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Recent outbreaks of Mpox and Ebola, and worrying waves of
COVID-19, influenza and respiratory syncytial virus, have all
led to a sharp increase in the use of epidemiological models to
estimate key epidemiological parameters. The feasibility of this
estimation task is known as the practical identifiability (PI)
problem. Here, we investigate the PI of eight commonly
reported statistics of the classic susceptible–infectious–recovered
model using a new measure that shows how much a researcher
can expect to learn in a model-based Bayesian analysis of
prevalence data. Our findings show that the basic reproductive
number and final outbreak size are often poorly identified, with
learning exceeding that of individual model parameters only in
the early stages of an outbreak. The peak intensity, peak timing
and initial growth rate are better identified, being in expectation
over 20 times more probable having seen the data by the time
the underlying outbreak peaks. We then test PI for a variety of
true parameter combinations and find that PI is especially
problematic in slow-growing or less-severe outbreaks. These
results add to the growing body of literature questioning the
reliability of inferences from epidemiological models when
limited data are available.
1. Introduction
Incredible efforts have been made in recent years to apply
epidemiological models to the empirical data borne out of the
COVID-19 pandemic. The LitCovid aggregator currently
contains over 3000 papers on ‘epidemic forecasting’ and
‘modelling and estimating’ trends of COVID-19 spread [1]. We
are seeing similar waves of models and forecasts for recent
outbreaks of Mpox, Ebola, influenza and respiratory syncytial
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virus. However, the enormous variability in model predictions, even among works using the same model

and similar data, erodes confidence when interpreting these efforts for policy decisions [2]. It is clear that
uncertainty remains about what we can expect to learn from these models, and when.

Disease models tackle the difficult challenge of describing complex epidemic processes by relating
mechanistic processes to population-level observations such as daily reported cases. Identifying
combinations of parameters that plausibly replicate observed data can help summarize the epidemic
dynamics. Common statistics include the basic reproductive number, the average number of new cases
someone will cause in an entirely susceptible population, and the outbreak size, the fraction of the
population who will eventually have had the disease. Because these indicators are the product of
interacting social and biological phenomena, they are never available through direct observation. Fitting
epidemiological models to data is one of the best options for estimating these important quantities [3].

The classic susceptible–infectious–recovered (SIR) model accounts for a minimal number of critical
mechanisms of disease spread. Infectious individuals infect susceptible individuals at a rate β and
recover at a rate α. These mechanisms can be tracked through time by a set of ordinary differential
equations:

d
dt

S ¼ �bSI,
d
dt

I ¼ bSI � aI and
d
dt

R ¼ aI:

It is common to consider S, I and R as a fraction of the population in a given state such that S + I +R = 1
at all times. The initial state of the population might not be known—especially the susceptible pool
S0≡ S(t = 0). Focusing on the second equation, we can see that the epidemic will grow exponentially at
a rate βS0− α for initial small values of I, resulting in near-exchangeability of the parameters and
causing large uncertainty in individual parameter values early on [4,5]. Conversely, when I becomes
small after the peak, the infectious population eventually decays exponentially at a rate α. These
observations make clear that data regarding I will provide information about different parameters, or
combinations thereof, at different points of an outbreak. In general, the amount of information that
can be learned about a given quantity will depend on the structure of the model equations, the timing
of observations and the level of noise in the data [6].

Despite the model’s simplicity, several authors have cautioned that the reliability of inferences drawn
from the SIRmodel is questionablewhen based on prevalence data alone [7]. Due to the structural nature of
the SIR equations, these issues are particularly acute during the early stage of an outbreak, when inferences
are critical for informing timely public health response [5,8]. Without careful incorporation of additional
data, these reliability problems can only grow with additional complexity in the model equations or
observational structure [2,9]. In order to draw meaningful conclusions, researchers are forced to rely on
data from one or more epidemic waves [10], or make strong and potentially controversial assumptions
about parameters governing disease spread [11]. A more general understanding of how properties of
epidemiological models affect uncertainty in commonly reported summary statistics would help
researchers quantify how much they can expect to learn in empirical studies and establish sufficient
criteria for reproducibility. Therefore, the goal of this report is to provide a comprehensive baseline for
the reliability of estimates for a number of commonly reported statistics, with emphasis on the time
necessary to predict these statistics in an emerging epidemic accurately and to illuminate the structural
interactions between data, model dynamics and summary statistics.

This question of whether quantities estimated from data are reliable, e.g. compatible with some
hypothetical true parameters u� ¼ ða�, b�, S�0Þ which generated the data, is termed the practical
identifiability (PI) problem and has traditionally been studied using the variance–covariance matrix of
an estimator for u� [12]. However, such second-order approaches underestimate uncertainty in limited
data settings, where the distribution of plausible parameters may be skewed [13,14]. Here we propose
a new measure that allows us to efficiently and directly measure our ability to learn various
epidemiological quantities at all stages of an epidemic. If u ¼ f ðuÞ is an unknown variable to be
estimated, our Bayesian interpretation of the identifiability of u is the expected logarithm of the ratio
between posterior and prior probabilities, evaluated at u� ¼ f ðu�Þ:

duðu�Þ ¼ Eyju� [logPðu� j yÞ � logPðu�Þ], ð1:1Þ

where y j u� are noisy observations of the underlying outbreak, e.g. daily case counts, and where the
expectation is taken over realizations of the observation process. Since shrinkage in the posterior
distribution is facilitated through the global behaviour of the model likelihood, (1.1) is able to capture
uncertainty arising from complex model fits, such as bimodality in the likelihood surface. As with
traditional approaches to PI, δu is a local measure of information gain, in the sense that changing the
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Figure 1. Practical identifiability of epidemiological summary statistics over time. (a) Unknown deterministic SIR process based on
true parameters u� (orange line), and single realization of observed data y � Pðy j u�Þ ( pink dots). (b) Main panels show PI
according to δu over an increasing observation window assuming daily observations. Insets give an example of how δu is interpreted,
showing P(u|y) and P(u) for the single realization of y from (a), observed up to T = 3 (blue) and T = 8 (pink). The dashed orange
line is the true value to be estimated. True parameters are α� = 0.2, β� = 1.25 and S�0 ¼ 0:6, with I0 = 0.01 assumed known.
Prior beliefs are α∼ U(0.05, 0.85), β∼ U(0.3, 1.5), S0∼ U(0.1, 0.99).

Table 1. Definitions of epidemiological summary statistics.

name symbol formula

reproductive number R β/α

outbreak size O 1� Rð0Þ � S0 expð�ROÞa
peak intensity P I0 þ S0 þ ½1� logðS0=RÞ�=R
peak timing T unknown

growth rate G βS0− α
aImplicit equation.
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true dynamics u� will, in general, give different answers [15]. This allows the effect of particular values of
u� to be studied. Note that the metric does not require computationally expensive Bayesian inference
methods to compute—a simple Monte Carlo procedure for estimating (1.1) is provided in appendix A.
2. Results
Figure 1 shows the PI of the SIR model parameters, as well as five summary variables which are
commonly calculated in terms of u (see table 1 for mathematical definitions), for a typical
parametrization u� of the model. Infectious individuals are assumed to be independently tested at a
fixed rate η at daily timepoints, giving a likelihood yt � PoissonðhIðt; u�ÞÞ. We assumed η = 1000 is
known throughout, which leads to limited observational noise to better study PI inherent to the SIR
equations. δu is computed daily for the eight variables, up to a maximum of 30 days of observation.

The rate of learning for all variables is uneven over time, with each reaching plateaus of varying
length before the peak. The infection rate β is the worst identified. Gaining information on α appears
easier than β and S0 and even exceeds learning for R and O after around T = 20 days of observation.
PI of the peak intensity, peak timing and growth rate increase more rapidly at first, with learning for
growth rate happening particularly fast.

These findings illustrate the difficulty of learning key quantities early in an epidemic, under real-time
conditions where the number of observations increases as the outbreak goes on. However, the question
remains as to what extent a lack of early learning may be attributed simply to a smaller sample size.
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Therefore, we next examined the PI of several variables over an increasing observation window, but with
the number of evenly distributed observations kept constant. Figure 2 shows that identifiability of β and
R is lowest when observations are concentrated prior to the peak, confirming that the limits of early
learning are indeed a structural property of the SIR equations that cannot be overcome by allocating
additional tests early on. Further, increasing the frequency of testing from 10 observations to 40 did
little to increase PI during this period, but increased PI considerably for wider observation windows.
Figure 2 also shows the functional relationship between the asymptotic limit of δu and the usual
standard error for u, as given by (B 3), which can serve as an alternative interpretation of δu when
there are sufficient data.

To test the sensitivity of these findings to u�, we then computed δu over a grid of values for β� and S�0
(figure 3). Since slower-growing outbreaks will naturally contain less information per day [7],
information gain was calculated using observations up until the first day after the epidemic peak. To
investigate the factors of a true outbreak most associated with learning, for each true value of the
eight variables considered, the correlation between δu for each variable and the true value was
computed. The outbreak size of the true epidemic was the most correlated with learning, followed by
true growth rate, illustrating that less-severe outbreaks are harder to learn.
3. Discussion
The analysis presented here makes it clear that some epidemiological variables are easier to estimate
through model dynamics than others, and emphasizes that most epidemiological summary statistics
should be interpreted with caution when data are limited. Taken together, the rate of learning for all
the variables suggests that learning takes place in three general phases. In Phase 1, plausible
parameter combinations quickly concentrate along the surface fu :bS0 � a ¼ G�g, as infections increase
exponentially with the initial growth rate. This explains the sharp but modest gain in the information
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of all variables except for G during this phase. In Phase 2, infections begin to saturate and parameter

combinations matching the true peak intensity and timing become more plausible. However, for β
especially, saturating case counts do little to further restrict the plausible parameter surface from
Phase 1. Finally, Phase 3 is characterized by gradual information gain for the remaining variables.
Since infections are slowly declining with α during this phase, this growth is explained by α�

gradually being identified, which propagates to allow some remaining combinations on the plausible
surface to be eliminated.

Parameters describing the mechanisms of the model—β, α and S0—take a particularly long time to
learn on account of quickly reaching a plateau at low values of δu. As a result, the SIR model is more
effective at forecasting short-term statistics of the dynamics, such as peak timing and intensity, than it
is at estimating mechanisms. This result shows how difficult it is to estimate parameters from early
data in the hope of forecasting the impacts of mechanistic interventions such as reducing β with
preventive measures or increasing α with treatment [16]. Importantly, even though a lack of
identifiability implies a wide range of parameters lead to similar infectious dynamics early on, these
plausible dynamics will still respond differently to interventions targeting specific mechanisms [17].
Thus, low PI simply means that an intervention’s impact is difficult to forecast ahead of time.

Learning was nearly as difficult for the statistics R and O as for the individual model parameters,
despite the fact that optimistically, these transformations would combine the information of each
parameter they depend on. The failure of these statistics to resolve closely exchangeable parameter
combinations limits their reliability for succinctly describing an epidemic. By contrast, the initial
growth rate resolves such combinations to give rapid shrinkage to the correct value, despite encoding
similar information to R about disease dynamics [18]. This suggests growth rates are a more reliable
‘first look’ at an outbreak when using prevalence data under the SIR model.

When varying the true values u�, see figure 3, we find that less-severe outbreaks are generally harder
to learn, despite having more daily observations available before their peak. The initial susceptible
population S0 appears the most poorly identified across values of u� by the peak, and the expected
posterior shrinkage is even slightly negative for 25% of the tested values. An interesting implication
for control measures is that the more we reduce the severity of true infection dynamics, the harder it
will be to accurately estimate the impacts of interventions. Further, the mode of intervention matters:
variability along the y-axis in figure 3 for similar values of O� shows lowering S�0 impacts learning
differently than a reduction in β�.

Previous investigations into the PI of the SIR model have mainly focused on the PI of α and β under
the simplified model where S0≈ 1 is known. These works generally agree that PI of both α and β is
limited during Phase 1 [4,5], but that the majority of information available has been learned by the
time the disease has peaked [9,19,20]. Most comparably to the observational design in figure 1,
Capaldi et al. [7] considered the asymptotic variance of b̂ and â over an increasing timespan, and
found the variance of both estimators decreased rapidly and smoothly just before and after the peak,
respectively [7]. In contrast, the uneven rate of learning of these parameters in figure 1 paints a more
nuanced and pessimistic picture of PI when exact likelihoods and prior context are taken into account.
This finding supports the idea that previous PI results based on approximation theory underestimate
uncertainty, particularly during the early stages of an outbreak when the likelihood surface is highly
nonlinear [13,21].

In this work, we have proposed a novel means of assessing PI which measures the expected posterior
gain in density at the true value u�. While comparing densities at a specific value may seem to ignore
uncertainty in the posterior as a whole, we argue that δu is better interpreted as a measure of
shrinkage rather than density, by marginalizing the global curvature of the likelihood onto a single
dimension for u. If the projected span of high likelihood values is more narrow than the support of
P(u), shrinkage will occur and δu becomes positive. In this sense, (1.1) might be viewed as a
quantitative alternative to the popular profile likelihood method, in which potential plateaus in the
likelihood surface are projected to the space of some parameter θi and examined graphically [22].
Additionally, as shown in appendix B, δu may be interpreted in terms of standard measurements of
uncertainty—in the limit of large data and under certain conditions, δu converges to a density form of
the usual standard error of the maximum likelihood estimator, penalized by the prior weight.
Therefore, while our measure was specifically designed to give a more accurate picture of uncertainty
in limited data regimes, it also has asymptotic behaviour similar to the coefficient of variation for u.

The Bayesian nature of our method of assessing PI means that estimates of model parameters and any
variables which depend on them are sensitive to prior beliefs. In this report, our choice of uniform priors
represents modest assumptions about an emerging pathogen: a priori, just over 50% of scenarios result in
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an outbreak (i.e. have βS0/α > 1), and outbreaks range from modest to highly severe (70% of individuals

infected at peak). However, for many pathogens, more informative prior information is frequently
available, for example on the recovery rate of a disease [23]. Relative to more realistic prior settings,
this may mean α is more difficult to gain information about than β and S0.

While we have considered only noisy observation of the current infectious population, real data may
also come in the form of daily new infections or cumulative case counts, and may suffer from lags in
reporting or preferential sampling [24,25]. Learning epidemiological variables from such data will have
their own distinct challenges [9]. PI of the SIR model should also be assessed with hierarchical models
incorporating data from multiple sources, such as hospitalizations and isolated clinical experiments [26].
Yet, our work shows that even in its simplest form, learning parameters and statistics of SIR dynamics
takes time, limiting which inferences, forecasts and control policies can be made from early epidemic data.
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Appendix A. Supplemental methods
A.1. Likelihood-based estimation of dynamical systems
While the methods considered here can be applied to any statistical process for which a likelihood exists,
we are interested in processes of the form

yi � gðxðtiÞ, sÞ ðA1Þ
and

_x ¼ hðxðtÞ, tÞ ðA2Þ
where y = (y1,…, yn) are observations at discrete timepoints t1,…, tn, and s, t are parameters that are
assumed known or are to be estimated. We refer to h as the latent process and g as the observation
process. We are interested in our ability to estimate a set of unknown parameters u� # ðs�, t�, xð0Þ�Þ.

Given u, equations (A 1)–(A 2) form a probability distribution Pðy j uÞ called the likelihood. In the
frequentist paradigm, an estimator for u� can be obtained by maximizing Pðy j uÞ:

ûMLE ¼ argmaxuPðy j uÞ:

A popular way to assess issues of PI is through the variance–covariance matrix of ûMLE,
which can show marginal uncertainty in individual parameter estimators and correlations between
pairs of estimators. The Cramer–Rao bound implies that in the limit of decreasing observation
uncertainty (i.e. as the amount or precision of data increases), the variance of an unbiased
estimator converges, given certain regularity conditions, to the inverse of the Fisher information
matrix Iðu�Þ, where

[IðuÞ]ij ¼ �Eyju
@2

@ui@uj
logPðy j uÞ

� �
: ðA3Þ

This bound can underestimate variance when measurement noise is not infinitesimal [14,21], leading
some to question its applicability even for simple nonlinear models [13,28]. An alternative is to estimate
the distribution of ûMLE using Monte Carlo simulation, by sampling possible datasets yð1Þ, yð2Þ, . . . from

https://github.com/brendandaisy/epi-summaries-over-time
https://github.com/brendandaisy/MarginalDivergence.jl
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Pðy j u�Þ and finding the maximum of each likelihood PðyðjÞ j uÞ using an optimization algorithm such as

gradient descent. The resulting samples ûðjÞMLE can then be inspected graphically or used to estimate the
covariance matrix. This method has the convenience of also working with estimates of transformations of
the model parameters, without the need for further approximation [19,29].

A.2. Proposed method of assessing practical identifiability
While using Monte Carlo estimation of VarðûMLEÞ to assess PI can alleviate the underestimation issues
when using the information matrix, the use of optimization to obtain a sample of the estimator can
lead to dependence on initial conditions or other hyperparameters of the optimization method used
[12]. Again, the inaccuracy of this method will be most acute when the likelihood surface is flat or
multi-modal, such as when limited data are available.

Rather than relying on optimization, we instead take a sampling-based Bayesian perspective. From
the main text, we have for a variable of interest u ¼ f ðuÞ, duðu�Þ ¼ Eyju� [ logPðu� j yÞ]� logPðu�Þ,
which gives the average amount, over possible future outbreaks Pðy j u�Þ, a researcher can expect to
learn about the true quantity u� in a Bayesian analysis. A value of δu = c corresponds roughly to an
expected gain in posterior probability c orders of magnitude greater than the prior.

Equation (1.1) can be rewritten by applying Bayes’ rule, P(u�|y)/P(u�) = P(y| u�)/P(y), where the
margin P(y| u�) equals

Ð
Pðy j uÞPðu j u�Þdu and Pðu j u�Þ is the distribution of the epidemiological

parameters compatible with a fixed variable of interest u�—we give details below. This leads to

duðu�Þ ¼ Eyju� log
Pðy j u�Þ
PðyÞ

� �
: ðA4Þ

We approximate duðu�Þ by generating M paired Monte Carlo samples from Pðu j u�Þ and PðuÞ, and
reusing these samples to obtain M samples from P(y| u�) and P(y) for each y � Pðy j u�Þ, leading to

duðu�Þ � 1
N

XN
i¼1

h
log

XM
j¼1

PðyðiÞ j ~uðjÞÞ � log
XM
j¼1

PðyðiÞ j uðjÞÞ
i

where ~u
ðjÞ � Pðu j u�Þ, uðjÞ � PðuÞ and yðiÞ � Pðy j u�Þ. N = 3000 and M = 60 000 were used for all

computations in the main text.

A.2.1. Accuracy of Monte Carlo estimation of δu
The marginal likelihood P(y) is notorious for being inefficient to estimate via Monte Carlo methods. To
test our choice of M was large enough while still within a reasonable computational budget, we repeated
calculations of log P(y) for increasing values of M, where a y � Pðy j u�Þ was sampled with 60
observations (every half day). u� and PðuÞ were the same as in figure 1 of the main text. We
concluded that even with 60 observations, which gives a likelihood sharper than the maximum 30
observations used in the main text, a choice of M > 30 000 was sufficient to give a standard error less
than 1, or less than 0.5% of the magnitude of log P(y). The runtime and standard errors from 100
independent computations of P(y) are shown as a function of M in figure 4.

A.3. Practical identifiability for a function of model parameters
The distribution function Pðu j u�Þ will generally not be available in closed form even when PðuÞ is.

Simulating from Pðu j u�Þ can be accomplished with the following procedure: let ui [ u be a chosen
‘pivot’ parameter/index and define ~fðui j u�iÞ ¼ u to be a univariate function conditional on u�i, where
u�i indicates the ith element of u has been removed. Assume ~f is invertible so that ~f

�1ðu j u�iÞ ¼ ui. Then,
assuming independent priors on the elements of u, using a change of variables and Bayes’ rule we have

Pðu�i j u�Þ/
Y
j=i

PðujÞPðu� j u�iÞ, ðA5Þ

where

Pðu j u�iÞ ¼ d
du

~f
�1ðu j u�iÞ

����
����Puið~f

�1ðu� j u�iÞÞ: ðA6Þ

Because ~f is deterministic (i.e. θi can be uniquely determined given u�i and u), samples from Pðu j u�Þ can,
therefore, be obtained by first sampling u

ð1Þ
�i , . . . , u

ðnÞ
�i from (A 5) using a standard simulation technique
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such as accept–reject sampling, and then letting u
ðjÞ
i ¼ ~f

�1ðu�, uðjÞ�iÞ. The resulting densities for the five
transformations considered here are shown in figure 5.

For example, under the transformation f ðuÞ ¼ b=a ¼ :R, we define ~f
�1ða, S0, RÞ ¼ aR and obtain

Pða, S0 j RÞ/ PaðaÞPS0ðS0ÞaPb(Ra): ðA7Þ

So we may sample ðað1Þ, Sð1Þ0 Þ, ðað2Þ, Sð2Þ0 Þ, . . . from (A 7), then let bðiÞ ¼ R�aðiÞ to obtain a sample from
Pða, b, S0 j R�Þ.

For the final outbreak size, we define O : ¼ Rð1Þ � Rð0Þ to be the total proportion of individuals who
end up in the recovered compartment due to infection. For R(∞), we have from Weiss [30]

Rð1Þ ¼ 1� S0 expð�RðRð1Þ � Rð0ÞÞÞ, ðA8Þ

which we may use to solve for β and obtain the inverse function

b ¼ �a

O log
1� Rð0Þ �O

S0
, ðA9Þ

and the derivative

db
dO ¼ a

O
1
O log

1� Rð0Þ �O
S0

þ 1
1� Rð0Þ �O

� �
: ðA10Þ

For the peak intensity P :¼ maxt IðtÞ, to obtain samples from (A 5) we may use the equation

P ¼ I0 þ S0 � a

b
log S0 � a

b
1þ log

a

b

� �
: ðA11Þ

Although (A 11) yields only implicit solutions for any θi, a closed-form solution for S0 given P can be
found using Lambert’s W:

S0 ¼ �R�1W�1ð�BÞ, ðA12Þ

where B ¼ expð�RðP � I0Þ � 1Þ, and derivative

dS0
dP ¼ 1

1� B eW�1ð�BÞ : ðA13Þ

Derivation of the necessary equations for the initial growth rate G :¼ bS0 ¼ a is straightforward.
Finally, the peak timing T does not have a known closed-form solution. Though more time-

consuming, we can still approximate (A 5) by using univariate constrained optimization to evaluate
the unknown f−1, and adjoint methods to obtain the corresponding derivative.
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Appendix B. Asymptotic properties of practical identifiability
The above procedure for estimating δu using simple Monte Carlo becomes inefficient when the dimension
of u or y becomes large. In the latter case, the proposed method of PI can instead be analysed using the
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usual approximation theory in the limit of large data. The Bernstein–von Mises theorem gives

Pðu j yÞ � N ðûMLE, ðntIðûMLEÞÞ�1Þ, ðB1Þ
where nt is the number of independent replications of the time series of observations, and N ðm, SÞ is the
multivariate normal distribution with mean m and covariance matrix S. Under certain regularity
conditions, ûMLE ¼ u�.

The information matrix of the model parameters can be separated in terms of the curvature
of latent and observation processes. In the case where data from a single state variable x are
observed, IðuÞ ¼ J`OðuÞJ, where J is the Jacobian of x with respect to u, Jij ¼ @xðtiÞ=@uj, and OðuÞ
is the information of y given x. In the case of independent Poisson-distributed testing,
OðuÞ ¼ diagðhIðt1; uÞ, . . . , hIðtn; uÞÞ.

To obtain an approximation for the posterior of a transformation u ¼ f ðuÞ, we may again choose a
pivot parameter/index θi and introduce a change of variables v ¼ ðu1, . . ., ui�1, u, uiþ1, . . ., upÞ, and
define the vector-valued function ~f so that ~fðvÞ ¼ u. Letting F be the gradient of ~f with respect to v,
Fkj = ∂θk/∂vj, we have

IðvÞ ¼ F`J`OðuÞJF: ðB2Þ

Combining (B 1) and (B 2), therefore, gives the approximation

duðu�Þ � 1
2
( log nt � log Iðv�Þ�1

ii � logð2pÞ)� logPðu�Þ: ðB3Þ

This reveals that, in the limit of sufficient data, δu is related to the local curvature of the latent and
observational processes, just like traditional asymptotic approaches to PI. For individual model
parameters u [ u, F is the identity matrix and δu becomes the logarithm of the usual standard error of
the estimator ûMLE, penalized by the prior log-probability of ûMLE. For parameter transformations, the
information of IðuÞ is then summarized further through the curvature induced by the transformation
function f. Also note that penalizing by the prior density has a normalizing effect, as transformations
that increase the support of P(u) will also have smaller prior densities, and therefore is analogous to
using the coefficient of variation to allow comparing standard errors between variables.
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