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Thermodynamical consistency of quasiparticle model at finite baryon density
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In this work, we revisit the thermodynamical self-consistency of the quasiparticle model with the finite baryon
chemical potential adjusted to lattice QCD calculations. Here we investigate the possibility that the effective
quasiparticle mass is also a function of its momentum k, in addition to temperature T and chemical potential
μ. It is found that the thermodynamic consistency can be expressed in terms of an integrodifferential equation
concerning k, T , and μ. We further discuss two special solutions, both can be viewed as a sufficient condition
for the thermodynamical consistency, while expressed in terms of a particle differential equation. The first case
is shown to be equivalent to those previously discussed by Peshier et al. The second one, obtained through an
ad hoc assumption, is an intrinsically different solution where the particle mass is momentum dependent. These
equations can be solved by using boundary condition determined by the lattice QCD data at vanishing baryon
chemical potential. By numerical calculations, we show that both solutions can reasonably reproduce the recent
lattice QCD results of the Wuppertal-Budapest and HotQCD Collaborations, and in particular, those concerning
finite baryon density. Possible implications are discussed.
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I. INTRODUCTION

The quasiparticle approach is part of the efforts to un-
derstand the physics of the quark-hadron transition charac-
terized by a dramatic change in the number of degrees of
freedom where nonperturbative effects are dominant. The
model provides a reasonable, as well as phenomenological,
description of the thermodynamic properties of quark-gluon
plasma (QGP), which deviate significantly from those of an
ideal gas of noninteracting quarks and gluons. The success
of the quasiparticle picture thus strengthens the notion of
quasiparticle ansatz. It may further open up new possibili-
ties for the development of effective theories from a more
fundamental viewpoint, concerning the underlying physics of
QGP, which is nonperturbative in nature. Indeed, as indicated
by lattice quantum chromodynamics (QCD) calculations, the
QGP pressure and energy density deviate by about 15–20%
from the Stefan-Boltzmann limit even at temperatures T >

3Tc [1]. On the other hand, the square of the speed of sound,
c2

s , extracted from the lattice QCD, is smaller than that of
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an ideal gas of massless particles. In particular, it is found
that as the temperature decreases while the system approaches
the transition region, c2

s reaches down to a minimum and
then increases again in accordance with the hadronic reso-
nance gas (HRG) description of the system [2]. Since these
thermodynamical properties may lead to observable conse-
quences through their impact on the hydrodynamically ex-
panding phase during the relativistic heavy ion collisions, they
are, therefore, essential features in the study of the strongly
interacting QGP matter. While the lattice QCD is an exact
and yet numerical technique to obtain the equation of state
(EoS), it is still challenging to study finite density QCD in
large baryon density and low temperature regions. In addition,
there are other attempts to investigate thermal properties of the
QGP such as dimensional reduction [3–5], hard thermal loop
(HTL) resummation scheme [6–12], Polyakov-loop model
[13,14], as well as approaches in terms of hadronic degrees
of freedom [15–17]. The subtlety among different approaches
is how to appropriately tackle the nonperturbative regime of
QCD, which, in particular, as the temperature decreases and
approaches Tc, still cannot be accurately described to date.

Inspired by its counterparts in other fields of physics,
the quasiparticle ansatz assumes that the strongly interact-
ing matter consists of noninteracting quanta that carry the
same quantum numbers of quarks and gluons. The strong
interactions between the elementary degrees of freedom are
incorporated through the medium-dependent quasiparticle
mass. The quasiparticle approach was first introduced by
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Peshier et al. [18] for the description of gluon plasma,
where the temperature-dependent particle mass was proposed.
However, it was subsequently pointed out by Gorenstein and
Yang [19] that thermodynamic quantities evaluated by using
an ensemble average may not agree with those obtained
by thermodynamic relations. The issue can be resolved by
reformulating the thermodynamics of the quasiparticle model
through the requirement of an exact cancellation between
the additional contributions from the temperature-dependent
particle mass and those from the bag constant. The latter
is assumed to be temperature dependent and determined by
the condition of thermodynamic consistency. Thereafter, the
thermodynamical consistency were further explored by many
other authors [20–26].

By appropriately addressing the question of gauge in-
variance, the effective mass of a particle can be defined
either by the pole of the effective propagator or through the
Debye screen mass extracted from the excitations at small
momentum. The calculations using HTL approximation show
that the gluon screen mass extracted from the dispersion
relation for transverse gluons [27,28] are in accordance with
the Debye mass obtained at the limit of small momentum
[6,7,29]. Therefore, in practice, the specific forms of quasi-
particle mass are taken as a function of temperature, chemical
potential, as well as the running coupling constant that are
usually inspired by the HTL results. As a further matter, the
running coupling can be replaced by an effective coupling,
G2(T, μ), which, in turn, is determined by a flow equation
[20,30–32]. This last is a partial differential equation, and its
boundary condition can be chosen as the effective coupling at
μ = 0, adjusted to the lattice QCD data. It is shown that the
thermodynamic properties obtained from lattice calculations,
especially those for the nonvanishing chemical potential, are
described remarkably well.

To guarantee the thermodynamic consistency, the follow-
ing relation is to be satisfied:

∂ ln QG

∂m

∣∣∣∣
T,μ

= 0, (1)

where QG is the the grand partition function. In the literature,
it was required subsequently [19,20]

dB

dm
= ∂ p(T, μ, m)

∂m

∣∣∣∣
T,μ

. (2)

Here, the bag constant B is understood to be a function of
the particle mass m only, and its temperature (and chemical
potential) dependence is inherited implicitly from that of
the quasiparticle mass m = m(T, μ). It is straightforward to
show that Eq. (2) indeed implies to Eq. (1). However, if
B explicitly depends on temperature, there will be an extra
contribution to the thermodynamic quantities which is not
accounted for by Eq. (2). By examining the right-hand side
(r.h.s.) of Eq.(2), it turns out to be an explicit function of T , μ,
and m. Therefore, the requirement that the r.h.s. of Eq. (2) is a
function of temperature (and chemical potential) only through
the quasiparticle mass furnishes a more stringent condition.
In this work, we show that the above consideration leads to an
integrodifferential equation, which is equivalent to the flow

equation introduced in Ref. [20] under certain circumstances.
Moreover, we show that there are also other possibilities that
accommodate the requirement for thermodynamical consis-
tency.

The present work is organized as follows. In the next
section, we review the question concerning thermodynamical
consistency in the quasiparticle model. An integrodifferential
equation for quasiparticle mass is derived. Two special solu-
tions are discussed, both are expressed in terms of a particle
differential equation, and can be solved by the method of
characteristics. We show that the first case is precisely what
was derived and investigated by Peshier et al. The second
solution, on the other hand, is an intrinsically different one
where particle mass is found to be a function of momentum.
The numerical results are presented in Sec. III. By using the
lattice QCD data at μ = 0 as the boundary condition, we
show that both solutions can reasonably reproduce the recent
lattice QCD results. In particular, the results concerning finite
baryon density are presented. The last section is devoted to
discussions and concluding remarks.

II. THERMODYNAMIC CONSISTENCY FOR
QUASIPARTICLE MODEL WITH TEMPERATURE- AND

CHEMICAL-POTENTIAL-DEPENDENT MASS

In this section, the thermodynamic consistency for the
quasiparticle model is revisited. Our discussions are based
on the quasiparticle model proposed by Begun et al. [33].
An interesting aspect of the approach, as pointed out by the
authors, is the existence of an additional free parameter. To
be specific, it is shown that pressure, while following its
traditional definition in statistical physics, is determined up
to an extra free parameter.

Let us first write down the expressions for energy and
particle number as they are formulated as an ensemble average
as follows:

〈E〉 =
∑

i Ei exp(−αNi − βEi )∑
i exp(−αNi − βEi )

,

〈N〉 =
∑

i Ni exp(−αNi − βEi )∑
i exp(−αNi − βEi )

, (3)

where the ensamble average is carried out among all possi-
ble microscopic states i of the system, and Ni and Ei are,
respectively, the total number and total energy of the state in
question. The above expression can be rewritten in terms of
the grand partition function

QG = 〈exp[−αN̂ − βĤeff ]〉, (4)

where

Ĥeff = Ĥid + E0 + E1. (5)

Here Ĥid is the Hamiltonian of the ideal gas of quasiparticles

Ĥid =
∑

j

∑
k

ω(k)a†
k, jak, j, (6)
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where j corresponds to the internal degrees of freedom. Here
E0 is a temperature- and chemical-potential-dependent func-
tion associated with the bag constant B proposed by Goren-
stein and Yang [19]. This term is used to cancel out the effects
of the temperature (and chemical potential) dependence of the
quasiparticle mass through Eq. (1), to be discussed further
below. E1 is the above-mentioned free parameter, which is
proportional to the temperature. The E1 term is singled out
from E0 owing to its peculiar nature. As shown below, it
allows one to further adjust the value of the pressure for any
given energy density [33].

The quasiparticle ansatz assumes that one may carry out
the calculations in the momentum space where the Hamilto-
nian is diagonal. To be more specific, one makes the following
substitutions for the ideal gas part:∑

j

∑
k

→ gV

(2π )3

∫
dk, (7)

where g is the degeneracy factor. Now, thermodynamical
quantities can also be expressed regarding the derivatives of
the grand partition function. For instance, the energy density
reads

ε = 〈E〉
V

= − 1

V

∂ ln QG

∂β
= εid + E0

V
+ E1

V
+ 1

V

〈
β

∂E1

∂β

〉
= εid + B, (8)

where

εid = g

2π2

∫ ∞

0

k2dkω∗(k, T, μ)

exp[(ω∗(k, T, μ) − μ)/T ] ∓ 1
+ c.t., (9)

with on-shell dispersion relation

ω∗(k, T, μ) =
√

m(T, μ)2 + k2, (10)

and B = limV →∞ E0
V is the bag constant and the counter term

“c.t.” indicates contributions from antiparticles obtained by
the substitution μ → −μ in the foregoing term. Here, the
contribution from the temperature dependence of quasipar-
ticle mass has already been canceled out with the tempera-
ture dependence of E0. If the system has vanishing chemi-
cal potential μ = 0, one has B = B(μ = 0, T ) ≡ B(T ) and
m = m(μ = 0, T ) ≡ m(T ), in general, one can invert the
second function to find T = T (m) and express B as a func-
tion of m. Thus the above requiement Eq. (1) regarding E0

implies

dB

dm
= − gm

2π2

∫ ∞

0

k2dk

ω∗(k, T )

1

exp[(ω∗(k, T ))/T ] ∓ 1
. (11)

At finite baryon density, however, one is dealing with a
bivariate function B = B(μ, T ). Thus the above argument is
not valid. In general, B may explicitly depend on T besides its
dependence through m, but one still can write down

∂B

∂T
= − g

2π2

∫ ∞

0

k2dk

ω∗(k, T, μ)

1

exp[(ω∗(k, T, μ) − μ)/T ] ∓ 1
m

∂m

∂T
+ c.t. (12)

Furthermore, since E1 is linear in 1/β, one has 〈β ∂E1
∂β

〉 = β ∂E1
∂β

= −E1, thus the last equality of Eq. (8) is justified.
Similarly, the pressure is interpreted as a “general force,” which reads

p = 1

β

∂ ln QG

∂V
= 1

β

ln QG

V
= pid − B − E1

V
, (13)

where

pid = ∓g

2π2

∫ ∞

0
k2dk ln{1 ∓ exp[(μ − ω∗(k, T, μ))/T ]} + c.t.

= g

12π2

∫ ∞

0

k3dk

exp[(ω∗(k, T, μ) − μ)/T ] ∓ 1

∂ω∗(k, T, μ)

∂k

∣∣∣∣
T,μ

+ c.t. (14)

We note the presence of the term regarding E1 in the resulting expression for the pressure, but not in that for the energy density.
The number density reads

n = 〈N〉
V

= − 1

V

∂ ln QG

∂α
= nid, (15)

with

nid = g

2π2

∫ ∞

0

k2dk

exp[(ω∗(k, T, μ) − μ)/T ] ∓ 1
− c.t. (16)

Again, the contribution from the chemical potential dependence of quasiparticle mass in the ideal gas term and that from E0 term
cancel out each other if B satisfies

∂B

∂μ
= − g

2π2

∫ ∞

0

k2dk

ω∗(k, T, μ)

1

exp[(ω∗(k, T, μ) − μ)/T ] ∓ 1
m

∂m

∂μ
+ c.t. (17)

We note that the resultant expressions for the thermodynamic quantities, namely, Eqs. (8), (13), and (15), are
thermodynamically as well as statistically consistent. The reasons are twofold. First, the expressions for energy and
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particle density are in accordance with the conventional defi-
nition regarding ensemble average,1 while they can also been
conveniently expressed in standard form as derivatives of
the grand partition function, as emphasized by other authors
[21,23]. Moreover, from the viewpoint of statistical physics,
those ensemble averages are meaningful, only when one
can match those quantities, term by term, to the first law
of thermodynamics [34]. In this context, thermodynamical
consistency is guaranteed. Subsequently, any other thermody-
namical quantities can be then derived from a thermodynamic
potential, which summarizes all the constitutive properties of
a body that thermodynamics represents. Now, it is not difficult
to see that the second requirement is indeed achieved by
evaluating the total derivative of q = ln QG, to be specific, one
can readily verify that

dq = −〈N〉dα − 〈E〉dβ − βpdV. (18)

By comparing the above expression with the first law of
thermodynamics, namely,

d〈E〉 = T dS − pdV + μd〈N〉. (19)

it is inferred that

β = 1

kBT
, α = − μ

kBT
, q + αN + βE = S

kB
. (20)

Since the first law of thermodynamics holds, it is natural to
expect that all thermodynamical quantities defined through the
above procedure automatically satisfy any thermodynamical
relations, such as

ε ≡ E

V
= T

∂ p

∂T

∣∣∣∣
V,μ

− p + μn, (21)

which is frequently discussed in the literature.
As discussed above, for the case of finite density, B has

to satisfied both Eqs. (12) and (17) simultaneously, which
is not equivalent to Eq. (2). In fact, the symmetry of the
second derivatives for Eqs. (12) and (17) implies the following
integrodifferential equation:〈〈

m
∂m

∂T

〉〉
−

=
〈〈

m
∂m

∂μ

〉〉
+
, (22)

where

〈〈O〉〉− =
∫ ∞

0
k2dk

{
exp[(ω∗ − μ)/T ]

(exp[(ω∗−μ)/T ] ∓ 1)2T
− c.t.

}
O(k),

〈〈O〉〉+ =
∫ ∞

0
k2dk

{
exp[(ω∗− μ)/T ](ω∗−μ)

(exp[(ω∗−μ)/T ] ∓ 1)2T 2
+ c.t.

}
O(k).

(23)

For the most general cases, the particle mass is a function
of momentum m = m(k, T, μ), and therefore B is actually a
functional of m in addition to a function of T and μ, and
derivatives in equations such as Eq. (2) should be understood
as functional derivatives. In the present study, we assume

1This can be seen by comparing the r.h.s. of Eqs. (8) and (15)
against Eq. (3).

for simplicity that for an antiparticle X̄ , mX̄ (k, T,−μ) =
mX (k, T, μ) ≡ m(k, T, μ), and again, “c.t.” indicates the
counter term due to the contributions from antiparticles; they
are obtained from the foregoing term by substituting μ → −μ

and X → X̄ . In what follows we will discuss two special
solutions of Eq. (22).

A. Momentum-independent solution

Let us first consider the case where the quasiparticle mass
is only a function of temperature and chemical potential, m =
m(T, μ). Then both m and its derivatives can be moved out of
the integrals with respect to k, and therefore, Eq.(22) gives

∂m

∂T
〈〈1〉〉− = ∂m

∂μ
〈〈1〉〉+, (24)

or

∂m

∂T

∂

∂μ

(
∂ pid

∂m

∣∣∣∣
T,μ

)
= ∂m

∂μ

∂

∂T

(
∂ pid

∂m

∣∣∣∣
T,μ

)
, (25)

when expressed in terms of pid of Eq. (14). By summing both
sides of the above equation to the Maxwell relation of the ideal
gas

∂

∂μ

(
∂ pid

∂T

∣∣∣∣
m,μ

)
= ∂

∂T

(
∂ pid

∂μ

∣∣∣∣
m,T

)
, (26)

and taking into account Eqs. (12) and (17), one recovers

∂s

∂μ
= ∂2 p

∂T ∂μ
= ∂2 p

∂μ∂T
= ∂n

∂T
. (27)

This is a Maxwell relation, precisely Eq. (7) of Ref. [20],
which was subsequently used to determine the flow equation
for the running coupling constant. Alternatively, from our
viewpoint, Eq. (24) is a condition to determine the particle
mass m(T, μ). It is not difficult to see that Eq. (24) can be
formally solved by using the method of characteristics. As
shown in the Appendix, its solution consists of characteristic
curves for given m satisfying

dμ

dT
= −〈〈1〉〉+

〈〈1〉〉− .

One may make use of the lattice data at zero chemical poten-
tial as the boundary condition. Then again, one may simply
solve m(T, μ) by carrying out numerical integral from the
μ = 0 boundary onto the T − μ plane where μ 	= 0.

B. Special momentum-dependent solution

In general, as the solution of Eq. (22), the quasiparticle
mass is a function of k, T , and μ. For this case, we only
discuss a special solution which possesses a rather simple
form. It is obtained by assuming the integrands on the both
sides are the same. In other words,{

exp[(ω∗ − μ)/T ]T

(exp[(ω∗ − μ)/T ] ∓ 1)2
− c.t.

}
∂m

∂T

=
{

exp[(ω∗ − μ)/T ](ω∗ − μ)

(exp[(ω∗ − μ)/T ] ∓ 1)2
+ c.t.

}
∂m

∂μ
. (28)
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Since ω∗ is involved in the above equation, the resultant
particle mass is indeed a function of k. Then again, the above
equation can be solved by using the method of characteristics,
and its solution consists of characteristic curves for given ω∗.

In particular, if the contributions from antiparticles are in-
significant, namely, μ 
 1, Eq. (28) can be further simplified
to

∂m

∂μ
= T

(ω∗(k, T, μ) − μ)

∂m

∂T
, (29)

which possesses the following analytic solution (see also the
Appendix):

m = f

(
T ω∗

ω∗ − μ

)
, (30)

where f (T ) ≡ m(T, μ = 0) is determined by the boundary
condition.

III. NUMERICAL RESULTS

Now, we are in a position to present the numerical results
and to compare them to the recent lattice data for Nf = 2 + 1
favor QCD system [35–39]. We first show the calculated ther-
modynamical quantities for the case of momentum-dependent
quasiparticle mass. Here, the free parameters are the effective
masses of gluons, of light as well as strange quarks as func-
tions of temperature at zero chemical potential, and a constant
related to E1. Once they are determined, one may evaluate all
thermodynamical quantities such as energy density, pressure,
and entropy density at zero as well as finite baryon density. In
addition, we also calculate the trace anomaly, sound velocity,
and the particle number susceptibility defined as

χab
2 = T

V

1

T 2

∂2 ln QG(T, μu, μd , μs)

∂μa∂μb

∣∣∣∣
μa=μb=0

. (31)

In particular, the relavant quantities χB
2 and χL

2 in the
present model [35] read

χB
2 = 1

9

[
χu

2 + χd
2 + χ s

2 + 2χus
11 + 2χds

11 + 2χud
11

]
= 1

9

[
2χu

2 + χ s
2

]
, (32)

and

χL
2 = 1

9

[
χu

2 + χd
2 + 2χud

11

] = 2
9χu

2 . (33)

The x-axis of the plots are chosen to be T/Tc, where the
value for the transition temperature Tc = 0.15 GeV is taken
[36,38,40,41]. Then all these results are compared to those ob-
tained by the lattice QCD calculations by Wuppertal-Budapest
[35,36] as well as HotQCD collaborations [37–39].

The parameters of the present approach are determined as
follows. First, the lattice data [36] on particle susceptibility
of light χL

2 quarks is used to determine the quasiparticle
mass of light quarks at vanishing chemical potential. Subse-
quently, the quasiparticle mass of strange quark as a function
of temperature is determined by the particle susceptibility
regarding baryon chemical potential χB

2 . Then the gluon mass
is used to fit the energy density for nB = 0. Also, to compare
the results between Eqs. (24) and (28), we assume that the

quasiparticle mass is momentum independent at μ = 0,2 so
that both equations are solved by using the same boundary
condition. Finally, E1 is tuned to further improve the pressure
as a function of temperature at zero baryon density. The
resultant particle masses at μq = 0 are show in Fig. 1, the
constant of integration for the bag constant is taken to be
B(Tc, μ = 0) = 0.12 × T 4

c , and the value of E1 is found to
be βE1/V = 2.305 × 10−4 GeV3. The particle mass at finite
chemical potential is subsequently evaluated according to
Eq. (28).

We note that, in principle, it seems to be more reasonable
to adjust the model parameters to the lattice data of χu

2 and
χ s

2, instead of χL
2 and χB

2 . This is because the lattice results
show that χB

2 contains flavor correlations. However, since our
quasiparticle model does not take into account the contribu-
tions from mixed cumulant terms, such as χud

11 in Eq. (33), it
is found that, in practice, the proposed model calibration leads
to a better fit to the existing lattice data.

The resultant thermodynamic quantities are presented in
Figs. 2 and 3. One observes that, overall, a reasonably good
agreement is achieved, especially for quark number sus-
ceptibility, besides the energy density, entropy density, and
pressure. It is also worth pointing out that in our present
approach, we did not introduce any renormalization for the
degeneracy factor, which is adopted as an additional free
parameter by some of the quasiparticle approaches. The only
discrepancies are observed for the quantities associated with
the first and second derivatives of the grand partition function
for the region where T < Tc. For instance, the pressure differ-
ence is related to the expansion in terms of μ/T . Therefore
the deviation becomes larger for smaller temperature. It is
probably related to the peak of χ4 at Tc [42], which has
not been appropriately considered in the present study. As
explained above, the fit was only carried out regarding the
χ2 lattice data. Since the lattice QCD results were obtained
by a Taylor expansion in terms of μ

T , it is thus meaningful
to show our results also truncated to the corresponding order
when comparing to them. This is shown in Figs. 3(c) and 3(d).
It is noted when we evaluate the pressure difference expanded
up to the order of ( μ

T )2, the calculated curve stays closer to the
lattice results, as expected. The is shown by the dotted green
curves in Fig. 3(c). But since the present quasiparticle model
does not consider any contribution from the mixed second-
order derivative such as χud

11 , it is merely understood as a
result of appropriate parametrization. For the same reason, the
results on fourth-order cumulant χB

4 presents more substantial
discrepancies. Probably due to a similar reason, some small
deviation is also found for the calculated sound velocity as
a function of temperature. However, by adjusting the gluon
mass in the region of temperature T ∼ Tc, we were able to
reproduce the behavior of the sound speed that increases
again as the temperature reaches the sector associated with
the hadronic resonance gas. From a practical viewpoint, these

2This is a simplifying assumption, and it may be not valid in
general. A more realistic approach is to accommodate the existing
results regarding the momentum dependence of parton mass.
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FIG. 1. The resultant temperature-dependent quasiparticle mass for glouns, light, and strange quarks at zero chemical potential.

difference can also be amended by manually connecting the
quasiparticle EoS to that of the hadronic resonance gas model.

To compare two different solutions discussed in the pre-
vious section, we solve Eqs. (24) and (28), respectively, but
fitting to the given boundary condition at nB = 0 defined
by the lattice data. The corresponding results are shown in

Fig. 4, where the obtained particle masses are presented as
a function of temperature. In the first case, since the mass
is also a function of momentum k, the presented results are
average values evaluated by using the same weight on the
r.h.s. of Eqs. (12) or (17). Numerically, one finds that the
particles masses from two different schemes are quite close

FIG. 2. The calculated thermodynamical quantities for both vanishing and finite baryon chemical potential. The thermodynamical
quantities obtained by the present model are shown in the dotted blue curves. The calculated results truncated in terms of μ

T up to second
order are shown in the dotted green curves. They are compared to those of lattice QCD calculations the Wuppertal-Budapest [35,36] and
HotQCD [37–39] Collaborations, indicated by filled red circles and grey squares (with error bars when it applies), respectively. (a), (b) The
results of entropy density, energy density, pressure, and trace anomaly at zero baryon chemical potential. (c) Calculated speed of sound.
(d)Trace anomaly for different values of chemical potential.
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FIG. 3. The calculated thermodynamical quantities for both vanishing and finite baryon chemical potential. The thermodynamical
quantities obtained by the present model are shown in the dotted blue curves. The calculated results truncated in terms of μ

T up to second
and fourth order are shown in the dotted green and dashed purple curves, respectively. They are compared to those of lattice QCD calculations
the Wuppertal-Budapest [35,36] and HotQCD [37–39] Collaborations, indicated by filled red circles and grey squares (with error bars when it
applies), respectively. (a), (b) The difference of pressure for given μB or μB/T as a function of temperature. The calculations were carried out
by using different truncations and the results are compared against corresponding lattice data. (c), (d) The second- and fourth-order cumulants
of particle number fluctuations χ2 and χ4.

to each other. Though it seems to be a somewhat a surprising
result, we understand that it could be merely owing to that
both approaches are tuned to reproduce the lattice data and
the fact the numerically obtained momentum dependence of
quasiparticle mass is not strong at all. The latter is observed in
Fig. 4(c), which presents the obtained momentum dependence
of quark masses for a given temperature, but with different
values of chemical potential. It is observed that the quasipar-
ticle mass decreases slightly but monotonically and converges
to a given value as the momentum increases. As the chemical
potential increases, the dependence becomes stronger, though
the overall dependence is not significant.

Last but not least, we show that the results obtained
in the present approach are consistent with the established
perturbative limit. This is achieved by carrying out calcula-
tions by using the quasiparticle model proposed in Ref. [32]
with the following forms for the quasiparticle masses

m2
a = m2

a0 + 
a, (34)

where a = g, q, s and the quasiparticle self-energies adopt
the asymptotic forms of the gauge-independent hard

thermal/dense loop (HTL) calculations [6,43]:


g =
⎛
⎝[

3 + Nf

2

]
T 2 + 3

2π2

∑
f

μ2
f

⎞
⎠G2

6
, (35)


q = 2mq0

√
G2

6

(
T 2 + μ2

q

π2

)
+ G2

3

(
T 2 + μ2

q

π2

)
, (36)


s = 2ms0

√
G2

6
T 2 + G2

3
T 2. (37)

For the high temperature region, the coupling is taken to have
the form of the perturbative running coupling at two-loop
order

G2(T, μq = 0) = 16π2

β0 log ξ 2

[
1 − 2β1

β0

log(log ξ 2)

log ξ 2

]
, (38)
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FIG. 4. (a), (b) The calculated quasiparticle mass of light quarks and its derivative as functions of temperature for different baryon chemical
potentials, obtained by solving Eq. (28), in comparison to those by solving Eq. (24), the latter is equivalent to the approach by Peshier
et al. [18]. (c) The quasiparticle mass of light quarks as a function of momentum for the solution discussed in this work. (d) The calculated
asymptotic behavior of quasiparticle masses, in comparison to a model [32] inspired by the gauge-independent hard thermal/dense loop (HTL)
calculations.

with

β0 = 11Nc − 2Nf

3
, (39)

β1 = 34N2
c − 13NcNf − 3Nf /Nc

6
, (40)

and

ξ = λ
T − Ts

Tc
, (41)

which regulates the infrared divergence of the running cou-
pling. For the parameters, the scale parameter and the tem-
perature shift are chosen to be λ = 1.5 and Ts = 0.15Tc. This
is done so that the model may adequately reproduce the
recent lattice data [35,36] in the intermediate temperature
region, while the remaining parameters are taken to be the
same as used in the literature [44]. The calculated asymptotic
behavior of the quasiparticle mass is shown in Fig. 4(d).
As described above, the quasiparticle masses at vanishing
chemical potential are adjusted to reproduce the lattice data
at the intermediate temperature. We first interpolate the lat-
tice data, and then make use of the obtained expression to
evaluate the particle masses for the whole temperature range.

The interpolation is carried out by specifically requiring the
asymptotic behavior in Eq. (37) is attained at the limit T →
∞. It is shown that our present approach is indeed consistent
with the established perturbative limit. Owing to Eq. (37), at
very high temperature but physically relevant finite chemical
potential, the limit established above does not change at all,
which is also confirmed by the numerical calculations.

IV. CONCLUDING REMARKS

To summarize, in this work we study the thermodynamic
consistency of the quasiparticle model and its implications on
quasiparticle mass. We find alternative possible solutions that
have not be explored before, and an essential characteristic of
these solutions is that the quasiparticle mass is also a function
of the momentum. Consequently, thermodynamical quantities
are actually functionals of particle mass, and in this case,
the formulation concerning the derivatives with respect to m,
such as dB/dm on the left-hand side (l.h.s.) of Eq. (2), cease
to be well defined. As discussed in the previous sections,
such momentum dependence of quasiparticle mass is not a
free parametrization but is derived from the requirement of
thermodynamical consistency. In particular, we investigate
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one special solution, and find that it is consistent with the
most recent lattice data. In fact, the momentum-dependent
effective mass is a meaningful concept. For instance, results
on the gluon [45–48] and quark propagator [49] in terms of
the Gribov-Zwanziger framework show that the resultant pole
masses indeed are functions of momentum. Also, other non-
perturbative approaches such as the Schwinger-Dyson equa-
tion indicate that both gluon [50] and quark [51,52] dynamic
masses are momentum dependent. In particular, the concept of
momentum-dependent self-energy was investigated by many
authors in the context of quasiparticle model [53–56]. In
addition, we show that the scenario discussed previously by
other authors [20,30–32] can be readily restored if one en-
forces that quasiparticle mass is only a function of temperature
and chemical potential. From our viewpoint, however, the
derived “flow equation” for the running coupling [20] can
alternatively be written down as an equation in terms of the
quasiparticle mass. We also investigate a special solution
where quasiparticle mass is a function of the momentum,
by simply matching the integrants of the integrodifferential
equation. By numerical calculations, we show that the differ-
ence between these different schemes are not very significant,
once the lattice data at zero chemical potential is used as a
constraint.

Partly inherited from most quasiparticle approaches, the
present model does not naturally address the flavor off-
diagonal correlations. These off-diagonal correlations subse-
quently lead to deviation from the lattice data in the transition
region at fourth order and beyond. Also, as the present model
still show some discrepancy from the lattice data for the region
T < Tc, it seems natural to smoothly connect the EoS in this
region to that of hadronic resonance gas model. In Ref. [57],
a critical point was implemented phenomenologically at finite
baryon chemical potential. Since the EoS plays an essential
role in the hydrodynamic description of relativistic heavy-
ion collisions [58–60], one can employ this scheme to study
the properties of the system regarding the existence of the
critical point, especially their particular consequences owing
to the hydrodynamic evolution of the system. Hopefully, some
observables can be compared to the ongoing RHIC beam
energy scan program [61–64]. We plan to carry out a hydro-
dynamic study of the relevant quantities using the proposed
EoS.
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APPENDIX

In this section, we show how the solutions of Eqs. (24) and
(29) are obtained. As a matter of fact, the procedure to solve
the first equation is very similar, while the second is slightly
more complicated. Therefore, in what follows, we explicitly
derive the solution of Eq. (29) and briefly discuss how that of
Eq. (24) is obtained. One first rewrites Eq. (29) by defining

w = ω∗ − μ. (A1)

Since m =
√

(w + μ)2 − k2, considering k merely as a pa-
rameter in m = m(k, T, μ), and (w + μ) as an intermediate
variable, one has

∂m

∂μ
= ∂m

∂ (w + μ)

∂ (w + μ)

∂μ
,

∂m

∂T
= ∂m

∂ (w + μ)

∂ (w + μ)

∂T
= ∂m

∂ (w + μ)

∂w

∂T
.

Thus Eq. (29) implies

∂ (w + μ)

∂μ
= T

w

∂w

∂T
, (A2)

or equivalently,

w
∂w

∂μ
− T

∂w

∂T
+ w = 0, (A3)

whose solution can be obtained by using the method of
characteristics [65]. To be specific, the above partial different
equation can be fit into the formal form

a(μ, T,w)
∂w

∂μ
+ b(μ, T,w)

∂w

∂T
= c(μ, T,w), (A4)

with

a(μ, T,w) = w, b(μ, T,w) = −T, c(μ, T,w) = −w,

(A5)

whose formal solution is the surface, defined by
f (μ, T,w) = w − w(μ, T ) = 0, tangent to the vector field
(a(μ, T,w), b(μ, T,w), c(μ, T,w)), namely,

dμ

w
= dT

−T
= dw

−w
. (A6)

As it contains two independent equations, one may conve-
niently select

d (μ + w) = 0,

and

d

[
ln

(
w

T

)]
= d

(
w

T

)
= 0.

This indicates that, for any function F (u, v), the desired
solution w satisfies

F

(
w

T
, (w + μ)

)
= 0. (A7)

Now, as discussed in the above text, the solution of the
equation is determined by the boundary condition at μ = 0,
where m(k, T, μ = 0) ≡ f (T ). In other words, the form of F
shall be determined by the boundary condition. If one defines
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F0(u, v) ≡ F (μ = 0), it is easy to verify that3

F (u, v) =
√

f
(v

u

)2
+ k2 − v (A8)

indeed satisfies Eq. (29). Subsequently, the general solution of
ω∗(k, T, μ) for finite chemical potential is given by√

f

(
T ω∗

ω∗ − μ

)2

+ k2 − ω∗ = 0, (A9)

3It is in fact one of many equivalent choices, e.g., another possibil-
ity is F (u, v) = u f −1(

√
v2 − k2) − v.

or

m = f

(
T ω∗

ω∗ − μ

)
, (A10)

which is Eq. (30).
As for Eq. (24), one may immediately recognize that the

equation possesses the same form of Eq. (A4) by recognizing

a(μ, T, m) = 〈〈1〉〉+, b(μ, T, m) = −〈〈1〉〉−,

c(μ, T, m) = 0. (A11)

Therefore, the formal solution reads

dμ

〈〈1〉〉+ = dT

〈〈1〉〉− , (A12)

which is the solution presented in the main text.
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