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lation model coupled with the University of Miami Parabolic Equation (UMPE) acoustic

propagation model, the effects of a fluctuating frontal region created by the California

Current on the temporal, spatial and seasonal variability in the individual modal arrivals of

the first thirty modes over a one-model-year time span is assessed. The mesoscale bias

variability is also examined by comparing the various peak arrival times for the range-

averaged environment to that of the range-dependent environment. To support this work,

approximate "wide angle PE mode functions" were newly developed which form a

different basis set for modal expansion from that obtained using standard normal mode

theory. These new mode functions provide the proper basis set for modal expansion of the
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I. INTRODUCTION

Knowledge of ocean acoustics and associated environmental parameters is

essential to developing and strengthening the Navy's ocean environmental/acoustic

nowcasting and forecasting capabilities. As naval systems, platforms and sensors become

increasingly more sophisticated, knowledge of environmental factors and their impact on

acoustic propagation will play an even more critical role in undersea warfare (USW)

system performance. To understand, predict, and assess the performance of various USW

acoustic systems, it becomes essential to understand the temporal and spatial variability of

the sound speed structure, the impact of oceanographic features such as fronts and

mesoscale eddies on acoustic propagation, and acoustic pulse arrival time variations due

to mesoscale features, internal waves, bottom properties and ambient noise. This disser-

tation focuses specifically on the effects of ocean mesoscale variability on acoustic arrival

time patterns.

Oceanic mesoscale phenomena are the analogues of weather systems. Mesoscale

features extend on the order of 100-250 km and persist on the order of 50-150 days. More

than ninety percent of the kinetic energy of the entire ocean may be characterized by

mesoscale variability rather than by large scale currents (Spindel and Worcester, 1990).

These mesoscale features can significantly influence acoustic propagation and thus impact

tactical operations. The impact of mesoscale features on the acoustic field at the receiver

can be significant, affecting the temporal sequence, amplitude and angular distribution of

the acoustic energy.

The presence of mesoscale phenomena was clearly established by oceanographic

studies such as the MODE expedition in 1973 (Mode Group, 1978). A method for

monitoring this mesoscale variability in the ocean interior, ocean acoustic tomography,

was introduced by Munk and Wunsch (1979). In this method, the sound-speed fluctuation

field within a volume is measured by the travel times of variously oriented acoustic trans-

missions through the volume. The acoustic travel time is inversely proportional to

average sound speed along the transmission path. Shallow mesoscale perturbations will



alter only the average sound speed for steep ray arrivals, whereas mesoscale perturbations

which extend to sound speed axis depths will alter the average sound speed for both steep

and axial rays. Thus, by measuring travel-time perturbations of acoustic signals along

various paths, the underlying sound speed structure may be inferred by inversion. The

first at-sea experiment of this technique was performed in 1981 (Ocean Tomography

Group, 1982). Subsequent efforts to refine tomographic techniques led to a number of

investigations into travel time perturbations. A review of these studies is provided as

background in Section A to help put into context the contributions presented by this

dissertation.

Understanding inherent ocean variability is also important when installing

"permanent" acoustic transmission systems, such as those considered in support of the

Acoustic Thermometry of the Ocean Climate (ATOC) (Munk and Forbes, 1989) or the

North Pacific Acoustic Laboratory (NPAL) (Worcester and Spindel, 1997). ATOC seeks

to measure global warming related trends based on average large spatial-scale changes in

the ocean's temperature distribution. NPAL is a recently proposed semi-permanent

acoustic laboratory consisting of several vertical and/or horizontal line arrays to be used

for continuous ocean monitoring and a variety of other experiments. Further introductory

discussion of issues related to ocean variability and these transmission systems in relation

to this dissertation are presented in Section B.

Valid numerical predictions of acoustic travel time variability due to mesoscale

processes rely critically on realistic environmental inputs. While ideally these inputs

might come from in-situ measurements, in general the ability to obtain a sufficient number

of measured synoptic environmental samples to support long range acoustic propagation

predictions is extremely limited. An alternate approach relies on state-of-the-art ocean

models to provide the environment input data, and is the approach taken in this disser-

tation. This is discussed further in Section C. Finally, a summary of the dissertation

contents is presented in Section D.



A. HISTORICAL BACKGROUND

In developing the concept of ocean acoustic tomography within the framework of

ray theory, Munk and Wunsch (1979) relied on several simplifying assumptions. Two of

their fundamental assumptions were

1) travel time changes between widely separated sources and receivers are

related linearly to the magnitude of the intervening mesoscale

perturbations, and

2) ray trajectories will remain stationary upon passage through a mesoscale

perturbation; only the travel times will vary.

Mercer and Booker (1983) examined these assumptions and suggested that linearization

is invalid for dealing with the problem under realistic conditions, particularly when the

acoustic range exceeds a few hundred kilometers. Their results, based on ray tracing

through a simulated warm midocean eddy and a cold core Gulf Stream ring (both circular

with 200 km diameters), suggested that the changes in travel time are nonlinear as a

function of sound speed. This non-linearity was found to especially affect the late-

arriving (axial) rays. They further concluded that the assumption of stationary ray paths

was incorrect, resulting in a significant error compared with the 10-ms precision that was

expected for tomographic arrays. Overall, their results suggested that the range-dependent

effects so badly bias the inversions for range-averaged oceans that tomographic results

might be meaningless.

Other investigators (Spiesberger and Worcester, 1983) developed comparisons of

exact and approximate perturbations in travel time and ray geometry due to mesoscale

perturbations. The three approximations to the exact travel time they considered were

1) range-dependent perturbation and the unperturbed path,

2) range-average of the sound-speed perturbation and the unperturbed path, and

3) range average of the sound-speed perturbation and its associated (perturbed)

ray path.

From their study, they concluded that travel-time errors incurred by using either linearized

or range-averaged travel-time perturbation calculations are small, but not negligible (at



most 30% of the exact total travel time). They further concluded that range-dependent

raytrace calculations would be necessary to achieve accurate inversions.

By the mid-1980's, investigations began to focus on examining the nonlinear bias

observed in travel time perturbations with a goal of developing systematic methods in

tomographic techniques to correct for this effect. The nonlinear bias results from the

differences in ray path geometry (which is a function of the sound speed field) between the

actual and modeled sound speed fields. Spiesberger (1985a, 1985b) approached the

problem using numerical prediction within the framework of ray theory, whereas Munk

and Wunsch (1985, 1987) took an analytical approach, again based on ray theory. General

results from Spiesberger 's work suggested that for the non-linear term in a range-

dependent environment

1) the non-linear contribution is approximately proportional to the horizontal

range traveled by the ray,

2) it is roughly proportional to the square of the magnitude of the eddy

anomaly,

3) its value is insensitive to the position of the (isolated) eddies,

and more generally that

4) flat, axial rays are less linear than steep rays,

5) the magnitude and sign of the bias depends on the climatological profile

used to model the sound speed field,

6) linear iteration tomographic methods may not be sufficient in all cases to

correct for the bias, and

7) the nonlinear bias is small compared with seasonal fluctuations of the travel

time.

Munk and Wunsch also found that linear inversions of the range-averaged sound

speed profile are subject to a significant error arising from a quadratic bias. However, in

their approach, they found that this quadratic bias is such that the travel time through a

structured ocean is generally (not always) less than through a smooth ocean with the same

mean properties. This is referred to as a negative (warm) bias. They also concluded that



the bias is generally constant. Thus, what matters for a problem such as detecting global

warming is not that a warm bias exists, but rather any secular changes in the warm bias.

Ocean acoustic tomography, when first demonstrated, was performed using

sources centered at frequencies about 224 Hz and with source-receiver ranges about 300

km. These conditions were suitable for using a ray theory approach. However, over time,

there was a growing interest towards refining tomographic techniques for use at longer

ranges and lower frequencies. Accordingly, to meet the challenges of lower frequency

and longer ranges, further deep-water tomographic techniques were formed based on a

combination of ray and mode theory (Munk and Wunsch, 1983), adiabatic mode theory

(Shang, 1989), a wave-theoretic approach (Athanassoulis and Skarsoulis, 1995), and non-

adiabatic parabolic equation modeling (Shang and Wang, 1993; Shang, 1997). In general,

findings with regard to the travel time perturbations are similar to those reported by inves-

tigators implementing ray theory, with the exception that Shang (1997) reported a predom-

inant "cold" bias based on full-wave parabolic equation (PE) modeling vice the "warm"

bias found using analytic ray theory (Munk and Wunsch, 1987). This cold bias is also

noted in both ray-tracing and PE numerical predictions by Tappert and Tang (unpublished

1995), in PE numerical predictions by Smith (1992) and Shang and Wang (1996), and PE

numerical predictions done in support of this dissertation previously presented by Smith

et al (1996).

Long-range propagation has also been suggested to allow measurements of

range-averaged sound-speed (and corresponding temperature) profiles, effectively

filtering out the mesoscale variability in order to observe trends in the mean ocean temper-

ature (Munk and Forbes, 1989). In contrast to acoustic tomography, where the mesoscale

variability is the "signal" providing information about the range-dependent sound speed

mapping, the mesoscale variability is noise in the global measurement problem. If

constant, the mesoscale bias is not a significant issue as investigators are interested in

long-term temporal changes in mean ocean temperature. However, if the mesoscale bias

variability is sufficiently great, then it becomes difficult to separate out the effects of

global climatic changes from the mesoscale bias.



In related research outside the context of tomography, Smith et. al. (1992a, 1992b)

considered the effects of ocean mesoscale perturbations on long-range acoustic ray

propagation. It was shown that acoustic rays, particularly those traveling near the axis

(corresponding to the lowest order modes), exhibited chaotic behavior, i.e., extreme sensi-

tivity to small-scale perturbations in the environment and/or initial conditions. This again

suggested that the arrival pattern of the lowest order modes becomes highly complicated

at long ranges. Thus, chaotic ray motion limits the ability to make deterministic predic-

tions of long-range arrival time patterns using ray theory. A deep water tomography

experiment known as SLICE89 (Howe et al, 1991) measured the arrival structure of a

pulse at a range of 1000 km. The analysis of the resulting data was consistent with the

aforementioned complexity of the lowest order modes. Further analysis (Colosi et. al,

1994) strongly indicated that internal waves were responsible for this complexity rather

than mesoscale fluctuations. However, other preliminary work (Smith, 1992) with Rossby

waves suggested that such mesoscale features could significantly perturb the near-axial

arrivals in spite of the adiabatic nature of the mode propagation.

As this review of travel time perturbation studies suggests, there is general

agreement that a non-linear bias does indeed exist between travel times observed in a

structured range-dependent ocean as compared to a smooth range-independent ocean with

similar mean properties. However, there appears to be divergent conclusions with regard

to the general sign of the bias. In this dissertation, the emphasis is on not only predicting a

statistical mean for the bias, but on investigating its variability based on parameters such

as range, local mode number, and mesoscale perturbation strength. In the deep ocean

environment, perturbations will be shown to produce a variable overall spreading in the

arrival structure, primarily producing a delay (cold bias) in the axial arrivals. In the more

complicated region of the California current, the analysis of the bias remains more

ambiguous.



B. ACOUSTIC MONITORING SYSTEMS

Understanding inherent ocean variability is also important when installing

"permanent" acoustic monitoring systems. As discussed by Chiu et. a/.(1994), there are

three fundamental acoustic issues which must be carefully addressed when considering

the locations of permanent sound sources and receivers. These issues include acoustic

reliability, acoustic stability, and geophysical noise. Acoustic reliability involves

determining the regions/sites which can be ensonified on a year-round basis based on a

specified source location. Acoustic stability is concerned with understanding which

portion of the acoustic arrival pattern is relatively invariant over time; estimation of useful

travel time series requires stable arrivals. Finally, geophysical noise, or the size of the

travel time change due to mesoscale features, ocean fronts, or seasonal cycles will directly

influence the amount of measurement time required before a statistically significant trend

can be observed. Hence, information regarding the variability of travel time perturbations

becomes critical to large-scale monitoring projects such as ATOC and NPAL.

In recent discussions regarding possible site locations for establishing NPAL, the

SOSUS array site at Pt. Sur, California was suggested as a potential site. Currently, the

Naval Postgraduate School (NPS) has several sound sources within a 600 km radius of the

Pt. Sur array site which were specifically deployed to study the California Current system.

Transmissions from these sources are monitored through a bottom hydrophone at the Pt.

Sur site. Through the use of coupled ocean-acoustic computer modeling, this dissertation

specifically investigates issues of acoustic stability and geophysical noise related to the

acoustic path (474.6 km in length) between one of these sound sources and the Pt. Sur

receiver. Insights from this variability study might then be potentially useful in array

configuration design for NPAL, refining tomographic techniques for this region, or for

assessing travel time variability of ATOC transmissions through this region.



C. OCEAN-ACOUSTIC MODELING

In studying the effects of mesoscale variability on underwater sound propagation

characteristics, it would be desirable to obtain in-situ measurements at sea for the sound

propagation and oceanographic variables. A complete description of environmental

conditions for acoustic purposes would require simultaneously sampling oceanographic

variables of temperature, salinity, and pressure, but this is costly, time-consuming, and

provides just a snapshot on a single day. Alternatively, coupled ocean-acoustic computer

modeling provides a cost effective means of studying acoustic propagation through ocean-

ographic features such as fronts and eddies on a range of spatial and temporal scales.

Ocean models can also be coupled with atmospheric models to predict future states of the

ocean in the upper layers. This permits spatial and temporal variability to be examined.

As with any type of computer model, the model physics must still be validated with

physical measurements.

As a result of ever-improving numerical methods, faster computers, and growing

global data sets, ocean numerical models are becoming increasingly reliable and realistic

(Semtner, 1995). Thus, state-of-the-art global ocean circulation models can be used to

investigate geophysical time-scale acoustic variability. A demonstration of this was

provided by Chiu et. al. (1994) when they presented their results of a ray variability

simulation of sound transmission from Heard Island to the west coast of the United States.

A similar ray variability simulation was also provided by Staten et. al. (1996) for an

acoustic path between Hawaii and Monterey, California. Other coupled ocean-acoustic

propagation models have been demonstrated by Robinson et. al. (1994) and Newhall et.

al. (1990), among others. In this dissertation, a global ocean circulation model is coupled

with a full-wave parabolic equation (PE) acoustic propagation model to study the travel

time variability in a region approximately 500 km off the California coast. The code

written to specifically interface these specific ocean and acoustic models is a unique

contribution of this dissertation.

As discussed by Chiu et. al. (1994), travel time fluctuations yield information

about the mesoscale processes along the acoustic path. These fluctuations are then useful

8



"signals" for the calibration of eddy-resolving global ocean circulation models. The

statistics of predicted travel time variability as determined from the coupled ocean-

acoustic model output and provided in this dissertation may then be checked against

measured travel time variability for consistency.

D. DISSERTATION SUMMARY

The objective of this work is to examine (via computer simulation) the variability

of modal acoustic travel times due to mesoscale ocean structure and to analyze these

effects in terms of range, local modes, perturbation strength and travel time variability.

These results have potential applicability to tomographic and long range acoustic

thermometry techniques.

Chapter II, Theoretical Background, reviews the theory relevant to the material

presented in the subsequent chapters. Overviews are provided of the parabolic equation

approximation used for acoustic propagation modeling, the PE broadband travel time

computation method, and the modal travel time computation method Modal Spectrum of

the PE Field (MOSPEF) (Shang and Wang, 1993).

Chapter IE, Mode Functions for the Wide Angle Approximation to the

Parabolic Equation, examines the effect of various parabolic equation approximations on

the normal mode decomposition of the computed pressure field. Local normal mode

decompositions were required to analyze modal travel time variability as presented in this

dissertation. However, in the course of doing this analysis, computations for the modal

amplitudes of a reference range-independent PE field using standard normal modes

yielded fluctuating vice constant modal amplitudes for modes higher than about mode 30.

This led to the development and investigation of approximate "wide angle PE mode

functions". These mode functions form a different basis set for modal expansion from that

obtained using standard normal mode theory. Chapter HI presents numerical implemen-

tation schemes for approximating these wide angle mode functions, and results comparing

range-independent wide angle PE field modal decompositions performed using wide angle



vs. standard mode functions. While this work was originally pursued as a "side issue" to

this dissertation, it is perhaps one of the more significant aspects of this research.

Chapter IV, Deep Ocean Environment, investigates the effects of randomly

phased Rossby wave baroclinic modes on acoustic travel time and arrival structure in a

deep ocean environment. Numerical predictions of the acoustic field are obtained from a

broadband, range-dependent parabolic equation (PE) model using a modeled deep ocean

environment composed of a superposition of randomly phased Rossby waves to provide

realistic mesoscale sound speed perturbations. The variability in arrival structure and the

bias resulting from approximating the range-dependent environment with a range-

averaged environment is examined for ranges of 500 and 1000 kilometers.

Chapter V, Coupled Ocean-Acoustic Modeling through a region of the

California Current, investigates the effects of a fluctuating frontal region created by the

California Current on modal acoustic travel time variability. For this phase of research,

the state-of-the-art global Parallel Ocean Circulation Model (POCM) (Semtner and

Chervin, 1992), also known as the Semtner and Chervin model, was used to obtain

realistic input environmental data spanning a one-year time period for a 474 km acoustic

path. The temporal, spatial and seasonal variability in the individual modal arrivals of the

first thirty modes is assessed. The mesoscale bias variability is also examined by

comparing the full-field peak arrival times for the range-averaged environment to that of

the range-dependent environment.

Chapter VI, Conclusions, presents a summation of conclusions and identifies

areas requiring further research.
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II. THEORETICAL BACKGROUND

In this chapter, basic background theory relevant to subsequent chapters of the

dissertation is presented. Specifically, overviews are provided of the parabolic equation

approximation used for acoustic propagation modeling, the PE broadband travel time

computation method, and a modal travel time computation method Modal Spectrum of the

PE Field (MOSPEF) (Shang and Wang, 1993).

A. PARABOLIC EQUATION APPROXIMATION

1. Background

In a 1974 lecture, Tappert (1977, paper based on lecture) introduced the parabolic

approximation to the wave equation to the underwater acoustics community. This approx-

imation is valid to much lower frequencies (>2 Hz) than the geometrical acoustic (small

wavelength) approximation as it retains all the diffraction effects associated with the

ocean sound channel (Tappert, 1977). In contrast to separation of variables methods,

which are based on the approximation that the ocean is exactly horizontally stratified, the

parabolic approximation retains full coupling between local waveguide modes, thereby

making it valid for more realistic, non-stratified oceans. These are just a few of the

reasons why use of the parabolic approximation for acoustic propagation predictions has

become commonplace.

In Tappert's original paper, several approximations to the so-called "square root

operator" of the parabolic approximation were introduced. One of these defines what is

known as the standard parabolic equation (SPE). Over the last twenty years, there have

been additional higher order approximations made to the square root operator of the

parabolic equation. One such approximation leads to the wide-angle parabolic equation

(WAPE) introduced by Thomson and Chapman (1983). This WAPE approximation is

based on an operator splitting by Feit and Fleck (1978), and extends the SPE

11



approximation to accommodate wider angles of propagation. It is also generally less

sensitive to the choice of a reference wavenumber, k . Furthermore, error analysis

indicated that the effects of phase errors are greatly reduced with this operator.

Subsequently, the WAPE approximation is favored over the SPE for predicting acoustic

propagation, and (unless otherwise specified) is the approximation used for all acoustic

propagation computations made in this dissertation.

2. Theory

To develop the parabolic equation approximation, first consider a time-harmonic

acoustic field in a cylindrical coordinate system which can be represented by

P(r,z, (p, t) = p{r,z, q>)e~
im

. (2.1)

Substituting this into the wave equation in cylindrical coordinates leads to the Helmholtz

equation

-li^y-^ +^+^nir^Vp = -4*P S(*-i,) , (2.2)
rdr\ drJ /d(p

i ^

0) ^0
where kn = — is the reference wavenumber, n (r, z, (p) = —: r is the acoustic

u
c . c(r,z, (p)

index of refraction, c
Q

is the reference sound speed, and c (r, z, (p) is the acoustic sound

speed. Here, all of the features of the environment are represented within c (r,z, <p). We

shall neglect density variations in this derivation, but this could be incorporated without

any loss of generality. For a point source at coordinates (r = 0, z = z
s ) ,

The reference pressure level P is defined as the pressure amplitude at a reference

distance of R = 1 m.

12



Treating the ocean as a waveguide with a cylindrical coordinate system, acoustic

energy primarily propagates outward from an acoustic source in the horizontal direction.

Therefore, the pressure field can be represented by an outgoing Hankel function slowly

modulated by an envelope function, that is,

p (r, z, <p) = ¥ (r, z, (p)H^ (
V")-

(2 -4)

In the far-field the Hankel function can be approximated by the first term of its asymptotic

expansion (Gradshteyn and Ryzhik, 1994)

„(D n . ( 2 V /2 'V
"o (V)-(-^J * ,k r»l. (2.5)

Using this expression, the relationship between the acoustic pressure p (r,z, (p) and the

envelope function \|/ ( r, z, (p) can be expressed as

p(r,z,(?) = P ]-^\\f(r,z,<?)e
or

. (2.6)

This is the definition of the so-called "PE field function" \|/ , scaled such that at r = R
Q ,

|\|/| = 1 and \p\ = P . Substituting this into the Helmholtz equation, assuming

azimuthal symmetry and dropping the source term, it can be shown that the far-field

outgoing wave in layered media satisfies (Tappert, 1977; Smith and Tappert, 1993)

where the operators

Qop
= (l+^i + e)

172
, (2.8)

1 a 2

n = Vt- (2 -9)

k
Qdz

£ = n-\. (2.10)
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For range-independent environments, it should be noted that Eq. (2.7) is exact and defines

the solution of the field propagating outward from the source.

The second order differential equation is now reduced to a first order one, thereby

allowing solutions to be approximated via a one-way (no backscatter) non-iterative

marching algorithm

V(r + Ar,z) = exp {ik
QAr(Qop - 1) } y(r,z) . (2.11)

However, use of the full-band, exact square-root operator is not numerically efficient.

Subsequently, approximations to Q have been introduced to reduce the computational

burden. Note also that as approximations to Q are used, the pressure field computed

from an approximate \j/ substituted into the exact relation Eq. (2.6) also becomes

approximate. The resulting approximate pressure field is therefore not exactly equivalent

to the acoustic pressure field satisfying the acoustic wave equation. The significance of

this will become apparent as the SPE and WAPE mode functions are compared in Chapt.

ni.

The SPE operator due to Tappert (1977) is obtained using the binomial approxi-

mation

Qop
= (l+|i + £)

1/2 =l+i^ + ie for|n|«l, |e| « 1

.

(2.12)

This approximation assumes that variation in the refractive index is small to some degree

(|e| « 1 ), and is limited to small propagation angles (|fi| « 1 ). The literature suggests

accurate solutions are limited to a half-beamwidth of 10° - 20° (see e.g., Jensen et. al,

1994, p.346, or Chin-Bing et. al., 1993, p.62) for the propagation angle. Substituting Eq.

(2.12) into Eq. (2.7) yields the well-known standard parabolic equation for underwater

acoustics

dr 2k
0dz

2 2 V J
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This equation is valid in the far-field, and neglects azimuthal coupling and backscatter.

Adopting the notation

Qspe =
{

1 + \^
+1
2^ (2 - 14)

Eq. (2.13) becomes

Pr =ik (QspE
- l )V- (2-15)

A higher order approximation to Q introduced by Thomson and Chapman

(1983) is based on an operator splitting by Feit and Fleck (1978). Commonly referred to

as the "wide-angle" approximation, it has the form

Qwape= (l + uJ
1/2
+[Ote)

1/2
-l]- (2.16)

This operator extended the SPE operator to accommodate wider angles of propagation and

was also found to be less sensitive to the choice of k . The literature suggests accurate

solutions are limited to a half-beamwidth of -40° (see e.g., Jensen et. ai, 1994, p.350) for

the WAPE propagation angle. However, benchmark testing using the WAPE

approximation demonstrated the capability to accurately propagate fields for select

environments with half-beamwidths of greater than 70° (Chin-Bing et. ai, 1993). Error

analysis indicated that for typical deep ocean conditions, the effects of phase errors were

greatly reduced relative to the SPE operator. For these reasons, use of the WAPE is

commonplace for predicting sound propagation, and is the approximation used in the

Navy standard PE model (Holmes and Gainey, 1991).

These are but two widely-used approximations to the exact square-root operator

Q defined by Eq. (2.8). Other approximations exist, and use of any of these approxi-

mations to the exact square-root operator will give rise to some phase error beyond some

range. In the next section, we shall examine how the wide angle approximation to the

square-root operator is implemented for numerical predictions in the University of Miami
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Parabolic Equation Model (UMPE) (Smith and Tappert, 1993), the model used for this

dissertation work.

3. Implementation of the PE approximation

There are three common methods of computing PE solutions: (1) the split-step

Fourier (PE/SSF) method (Hardin and Tappert, 1973), (2) the implicit finite difference

(IFD-PE) method (e.g., Lee and Botseas, 1982), and (3) the finite element (FEPE) method

(e.g., Collins, 1988). UMPE uses the PE/SSF method and the general algorithm behind

this method is described below. For a more formal development, the reader is referred to

Smith and Tappert (1993).

To initiate the computation, a regular spatial grid (Ar, Az) is established onto

which the environmental parameters (n, p ) are mapped. Next, the marching algorithm,

Eq. (2. 11), requires that the initial conditions for the PE field function \\f (r
Q , z) as well as

boundary conditions at the sea surface (z=0) and at the maximum computational depth

(z=zmax) be specified. The free surface is typically treated as a pressure release boundary,

thus requiring \j/ (r, z = 0) = . The bottom boundary condition at z = zmax must

approximate the radiation condition \\f
b (z) —> as z -» °°

. However, since the computa-

tional depth is finite, the field amplitude is forced to zero in an artificial absorption layer

which extends well below the bottom depth of interest. Because the PE/SSF algorithm

numerically solves the one-way wave equation, Eq. (2.7), over all depths, there is no need

to incorporate a numerical scheme to satisfy the appropriate boundary conditions at the

water/sediment interface. These boundary conditions are automatically satisfied within

the PE/SSF algorithm by simply including the changes in the environment at the water/

sediment interface within the definition of the acoustic index of refraction, n(r,z).

Before considering implementation of the marching algorithm further, note that

the square root operator Qo
, Eq. (2.8), is written in terms of two other operators. One

operator, e , Eq. (2. 10), is simply a multiplication operator in z-space and therefore forms a
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diagonal matrix on the computational depth grid. The other operator, \i , Eq. (2.9), is a

function of the second derivative in z-space, and thus forms a tridiagonal banded matrix

on the computational depth grid. Correspondingly, when implementing the marching

algortihm, the eigenfunction value in the z-domain at a given depth grid point is coupled

to values at other depth points. However, since there is a unique eigenfunction for each

eigenvalue, the corresponding operator in vertical wavenumber space is diagonal. This

makes it desirable to separate the application of each operator to the domain in which it

forms a diagonal matrix. The PE/SSF algorithm specifically assumes that these

component operators, which are in some representation diagonal, may be applied indepen-

dently. Using the simple relation

Q
0P

= l-(Top + Uop), (2.17)

the marching algorithm, Eq. (2.11), may be rewritten as

V (r + Ar, z) = exp {-ikQArTop} exp {-ik
Q
ArU

op } \|/ (r, z) (2.18)

where T and U come from separating terms derived from [i and e , respectively, in

the desired square root operator approximation. This then leads to the following "split-

step" implementation.

Once the boundary conditions and initial conditions for \|/ (r , z) are specified, a

transformation is made to the ^-domain followed by a multiplication of the fc
z
-space

-ik Art (k )

operator e °
°F z

. The result is then transformed back to the z-domain and is

-ik
Q
ArU (z, r)

followed by a multiplication of the z-space operator e . The final result is the

field function at r + Ar . Therefore, the approximate solution for T is marched out in

range according to the relation

T(z,r + Ar) = e-'^-'^ xIDFT{e-
iKArt" iK)

x[DFT(V(z,r))]} (2.19)

where for the wide angle PE approximation
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TOD (ft,) = 1
-

op

( k \2r\l/2

1- -2
ft

(2.20)

and

t/op (z,0 = -[n(z,r)-l]. (2.21)

UMPE utilizes a FFT algorithm to implement the DFT in Eq. (2.19).

B. PE BROADBAND TRAVEL TIME COMPUTATION

The calculation of the time domain arrival structure is straightforward using the PE

code. For a broadband acoustic field, the time-harmonic acoustic field initially assumed in

Eq. (2.1) represents a single (CW) component of the general field. Separate PE calcula-

tions are then made to compute acoustic fields for each desired frequency over the

bandwidth of interest. Using discrete time, t = nAt , and discrete frequencies, / = lAf, a

total ofN frequencies in the bandwidth of interest where AfAt = —
, assuming azimuthal

symmetry and adopting the notation

-(£><
P(r,z,nAt) = p l

(r,z)e , (2.22)

the representation of the field in the time domain can then be represented as

4hN-\ -f 2n

P(r,z,nAt) = IDFT[X(lAf) Pl (r,z)] = ~ £ X(lAf) Pl (r,z) e (2.23)

/ =

where X (lAf) represents the complex source spectrum. For all work presented here, a

Hanning window is used to represent the source amplitudes providing a simple

representation of a time-domain pulse.

In UMPE, arrival time structures are computed at user-designated fixed ranges, i.e.

at r = R , using the value of the frequency-dependent range-scaled PE field function
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—
\\f . This neglects the overall phase factor exp(ik

Q
R) = e\p(i2nlAfR/c

Q ).

<JR i,r

Consequently, the time domain is heterodyned around the value t = R/c
Q

. Accord-

ingly, arrival times are given in terms of "reduced time" or t - t
Q

. To reduce the computa-

tional burden, the UMPE model also heterodynes the signal by shifting the center

frequency fc to d.c. Adopting the notation/, = l
{
Af, f - I A/, / = / A/ and

t
Q
= n

Q
At , where fv fc , and fu represent the lower, center and upper frequency for the

bandwidth of interest, respectively, the inverse Fourier transform actually computed by

UMPE is

1
'" Y(1\f\ -*{tt)o*-»o> ('-'*)

P'R UAn-V At) = I X^^V W « (2-24)

l-.l *JR IR

yielding P'R (z, (n - n
Q ) At), the set of complex pressure values in depth-(reduced) time

space for the designated range.

C. MODAL ARRIVAL TIME COMPUTATION

To compute individual modal arrival time structures, the PE solution must first be

decomposed into normal modes. Normal mode decompositions based on the technique of

separation of variables assume that the ocean is nearly exactly stratified horizontally. In

general, range and depth dependent spatially continuous modes exist which are unique

harmonics of the ocean waveguide. However, for cases where the ocean acoustic

waveguide properties vary with range, these modes are not simply functions of depth

where separation of variables can be used. Subsequently, normal mode theory has been

generalized for that of an "almost stratified" medium. In ocean acoustics, this theory was

first set forth by Pierce (1965) and Milder (1969). It has become common practice for

the modes of an exactly stratified ocean to be used as an orthonormal basis set for any

general ocean environment. In ocean acoustics, this orthonormal basis set is referred to as
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the set of "local normal modes", and computed as a function of range using the local

environmental properties. The result of this approach when applied to the wave equation

for a range-dependent environment is a set of coupled differential equations which govern

the range variations of the modal amplitudes.

Consequently, it is seen that in a range-dependent environment, the local normal

modes do not propagate independently of each other but rather interact continuously with

neighboring modes. If, however, the range-dependent changes in sound-speed profile are

small and gradual, an adiabatic approximation can be assumed. That is, coupling between

modes may be neglected and each normal mode is assumed to propagate independently

while it progressively adapts to changes in the environment. Under adiabatic conditions,

the largest proportion of wave energy will remain in the same-numbered mode as it propa-

gates through the changing environment. However, it has been shown by Desaubies et. al.

(1986) that the degree to which the adiabatic approximation can be used is very sensitive

to the shape of the sound-speed profile, frequency of propagation, and mode number.

Their work points out that when coupling cannot be neglected, there is no simple

expression for the modal travel times.

In an attempt to address this difficulty, Shang and Wang (1993) proposed a method

of computing modal travel time for range-dependent, strong mode coupling environments

which is known as the modal spectrum of the PE field (MOSPEF). It is this method

which is used to compute the modal travel times presented in Chapt. V of this dissertation.

In MOSPEF, coupled modal amplitude equations are avoided by first computing the total

acoustic pressure field solution using the PE method, such as that described in previous

sections. Next, using local normal mode functions x¥m (z;r, co) computed from a normal

mode code such as KRAKEN (Porter, 1991), range-dependent modal amplitudes and

phase are then calculated.

Using the PE solution for the two-dimensional range-dependent acoustic field, this

field is expressed as a summation of local normal modes

oo

pPE (r,z;(0) = £<I>m (r;®)Ym (z;r,©) (2.25)

m = 1

20



where yVm (z) is the local mode solution of the range-dependent Sturm-Liouville

eigenvalue equation

,2

-^m (z) + [k V (z, r) -<] ¥m (z) = (2.26)

dz

evaluated at the local range r and subject to appropriate boundary conditions. In this

equation, Km represents the separation "constant" (which locally assumes a range-

independent environment) and yVm (z) denotes the specific mode function associated with

this separation constant.

Taking advantage of the orthogonality of the mode functions leads to

<Dm (r;co) = jppE (r,z;(a)
y¥*m (z;r,(o)dz, (2.27)

or, by substituting Eq. (2.6) to put Eq. (2.27) in terms of the PE field function

O (r;co) =
\
pol-jVpE( r

>
z ' c°)

Xp
*m (z>r> ©) dz

ik r

e (2.28)

-1/2. . . iV -1/2, . . .. i<Pm (r,a)
= r Am {r;(a)e = r |Am (r;u))|e

The complex modal amplitude is given by

Am (r;co) = jP jR yVpE (r, z;co) V*m (z;r, co) dz (2.29)

and the modal phase is given by

(pm (r;co) = k r + Arg[Am (r,(d)]. (2.30)

Shang and Wang refer to the quantity \Am (*"><$) as the modal repopulation character.

The modal arrival times can be computed similarly to the broadband computation.

Using discrete frequencies with the source spectrum denoted by X (/A/), the acoustic

pressure field is found from the PE pressure field solution by substituting Eqs. (2.25) and

(2.28) into (2.23), thus yielding
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N-lf - \ .(2k

1 v- n „,... -1/2 « » i<tm (r;lAf) \ NP(r,z,nAt)=-^\ £X(ZA/)r" |Am (r;/A/)|^m (z;r, /A/) «

/ = (Am = 1

or in terms of the modal pulse

<? (2.31)

i- 1

1/2 (?»<^-(fk
PJr, z, nAr) = - £ X(/A/) r |AM (r;ZA/) \¥m (z;r, lAf) e . (2.32)

1 =

If the mode functions are approximately invariant over the frequency bandwidth of

consideration, such that

*m (** W/) " *» teT> Wc> " ^m (W WJ (2-33)

where co
/

, co
c

, and cg
u
are the lower, center, and upper frequencies of the bandwidth under

consideration, then Eq. (2.32) can be simplified to

1
"~

1/2 (*-<"A» "(fW
P„£r,z,nAt) = jfVJLzs, *

c
A/)£ X(/A/) r

1/2
|Am (r;/A/) |e

'"'
.(2.34)

z = o

This simplification reduces the computational burden of computing an FFT for each depth

grid point.

In the dissertation work presented here, modal arrival time structures are computed

only at designated fixed ranges. The complex modal amplitude A (R,(d) was computed

from Eq. (2.29) using the individual frequency-dependent mode functions (rather than the

approximate mode function 4/

m (z;R, co
c
) when Eq. (2.33) is valid) as computed by the

KRAKEN normal mode code. When computing the modal pulse, Eq. (2.32) or Eq. (2.34),

the approximate center frequency mode function was used only if Eq. (2.33) was valid.

The signal is heterodyned about the center frequency and the overall phase factor is

neglected, giving results in terms of "reduced time". The source spectrum used by UMPE

is a Hanning amplitude window. Thus, the Fourier transform actually computed was

* , , .Art
y*»< z *' Z

c4/) ^X(ZAfl, (R]A ,
-<77>-«o)('-U

P R,m(z,(n-n )At) = 2, r- Am (R;lAf)e (2.35)

/ = /,
«R
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when Eq. (2.33) was valid or

Y(l\f\ -'(i7)»-"oX'-U
(2.36)

1 J!. YUAf) -'(-^/"-"oX'-U
P'r. m (z, (n - n )At)=± £ ^f^Wm (z;R, lAf) )Am (R;lAf) e

KNJ

otherwise. The final result yields P'n
t m (z, (n - n

Q ) At), the set of modal complex

pressure values in depth-(reduced) time space for the designated range.
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III. MODE FUNCTIONS FOR THE WIDE ANGLE APPROXIMATION TO THE
PARABOLIC EQUATION

With a goal of further developing modal ocean acoustic tomography, Shang and

Wang (1993) proposed using the modal spectrum of the PE field for computing modal

travel times under strong mode coupling environments. Instead of dealing with the

coupled equations governing the complex modal amplitudes, they obtained the coupled

modal amplitudes and phases from the spectral expansion of the full wave field given by

the PE solution with local normal modes as the basis set. Their results, obtained using a

2-D wide angle implicit finite-difference (IFD) PE code (Lee and Botseas, 1982) and

normal mode code KRAKEN (Porter, 1991), presented modal travel time perturbations for

the first ten modes due to a single mesoscale eddy.

In a similar type approach, modal decompositions of wide angle PE fields were

computed in support of the investigations presented in later chapters. However, computa-

tions for the modal amplitudes of a reference range-independent wide angle PE field using

standard normal modes erroneously yielded fluctuating rather than constant modal ampli-

tudes for modes higher than about mode 30. This led to the new development and investi-

gation of "wide angle PE mode functions" presented here. The results of Shang and Wang

do not contradict these results. Rather, their analysis was limited to only a small number

of low-order modes which do not suffer significantly from this mismatch. It should be

noted, however, that their analysis did not employ the correct modal basis set, as will be

shown in this chapter.

In that PE-based methods are full wave methods providing the total acoustic field

on a computational grid, they do not readily supply information regarding the propagation

of individual modes. This modal information might assist in interpreting acoustic propa-

gation behavior in a complex environment, or be useful for determining the relative

adiabatic nature of a particular environment. Thomson (1993) addressed this issue for the

standard parabolic approximation. In his work, he described a PE-based spectral method

suitable for modal analysis. Specifically, he demonstrated that the field p in a waveguide
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satisfying the acoustic wave equation is exactly related to the field \\f satisfying the SPE

approximation. For this case, the modal amplitudes and wavenumbers of \j/ can be deter-

mined exactly, and the corresponding amplitudes and wavenumbers of the normal modes

of the acoustic field p are then obtained by simple mapping rules.

For other higher order parabolic approximations, such as the WAPE and Pade'

expansions, the modal eigenfunctions and associated eigenvalues of \\f are distinct from

those of the acoustic wave equation. In that the WAPE is a common implementation for

PE models using the split-step Fourier technique and is expected* to yield more accurate

results than the SPE, a better understanding of its "normal modes" is desired.

In this chapter, the parabolic approximation to the wave equation is examined

within the context of normal mode theory. Building on the PE theory presented in Chapt.

II, approximate mode functions for the split-step Fourier (SSF) WAPE algorithm are

developed. These mode functions are then used to decompose range-independent sound-

pressure fields computed using the WAPE approximation. The resulting modal coeffi-

cients and eigenfunctions obtained using the WAPE mode functions are compared with

those obtained using standard normal mode theory. It is important to note in what follows

that use of the SSF algorithm does not introduce any additional approximations in terms of

the corresponding modal description.

A. THEORETICAL DEVELOPMENT

Normal mode decomposition theory uses the technique of separation of variables

and is based on the approximation that the ocean is exactly horizontally stratified.

Considering only modes within the water column, and assuming constant water density,

azimuthal symmetry, and range independence (sound speed varies only with depth), the

time-harmonic acoustic field p (r,z) e at r > due to a point source at z = z
s
and

r = satisfies the two-dimensional Helmholtz equation
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Seeking solutions in the form p (r,z) =0(r) vF(z) yields the well-known

depth-dependent modal equation

dz
2

which is subject to appropriate boundary conditions. In this equation, K represents the

separation constant and x¥m (z) denotes the specific mode function associated with this

separation constant. The complete sum of normalized modes is necessary to represent an

arbitrary pressure field. Accordingly, the pressure is expressed as

P(r,z) = J,<l>m (r)Vm (z). (3.3)

m= 1

Returning to the relationship between the acoustic field and the envelope function,

Eq. (2.6), an alternate approach employing the separation of variables technique to solve

the standard parabolic equation, Eq. (2. 15), yields an expansion into PE modes. Hereafter,

these particular modes will be referred to as SPE modes. In this case, the range-

independent expansion is shown by Desanto (1977) to be

oo

V(r,z) =
y

£/

a
j
u
j
(z)Gxp(is

j
r) (3.4)

7=1

where a. are the SPE mode amplitudes, u. (z) are the SPE mode functions, and s- are the

SPE modal wavenumbers.

Thomson (1993) has shown that the depth-dependent SPE mode functions i*. (z)

satisfy an eigenvalue equation comparable to that for the normal mode functions of the

acoustic wave equation, Eq. (3.2)
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-ZjUj(z) + [* V (z) -jq[u.{z) = 0,

dz

where the SPE modal wavenumbers s are given by

c = —

-

J 2kn
'

(3.5)

(3.6)

and the horizontal wavenumbers K. are the corresponding normal mode eigenvalues of

Eq. (3.2). The important issue here is that the mode functions for the SPE approximation

exactly match those which solve the acoustic wave equation. Accordingly, these mode

functions may be found using a normal mode code such as KRAKEN (Porter, 1991). As

we shall see shortly, this is not the case when using the WAPE approximation.

We now seek approximate solutions to Eq. (2.7) replacing Q by the approx-

imate propagator function QWAPE and assuming

oo

y{r,z) = J^Tm
(r)v

H {z). (3.7)

n= 1

Here, F (r) represents the WAPE range dependent modal amplitude and v
n (z) is the

WAPE mode function. This expansion for \j/(r, z) leads to the modal equation

ikr

vB tt>

1 +
1 d
2 2

k
Q
dz j

2M/2
+ (n(z)-l)-l ^-ffe^» (r) -°- (3 - 8)

Setting the separation constant equal to j|3 , it can be shown that F
n
(r) has the simple

range dependence

r„(r) = feBexp(ipBr) (3.9)

where b
n

is the modal amplitude and Pw
is the associated WAPE modal wavenumber.

Using this separation constant, the WAPE depth-dependent modal equation becomes
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1 +

V

1 d
2 2

k
Q
dz

2> 1/2 /

+ (n(z)-l)-
V

P
V

Koj
v„(z) = (3.10)

To develop approximations for the WAPE modes, the square root operator is

approximated using first order and second order Taylor series expansions. This leads to

the first order approximate depth-dependent WAPE modal equation

.2 . r ft
'

—v
n
(z)+2k

Q
dz

n{z) -—
K
o J

v„(z)*0, (3.11)

and to second order

4 , 4

L8Jk dz

Id2

, , P„"-—
T - n(z) -—

-

2^o Jz °.

v
B (z)*0 (3.12)

where pn
' = Pn + k

Q
. Note that the terms "first order" and "second order" refer to the

relative order of the Taylor series employed. It does not relate to the order of accuracy

used during numerical implementation. The first order approximation is essentially a

return to the small angle approximation, and is not expected to provide highly satisfactory

results in numerical implementation. However, it is included in the analysis to gain

insight into the nature of the WAPE mode function and its relationship to the standard

normal mode function.

The eigenfunctions satisfying Eqs. (3.10) - (3.12) no longer match those normal

mode eigenfunctions associated with the acoustic wave equation. The orthogonality (i.e.

uniqueness) of the WAPE modes can be examined as follows. Here we shall only

consider the first order approximation, although the orthogonality of the WAPE modes can

be shown to be more general. Multiply the first order approximate depth-dependent

WAPE modal equation, Eq. (3.11), for v
n (z) by vm (z) and for vm (z) by v

n (z)

Subtracting these two equations yields

2 2

^U)^(z)-vn
(z)^vm (z) = 2* (P„-Pjv„(z)vm (z)

dz dz
(3.13)
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or

ll
V
>»

(z)
Tz

V
« iz) - vn^j?m {z)) = 2k (Vn -?>Jvn

(z)vm (z) . (3.14)

Integrating over z and applying the boundary conditions for an ideal waveguide (pressure

release surface and pressure release bottom), Eq. (3.14) reduces to

(P»-Pj£vB U)vm (z)* = 0. (3.15)

The assumption of a pressure release bottom boundary condition in this case is considered

appropriate as a penetrable seafloor at low grazing angles reflects similarly to a free

surface (Jensen et. ah, 1994, p. 108). Note also that the assumption of a pressure release

bottom does not greatly alter the resulting modeshapes when considering only deep,

trapped modes corresponding to refracted-refracted (RR) paths with no bottom

interactions, as will be the case for the remainder of this development and subsequent

numerical implementation. Since each modal wavenumber is unique, i.e.

Pm*P„ if m 9t II,

fJo vn (z)vm (z)dz =0for m±n. (3.16)
o "

Therefore, the first order approximate WAPE modes form an orthogonal basis set.

To determine the approximate WAPE modal amplitudes, Eqs. (2.4), (2.5), (3.7)

and (3.9) are used to establish the far-field WAPE modal solution for the computed WAPE

field p in a layered waveguide

P(r' z) K^"J
/2^ V

"
U)eXp(^V) (3 - 17)

where (3/ = (3n +V
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B. NUMERICAL IMPLEMENTATION

Finite-difference techniques are used to numerically approximate the wide-angle

PE mode functions developed in the previous section. Numerical schemes are developed

for the first and second order Taylor series approximations given by Eqs. (3.11) and (3.12).

For the first order approximation Eq. (3.11), a numerical scheme closely following

that developed by Jensen et al. (1994) for normal modes to the acoustic wave equation is

developed. Defining a grid ofN equally-spaced points over the depth interval < z < Z)

,

gives the depth points z- = jh tj= 0,1, ...N, where h is the mesh width given by D/N. This

then allows us to define the following 0\h I difference approximations for the first and

second derivatives based on forward, centered, and backward difference approximations,

respectively,

v. ,-2v. + v" j — i j
V- = -

h
2
m + 0[h

2

), (3.19)

In the water column, the approximate mode functions must satisfy Eq. (3.11),

which in terms of the difference approximations becomes

(- 2 + *
2^[^" P-'l)v

v
7 + l- '

j
=Vj_

l
+ \ 2 + h 2k, 1,2, ...TV- 1. (3.21)

As discussed previously, the top and bottom boundary conditions are assumed to be

pressure release, giving v
Q
= and v^ = 0. Collecting these equations together, we

obtain the eigenvalue problem,

A(pY)v = (3.22)
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where A is a symmetric tridiagonal matrix of order N-\ with the diagonal elements denned

by

dj =
(

- 2 + h 2k
CO

lc(zj)
-P

' J = l,2,...N-l, (3.23)

and the off-diagonal elements defined by

ej= I,; = 1,2,..JV-1. (3.24)

To develop a numerical scheme to solve the second order approximation Eq.

4
(3.12), the following 0\h I centered difference approximations (Godunov and

Ryabenkii, 1987) are employed

iv
J_Vj

'

u
4 l 6

1 13 28 13 „ 1

-6 V;-3 + 2v,-2-Y^_ 1
+ Tv.--vy+1+ 2v

j + 2
--v

7 + 3
(3.25)

4 5 4 1
+ rVj ,-rV + -V-

,
, -V.

2L 12J~ 2 3J- 1 2 j 3 J +l 12 J + 2
_

Substituting into the governing equation

v -4A: v - 8a:
CO

c(z)
-p; v = o

(3.26)

(3.27)

and using a mesh similar to that defined for Eqs. (3.18)-(3.24) gives the resulting equation

which must be satisfied in the water column,

v
j
_ 3

+ (-12-2^)v
7
_ 2

+ (39 + 32/z
2
^)v._

1

+ (-56- 60h
2
k
2

+ 4ZhX{$j- K'))vj + (
39 + 32A

2
*b)v, + ,

+ [-l2-2h
2
k
2
)v

j + 2
+ v

J + 3
= 0, ; = 3,4,...iV-3. (3.28)

This leads to a seven diagonal banded matrix. Again, pressure release boundaries are .

assumed, giving v
Q
= and v^ = . For j = 1, 2, N-2, N- 1 , the pressure release

assumption leads to the following equations,
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+ (_44-58A
2
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2
+ 48A

4
4(^-P„'))vA,_, =0, y-W-1

In the following section, results from these numerical approximations will be shown.

The eigenvectors of the matrices defined by Eqs. (3.23)-(3.24) and (3.28)-(3.32)

represent the first order and second order Taylor series approximations, respectively, to the

WAPE mode functions v
n (z) in Eq. (3.16). The matrix eigenvalues represent the

associated wide-angle PE modal wavenumbers Pw .

To determine the modal amplitudes, it is useful to write Eq. (3.17) as

Irp(r' z) =(^y
/2

2>'. V<.
(2)eXP (

''

|Vr)= 2X «»„(«> (3.33)

where A
n

is the desired modal amplitude. This expression is general and does not depend

on which approximation to the WAPE is used. Note that we have accounted for

cylindrical spreading losses by scaling p{r,z) by Jr. Then assuming normalized modes

and invoking orthogonality, it can be shown that at a given range the modal amplitude is

given by
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.
D p (z, r) v (z)

K(r)-/r\
o

-S
«fe. (3.34)

In the following section, modal amplitudes for a range-independent, open ocean

environment are computed.

C. NUMERICAL RESULTS

The numerical schemes developed for the first and second order approximations to

the WAPE mode function were tested assuming a range-independent, deep ocean

environment characterized by the Munk canonical sound speed profile (Munk, 1974)

[c(z)-c
o
]/c

o
= e(/-Ti-lJ (3 -35 )

where £=0.0057, the scaled depth variable r\ =2(z-zaxiS)/B, and the reference sound speed

c was chosen as 1490 m/s. Axis depth, z^^, was assumed to be -1.0 km. The bottom

depth was assumed to be -4.5 km.

The acoustic pressure field was computed out to a range of 100 km using the

University of Miami PE (UMPE) model (Smith and Tappert, 1993) employing the wide

angle approximation. Input run parameters are summarized by Table 1. As was discussed

in Chapt. n.A.3, the computational depth includes the water column of interest (bottom

depth listed) and a "finite-depth fluid bottom halfspace". This halfspace extends to the

computational depth and is terminated with an artificial absorption layer to meet the

radiation condition. The resulting pressure field was then decomposed into standard

normal modes using KRAKEN (Porter, 1991), and first and second order approximation

WA modes by finding the eigenvectors of the matrices defined by Eqs. (3.23)-(3.24) and

(3.28)-(3.32) respectively.

These mode functions were then used to compute the respective modal amplitude

coefficients at 1 km intervals out to 100 km using Eq. (3.34). For a range-independent

environment, these coefficients should remain constant with range. Plots of selected

modal coefficient amplitudes for the three different mode functions are provided by Figs.
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Parameter Value

Reference sound speed, c
re

, 1490 m/s

Frequency, f 100 Hz

Source Level 183dBre 1 |iPa

Source Spectrum Hanning amplitude window

Source Depth 1000 m

Bottom Depth 4500 m

Computational Depth 8000 m

Transform size 8192

Depth grid step 0.9765 m

Range grid step 10.0 m

Table 1 . Acoustic propagation model (UMPE) input run parameters used to compute

WAPE solution for the modeled range-independent deep ocean environment.

1-3. Modes were selected so as to minimize overlapping line segments on the plots. Only

non-bottom interacting modes were considered, as the numerical scheme for the second

order WAPE mode functions currently only treats the bottom as a pressure release surface.

For the lower modes depicted by Fig. 1, all three methods provide satisfactory

demonstration of range-independence. However, the first order WAPE mode function

approximation starts to show some small fluctuations for mode numbers greater than 15.

In Fig. 2, the first order approximation clearly breaks down as the mode number increases.

Additionally, the standard normal mode decomposition of the WAPE computed

field begins to show noticeable fluctuations for modes above mode 35. Only the second

order approximation demonstrates satisfactory range-independence. As the mode number

is increased further, the fluctuations in both the SPE and first order approximations

continue to increase. This is illustrated in Fig. 3. Again, the second order approximation

continues to demonstrate the range-independent nature of the input sound-speed
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Figure 1. Modal coefficient amplitudes as a function of range for modes 1,8, 15, 20 and

25 of a range-independent Munk canonical sound speed profile. Mode shapes were

determined using standard normal mode theory and first and second order approximations

to the wide angle mode function.
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Figure 2. Same as Fig. 1 except for modes 30, 35, 40, 45, and 50.
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Figure 3. Same as Fig. 1 except for modes 55, 60, 70, 72, and 74.
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environment. This pattern was observed up through mode 100, the highest mode

computed in this work.

The differences are relatively small between the mode shapes computed using

standard normal mode theory and the second order approximation to the WAPE mode

function derived in this chapter. Figure 4 illustrates the difference between these two

mode functions for mode 70. For this particular sound speed profile, the mode shapes

derived using the two methods tended to converge at low mode numbers, and slowly

diverge as the mode number increased. That such small differences in mode shapes would

generate significant errors in the mode amplitude decomposition is both an interesting and

important finding of this disseration.

Finally, in that a portion of the work in this dissertation uses mode functions to

compute modal travel times, a comparison of modal travel times computed using standard

normal mode functions and the second order approximate WAPE mode functions is

depicted by Fig. 5. For the results presented in Chapt. V, standard normal mode functions

were used to compute modal travel times. This choice was made for two primary reasons.

The first reason is that we were interested in statistical trends in the data rather than

absolute times. The relatively small difference in travel time results between the two

methods as represented by Fig. 5 was deemed acceptable for these trends. The second

reason is that the numerical implementation for second order approximate wide angle

mode functions developed in this chapter does not yet allow transmission across an

interface or the incorporation of a density contrast, such as was required for the water

column / bottom layer interface in Chapt. V.

D. SUMMARY

This chapter has examined how the wide angle approximation to the PE square

root operator alters the associated mode functions in a normal mode decomposition.

Specifically, first order and second order Taylor series approximations to the WAPE mode

functions were developed and compared to SPE mode functions. While the field \j/
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Figure 4. Comparison of mode 70 as computed using standard normal mode theory and

the second order approximation to the wide angle mode function. The left hand side

depicts the modeshape over the entire water column. The right hand side provides an

enlargement of the 3200-3400 m depth to more clearly depict the difference in mode

shape.
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Figure 5. Comparison of arrival times computed using standard normal modes

(KRAKEN) and second order approximate WAPE modes. Data illustrates the arrival

times computed for data set 36 (95Jul07) as described in Chapt. V. The x,o plots the

centroid of the arriving acoustic energy, and the errorbar plots the first standard deviation

of energy distribution about the centroid. The mean difference in arrival times over the 30

modes was 2 (±15.9 ) msec, with the positive mean indicating that the WAPE mode

functions tended to predict a slightly earlier arrival (for this environment) relative to the

decomposition estimates using standard normal modes.
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satisfying the SPE approximation is exactly related to the field p which solves the acoustic

wave equation, this is not the case for the WAPE approximation.

Numerical schemes were developed to compute the approximate WAPE mode

functions and wavenumbers. The computed mode functions were then used to decompose

a typical deep ocean range-independent sound-pressure field obtained using the WAPE

approximation. The resulting modal amplitudes obtained using the WAPE mode

functions were compared with those obtained using a standard normal mode

decomposition of the WAPE field. The second order approximation to the WAPE mode

function showed noticeably less fluctuation in the computed modal amplitudes for the

modeled range-independent environment in comparison to the standard mode shapes

above mode 35. The first order approximation to the WAPE mode function, although

simpler to implement numerically, did not provide an adequate representation of the

range-independent nature of the modeled environment.

The purpose of this chapter was to highlight the need for a different set of mode

functions in normal mode expansions for parabolic approximations to the acoustic wave

equation other than the SPE approximation. While the second order Taylor series approx-

imation to the WAPE mode function derived in this chapter showed promising results for

the simplified deep ocean environment, much remains to be done to develop proper

numerical treatment of interfaces, bottom boundaries, and density gradients. For the

modal arrival analysis accomplished in support of Chapt. V, the KRAKEN normal mode

theory was used to compute modal arrival times.
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IV. TRAVEL TIME BIAS DUE TO OPEN OCEAN ROSSBY WAVES

In this chapter, the effects of randomly phased baroclinic Rossby waves on

acoustic travel time and arrival patterns are investigated. Rossby waves are characterized

by a small sea-surface signature (10 cm or less), slow propagation speeds (of order

10 cm s"
1
or less), and long wavelengths (hundreds to thousands of km). It has been

speculated that these waves are responsible for the westward intensification of circulation

gyres (Chelton and Schlax, 1996). It will be shown that the perturbations resulting from

this random mesoscale structure produces an overall spreading in the arrival structure,

primarily producing a delay (cold bias) in the axial arrivals.

While other investigators using various methods of analysis have reported a non-

linear mesoscale bias which particularly affects the late arrivals (e.g., Mercer and Booker,

1983, Smith, Brown and Tappert, 1992a, 1992b, Athanassoulis and Skarsoulis, 1995), an

extensive literature search found no full-wave field studies which specifically address the

variability in the observed bias for a field composed of randomly phased Rossby waves.

A further understanding of this bias effect and its variability could provide improved

predictions of acoustic pulse propagation and provide insights into methods which correct

for this bias in ocean monitoring efforts such as ATOC.

A. THE MODELED OCEAN ENVIRONMENT

Earlier investigations (Smith, Brown, and Tappert, 1992b) with Rossby waves

suggested that such mesoscale features could significantly perturb the near-axial propa-

gation. As a follow-on to this previous work in studying the variability in the observed

perturbations, a similar modeled ocean environment was used in this analysis. Major

features of the model along with analytic expressions for both the background and pertur-

bation sound-speed fields are provided below. Expressions for the sound-speed fields
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assume the Brunt-Vaiasala (buoyancy) frequency has the exponential form

N(z)=N ez/B , (4.1)

where B = 1 km, N =3 cycles/h, and the depth z increases upward. The ocean surface

and bottom are assumed to be flat, perfectly reflecting interfaces at depths z=0 and -4.5

km, respectively. The range-independent background sound-speed field consistent with

this exponential form of the buoyancy frequency can be defined by the Munk canonical

profile (Munk, 1974)

[c(z)-c
o
]/c

o
= e[«

n
-H-lJ, (4-2)

where e=0.0057, the scaled depth variable T| =2(z-zaxjS
)/B, and the reference sound speed

c is chosen as 1490 m/s. Axis depth, z^^, is assumed to be -1.0 km.

To simulate realistic mesoscale ocean features, the modeled environment contains

a superposition of several modes of randomly phased baroclinic Rossby waves. Chiu and

Desaubies (1987) have shown that this superposition is appropriate for modeling an open

ocean environment away from strong boundary currents. The wave structure produces

vertical water displacements of the water column, C,(x,y,z,t). The coordinate system is

aligned so that x, y, and z increase to the east, north, and upwards respectively. The sound-

speed perturbation bc(z,x) due to this mesoscale structure can be computed from a

knowledge of N(z) and the vertical water displacement t,(x,y,z,t) (Munk and Zachariasen,

1976). Smith et. al. (1992b) have further shown that this sound-speed perturbation can be

computed from

O J J

with

d A , , ^ 2z/B^-^^VoR^i«^St^^«» (4.4)

44



7/B
where £,. (z) = CjBe . In Eq. (4.3), f is the Coriolis parameter, which we have

assumed to be 1 cycle/day corresponding to a latitude of 30° , a, =24.5, g=9.8 m/s
2

is the

gravitational acceleration, and V is the perturbation strength parameter in m/s. Each

mode is assigned a weight A
;

, wavenumber kj, and random [uniform on (0,2tt,)] phase ay.

In Eq. (4.4), the mode parameters C
;
are selected to satisfy the bottom boundary condition

Y [ CBe-
H/B

)
- [ Y ( CjB) /JQ ( C.B) ] J [ CjBe'"'

8
) = . (4.5)

In the work reported here, the first four baroclinic modes are included in the modal

expansion. General experience has shown the lowest few modes contain most of the

energy (Munk, Worcester, and Wunsch, 1995). Accordingly, mode parameter values were

assigned so that the normalized modal energies dropped exponentially with increasing

mode number. Assigned mode parameter values are \j=2it/kj=400, 350, 300, 250 km and

A=1.0000, 0.5157, 0.3276, 0.2236 for7=1,2,3,4 respectively. These parameters then

provide normalized modal energies which scale as (A/kj)
2
of 1.00: 0.20: 0.06: 0.02.

The work of Smith, Brown and Tappert (1992b) reported that the threshold pertur-

bation strength for the onset of easily detectable chaotic ray behavior appeared to lie

between 1^=0.125 m/s and Vo=0.25 m/s, perturbation strengths typical of the mid- to low-

latitude regions of the worlds ocean. To explore this same perturbation strength range, a

set of twenty numerical prediction realizations were performed with V set first to 0. 125

m/s and then twenty more realizations with V set to 0.25 m/s. These strength parameters

produced maximum sound speed perturbations of approximately 6 m/s and 12 m/s respec-

tively.

For each of the twenty range-dependent realizations with V set to 0.125 m/s, the

phase (Xj was randomly assigned. However to allow direct comparison between data sets,

the same set of random phases was used for the twenty range-dependent realizations with

V set to 0.25 m/s. Table 2 lists the assigned phase values used for each of the four

baroclinic modes in each realization. Additionally, the location of the local sound speed
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axis at the initial range step was directly influenced by the phase of the random mesoscale

structure and the perturbation strength. Table 2 also provides the resulting depth of the

local sound speed axis and the corresponding minimum sound speed at this local axis for

each perturbation strength. In all realizations, the assigned mesoscale sound speed

structure is assumed "frozen" in time over the pulse propagation period. Small-scale

fluctuations such as those caused by internal waves are not considered.

A typical realization of the sound-speed structure for Vo=0.125 m/s is shown in

Fig. 6. The perturbations in this particular realization range from approximately -5.3 to

6.1 m/s relative to the background sound speed profile. Figure 6 also provides the sound-

speed perturbation envelope referenced to the range-independent canonical profile. Figure

7 provides a similar illustration of the sound-speed structure for the case Vo=0.25 m/s. In

this case, the perturbations range from -10.7 to 12.2 m/s. For both perturbation strengths,

the perturbation is essentially confined to the upper half of the water column. Note that

the range-dependence of these perturbations is sinusoidal. Although the sound speed

perturbation will average to zero over long range, the travel time perturbation is non-linear

and will not average to zero.

B. ACOUSTIC PROPAGATION MODELING

Numerical predictions of the acoustic propagation were obtained from a modified

version of the UMPE model (Smith and Tappert, 1993). UMPE is a broadband, range-

dependent parabolic equation model which implements the split-step Fourier (SSF)

method described previously in Chapt. EL It was modified to include a subroutine for

generating the random mesoscale perturbation and superimposing these perturbations onto

the background sound speed profile. Input run parameters used for acoustic propagation

modeling are summarized by Table 3.

A continuous wave pulse, wide-angle acoustic source function was used to

generate the starting field for multiple frequencies. The solutions are then inverse Fourier

transformed to yield travel times. The modeled source has a 100 Hz center frequency,
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Randomly assigned phase value for

baroclinic mode number
V =0.125 V =0.25

Run 1 2 3 4

Axis

Depth

(m)

Sound

Speed

(m/s)

Axis

Depth

(m)

Sound

Speed

(m/s)

1 0.4437 2.0744 0.0500 3.5025 1039 1491 1100 1492

2 2.9363 6.1271 0.9400 1.2410 836 1489 695 1486

3 2.4603 2.2026 6.1550 1.2024 898 1488 845 1486

4 1.4359 3.2068 3.1620 1.8819 1074 1490 1118 1490

5 5.6134 1.9929 5.1243 3.3137 1065 1491 1136 1492

6 5.6213 6.0501 5.7924 3.3372 1012 1492 1083 1494

7 1.0054 0.1503 5.9521 1.7476 962 1491 872 1492

8 2.6148 2.1163 2.1666 1.5559 971 1488 951 1487

9 2.6314 1.6137 0.2810 3.0539 1050 1491 704 1486

10 1.0813 5.4430 4.9802 6.2065 1033 1490 986 1491

11 2.5339 2.9236 1.3976 0.6285 945 1488 916 1486

12 0.8081 3.6260 3.2656 0.7081 945 1488 1136 1490

13 1.5948 2.9414 1.8233 3.9961 1024 1489 1065 1489

14 0.6205 6.0390 0.7910 5.8630 1042 1492 986 1493

15 0.4336 0.7553 1.8742 4.2228 1042 1491 1197 1493

16 5.3948 5.1485 5.0633 4.8832 1138 1491 1047 1492

17 1.4660 0.9852 6.0588 6.1911 1006 1490 880 1490

18 0.2466 1.7549 2.9578 2.5819 989 1488 1241 1492

19 3.2380 3.7665 0.2168 0.3478 998 1490 854 1484

20 1.0107 3.6465 2.8894 6.2395 1050 1492 1109 1490

Table 2. Assigned baroclinic mode phase values with resulting local sound speed axis

depths and axis sound speeds at the initial range step.
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Figure 6. Sound speed perturbation field realization for V0=0.125 m/s. The upper panel

displays the sound speed perturbation field relative to the unperturbed background sound

speed field. The lower panel compares the background sound speed profile with the

envelope of the perturbed profiles.
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Figure 7. Sound speed perturbation field realization for V =0.25 m/s. The upper panel

displays the sound speed perturbation field relative to the unperturbed background sound

speed field. The lower panel compares the background sound speed profile with the

envelope of the perturbed profiles.

49



Parameter Value

Type of PE approximation Wide-angle

Reference sound speed, c 1490.0 m/s

Number of points in depth 2048

Computational depth 9000.0 m

Depth mesh size 8.8 m

Range step size 50.0 m

Maximum range 1000.0 km

Center frequency 100.0 Hz

Number of frequencies 512

Frequency bandwidth 100.0 Hz

Frequency bin spacing 0.195 Hz

Source depth Varied, placed at local sound speed axis,

which varied up to ±200 m from

background sound speed axis at 1000 m.

Source level 200 dB re 1 \i Pa

Source spectrum Hanning amplitude window

Angle of the beam center 0.00 deg

RMS half-width angle 35.00 deg

Taper 15.00 deg

Table 3. Acoustic propagation model (UMPE) input run parameters for deep ocean

environment with mesoscale structure.
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100 Hz bandwidth sampled at 512 discrete frequencies, and 200 dB re luPa source level.

The UMPE code generates the frequency bin spacing and assumes a Hanning amplitude

window for the source spectrum. The pulse length is not an input parameter. A wide-

angle source starting function (Thomson and Chapman, 1983) was used with a D/E angle

of 0° and a half-width of 35°. A smooth filter was applied to the outer 15° to reduce the

influence of sidelobes. To ensure the lowest modes were excited in each realization, the

source was placed at the local sound speed axis, the depth of which varied by as much as

200 meters from the assumed background axis depending on the specific perturbation

field.

To numerically predict the propagation field, a computational depth of 9000 m

was used with a total transform size of 2048, thus providing for a depth mesh of 8.8 m.

The projected field was computed out to a range of 1000 km using a range step of 50 m.

Twenty range-dependent realizations for each perturbation strength V were computed

using the randomly-phased baroclinic modes as per Table 2. Next, a range-averaged

sound speed profile was computed for each realization using the range-dependent sound

speed profiles at 1 km steps up to the range of interest. To investigate the bias in travel

time resulting from the mesoscale structure, forty additional realizations for each pertur-

bation strength were then computed. Twenty each realizations were computed out to 500

km and 1000 km ranges using the respective range-averaged sound speed profile. Note,

that while this use of the range-averaged sound speed profile will result in a range-

independent environment, the range-averaged sound speed profile may differ slightly from

the background Munk canonical profile (no perturbation). From the computed fields, the

solutions are inverse Fourier transformed to yield travel times.

A typical plot of the computed broadband transmission loss field for the range-

dependent case with Vq=0A25 m/s is provided in Fig. 8. In computing the FFTs, the time

domain is heterodyned around the value t
Q
= R/c

Q
. The time scale axis then uses

"reduced time" or (t-t ) for the arrival time. Some wrap-around of the signal is observed

due to the finite transform size. Note that the arrival structure even for the latest arrival is

well-defined, suggesting an adiabatic nature of the propagation.
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Figure 8. Transmission loss arrival time structure at range 1000 km for V =0.125 m/s.

Upper panel shows total structure of the range-dependent realization. Lower panel shows

expanded view of axial arrivals.
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To further assess the relative adiabatic nature of the modeled environment, a modal

decomposition was performed on a single frequency (100 Hz) range-dependent realization

(#7) using the second order approximate wide angle mode functions described in Chapt.

HI. Results are provided by Fig. 9. At perturbation strength V^O.125 m/s, there is only a

limited amount of mode coupling. However, as the perturbation strength is increased to

V^pO.25 m/s, mode coupling starts to increase.

Representative arrivals at the 1000 m depth and 500 km range are depicted in

Fig. 10. In the upper panel, the arrival structure of a range-dependent realization for

Vq=0.25 m/s is compared with its range-averaged realization. The lower panel shows an

expanded version of the first and last arrivals. Figure 1 1 provides similar illustrations for

the 1000 km range. In all but one of the range-dependent realizations computed for both

V^=0.125 m/s and Vq=0.25 m/s, the latest peak arrival at the 1000 km range was delayed

from that of the range-averaged case.

C. DATA ANALYSIS AND DISCUSSION

For this modeled environment, we are interested in characterizing the overall

spreading in the arrival structure envelope of the range-dependent realization relative to its

range-averaged counterpart. In particular, we wish to determine if there is a statistically

significant bias in the near-axial arrival structure. The data analysis will refer to the data

in four sets based on the combinations of range (500 km, 1000 km) and perturbation

strength (0.125 m/s, 0.25 m/s).

The first step in analyzing the data was to measure the arrival envelope lengths.

Employing the technique of using arrival times as the time instants corresponding to the

significant maxima (peaks) of the arrival pattern (Athanssoulis and Skarsoulis, 1995), the

arrival envelope length was determined by measuring the time difference between peaks

of the first and last arrivals. Only peaks with less than 100 dB re 1 m transmission loss

were considered part of the arrival structure. In those cases where the first arrival

"wrapped around" due to the finite transform window, the relative time was adjusted
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Only the three modes with the largest amplitudes are identified.
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Figure 10. Transmission loss arrival time structures at range 500 km and depth 1000 m.

Upper panel shows total structure for range-independent and range-dependent realization

with Vq=0.25 m/s. Lower panels show expanded view of the first and last arrivals.
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Figure 1 1 . Transmission loss arrival time structures at range 1000 km and depth 1000 m.
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accordingly. Histograms showing the respective number of realizations in each 10 msec

time bin are provided by Figs. 12 and 13 for the 500 km and 1000 km ranges, respectively.

Note that as the perturbation strength is increased, there is a significant spreading in the

arrival envelope lengths. Additionally, the mean range-dependent arrival envelope length

is longer than its corresponding mean range-averaged length for all four sets of data

plotted.

The arrival envelope spread is computed by taking the difference between the

range-dependent and associated range-averaged arrival envelope lengths. A positive

spread indicates that the range-dependent envelope length is greater than its associated

range-averaged counterpart. Again, histograms with 10 msec bins were constructed and

are provided in Figs. 14 and 15 for the 500 km and 1000 km ranges, respectively. Note

that while the mean for all four data is positive, there are several individual realizations

with negative spreads. However, the arrival envelope spread becomes increasingly

positive with increasing range and perturbation strength.

Next, the time difference between the range-dependent and associated range-

averaged first peak arrivals was measured. This same time difference was also measured

for the last peak arrivals. In this case, we refer to the time difference as the bias, where

In Eq. (4.6), the subscript RD denotes range-dependent and RA denotes range-averaged.

Figures 16 and 17 provide histograms of the bias in the first and last peak arrivals at the

500 km and 1000 km ranges, respectively.

The mean bias for the near-axial (last) arrivals is generally positive, and increases

with increasing perturbation strength and range. In particular, the mean bias for the last

peak arrival increases by over 100 msec when the perturbation strength is increased from

Vq=0. 125 m/s to V^pO.25 m/s. A possible physical explanation for this cold bias is that the

acoustic path is continually adjusting toward the lowest sound speed, thus resulting in an

actual sound speed along the path which is lower than the comparable range-average. The

mean bias for the higher modes is significantly less indicating that these modes are more

stable in terms of their arrival times. In some realizations, the earlier arrivals, those
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corresponding to higher acoustic modes, actually arrive slightly earlier when the

perturbations are present. The data may then suggest that the total time envelope of

arrivals (i.e. time between earliest and last arrivals) always tends to increase. In all cases,

however, the influence is most pronounced in the delayed arrival of the lowest modes.

In closing out this chapter, there are four main points which are suggested by the

data.

1) Mesoscale features can significantly perturb the late arrivals (corresponding to the

lowest order acoustic modes) and produce an overall spreading in the arrival structure

even when propagation is adiabatic.

2) The bias in the arrival times of the lowest modes increases with increasing perturba-

tion strength.

3) The size of bias variability is not directly related to range or perturbation strength.

4) Steeper, earlier arrivals are relatively stable in the presence of mesoscale structure.

The arrival data statistics are summarized by Table 4.
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Range Range=500 km Range=1000km

Strength Mean Std Dev Mean Std Dev

Vo=

0.125 m/s

First peak

bias

-3.1 ms 8.4 ms 16.8 ms 19.6 ms

Last peak

bias

25.5 ms 35.4 ms 88.4 ms 74.1 ms

Envelope

Spread

28.6 ms 34.6 ms 71.6 ms 56.5 ms

Vo=
0.25 m/s

First peak

bias

-10.0 ms 23.8 ms 9.4 ms 8.9 ms

Last peak

bias

89.6 ms 79.2 ms 205.0 ms 55.8 ms

Envelope

Spread

99.6 ms 77.9 ms 195.8 ms 54.7 ms

Table 4. Arrival statistics for deep ocean with random mesoscale structure.
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V. TRAVEL TIME VARIABILITY DUE TO THE CALIFORNIA CURRENT
FRONT

In this chapter, the effects of a fluctuating frontal region created by the California

Current on modal acoustic travel time variability are investigated using a state-of-the-art

global ocean circulation model to provide input environmental data. The California

Current is the major eastern boundary current of the North Pacific. It is 500-1000 km

wide and has been found to be highly variable in both space and time (Mooers and

Robinson, 1984). The instantaneous current consists of intense meandering current

filaments intermingled with synoptic-mesoscale eddies. In general, cool water upwelled

near shore is entrained and then subsequently advected 100 km or more offshore by the

variously oriented jetlike strong current filaments and eddies. Additionally, the jets and

eddies can also advect warm offshore waters onshore to the coastal ocean. Through

satellite imagery and oceanographic studies, it has been shown that this jet and eddy

system can change substantially on a weekly time scale.

Recently there has been work along a similar theme (Dushaw, 1997) which was

motivated by the ATOC project. Dushaw's concern was that, as described previously,

variability in the acoustic pulse travel time acts as geophysical "noise" in problems such

as accurately assessing the large-scale North Pacific heat budget. An accurate assessment

may be extremely difficult for acoustic paths passing through this region if the effect of

variability in the California Current is severe enough. Dushaw examined the effects of the

California Current on synthetic acoustic transmissions made from the ATOC Pioneer

Seamount acoustic source (shown on Fig. 18) to a fictional receiver 500 km away along a

path which is nearly perpendicular to the California coast. He calculated the variation of

ray travel times using environmental input data interpolated from the California Cooper-

ative Fisheries Investigations (CalCOFI) time series data. However, there are shortfalls in

using the CalCOFI data which are pointed out by Dushaw. In particular, the CalCOFI

data sampling is irregular in time, depth, and horizontal sampling. At best, temporal

sampling is provided at some of the CalCOFI grid stations on a monthly basis, but the
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entire grid is rarely surveyed during any particular month or year. The sporadic monthly

sampling does not capture the complete variability known to exist in this region from

satellite imagery. Furthermore, vertical sampling is limited to the upper 500 to 1000 m of

the water column, dependent on the observation year. Accordingly, Dushaw relied on a

limited number of sound speed profiles and extensive interpolation to generate his range-

dependent sound speed environment, and as discussed in his results, his study could not

address any sound speed variability which may occur below 1000 m. Given these limita-

tions, and after accounting for the assumed general North Pacific variability, his

conclusion was that a conservative upper bound on ray travel time variability specifically

due to California Current variability is ±50 ms for the 1000-5000 km ATOC transmis-

sions.

In an effort to capture more completely the variability of the California Current

System and acoustic transmissions through a small region of it, this investigation uses the

global Parallel Ocean Circulation Model (POCM) (Semtner and Chervin, 1992), also

known as the Semtner and Chervin model, to obtain realistic environmental input data

spanning a one-year time period over a 474 km acoustic path. In that this was a first-time

use of POCM with the UMPE acoustic propagation model, it was necessary to develop

computer code to interface the two models. Then, using the coupled ocean-acoustic

model, the temporal, spatial and seasonal variability in the individual modal arrivals of the

first thirty modes is assessed. The mesoscale bias variability is also examined by

comparing the full-field peak arrival times for the range-averaged environment to that of

the range-dependent environment at the 400 km and receiver ranges.

The research here is presented in a number of sections. First the ocean model used

for environmental data input is described. Next the method of reformatting the input

environmental data into a usable format for UMPE and description of a typical sound

speed field are provided. This is followed by a discussion of the acoustic modeling

method and modal variability analysis. Finally, a discussion of results with general

conclusions is presented.
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A. OCEAN MODEL

Input environmental data is obtained from the global Parallel Ocean Circulation

Model (POCM), also known as the Semtner and Chervin model. Semtner and Chervin

(1992) describe the basic POCM model formulation, and Stammer et. al. (1996) describe

subsequent improvements to the POCM model. It was this improved model that was used

for obtaining input environmental data for the coupled ocean-acoustic modeling described

herein. Key features of the improved model are described below.

The POCM model is capable of resolving mesoscale ocean features and strong

currents both spatially and temporally. Initially, a 1/2-degree model initialized with

Levitus temperature and salinity data was spun up for 33 years. Instantaneous fields were

then interpolated to a Mercator grid size of 0.4 degree in longitude, thus producing square

grids between the equator and 75 degrees latitude. This provides a nominal lateral

resolution of 1/4 degree (-25 km). The simulation was then resumed, starting with the

recorded winds of January 1985 providing the forcing function. Up to 20 vertical layers

are provided at each grid point. In that the greatest variability is observed near the ocean

surface, the spacing between vertical layers is approximately 25 m near the surface and

then the layer spacing gradually increases with ocean depth. Coastlines and bathymetry

are prescribed at the local model resolution, and are not smoothed further.

Model data is available for numerous years, at a time interval of three days. With

realistic external surface boundary forcing, including daily wind-stress fields and sea

surface heat fluxes, the POCM simulated ocean environment successfully models the

large scale variability as compared with oceanographic observations. However, the

simulated amplitudes of variability are reported to be low by about a factor of 2 to 4 over a

broad spectral range. This discrepancy in energy is greatest at high frequencies and

wavenumbers, diminishing to a factor of two at the lowest frequencies and wavenumbers

(Stammer et al, 1996).
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B. ACOUSTIC PATH DESCRIPTION AND INPUT DATA PREPARATION

For this particular investigation, the chosen acoustic path is between a moored

SOFAR source designated SS3 and a SOSUS hydrophone array at Point Sur, California

for an approximate path length of 474.6 km. The source and receiver locations are shown

in Fig. 18. The Naval Postgraduate School (NPS) sound sources designated SSI, SS2,

SS3 in this figure were specifically deployed to study the California Current System by

tracking oceanographic floats (Garfield et. ai, 1997). The source provides a linear

frequency modulated chirp with a center frequency of 260. 1 Hz and a swept bandwidth of

1.523 Hz, has a source level of 183 dB re 1 p. Pa, and is moored at 642 m depth. Source

signal monitoring is done with the Pt. Sur SOSUS hydrophone array (C.-S. Chiu, pers.
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Figure 18. West coast sound sources. NPS sound sources designated SSI, SS2, SS3 were

specifically deployed to study the California Current System by tracking oceanographic

floats. SOSUS array is located near Pt. Sur.
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comm.,1997). The Point Sur array is at the ocean bottom, a depth of 1359 meters. Actual

data is available from this source/receiver combination for future comparison with

numerical predictions obtained using POCM environmental input data. Available source

and receiver characteristics are summarized in Tables 5 and 6, respectively.

To assess the acoustic stability of arrivals for this source/receiver combination, the

first step was to obtain data sets of temperature and salinity spanning a one-year time

period (122 data sets, model year 1995) from the POCM model. Bathymetry data was

obtained from the National Oceanographic Data Center (NODC) database DBDB5 which

Parameter Value

Mooring location 37°06.55'N 127°34.60'W

Source depth 642 m

Water depth 4752 m

Center frequency 260.1Hz

Signal LFM Chirp

Swept Bandwidth 1.523 Hz

Pulse length 0.6 sec

Source Level 183dBre 1 u:Pa

Table 5. Naval Postgraduate School SS3 source characteristics

Parameter Value

Location 36° 17.87'N 122° 22.58'W

Type Single hydrophone

Receiver depth 1359 m

Bottom depth 1359 m

Distance from SS3 source 476.1 km

Table 6. Pt. Sur receiver characteristics
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has a resolution of 0° 05'. The next step was to interpolate the temperature, salinity, and

bathymetry data from the ocean model/database grid points onto grid points along a 2-D

great circle path between the chosen source-receiver combination. Horizontal

interpolations were done linearly, whereas interpolations between vertical depth layers

were done using a cubic spline. The interpolated temperature and salinity data was then

converted into sound speed using the empirical formula (Mackenzie, 1981)

c(z,S,t)= 1449.2 + 46/ - 5.5^ + 0.29*
3 + (1.34-0.1r)(S-35)+0.016z (5.1)

where c is sound speed in m/s, S is the salinity in parts per thousand (ppt), z the depth in

meters, and r=7710 where 7 is in degrees Celsius.

A typical sound speed profile interpolated from the POCM output consists of a

surface duct with its local sound speed minimum around 200 m depth and a main water

column channel with an axial depth around 1000 m. To illustrate the annual sound speed

variability along the chosen acoustic path, the yearly mean range-averaged sound speed

profile and its envelope are provided in Fig. 19. This figure also plots the full ensemble of

range-averaged sound-speed profiles. Note that the POCM output suggests that the

surface duct persists throughout the annual cycle. This is not considered realistic (C.-S.

Chiu, pers. comm., 1997). Subsequently, this chapter will focus on modal travel time

variability for modes which remain in the main water column channel.

The sound speed perturbation fields for POCM model dates 05 Jan 95 and 01 Jul

95 are depicted by Figs. 20 and 21, respectively, where the sound speed perturbation is

defined as

5c(r,z) = c(r, z) -cRA {z) (5.2)

and cRA (z) is the reference range-averaged sound speed profile specific to that data set.

For the January perturbation field, the sound speed perturbations range from about ±3.5

m/s and are essentially limited to the upper 2000 meters in the water column. The July

perturbation field shows much stronger gradients, with amplitudes ranging from about

±6.0 m/s and extending deeper to near 2500 meters depth. Throughout the year, the
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Figure 19. Annual range-averaged sound speed profiles as interpolated from POCM

output for modeled environment. Upper panel shows the mean annual range-averaged

sound speed profile and envelope of range-averaged sound speed profiles. Lower panel

illustrates the variation in range-averaged sound speed profiles over the annual cycle.
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Figure 20. Sound speed perturbation field for POCM model date 05 Jan 95. Top left panel

shows reference range-averaged sound speed profile. Top right panel shows 1 1 equally-

spaced sound-speed profiles as a function of range. Abscissa scale applies only to first

profile. Middle panel shows perturbation field for entire water column and bathymetry

along track. Lower panel provides enlarged view of field in the upper 400 m.

74



Figure 21. Sound speed perturbation field for POCM model date 01 Jul 95. Top left panel

shows reference range-averaged sound speed profile. Top right panel shows 1 1 equally-

spaced sound-speed profiles as a function of range. Abscissa scale applies only to first

profile. Middle panel shows perturbation field for entire water column and bathymetry

along track. Lower panel provides enlarged view of field in the upper 400 m.
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surface duct is seen to be much more pronounced in the region near the receiver relative to

that near the sound source.

C. ACOUSTIC MODELING

The range-dependent sound speed environments computed using the 122 POCM

datasets are individually input into the UMPE acoustic propagation model to compute the

full acoustic pressure field and the arrival structures at specific ranges of interest. In

addition, UMPE runs using a range-averaged sound speed profile as environmental input

were completed for 25 data sets (every 15 model days) to support analysis of the

mesoscale bias variability. Range-averaged sound speed profiles were computed for each

data set by averaging the range-dependent sound speed profiles (water column sound

speeds only) at 1 km steps up to the range of interest. Input parameters for the UMPE

acoustic propagation modeling are summarized in Table 7. Typical range-dependent

arrival structures across the full water column at the receiver range and two intermediary

ranges are presented in Fig. 22. Figure 23 displays a typical full-field arrival structure in

terms of transmission loss specifically at the receiver depth and range. The variability in

these full-field arrival structures at the receiver depth and range are demonstrated by Figs.

24 and 25.

To determine the degree of mode coupling as a function of environmental

parameters and bathymetry, pressure field modal decompositions were completed for

range-averaged and range-dependent environments, with and without bathymetry. The

standard PE approximation was used to compute the pressure field used for these modal

decompositions, so that KRAKEN standard normal modes might be employed as the

proper basis set. Typical results are plotted in Fig. 26. For the modes analyzed, this figure

clearly illustrates that bathymetry plays no role in mode coupling until approximately the

last 20 km where the ocean bottom shows a relatively steep rise to depths of less than 3000

m as it nears the Pt. Sur coastline. Environmental parameters which influence sound

speed appear to have the greatest impact on mode coupling in the 200-300 km range
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Parameter Value

Type of PE approximation Wide-angle

Reference sound speed, c 1495.2 m/s

Number of points in depth 8192

Computational depth 6500.0 m

Depth mesh size 1.6 m

Range step size 5.0 m

Maximum range 474.61 km

Center frequency 260.1 Hz

Number of frequencies 64

Frequency bandwidth 1.6 Hz

Frequency bin spacing 0.025 Hz

• Source depth 642.0 m

Source level 183dBre 1 flPa

Source spectrum Hanning amplitude window

Angle of the beam center 0.00 deg

RMS half-width angle 35.00 deg

Taper 10.00 deg

Table 7. Acoustic propagation model (UMPE) input run parameters for west coast

environment.

segment, and again between 450 and 474 km range. In this latter range segment, surface

ducting and bathymetry effects become important to the specific modes being analyzed.

As will be shown in the next section, some of the local normal modes shift from a "deep

water" mode at ranges of 200 and 400 km to surface duct modes at the receiver range.

Due to concerns regarding the validity of surface layer sound speeds as interpolated from
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Figure 22. Typical range-dependent arrival structures at 200, 400, and 474 km ranges.

Reduced time is referenced to 133.761, 267.523, and 317.081 seconds, respectively.
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Range=474.6km. depth=l359m

Figure 23. Plot of typical arrival structure at receiver depth (model date 31M95).

330

Time (sec)

Figure 24. Full pressure field arrival structure at receiver over one model year period.
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Figure 25. Centroid and energy distribution of arrival structure at receiver over one year.
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Figure 26. Modal coefficient amplitudes for a single frequency run. Upper panel is for the

range-averaged sound speed profile with bathymetry. Middle panel assumes flat bottom
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POCM output, modal travel time variability was assessed only at the 400 km range where

the first thirty modes remained in the main water column channel.

D. MODAL ANALYSIS

In this section the spatial and temporal variability of the first thirty local modes is

assessed. In addition, the mesoscale bias variability is examined by comparing the full-

field peak arrival times for the range-dependent environment to that of the corresponding

range-averaged environment. To examine the modal variability, the WAPE pressure field

at selected ranges was decomposed into local normal modes using the numerical code

KRAKEN (Porter, 1995). As discussed in Chapt. HI, there is a slight, but acceptable,

error introduced to the modal travel time by using standard normal modes for decom-

posing the WAPE field. Using inverse Fourier techniques described in Chapt. II, the

individual modal arrival times were computed at the 400 km range. Note that due to mode

coupling, there is a complex relationship between modal travel time variability and sound

speed perturbation.

The spatial variability in selected local mode functions at the 200 km, 400 km, and

receiver ranges are depicted by waterfall displays in Figs. 27, 28, and 29, respectively.

At the 200 and 400 km ranges, modes 1-30 reside entirely in the main water column

channel, with upper and lower turning points confined between 400 m and 1950 m depths.

At the 200 km range, the mode shapes show very little variability over the annual cycle.

At the 400 km range, there is a slight but detectable upward shift in the upper and lower

turning points during the summer season. The greatest spatial variability in the mode

functions occurs at the receiver range. At this range, modes 23-30 alternately appear as

surface duct (modes 1 and 2) and water column channel modes dependent on the specific

sound speed environment and frequency. For simplicity in further discussion, these

modes will be referred to simply as "surface duct" modes. The axis of the surface duct

clearly shifts over time, as is evident in the mode 30 plot. Again, the modal upper turning

points generally tend to shift upwards during the summer season. In addition, it is noted
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Figure 27. Annual spatial variability of selected mode functions at 200 km range.
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Figure 28. Annual spatial variability of selected mode functions at 400 km range.
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Figure 29. Annual spatial variability of selected mode functions at receiver range. For

modes 23 and above, mode numbers refer to deep channel mode number (rather than

surface duct mode number).
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that modes 8 and higher are bottom interacting at the receiver range.

To assess the temporal variability for each of the first 30 modes, the following

statistics were computed at the 400 km range:

1) ensemble (annual) mean for the energy centroid arrival time, and the

corresponding ensemble mean energy distribution (arrival width),

2) variance in the ensemble mean centroid arrival time, and

3) variance in the ensemble mean energy distribution,

where the ensemble consisted of the 122 range-dependent data sets. Results are presented

graphically for selected modes in Figs. 30 and 31, and numerically for the first thirty

modes in Table 8. These statistics show that arrival time (centroid) variability is limited to

±52 msecs. Modes 12 through 18 are the most stable, with their variability limited to

±17 msecs. The mean energy distribution (spread in modal peak arrival) also shows little

variability, in general less than ±6 msecs, over the annual cycle for these lower water

column modes with the exception of modes 1, 2, 3, and 30 which vary up to ±276 msec.

However, it is also noted that for many of the computations, modal amplitudes for modes

1 and 2 were so low that sidelobes in the FFT process might be affecting the results.

To assess the seasonal variability, the frequency spectra of the modal arrival times

was computed. Figure 32 plots the modal arrival time frequency spectra for selected

modes. The dominant frequency of variability for all modes examined is seasonal (1

cycle/year). Higher harmonics also appear for modes 1, 2, 29, and 30.

The mesoscale bias variability is examined by comparing the full-field peak arrival

time for the range-dependent environment to that of the corresponding range-averaged

environment at the 400 km and receiver ranges. In determining the range-averaged

environment, only sound speeds in the water column were averaged. With bias defined as

the difference between the range-dependent and the range-averaged travel times,

xbjas
= xrd ~ xra ' comPutati°ns included determining

1) the mean bias over 25 samples, and

2) the associated standard deviation for the mean bias.
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Mode#
Ensemble mean

centroid arrival

(sees)

Std deviation of

ensemble mean

centroid arrival (ms)

Ensemble mean

energy

distribution (ms)

Std deviation of

ensemble mean energy

distribution (ms)

1 269.98 51.7 528.2 275.3

2 269.99 36.4 446.4 95.7

3 269.99 27.0 399.6 25.6

4 269.99 20.7 389.6 6.0

5 269.99 19.8 388.1 1.5

6 269.98 18.6 388.2 0.4

7 269.98 21.2 388.2 0.7

8 269.97 17.7 388.2 0.4

9 269.96 17.5 388.4 0.8

10 269.95 18.9 387.5 0.5

11 269.95 18.4 387.7 0.3

12 269.94 16.7 387.7 0.1

13 269.93 16.8 387.5 0.1

14 269.93 16.4 387.5 0.1

15 269.92 16.0 387.2 0.1

16 269.92 15.7 387.2 0.1

17 269.92 15.9 387.6 0.1

18 269.92 17.0 387.6 0.1

19 269.93 19.2 387.8 0.2

20 269.93 21.9 387.7 2.1

21 269.94 21.2 387.4 0.7

22 269.94 21.7 388.0 1.5

23 269.94 18.9 387.5 0.2

24 269.93 18.6 387.9 0.1

25 269.93 18.6 388.0 0.2

26 269.93 19.7 387.8 0.1

27 269.92 23.0 388.3 0.5

28 269.92 22.2 388.2 0.6

29 269.91 30.0 388.5 3.4

30 269.90 27.8 405.3 188.6

Table 8. Ensemble statistics for modal arrivals at the 400 km range.
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Figure 32. Frequency spectra of modal arrival times at the 400 km range.
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For these calculations, the full-field arrival structure is dominated by a single peak arrival,

as is evident in Fig. 23. This is partially due to the small bandwidth of the source

spectrum. In addition, the source depth was generally several hundred meters above the

deep sound channel axis. Thus, it is the higher modes (steeper propagation angles) which

are predominantly excited. For the bias analysis, only this single peak was analyzed.

Histograms of the sampled bias at the two ranges are provided by Fig. 33. Bin

spacing is 1 56 ms. In contrast to the generally cold bias results shown for the open ocean

environment analyzed in Chapt. IV, the mean bias for the 400 km range appears to have a

Gaussian-like distribution about zero bias. As previously mentioned, for this environment

and source placement, only higher modes are predominantly excited. As suggested by the

open ocean environment analysis, steeper arrivals tend to be more stable in the presence of

mesoscale structure. Thus, this bias result does not contradict the general findings of

Chapt. IV. At the 474 km range, the distribution indicates a tendency towards a negative

(warm) bias. One possible factor contributing to this result for this acoustic path is the

effect of bathymetry. With the steep rise in bathymetry near the receiver, energy is

stripped out of the highest (and generally faster) modes and subsequently transferred into

the ocean bottom or coupled into lower modes. Due to the range-averaging of the sound

speed structure, the range-averaged ocean environment near the receiver is warmer than

the range-dependent case. Any coupling would then shift energy into faster modes than

predicted in the range-dependent ocean, thereby causing a general warm bias trend. Thus,

this environment would suggest that mesoscale travel time bias through a region with

significant bathymetry influences is not a simple function of range. Finally, the large bias

variability, as indicated by a standard deviation in the mean annual bias in excess of 500

ms at each of the two ranges, suggests that the ability to accurately interpret travel time

trends by assuming a range-averaged sound speed profile may be limited.
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Figure 33. Bias in full-field peak arrival. Upper panel shows bias at the 400 km range,

while lower panel shows bias at 474 km receiver range. Statistics based on a sample size

of 25 with temporal sampling every 15 days.
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E. SUMMARY

In this chapter, acoustic modal travel time variability through a region of the

California Current was investigated using a coupled ocean-acoustic model. Basic results

from this investigation are interpreted with the caveat that the simulated amplitudes of

mesoscale variability in the oceanographic model are known to be low by about a factor of

2 to 4 over a broad spectral range. With that in mind, we have seen that the annual travel

time variability along a 400 km path for the lowest 30 modes appears to be less than ±60

ms. Additionally, for selected modes (12 through 18), the annual travel time variability

predicted by this model was less than ±17 ms along this path. For all modes examined,

the arrival time spectra at the 400 km range generally show a dominant frequency of 1

cycle per year. While no attempt has been made in this investigation to separate out the

variability due to general ocean circulation from that due to the California Current, these

values are on the same order as that suggested by Dushaw for ray travel time variability.

This might then suggest that the resolution achievable in this coupled ocean-acoustic

model is not yet sufficient to accurately model the coastal region.

The bias analysis for this environment and source placement is in agreement with

the findings of the open ocean environment. Specifically, steeper arrivals tend to be more

stable in the presence of mesoscale structure, as indicated by the bias results at the 400 km

range. From bias results at the 474 km range, this environment also suggests that

bathymetry effects may have an impact on the relative sign of the bias. Here, a relatively

steep rise in bathymetry appeared to produce a warm shift in the bias.
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VI. CONCLUSIONS

The focus of this research was the bias and travel time variability of acoustic

propagation in the presence of ocean mesoscale structure. Because such analysis is

routinely addressed in the context of normal modes, a modal decomposition of the

predicted acoustic fields was required. One of the major contributions of this work was

the quantitative assessment of the errors associated with the modal decomposition of an

approximate solution by using an improper normal mode basis set. Specifically, it was

shown that the wide-angle PE solutions do not, in general, decompose into the standard

normal modes of the true acoustic wave equation. Because the wide-angle PE is a

common approximation employed in various current research efforts, and forms the basis

of the Navy standard PE model, the development and characterization of the proper mode

basis set is an important result for the underwater acoustics community. Although a

completely general numerical algorithm to compute this basis set was not obtained,

significant progress was made toward this goal.

The main results presented in the body of this dissertation examined the bias due to

oceanic mesoscale phenomena, and investigated its variability in terms of parameters such

as range, local mode number, and mesoscale perturbation strength. Although previous

investigators have attempted to address the issue of mesoscale bias using approximate

theoretical models, those results have sometimes been ambiguous and contradictory.

Furthermore, no model has previously been developed which provides the critical

information on the associated variability of the bias. The deep ocean environment

research presented here is the first to employ advanced, full-wave modelling techniques to

explicitly compute the travel time bias introduced by mesoscale structures and its

variability. The results suggest that nonlinear bias effects due to mesoscale ocean

structure have a complex relationship with the sound speed perturbation field and

bathymetry. In concluding this dissertation, a comparison of general findings from this

work to that of earlier investigators (as discussed in Chapt. I) is provided.
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• Previous investigations have suggested that the non-linear bias contribution is

approximately proportional to range. Results from the open ocean

environment with Rossby waves support this finding with the axial delay being

on order of 50-200 ms/1000 km.

• Flat, axial rays were found by previous investigators to be less linear than steep

rays. In the open ocean environment analyzed here, perturbations were shown

to produce a variable overall spreading in the arrival structure, primarily

producing a delay in the later, axial arrivals. Earlier arrivals were shown to be

relatively stable in the presence of mesoscale structure.

• Earlier investigators suggested that the non-linear bias is small compared to

seasonal fluctuations. In contrast, the analysis of a region of the California

current system suggests that while the mean bias may be small, the bias

variability for some environments may exceed seasonal fluctuations in travel

time perturbations. Additionally, the degree of bias variability was found to

have no clearly discernible relationship to range or mesoscale strength

parameter.

• Earlier investigations reached divergent conclusions with regard to the general

sign of the bias. This dissertation work -suggested a predominantly cold bias

for the open ocean environment field composed of Rossby waves. The

acoustic path through the California Current suggested that bathymetry effects

may have an impact on the relative sign of the bias. This then suggests a

complex relationship between mesoscale bias and its dependence on

bathymetry and the sound speed perturbation field.

For the California Current model study, the primary quantities of interest were the

modal travel times and their seasonal variability. The annual travel time variability along

a 400 km path for the lowest 30 modes appeared to be less than ±60 ms, with some modes

showing a variability of less than ±17 ms. For all modes examined, the arrival time

spectra at the 400 km range generally displayed a dominant frequency of 1 cycle per year.
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These values are on the same order as that suggested by a previous investigation using

limited CalCOFI data for ray travel time variability. This might then suggest that the

resolution achievable in this coupled ocean-acoustic model is not yet sufficient to

accurately model the coastal region.

There are several areas for potential research which logically follow this investi-

gation. The first area deals with further development of the wide angle PE mode

functions. Additional numerical work is required to develop proper numerical treatment

of interfaces, bottom boundaries, and density gradients. Assessments of the mode

functions for more complicated environments or other WAPE implementations (other than

split-step Fourier) might also be performed.

Finally, with respect to analysis of the region of the California Current system, the

statistics of predicted travel time variability as determined from the coupled ocean-

acoustic model output might be checked against measured travel time variability for

consistency. In addition, insights from this variability study might be potentially applied

in array configuration design for NPAL, refining tomographic techniques for this region,

or for assessing travel time variability of ATOC transmissions through this region.
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