equatorial diameters are 7930 and 7960 miles; what is its
solidity ? Ans. 263,000,000,000 miles.
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PROBLEM X.

To find the solidity of the MIDDLE FRUSTUM of a spheroid,
included between two planes which are perpendicular to
the azis, and equally distant from the center.

110. Add together the square of the diameter of one end,
and twice the square of the middle diameter ; multiply the
sum by 1 of the height, and the product by .7854.

If D and d=the two diameters, and h=the height ;
The solidity=(2D*+4-d*)x 1k X.7854.

Ex. If the diameter of one end of a middle frustum of a
spheroid be 8 inches, the middle diameter 10 and the height
30, what is the solidity ?

' Ans. 2073.4 inches.

Cor. Half the middle frustum is equal to a frustum of
which one of the ends passes through the center.

If then D and d==the diameters of .the two ends, and i=the
height, '
° The solidity=(2D?+d?)x 14 x.7854.

PROBLEM XI.

To find the solidity of @ PARABOLOID.

'111.” Multiply the area of the base by half the height.

Fix. If the diameter of the base of a paraboloid be 12 feet,
and the height 22 feet, what is the solidity ?
Ans. 1243 feet.

PROBLEM XII.

To find the solidity of a FrRusTUM of a paraboloid.

112. Multiply the sun of the areas of the two ends by half
their distance.
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PROBLEM XVI.

To find he solidity of the MIDDLE FRUSTUM of a circular
spindle.

116. From the square of half the axis of the whole spindle,
subtract 1 of the square of half the length of the frustum;
multiply the remainder by this half length ; from the product
subtract the product of the revolving area into the central
distance ; and multiply the remainder by twice 3.14159.

If L=half the length or axis of the whole spindle,
{=half the length of the middle frustum,
c=the distance of the axis from the center of the circle,
a=the area of the figure which, by revolving, produces
the frustum

The solidity = (L*— 312 xl—ac)x2x3.14159.
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APPENDIX.—PART IIL

GAUGING OF CASKS.

ArT. 119. GavGINnG is a practical art, which does not ad-
mit of being treated in a very scientific manner. Casks are
not commonly constructed in exact conformity with any
regular mathematical figure. By 1nost writers on the subject,
however, they are considered as nearly coinciding with one
of the following forms;

1. : of a spheroid
2 g The middle frustumz of a pm‘o.bolié spindle.

3. of a paraboloid
4. i The equal frustums i of a cone. '

The second of these varieties agrees more nearly than any
of the others, with the forms of casks, as they are commonly
made. The first is too much curved, the third too little, and
the fourth not at all, from the head to the bung.

120. Rules have alrcady been given, for finding the capa-
city of each of the four varieties of casks. (Arts. 68,110, 112,
118.) As the dimensions are taken in inches, these rnles will
give the contents in cubic inches. To abridge the computa-
tion, and adagt it to the particular measures used in gauging,
the factor .7854 is divided by 282 or 231; and the quotient
is used instead of .7854, for finding the capacity in ale gal-
lons or wine gallons.

.7854

Now 292 = 002785, or .0028 nearly;
77834
And - 931 =.0034

If then .0028 and 0034 be substituted for .7854, in the rules
referred to above; the contents of the cask will be given in
ale gallous and wine gallons. These numbers are to each
other nearly as 9 to 11. '
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PROBLEM I.

To calculate the comtents of a cask, in the form of the middle
Jrustum of a SPHEROID.

121. Add together the square of the head diameter, and
twice the square of the bung diameter ; multiply the sum by
} of the length, and the product by .0028 for ale gallons, or
by .0034 for wine gallons.

If D and d=the two diameters, and /=the length ;
The capacity in inches=(2D?+d?)x}Ix.7854. (Art. 110.)

And by substituting .0028 or .0034 for .7954, we have the
capacity in ale gallons or wine gallons.

Ex. What is the capacity of a cask of the first form, whose
length is 30 inches, its head diameter 18, and its bung diam-
eter 247

Ans. 41.3 ale gallons, or 50.2 wine gallons.

PROBLEM II.

To calculate the contents of a cask, in the form of the middle
Jrustum of a PARABOLIC SPINDLE.

122. Add together the square of the head diameter, and
twice the square of the bung diameter, and from the sum
subtract 2 of the square of the difference of the diameters;
multiply the remainder by } of the length, and the product
by .0U28 for ale gallons, or .0034 for wine gallons. -

The capacity in inches =(2D2+4d*—2(D—d)?)x}Ix
.7854. (Art. 118.)

Ex. What is the capacity of a eask of the second form,
whose length is 30 inches, its head diameter 18, and its bung

diameter 24 ?
Ans. 40.9 ale gallons, or 49.7 wine gallons.
2
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PROBLEM III.

To calculate the contents of a cask, in the form of two equal
Jrustums of @ PARABOLOID.

123. Add together the squate of the head diameter, and
the square of the bung diameter ; multiply the sum by half
the length, and the product by .0028 for ale gallons, or .0034

for wine gallons.

CoThe capacity in inches =(D?4-d2)x4Ix.7854. (Art. 112
I.)

Ex. What is the capacity of a cask of the third form, whose
dimensions are, as before, 30, 18, and 24?7
Ans. 37.8 ale gallons, or 45.9 wine gallons.

PROBLEM 1V,

To calculate the contents of a cask, in the form of two equal
Jrustums of a CONE.

124. Add together the square of the head diameter, the
square of the bung diameter, and the product of the two di-
ameters ; multiply the sum by } of the length, and the pro-
duct by .0028 for ale gallons, or .0034 for wine gallons.

The capacity in inches=(D*+d?+Dd)x 11 x.7854. (Art. 68.)

Ex. What is the capacifiv of a cask of the fourth form,
whose length is 30, and its diameters 18 and 24 ?
Ans. 37.3 ale gallons, or 45.3 wine gallons.

- 125. The preceding rules, though correct in theory, are
not very well adapted to practice, as they suppose the form
of the cask to be known. The two following rules, taken
from Hutton’s Mensuration, may be used for casks of the
usual forms. For the first, thiree dimensions are required,
the length, the head diameter, and the bung diameter. It is
evident that no allowanece is made by this, for different de-
grees of curvature from the head to the bung. 1If the cask is
more or less curved than usual, the following rule is to be
preferred, for, which four dimensions are required, the head
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and bung diameters, and a third diameter taken in the middle
between the bun%-l and the head. For the demonstration of
these rules, see Hutton’s Mensuration, Part v. Sec. 2. Ch. 6.

PROBLEM V.

To calculate the contents of any common casl: Jrom THREE
dimensions.

126. Add together
25 times the square of the head dlameter,
39 times the square of the bung diameter, and
26 times the product of the two diameters ;
Multiply the sum by the length, divide the p;oduct by 90
and multiply the quotient by .0028 for ale gallons, or 0034
for wine gallons.

The capacity in inches=(39 D2+ 25d* 426 Dd) X §lT) X.7854.
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128. In making the caleulations in gauging, according to
the preceding rules, the multiplications and divisions are fre-
quently performed by means of a Sliding Rule, on which
are placed a number of logarithmic lines, similar to those on
Gunter’s Scale. See Trigonometry, Sec. vi. and Note G. p.
141.

Another instrument commonly used in gauging is the Di-
agonal IRod. By this, the capacity of a cask is very expe-
ditiously found, from a single dimension, the distance from
the bung to the intersection of the opposite stave with the
head. 'T'he measure is taken by extending the rod through
the cask, from the bung to the most distant part of the head.
The number of gallons corresponding to the length of the
line thus found, is marked on the rod. The logarithmic
lines on the auginf rod are to be used in the same manner,
as on the sliding rule.

To calculate the ullage of a STANDING cask.

130. Add together the squares of the diameter at the sur-
face of the liquor, of the diameter of the nearest end, and ot
double the diameter in the middle between the other two;
multiply the sum by } of the distance between the surface
and the nearest end, and the product by .0028 for ale gallons
or .0034 for wine gallons.
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'NOTES

Note A. p. 16.

ONE of the earliest approximations to the ratio of the cir-
cumference of a circle to its diameter, was that of Archimedes.
He demonstrated that the, ratio of the perimeter of a regular
inscribed polygon of 96 sides, to the diameter of the circle, is
greater than 33¢ : 1; and that the ratio of the perimeter of a
circumscribed polygon of 192 sides, to the diameter, is less
than 342 : 1, that is, than 22 : 7.

Metius gave the ratio of 355 ; 113, which is more accurate
than any other expressed in small numbers. This was con-
firmed by Vieta, who by inscribed and circumscribed poly-
gons of 393216 sides, carried the approximation to ten places
of figures, viz.

3.141592653.

Van Ceulen of Leyden afterwards extended it, by the labo-
rious process of repeated bisections of an arc, to 36 places.
Thus calculation was decmed of so much conseguence at the
time, that the numbers are said to have been put upon his
tomb.

But since the invention of flnzions, methods much more
expeditious have been devised, for approximating to the re-
quired ratio. These principally consist in finding the sum
of a series, in which the length of an arc is expressed in terms
of its tangent.

If ¢t=the tangent of an arc, the radius being 1,

Th t3 ts ¢7 ¢t & Fluxi
em_g__3_+?—.7_,+?— . See Fluxions.
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This series is in itself very simple. Nothing more is ne-
cessary to make it answer the purpose in practice, than that
the arc be small, so as to render the series sufficiently con-
verging, and that the tangent be expressed in such simple
numbers, as can easily be raised to the several powers. The
given series will be expressed in the most simple numbers,
when the arc is 45°, whose tangent is equal to radius. If the
radius be 1,

The arc of 46°=1 —1 31—} +3— &c. And this multi-
plied by 8 gives the length of the whole circumference.

-But a series in which the tangent is smaller, though it be
less simple than this, is to be preferred, for the rapidity with
which it converges. As the tangent of 30°=+v }, if the radius
be 1,

1 1 1 1

The arc of 30°=+v 1 X (1—ﬁ+5._:3?_733—=+§§7— &c.)
And this muitiplied into 12 will give the whole circumfer-
ence. :

This was the series used by Dr. Halley. By this also, Mr.
Abraham Sharp of Yorkshire computed the circumference
to 72 places of figures, Mr. John Machin, Professor of Astro-
nomy in Gresham College, to 100 places, and M. De Lagny
to 128 places. Several expedients have been devised, by
Machin, Euler, Dr. Hutton, and others, to reduce the labor
of sumrnir;_% the terms of the series. See Euler’s Analysis of
Infinites, Hutton’s Mensuration, Appendix to Maseres on the
Negative Sign, and Lond. Phil. Trans. for 1776. For a
demonstration that the diameter and the circumference of a
circle are incommensurable, see Legendre’s Geometry, Note
iv.

The circumference of a circle whose diameter is 1, is

3.1415926535, 8979323846, 2643383279,
5028841971, 6939937510, 5820974944,
5923078164, 0628620899, 8628034825,
3421170679, 8214808651, 3272306647,

0938446 +or T —.
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Nore B. p. 17.
The following multipliers may frequently be useful ;

X.8862=the side of an equal square.

The diam’r of a circle { x.707 ==the side of an ins’bed sq’re.
X.866 ==the side of an inscribed

[equilateral triangle.

X.2821 =the side of an equal square.
The circumf. { x.2251 =the side of an inscribed square.
X.2756=the side of an ins'bed eq’lat. triang.

%1.128=the diameter of an equal circle.
% 3.545=the circumf. of an equal circle.
%X 1.414=the diam. of the circums. circle.
%4.443=the cir. of the circumsc. circle.

)

'The side of a sq.

Nore C. p. 19.

The following approximating rule may be used for finding
the arc of a circle.

1. The arc of a circle is nearly equal to } of the difference
between the chord of the whole arc, and 8 times the chord
of half the arc

2. If h=the height of an arc, and d==the diameter of the
eirclc;
The nrc—2d\/ T or,

3k 35k
3. mm'zv“"x(l"'z 34"‘2 154 Taaera & )O

4. The arc—,(sd\/ 57 3h+4vdh) very nearly.

5. If s=the sine of un arc, and r=the radius of the circle;

83 3s4 3.5s¢
The '"c""x(l"'z"”srs'*'s CYTTRE &% KT Tt )

See Hutton’s Mensuration.



NoTEs. 89
) Nore D. p. 23.

To expedite the calculation of the areas of
ments, a table is provided, which contains the areas bf seg-
ments in a circle whose diamecter is 1. See the table at the
end of the book, in which the diameter is supposed to be
divided into 1000 equal parts. By this may be found the
areas of segments of other circles. For the heights of similar
segments of differcnt circles are as the diameters. If then
the height of any given segment be divided by the diametar
of the circle, the quotient will be the height of a similar seg-
ment in a circle whose d ameter is 1  The area of the latter
is found in the table; ard from the properties of similar fig-
ures, the two segments are to each sther, as tae squares r f the
diameters of the circles. 'We have then the following .ule:

To find the area of a circular SEGMENT by the TABLE.

Divide the height of the segment by the diameter of the
circle ; look for the quotient in the column of heights in the
table ; take out the corresponding number in the column of
arcas ; and multiply it by the square of the diameter.

It is to be observed, that the figures in each of the columns
in the table are decimals.

If accuracy is required, and the quotient of the height di-
vided hy the diameter, is between two numbers in the column
of heights; allowance may be made for a proportional part
of the difference of the corresponding numbers in the column
of areas; in the same manner, as in taking out logarithms.

Segments greater than a semicircle are not contained in
the table. If the area of such a segment is required, as ABD
(Fig. 9.), find the area of the segment ABO, and subtract this
from the area of the whole circle.

Or,

Divide the height of the given segment by the diameter,
subtract the quotient from 1, find the remainder in the column
of heights, subtract the corresponding area from .7834, and
multiply this remainder by the square of the diameter.

33
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Ex. 1. What is the area of a segment whose height is 16,
the diameter of the circle being 48?% Ans. 528.

2. What is the area of a segment whose height is 32, the
diameter being 48 ? Ans. 1281.56.

The following rules may also be used for a circular seg-
ment.

1. To the chord of the whole arc, add 4 of the chord of
kalf the arc, and multij ly the sum by £ of the height.

If C and c=the two chords, and % = the height;
The segment =(C + 4 ¢) 3 & nearly.

2. If h=the height of the segment, and d==the diameter
of the circle ;

2 h A h3
The segment=2h v dhx 3 Bd 9847 7943 &c.)

Note E. p. 29.

The term solidity is used here in the customary sense, to
express the magnitude of any geometrical quantity of three
dimensions, length, breadth, and thickness; whether it be a
solid body, or a fluid, or even a portion of empty space. This
use of the word, however, is not altogether free from objec-
tion. The same term is applied to one of the general pro-
perties of matter ; and also to that peculiar quality by which
certain substances are distinguished from fluids. There
seems to be an impropriety in speaking of the solidity of a
body of water, or of a vessel which is empty. Some writers
have therefore substituted the word volume for solidity. But
the latter term, if it be properly defined, may be retained
without danger of leading to mistake.

Note F. p. 35.

The geometrical demonstration of the rule for finding the
solidity of a frustum of a pyramid, depends on the following
proposition :
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A frustum of a triangular pyramid is equal to three
mids ; the greatest and least of which are equal in
height to he frustum, and have the two ends of the frustum
Jor their bases; and the third is a mean proportional be-
tween the other two.

Let ABCDFG (Fig. 34.) be a frustum of a triangular pyr-
amid. If a plane be supposed to pass through the points
AFC, it will cut oft the pyramid ABCF. The height of this
is evidently equal to the height of the frustum, and its base
is ACB, the greater end of the frustum.

Let another plane pass through the points AFD. This
will divide the remaining part of the figure into two triangu-
lar pyramids AFDG and AFDC. 'The height of the former
is equal to the height of the frustum, and its base is DFG,
the smaller end of the frustum.

To find the magnitude of the third pyramid AFDC, let F
be now considered as the vertex of this, and of the second
pyramid AFDG. Their bases will then be the triangles
ADC and ADG. As these are in the same plane, the two
pyramids have the same altitude, and are to each other as
their bases.  But these triangular bases, being between the
same parallels, are as the lines AC and DG. %‘herefore, the
pyramid AFDC is to the pyramid AFDG as AC to DG ; and
AFDC?* : AFDG?:: AC? ; DG?* (Alg.391.) But the pyr-
amids ABCF and AFDG, having the same altitude, are as
their bases ABC and DFG, that is, as AC* and DG?. (Euc.
19, 6.) We have then

AFDC? ;: AFDG?:: AC?: DG? 2
ABCF : AFDG : : AC? ;: DG*

Therefore, AFDC? ;: AFDG*: : ABCF : AFDG.
And AFDC*=AFDG xABCF.

That is, the pyramid AFDC is a mean proportional be-
tween AFDG and ABCF.

Hence, the solidity of a frustum of a triangular pyramid is
e%ual to } of the height, multiplied into the sum of the areas
of the two ends and the square root of the product of these
areas. 'This is true also of a frustum of any other pyramid.
(Sup. Euc. 12, 3. Cor. 2.)

If the smaller end of a frustum of a pyramid be enlarged,
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till it is made equal to the other end ; the frustum will be-
come a prism, which may be divided into three equal pyra-
mids. (Sup. Euc. 153.)

Note G. p. 59.

The following simple rule for the sohdxty of round timber,
or of any cylinder,.is nearly exact :

Multiply the length into twice the square of } of the circum-
Serence.

If C=the circumference of a cylinder;

Cz Cs
'I‘heareaofthebase=4’_ 15.566 But2( ) 125

It is common to measure hewn timber, by multiplying the
length into the square of the quarter-girt. This gives ex-
actly the solidity of a parallelopiped, if “the ends are squares.
But if the ends are parallelograms, the area of each is less
than the square of tke quarter-girt. (Euc. 27. 6.)

Timber which is tapering may be exactly measured by
the rule for the frustum of a pyramid or cone (Art. 50, b8.);
or, if the ends are not similar figures, by the rule for a pris-
moid. (Art. 65.) But for common purposes, it will be suffi-
cient to multiply the length by the area of a section in the
middle between the two ends
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A TABLE

OF THE S8EGMENTS OF A CIRCLE, WHOSE DIAMETER IS 1, AND IS SUPPOSED
TO BE DIVIDED INTO 1000 EQUAL PARTS,

Height. Area Seg. Height. Areca Seg. Height. Arca Seg.

001 .000042 .034 .008273 .067 022652
002 000119 035 | 008638 068 023154
003 000219 036 009008 069 023659
004 000337 037 009383 070 024168
005 000471 038 009763 071 024680
006 000618 039 010148 072 025195
007 000779 040 010537 073 025714
008 00u952 041 010932 074 026236
009 001135 042 011331 075 026761
010 001329 043 011734 076 027289
011 001533 044 012142 077 027821
012 001746 045 012554 078 028356
013 001968 046 012971 079 028894
014 002199 047 013392 080 029435
015 002438 048 013818 081 029979
016 002685 049 014247 082 030126
017 002940 050 014681 083 031076
018 003202 051 015119 084 031629
019 003472 052 015561 085 032186
020 003748 053 016007 086 032745
021 004032 054 016457 087 033307
022 004322 055 016911 088 033872
023 004618 056 017369 089 034441
024 004921 057 017831 090 035011
025 005231 058 018296 091 035585
026 005546 059 018766 092 036162
027 005867 060 | .019239 093 036741
028 006194 061 019716 094 037323
029 006527 062 020206 095 037909
030 006865 063 020690 096 038496
031 007209 064 021178 097 039087
032 007558 065 021659 098 039630

.033 007913 .066 022154 .099 .040276
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—Heigm. Area Seg. Height. Area Seg. Height. Arca Seg.
.100 .040875 144 .069625 .188 .102334
101 041476 145 070328 189 103116
102 042080 146 071033 190 103900
103 042687 147 071741 191 104685
104 043296 148 072450 192 105472
105 043908 149 073161 193 106261
106 044522 150 073874 194 107051
107 045139 151 074589 195 107842
108 045759 152 075306 196 108636
109 046381 153 076026 197 109430
110 047005 154 076747 198 110226
111 0471532 155 077469 199 111024
112 048262 156 078194 200 111823
113 048394 157 078921 201 112624
114 049528 158 079649 202 113426
115 050165 159 080380 203 114230
116 050804 160 081112 204 115035
117 051446 161 081846 205 115842
118 052090 162 082582 206 116650
119 052736 163 083320 07 117460
120 053385 164 084059 208 118271
121 054036 165 084801 209 119083
122 054689 166 085544 210 119897
123 055345 167 086289 211 120712
124 056003 168 087036 212 121529
125 056663 169 087785 213 122347
126 057326 170 088535 214 123167
127 057991 171 089287 215 123988
128 058658 172 090041 216 124810
129 059327 173 090797 217 125634
130 059999 174 091554 218 126469
131 060672 175 002313 219 127285
132 061348 176 093074 220 128113
133 062026 177 093836 221 128942
134 062707 178 094601 222 129773
135 063389 179 095366 223 130605
136 064074 180 096134 224 131438
137 064760 181 096903 225 132272
138 065449 182 097674 226 133108
139 066140 183 098447 227 133945
140 066833 184 099221 228 134784
141 067528 185 099997 229 135624
142 068225 186 100774 230 136465
.143 .068924 .187 .101553 231 .137307
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Height. Area Seg. m Arca Seg. Teight. Arca Seg.
%32 138150 R77 .177330 322 218533
233 138995 278 178225 323 219468
234 139841 279 179122 324 220404
235 140688 280 180019 325 221340
236 141587 281 180918 326 222277
237 142387 282 181817 327 223215
238 143238 283 182718 328 224154
239 144091 284 183619 329 225003
240 144944 285 184521 330 226033
241 145799 286 185425 331 226974
242 146655 287 186329 332 227915
243 147512 288 187234 333 228858
244 148371 289 188140 334 229801
245 149230 290 189047 335 230745
246 150091 201 189955 336 231689
247 150953 202 190864 337 232634
248 151816 293 191775 338 233589
249 152680 204 192684 339 234526
250 153546 205 193596 340 235473
251 154412 296 194509 341 236421
252 155280 297 195422 342 237369
253 156149 208 196337 343 238318
254 157019 299 197252 344 239268
255 157890 300 198168 345 240218
256 158762 301 199085 346 241169
257 159636 302 200003 347 242121
258 160510 303 200922 348 243074

259 161386 304 201841 349 244026 -
260 162263 305 202761 350 244980
261 163140 306 203683 351 245934
262 164019 307 204605 352 246889
263 164899 308 205527 353 247845
264 165780 309 206451 354 248801
265 166663 310 207376 355 249757
266 167546 311 208301 356 250715
267 168430 312 209227 357 251673
268 169315 313 210154 358 252631
269 170202 314 211082 359 253590
270 171089 315 212011 360 254550
271 171978 316 212940 361 255510
272 172867 317 212871 362 256471
273 173758 318 214802 363 257433
274 174649 319 215733 364 258395
4 275 175542 320 216666 365 259357
¥ 276 .176435 .321 217599 .366 260320
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TABLE OF CIRCULAR SEGMENTS.

Height. Area Scg. Height. Area Scg. Height. Arca Seg.
.367 261284 412 .305155 .457 .349752
368 262248 413 306140 458 350748
369 263213 414 307125 459 351745
370 264178 415 308110 460 352742
371 265144 416 309095 461 353739
372 266111 417 310081 462 354736
373 267078 418 311068 463 355732
374 268045 419 312054 464 356730
375 269013 420 313041 465 357727
376 269982 421 314029 466 358725
377 270951 422 315016 467 359723
378 271020 423 316004 4€8 360721
379 272890 .424 316992 469 361719
380 273861 425 317981 470 362717
381 274832 426 318970 471 363715
382 275803 427 319959 472 364713
383 276777 428 320948 473 365712
384 277748 429 321938 474 366710
385 278721 430 322928 475 367709
386 279694 431 .323918 476 368708
387 280668 432 324909 477 369707
338 281642 433 325900 478 370706
389 282617 434 326892 479 371705
390 283592 435 327882 480. 372704
391 284568 436 328874 481 373703
392 285544 437 329866 482 374702
393 286521 438 330858 483 375702
39t 287498 439 331850 484 376702
395 288476 440 332843 485 377701
395 289454 441 333836 486 378701
397 200432 442 334829 487 379700
398 201411 443 335822 488 380700
399 292390 444 336816 489 381699
400 203369 445 337810 490 382699
401 204349 446 338804 491 383699
402 295330 447 339798 492 384699
403 296311 448 340793 493 385699
404 297292 449 341787 494 386699
405 208273 450 342782 495 387699
406 239255 451 343777 496 388699
407 300238 452 344772 497 389699
403 301220 453 345768 408 390699
40y 302203 454 346764 499 391699
410 303187 455 347759 .500 .392699
411 | .304171 .456 348755
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TABLE OF CIRCULAR SEGMENTS.

Height. Area Scg. Height. Area Scg. Height. Arca Seg.
.367 261284 412 .305155 457 .349752
368 262248 413 306140 458 350748
369 263213 414 307125 459 351745
370 264178 415 308110 460 352742
371 265144 416 309095 461 353739
372 266111 417 310081 462 354736
373 267078 418 311068 463 355732
374 268045 419 312054 464 356730
375 269013 420 313041 465 357727
376 269982 421 314029 466 358725
377 270951 422 315016 467 359723
378 271920 423 316004 4¢€8 360721
379 272890 .424 316992 469 361719
380 273861 425 317981 470 362717
381 274832 426 318970 471 363715
382 275803 427 319959 472 364713
383 276777 428 320948 473 365712
384 277748 429 321938 474 366710
385 278721 430 322928 475 367709
386 279694 431 .323918 476 368708
387 280668 432 324909 477 369707
388 281642 433 325900 478 370706
389 282617 434 326892 479 371705
390 283592 435 327882 480. 372704
391 284568 436 328874 481 373703
392 285544 437 329866 482 374702
393 286521 438 330858 483 375702
39t 287498 439 331850 484 376702
395 288476 440 332843 485 377701
3935 289454 441 333836 486 378701
397 200432 442 334829 487 379700
398 201411 443 335822 488 380700
399 292390 444 336816 489 381699
400 293369 445 | 337810 490 382699
401 204349 446 338804 491 383699
402 205330 447 339798 492 384699
403 206311 448 340793 493 385699
404 297292 449 341787 494 386699
405 208273 450 342782 495 387699
406 239255 451 343777 496 388699
407 300238 452 344772 497 389699
403 301220 453 345768 408 390699
409 302203 454 346764 499 391699
410 303187 455 347759 .500 .392699
411 | .304171 .456 .348755
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