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ABSTRACT

We introduce a real-time decision support system

which uses optimization methods, simulation, and

judgement of the decision maker for operational

assignment of military units to tasks and for tactical

al location of unit resources to task requirements.

The system, named ARES for the Greek god of war,

accommodates a high degree of detail in the logistics

of unit movements during operations, yet separates the

assignment and allocation activities in a fashion which

naturally accommodates human intervention and

j udgement

.

ARES is designed to assist the decision maker, not

to replace him. ARES is demonstrated with a

hypothetical scenario constructed for 14 Engineering

Battalions of the Hellenic Army which are assigned 20

tasks employing 25 resource types in repairing major

damage to public works following a grate earthquake .

ARES is designed for use in real time, and quick

data preparation is aided by the provision of standard

task icons from published sources.

This hypothetical data was prepared prior to the
earthquake in Kalamata near Athens on 13 September,
1986, and exhibits uncanny, but coincidental
resemblance to that real situation.
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I. INTRODUCTION

We introduce ARES, a prototypic system for real-time operational and

tactical decision support. ARES is designed to quickly and effectively

help respond to complex emergent problems in disaster relief, in the

operational art and tactics of warfare, and in related multiperiod,

large-scale employment of heterogeneous, substitu table resources

restricted in availability and demand over time, over geography, and by

organizational limitations.

Although a great deal of work has been done in strategic modelling in

many contexts, there is relatively little available modelling help beyond

simple thumb rules for the time-pressed (operational or tactical) decision

maker to translate strategic goals into logistical ly constrained

operational and tactical plans (and the issues are different). The

luxuries of hypothetical additional resources and the time to analyze

their employment are just not available in the operational and tactical

domains: operational and tactical decisions must be made quickly, and

usually involve employing only resources actually available to perform

whatever mission is at hand.

The history of assignment and allocation models for planning emergency

logistics extends back to some of the earliest work in linear programming,

game theory, eind their economic interpretation. We cite only a few of the

references in this large body of literature. The seminal works by Dantzig

and by Koopmans (both found in Koopmeins 1951) are explicitly motivated by

large-scale logistics problems. Karchere and Hoeber (1953) give early

direction on the use of newly developed optimization technology in weapon



system planning and allocation, discussing substitutability of resources

and choice of suitable objective functions. Geisler (1959) reports RAND's

first use of man-machine simulation of logistics support activities.

Chaiken and Larson (1972) state some basic issues in logistic location and

task assignment for emergency service vehicles: how many units should

there be, where should they be located, who should they serve, and how can

they be relocated to substitute for units not available. Kaplan (1973)

redeploys divisible resources with linear programming. Fitzsimmons (1973)

states a nonlinear response time model and uses F>3-ttern search to locate

units well ajid allocate workload equitably. Swoveland, Uyeno, Vertinsky,

and Vickson (1973) employ simulation eind human interaction to set up a

unit location problem as a quadratic assignment model which is solved with

an elegant heuristic. Bracken and McGill (1974) formulate strategic force

planning models as two-sided gajnes solved with nonlinear programming.

Bracken, Falk, and Karr (1975) apply multiperiod, two-person zero-sum

games formulated to develop strategies for unit sortie allocations.

Finally, Kolesar and Walker (1974) develop a multi-stage solution approach

to unit £ind task assignment using set covering and transpor tation- like

integer linear prograuns which are used in real time by applying

heuristics.

Named for the Greek god of war, ARES is a proof prototype of a

real-time decision support system. It employs optimization and simulation

to capture eind exploit a high degree of realism without demanding

unreasonable amounts of data, or locking the decision maker out of the

decision process. The intent is to provide quick credible advice with

good global perspective at a cost no greater thzm the relatively myopic
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decision methods now widely used.

ARES accommodates enough detail to support realistic decisions, but

not so much as to render the process useless. For the intended

applications, the particular missions to be performed will not likely be

known much in advance, but the generic types of missions are known and cam

be planned. ARES uses a taxonomy of prepared standardized icons for data

describing possible missions. The idea is to help the decision maker

quickly assemble a data scenario closely resembling the proximate

situation from a menu of these standard icons.

We characterize the mission at hand as a set of geographically

dispersed tasks , each composed of p)artially-ordered sub- tasks requiring

over time varying amounts of different resources . Organizational units .

also geographically dispersed and each possessing a different endowment of

resources, are to be assigned responsibility for the tasks.

Responsibility for each task rests with only one unit at emy given time.

ARES consists of several models coordinated by a time interval

simulator which also scales eind manipulates scenario data in a fashion

tr£insp>arent to the decision metker. Two integer linear programs, a linear

program, a georeference system, a mobility system, a decision-maker

simulator, and extensive user interface sind user override and control

facilities complete the progreim suite. The models in ARES all use a

standard data interface visible to the decision maker; this invites

expansion with new models and features.

A scenario is created from the attributes of available units and task

attributes derived in large part from standard cataloged data icons for

similar tasks. A georeference system is accomodated to generate distance



costs and delays in relocating and operating units. The decision maker

may preview the scenario and modify data or manually pre-assign tasks and

units as he sees fit.

Operational assignment of tasks to units uses one of two integer

programming models (IP,) or (IP). Good task aggregations for the unit

assigned reduce unit relocation costs eind match unit resource endowments

with aggregated task resource requirements. Logistical considerations are

parsunount at this stage.

The decision maker cem review the operational assignments, modify them

memually, or reject them outright eind restate the conditions for the

original operational assignment scenario. An acceptible set of

operational assignments is passed forward to a tactical model.

Tactical allocation of the resources of each unit to the requirements

of its assigned tasks uses a linear prograimming model (GN). Substitutions

among resources are permitted, although at reduced efficiencies in

completing the tasks. Allocations recognize task priorities and the

logistical effects of geographic proximity. In addition, unit efficiency

in performing a particular task improves over time, and the sequence

within tasks of resource requirements is considered. The result is a

complete plan for each unit, showing what resources are to be used to

fulfill each task requirement, and the efficiency with which operations

are expected to be carried out. The allocation also determines which

requirements will not be met in situations which overtax units.

Finally, the decision maker is presented with a complete solution,

which he can accept, or modify, or reject outright £ind repeat. Regardless

of his action. ARES is designed to lend quick insight. The decision maker

10



uses his own judgement concerning non-quantified factors, and he should

gain a deeper understanding of the situation at hand from ARES.

11



II. OPERATIONAL ASSIGNMENT MODEL (IP)

This integer progreim finds good aggregate assignments of tasks to

units without explicit consideration of unit movement.

Index Use

i Tasks

j Resources

k Units

Given Data

d., Distance cost from unit k to task i
ik

r. ., r. . Minimum , maximum resource i requirements of task i
-ij ij

a., , a.. Minimum , maximum resource j employable by unit k

z ., , z ., Penalties for violating minimum , maximum resource limits
-jk jk *

p. Priority of task i (>0)

u . , u. Penalties for not assigning, double-assigning task i

f .. Substitution efficiency of resource j (>0)

s. . Sequence of resource j requirement within task i

h. ., Consumption by task i of resource j from unit k

Decision Variables

x.. Binary variable for assigning task i to unit k

Formulation

MIN 22 d., x.,
., ik ik
ik

s.t. 2 X. = (1.1) : (u..u.) for all i (1) (GUB)klK ^~X X

2 h. ., X., = (a., ,a., ) ; (z ., ,z., ) for all j.k (2)
J

ijk ik "^-jk jk-* '^-jk jk''

x.j^ = {0.1} for all i.k (3) (IP)

12



The notation = (r,r);(z^, z) indicates lower and upper ranges (£, r) on

row functional values with corresponding respective linear penalties per

unit of violation (z, z); i.e., this is a goal program with linear

penalties, an elastic integer program (Brown and Graves 1975).

Constraints (1) encourage assignment of each task to some unit, and form a

generalized upper bound (GUB) row set (Dantzig and Van Slyke 1967).

Constraints (2) express the goodness of fit of task assignments with

employable unit resources. Constraints (3) preclude fractional assignment

of tasks to units.

Consumption by task i of resource j from unit k is defined:

h. .^ ^ r. . e-'"
f
jj * (Pi-1)/10 * 1.^/a^ * tT^

^^^

where cr is the speed of advance of a unit and t., is the number of

periods that unit k has already been assigned task i. The rationale for

the p>articular consumption function (1) amplifies the resource requirement

r. . to account for the state of resource readiness f .., the task priority

p. (malcing less important tasks appear more expensive), the logistic

proximity of unit k and task i, d.,/a, , and learning curve effect as a

function of time since assignment, t., . The data are scaled so that (1)

is in conformity with policy guidance or the judgement of the decision

maker. Alternate consumption functions may appeal in other situations.

The disteuice costs d., and penalties u.. u. and z ., , z ., are expressed
ik —11 —jk jk

in commensurate units and deserve some thought by the modeller. For

instance, z ., may be interpreted as how much additional distance cost

should be incurred before considering overtaxing maximum resource

13



employment a., for unit k; this is a direct expression of logistical

efficiency. For simplicity in our tests, distance costs d., are scaled by

a policy parameter, z., and z ., are part of the input script, u. is

defined as 100/p., smd u. equals 100.

14



III. OPERATIONAL ASSIGNMENT MODEL (IP^)

The purpose of this integer program is to find good movements of units

to locations from which they will be assigned good aggregate groups of

tasks to perform.

Index Use

1 Tasks

j Resources

k Units

1 Locations (assumed here to be collocated with tasks)

Given Data

Distance cost from unit k to location 1

Distance cost from task i to location 1

Gross resource requirement j of task i performed

from location 1

Net resource availability j of unit k located at 1

Decision Variables

Ik

Sil

jli

a.,,
J Ik

z.. Binary variable for assigning task i to location 1

X
Ik

Binary variable for moving unit k to location 1

15



Formulation

MIN 22 g., z., + 22 d,, x,,
. , ^il il , , Ik Ik
il kl _
2 z.^ = (l.l);(u..u.) for all i (1) (GUB)

1

2 X,, = (l.l);(m.m) for all k (2) (GUB)

1
Ik

2 X = (0.1);(m.m) for all 1 (3)

k ^^

-z., +2 X,, = (0.1);(m.m) for all i.l (4)
il , Ik ^ -^ ^ ^

k

-2 r.., z., + 2 a.,, x,, = (0,0);(b,b) for all l.j (5)
jil il , jlk Ik * -' *^— -^

1 k

z., = {0.1} for all i.l (6)

^Ik " ^°*^^ ^°^ ^^^ ^'^ ^^^ ^^V
(IP.) uses the notation of (IP). Constraints (1) encourage assignment

of each task to some location. Constraints (2) allow movement of each

unit to some location. (A GUB row set is formed by constraints (1) eind

(2).) Constraints (3) attempt to restrict assignments so at most one unit

is moved to 2iny particular location. (4) require that a unit be moved to

any location to which a task is assigned, and (5) attempt to match for

each location and each resource an aggregate assignment of tasks which

have gross resource requirements about equal to the net resource

availability of the unit moved to that location to perform the tasks.

Constraints (6) £ind (7) preclude fractional location of tasks £ind units.

Gross resource requirement r.., represents the resource j estimated to

be required at location 1 in order that task i actually receive r^. ..

-In f .. + (p.-l)/10 + g.,/a f^.
^jil ^ -ij ® ^^ ' ^^

where a expresses the logistic radius of influence from any location; we

16



have used o = 100. The gross resource requirement (2) sunplifies the

resource requirement r. . in the sajne fashion as (1).

Net resource availability a.,, represents the ajnount of resource j
J Ik

which unit k can deliver from its endowment a., forward to location 1.
jk

Unit k may be moving toward location 1 while supplying this net resource,

^jlk = ^jk ^jj (°^lk
"• (l-"lk) «"'^lk/''k). (3)

where a,, is the fraction of time which the unit will spend at its

destination location, and a, is the speed of advance.

The distance costs d,, aind g.,, emd the penalties u. u., m, b and b
Ik il —11 —

all render the same objective function units. In our work, m = 100, and

u. and u. are defined as in (IP). The penalties for assigning too little

(or too much) resource j to location 1 are b (or b). We have used b = 0.1

and b = 0.01.

17



IV. TACTICAL ALLOCATION MODEL (GN^^)

This linear program allocates resources to the tasks assigned to unit

k.

Index Use

i Tasks

j Resources

w Work (resources required by tasks assigned to unit k)

Given Data

r . , r

.

-iw iw

q. . q.—iw iw

a ., . a.,
-Jk jk

-jk jk

f .

s.
IW

Minimum , maximum work requirements w of assigned task i

Penalties for violating minimum, maximum work requirements

Minimum , maximum resource j employable by unit k

iwj

Decision Variables

Penalties for violating minimum , maximum resource limits

Priority of task i

Substitution efficiency of resource j for work requirement w

(>0)

Sequence of work requirement w in task i (>0)

Efficiency of resource j used for work w on task i

iwj

Formulation

Allocation of resource j to task i resulting in work w

MAX 222 e. . y. .

• • IWJ •" IWJ
St IWJ ^

2

j

22 e

iw

y. . = (r. .r. ) : (q. .q. ) for all i.w (1) (GUB)

. . y. . = (a., .a., ) ; (z ., .z., ) for all j'

iw.i •'iw.i ^—ik ik'' ^-ik ik' "^

y. . >
IWJ

-

jk' jk^
(2)

for all i.w.j (3) (GN^^)

18



(GN, ) uses the notation of (IP). However, the dimensions of (GN, )

discriminate between resources consumed, j, and work completed, w,

explicitly representing substitutabili ty of resources. Constraints (1)

encourage allocation of sufficient work resources, while constraints (2)

indicate the desired mix of employable unit resources. Constraints (3)

require non-negative resource allocations. (^N, ) is an elastic

generalized network (Brown and McBride 1984).

Efficiency of resource j used for work w on task i is defined

_ -In f . + (p.-l)/10 + s. /lO + d.,/a, ,.,
. . = e jw ^*^i

' iw ik k, (4)
iwj

where s. = max {0, s. - t}, t is the last time period of this
iw ^ iw ^

allocation, and a, is the unit speed of advance. The efficiency (4)

employs the readiness and substitutabili ty of resources via f . . s.i- J J
JW iw

reduces efficiency if the work w should not be started until period s
iw

19



If model (IP) has been used for operational assignment.

d.^ = max (0. d.^ - a^/2}. (5)

If unit k is to be advanced toward, or to. location 1 by model (IP,)

d.j^ = "^ i^' ^ik
" "^/^^ "^ ^ir ^^^

These distance costs d., in (5) or (6), and penalties q. , q. , z ., , and
ik ^ ^ * '' *^ -*-iw iw —jk

z ., are all intended to yield the sajtie objective function units. For our

tests, q. = 100/p.s. . and q. = 100.
-*-iw 1 iw iw

20



V. CONSIDERATION OF LOGISTICS

The efficiency with which a unit completes a task depends heavily upon

logistical considerations. If a unit is remote from a task, or must be

moved, its efficiency suffers. Figure 1 shows aji idealized situation with

unit k. task i, emd location 1.

I 1

I I

I
I

I J

I J

I I

new

©
ax It

focalLOTi

^:t

/^tK

I

tasK

UTllt

Figure 1: Idealized Geographic Logistical Scenario

Model (IP) assigns tasks to units relying exclusively upon d., . (IPj)

moves units to new locations and assigns tasks to be performed from these

new unit locations. (IP,) recognizes d,, and g.,. The distsinces d., £uid
^ L' Ik il ik

d., are surrogates for logistical costs of assignment during the ensuing

time period. Clearly. (IP,) is more appropriate for situations in which

unit movements are expected, (IP) when they are not. (IP. ) provides the

decision maiker with a better opening gaimbit than does (IP) if the scenario

involves significant initial redeployment of units.

Tactical allocation models (GN) are given unit £ind task assignments

and planned unit movements. Therefore. (GN) can allocate resources using

21



any logistic efficiency function of assigned distances, and of other

attributes induced only from assignment such as weather effects, speed of

unit movement, etc. (GN) can also substitute resources at somewhat

reduced efficiency as well as prioritizing their immediate application.

Given a fairly reasonable operational assignment, (GN) provides a

high-resolution work plan with rich logistic detail and good face

validity.

22



VI. AN EXAMPLE SCENARIO

We demonstrate ARES with em example constructed for Engineering

Battalions of the Hellenic Army. The mission scenario involves 20 tasks

repairing major daunnage to public works following em earthquake. For our

purposes, there are 14 units, each endowed with some of 25 resources.

Figure 2 shows the units and tasks from the ARES input script. In the

United States, the Department of the Army defines unit types in (1976),

auid task standards in (1973a).

UNIT LABELC LCCATIONS. AND PRIOR AZSIGNMENTS (IPL)

uu 1 LABEL 1 IX-COORD iV-COORD ISOA LL PP

1 i;t combat BN 5-35 20.30 20.30 150
'y CND COMBAT BN 5-35 04.50 05.50 150

3 :rD COMBAT BN 5-155 07.00 17.25 150

4 <1TH COMBAT BN 5-155 04.90 03.70 150

5 13T C0N3TR BN 5-115 05.20 14.50 100

6 2ND CONSTR BN 5-115 13.30 13.75 100

7 iRD C0N3TR BN 5-115 11.05 15.60 100

S 4TH C0N3TR BN 5-115 08.50 15.25 100

9 i:t airbcr BN 5-105 13.00 05.00 200

10 2ND AIRBCR BN 5-l?5 20.30 20.30 200

11 13T LIGH.EOUI.CO 5-58 00.40 12.85 150

12 1ST ENG ARM BT 5-U5 13.20 08.60 120

IS 2ND ENG ARM BT 5-145 09.25 02.90 120

1« :RD ENG ARM BT 5-145 08.50 15.25 120

TASK LABELS. LOCATIONC. PRIORITIES. AND PRIOR ASS IGNMENTS (IPKIPL)

TT 1 LABEL 1 IX-COORD IV-COORD IPRI UU LL PP

1 ADMIN BUILDING AA1051 09.55 05.90

2 ADMIN BUILDING AA1051 09.60 11.60

S ADMIN BUILDING AAlIOl 01.90 06.95

4 HOSPITAL 100 BED GHOlll 10.75 07.45

5 HOSPITAL 200 BED GH0211 09.60 11.60

< HOSPITAL 100 BED GH0131 09.55 05.90

7 HOSPITAL 100 BED GH0131 01.90 06.95

8 RAILROAD BRIDGE 861643 09.70 05.90

9 RAILROAD BRIDGE 861512 07.90 09.45

10 ROAD BRIDGE 50' 854101 10.70 07.20

11 ROAD B»IDGE 100' 854109 09.70 05.89

12 ROAD BRIDGE 70" 854104 08.30 09.30

13 ROAD :.5 MILES 853120 10.80 06.15 2

14 ROAD <;.7 MILES 853122 10.76 07.50 2

15 ROAD 5.5 MILES 853123 09.60 06.30 ^

li ROAD 6.8 MILES 853124 02.35 07.25 2

17 ROAD 6.0 MILES 853120 10.80 06.95 t

18 WATER TANK-DIST- SUP NQl 10.85 06.90 1

19 HATER TANK-DIST- SUP N02 09.65 06.35 1

20 WATER TANK-DIST- SUP N03 09.10 10.85 1

F igure 2- Units and Tasks o f Example

23



The georeference coordinates of units and tasks are given in Figure 1

for the situation depicted in Figures 3. 4 smd 5.

Figure 3: Initial Geographic Locations of Units. (Coordinates
displayed are a georeference in common with the following
figures.

)

24
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Figure 4: EarthquaJce Epicenter.

Figure 5: Geographic Locations of Tasks. Geographic locations of
damaged public works and earthquake epicenter are shown.

25



A georeference system is used to generate coordinate-to-coordinate

distance costs, which appear in the ARES input script.

The resource requirements for Task 1 ("ADMIN. BUILDING AA1051"). a

disaster relief facility, are given in Figure 6 and the input script.

Resource requirements such as these are available in standard engineering

reference manuals for a wide variety of task types (for instance, see

unclassified sources from the United States Department of the Army (1973a,

1973b, and 1973c). We envision a taxonomy of standardized task data icons

from which a particular set of requirements can be very quickly extracted

and assembled for a scenario. The size of our resource requirements data

base is modest but the resulting accuracy and level of detail are quite

good. Better yet, data mobilization from a menu of such icons can be

completed in minutes.

RESOURCE LABELS AND TASK 1 REQUIREMENTS

MAN

RR 1 LABEL 1 HOURS

ENGIN-PION-APREN-HLPER ms
SURVEYOR 70

CARPENTER 7557

ELECTRICIAN 940

PLUMBER 1740

MASON 1600

STRUCTURE SPECIAL.

HEAT-VENTILAT SPECIAL. :oo

WELDER

PIPELINE

CRANE- SHOVEL OPER. ;oo

LOADER OPER. 250

DOZER OPER. 300

COMPRESSOR OPER.

DUMP TRUCK OPER. 400

CONCRETE MACHINE OPER.

GRADER OPER. J29

CRUSHER O^ER.

DITCH MACHINE OPER. 100

20 ASPHALT SPECIAL.

21 POWER ROLLER OPER.

22 WATER DISTRIBUT. OPER.

23 POWER BOAT OPER.

AH ROTARY TILLER OPER.

25 SCRAPER OPER.

Figure 6: Resource Requirements of Task 1
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The resources employable by Unit 1 ("1ST COMBAT BN"), a combat

engineering battalion, are given in Figure 7 and in the input script.

These resource endowments are in line with those given by the United

States Department of the Army {1973a) with conversion to man hours from

(1971).

RESOURCE LABELS AND UNIT 1 AVAILABILITIES

RR ILASEL I IMIN IMAX IMIN PEN IMAX PEN

% SURVEYOR 405 450 10 10

I CARPENTER 1215 1350 10 10

4 ELECTRICIAN :os 225 10 10

5 PLUMBER 1418 1575 10 10

MASCN 1215 1350 10 10

7 STRUCTURE SPECIAL. 10 10

a HEAT-VENTILAT SPEC;AL. 10 10

9 WELDER 187 208 10 10

10 PIPELINE 10 10

11 CRANE-SHOVEL OPER. 1215 1350 10 10

i: LOADER OPER. 6165 6850 10 10

13 DCZER OPER. 4050 4500 10 10

14 COMPRESSOR OPER. 1013 1125 10 10

15 DUf° TRUCK OPER. 10935 12150 10 10

16 CONCRETE MACHINE OPER, 203 225 10 10

17 GRADER OPER. 1620 1800 10 10

18 CRUSHER OPER. 10 10

19 DITCH MACHINE OPER. 10 10

:i) ASPHALT SPECIAL. 10 10

21 POWER ROLLER OPER. 10 10

:: WATER DISTRIBUT. OPER. 10 10

25 PCWER BOAT OPER. 10 10

24 SOTARV TILLER OPER. 10 10

25 SCRAPER OPER. 10 10

Figure 7' Resource Endowment of Unit 1.

The input script also includes for each task the sequence of resource

requirements expressed as the first period when the resource is best

applied, smd for each resource its substitution efficiency for other

resources.

The scenario data constitutes about 1,000 records. However, these

records derive from the unit, task, and resource definitions which are

modest in number.
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VII. DESIGN AND IMPLEMENTATION

ARES is intended to help the decision maker, not to replace him.

Figure 8 shows the functional structure of ARES. The design is biased

toward interactive use with review and intervention options at each stage

of operational assignment £ind tactical allocation.

28



INITIALIZE:

NEXT_PERIOD:

OP_J^SSIGN:

REVIEW_IP:

TAC_ALLOC:

UNIT-K:

NEW_SCRIPT:

REVIEW.J'ERIOD:

Define NEWJSCRIPT

Redefine NEW_SCRIPT as OLD_SCRIPT

Select Model (IPj^) or (IP)

Read OLD_SCRIPT

Generate and Solve (IP. ) or (IP)

Record task and unit assignments on ASSIGN_FILE

Option to review assignments in ASSIGN_FILE

either stop,

or edit OLD_SCRIPT and GOTO OP_J^SSIGN.

or edit OLDJSCRIPT and/or ASSIGN_FILE and continue

Read OLD_SCRIPT and store as SCRIPT

Read ASSIGN_FILE and update SCRIPT assignments

Select (GN, ) , Generate smd Solve

Update SCRIPT resource requirements for work completed

For next unit k REPEAT UNIT-K

Update SCRIPT unit locations and distance costs

Write SCRIPT as NEW_SCRIPT

Option to review results

either stop,

or edit OLD_SCRIPT and/or ASSIGN_FILE

and GOTO OP^ASSIGN

or edit NEW_SCRIPT and GOTO NEXT_PERIOD

Figure 8: ARES Functional Specification
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ARES is implemented in FORTRAN H(Extended) and executes on an IBM 3033

AP computer using the VM/CMS operating system. Input scripts are read

from files which may be viewed £tnd modified with a full-screen editor such

as XEDIT. (Software copyrights IBM Corporation.)

ARES uses the X-SYSTEM (Brown and Graves 1975) to solve (IPj ). (IP)

and (GN, ) in real time. For each problem instance, problem generators

directly convert input script data into ein internal representation, the

solver is invoked, and the solution is provided to a report writing

program. ARES consists of a set of open subroutines and is executed with

whatever preview, review, or other external interference is deemed

desirable.

We envision cyclic use emd review at varying levels of detail as a

mission progresses over time. Accordingly, input scripts include the

beginning period and number of periods in the ensuing time interval, which

intrinsically scales time-dependent input data to the desired level of

aggregation. We have tested ARES manually and by replacing the decision

maker with a simulation which performs "judgement review" of successive

solutions over time. This permits totally automatic evaluation of

complete mission scenarios, and avoids tedius manual effort in our

research. (A single time interval may generate 15, or 20 thousand lines

of solution detail at the scale of our exsunple scenario.)

The update of unit coordinate locations and distzmce costs is a simple

surrogate for a more realistic and complicated georeference and mobility

system. ARES estimates the direction suid speed of advance of each unit

during the time interval and relocates the unit. Then the distance costs

are adjusted. If operating areas are known sufficiently in advance to

30



permit preparation of detailed georeference and mobility systems, ARES can

accomodate the increased level of detail in real time (e.g.. Brown, Ellis,

Graves, and Ronen 1987). The update can also be used to degrade, or to

amplify unit resource endowments and effectiveness to modify task resource

requirements, or to change amy other data artifact, providing a rich

modelling arena.
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VIII. SCENARIO RESULTS

ARES has been used in simulation mode to completely plan mission

scenarios from start to finish. For the earthquake scenario. Figure 9

shows the initial operational assignments of (IP.).

20

1

Figure 9: Initial Operational Assignments of Units. Directional
vectors show the straight-line path eind relative speed of
advemce a, .
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Figure 10 depicts the arrival of units to their initially assigned

locations.

Figure 10: Initial Operational Assignments of Units to Locations.
Arrows show straight-line path of advance toward assigned
locations.

Without intervention by the decision maker, the scenario completed

itself in 7 weekly intervals, requiring less than 2 minutes in a 1.2

megabyte memory region.

Face validity of the simulation solution is excellent. No manual

intervention has been found to improve the solution. In fact, many manual

attempts to coerce better assignments resulted in startling degradations.
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The application of available resources, with allowable substitutions,

is shown in Figure 11 for the 7 single-period time intervals required to

complete the earthquake scenario.

? n d w o o k 5t K week 6th week 7th week
.

10 Pl
1 1 L '

12 L. 1

14 p

16Pn _ 1
'

18 I

19 y
?0 P

21 [=1

22 P
23 I

24 I

25 I

y

Q
I

U

Figure 11: Resource Requirements and Work Completed. Each row
represents a resource requirement over time-interval columns.
The white bars depict resource requirements by time
interval; the black bars show the relative fulfillment of the
requirements. Broken bars are out of scale. From each time
interval to the next the requirements are reduced by the work
completed and amplified by new sequence-dependent
requirements. In this scenario, 7 weekly time intervals are
required to complete all tasks.
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IX. COMPUTATIONAL EXPERIENCE

Extensive computational experience reveals that the operational

assignment models (IP) and especially (IPj ) are most difficult to solve at

the beginning of a scenario, and get progressively easy in later time

intervals. The size of these models varies with the number of mandated

assignments, impossible assignments, Eind the non-zero density of resource

availabilities and remaining requirements. (IP) typically has about 340

constraints, 268 binary variables, and 6,200 non-zero consumption

coefficients. The linear program continuous relaxation can be generated

and solved in about 5 seconds, and an optimal binary solution is achieved

in another second, or so.

(IP,) has about 1,000 constraints, 645 binary variables, and 8,000

rather unwieldy non-zero gross resource requirement and net resource

availability coefficients.

The linear progrsun continuous relaxation of (IP, ) proved impossible to

solve by direct assault. Prior work by Brown and Graves for Bausch (1982)

on large-scale set partitioning problems and later refinements by Brown,

Graves auid Ronen (1987) suggested an alternate me£ins of attack^ a problem

cascade

.

Briefly, the rows of constraints and columns of variables are

lexicographically sorted to place short rows first accompanied by other

rows and columns with intersecting non-zero coefficients, eind longer rows

later with their own intersecting rows and columns.

The problem cascade proceeds by activating a set of constraints,

relaxing all other constraints, ai\d activating a set of variables, fixing
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all other variables to their last-known values. This problem is solved,

the new values of the active variables recorded, and another problem

specified in the building problem cascade. The last problem in the

cascade activates all constraints and variables (precisely the problem

found intractable above) and solves it by starting with sui advanced

solution recorded from the last-known values of variables solving previous

problems in the cascade.

(IP. ) resisted even the problem cascade until a new heuristic cascade

strategy was adopted which activates the shortest 1/2 of constraints and

their associated variables, then the shortest 3/4, then 7/8, and so forth

until the last constraint is added and the problem is solved. Remarkably,

this approach has been absolutely reliable amd robust, while most others

fail or prove unruly.

Generation and complete problem cascade solution of the continuous

relsLxation of (IP.) now requires about 10 seconds.

An acceptable binary solution to (IP, ) is achieved in another second,

or two.

We do not routinely seek optimal binary solutions to (IP.), which we

refer to as "perfect misfits". The gross resource requirements and net

resource availabilities in (IP, ) are rough logistic estimates, calibrated

by actual field experience but ultimately just approximate target

perform£uice levels. For interesting operational assignments (i.e., early

in the scenario) there are simply no feasible solutions; the goal is to

guess where to send units so that they can peremptorily cope with the

mission at hand with maximal effectiveness. Accordingly, we accept in

practice binary solutions which may be as much as 25% greater than an
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optimal lower bound in total value, including constraint violation

penalties. Experimentally, we have determined at additional computational

cost (as much as 5 minutes per trial) that these binary solutions are

actually almost always within a few percent of the true optimum.

A decision maker can help ARES with its operational assignments or

completely specify a solution with manual assignment features. Our

experience suggests that the decision meiker can express some

non-quantifiable guidance in this fashion, but can not hope to apply a

remotely competitive global perspective. Msuiual competition with ARES

reveals that model computation effort is ainply justified by the quality of

operational assignments achieved. The operational assignment models,

especially (IP.), produce solutions no decision maker is likely to

discover. Some of these solutions have yielded remarkable insights. The

initial operational commitment of units is arduous and crucial to mission

success. (IP. ) is worth the computational investment.

By contrast, the tactical allocation models (GN) are easy to solve

even in the cases where heroic substitution of resources are required.

The size of each (GN, ) varies with the number of tasks assigned to the

unit, and the non-zero densities of resource availabilities, remaining

requirements, and allowable substitutions. For our scenario, a typical

instance of (GN, ) has about 70 constraints and 1,190 variables, and is

generated and solved in less than 0.1 second. Stress tests with 525

constraints and 12,500 variables require less than a second.
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X. DISCUSSION AND CONCLUSION

The subtlety of operational assignment has surprised us, as has the

ease of detailed tactical allocation. Operational assignments are

delicate decisions, and the success of entire missions appears to be very

sensitive to minute details precisely the considerations a hard-pressed

decision maker would likely overlook in haste.

Extensive mechanisms have been provided in ARES to encourage manual

review and coercion of solutions. However, there have been very few cases

in which such guidance improved solutions and many instances in which

minor manual adjustments of operational assignments inflicted great

disruption. For example, some operational assignments of (IP, )

"cross-locate" units in the sense that a pair of units will each be

collocated with a task assigned to the other. This superficial blemish

can easily be masked by manual intervention or by automated solution

editing. Surprisingly, the removal of cross-locations frequently

increases the logistic cost of the solution: there is a very delicate

balance of logistic support of task cohorts assigned to specialized units.

Cross-location can actually make a great deal of sense in practice.

Manual intervention can work well in cases inviting human judgement.

For instance, nearly completed tasks or tasks which have been in progress

for long intervals can enjoy efficiencies not apparent to our models. The

decision maker can easily declare tasks completed when minor requirements

remain, or when it is clear that the models are unduly influenced by a

minor requirement.
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Operational assignments can be restricted so that units are not moved

from their initial new locations until the work in their logistic

influence has been completed. Surprisingly, this restriction is rarely

needed in practice, £ind in those cases in which multiple relocations are

indicated great efficiencies accrue to the mission as a whole. We view

this insight as a strong validation of the modelling philosophy underlying

ARES.

Fortuitous design decisions to sep>arate operational assignment emd

tactical allocation models, to decompose time intervals, and to couple the

resulting restricted components with simulation and human intervention

options have yielded more thatn the intended benefits. Our original

motives were to capture as much reality as possible while still rendering

models capjable of quick, responsive solution.

The decomposed design also naturally accomodates features which are

otherwise difficult to provide. For instance, partial orderings within

tasks can be introduced. Also, discussions with Professor Wayne Hughes

have suggested the technical feasibility of ceimpaign zinalysis, two-sided

gaming, and force-on-force applications of ARES. In these contexts, the

coupling with simulation enhsmces our capabilities enormously.

ARES was originally designed for use on an IBM-PC. There is no

compelling reason not to use this microcomputer, but we encountered a few

practical limitations. An arbitrary 640 kilobyte memory region limitation

and crippling errors in the FORTRAN compilers available for the IBM-PC

present artificial conversion costs which we are not willing to bear.

When these unfortunate shortcomings of the IBM-PC are repaired, conversion

might be reconsidered. Calibration tests project solution times on the
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order of 2 minutes per time interval on IBM-PC/AT with a math co-processor

and internal clock speed of 8 megahertz.

J
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