
rsos.royalsocietypublishing.org

Research
Cite this article: Taylor AG, Chung JH. 2018
Application of low-order potential solutions to
higher-order vertical traction boundary
problems in an elastic half-space. R. Soc. open
sci. 5: 180203.
http://dx.doi.org/10.1098/rsos.180203

Received: 6 February 2018
Accepted: 3 April 2018

Subject Category:
Engineering

Subject Areas:
civil engineering/mechanics/
mechanical engineering

Keywords:
Boussinesq’s problem, potential theory,
soil–structure interaction, shallow
foundation, elastic settlement analysis

Author for correspondence:
Jae H. Chung
e-mail: jchun@ce.ufl.edu

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.4085885.

Application of low-order
potential solutions to
higher-order vertical
traction boundary problems
in an elastic half-space
Adam G. Taylor and Jae H. Chung
Computer Laboratory for Granular Physics Studies, Geosystems Engineering,
University of Florida, FL, USA

JHC, 0000-0003-0911-2626

New solutions of potential functions for the bilinear vertical
traction boundary condition are derived and presented. The
discretization and interpolation of higher-order tractions and
the superposition of the bilinear solutions provide a method
of forming approximate and continuous solutions for the
equilibrium state of a homogeneous and isotropic elastic half-
space subjected to arbitrary normal surface tractions. Past
experimental measurements of contact pressure distributions
in granular media are reviewed in conjunction with the
application of the proposed solution method to analysis
of elastic settlement in shallow foundations. A numerical
example is presented for an empirical ‘saddle-shaped’ traction
distribution at the contact interface between a rigid square
footing and a supporting soil medium. Non-dimensional
soil resistance is computed as the reciprocal of normalized
surface displacements under this empirical traction boundary
condition, and the resulting internal stresses are compared to
classical solutions to uniform traction boundary conditions.

1. Introduction
The classical solution to the problem of a semi-infinite
homogeneous, elastic body subjected to vertical loads on its
boundary surface was first developed by Boussinesq [1] and
discussed in more depth by Love [2]. The solution is derived from
the Green’s function of the Laplace equation, which was used
to determine the stress equilibrium within an elastic half-space.
Other solutions can be also obtained using a separate approach
involving Bessel functions [3,4]. The technique involving
potentials was concurrently applied in line with the theory of
elastic contact proposed by Hertz [5]. Further, Newmark [6]
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provided a concise closed-form solution to the distribution of vertical stress at the corner of a uniform
rectangular load. A general solution to this type of boundary-value problem was presented earlier by
Love [7], who developed expressions for displacement and stress under any integrable distributions of
vertical tractions over an arbitrary domain. Closed-form solutions to uniform tractions over a rectangular
area were explicitly presented in his paper (with the exception of those involving vertical displacement).
Only partial solutions were provided for surface tractions that linearly and bilinearly vary in a rectilinear
domain.

Numerous attempts have been made to complete the integral calculations presented in Love’s
original work and to further expand the application of his closed-form solutions. Notably, Ahlvin &
Ulery [8] developed tables for stress, strain and displacement under a uniform circular load from Love’s
equations, but they did not produce new closed-form solutions of potential functions. Schmertmann [9]
proposed a semi-empirical strain influence method that has been widely used for elastic settlement
analysis of shallow foundations based on the assumption that traction fields are uniform at the contact
interface between a rigid footing and supporting soils. Recently developed closed-form solutions of the
potential functions include those reported by Becker & Bevis [10], who completed Love’s discussion
of displacement under a uniform rectangular load. Dydo & Busby [11] further discussed linear and
bilinear variations in vertical traction fields over a rectangular contact domain and provided one of
the most comprehensive sets of closed-form solutions of the potential functions to date. However, the
derivatives required to calculate stress, strain and displacement were omitted from their results. Li &
Berger [12] developed a corresponding set of closed-form solutions for constant, linear and bilinear
tractions over triangular domains. Most recently, Marmo & Rosati [13] suggested a general solution
to a problem of polynomial surface-traction conditions over areas defined by arbitrary polygons.
Importantly, Kunert [14] developed closed-form solutions for Hertzian-like contact pressures varying
over a rectangular area.

Of all the historical contributions to this problem, Boussinesq’s point-load and Newmark’s uniform
surface-load solutions stand out as engineering solutions to foundation design problems. These stress-
influence methods are widely accepted in foundation design practice, but Love’s closed-form solutions
have rarely been viewed as practical design tools. It is laborious to solve the integral equations of the
potentials in closed form even for the simplest of polynomial traction boundary conditions. Further,
contact traction fields relevant to modern engineering applications may not be of such a low order. As it
stands, a new set of closed-form solutions must be developed for higher-order boundary conditions,
for which in most cases the calculations are intractable. Alternatively, a numerical model could be
designed to obtain an approximate solution to a desired degree of accuracy specific to a prescribed
boundary condition, but such a modelling effort can be time-consuming and very costly in iterative
design processes.

It is, however, possible to balance mathematical rigorousness and computational efficiency in an
alternative solution. A high-order surface traction field can be discretized in the loaded domain using
piecewise approximation of lower-order polynomials. Very recently, work has been done to solve elastic
contact problems by the superposition of solutions to linear tractions over triangular regions [15]. This
technique is analogous to the collocation method used in the indirect boundary element method [16,17].
The lower-order solutions for each discretized subdomain are superimposed to approximate the
displacement and stress fields in the elastic body (i.e. the principle of superposition). However, in the
present study, it is proposed to calculate the ‘boundary integrals’ analytically for rectangular regions.
This way, the superposition of low-order closed-form solutions replaces costly numerical quadrature.
This solution approach is not entirely new [18,19]. It has been used to model the micro-contact of
rough surfaces using Love’s constant load solutions [20]. However, superimposing solutions to only
the constant and unidimensional linear boundary conditions cannot lead to a continuous expression
across the boundaries of rectangular subdomains. Consequentially, singularities or discontinuities will
appear in the resulting stress fields within the loaded domain. The missing component for a robust
solution approach to a higher-order traction boundary-value problem using rectangular regions appears
to be the closed-form solutions of the bilinear (hyperbolic–paraboloidal) potentials. The authors have not
found a complete set of solutions of the bilinear potentials in the literature. The goals of this study are
to close this gap in the literature and to provide an approximate yet general solution approach to the
Boussinesq–Love problem for higher-order traction boundary conditions.

In this paper, a finite number of closed-form solutions for lower-order boundary conditions are
superimposed to accurately approximate a solution for high-order surface traction fields acting on a
rectangular surface area of a homogeneous, elastic half-space. We develop a complete set of closed-form
solutions for the bilinear hyperbolic–paraboloidal potential functions and their required derivatives. The
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potentials corresponding to the bilinear interpolants fitting the values of the four corners of each of a
given number of discretized subdomains are superimposed, providing an approximation of the potential
for the prescribed boundary condition and ensuring continuity across local boundaries. For foundation
analysis applications, a surface traction function is empirically formulated by curve fitting pointwise
contact-pressure data from past foundation experiments in the literature. This is then prescribed as a
boundary condition for the half-space problem. We solve for select displacements, stresses and strains
that occur in the body. The predicted distribution of non-dimensionalized vertical resistances (i.e. contact
stiffness) is calculated as the reciprocal of normalized vertical displacements in the contact plane.
A unique resistance distribution results directly from the corresponding non-uniform vertical boundary
traction, which appears to evolve with increased applied load [21,22].

2. Governing equations and boundary conditions
A set of right-handed Cartesian coordinates is defined so as to describe an elastic body as half-space
bounded by a plane at z = 0, where the positive z-axis points downwards into the body. Let (x, y, z) be an
arbitrary point within the body or on the boundary, while (x′, y′) designates a location within the region
of contact R as shown in figure 1.

The stress equilibrium of a homogeneous, isotropic and elastic body can be stated as a system of
partial differential equations in terms of the displacements (u, v, w) in the directions (x, y, z) as follows [2]:

(λ + μ)
∂D
∂x

+ μ�u = 0,

(λ + μ)
∂D
∂y

+ μ�v = 0

and (λ + μ)
∂D
∂z

+ μ�w = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where D = ∂u/∂x + ∂v/∂y + ∂w/∂z is the strain dilation; λ and μ are the Lame’s constants; and � is the
Laplacian differential operator with respect to the spatial coordinates.

This problem reduces to a problem of potential theory when either surface displacements or tractions
are given. This is achieved by means of Green’s theorem and Betti’s reciprocal theorem (see Love’s
treatise [2], Ch. X for details). The equilibrium state of the half-space is then given in terms of functions
which satisfy the Laplace equation:

�V = 0. (2.2)

For a comprehensive description of complete solutions in terms of potentials, see §44 of reference [23].
The form of the potentials used to satisfy equation (2.1) is determined uniquely by the given boundary
values.

The boundary conditions are defined as the values of surface displacements or tractions,
corresponding to Dirichlet and Neumann conditions for this solution, respectively. It may be reasonable
to model the mutual interaction of the foundation and continuum as a mixed boundary value problem,
as is required for rigid punch problems [24,25] and Hertz–Mindlin contact theories [5,26]. Solutions
to problems regarding this class of boundary conditions are mathematically cumbersome, although
work has been done to develop a general solution [27]. If the footing is assumed to be flat, rigid
and symmetrically loaded normal to the contact plane, vertical surface displacement w(x′, y′) can be
assumed to be uniform within the area of contact (i.e. a constant displacement (Dirichlet) condition
on R). Subsequently, the lack of contact outside of R corresponds to a zero vertical traction, p, a
Neumann condition elsewhere on the boundary. The boundary conditions for equation (2.2) under these
assumptions are written as follows:

w|z=0 = constant for (x, y) ∈ R

and p|z=0 = 0 (x, y) /∈ R.

}
(2.3)

The solution to this boundary value problem yields a vertical stress distribution with an absolute
minimum at the centre and infinite stresses along the edges of R [24,25]. The singular values in the stress
distribution are non-physical, and the material cannot be in equilibrium.
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Figure 1. A description of the coordinate system and geometry of a rectangular loaded domain on the planar surface of a semi-infinite
half-space.

By contrast, the simplicity and convenience of the stress-influence methods stem from an assumption
of a unique distribution of vertical traction prescribed over the area of contact. The resulting Neumann
boundary condition can be expressed as

1
2π

∂V
∂z

∣∣∣∣
z=0

=
{

p(x′, y′) for (x, y) ∈ R,

0 for (x, y) /∈ R.
(2.4)

The resulting displacement and stress fields satisfy equation (2.1), are continuous within the body and
lack singularities, providing that the surface tractions p(x′, y′) are bounded and uniformly equal to zero
on the boundary of R [7]. Our following discussion will be focused on the application of potentials to
solving this particular class of boundary value problems.

3. Potential functions for arbitrary contact pressure distributions
Numerous empirical measurements have shown that the distribution of stress between a rigid structure
and granular soil has relatively high-order spatial variation. Examples include Terzaghi’s model [28],
which is associated with general shear failure modes of shallow foundations in which a roughly parabolic
distribution of contact pressure may develop. The laboratory test results reported by Bauer et al. [29] also
show approximate parabolic pressure distributions on a scaled rectangular footing under an assumption
of plane strain conditions. Murzenko [21] presents a set of contact pressure distributions that appear to
be saddle-shaped (or shaped like the back of a two-humped camel) and correspond to pressure peaks
occurring at a certain distance from the centre of the contact plane, a dip at the centre, and zero values
along the edges, as shown in figure 2. Further, the contact pressure peaks observed in his experiments
tend to move inwards towards the centre of the footing as applied load increases. This phenomenon has
been reported in the results of a number of analytical models. Smoltczyk [22] presented an analytical
expression for pressure boundary conditions mimicking this behaviour via statistical analysis, while
Kerr [30] produced the same expression by introducing a shear membrane and another layer of springs
into a Winkler-type [31] model. Furthermore, a number of pressure distributions with these attributes
have been derived using elastoplasticity [32–34]. Interestingly, these phenomenological observations
and analytical predictions show remarkable resemblance to the normal stress distributions measured
empirically in sandpile models [35–38] and corresponding analytical models [39–42].

Considering these various contact pressure distributions in conjunction with the Neumann problem
in equation (2.4), we formulate a general method of obtaining approximate solutions for any given
surface traction while retaining the continuity of the displacement and stress fields within the body and
upon its boundary. The simplest method of continuously approximating an arbitrary surface traction
over a rectangular area is bilinear interpolation. Just as a two-dimensional boundary condition can
be approximated to any degree of accuracy by a piecewise bilinear function, a solution specific to
equation (2.4) can be accurately approximated by the superposition of each solution of the subdomain
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Figure 2. (Not scaled) Pressure variation for five loading cases extrapolated from data measured by Murzenko [21] at points (a) across
the centre of a square footing, and (b) across its diagonal. This behaviour is assumed to be symmetrical across the rest of the footing,
outlining a two-dimensional pressure surface.

to a discretized Neumann boundary condition. These in turn are constructed as linear combinations of
closed-form solutions for constant, linear and bilinear tractions, which are presented in appendix B.

Consider a given normal pressure p(x′, y′) on a rectangular region R = {(x′, y′, 0)|a2 ≤ x′ ≤ a1,
b2 ≤ y′ ≤ b1} on the surface of a half-space. The distribution of pressure can be defined piecewise by a
combination of any arbitrary functions. Using the coordinate system defined in figure 1, the distance
between an arbitrary point in the body and a point on the surface within the loaded region is given by

r =
√

(x′ − x)2 + (y′ − y)2 + z2. (3.1)

As tractions normal to the surface boundary are assumed to be zero outside the region of contact, the
potential function can be written as a double integral over the geometry of the region R:

V =
∫ b1

b2

∫ a1

a2

p(x′, y′)
r

dx′ dy′. (3.2)

This is the general solution to the Laplace equation subjected to the Neumann boundary condition
in the half-space. To complete the equilibrium solutions of equation (2.1), it is necessary to introduce
Boussinesq’s logarithmic potential [1,2]:

χ =
∫ b1

b2

∫ a1

a2

p(x′, y′) log(z + r) dx′ dy′. (3.3)

This function is related to equation (3.2) by V = ∂χ/∂z, and both satisfy the Laplace equation (i.e. �V =
�χ = 0). The complete three-dimensional displacement, stress and strain fields are determined by these
two potential functions and their derivatives, as shown in appendix A.

3.1. Superposition of potentials
Let us divide the loaded area R into M and N uniform intervals in the directions of x′ and y′ , respectively,
which creates M × N disjoint rectangular subdomains:

Rij = {(x′, y′, 0)|xi ≤ x′ ≤ xi+1, yj ≤ y′ ≤ yj+1} (3.4)
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for i = 1, 2, . . . , M, and j = 1, 2, . . . , N, such that R =⋃Rij. Each individual subdomain has a length of
�x = |a1 − a2|/M and width of �y = |b1 − b2|/N; the grid points at the corners of the subdomains are
given by xk = a2 + (k − 1)�x, and yl = b2 + (l − 1)�y for k = 1, 2, . . . , M + 1 and l = 1, 2, . . . , N + 1.

Bilinear interpolation of the values of p(x′, y′) is performed at the four corners of each Rij, with the
following system of equations:

p(x′
i, y′

j) = c00
ij + c10

ij x′
i + c01

ij y′
j + c11

ij x′
iy

′
j,

p(x′
i, y′

j+1) = c00
ij + c10

ij x′
i + c01

ij y′
j+1 + c11

ij x′
iy

′
j+1,

p(x′
i+1, y′

j) = c00
ij + c10

ij x′
i+1 + c01

ij y′
j + c11

ij x′
i+1y′

j

and p(x′
i+1, y′

j+1) = c00
ij + c10

ij x′
i+1 + c01

ij y′
j+1 + c11

ij x′
i+1y′

j+1.

Solving for the coefficients cmn
ij of Lagrange polynomials of first order per superscript indices m = 0, 1 for

x′ and n = 0, 1 for y′, we have the following:

c00
ij = x′

i+1y′
j+1p(x′

i, y′
j) − x′

i+1y′
jp(x′

i, y′
j+1) − x′

iy′
j+1p(x′

i+1, y′
j) + x′

iy′
jp(x′

i+1, y′
j+1)

�x�y
,

c10
ij = −y′

j+1p(x′
i, y′

j) + y′
jp(x′

i, y′
j+1) + y′

j+1p(x′
i+1, y′

j) − y′
jp(x′

i+1, y′
j+1)

�x�y
,

c01
ij = −x′

i+1p(x′
i, y′

j) + x′
i+1p(x′

i, y′
j+1) + x′

ip(x′
i+1, y′

j) − x′
ip(x′

i+1, y′
j+1)

�x�y

and c11
ij = p(x′

i, y′
j) − p(x′

i, y′
j+1) − p(x′

i+1, y′
j) + p(x′

i+1, y′
j+1)

�x�y
.

An arbitrary p(x′, y′) is then approximated over R via superposition of the interpolated loads over each
subdomain:

p(x′, y′) ≈ b(x′, y′) ≡
M∑

i=1

N∑
j=1

bij(x
′, y′), (3.5)

where the bilinear interpolant over subdomain Rij is defined as follows:

bij(x
′, y′) ≡

⎧⎪⎪⎨
⎪⎪⎩

1∑
m=0

1∑
n=0

cmn
ij (x′)m(y′)n for (x′, y′) ∈ Rij,

0 for (x′, y′) /∈ Rij.

(3.6)

In turn, the potentials corresponding to the polynomial component (x′)m(y′)n over Rij are defined as
follows:

Amn
ij =

∫ yj+1

yj

∫ xi+1

xi

(x′)m(y′)n

r
dx′ dy′ (3.7)

and

Bmn
ij =

∫ yj+1

yj

∫ xi+1

xi

(x′)m(y′)n log(z + r) dx′ dy′. (3.8)

Equations (3.7) and (3.8) are special cases of (3.2) and (3.3), respectively, with specified traction
distributions over a given subdomain. We then have that Amn

ij = ∂Bmn
ij /∂z, and both satisfy the Laplace

equation within the whole of the half-space (i.e. �Amn
ij = �Bmn

ij = 0). The potentials are then written for
the interpolated loads bij(x′, y′)

Vij ≡
1∑

m=0

1∑
n=0

cmn
ij Amn

ij (3.9)

and

χij ≡
1∑

m=0

1∑
n=0

cmn
ij Bmn

ij . (3.10)

By superposition, equations (3.2) and (3.3) are approximated over the entire domain R as follows:

V ≈
M∑

i=1

N∑
j=1

Vij (3.11)
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and

χ ≈
M∑

i=1

N∑
j=1

χij. (3.12)

The derivatives of the potentials in equations (3.11) and (3.12) can be constructed from the derivatives of
those in equations (3.7) and (3.8), respectively, in the same manner. Appendix B contains the complete
set of closed-form solutions to equations (3.7) and (3.8) and the spatial derivatives required to satisfy the
stress, strain and displacement formulae presented in appendix A.

3.2. Example calculation for bilinear boundary conditions
Next, let us consider a brief example of the calculation strategy that led to these expressions (in contrast
with those reported in [7,11]). Consider the following function:

∂2B11
ij

∂x2 = ∂2

∂x2

∫ yj+1

yj

∫ xi+1

xi

x′y′ log(z + r) dx′ dy′. (3.13)

This function would appear in equations (A 4) and (A 10) for x-directional strain and stress, respectively.
It is convenient to pair the spatial and integration coordinates as they appear in the distance function in
equation (3.1), as substitution allows one to cancel the integrals and derivatives in the calculations with
a change of sign. As (x′ − x)(y′ − y) = x′y′ − yx′ − xy′ + xy, we see that we may write equation (3.13) as

∂2B11
ij

∂x2 = ∂2

∂x2

(∫ yj+1

yj

∫ xi+1

xi

(x′ − x)(y′ − y) log(z + r) dx′ dy′
)

+ ∂2

∂x2

(
y

∫ yj+1

yj

∫ xi+1

xi

x′ log(z + r) dx′ dy′
)

+ ∂2

∂x2

(
x

∫ yj+1

yj

∫ xi+1

xi

y′ log(z + r) dx′ dy′
)

− ∂2

∂x2

(
xy

∫ yj+1

yj

∫ xi+1

xi

log(z + r) dx′ dy′
)

= ∂2

∂x2

∫ yj+1

yj

∫ xi+1

xi

(x′ − x)(y′ − y) log(z + r) dx′ dy′ + y
∂2B10

ij

∂x2 + x
∂2B01

ij

∂x2 + 2
∂B01

ij

∂x

− xy
∂2B00

ij

∂x2 − 2y
∂B00

ij

∂x
.

The first term of the right-hand side of the above expression is then calculated as follows:

∂2

∂x2

∫ yj+1

yj

∫ xi+1

xi

(x′ − x)(y′ − y) log(z + r) dx′ dy′

=
∫ yj+1

yj

[
(x′ − x)2(y′ − y)

r(z + r)
+ (y′ − y) log(z + r)

]∣∣∣∣∣
xi+1

xi

dy′

=
[

1
2

zr + 1
2

(3(x′ − x)2 + (y′ − y)2) log(z + r)
]∣∣∣∣xi+1

xi

∣∣∣∣∣
yj+1

yj

.

A closed-form solution of the required second partial derivative of B11
ij is then shown to be:

∂2B11
ij

∂x2 =
[

1
2

zr + 1
2

(3(x′ − x)2 + (y′ − y)2) log(z + r)
]∣∣∣∣xi+1

xi

∣∣∣∣∣
yj+1

yj

+ y
∂2B10

ij

∂x2 + x
∂2B01

ij

∂x2 + · · ·

2
∂B01

ij

∂x
− xy

∂2B00
ij

∂x2 − 2y
∂B00

ij

∂x
,

where the derivatives of the potentials with respect to the lower-order pressure fields are already
determined, as in appendix B. Owing to the symmetry of B11

ij , ∂2B11
ij /∂y2 can be immediately deduced as

follows:

∂2B11
ij

∂y2 =
[

1
2

zr + 1
2

(3(y′ − y)2 + (x′ − x)2) log(z + r)
]∣∣∣∣

xi+1

xi

∣∣∣∣∣
yj+1

yj

+ y
∂2B10

ij

∂y2 + x
∂2B01

ij

∂y2 + · · ·

2
∂B10

ij

∂y
− xy

∂2B00
ij

∂y2 − 2x
∂2B00

ij

∂y
.
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Figure 3. Convergence of maximum error of the bilinear interpolant to the biquadratic function in equation (4.2), with respect to
(a) the total number of subdomains, and (b) the area of subdomains. Results are for discretization schemes ranging fromM= N = 4 to
M= N = 50.

A third result can be obtained from the calculation above by considering some facts about the potentials
involved. For instance, we know that ∂2B11

ij /∂z2 = ∂A11
ij /∂z by the definition for the potentials in

equations (3.7) and (3.8). Owing to the fact that these are harmonic functions, we can therefore write
the following:

∂A11
ij

∂z
= −

∂2B11
ij

∂x2 −
∂2B11

ij

∂y2 = [zr]|xi+1
xi

∣∣∣yj+1

yj
+ x

∂A01
ij

∂z
+ y

∂A10
ij

∂z
− xy

∂A00
ij

∂z
.

This provides a closed-form solution for the expression appearing in the vertical displacement and
strain, as well as all three normal stresses in appendix A. The result can be verified by direct calculation
and/or relevant solutions from appendix B. All other calculations for the required closed-form solutions
proceeded in analogous ways.

4. Convergence and error assessment
Convergence of the proposed discretization scheme is investigated for interpolation of an arbitrary
pressure field and associated error. We define an error function across the discretized loaded region as
the differences between an exact boundary condition and the approximation in equation (3.5):

e(x′, y′) = |p(x′, y′) − b(x′, y′)|. (4.1)

We have been unable to derive an analytical bound on the error function given in equation (4.1) or find
one in the literature pertaining to bilinear interpolation. Thus, we opt to directly assess errors associated
with the proposed interpolation scheme in a convergence study. Consider the following biquadratic
pressure distribution:

p(x′, y′) = 9
4

(
1 −

(
x′

a

)2
)(

1 −
(

y′

a

)2
)

. (4.2)

This distribution is defined over a square area, Rs = {(x′, y′, 0)| − a ≤ x′ ≤ a , − a ≤ y′ ≤ a}. The constant
coefficient 9

4 is conveniently used to normalize the pressure profile by an average pressure over the
square region. Let b(x′, y′) be the piecewise bilinear interpolant of p(x′, y′) over M2 subdomains, as
defined by equations (3.5) and (3.6). Figure 3 shows the convergence rate of the bilinear interpolant to the
boundary conditions given by equation (4.2) with respect to the total number of subdomains and their
area versus the maximum error values in equation (4.1). Similarly, we find that the solution errors relative
to the exact solution for the vertical surface displacements, (i.e. ew(x, y) = |wexact(x, y) − wapprox(x, y)|)
show the same convergence rate of the boundary conditions in equation (4.1).
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5. Numerical example
Having established a procedure for determining stress and displacement in an elastic half-space under
arbitrary pressure boundary conditions, we present a numerical example of its application. When
external forces act on a rigid footing with a rough surface resting on a granular material, an apparent
area of contact forms along the geometry of the foundation. The resulting equilibrium state, and
ultimately the foundation settlement, are dependent upon the system variables (e.g. geometry and
loading history [35]) in relation to contact phenomena that occur at the interfaces of the footing and
supporting granular soils. To produce a mathematical description within the proposed scope of the
present study, we deliberately reduce the multitude of soil–structure interaction phenomena to a single
quasi-static boundary-value problem referring only to phenomenological observations at the foundation
scale. We assume a stress-free reference as per the theory of elasticity; the theory applied here assumes
no body forces and is therefore incapable of modelling geostatic stresses. In the following, we carefully
develop a mathematical expression for vertical traction boundary conditions based on laboratory-scale
experimental data available from the literature.

Recall the discussion of boundary conditions in §3. Of particular interest are Murzenko’s results [21],
which exhibit a dip in pressure at the centre of the loaded domain, as shown in figure 2. In the following,
we empirically describe a two-dimensional vertical traction distribution that exactly fits these point-
value measurements over a square contact area. We also impose zero values of normal traction along the
edge of the square region. This enforcement both satisfies zero shear resistances along the edges of the
surface footing and maintains continuity in the traction conditions across the entirety of the boundary
plane. Otherwise, the discontinuities across the boundary of the loaded region lead to singularities in the
resulting stress field [7].

5.1. The generation of an empirical pressure surface
Considering a square loaded region Rs of half-width a, we begin to empirically prescribe traction
boundary conditions with a parametrized function of a single variable ρ:

p(ρ) = A cos
(π

2
ρ

a

)ω − B exp
(

−
( ρ

σa

)2
)

. (5.1)

This function was originally developed by Ai et al. [38] to interpolate stress data measured in sandpiles.
As already stated, there is a marked resemblance between Murzenko’s data and these sandpile stresses
with respect to shape and variation. Based on the results of this review, it was determined that a
simple curve fitting of Murzenko’s data by equation (5.1) provides a rudimentary approximation of the
boundary conditions. The values of the free parameters A, B, ω and σ are calculated to fit equation (5.1)
for empirical data regarding contact pressure distribution. The four data points (including the zero edge
values) across the centre line or diagonal of a square domain are paired with these unknown parameters,
which can be solved with a nonlinear equation solver (e.g. the Matlab ‘fsolve’ function).

With reference to the curve fitting across the 0◦ (centre) and 45◦ (diagonal) angles of the domain,
we define two sets of parameters, i.e. A0, B0, ω0, σ0, A45, B45, ω45 and σ45. We select the case which
Murzenko reported as having an average pressure 1 kgf cm−2, depicted in figure 2, for curve-fitting using
equation (5.1). We report that there are a number of combinations of parameter values for equation (5.1)
which fit the values with slight variations in the shape of the curve; in other words, the curve-fit is
not unique. The selected distributions are shown in figure 4, and the relevant parameters are listed in
table 1. Although this parametric fitting provides us some understanding of the contact phenomena, it is
unknown exactly how the contact stresses vary between these two lines. In an attempt to continuously
describe variations between the two lines in a Cartesian domain over a square area, we use coordinate
transformation from a mapping function:

f (θ ) = min
[

1
| cos θ | ,

1
| sin θ |

]
. (5.2)

This function varies from 1 to
√

2 such that f (θ ) is the distance from the centre of a unit square to its
boundary at angle θ . Taking the variable ρ to be radial, and letting α(θ ) = a · f (θ ), we map the line load
to a square domain by letting a → α(θ ) in equation (5.1). In turn, functions of θ can be defined for all the
curve-fitting parameters given in equation (5.1) as follows:

A(θ ) = A0f (θ )2 log(A45/A0)/log(2),
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Figure 4. Curve-fit representations of equation (5.1) with respect to Murzenko’s experimental data [21] for the case where he reported
an average pressure of approximately 1 kgf cm−2, (a) across the centre line, and (b) across the diagonal line of the square footing.

Table 1. Input parameters for equation (5.3) fitting the Murzenko data in the case with reported average pressure 1 kgf cm−2.

A0 A45 B0 B45 ω0 ω45 σ0 σ45

1.7939 1.8292 0.2939 0.3292 0.4119 0.8114 0.2715 0.2853
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B(θ ) = B0f (θ )2 log(B45/B0)/log(2),

ω(θ ) = ω0f (θ )2 log(ω45/ω0)/log(2)

and σ (θ ) = σ0f (θ )2 log(σ45/σ0)/log(2).

These functions vary continuously from a given curve-fit parameter at 0◦ to that at 45◦. Transforming

these auxiliary functions to a Cartesian coordinate system (i.e. letting θ = tan−1(y′/x′), ρ =
√

x′2 + y′2),
we can write the vertical traction as follows:

p(x′, y′) = A(x′, y′) cos

⎛
⎝π

2

√
x′2 + y′2

α(x′, y′)

⎞
⎠

ω(x′,y′)

− B(x′, y′) exp

⎛
⎜⎝−

⎛
⎝

√
x′2 + y′2

σ (x′, y′)α(x′, y′)

⎞
⎠

2⎞⎟⎠ . (5.3)

The results of equation (5.3) are shown in figure 5. The function exactly predicts all five experimental data
points (along with zero values at the boundary) with the parameters in table 1, and reveals a continuous
traction field across the entire loaded domain. However, there is a discrepancy in comparison to the total
force reported in the literature:

|P − PM|
P

≈ 8.6%,

where P = ∫a
−a

∫a
−a p(x′, y′) dx′ dy′ is the total force of the continuous surface traction of equation (5.3),

and PM denotes the applied load as per the average pressure, 1 kgf cm−2, reported in [21]. There are a
number of possible reasons for this discrepancy, one being the extrapolation of the boundary traction
between the centre and diagonal lines. However, Murzenko recognized similar discrepancies in total
force between his curve-fitted surface tractions and the measurements of applied load, although his
method of obtaining a continuous distribution of contact pressures is unknown.

5.2. Calculations for displacement, strain and stress fields
We note that the closed form solutions in appendix B may appear to be undefined at the boundary
z = 0. However, given the boundary conditions presented here, these expressions all tend to finite limits
on the boundary. The values of the limits at these points are applied so that the displacement, stress
and strain fields are all continuous at all points within the body and upon its boundary. Specific to the
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under this surface is calculated to be≈ 1.095 kgf cm−2).
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Figure 6. Convergence of the bilinear interpolant to the empirical boundary condition shown in figure 5, with respect to (a) the total
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traction boundary condition described by equation (5.3), the vertical surface displacements are solved
using equation (A 3):

w(x, y, 0) = λ + 2μ

μ(λ + μ)
V(x, y, 0)

4π
= (1 − ν2)

Eπ
V(x, y, 0),

where E and ν are the Young’s modulus and Poisson’s ratio of the elastic material, respectively. The
potential V is given by equation (3.2). After normalization with respect to the elastic constants and width
(2a) of the square footing, we have the following:

w∗(x′, y′) ≡ E
2a(1 − ν2)

w(x′, y′, 0) = V(x′, y′, 0)
2aπ

. (5.4)

The normalized displacement field can be calculated by the sum of the potential functions of
equation (3.9) over 40 × 40 discretized subdomains (i.e. w∗(x′, y′) ≈ (1/2πa)

∑40
i=1
∑40

j=1 Vij). The loaded
domain is discretized with this number of subdomains by trial and error to satisfy the convergence
criterion presented in figure 6. We note that the higher-order boundary condition applied here shows a
slower rate of convergence than the biquadratic function in §4. A normalized displacement field over Rs

of equation (5.4) is shown in figure 7.
Recalling the discussion in §2, a symmetrically loaded rigid plate resting on a homogeneous material

will experience uniform surface displacement, while the Neumann problem outlined in equation (2.4)
will generally yield non-uniform surface displacements for a given traction distribution. Considering
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the compatibility requirement, we interpret the results of equation (5.4) as the distribution of non-
dimensionalized resistance:

k(x′, y′) = p(x′, y′)
w∗(x′, y′)

. (5.5)

The results from equation (5.5) are shown in figure 8. This expression of soil resistance can be viewed
as a continuous distribution of elastic spring stiffnesses that is analogous to an extended Winkler
foundation model.

The vertical stresses in the elastic body are independent of the elastic constants from
equation (A 12). Notably, σzz at z = 0 is exactly equal to, but opposite in sign of, the described
vertical tractions. Figure 9 compares vertical stresses along depths beneath the loaded area with the
classical solution obtained from a uniform pressure boundary condition [6,7]. The non-uniform pressure
boundary condition yields higher stresses near the centre and lower stresses towards the edge of the
loaded area. In addition, the vertical strains produced within the body from the applied tractions
can be obtained from equation (A 6). For illustration purposes only, vertical strain distributions along
depth are plotted at the locations of Murzenko’s pressure measurements in figure 10. The values of
Young’s modulus and Poisson’s ratio are arbitrarily selected (e.g. values of tri-axial compression tests
on very dense sand found in soil mechanics textbooks, [43,44]). Similar to strain-influence methods [9],
the definite integration of each curve from the surface to an infinite depth yields displacement from
equation (A 3) at Murzenko’s sampling locations. The applied surface tractions yield an interesting trend
in vertical strain fields; tensile strains are pronounced beneath the corners mainly due to the Poisson
effect and the zero traction (resistance) boundary condition imposed on the edges of the loaded domain.
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Figure 10. Vertical strains with depth under points across (a) the centre line, and (b) the diagonal of the loaded region. We choose
example elastic constants E = 1000 kgf cm−2, ν = 0.4 for this calculation.

The results for displacement, stress and strain, and in particular the resulting non-uniform
distribution of resistance/spring stiffness, correspond uniquely to the traction boundary condition,
which is largely dependent upon the nature of the granular soil. The proposed solution could be further
refined to incorporate mobilized shear resistance of the particles, such as the discrete models presented
by Pasternak [45] and Kerr [30]. In particular, geostatic stress states may introduce another set of initial
and/or boundary conditions to foundation systems.
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It is important to note that this particular distribution of contact forces p(x′, y′) should not be

considered conclusively supportive of a particular model of stress propagation in granular materials,
either hyperbolic or elliptic [46]. It is also true that describing the supporting soil medium as an isotropic,
homogeneous elastic material with a stress-free reference state is unlikely to produce contact stress
distributions like those measured in Murzenko’s experiment and/or the sandpile tests. In fact, there
is no comprehensive theory that can predict contact force distribution. The stress distribution is probably
the phenomenological outcome of numerous multiscale parameters. The presence and degree of inter-
granular friction bonding is dependent upon grain-scale geometry, relative density state, dilation and
past loading history, which in turn determine the bulk constitutive phenomena of the granular media.
For these reasons it was intended only to phenomenologically prescribe a Neumann boundary condition
to exemplify the proposed solution procedures. The theoretical question of whether these physical factors
may be all together incorporated in the calculations remains unanswered. With more empirical data at
various interrelated scales, more detailed analytical models must be developed to describe the system-
scale behaviour. The characteristics of granular materials can be further contextualized by many granular
physics studies [47–49].

6. Concluding remarks
This study has aimed to provide a general solution approach to the classical Boussinesq–Love problem
for arbitrary loads over a rectangular surface of an elastic half-space, described as Neumann boundary
conditions. It is very challenging to adequately describe contact phenomena in foundation systems
because contact stress distributions within the loaded area of even purely elastic bodies is neither uniform
nor linear [5,24,25]. The solution procedure presented here, along with the closed-form solutions of
the potential functions, are readily applied to arbitrary traction boundary conditions in a Cartesian
coordinate system. We attempt to apply these potentials to foundation engineering situations, specifically
to elastic settlement analysis of shallow foundations. However, we hope that the ubiquitous nature of the
Laplace equation allows the present solution to be feasibly applied to other fields of study. Further, the
proposed method of solution can be applied to tangential traction boundary-value problems [50–52].
A set of bilinear solutions to this problem for rectangular regions is currently under development by the
present authors.
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Appendix A. Formula for the displacement vector, stress and strain tensors
The displacements (u, v, w) in the (x, y, z) directions are given by

u = − 1
4π

(
1

λ + μ

∂χ

∂x
+ z

μ

∂V
∂x

)
, (A 1)

v = − 1
4π

(
1

λ + μ

∂χ

∂y
+ z

μ

∂V
∂y

)
(A 2)

and w = 1
4πμ

(
λ + 2μ

λ + μ
V − z

∂V
∂z

)
. (A 3)
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Here, λ and μ are the Lame’s constants. The strains are derived simply by differentiation as follows:

εxx = ∂u
∂x

= − 1
4π

(
1

λ + μ

∂2χ

∂x2 + z
μ

∂2V
∂x2

)
, (A 4)

εyy = ∂v

∂y
= − 1

4π

(
1

λ + μ

∂2χ

∂y2 + z
μ

∂2V
∂y2

)
, (A 5)

εzz = ∂w
∂z

= 1
4π

(
1

λ + μ

∂V
∂z

− z
μ

∂2V
∂z2

)
, (A 6)

εxz = 1
2

(
∂u
∂z

+ ∂w
∂x

)
= −1

4πμ

(
z

∂2V
∂x∂z

)
, (A 7)

εyz = 1
2

(
∂v

∂z
+ ∂w

∂x

)
= −1

4πμ

(
z

∂2V
∂y∂z

)
(A 8)

and εxy = 1
2

(
∂u
∂y

+ ∂v

∂x

)
= −1

4π

(
1

λ + μ

∂2χ

∂x∂y
+ z

μ

∂2V
∂x∂y

)
. (A 9)

The stresses are then derived from the generalized three-dimensional Hooke’s Law, expressed in
simplified form as

σxx = 1
2π

(
λ

λ + μ

∂V
∂z

− μ

λ + μ

∂2χ

∂x2 − z
∂2V
∂x2

)
, (A 10)

σyy = 1
2π

(
λ

λ + μ

∂V
∂z

− μ

λ + μ

∂2χ

∂y2 − z
∂2V
∂y2

)
, (A 11)

σzz = 1
2π

(
∂V
∂z

− z
∂2V
∂z2

)
, (A 12)

σxz = −1
2π

(
z

∂2V
∂x∂z

)
, (A 13)

σyz = −1
2π

(
z

∂2V
∂y∂z

)
(A 14)

and σxy = −1
2π

(
μ

λ + μ

∂2χ

∂x∂y
+ z

∂2V
∂x∂y

)
. (A 15)

Appendix B. Closed-form solutions of potential functions
We here list the closed-form solutions of the potentials for arbitrary rectangular region R under the simple
polynomial loads employed throughout this work. We define

Amn ≡
∫∫

R

(x′)m(y′)n

r
dx′ dy′

and Bmn ≡
∫∫

R
(x′)m(y′)n log(z + r) dx′ dy′.

Note that, in the following, the notation [ ]|a1
a2 |b1

b2
is used to compact the multiple repeated terms generated

by the double definite integration by the fundamental theorem of calculus. In general, if F(x′, y′) is a
function of two variables, the operator acts upon it as follows:

[F(x′, y′)]|a1
a2 |b1

b2
= (F(a1, b1) − F(a1, b2)) − (F(a2, b1) − F(a2, b2)).
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B.1. Constant load solutions

A00 =
[

(y′ − y) log(r + x′ − x) + (x′ − x) log(r − y + y′) − z tan−1
(

(x′ − x)(y′ − y)
zr

)]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂A00

∂x
= [− log(r + y′ − y)]

∣∣a1
a2

∣∣∣b1

b2

∂2A00

∂x2 =
[
− (x′ − x)(y′ − y)

((x′ − x)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂A00

∂y
= [− log((x′ − x) + r)]

∣∣a1
a2

∣∣∣b1

b2

∂2A00

∂y2 =
[
− (x′ − x)(y′ − y)

((y′ − y)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂A00

∂z
=
[
−tan−1

(
(x′ − x)(y′ − y)

zr

)]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂2A00

∂z2 =
[

(x′ − x)(y′ − y)(r2 + z2)

((x′ − x)2 + z2)((y′ − y)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂2A00

∂x∂z
=
[

(y′ − y)z

((x′ − x)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂2A00

∂y∂z
=
[

(x′ − x)z

((y′ − y)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂2A00

∂x∂y
=
[

1
r

]∣∣∣∣a1

a2

∣∣∣∣∣
b1

b2

B00 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2

(x′ − x)(y′ − y) + 1
2

(x′ − x)2
(

tan−1
(

y′ − y
x′ − x

)
− tan−1

(
z(y′ − y)
(x′ − x)r

))
+ · · ·

1
2

(y′ − y)2
(

tan−1
(

x′ − x
y′ − y

)
− tan−1

(
z(x′ − x)
(y′ − y)r

))
− · · ·

1
2

z2tan−1
(

(x′ − x)(y′ − y)
zr

)
+ · · ·

z(x′ − x) log(y′ − y + r) + z(y′ − y) log(x′ − x + r) + · · ·
(x′ − x)(y′ − y) log(z + r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1

a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1

b2

∂B00

∂x
=
⎡
⎣(x′ − x)

(
tan−1

(
(y′ − y)z
(x′ − x)r

)
− tan−1

(
y′ − y
x′ − x

))
− · · ·

z log
(
(y′ − y) + r

)− (y′ − y) log (z + r)

⎤
⎦
∣∣∣∣∣∣
a1

a2

∣∣∣∣∣∣∣
b1

b2

∂2B00

∂x2 =
[

tan−1
(

y′ − y
x′ − x

)
− tan−1

(
z(y′ − y)
(x′ − x)r

)]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂B00

∂y
=
⎡
⎣(y′ − y)

(
tan−1

(
(x′ − x)z
(y′ − y)r

)
− tan−1

(
x′ − x
y′ − y

))
− · · ·

z log((x′ − x) + r) − (x′ − x) log(z + r)

⎤
⎦
∣∣∣∣∣∣
b1

b2

∣∣∣∣∣∣∣
a1

a2

∂2B00

∂y2 =
[

tan−1
(

x′ − x
y′ − y

)
− tan−1

(
z(x′ − x)
(y′ − y)r

)]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

∂2B00

∂x∂y
= [

log(z + r)
]∣∣a1

a2

∣∣∣b1

b2
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B.2. Linear load solutions

A10 =
[

1
2

(y′ − y)r + 1
2

((x′ − x)2 + z2) log(r + y′ − y)
]∣∣∣∣a1

a2

∣∣∣∣∣
b1

b2

+ xA00

∂A10

∂x
= [−(x′ − x) log(y′ − y + r)]

∣∣a1
a2

∣∣∣b1

b2
+ x

∂A00

∂x
+ A00

∂2A10

∂x2 =
[

log(r + y′ − y) − (x′ − x)2(y′ − y)

((x′ − x)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A00

∂x2 + 2
∂A00

∂x

∂A10

∂y
= [−r]|a1

a2

∣∣b1

b2
+ x

∂A00

∂y

∂2A10

∂y2 =
[

(y′ − y)
r

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A00

∂y2

∂A10

∂z
= [z log(r + y′ − y)]

∣∣a1
a2

∣∣∣b1

b2
+ x

∂A00

∂z

∂2A10

∂z2 =
[

z2

r(r + y′ − y)
+ log(r + y′ − y)

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A00

∂z2

∂2A10

∂x∂z
=
[

(x′ − x)(y′ − y)z

((x′ − x)2 + z2)r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A00

∂x∂z
+ ∂A00

∂z

∂2A10

∂y∂z
=
[
− z

r

]∣∣∣a1

a2

∣∣∣∣b1

b2

+ y
∂2A00

∂y∂z
+ ∂A00

∂z

∂2A10

∂x∂y
=
[

(x′ − x)
r

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A00

∂x∂y
+ ∂A00

∂y

B10 = 1
18

⎡
⎢⎢⎢⎣

6(x′ − x)3
(

tan−1
(

(y′ − y)
(x′ − x)

)
− tan−1

(
(y′ − y)z
(x′ − x)r

))
+ · · ·

3z(3(x′ − x)2 + z2) log(y′ − y + r) + 9(y′ − y)(x′ − x)2 log(z + r) + · · ·
(y′ − y)(−(y′ − y)2 − 6(x′ − x)2 + 6zr + 3(y′ − y)2 log(z + r))

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

a1

a2

∣∣∣∣∣∣∣∣∣∣

b1

b2

+ xB00

∂B10

∂x
=
⎡
⎣(x′ − x)2

(
tan−1

(
(y′ − y)z
(x′ − x)r

)
− tan−1

(
y′ − y
x′ − x

))
− · · ·

z(x′ − x) log((y′ − y) + r) − (x′ − x)(y′ − y) log(z + r) + (x′ − x)y′

⎤
⎦
∣∣∣∣∣∣
a1

a2

∣∣∣∣∣∣∣
b1

b2

+ x
∂B00

∂x
+ B00

∂2B10

∂x2 =
⎡
⎣2(x′ − x)

(
tan−1

(
y′ − y
x′ − x

)
− tan−1

(
(y′ − y)z
(x′ − x)r

))
+ · · ·

z log((y′ − y) + r) + (y′ − y) log(z + r)

⎤
⎦
∣∣∣∣∣∣
a1

a2

∣∣∣∣∣∣∣
b1

b2

+ x
∂2B00

∂x2 + 2
∂B00

∂x

∂B10

∂y
=
[
−1

2
(zr + ((x′ − x)2 + (y′ − y)2) log(z + r))

]∣∣∣∣a1

a2

∣∣∣∣∣
b1

b2

+ x
∂B00

∂y

∂2B10

∂y2 = [(y′ − y) log(z + r)]
∣∣a1
a2

∣∣∣b1

b2
+ x

∂2B00

∂y2

∂2B10

∂x∂y
= [(x′ − x) log(z + r)]

∣∣a1
a2

∣∣∣b1

b2
+ x

∂2B00

∂x∂y
+ ∂B00

∂y

The solutions for the potentials A01, B01 for a linear load in the y′ direction can be obtained
directly from these solutions by permutation of the terms related to the x and y variables in the above
expressions.
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B.3. Bilinear load solutions

A11 =
[

1
3

r3
]∣∣∣∣

a1

a2

∣∣∣∣∣
b1

b2

+ xA01 + yA10 − xyA00

∂A11

∂x
= [−(x′ − x)r]

∣∣a1
a2

∣∣∣b1

b2
+ y

∂A10

∂x
+ x

∂A01

∂x
+ A01 − xy

∂A00

∂x
− yA00

∂2A11

∂x2 =
[

r2 + (x′ − x)2

r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣∣
b1

b2

+ x
∂2A01

∂x2 + 2
∂A01

∂x
+ y

∂2A10

∂x2 − xy
∂2A00

∂x2 − 2y
∂A00

∂x

∂A11

∂y
= [−(y′ − y)r]

∣∣a1
a2

∣∣∣b1

b2
+ y

∂A10

∂y
+ A10 + x

∂A01

∂y
− xy

∂A00

∂y
− xA00

∂2A11

∂y2 =
[

r2 + (y′ − y)2

r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣∣
b1

b2

+ x
∂2A01

∂y2 + y
∂2A10

∂y2 + 2
∂A10

∂y
− xy

∂2A00

∂y2 − 2x
∂A00

∂y

∂A11

∂z
= [zr]|a1

a2

∣∣b1
b2

+ x
∂A01

∂z
+ y

∂A10

∂z
− xy

∂A00

∂z

∂2A11

∂z2 =
[

r2 + z2

r

]∣∣∣∣∣
a1

a2

∣∣∣∣∣∣
b1

b2

+ x
∂2A01

∂z2 + y
∂2A10

∂z2 − xy
∂2A00

∂z2

∂2A11

∂x∂z
=
[
− (x′ − x)z

r

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A01

∂x∂z
+ ∂A01

∂z
+ y

∂2A10

∂x∂z
− xy

∂2A00

∂x∂z
− y

∂A00

∂z

∂2A11

∂y∂z
=
[
− (y′ − y)z

r

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2A01

∂y∂z
+ y

∂2A10

∂y∂z
+ ∂A10

∂z
− xy

∂2A00

∂y∂z
− x

∂A00

∂z

∂2A11

∂x∂y
=
[

(x′ − x)(y′ − y)
r

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ y
∂2A10

∂x∂y
+ ∂A10

∂x
+ x

∂2A01

∂x∂y
+ ∂A01

∂y
− · · ·

xy
∂2A00

∂x∂y
− x

∂A00

∂x
− y

∂A00

∂y
− A00

∂B11

∂x
=
[
−1

2
(x′ − x)(zr + ((x′ − x)2 + (y′ − y)2) log(z + r))

]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ y
∂B10

∂x
+ x

∂B01

∂x
+ B01 − xy

∂B00

∂x
− yB00

∂2B11

∂x2 =
[

1
2

zr + 1
2

(3(x′ − x)2 + (y′ − y)2) log(z + r)
]∣∣∣∣

a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2B01

∂x2 + 2
∂B01

∂x
+ · · ·

y
∂2B10

∂x2 − xy
∂2B00

∂x2 − 2y
∂B00

∂x

∂B11

∂y
=
[
−1

2
(y′ − y)

(
zr +

(
(x′ − x)2 + (y′ − y)2

)
log (z + r)

)]∣∣∣∣
a1

a2

∣∣∣∣∣
b1

b2

+ y
∂B10

∂y
+ · · ·

B10 + x
∂B01

∂y
− xy

∂B00

∂y
− xB00

∂2B11

∂y2 =
[

1
2

zr + 1
2

(3(y′ − y)2 + (x′ − x)2) log(z + r)
]∣∣∣∣

a1

a2

∣∣∣∣∣
b1

b2

+ x
∂2B01

∂y2 + y
∂2B10

∂y2 + · · ·

2
∂B10

∂y
− xy

∂2B00

∂y2 − 2x
∂B00

∂y

∂2B11

∂x∂y
= [(x′ − x)(y′ − y) log(z + r)]|a1

a2 |b1
b2

+ y
∂2B10

∂x∂y
+ ∂B10

∂x
+ x

∂2B01

∂x∂y
+ · · ·

∂B01

∂y
− xy

∂2B00

∂x∂y
− x

∂B00

∂x
− y

∂B00

∂y
− B00



19

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180203

.................................................
References
1. Boussinesq J. 1885 Application des potentiels à

l’étude de l’équilibre et du mouvement des solides
élastiques. Paris, France: Gauthier-Villars.

2. Love AEH. 1944 A treatise on the mathematical
theory of elasticity. New York, NY: Dover
Publications.

3. Lamb H. 1901 On Boussinesq’s problem. Proc. Lond.
Math. Soc. s1–34, 276–284. (doi:10.1112/plms/
s1-34.1.276)

4. Terazawa K. 1916 On the elastic equilibrium of a
semi-infinite solid. J. College Sci. Imperial Univ.
Tokyo 37, 1–64.

5. Hertz H. 1896 On the contact of elastic solids. In
Miscellaneous papers (ed. P Leonard), pp. 146–162.
London, UK: Macmillan.

6. Newmark N. 1935 Simplified computations of
vertical pressures in elastic foundations. University
of Illinois Engineering Experiment Stations. Circular
No. 24.

7. Love AEH. 1929 The stress produced in a
semi-infinite solid by pressure on part of the
boundary. Phil. Trans. R. Soc. Lond. A 228, 377–420.
(doi:10.1098/rsta.1929.0009)

8. Ahlvin RG, Ulery HH. 1962 Tabulated values for
determining the complete pattern of stresses,
strains, and deflections beneath a uniform circular
load on a homogeneous half space. Highway
Research Board Bulletin, no. 342.

9. Schmertmann J. 1970 Static cone to compute static
settlement over sand. J. Soil Mech. Found. Div. ASCE
96, 1011–1043.

10. Becker J, Bevis M. 2004 Love’s problem. Geophys. J.
Int. 156, 171–178. (doi:10.1111/j.1365-246X.
2003.02150.x)

11. Dydo J, Busby H. 1995 Elasticity solutions for
constant and linearly varying loads applied to a
rectangular surface patch on the elastic half-space.
J. Elast. 38, 153–163. (doi:10.1007/BF00042496)

12. Li J, Berger E. 2001 A Boussinesq-Cerruti solution set
for constant and linear distribution of normal and
tangential load over a triangular area. J. Elast. 63,
137–151. (doi:10.1023/A:1014013425423)

13. Marmo F, Rosati L. 2015 A general approach to the
solution of Boussinesq’s problem for polynomial
pressures acting over polygonal domains. J. Elast.
122, 75–112. (doi:10.1007/s10659-015-9534-5)

14. Kunert VK. 1961 Spannungsverteilung im Halbraum
bei elliptischer Flächenpressungsverteilung über
einer rechteckigen Druckfläche. Forschung auf dem
Gebiet des Ingenieurwesens A 27, 165–174.
(doi:10.1007/BF02561354)

15. Marmo F, Toraldo F, Rosati A, Rosati L. 2018
Numerical solution of smooth and rough contact
problems.Meccanica 53, 1415–1440. (doi:10.1007/
s11012-017-0766-2)

16. Vable M, Ammons BA. 1995 A study of the direct
and indirect BEM. Trans. Model. Simul. 10, 3–10.
(doi:10.2495/BE950011)

17. Aleynikov SM. 2011 Spatial contact problems in
geotechnics; boundary element method. Berlin,
Germany: Springer.

18. Strack ODL. 1987 The analytic element method for
regional groundwater modelling. In Proc. of the
Conf. of the National Water Well Association Solving
Groundwater Problems with Models, Denver, CO.

19. Strack ODL. 1989 Groundwater mechanics.
Englewood Cliffs, NJ: Prentice Hall.

20. Telliskivi T, Podra P. 2006 Rough surface model
using potential function superpositions. Proc.
Estonian Acad. Sci. Eng 12, 16–25.

21. Murzenko Y. 1965 Experimental results on the
distribution of normal contact pressure on the
base of a rigid foundation resting on sand. Soil
Mech. Found. Eng. 2, 69–73. (doi:10.1007/BF017
04767)

22. Smoltczyk H. 1967 Stress computation in soil media.
J. Terramechanics 4, 101–124.

23. Gurtin ME. 1972 The linear theory of elasticity. In
Mechanics of solids II (ed. C Truesdell), pp. 1–295.
Berlin, Germany: Springer.

24. Harding J, Sneddon I. 1945 The elastic stresses
produced by the indentation of the plane surface of
a semi-infinite elastic solid by a rigid punch.Math.
Proc. Camb. Philos. Soc. 41, 16. (doi:10.1017/
S0305004100022325)

25. Sneddon I. 1946 Boussinesq’s problem for a
flat-ended cylinder.Math. Proc. Camb. Philos.
Soc. 42, 29. (doi:10.1017/S0305004100022702)

26. Mindlin R. 1949 Compliance of elastic bodies in
contact. J. Appl. Mech. 16, 259–268.

27. Fabrikant V. 1989 Applications of potential theory in
mechanics. Dordrecht, The Netherlands: Kluwer
Academic Publishers.

28. Terzaghi K. 1943 Theoretical soil mechanics. New
York, Ny: J. Wiley and Sons, Inc.

29. Bauer G, Shields D, Scott J, Nwabuokei S. 1979
Normal and shear stress measurements on a strip
footing. Can. Geotech. J. 16, 177–189. (doi:10.1139/
t79-015)

30. Kerr A. 1989 Tests and analyses of footings on a sand
base. Soils Found. 29, 83–94. (doi:10.3208/
sandf1972.29.3_83)

31. Winkler E. 1867 Die Lehre von der Elastizitat und
Festigkeit. Prague, Czech Republic: Dominicus.

32. Schultze E. 1961 Distribution of stress beneath a
rigid foundation. In Proc. of the 5th Int. Conf. on Soil
Mechanics and Foundation Engineering, Paris,
pp. 807–813. Paris, France: Dunod.

33. Abdullah W. 2008 New elastoplastic method for
calculation the contact pressure distribution under
rigid foundations. Jordan J. Civ. Eng. 2, 71–89.

34. Balakrishna C, Murthy B, Nagaraj T. 1992 Stress
distribution beneath rigid circular foundations on
sands. Int. J. Numer. Anal. Methods Geomech. 16,
65–72. (doi:10.1002/nag.1610160106)

35. Vanel L, Howell D, Clark D, Behringer R, Clement E.
1999 Memories in sand: experimental tests of
construction history on stress distributions under
sandpiles. Phys. Rev. E 60, R5040–R5043.
(doi:10.1103/PhysRevE.60.R5040)

36. Brockbank R, Huntley J, Ball R. 1997 Contact force
distribution beneath a three-dimensional granular

pile. J. Phys. II France 7, 1521–1532. (doi:10.1051/
jp2:1997200)

37. Zuriguel I, Mullin T. 2008 The role of particle shape
on the stress distribution in a sandpile. Proc. R. Soc.
A 464, 99–116. (doi:10.1098/rspa.2007.
1899)

38. Ai J, Ooi J, Chen J, Rotter J, Zhong Z. 2013 The role of
deposition process on pressure dip formation
underneath a granular pile.Mech. Mater. 66,
160–171. (doi:10.1016/j.mechmat.2013.08.005)

39. Edwards S, Mounfield C. 1996 A theoretical model
for the stress distribution in granular matter III.
Forces in sandpiles. Phys. A: Stat. Mech. Appl.
226, 25–33. (doi:10.1016/0378-4371(95)
00377-0)

40. Wittmer J, Claudin P, Cates M, Bouchaud J. 1996 An
explanation for the central stress minimum in sand
piles. Nature 382, 336–338. (doi:10.1038/382
336a0)

41. Wittmer J, Cates M, Claudin P. 1997 Stress
propagation and arching in static sandpiles. J. Phys.
I France 7, 39–80. (doi:10.1051/jp1:1997126)

42. Cates M, Wittmer J, Bouchard J, Claudin P. 1998
Development of stresses in cohesionless poured
sand. Phil. Trans. R. Soc. Lond. A 356, 2535–2560.
(doi:10.1098/rsta.1998.0285)

43. Bowles J. 1958 Foundation analysis and design, 5th
edn. New York, NY: McGraw-Hill.

44. Lambe T, Whitman R. 1968 Soil mechanics. New
York, NY: Wiley.

45. Pasternak PL. 1954 On a newmethod for analysis of
foundations on an elastic base using two base
parameters. Moscow, USSR: Gos. Izd. Lit. po
Stroitelstvu I Arkhitekture.

46. Goldenberg C, Goldhirsch I. 2005 Friction enhances
elasticity in granular solids. Nature 435, 188–191.
(doi:10.1038/nature03497)

47. Cates ME, Wittmer JP, Bouchard JP, Claudin P. 1999
Jamming and static stress transmission in granular
materials. Chaos 9, 511–522. (doi:10.1063/1.166456)

48. Silbert LE, Ertas D, Grest GS, Halsey TC, Levine D.
2002 Analogies between granular jamming and the
liquid-glass transition. Phys. Rev. E 65, 051307.
(doi:10.1103/PhysRevE.65.051307)

49. Majmudar TS, Behringer RP. 2005 Contact for
measurements and stress-induced anisotropy in
granular materials. Nature 435, 1079–1082.
(doi:10.1038/nature03805)

50. Cerruti V. 1882 Ricerche Intorno all’Equilibrio
de’Corpi Elastici Isotropi. Reale Acc. dei Lincei 13,
81–122.

51. Marmo F, Sessa S, Rosati L. 2016 Analytical solutions
of the Cerruti problem under linearly distributed
horizontal loads over polygonal domains. J. Elast.
124, 27–56. (doi:10.1007/s10659-015-9560-3)

52. Li J, Berger EJ. 2003 Semi-analytic approach to
three-dimensional normal contact problems with
friction. Comput. Mech. 30, 310–322. (doi:10.1007/
s00466-002-0407-y)

http://dx.doi.org/doi:10.1112/plms/s1-34.1.276
http://dx.doi.org/doi:10.1112/plms/s1-34.1.276
http://dx.doi.org/doi:10.1098/rsta.1929.0009
http://dx.doi.org/doi:10.1111/j.1365-246X.2003.02150.x
http://dx.doi.org/doi:10.1111/j.1365-246X.2003.02150.x
http://dx.doi.org/doi:10.1007/BF00042496
http://dx.doi.org/doi:10.1023/A:1014013425423
http://dx.doi.org/doi:10.1007/s10659-015-9534-5
http://dx.doi.org/doi:10.1007/BF02561354
http://dx.doi.org/doi:10.1007/s11012-017-0766-2
http://dx.doi.org/doi:10.1007/s11012-017-0766-2
http://dx.doi.org/doi:10.2495/BE950011
http://dx.doi.org/doi:10.1007/BF01704767
http://dx.doi.org/doi:10.1007/BF01704767
http://dx.doi.org/doi:10.1017/S0305004100022325
http://dx.doi.org/doi:10.1017/S0305004100022325
http://dx.doi.org/doi:10.1017/S0305004100022702
http://dx.doi.org/doi:10.1139/t79-015
http://dx.doi.org/doi:10.1139/t79-015
http://dx.doi.org/doi:10.3208/sandf1972.29.3_83
http://dx.doi.org/doi:10.3208/sandf1972.29.3_83
http://dx.doi.org/doi:10.1002/nag.1610160106
http://dx.doi.org/doi:10.1103/PhysRevE.60.R5040
http://dx.doi.org/doi:10.1051/jp2:1997200
http://dx.doi.org/doi:10.1051/jp2:1997200
http://dx.doi.org/doi:10.1098/rspa.2007.1899
http://dx.doi.org/doi:10.1098/rspa.2007.1899
http://dx.doi.org/doi:10.1016/j.mechmat.2013.08.005
http://dx.doi.org/doi:10.1016/0378-4371(95)00377-0
http://dx.doi.org/doi:10.1016/0378-4371(95)00377-0
http://dx.doi.org/doi:10.1038/382336a0
http://dx.doi.org/doi:10.1038/382336a0
http://dx.doi.org/doi:10.1051/jp1:1997126
http://dx.doi.org/doi:10.1098/rsta.1998.0285
http://dx.doi.org/doi:10.1038/nature03497
http://dx.doi.org/doi:10.1063/1.166456
http://dx.doi.org/doi:10.1103/PhysRevE.65.051307
http://dx.doi.org/doi:10.1038/nature03805
http://dx.doi.org/doi:10.1007/s10659-015-9560-3
http://dx.doi.org/doi:10.1007/s00466-002-0407-y
http://dx.doi.org/doi:10.1007/s00466-002-0407-y

	Introduction
	Governing equations and boundary conditions
	Potential functions for arbitrary contact pressure distributions
	Superposition of potentials
	Example calculation for bilinear boundary conditions

	Convergence and error assessment
	Numerical example
	The generation of an empirical pressure surface
	Calculations for displacement, strain and stress fields

	Concluding remarks
	Constant load solutions
	Linear load solutions
	Bilinear load solutions

	References

