BASIC RADIO PROPAGATION PREDICTIONS FOR MARCH 1946 THREE MONTHS IN ADVANCE

ISSUED
DECEMBER 1945

PREPARED BY INTERSERVICE RADIO PROPAGATION LABORATORY National Bureau of Standards Washington 25, D. C.

INTERSERVICE RADIO PROPAGATION LABORATORY NATIONAL BUREAU OF STANDARDS

BASIC RADIO PROPAGATION PREDICTIONS FOR MARCH 1946
 THREE MONTHS IN ADVANCE

The monthly reports of the IRPL-D series are distributed to the Army as the TB 11-499 series, by the Adjutant General; to the Navy as the DNC-13-1 series, by the Registered Publications Section, Division of Naral Communications; and to others by the IRPL.

This IRPL-D series is a monthly supplement to the IRPL Radio Propagation Mandbook, Part 1, issued by the Army as TM 11-499 and by the Nary as DNC-13-1, and is required in order to make practical application of the basic Handbook.

Comments are invited from users of this report as to the accuracy of predictions when applied to the solution of specific radio propagation problems. Such comments or queries concerning radio propagation should be addressed as follows:

For the Army:
Headquarters, Army Service Forces,
Office of the Chief Signal Officer,
Washington 25, D. C.
Attention: SPSOL.
For the Navy:
Chief of Naval Operations,
Nary Department,
Washington 25, D. C.
(DNC-20-F).

For Others:

Interservice Radio Propagation Laboratory,
National Bureau of Standards,
Washington 25, D. C.

CONTENTS

I. Terminology

Page 2
II. World-wide prediction charts and their uses. Page 2 World map showing zones covered by prediction charts, and auroral zones_- Fig. 1
F^{2}-zero-muf, in Mc, W zone, predicted for March 1916

Fig. 5
F2-4000-muf, in Mc, W zone, predicted for March 1946_,_-_, Fig. 6
F2-zero-muf, in Mc, I zone, predicted for March 1946___ Fig. 7
F2-4000-muf, in Mc, I zone, predicted

$F 2$-zero-muf, in Mc, E zone, predicted

$F^{2}-4000$-muf, in Mc, E zone, predicted for March 1946___-_-_-_-_-_-_-_ Fig. 10
E-layer 2000 -muf, in Mc, predicted for March 1946

Fig. 11
Median fEs , Mc, predicted for March
1946 Fig. 12
Percentage of time occurrence for Es in excess of 15 Mc , predicted for March 1946

Fig. 15
III. Determination of great-circle distances, bear-
ings, location of transmission control points

Page 2
Great-circle chart, centered on equator-- Fig. 2
Diagram of transmission path auxiliary to explanation of use of distancebearing nomogram, figure 4 \qquad
III. Determination, etc.-Continued.

Nomogram for obtaining great-circle distances, bearings, latitude and longitude of transmission control points. Conversion scale for various distance units

Fig. 4
IV. Calculation of maximum usable frequencies,
 muf and $22-4000$-muf to equivalent maximum usable frequencies at intermediate transmission distances; conversion scale for obtaining optimum working frequencies

Fig. 13
Nomogram for transforming E-layer 2000muf to equivalent maximum usable frequencies and optimum working frequencies due to combined effect of E layer and F1 layer at other transmission distances

Fig. 14
V. Absorption, distance range, and lowest useful high frequency

Page 6
VI. Sample muf and owf calculations

Page 6
For short paths (under 4000 km) page 6 , table 1, and figure 16.
For long paths (over 4000 km) page 7, table 2. and figure 17.

I. TERMINOLOGY

'l'he following symbols are used, as recommended by the International Radio Propagation Conference held in Washington, D. C., 17 April to 5 May 1944.
$f^{\circ} F 2=$ ordinary-wave critical frequency for the F2 layer. The term night F layer will no longer be used. The term F2 layer is now used for the night F as well as the daytime $F 2$ layer.
$f^{2} F 2=$ extraordinary-wave critical frequency for the $F 2$ layer.
$E s=$ sporadic, or abnormal E.
$f E s=$ highest frequency of $E s$ reflections.
muf or MUF = maximum usable frequency.
owf or OWF = optimum working frequency.
$4000-$ muf chart $=$ contour chart of muf for $4000-$ kilometer paths.
2000-muf chart $=$ contour chart of muf for 2000 kilometer paths.
Zero-muf chart=contour chart of vertical-incidence critical frequency, extraordinary wave.
Note. - The designation $F F_{2}$ has been replaced by F_{2}.

II. WORLD-WIDE PREDICTION CHARTS AND THEIR USES

The charts, figures 5 to 11, present world-wide predictions of monthly average maximum usable frequencies for March 1946. Conditions may be markedly different on disturbed days, especially in or near the auroral zones, shown on the map of figure 1. The method of prediction is discussed in the IRPL Radio Propagation Handbook, Part 1, War Dept. TM 11-499, Navy Dept. DNC-13-1, p. 52, 53 .

Although ionosphere characteristics are roughly similar for locations of equal latitude, there is also a considerable variation with longitude, especially in the case of the F2 layer. This "longitude effect" seems to be related to geomagnetic latitude. Attention was first called to this effect in the report "Radio Propagation Conditions" issued 10 Sept. 1943 ; it was brought into general operational use in the next issue (14 Oct. 1943).
The longitude effect in the F2 layer is taken care of by providing world charts for three zones, in each of which the ionosphere characteristics are considered independent of longitude, for practical purposes. These zones are indicated on the world map, figure 1.

Two F2 charts are provided for each zone, one of which, the "zero-muf chart," shows the verticalincidence muf, or the critical frequency for the extraordinary wave, and the other, the " $4000-$ muf chart," shows the muf for a transmission distance of 4000 km . Do not confuse the zero-muf charts with the $f^{\circ} F 2$ charts appearing in the previous IRPL reports "Radio Propagation Conditions." (Values of $F 2$-zero-muf exceed those of $f^{\circ} F 2$ for the same location and local time by an amount approximately equal to half the gyrofrequency for the location. See IRPL Radio Propagation Handbook, Part 1 (War Dept. TM 11-499 and Navy Dept. DNC-13-1), p. 18, 19, 28, and fig. 9).

The longitude variation is operationally negligible in the case of the normal E layer and therefore only one E-layer chart is provided.

The variation of $f E s$ with geomagnetic latitude seems to be well marked and important. Consequently, the $f E s$ charts are constructed on the basis of geomagnetic latitude. Since there are, as yet, insufficient correlated data, the $f E s$ charts are much less precise than the other charts. Instruetions for nse of these charts a ppear in section IV, 3.

III. DETERMINATION OF GREAT-CIRCLE DISTANCES, BEARINGS, AND LOCATION OF TRANSMISSION CONTROL POINTS

1. BY USE OF THE WORLD MAP AND GREAT-CIRCLE CHART

Figure 1 is a map of the world. Figure 2 is a chart to the same scale as figure 1 , on which the solid-line curves crossing the equator at a single point represent great circles. The numbered dotdash lines crossing the great circles indicate distances along them in thousands of kilometers. In using figures 1 and 2 proceed as follows:
a. Place a piece of transparent paper over the map, figure 1, and draw the equatorial line (zero degrees). Place dots over the locations of the transmitting and receiving stations. Also mark the meridian whose local times are to be used as the times for calculation. Usually the Greenwich meridian is used.
2. Place this transparency over the chart, figure 2, and, keeping the equatorial line of the transparency always on the equatorial line of figure 2, slide the transparency horizontally until the terminal points marked on it fall either on the same great circle or the same proportional distance between adjacent great-circle curves. Draw in the path.
c. For paths shorter than 4000 km , locate the midpoint of the path, keeping the transparency in position on figure 2 and using as a distance scale the points at which the numbered lines in
figure 2 cross the path as drawn on the transparency.
d. For paths longer than 4000 km , designating the ends as the A-end and B-end, respectively, locate on the path and mark with a dot the following "control points," scaling the distances as in c above:

For $F 2$ layer, points A and $B, 2000 \mathrm{~km}$ from each end.

For E layer, points A^{\prime} and $B^{\prime}, 1000 \mathrm{~km}$ from each end.

2. BY USE OF THE NOMOGRAM OF FIGURE 4

Notc.-Values near the ends of the nomogram scales of figure 4 are subject to error because the scales are compressed. If exact values are required in those regions, they should be calculated by means of the usual trigonometric formulas.

In figure $3, Z$ and S are the locations of the transmitting and receiving stations, where Z is the west and S the east end of the path. If a point lies in the Southern Hemisphere, its angle of latitude is aluays taken as negative. Northern-IIemisphere latitudes are taken as positive.
a. T'o obtain the great-circle distance ZS (short route) :
(1) Draw a slant line from (lat. Z-lat. S) measured up from the bottom on the left-hand scale to (lat. $Z+$ lat. S) measured down from the top on the right-hand scale. If (lat. Z-lat. S) or (lat. $Z+$ lat. S) is negative, regard it as positive.
(2) Determine the separation in longitude of the stations. Regard as positive. If the angle so obtained is greater than 180°, then subtract from 360°. Measure this angle along the bottom scale, and erect a vertical line to the slant line obtained in (1).
(3) From the intersection of the lines draw a horizontal line to the left-hand scale. This gives $Z S$ in degrees.
(4) Convert the distance $Z S$ to kilometers, miles or nautical miles, by using the scale at the bottom of figure 4.

Note.-The long great-circle route in degrees is simply $360^{\circ}-Z S$. The value will always be greater than 180°. Therefore in order to obtain the distance in miles from the conversion scale, the value for the degrees in excess of 180° is added to the value for 180°.
b. To obtain the bearing angle PZS (short route) :
(1) Subtract the short-route distance $Z S$ in degrees obtained in a from 90° to get h. The value of h may be negative, but should always be regarded as positive.
(2) Draw a slant line from (lat. $Z-h$) measured up from the bottom on the left-hand scale to (lat. $Z+h$) measured down from the top on the right-hand scale. If (lat. $Z-h$) or (lat. $Z+h)$ is negative, regard it as positive.
(3) From (90°-lat. S) measured up from the
bottom on the left-hand scale, draw a horizontal line until it intersects the previous slant line.
(4) From the point of intersection draw a vertical line to the bottom scale. This gives the bearing angle $P Z S$. The angle may be either east or west of north, and must be determined by inspection of a map.

c. T'o obtain the bearing angle PSZ:

(1) Repeat steps (1), (2), (3), and (4) in b, interchanging Z and S in all computations. The result obtained is the interior angle $P S Z$, in degrees.
(2) The bearing angle $P S Z$ is 360° minus the result obtained in (1) (as learings are customarily given clockwise from due north).

Notc.-The long-route bearing angle is simply obtained by adding 180° to the short-route value as determined in b or c above.

d. T'o obtain the latitude of Q (mid-or other point of path):

(This calculation is in principle the converse of b.)
(1) Obtain $Z Q$ in degrees. If Q is the midpoint of the path, $Z Q$ will be equal to one-half $Z S$. If Q is one of the $2000-\mathrm{km}$ "control points," $Z Q$ will be approximately 18°, or $Z S-18^{\circ}$.
(2) Subtract $Z Q$ from 90° to get h^{\prime}. If h^{\prime} is negative, regard it as positive.
(3) Draw a slant line from (lat. $Z-h^{\prime}$) measured up from the bottom on the left-hand scale, to (lat. $Z+h^{\prime}$) measured down from the top on the right-hand scale. If (lat. $Z-h^{\prime}$) or (lat. $Z+\hbar^{\prime}$) is negative, regard it as positive.
(4) From the bearing angle $P Z S$ (taken always as less than 180°) measured to the right on the bottom scale, draw a vertical line to meet the above slant line.
(5) From this intersection draw a horizontal line to the left-hand scale.
(6) Subtract the reading given from 90° to give the latitude of Q. (If the answer is negative then Q is in the Southern Hemisphere.)
e. To obtain the longitude difference t^{\prime} between Z and Q :
(This calculation is in principle the converse of a.)
(1) Draw a straight line from (lat. Z-lat. Q) measured up from the bottom on the left-hand
scale to (lat. $Z+$ lat. Q) measured down from the top on the right-hand scale. If (lat. Z-lat. Q) or (lat. $Z+$ lat. Q) is negative, regard it as positive.
(2) From the left-hand side, at $Z Q$, in degrees, draw a horizontal line to the above slant line.
(3) At the intersection drop a vertical line to the bottom scale, which gives t^{\prime} in degrees.

IV. CALCULATION OF MAXIMUM USABLE FREQUENCIES, OPTIMUM WORKING FREQUENCIES

1. PROCEDURE FOR DETERMINATION OF MUF AND OWF FOR TRANSMISSION DISTANCES UNDER 4000 KM (PROPAGATION BY THE REGULAR LAYERS)

a. Prepare or secure work forms similar to IRPL form AF (see table 1). Note that form AF provides for the inclusion of sporadic $E(E s)$, which will be discussed under (3) below.
b. Locate the midpoint of the transmission path, using the methods of section III above and by laying the great-circle path transparency back on the world map of figure 1, with the ends of the path in their proper location, determine in which geographical zone, E, I, or W, the midpoint falls.
c. To determine the maximum usable frequency (muf) :
(1) Place the great-circle transparency over the $F 2$-zero-muf chart for the proper zone of the midpoint of the path, and, keeping the equatorial line of the transparency over the equatorial line of the chart, slide the transparency horizontally until the Greenwich meridian coincides with 00 on the time scale. Note that all points on the great-circle path are in their proper local time relationship to Greenwich because 24 hours on the time scale of a muf chart is drawn to the same scale as 360° of longitude on the world map.
(2) Read the value of $F 2$-zero-muf for the midpoint of the path and enter in column d of form AF.
(3) Repeat for 02,04 , etc. on the time scale.
(4) Repeat steps (1), (2), and (3) for the F2-4000-muf chart for the proper zone and again for the E-layer 2000 -muf chart, figure 11 , entering values in columns e and c, respectively.
(5) For each hour place a straightedge between the values of $F 2$-zero-muf and $F 2$ - 4000 -muf at the left-and right-hand sides, respectively, of the grid
nomogram, figure 13 , and read the value of the muf for the actual path length at the intersection point of the straightedge with the appropriate vertical distance line. Enter in column h. Example:
$F 2$-zero-muf $=6.8 \mathrm{Mc} . \quad F 2-4000-\mathrm{muf}=23.0 \mathrm{Mc}$. For a distance of 2600 km the $F 2-\mathrm{muf}$ is 19.1 Mc .
(6) For each hour place a straightedge between the value of the E-layer 2000 -muf on the left-hand scale of the nomogram, figure 14 , and the value of the path length on the right-hand scale, and read the $E-F 1$-muf for that path length, off the central scale. (Example on nomogram.) Enter in columu g.
(7) Compare the values of muf obtained by operations (1) to (6). The higher of the two values (columns g and h of form AF) thus determined is the muf for the path. Enter in column m.

d. To determine the optimum working frequency (owf) :

(1) Calculate the $F 2$-owf from the $F 2$-muf determined under c above by multiplying by 0.85 or using the conversion scale in figure 13. Enter in column l.
(2) Use for the E-F1-owf the value of $E-F 1$ muf determined under $c,(6)$ above. This represents a change from the previous practice of taking 97 percent of the E-F1-muf on the nomogram of figure 14. Enter in column k.
(3) Compare the $F 2$-owf and $E-F 1$-owf. The higher of the two values (columns \dot{E} and l of form AF) is that of the path owf. Enter in column n.

2. PROCEDURE FOR DETERMINATION OF MUF AND OWF FOR TRANSM!SSION DISTANCES GREATER THAN 4000 KM (PROPAGATION BY THE REGULAR LAYERS)

u. General considerations:

The procedure outlined below is based on the following assumptions:
(1) That there are $F 2$-layer control points A and B and E-layer control points A^{\prime} and B^{\prime}. (See section III, 1, d above.)
(2) That the highest frequency that will "take off" along the path at the A-end is the
highest frequency that can be propagated at A and A^{\prime} considered together.
(3) That the highest frequency that will come in along the path at the B-end is the highest frequency that can be propagated at B and B^{\prime} considered together.
(4) That the highest frequency that can be propagated from the A-end to the B-end is the lower of the two frequencies of (2) and (3) above.
(5) That the frequency obtained in (4) is the same for propagation from the B-end to the A-end.
b. Frepare or secure work forms similar to IRPL form AH (see table 2). Note that form AH provides for the inclusion of the effects of sporadic E ($E s$), which will be discussed under 3 below.
c. Locate the control points A and A^{\prime} at one end of the path and B and B^{\prime} at the other end of the path as explained under section III, 1, d above. For very long paths the "short route" (minor arc of the great-circle path) and the "long route" (major arc) need be considered. Placing the transparency back on the world map, determine as in section IV, $1, b$ above in which geographical zone, E, I, or W, each of the control points A and B falls.

d. To determine the muf:

(1) Place the great-circle transparency over the $F 2-4000$-muf chart for the proper zone of the midpoint of the path for control point A and, keeping the equatorial line of the transparency over the equatorial line of the chart, slide the transparency horizontally until the Greenwich meridian comcides with 00 on the time scale.
(2) Read the value of $F \cdot 400$-muf for control point A. Enter in column c of form AH.
(3) Repeat for 02,04 etc. on the time scale.
(4) Repeat steps (1), (2), and (3) on the E layer 2000 -muf chart, figure 11, using control point A^{\prime}. Enter values in column d.
(5) Determine the muf for the A-end as the higher of the $F 2-4000$-muf, column c, and the E layer 2000 -muf, column d. Enter in column m.
(6) Read the value of $F 2-4000$-muf for control
point B, using the $F 2-4000$-muf chart for the proper zone. Enter values in column i.
(7) Repeat for 02,04 , etc. on the time scale.
(8) Read the values of E-layer 2000 -muf on the E-layer 2000 -muf chart, figure 11 , using control point B^{\prime}. Enter values in column j.
(9) Determine the muf for the B-end as the higher of the $F 2-4000$-muf column i, and the E layer $2000-\mathrm{muf}$, column j. Enter in column n.
(10) Compare the two muf values of columns m and n. The lower of the two is the muf for the transmission path under consideration. Enter in column q.
e. To determine the owf:
(1) Use the scaled data of the previous procedure.
(2) Multiply the $F 2-4000$-muf for the A-end, column c, by 0.85 , or use the conversion scale in figure 13 , to obtain the $F-4000$-owf for the A-end, column f.
(3) Multiply the $F 2-4000$-muf for the B-end, column i, by 0.85 or use the conversion scale in figure 13 , to obtain the $F 2-4000$-owf for the B-end, column ?.
(4) Compare the $F 2-4000$-owf for the A-end, column f, with the E-layer 2000-muf for the A-end, column d. The higher of the two is the owf for the A-end. Enter in column o.
(5) Compare the $F 2-4000$-owf for the B-end, column l, with the E-layer 2000 -muf for the B-end, column j. The higher of the two is the owf for the B-end. Enter in column p.
(6) Compare the two owf values of columns o and p. The lower of the two is the owf for the transmission path under consideration. Enter in column r.

3. PROCEDURES FOR INCLUSION OF THE EFFECTS OF Es

Sporadic-E (Es) propagation may often allow regular transmission when regular E - or $F 2$-layer propagation would not. Es data are not yet sufficient to permit accurate calculations of such propagation, but the $f E s$ charts of figures 12 and 15 are given as a guide to $E s$ occurrence.

As the $f E s$ charts are constructed from considerations of geomagnetic latitude, three latitude scales are provided at the right of the charts of figures 12 and 15 , one for each of the three zones of figure $1(E, I$, and W).

Until further improvements are made, the following procedures should be used to include the effects of $E s$ in the calculations of muf and owf.
a. For paths over 4000 km long:
(1) Place the great-circle path transparency prepared in section III, 1 , over the median $f E$ s chart, figure 12 , using the latitude scale for the zone containing the control point.
(2) Scale $f E s$ at control points A^{\prime} and B^{\prime}. Enter in columns a and g, respectively, on form AH.
(3) Multiply f Es by 5 in each case, obtaining
the $E s$-2000-muf. Enter in columns b and h, respectively.
(4) In the determination of muf modify the procedure (steps (5) and (9)) of section IV, $2, d$ above to obtain the muf for the A - and B-ends. respectively, as the highest of the three items, the F2-4000-muf, the E-layer 2000 -muf, and the Es2000 -muf. No other change is necessary.
(5) In the determination of owf subtract 4 Mc from the $E s-2000$-muf to obtain the $E s$-2000-owf for the A-end and B-end, respectively, entering the results in columns e and k. Then modify the procedure (steps (4) and (5)) of section IV, 2 , e to obtain the owf for the A - and B-ends, respectively, as the highest of the three items, the F24000 -owf, the E-layer 2000 -muf, and the Es-2000owf. No other changes are necessary.
b. For paths under 4000 km long:
(1) Repeat step (1) of α above.
(2) Scale $f E s$ at the midpoint of the path. Enter in column a of form AF.
(3) Multiply fEs by 5 , obtaining the Es-2000muf. Enter in columid b 。
(\pm) In the determination of muf under IV, 1, c, fiml the Es-muf for the path by use of the same nonogram. figure 14. as was used for the E-F1muf. applying the Es-2 000 -muf on the left-hand scale and reading the answar on the middle scale. Enter in colnmm f. Theol modify the procedure in IV, 1, r, (5) so that the highest of the there values, the $F=-$ muf, the E-F1-muf, and the Es-muf, columns $h . g$, f, is the muf for the path.
(5) In the determination of owf under IV, $1, d$, subtract 4 Mc from the $E s-2000$-muf found under (3) above to obtain the Es-2000-owf, entering in column i. Now find the Es-owf for the path, using the same nomogram, figure 14 , as for the $E-F 1$ owf, applying the Es-2000-owf to the left-hand
scale and reading the answer on the middle scale. Enter in column j. Then modify the procedure in section IV, $1, d$ (3) so that the highest of the three values, the $F 2$-owf, the $E-F 1$-owf, and the $E_{s-o w f}$, columns l, k, j, is the owf for the path.

Because of the variable nature of $E s$, and the relative uncertainty with which Es is known, caution should be used in the application of Es-owf, particularly for short paths. While transmission should take place most of the time on $E s$-owf, fluctuations in $E s$ may at times interrupt service. It is thus often desirable to operate near the owf for the regular layers $(E, F 1, F 2)$ only, without the inclusion of $E s$, although transmission may take place more than 80 percent of the time near the Es-owf.

V. ABSORPTION, DISTANCE RANGE, AND LOWEST USEFUL HIGH FREQUENCY

The procedures outlined in the text of this report will give an adequate solution to most of the high-frequency propagation problems that will normally be encountered in the field. If operating frequencies are chosen near the calculated owf prediction in any given case, best possible results should be had, at least in communications work.

The use of frequencies too far below the owf will result in weak reception because of increasing ionospheric absorption as the frequency decreases. The factor that limits the usefulness of low field intensities is usually atmospheric noise at the receiving location.

The determination of lowest useful high frequencies is more difficult than the determination of muf and the techniques for their prediction are less far advanced.

The subject of absorption, distance range, and lowest useful high frequency is discussed at length in IRPL Radio Propagation Handbook, Part 1. p. 69-97 (War Dept. TM 11-499, Navy Dept. DNC-13-1), and formulas, graphs, and nomograms for calculation are given there.

Simpler and more accurate techniques are being developed and will be released as soon as the work is completed.

VI. SAMPLE MUF AND OWF CALCULATIONS

1. FOR SHORT PATHS

Required: The muf and owf for transmission between Washington, D. C. (39.0 $\left.{ }^{\circ} \mathrm{N}, 77.5^{\circ} \mathrm{W}\right)$ and Miami, Fla. $\left(25.7^{\circ} \mathrm{N}, 80.5^{\circ} \mathrm{W}\right)$ for average conditions during the month of March 1946.

Solution:

Let the local time used for this problem be GCT (Z time or that of 0° longitude).

The midpoint of the path is at approximately $32.5^{\circ} \mathrm{N}, 79.0^{\circ} \mathrm{W}$, and the transmission path length is approximately 1500 km , all in W zone.

The values of E - and $F Q$-layer muf and owf, and also Es-owf for even hours, GCT, as determined by using the procedure given in section IV, are given in table 1. The final values are presented graphically in figure 16.

Vahes of owf obtained by the procedure of section IV, 1. o for the regular layers only are moderseored in columens k and 7 of table 1 , and are ploted in figure 16. Values of Es-owf in column j did mot govem at any hour. Consequently, the
solid line curve of owf is for the regular layers only.

Figure 16 shows that skip will occur, on the arerage, during the night hours, if a frequency as high as 9.0 Mc is used. I frequeney as high as 8.1 Mc will not skip, on the arerage, at any time of day, but its use is not advisable because of (a) the day-to-day variability, causing some probability of skip during the night hours, and (b) ionospheric absorption during the daytime, which is more pronounced at low frequencies.

A satisfactory plan to insure continuous transmission at all times, over a path like this, involves the use of two frequencies, one for night and one for day. Figure 16 shows that a night frequency of 6.9 Mi , to be nsed from 0020 to 12.50 GCT , and a day frequeney of 12.0 Me, to be used from 12:0 to 0020 GCT , would be satisfactory. The periods of usefumess of thesp frequencies are shown by the hoary dashed line on figure 16.

Required: The muf and owf for transmission between London. England (51.6° N. 0°) to Bombay, India ($15.8^{\circ} \mathrm{N} .73^{\circ} \mathrm{E}$) for arerage conditions during the month of March 194 (i.
solution:
Let the local time for this problem be GCT (Z time or that of (1) longitude).

The path length is approximately 7250 km , and the two $F \because$-layer control points, A and B. respectively, are at aproximately $45^{\circ} \mathrm{N}, 26^{\circ} \mathrm{E}$, and 32° ․ 59° E. These are, respectively, in the I zone and the E zone. as shown on the map. figure 1. 'The two E-layer and E 's control points, A ' and B^{\prime}. respectively, are located at approximately 51° N, 14° E. and 26° N. 66.5° E. These are in the I and E zones, respectively.

The values of muf and orf orer this transmission path. as detemmed by the procedure in section IV, we given in table 2 for wen homs. GCT. The final values are shown graphically in figne 17 .

Figure 17 shows that skip will occur, on the average, during the night hours if a frequency as high as $1 \underline{0}$. Mc is used, although higher frequencies may be need during a limited portion of the day.

A good, practical arrangement to insme contimous transmission at all times is to select three frequencies, in a mamer similar to that suggested in the preceding problem. A frequency of $8: 2$ Mr may be used from 2000 to $04 t^{5}$ GC'i'. a fregruency of 17.2 Mc may be used from 0600 to 1615 (i(${ }^{(T, ~ a n d ~ a ~ t r a n s i t i o n ~ f r e q u e n c y ~ o f ~} 11.5$ Mc may be used from (0ttis to 0600) and from 1615 to 2000 C("T)

By inepertion of the abouption chart and the noise map (figs. 82 ant 120 of the LRPL Radio Propagation Handbook. Pat 1. War Dept. TXI 11-4:\%, Nary Dept. DNC-18-1), it may be seen that considerations of the lowest useful high frequency over this path may be of considerable importance in selecting frequencies for use. Conserphently, in cases of transmission failure on the frequencios here recommended, particularly in the case of the transition freduency, changing the firequency to a value slightly under the muf for the path may be adrisable.

The beating of Bomby from London is approximately 91.5°, and that of London from Bomhay is approximately 319.5 . both determined by the nomogram of figure 4 .

$:$ ： 1 0 － ｜｜	0
$\dot{0}$	
	少点究 E

 $\stackrel{\bullet}{0}$

0	-
0	
0	∞
0	

∞
∞ ∞
∞
∞
∞ $\stackrel{\square}{\infty}$ $\stackrel{0}{0}$

$\hat{0}$

TABLE I.- Solution of short-path transmission problem.
MUF-OWF
To Miami, Fla.

$$
\begin{aligned}
& \text { WORK SHEET } \\
& \text { Miami, Fla. }
\end{aligned}
$$

$$
\underline{h}
$$

$$
10.0
$$

$$
8.7
$$

$$
8.6
$$

$$
8.1
$$

$$
140
$$

$$
11.9
$$

$$
\begin{array}{l|l}
\hline 15.9 & 12.5 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|}
\hline 17.7 & 13.5 \\
\hline 19.9 & 13.5 \\
\hline
\end{array}
$$

$$
13.5
$$

$$
\begin{array}{l|l}
& \\
\hline 20.0 & 13.5
\end{array}
$$

$$
\begin{array}{l|l}
\hline \hline 20.0 & 13.5 \\
\hline & \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|}
\hline 18.2 & 7.0 \\
\hline
\end{array}
$$ 19.9 20.0 18.9 ∞

$$
\left|\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right|
$$

o.

$$
\mid
$$

$$
0: 30 \mathrm{~N}
$$

IRPL - FORM AH
DATE 2 November 1945

	A-end						B-end						MUFA-end	MUF B-end	$\begin{aligned} & \text { OWF } \\ & \text { A-end } \end{aligned}$	$\begin{aligned} & \text { OWF } \\ & \text { B-end } \end{aligned}$	$\begin{aligned} & \text { MUF } \\ & \text { for } \\ & \text { PATH } \end{aligned}$	$\begin{aligned} & \text { OWF } \\ & \text { for } \\ & \text { PATH } \end{aligned}$
GCT	Pt. A in I Zone			Pr. A^{\prime} in I Zone			Pt. B in E Zone			Pi. B^{\prime} in E Zone								
	${ }^{f} E_{s}$			E-layer 2000muf			$\mathrm{f}_{\mathrm{E}_{S}}$			E-layer 2000muf								
	a	b	C	d	e	f	g	h	1	j	k	1	m	n	0	p	q	r
Procedure	St. ${ }_{\text {Scole }}^{\text {p. }}$	5×0	${ }_{\text {SL }}^{\text {Scole }}$		b-4.0	85.	Scate	5×8	${ }_{\text {Scole }}$	${ }_{\text {Scoie }}^{\text {St. }}$	n-4.0	. 851	$\begin{aligned} & \text { Highosi } \\ & \text { of be, } \end{aligned}$	$\underbrace{\substack{\text { Highest } \\ \text { ofit }}}_{\text {of }}$	$\begin{aligned} & \hline \text { Highost } \\ & \text { of d, } \mathrm{d}, \mathrm{t} \end{aligned}$	$\begin{aligned} & \text { Highent } \\ & \text { of } \mathrm{j}, \mathrm{k}, 1 \end{aligned}$	Lower	$\begin{aligned} & \hline \hline \text { Lower } \\ & \text { of op, } \end{aligned}$
00	2.1	10.5	11.7		6.5	9.9			13.2			11.1	11.7	13.2	9.9	11.1	11.7	9.8
01																		
02	2.2	11.0	11.0		7.0	9.3			15.0	8.3		12.7	11.0	15.0	9.3	12.7	11.0	2.3
03																		
04	2.1	10.5	9.8		6.5	8.2	3.7	18.5	28.0	14.8	14.5	23.8	10.5	28.0	8.2	23.8	10.5	8.2
05																		
06	2.1	10.5	20.2	9.5	6.5	17.2	4.3	22.5	33.5	16.8	17.5	28.5	20.2	33.5	17.2	28.5	20.2	17.2
07																		
08	2.3	11.5	24.4	13.2	7.5	20.7	A 6	23.0	38.1	27.4	12.0	32.at.	24.4	38.1	20.7	3 3nat	24.4	20.7
09																		
10	2.8	14.0	26.0	14.7	10.0	22.1	4.5	22.5	39.7	16.4	18.5	33.6	26.0	39.7	22.1	33.6	26.0	22.1
11																		
12	2.5	12.5	26.3	14.8	8.5	22.3	4.1	20.5	38.2	13.4	16.5	32.5	26.3	38.2	22.3	32.5	26.3	22.3
14																		
			25.8	13.7		21.9	3.3	16.5	34.0	5.3	12.5	28.9	25.8	34.0	21.2	28.9	25.8	21.9
15																		
16			25.1	11.0		21.3	2.7	13.6	21.7		9.5	18.4	25.1	21.7	21.3	18.4	21.7	18.4
17																		
18			19.9			16.8			26.4			13.9	19.9	16,4	16.9	13.9	16.4	13.2
19																		
20			13.6			11.5			15.0			12.7	13.6	15.0	11.5	12.7	13.6	11.5
21			1															
22	2.0	10.0	11.8		6.0	10.0			15.0			12.7	11.8	15.0	10.0	12.7	11.8	10.0
23																		
Done by																		

Fig. 3. DIAGRAM OF TRANSMISSION PATH AUXILIARY TO EXPLANATION OF USE OF DISTANCE-BEARING NOMOGRAM, FIG. 4.

Fig. 8. F_{2} 4000-MUF, IN Mc, I ZONE, PREDICTED FOR MARCH, 1946.

Fig. 9. F_{2} ZERO-MUF, IN Mc, E ZONE, PREDICTED FOR MARCH, 1946.

Fig. 12. MEDIAN fE_{G}, IN MC, PREDICTED FOR MARCH, 1946.

DISTANCE IN KM

THAN 35 MC, MULTIPLY ALL MUF AND OWF SCALESBY 2

35
$-$

FIG.13. NOMOGRAM FOR TRANSFORMING F_{2}-ZERO-MUF AND F_{2} - 4000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AT INTERMEDIATE TRANSMISSION DISTANCES; CONVERSION SCALE FOR OBTAINING OPTIMUM WORKING FREQUENCIES.

FIG. 14 NOMOGRAM FOR TRANSFORMING E-LAYER 2000-MUF TO EQUIVALENT MAXIMUM USABLE FREQUENCIES AND OPTIMUM WORKING FREQUENCIES DUE TO COMBINED EFFECT OF E^{2} LAYER AND F LAYER AT OTHER TRANSMISSION DISTANCES.

-
\square

IRPL REPORTS

Daily:

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data from various places.
Radio disturbance warnings.

Semiweekly:

IRPL-J. Radio Propagation Forecast.
Semimonthly:
IRPL-Ja. Semimonthly Frequency Revision Factors for IRPL Basic Radio Propagation Prediction Reports (issued with IRPL-J series from 4 to 7 days in advance).

Monthly:
IRPL-D. Basic Radio Propagation Predictions-Three months in advance. War Dept. TB 11-499-, monthly supplements to TM 11-499; Navy Dept. (DNC-13-1 (), monthly supplements to DNC-13-1.)
IRPL-F. Ionospheric Data.
Bimonthly:
IRPL-G. Correlation of D. F, Errors With Ionospheric Conditions.

Quarterly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
IRPL-B. Recommended Frequency Bands for Submarines in the Pacific.
*IRPL-H. Frequency Guide for Operating Personnel.
**IRPL-M. Frequency Guide for Merchant Ships.
Special Reports, etc.:
IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1.)
IRPL-C1 through C61. Reports and papers of the International Radio Propagation Conference, 17 April to 5 May 1944.
IRPL-R. Unscheduled reports:
R1. Maximum Usable Frequency Graph paper.
R2 and R3. Obsolete.
R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.
R5. Criteria for Ionospheric Storminess.
R6. Experimental studies of ionospheric propagation as applied to a navigation system.
R7. Further studies of ionospheric propagation as applied to a navigation system.
R8. The Prediction of Usable Frequencies Over a Path of Short or Medium Length, Including the Effects of Es.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
R10. A method for study of the ionosphere.
R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
R12. Ionospheric variations.
R13. Ionospheric and Radio Propagation Disturbances, October 1943 through February 1945.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle.
R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.
R17. Japanese Ionospheric Data-1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures-October 1943 through May 1945.
R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.
R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.
R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km .)
R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.
R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
R24. Effect of certain equipment characteristics on the usefulness of a navigation system.
IRPL-T. Reports on Tropospheric Propagation.
T1. Radar Operation and Weather. (Superseded by JANP 101.)
T2. Radar coverage and weather. (Superseded by JANP 102.)

[^0]
[^0]: ${ }^{\bullet}$ Items bearing this symbol are distributed only by U. S. Navy in NONREGISTERED PUBLICATIONS MEMORANDA (NRPM).
 **Distributed only by U. S. Navy.

