


trtftp







NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS
3 3&4o

COMPUTER SIMULATION STUDIES OE MULTIPLE
BROADBAND TARGET LOCALIZATION VIA FREQUENCY
DOMAIN ADAPTIVE BEAMFORMING FOR PLANAR ARRAYS

by

Charles D. Behrle

March 1988

Thesis Advisor L. J. Ziomek

Approved for public release; distribution is unlimited

T238694





SECURITY CLASS. PiCAT'ON OF iHIS 'AGE

REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIF.CAT'ON

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;

distribution is unlimited
2b DECLASSIFICATION/ DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

62

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

Computer Simulation Studies of Multiple Broadband Target Localization Via Frequency Domain
Adaptive Beamforming for Planar Arrays

12. PERSONAL AUTHOR(S)

Charles D. Behrle

13a. TYPE OF REPORT

Thesis, M.S.
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)

March, 1988
15 PAGE COUNT

58

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

frequency domain adaptive beamforming; signal processing

planar array; least mean square error
FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Computer simulation studies of a frequency domain adaptive beamforming algorithm ar.

presented. These simulation studies were conducted to determine the multiple broadband
target localization capability and the full angular coverage capability of the algorithm.

The algorithm was evaluated at several signal-to-noise ratios with varying sampling rates

The number of iterations that the adaptive algorithm took to reach a minimum estimation
error was determined. Results of the simulation studies indicate that the algorithm can

localize multiple broadband targets and has full angular coverage capability.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

G3 UNCLASSIFIED/UNLIMITED SAME AS RPT Q DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL

Professor L. J. Ziomek
22b TELEPHONE (Include Area Code)
408-646-3206

22c OFFICE SYMBOL
62Zm

DO FORM 1473, 34 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

ft U S Government Printing Office 1986—606-243

UNCLASSIFIED



Approved for public release; distribution is unlimited

Computer Simulation Studies of Multiple Broadband
Target Localization Via Frequency Domain Adaptive

Beamforming for Planar Arrays

by

Charles D. Behrle

Lieutenant, United States Navy
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1988



ABSTRACT

Computer simulation studies of a frequency domain adaptive beamforming

algorithm are presented. These simulation studies were conducted to determine

the multiple broadband target localization capability and the full angular coverage

capability of the algorithm. The algorithm was evaluated at several signal-to-noise

ratios with varying sampling rates. The number of iterations that the adaptive

algorithm took to reach a minimum estimation error was determined. Results of

the simulation studies indicate that the algorithm can localize multiple broadband

targets and has full angular coverage capability.
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I. INTRODUCTION

This thesis is but a part of an ongoing research project to develop new sonar

signal processing algorithms capable of quickly and accurately solving target lo-

calization problems. Present technology and doctrine dictate that several lines of

bearing to a target be obtained before a sonar fire control solution can be com-

puted. Obtaining these lines of bearing is a time consuming and often dangerous

task due to the increased probability of counterdetection and, as a result, evasive

maneuvering and defensive action on the part of the target. A sonar system ca-

pable of providing timely, accurate target localization while minimizing own ship

maneuvering would result in longer firing ranges and, therefore, a reduction of the

threat to one's own ship.

Several recent papers [Refs. 1-3] have discussed the application of a complex

least-mean-square (LMS) adaptive algorithm [Ref. 4] to bearing estimation prob-

lems using a linear array of sensors. When a linear array is used, only a bearing

angle xp to the source can be estimated, an estimate of the depression angle B
o
can-

not (Figure 1.1). While an estimate of the bearing angle is useful in the localization

problem, a better tool would be an algorithm which provides estimates of both the

bearing angle and the depression angle. A frequency domain adaptive beamform-

ing algorithm for planar arrays that solves multiple, broadband target localization

problems and provides estimates of both the bearing angles and the depression

angles from the center of the planar array to the targets has been developed and

initially tested by Ziomek and Chan [Ref. 5].



y

Figure 1.1. Target Location Geometry.



The research performed in this thesis was to continue the work of Ziomek

and Chan [Refs. 5, 6] and fully evaluate the capabilities of the complex, least-

mean-square, frequency domain, adaptive beamforming algorithm they developed

via computer simulation studies. The computer simulation studies were designed

to test the algorithm's multiple broadband target localization capability, its full

angular coverage capability, and its angular resolution as a function of the input

signal- to-noise ratio (SNR) at a single element in the array, sampling rate, harmonic

number, and the number of iterations of the algorithm.

Each target was modeled as a broadband sound source. As a result, the

frequency spectrum of the output signal from each element of the planar array

contains several frequency components. An estimate of the bearing and depression

angle for each frequency component is provided as a result of processing the output

frequency spectrum from each element in the array through the frequency domain

adaptive beamforming algorithm. Therefore, if each target exhibits at least one

unique frequency component (or spectral line), then all targets can be located.

Full angular coverage is the ability to localize a target regardless of its relative

position to the array. The broadside case is the easiest since it is at this position

that the far-field beam pattern beamwidth is its narrowest. The endfire case is the

most difficult since the far-field beam pattern beamwidth is the broadest at this

point. The full angular coverage and multiple broadband target capabilities were

tested simultaneously.

Baseline results were the first assembled. Baseline results are defined as bear-

ing and depression angle estimation errors (measured in degrees) as a function of

sampling rate, harmonic number, and the number of iterations of the algorithm

for the "no noise" case. Identical cases were run using additive, zero mean, white,



guassian noise to corrupt the output signals from each element of the planar ar-

ray. Average bearing and depression angle estimation errors were then plotted as

a function of the input SNR at a single element of the planar array, the sampling

rate, and the harmonic number.

Chapter II describes the theory used in the development of the frequency do-

main adaptive beamforming algorithm. The construction of the direction cosine

estimates, the angle estimates, and phase "unwrapping", integral parts of the al-

gorithm, will be presented in detail.

Chapter III contains computer simulation results and an explanation of these

results. The results which are presented consist of graphical representations of

the average estimation errors of the bearing and depression angles at two distinct

signal- to-noise ratio levels for four cases. These cases include targets evaluated

at broadside, endfire, random placement, and targets which share a spectral line.

Conclusions concerning the effect of harmonic number, sampling rate, number of

iterations of the algorithm, and SNR are made. The Appendix contains tabular

numerical data for all results.

Chapter IV will present final conclusions and recommendations for further

research.

Results of this thesis research work have been incorporated into a research

paper by Ziomek and Behrle which was presented at the Twenty- First Annual

Asilomar Conference on Signals, Systems, and Computers [Ref. 7].



II. THEORY

This chapter is designed to present a brief, yet comprehensive, development of

the frequency domain adaptive beamforming algorithm which is evaluated in this

thesis. The goal of the algorithm is to process the output electrical signals from

a planar array of sensors and provide estimates of direction (both bearing and

depression angles) and frequency content of the acoustic fields incident upon the

array. The development of the algorithm presented here is similar to the analysis

section of a paper by Ziomek and Behrle [Ref. 7], but this chapter provides a more

detailed explanation for several parts of the algorithm. A more in-depth analysis

of the algorithm is provided by Ziomek and Chan [Ref. 5] and Chan [Ref. 6],

The frequency domain adaptive beamforming algorithm is based on using the

complex frequency domain data R(q,m,n) from all M x N elements of a planar

array. The objective of the adaptive filter used in the algorithm is for the filter

to converge to a set of phase weights such that the array output signal will match

a reference signal. From this set of phase weights, estimates of the bearing and

depression angles as a function of the harmonic number q can be made.

Consider a M x N planar array of point source elements lying in the XY

plane (Figure 2.1). These elements are equally spaced where dx and dy are the

interelement spacings in the X and Y directions, respectively, and M and N are

the total number (odd) of elements in the X and Y directions, respectively. The

random baseband output electrical signal, r(t, m, n), is composed of a deterministic

signal, y(l,m,n), and a random receiver noise component, n{L
y
m,ri). The output

signal at time instant I and element (to, n) in the array is given by
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Figure 2.1. Planar Array Geometry.
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r(i.,m,n) = y{l,m,n) + n(l,m,n),L = -L', . . . ,0, . . . L'

m = -M',...,0,...,M' (2.1)

n=-N',...,0,...,N'

where

L' = (L- l)/2, (2.2)

M' = (M - l)/2, (2.3)

N' = {N - l)/2, (2.4)

and

L>2if+1 (2.5)

is the total number of time samples that must be taken per element to avoid aliasing

when the deterministic signal y(l,m,n) is composed of K harmonics [Ref. 8: p.

164]. The minimum value for L (i.e., L = 2K + 1) is obtained by sampling at

the Nyquist Rate. If T seconds is the length of the data record (or fundamental

period) recorded at each element of the array, then the fundamental frequency (or

the FFT bin spacing) is given by

/o = 1/To Hz. (2.6)

Therefore, the highest frequency which can be contained within the deterministic

part of the received signal is

fmax = Kf HZ (2.7)

and the minimum sampling frequency of the received output electrical signal r(£, m, n)

is

fs = L/T Samples/sec (2.8)



where L must satisfy equation 2.5 [Ref. 8: p. 164].

To obtain the complex frequency domain samples of the received signal, the

discrete Fourier transform (DFT) with respect to the time index t of equation (2.1)

is taken. This action yields

R(q,m,n) = Y(q,m,n) + N(q,m,n),q = —L', .

.

. , 0, . .
.

, L'

m = -M',...,0,...,M' (2.9)

n = -N',...,0,...,N'

where the index q represents the harmonic number.

Consider a single general plane-wave field, g I t + ^p-
) ,

propagating in the

±no direction, incident upon the planar array as shown in Figure 2.2. If n^ is a

unit vector, g(t) an arbitrary baseband function, and c the speed of sound in the

medium measured in meters per second, then the deterministic part of the output

electrical signal at time instant £ and element (m,n) in the array is given by [Ref.

8: p. 160]

(D \ (err T uprndx + vondY \y(e,m,n) = gltTs -\ 1 (2.10)

where T$ is the sampling period in seconds, and uo and vq are dimensionless

direction cosines with respect to the X and Y axes, respectively.

Upon taking the DFT of equation 2.10, we obtain the corresponding frequency

spectrum given by [Ref. 8: pp. 162-166]

Y(q,m,n) — Lc
q
exp(-f j27rqfoUomdx /c)exp(+ j2Trqf vondY /c) (2.11)

where c
q , q = — L' , . .

.

, 0, . .
.

, V are the complex Fourier series coefficients that

can be used to represent the baseband function g(t) by a finite Fourier series with

K harmonics during the time interval |r| > To/2. The coefficients are given by

c
q
= Y(q, 0, 0)/L, q = -L\

.

.
.

, 0, . .
.

, V. (2.12)



r * n
o«(t?-r-2-)

Y

Figure 2.2. General Plane-Wave Field , ft + £$A Propagating in the

±no direction.



The dimensionless direction cosines, u and vo, are given by

wo = sin# cost/'o (2.13)

v = sin# sin 0o (2-14)

where $o is the depression angle and 0o is the bearing angle. These angles are not

known a priori.

If we consider multiple plane waves incident upon the planar array, equation

(2.10) can be generalized and the deterministic part of the output electrical signal

at time instant I and element (m,n) is

id \ V^ (err 7 u^mdx +VokndY \ /01Rv

y{£, m,n) =
2_^ gk UTS + l (2.15)

where gk{t), wo*; and vok are the arbitrary baseband function and direction cosines

associated with the A;th sound source.

A brief description of the development of the frequency domain adaptive beam-

forming algorithm is presented next. The discussion that follows is based, in part,

on the material in Ref. 7.

Define the complex estimation error at harmonic q as

e(q) ± s(q) - s(q). (2.16)

The reference signal s(q) is defined as

M' N'

s{q)= TMN E £ \R(<l,rn,n)\exp[+j/.R(q,0,Q)] (2.17)

m=-M' n=-N'
and

M' N'

*^ = LMN E £ c{q,m)d{q,n)R{q,m,n) (2.18)

m=-M' n=-N'

= c
T(q)R(q)d(q)/(LMN)

10



is the estimate of s(q), where c(q,m) and d(q,n) are the unit magnitude complex

weights in the X and Y directions, respectively, c(q) and d(q) are the M x 1 and

N x 1 complex weight vectors in the X and Y directions, respectively, which are

given by

and

c(q) = [c(q,-M'),...,c(q,Q),...,c(q,M')\

d(q) = [d(q,-N'),...,d(q,0),...,d(q,N')f
,

and 5(9) is the M X N complex data matrix given by

R(q,-M',-N') ... i2(g,-M',0) ... R{q,-M',N')

R(q) = R(qA-N') R(q,0,0) R(q,0,N')

R(q,M',-N') ... i2(g,M',0) ... R{q,M',N')

Now define the (M + N) x 1 complex weight vector w(q) as follows:

2£(?) =
d(q)

We can obtain the original weight vector in the X direction via

c(q) = A w(q)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

where

A = I
M xM M xN (2.24)

is a M x (M + N) matrix, / is a M x M identity matrix, and is a M x N null

matrix. Similarly, we can obtain the original weight vector in the Y direction via

d{q) = B w(q) (2.25)

where

11



B = 9 I I
N xM N x N (2.26)

is a N x (M + N) matrix, is a N x M null matrix, and / is a N x N identity

matrix as indicated.

Substituting equations (2.23) and (2.25) into equation (2.18) yields

%) = wT (q)Z(q)w(q)/(LMN) (2.27)

where

Z{q) = ATR(q)B (2.28)

is a (M+ N) x (M+ N) complex matrix. The complex weight vector that minimizes

the mean-square error ^{^(g)!
2
} is given by [Ref. 5, Ref. 7]

W-i+M =w i {q)+2 fi i e i {q) [Z{q) +ZT
{q)]

*
tsj (</), • = 0, 1,2, . .

.

(2.29)

where

CtU) = s{q) - 3i(q) (2.30)

is the estimation error after the i
th

iteration,

Si(q) = wJ(q)Z{q)uu(q)l{LMN) (2.31)

is the estimate of s(q) after the t iteration, and the step-size parameter m is

given by

»i=Ho = (°
2

y + °lY\ i = 0,1,2,... (2.32)

where £*o is a constant, and is equal to the inverse of the sum of the signal and

noise power, o 2

y
and a 2

, respectively, at the center element of the array. After each

iteration of the algorithm, each component of the complex weight vector wt+1 (g)

is normalized by its respective magnitude in order to maintain unit magnitude.

12



Once the complex weight vector, w l+1 (q), converges to a steady-state value,

w 33 (q), the steady-state complex weight vectors c33 (q) and d3S (q) can be obtained

from equations (2.23) and (2.25), respectively. The estimates of the depression and

bearing angles at harmonic q, S (q) and ipo(q), respectively, are given by [Ref. 8:

P- 175]

1/2'

{["o
LS

(?)]

2

+ [^
S
(^)]

2

}
,9^0 (2.33!$o(q) = sin

1

and

Ml) = tan" 1

[«J
5
(«)/*f

5
(«)] , q * (2.34)

where Uq s
(q) and VQ

S
(q) represent estimates of the direction cosines obtained by

using a least-squares fit to the "unwrapped" steady-state phase weights 0^3
(q,m)

and 933 (q,n), respectively. In the absence of noise

6
u
93 (q,m) = ±2TrqfoU (q)mdx/c, m Z

_

MY ' ' '

M , (
2 -35 )

and

T I f\ T I

<f>

U
3s(<li n ) = ±27rqfoVo(q)ndY /c, „/

' '

Q

'
'

'

N , (
2 -36 )

It should be noted that if r(£, m,n), y(£, m,n), and n(£, m,n) of equation

(2.1) are baseband complex envelopes, then qf must be replaced by (/c + qf ) in

equations (2.35) and (2.36), where fc is the carrier frequency in hertz. In addition,

equations (2.33) and (2.34) must now be evaluated at q = 0. Substitution of

equations (2.17) and (2.18) into equation (2.16) yields the following expression for

the steady-state estimation error

M' N'

e"^ = TMM Y, Y, i^(<?> m >
n

)iLMN m=-M>n=-N>
exp[+iZi?( g ,0,0)]

-exp{+j[e™
a
(q,rn) + <t>»s

(q,n)+lR(q,m,n)}} (2.37)

13



where

R(q,m,n)= \R(q,m,n)\exp[+j lR(q,m,n)], (2.38)

css {q, m) = a S9 (q, m) exp[+j$™
3 (q, m)] = exp [+jB™

9 (q, m)} , (2.39)

and

dS s(q, n) = b39 (q, n) exp[+j^(q, n)] = exp [+j<f>"(q,n)] (2.40)

where a S3 (q,m) = 1 and bss (q,n) = 1 are real, unit magnitude, amplitude weights

and d
3

v
3
(q^m) and 0^,(<7,rc) are real, "wrapped", phase weights.

To ensure obtaining the correct depression and bearing angle estimates, 0o(q)

and rpo(q), respectively, the steady-state phase weights need to be "unwrapped."

The "unwrapped" steady-state phase weights can take on values outside the closed

interval [— 7r, it] and therefore ensures full angular coverage capability (i.e., <

#o(<z) < I"/2 and < ^o(<?) ^ 2tt). The use of "wrapped" phase weights is necessi-

tated by computer programming limitations.

The question now arises how to obtain the "unwrapped" steady-state phase

weights in order to obtain least-squares estimates of the direction cosines at each

harmonic. The first step is to force the "wrapped" steady-state phase weights,

#™(<7,m) and <^((?,n), to be equal to zero at the center of the planar array (i.e.,

m — 0, n = 0). This is accomplished by multiplying each component of c33 (q)

and d33 (q) (equations (2.19) and (2.20)) by exp[-j0£M)] and exphJ^^O)],

respectively.

The next step is to obtain rough estimates of the direction cosines, u (q) and

v (q). The "wrapped" steady-state phase weight, B
3

v
s
(q,m), can be expressed as

14



i = 0,±1,±2,...

Ofl, "0 « ± [2nqf u (q)mdz /c] + 2tV, g = -L', . . . ,0, . . . ,£' (2.41)

m = -M',...,0,...,M'

where i is chosen to ensure that the value of 0\"
9 (q, m) is within the interval [

— 7r, 7r].

In the computer simulations presented in this thesis, the interelement spacing is

dx =dy
= Xm in/2 (2.42)

where the minimum wavelength is

^min = C/ Jmax yZ.Qo)

and

fma X = L'f Hz. (2.44)

Substituting equations (2.43) and (2.44) into equation (2.42) yields

dz =dy
= c/(2L'f ) (2.45)

where V is defined by equation (2.2) and f is defined by equation (2.6). Substi-

tuting equation (2.45) into equation (2.41) yields

» = 0,±1,±2,...

0«(9, m ) « ±(q/L')mu {q)w + 2iV, m = -M', . .
.

, 0, . .
.

, M' (2.46)

9 = -L',...,0,. ..,£'.

15



By letting i = in equation (2.46), the following rough estimate of direction cosine

u at harmonic q and element m is obtained:

u (q,m) = ± 0J(«,ro), q^ 0, m = ±1. (2.47)

For purposes of this thesis, the rough estimates of u (q) used were obtained by

averaging the results obtained by evaluating equation (2.47) at elements m = ±1,

that is,

u (q) = 0.5 [u (q, 1) + u (q, -1)] , q £ 0. (2.48)

The most difficult case for the algorithm is to locate the highest harmonic,

that is, q = ±Z/, when it exists at endfire (9 = 90°) relative to the planar array.

Let us assume that the value of the direction cosine at the highest harmonic is

equal to one. Therefore, if q = +L', equation (2.46) reduces to

W,m) =™ + 2i*, J:°J^
2

-.,M<- (2 -49)

Evaluating this relationship at element m = ±1 to obtain the rough estimate of

u (q) yields

0?a (L',±l) = ±tt + 2*'7r, i = 0, ±1, ±2, . .
.

,

(2.50)

and since the "wrapped" steady-state value must be in the interval [— 7r, 7r], i must

be equal to zero. Equation (2.50) is reduced to

9Z(L',±1) = ±tt. (2.51)

If the plus sign is chosen in equation (2.47), and m = ±1 and q = V', then

evaluation of equation (2.47) yields

u o (L',±l) = 0Z(L',±l)/±ir). (2.52)

16



Upon substituting equation (2.51) into equation (2.52) we obtain

u (L',±l) = l (2.53)

which is the expected result in the absence of noise since the assumption was made

that the value of the direction cosine was equal to one at the highest harmonic.

Evaluating equation (2.49) at a different element (i.e., m ^ ±1) would yield i ^

and, as a result, an incorrect rough estimate of uq(L') = 1. This validates the

use of elements m = ±1 to obtain the estimate of the direction cosines (equation

(2.47)).

The third step is to generate rough estimates of the "unwrapped" steady-

state phase weights, 0"
s
(q,m), by replacing u (q) in equation (2.46) with u (q)

from equation (2.48), that is

C(?> m ) = ±(q/L')mu (q)Tr,
g = -Z/,...,0,...,L'

m = -M',...,0,...,M'
(2.54)

Therefore, if

ITT < ^ssi^m)

i = 1,3,5, . .

.

<(i + 2)7r, q = -L',...,0,...,L'

m = -M',...,0,...,M'

(2.55)

then

i = 1,3,5, ..

.

0:a(q,™) = e?a (q,rn) + sgn\eu
a
,(q,rn)\(i + l)*, q = -V ,

.

. . ,0, . .
.

, I' (2.56)

m = -M',...,0,...,M'

17



where sgn[ ] is the sign function. Note that the right-hand side of equation (2.56)

is simply the noise corrupted version of the right-hand side of equation (2.35).

The method of least-squares is then used to fit a straight line to the unwrapped

phase weights 9"
a (q, m) as a function of element number m for each harmonic q. The

phase weights 9"
s
(q,m) were computed using equation (2.56). The least-squares

slope at harmonic q is given by

M' M'

SLs(q)= £ m'«(9' m )/ E m '-
(
2 -57 )

m= — M; m=—M'

Substituting equation (2.45) into equation (2.35) yields

e
U
ss(q,™) = ±{q/L')Ttu {q)m, ^ZZm'^^^M' ^^

in the absence of noise. Therefore, since in the presence of noise

«t(,,m)

«

Hsiom + hsw, m
4

::i';;;;; ';;;;i
e.»)

where
Af'

m= — Af

'

is the least-squares "y intercept" at harmonic q, comparing equations (2.58) and

(2.59) yields

±u LS
{q) = [L'/{qn)] sLS (q), q * (2.61)

which is the least-squares estimate of direction cosine u at harmonic q.

In a similar derivation, it can be shown that the least-squares estimate of the

direction cosine v (q) at harmonic q is given by

±v^S (q) = [Vl(q*)\ hs(q), q ± (2.62)
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where now

and, if

then

N' N'

n=-N' n=-N'

IX < 03.(9'")

i = 1,3,5, ..

.

<(z' + 2)tt, g = -L',...,0,...,L'

n = -7V',...,0,...,iV'

(2.63;

(2.64)

i = 1,3, 5, . .

.

«.(«,*) = «(*.*) + *$»> |#.(*.»0| (* + !)*. g = -L',...,0,...,L'(2.65)

n = -JV',...,0,...,iV'

where

0«(9»") = ±(g/I
,

)nt) (9)7r,
g = -L',...,0,...,L'

and

n= -JV',...,0,...,iNT'

£„(<?) = 0.5 [va(g, 1) + t> (g, -1)] , g 7^

u
v (q,n) = ± 4>™

s
{q,n), q £ 0, n = ±1.

qmr

(2.66)

(2.67)

(2.68)

Using the least-squares estimates of the direction cosines u^s {q) and Vg S
(q),

that is, equations (2.61) and (2.62), respectively, yield estimates of the depression

and bearing angles, S {q) and ip (q)i respectively, using equations (2.33) and (2.34).
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in. RESULTS

Significant computer simulation results from four unique test cases are pre-

sented in this chapter. The test cases were designed to test the algorithm's multiple

broadband target localization capability, its full angular coverage capability, and

its angular resolution as a function of the input SNR at a single element in the

array, sampling rate, harmonic number, and the number of iterations.

The test cases were comprised of the following:

(1) Case 1 - a single broadband target located at broadside relative to the planar

array;

(2) Case 2 - three broadband targets located at random positions;

(3) Case 3 - a single broadband target located at endure relative to the planar

array; and

(4) Case 4 - three broadband targets, two of which share a common harmonic.

The simulation results of these four test cases are based upon processing the

output electrical signals from a 7 x 7 planar array of equally spaced hydrophones.

The acoustic field incident upon the planar array was, in general, the sum of several

plane-wave fields travelling in different directions. Each plane-wave field consisted

of an arbitrary number of harmonics (spectral lines) emanating from one of the

broadband sound sources. As a result, the output electrical signal at each element

of the planar array was composed of an arbitrary number K of harmonics, all with

identical amplitudes of unity.

The fundamental frequency for all test cases was chosen to be f = 1000

Hz. Via equation (2.6), the fundamental period at each element of the array was

1 millisecond. The sampling parameter, 5, was set equal to 2, 4, and 6, which
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corresponded to a sampling frequency equal to the Nyquist Rate, twice the Nyquist

Rate, and three times the Nyquist Rate, respectively. The number of time samples

taken per element of the array is given by

L = SK + 1 (3.1)

where L is the total number of samples taken per element, K is the total number

of harmonics present in the signal, and S is the sampling parameter.

Baseline, or "no noise" test case results, were the first generated to ensure that

the algorithm was working properly in a noise-free environment. Figure 3.1 depicts

the noise free, time domain, received signal for case 2. For each baseline test case,

and for a given value of the sampling parameter, bearing and depression angle

estimation errors (measured in degrees) were obtained by running the computer

simulation once and allowing the modified complex LMS algorithm 100 iterations.

Case 1 baseline test case results showed zero degree estimation errors whereas case

2 and case 3 baseline results showed estimation errors of less than 0.1 degrees. Case

4 baseline results will be discussed later in this chapter.

Following compilation of the baseline results, identical test cases were run

using additive, wide-sense stationary, zero mean, white, guassian noise samples to

corrupt the time samples of the received signal. Figure 3.2 depicts the time domain,

received signal for case 2 for a SNR = dB. For each test case, and for a given

value of the sampling parameter and input SNR at a single element of the array,

average bearing and depression angle estimation errors were obtained by running

the computer simulation 100 times per SNR value and allowing the complex LMS

algorithm 100 iterations per run. In all test cases, allowing the adaptive algorithm

more than 100 iterations did not decrease the estimation errors.
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Figure 3.1. Real Received Signal at Element (1,1), for Case 2 with No
Noise Present.
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Figure 3.2. Real Received Signal at Element (1,1) for Case 2 for SNR =
dB.
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Case 1 placed a single target at broadside relative to the planar array ( i.e.,

#o = 0°). This was considered the simplest case for the algorithm since it is

at broadside that the far-field beam pattern has its narrowest beamwidth and,

as a result, the algorithm should provide good angular resolution [Ref. 8: pp.

62-66]. The general plane-wave field radiated by the target consisted of K = 6

harmonics. Therefore, with K = 6 and 5 = 2,4, and 6, only L = 13, 25, and 37

time samples, respectively, were taken per element in the array (equation (3.1)).

Figure 3.3 presents the average estimation error of the depression angle versus the

sampling parameter S for the dB SNR case. It can be seen that as the value of

S increases for a given harmonic, the magnitude of the estimation error decreases.

If S is held constant, it can be seen that as the harmonic number (q) increases, the

magnitude of the estimation error decreases. These two trends were expected. As

the value of S increases, more time samples are being processed and, as a result,

the noise component of the received signal should tend to average out to be zero.

Since more data is available for evaluation, a better estimate of the deterministic

signal results. An increase in the harmonic number, q, represents an increase in the

frequency and, as a result, the beamwidth of the far-field beam pattern decreases

[Ref. 8: pp. 58-62]. The decreased beamwidth increases the angular resolution of

the algorithm and, as a result, decreases the estimation error.

Figure 3.4 presents the results for case 1 at 9 dB SNR. The trends which

were present in the dB case are again apparent here. It also should be noted

that as the SNR value increases (i.e., from dB to 9 dB), the magnitude of the

estimation error decreases.

Results for bearing angle estimation error in the broadside case are irrelevant

since the target is directly above the array, and the bearing angle has no meaning.
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Figure 3.3. Average Depression Angle Estimation Error vs Sampling
Parameter 5, Case 1: SNR = dB. / = 100.
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Case 2 placed three broadband targets at random locations. The general plane-

wave field radiated by each of the targets contained two unique harmonics. Target

1 was located at (6 = 49°,V> = 38°) and radiated harmonics 1 and 6. Target

2 was located at (0O = 5,V> = 137°) and radiated harmonics 2 and 5. Target

3 was located at (0o = 77°, xp = 307°) and radiated harmonics 3 and 4. Since

there are three incident plane-wave fields each containing two unique harmonics,

the output electrical signal from each element in the array exhibits a total of K = 6

harmonics. As before, equation (3.1) dictates that only L — 13,25, and 37 time

samples are to be taken per element of the array when 5 = 2,4, and 6, respectively.

Figure 3.5 presents case 2 results for the depression angle estimation error with a

dB SNR. In general, as S increases, the estimation error decreases for a given

harmonic. When comparing the harmonics associated with a particular target,

the highest harmonic usually is associated with the lessor of the estimation errors.

These general results can be explained using the same arguments presented for case

1.

Figure 3.6 presents the case 2 bearing angle estimation errors for dB SNR.

Figures 3.7 and 3.8 present the case 2 estimation errors for the depression and

bearing angle, respectively, for 9 dB SNR. The same general trends already in-

troduced are apparent in Figures 3.5 through 3.8. As in case 1, as the SNR value

increased, the magnitude of the estimation errors decreased.

Case 3 placed a single broadband target at endfire relative to the planar array

(6 = 90°,V>o — 90°). This case was considered the most difficult for the algorithm

since it is at endfire that the far-field beam pattern beamwidth is its broadest [Ref.

8: pp. 62-66]. The general plane-wave field radiated by the target consisted of q = 5

harmonics. Therefore, with S = 2,4, and 6, only L = 11,21, and 31 time samples

were taken, respectively, at each element of the array (equation (3.1)). Figures
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3.9 and 3.10 illustrate the average depression and bearing angle estimation errors,

respectively, for dB SNR. Figures 3.11 and 3.12 illustrate the same information

for 9 dB SNR. The estimation errors for the highest harmonic (q = 5) are not

shown for any of the case 3 results since the magnitude of these errors was between

70 and 90 degrees. This poor performance for the highest harmonic at endfire can

be explained theoretically (see Chapter 2 - phase unwrapping).

Case 4 corresponded to three broadband targets being present. The general

plane-wave field radiated by each target was composed of two harmonics. In this

case, two of the targets shared a common spectral line, namely, the fundamental

frequency (q = 1). Target 1 was located at (B
o
= 45°,V' =0°) and radiated

harmonics 1 and 2. Target 2 was located at (0o
= 45°,V' = 180°) and radiated

harmonics 1 and 5. Target 3 was located at (B = 33°,t/> = 47°) and radiated

harmonics 3 and 4. A total of K = 5 harmonics were present in the output

electrical signals, and, with S = 2,4, and 6; only L = 11,21, and 31 time samples,

respectively, were taken at each element of the array (equation (3.1)). For this

case, only no noise results were compiled, with the computer simulation running

once and the complex LMS adaptive algorithm allowed 100 iterations.

For harmonics q = 2,3,4, and 5 contained in the output electrical signal,

the algorithm correctly identified the location of the targets with zero degrees

estimation error. However, for the shared harmonic (q = 1), the algorithm located

a false fourth target, which was located exactly between the actual locations of the

targets whose radiated general plane-wave fields contained the shared harmonic,

namely, targets 1 and 2.

Tabular numerical data for test cases 1 through 4 is contained in The Ap-

pendix.
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test case 2 because it was felt that this case presented the most realistic real world

situation. First, a minimum number of iterations for the algorithm to produce the

same results as presented in this chapter (when 100 iterations of the algorithm was

allowed) was found. The minimum number was found to be 10 iterations. Using

this information, the step size parameter, /z, (which had been a constant) was

varied using a step function. For the first 10 iterations of the algorithm, /x was held

constant. This allowed the algorithm to reach its minimum value with a constant

/x. The value for /x was then stepped down to one-tenth its original value for an

additional 90 iterations. No decrease in estimation error resulted. The parameter

was then stepped down to one one-hundredth, and then one one-thousandth, of

its original value, with no change in the estimation error resulting. Additional

attempts to model the step size parameter as a decreasing exponential yielded no

change in the estimation error.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this thesis was to evaluate a frequency domain adaptive beamform-

ing algorithm which was developed by Ziomek and Chan [Ref. 5]. The multiple

broadband target localization capability and the full angular coverage capability

of the algorithm were of particular interest.

Chapter 3 presented the results of four test cases which were designed to

test the algorithm for several different capabilities. Several conclusions concerning

the performance of the frequency domain adaptive beamforming algorithm can be

drawn from these results. Among these conclusions is the fact that the algorithm

performs well in all test cases, yielding what would be considered acceptable esti-

mation errors for the target localization problem. It should also be noted here that

the number of time samples taken per element of the array never exceeded 37 time

samples, an amount which represents a small number of data points.

The algorithm does exhibit multiple broadband target localization capability.

The test case results show that multiple targets can be localized if their radiated

acoustic plane-wave fields contain at least one unique spectral line. The separation

distance of the spectral lines can be controlled by selecting an appropriate value for

the FFT bin spacing. The algorithm has also demonstrated its ability to localize

targets both at endfire and broadside positions relative to the planar array, thus

demonstrating the algorithm's full angular coverage capability.

Several general trends were apparent in the results. The first of these trends is

that as the sampling parameter S increased, the magnitude of the estimation error

decreased. This was due to a corresponding increase in the amount of time samples

being processed. The second trend observed was that as the harmonic number q
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increased, the magnitude of the estimation error, in general, decreased. This trend

can be explained by the fact that as the harmonic number q increases (equivalent to

an increase in the frequency), the far-field beam pattern beamwidth decreases which

results in better angular resolution. The third trend observed was that as the SN

R

increased (the output electrical signal becoming less noisy), the magnitude of the

estimation error decreased. It was also found that the estimation errors presented

in this thesis are obtainable after ten iterations of the adaptive algorithm, and an

increase in the number of iterations did not decrease the estimation error.

In the course of this investigation, several possible areas for future research

presented themselves:

• further study of the effects of varying the step-size parameter, n, in an attempt

to decrease the magnitude of the estimation error,

• investigation of a noise reduction system prior to processing the output elec-

trical signals, and

• application of other spectral analysis techniques (i.e., autoregressive, maxi-

mum entropy, maximum likelihood, etc.) to produce frequency spectra.
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APPENDIX

The Appendix presents the tabular numerical data from which the graphical

results of Chapter 3 were produced. The numerical data for the graphical results

of Figures 3.3 through 3.12 is presented in Tables A.l through A. 10, respectively.

Tables A. 11 and A. 12 presents the numerical data for Case 4. There is no corre-

sponding graphical result for Case 4.

TABLE A.l. NUMERICAL DATA CORRESPONDING TO FIGURE 3.3.

Case 1: One target located at broadside relative to planar

array; six harmonics present in output electrical signal,

Sampling parameter 5 = 2, 4, and 6; 100 iterations SNR = OdB

HARMONIC L0CRTI0N DEPRESSION ANGLE 6

e. *• ESTIMATION ERROR (DEG)

q (DEG) (DEG) S=2 S=4 S=6

1 270 -7.388 -4.732 -4.124

2 270 -3.287 -2.760 -1.975

3 270 -2.542 -1.654 -1.374

4 270 -2.506 -1.223 -1.099

5 270 -1.312 -0.962 -0.784

6 270 -1.086 -0.892 -0.660
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TABLE A.2. NUMERICAL DATA CORRESPONDING TO FIGURE 3.4.

Case 1: One target located at broadside relative to planar

array, six harmonics present in output e lectrical signal,

Samplin g parameter 5 = 2, 4, and 6; 100 iterations, SNR = 9dB

HARMONIC LOCATION DEPRESSION ANGLE e„

e. *. ESTIMATION ERROR (DEG)

q (DEG) (DEG) 5=2 5=4 S=6

1 270 -2.312 -1.796 -1.456

2 270 -1.191 -0.940 -0.686

3 270 -0.769 -0.582 -0.449

4 270 -0.594 -0.446 -0.365

5 270 -0.479 -0.326 -0.267

6 270 -0.410 -0.316 -0.214

TABLE A.3. NUMERICAL DATA CORRESPONDING TO FIGURE 3.5.

Case 2: Multiple targets located at random positions,

six harmonics present in output electrical signal;

Sampling parameter 5 = 2, 4, and 6, 100 iterations, SNR = OdB

HARMONIC LOCATION

©. *.

q (DEG) (DEG)

1 49 38

2 5 137

3 77 307
4 77 307
5 5 137

6 49 38

DEPRESSION ANGLE B

ESTIMATION ERROR (DEG)

S=2 5=4 S=6

-2.789 -0.708 -0.285

-0.686 -0.450 -0.522

+ 7.138 + 3.601 + 1.075

+ 1.818 + 1.085 -0.521

-0.599 -0.164 -0.010

-2.452 -2.752 -0.383
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TABLE A.4. NUMERICAL DATA CORRESPONDING TO FIGURE 3.6.

Case 2: Multiple targets located at random positions;

six harmonics present in output electrical signal,

Sampling parameter 5 = 2, 4, and 6; 1 00 iterations; SNR = OdB

HRRMONIC LOCATION

e. 4>,

q (DEG) (DEG)

1 49 38
2 5 137

3 77 307
4 77 307
5 5 137

6 49 38

BEARING ANGLE ^
ESTIMATION ERROR (DEG)

S=2 S=4 S=6

-0.261

+ 0.270
+ 43.268
+ 9.620
+ 0.168

-0.420

+0.236

-0.043

+ 27.662
+ 3.789

+ 1.122

-3.220

+ 0.001

-1.337

+ 14.599
+ 1.100

+ 0.702

+0.907

TABLE A.5. NUMERICAL DATA CORRESPONDING TO FIGURE 3.7.

Case 2: Multiple targets located at random positions,

six harmonics present in output electrical signal;

Sampling parameter S = 2, 4, and 6, 100 iterations; SNR = 9dB

HARMONIC LOCATION

ea <J>

q (DEG) (DEG)

1 49 38
2 5 137

3 77 307
4 77 307
5 5 137

6 49 38

DEPRESSION ANGLE 6

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

-0.338 -0.1 13 -0.080

-0.053 -0.073 -0.050

-0.425 +0.280 -0.192

+ 1.383 + 0.372 + 1.350

+ 0.017 -0.013 -0.003

-0.447 + 0.059 + 0.022
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TABLE A.6. NUMERICAL DATA CORRESPONDING TO FIGURE 3.8.

Case 2: Multiple targets located at random positions,

six harmonics present in output electrical signal,

Sampling parameter 5 = 2, 4, and 6; 100 iterations; 5NR = 9dB

HRRMONIC LOCATION

So *e

(DEG) (DEG)

BEARING ANGLE ^o

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

2

3

4

5

6

49

5

77

77

5

49

38

137

307
307
137

38

+ 0.235
+ 1.288

-0.346

-1.221

+ 0.648

+0.058

+ 0.048
+ 0.263
+ 0.037

-0.676

-0.148

+ 0.1 12

-0.145

+ 0.725

-0.036

-1.298

-0.538

+ 0.105

TABLE A.7. NUMERICAL DATA CORRESPONDING TO FIGURE 3.9.

Case 3: One target located at endfire relative to planar array,

five harmonics present in output electrical signal,

Sampling parameter S = 2, 4, and 6; 100 iterations, 5NR = OdB

HARMONIC LOCATION DEPRESSION ANGLE 6C
e. *o

ESTIMATION ERROR (DEG)

q (DEG) (DEG) S=2 S=4 S=6

1 90 90 + 7.308 + 7.511 +7.359

2 90 90 + 16.978 + 15.058 +8.046

3 90 90 + 7.594 + 6.119 +4.723

4 90 90 + 13.749 + 7.554 +2.926

5 90 90 + 72.572 + 68.769 +70.851
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TABLE A.8. NUMERICAL DATA CORRESPONDING TO FIGURE 3.10.

Case 3: One target located at endfire relative to planar array,

five harmonics present in output electrical signal;

Sampling parameter S = 2, 4, and 6; 100 iterations, 5NR = OdB

HARMONIC LOCATION

q

0. <!/.

(DEG) (DEG)

1

2

3

4

5

90 90
90 90
90 90

90 90
90 90

BEARING ANGLE ^
ESTIMATION ERROR (DEG)

S=2 S=4 S=6

-0.547 -0.373 +0.213

-19.202 -18.163 -7.252

+ 0.168 -0.038 -0.094

-3.171 -0.715 -0.041

-69.481 -89.808 -88.562

TABLE A.9. NUMERICAL DATA CORRESPONDING TO FIGURE 3.11

Case 3: One target located at endfire relative to planar array;

five harmonics present in output electrical signal;

Sampling parameter S = 2, 4, and 6, 100 iterations; SNR = 9dB

HARMONIC LOCATION

e. t
q (DEG) (DEG)

1 90 90
2 90 90
3 90 90
4 90 90
5 90 90

DEPRESSION ANGLE 6

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

+ 5.301 + 4.994 + 4.677
+ 3.523 + 3.175 + 2.932
+ 3.744 + 2.827 + 2.701

+ 2.483 + 2.592 + 2.265

•68.938 + 66.092 + 70.858
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TABLE A.10. NUMERICAL DATA CORRESPONDING TO FIGURE 3.12

Case 3: One target located at endfire relative to planar array,

five harmonics present in output electrical signal,

Sampling parameter 5 = 2, 4, and 6; 1 00 iterations; 5NR = 9dB

HARMONIC LOCATION

©0 ^
q (DEG) (DEG)

1 90 90
2 90 90
3 90 90
4 90 90
5 90 90

BEARING ANGLE
<J/o

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

+ 0.333 +0097 -0.105

-0.030 -0.123 + 0.088
-0.090 -0.045 + 0.019
+ 0.039 + 0.009 -0.021

108.012 -90.250 -93.038

TABLE A.ll. NUMERICAL DATA FOR DEPRESSION ANGLE ESTIMATION
ERRORS FOR CASE 4.

Case 4: Multiple targets, targets one and two share a common

spectral line, five harmonics present in output electrical signal,

Sampling parameter S = 2, 4, and 6; 100 iterations, no noise

HARMONIC LOCATION

0. 4>p

q (DEG) (DEG)

1 45

2 45
1 45 180

5 45 180

3 33 47

4 33 47

DEPRESSION ANGLE 6

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

9.683 + 19.683 + 19.683

0.0 0.0 0.0

9.683 + 19.683 + 19.683

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0
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TABLE A. 12. NUMERICAL DATA FOR BEARING ANGLE ESTIMATION
ERRORS FOR CASE 4.

Case 4: Multiple targets; targets one and two share a common

spectral line, five harmonics present in output electrical signal;

Sampling parameter S = 2, 4, and 6, 1 00 iterations, no noise

HARMONIC LOCATION

e. 4>e

q (DEG) (DEG)

1 45

2 45

1 45 180

5 45 180

3 33 47

4 33 47

BEARING ANGLE *o

ESTIMATION ERROR (DEG)

S=2 S=4 S=6

180.00 -180.00 - 180.00

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0
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