DUDLEY:
NAVALF. AADUATE SCHOOL
MONTEFIE: UA 93943-5101

Approved for public release; distribution is unlimited

Effects of Observer Dynamics on Motion Stability of Autonomous Vehicles

by

Bülent Olcay
Lieutenant J.G., Turkish Navy
B. S., Turkish Naval Academy, 1988

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the

NAVAL POSTGRADUATE SCHOOL
June 1994

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. A8STRACT (Maximum 200 words)

The problem of loss of stability of marine vehicles under cross track error control in the presence of mathematical versus actual system mismatch is analyzed. For demonstration purposes, variations in the heading angle control gain are studied. Particular emphasis is placed on analyzing the effects of observer design on system response after initial loss of stability of straight line motion. It is shown that the dynamics of the observer may have a significant effect on the computed gain margin of the control system depending on the particular basis used.

14. SUBJECT TERMS			15. NUMBER OF PAGES 68
Hopf bifurcation, supercritical, center manifold theorem limit cycle, periodic solutions			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION Of ABSTRACT	20. limitation of abstra
UNCLASSIEIED	UNCLASSIEIED	UNCLASSIEIED	UL
NSN 7540-01-280-5500	i		(ard Form 298 (Rev 2-89) cribed by ansi sid 239.18

ABSTRACT

The problem of loss of stability of marine vehicles under cross track error control in the presence of mathematical versus actual system mismatch is analyzed. For demonstration purposes, variations in the heading angle control gain are studied. Particular emphasis is placed on analyzing the effects of observer design on system response after initial loss of stability of straight line motion. It is shown that the dynamics of the observer may have a significant effect on the computed gain margin of the control system depending on the particular basis used.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. PROBLEM FORMULATION 3
A. EQUATIONS OF MOTION 3
B. COMPENSATOR DESIGN 4
C. CALCULATION OF CONTROL GAINS 7
D. CALCULATION OF OBSERVER GAINS 8
E. CHARACTERISTICS OF ITAE CRITERIA 9
III. HOPF BIFURCATION 11
A. INTRODUCTION 11
B. THIRD ORDER EXPANSIONS OF THE SYSTEM EQUATIONS 12

1. Perturbation in K_{Ψ} 12
2. Integral Averaging 14
C. RESULTS 17
IV. COMPENSATOR IN A DIFFERENT BASIS 19
A. CRITICAL VALUE OF C 19
B. THIRD ORDER EXPANSIONS OF THE SYSTEM EQUATIONS 19
3. Perturbation in K_{Ψ} 19
4. Integral Averaging 23
C. RESULTS 25
V. CONCLUSIONS AND RECOMMENDATIONS 29
A. CONCLUSIONS 29
D. RECOMMENDATIONS 30
APPENDIX A: HOPF BIFURCATION PROGRAM FOR $[X, \tilde{X}]$ BASIS 31
APPENDIX B: CRITICAL VALUE OF C FOR $[X, \hat{X}]$ BASIS 41
APPENDIX C: HOPF BIFURCATION PROGRAM FOR $[X, \hat{X}]$ BASIS 47
REFERENCES 57
INITIAL DISTRIBUTION LIST 59

LIST OF FIGURES

2.1 Saturation in δ 5
2.2 Step response of ITAE 9
$4.1 C_{\text {crit }}$ versus natural frequency for K_{ψ} 20
$4.2 K_{K_{\psi}}$ versus w_{n} for different observer w_{n} 27

TABLE OF SYMBOLS

a
c
$c_{\text {crit }} \quad$ bifurcation value of c
$I_{z} \quad$ vehicle mass moment of inertia
$K \quad$ cubic stability coefficient
$K_{\Psi}, K_{r}, K_{y} \quad$ controller gains
$\ell_{\Psi}, \ell_{r}, \ell_{y} \quad$ observer gains
m
N
PAH Poincaré-Andronov-Hopf Bifurcation
r
$R \quad$ polar coordinate of transformed reduced system
T matrix of eigenvectors of A, or limit cycle period
v

X
$x_{G} \quad$ body fixed coordinate of vehicle center of gravity
y
dummy independent variable, or yaw rate coefficient in Nomoto's model linearized system matrix rudder angle in Nomoto's model parameter for variance of gain and hydrodynamic coefficients
vehicle mass
yaw moment
yaw rate
sway velocity
state variables vector deviation of the commanded path
sway force
$z_{1}, z_{2} \quad$ critical variables of z
$\alpha_{0}, \alpha_{1}, \alpha_{2} \quad$ coefficients of desired characteristic equation $\beta \quad$ real part of critical pair of eigenvalues
$\beta^{\prime} \quad$ derivative of β with respect to c evaluated at $c_{\text {crit }}$
$\gamma_{0}, \gamma_{1}, \gamma_{2} \quad$ coefficients of desired characteristic equation
$\delta \quad$ rudder angle control law
δ_{0}
ϵ
θ
ψ
ω
$\omega_{n} \quad$ natural frequency
$\omega_{n 0}$
stable variables vector in canonical form
linearized rudder angle control law critical difference $c-c_{\text {crit }}$ polar coordinate of transformed reduced system vehicle heading angle imaginary part of critical pair of eigenvalues derivative of ω with respect to c evaluated at $c_{\text {crit }}$ observer natural frequency

ACKNOWLEDGEMENT

I wish to thank my thesis advisor, Professor Fotis A. Papoulias, for his guidance and encouragement in this research.

I. INTRODUCTION

Accurate path control of surface ships and underwater vehicles along prescribed geographical paths is a basic problem that is becoming increasingly important, particularly as the missions of ocean vehicles become more complicated with strict requirements for performance. In order for a control law to be able to perform its mission in a realistic operational scenario it has to be robust enough so that it can maintain stability and accuracy of operations in the presence of modeling errors and environmental uncertainties. The robustness properties of the design are particularly important due to the unpredictable nature of the ocean environment and the changes in the hydrodynamic characteristics of the vehicle during turning, changes in the forward speed, or operations in proximity to other objects in the area. For these reasons, there exists a need for the analysis of the robustness characteristics of a particular control law design and the establishment of a rational operational envelope based on stability and performance criteria. Previous studies [Parsons and Cuong (1977)] showed that gain adaption is highly desirable due to changes in the linearized vehicle hydrodynamics with different operation conditions, such as depth under keel. The resulting adaptation scheme [Parsons and Cuong (1980)] required significant vehicle motion, which may be undesirable when operating in restricted waters, or in object recognition and localization tasks. Integral control techniques [Parsons and Cuong (1981)] proved quite effective, but neglected the nonlinear behavior of the vehicle, which becomes very important at low speeds and hover operations. Model based compensators exhibit robust behavior under conditions of parameter uncertainty, which is as good as the classical linear quadratic
regulators for linear output feedback systems [Healey (1992)]. Alternatively, sliding mode controllers exhibit very robust characteristics given an estimate of the parameter uncertainty and/or disturbances [Papoulias and Healey (1992)], [Yoerger and Slotine (1985)]. Sliding mode control, however, does not offer an infinitely robust design and it suffers from a series of bifurcation phenomena and loss of stability unless proper care is exercised [Papoulias (1991)].

In this work we analyze the problem of loss of stability of a marine vehicle under cross track error control in the presence of mathematical versus actual system mismatch. For demonstration purposes, variations in the heading angle control gain are studied. Previous studies [Oral (1993)] concentrated on system response assuming perfect and complete state measurement. Particular emphasis in this work is placed on analyzing the effects of observer design on system response after initial loss of stability of straight line motion. The main loss of stability cases analyzed here occur in the form of generic bifurcations to periodic solutions [Guckenheimer and Holmes (1983)]. We use center manifold reduction techniques and averaging in order to capture the stability properties of the resulting limit cycles [Chow and Mallet-Paret (1977)]. It is shown that the dynamics of the observer may have a significant effect on the computed gain margin of the control system depending on the particular basis used. All computations in this work are conducted for the NPS autonomous underwater vehicle [Bahrke (1992)] and all results are presented in standard dimensionless quantities with respect to vehicle length, 7.3 ft , and nominal forward speed, $2 \mathrm{ft} / \mathrm{sec}$.

II. PROBLEM FORMULATION

A. EQUATIONS OF MOTION

The linear maneuvering equations of motion of a marine vehicle in the horizontal plane are written in dimensionless form as,

$$
\begin{gather*}
m\left(\dot{\nu}+r+x_{G} \dot{r}\right)=Y_{\dot{r}} \dot{r}+Y_{\dot{\nu}} \dot{\nu}+Y_{r} r+Y_{\nu} \nu+Y_{\delta} \delta \tag{2.1}\\
I_{z} \dot{r}+m x_{G}(\dot{\nu}+r)=N_{\dot{r}} \dot{r}+N_{\dot{\nu}} \dot{\nu}+N_{\tau} r+N_{\nu} \nu+N_{\delta} \delta \tag{2.2}
\end{gather*}
$$

where all symbols are explained in the nomenclature. Equations (2.1) and (2.2) can be used to derive a second order transfer function between the rudder angle δ and yaw rate r. For low frequency maneuvering motions this second order equation can be approximated by expanding in Taylor series and keeping the first order terms only. The result is

$$
\begin{equation*}
\dot{r}=a r+b \delta \tag{2.3}
\end{equation*}
$$

Equation (2.3), which is sometimes referred to as Nomoto's first order model, is particularly useful in control system design since no sway velocity feedback is necessary. This equation predicts linear variation of the steady state turning rate versus rudder angle. In reality, the $r-\delta$ curve has characteristics of softening spring mainly due to speed loss during turning. To account for this a modified version of equation (2.3) is used,

$$
\begin{equation*}
\dot{r}=a r+a_{3} r^{3}+b \delta \tag{2.4}
\end{equation*}
$$

where a_{3} is usually determined from steady state results. Finally, the model is complete by the incorporation of the kinematic equations,

$$
\begin{equation*}
\dot{\Psi}=r \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\dot{y}=\sin \Psi \tag{2.6}
\end{equation*}
$$

where Ψ is the vehicle heading, and y is the cross track error off a desired straight line path.

B. COMPENSATOR DESIGN

In control theory it is known that the eigenvalues of the controller are not affected by the eigenvalues of the observer. This allows us to design the controller and observer separately which is known as the separation principle. The combination is called a compensator.

Equations (2.3), (2.5), and (2.6) govern the steering control of the model used in this section. The control law can be expressed as,

$$
\begin{equation*}
\delta=\delta_{\mathrm{sat}} \tanh \left(\frac{\delta_{0}}{\delta_{\mathrm{sat}}}\right) \tag{2.7}
\end{equation*}
$$

where around the nominal state $\Psi=r=y=0$ we have

$$
\begin{equation*}
\delta_{0}=K_{\Psi} \Psi+K_{r} r+K_{y} y \tag{2.8}
\end{equation*}
$$

δ is the rudder angle and K_{Ψ}, K_{r}, and K_{y} are the control gains of the system. The linear control law is δ_{0}. The rudder angle δ is defined by a hyperbolic tangent function to include the saturation to our problem as shown in Figure 2.1. Saturation occurs at $\delta_{\text {sat }}$, which is the saturation limit generally taken as 0.4 rad .

The linearized form of equations of motions in the vicinity of $\Psi=r=y=0$ are,

$$
\begin{gather*}
\dot{\Psi}=r \tag{2.9}\\
\dot{r}=a r+b \delta_{0} \tag{2.10}\\
\dot{y}=\Psi \tag{2.11}
\end{gather*}
$$

Figure 2.1: Saturation in δ.

These equations can be expressed in state space form as

$$
\begin{equation*}
\dot{X}=A X+B u \tag{2.12}
\end{equation*}
$$

where

$$
X=\left[\begin{array}{l}
\Psi \\
r \\
y
\end{array}\right]
$$

is the state vector,

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & a & 0 \\
1 & 0 & 0
\end{array}\right]
$$

is the open loop dynamics matrix and

$$
B=\left[\begin{array}{l}
0 \\
b \\
0
\end{array}\right]
$$

is the control distribution vector.
The observer equations are

$$
\begin{equation*}
\dot{\hat{X}}=A \hat{X}+B u+L(Y-C \hat{X}) \tag{2.13}
\end{equation*}
$$

where \hat{X} is the estimate of X, Y is the output of the system $Y=y$, and C is the sensor vector $C=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$.

The error in the estimate of X is defined by

$$
\begin{equation*}
\dot{\tilde{X}}=\dot{X}-\dot{\hat{X}} \tag{2.14}
\end{equation*}
$$

Using equations (2.12), (2.13), and (2.14) we can obtain

$$
\begin{equation*}
\dot{\tilde{X}}=(A-L C) \tilde{X} \tag{2.15}
\end{equation*}
$$

We can rewrite equations (2.9), (2.10), and (2.11) in the form of

$$
\dot{X}=\left[\begin{array}{c}
\dot{\Psi} \tag{2.16}\\
\dot{r} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & a & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\Psi \\
r \\
y
\end{array}\right]+\left[\begin{array}{l}
0 \\
b \\
0
\end{array}\right] \delta
$$

and

$$
Y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\Psi \tag{2.17}\\
r \\
y
\end{array}\right]
$$

The observer gains are,

$$
L=\left[\begin{array}{l}
\ell_{\Psi} \tag{2.18}\\
\ell_{r} \\
\ell_{y}
\end{array}\right]
$$

After performing the matrix operations we obtain

$$
\dot{\tilde{X}}=\left[\begin{array}{c}
\dot{\tilde{\Psi}} \tag{2.19}\\
\dot{\tilde{r}} \\
\dot{\tilde{y}}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & -\ell_{\Psi} \\
0 & a & -\ell_{r} \\
1 & 0 & -\ell_{y}
\end{array}\right]\left[\begin{array}{c}
\tilde{\Psi} \\
\tilde{r} \\
\tilde{y}
\end{array}\right]
$$

Using equation (2.13) we can rewrite equation (2.8) as follows,

$$
\delta_{0}=K_{\Psi}(\Psi-\tilde{\Psi})+K_{r}(r-\tilde{r})+K_{y}(y-\tilde{y})
$$

Finally, we can write our compensator equations in the form

$$
\left[\begin{array}{c}
\dot{X} \\
\dot{\tilde{X}}
\end{array}\right]=\left[\begin{array}{c}
\dot{\Psi} \\
\dot{r} \\
\dot{y} \\
\dot{\tilde{\Psi}} \\
\dot{\tilde{r}} \\
\dot{\tilde{y}}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & a & 0 & b c K_{\Psi} & b K_{r} & b K_{y} \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\ell_{\Psi} \\
0 & 0 & 0 & 0 & a & -\ell_{r} \\
0 & 0 & 0 & 1 & 0 & -\ell_{y}
\end{array}\right]\left[\begin{array}{c}
\Psi \\
r \\
y \\
\tilde{\Psi} \\
\tilde{r} \\
\tilde{y}
\end{array}\right]
$$

If we look at the matrix carefully we will see that it is in the form

$$
\left[\begin{array}{c}
\dot{X} \\
\dot{\tilde{X}}
\end{array}\right]=\left[\begin{array}{cc}
A-B K & B K \\
0 & A-L C
\end{array}\right]\left[\begin{array}{l}
X \\
\tilde{X}
\end{array}\right]
$$

which has the following characteristic equation,

$$
\operatorname{det}[A-B K-s I] \operatorname{det}[A-L C-s I]=0
$$

This indicates that the dynamics of the observer are completely independent of the dynamics (eigenvalues) of the controller. Thus K and L can be designed separately.

C. CALCULATION OF CONTROL GAINS

A is the Jacobian matrix of the system

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
b K_{\Psi} & a+b K_{r} & b K_{y} \\
1 & 0 & 0
\end{array}\right]
$$

The characteristic equation of the matrix A is

$$
\lambda^{3}-\left(a+b K_{r}\right) \lambda^{2}-b K_{\Psi} \lambda-b K_{y}=0
$$

If the desired characteristic equation has the general form

$$
\lambda^{3}+\alpha_{2} \lambda^{2}+\alpha_{1} \lambda+\alpha_{0}=0
$$

the control gains can be found as

$$
\begin{aligned}
K_{\Psi} & =-\frac{\alpha_{1}}{b} \\
K_{r} & =-\frac{\alpha_{2}+a}{b} \\
K_{y} & =-\frac{\alpha_{0}}{b}
\end{aligned}
$$

The desired characteristic equation can be written with respect to the desired natural frequency and some optimum coefficients. The ITAE criterion for a third order equation is

$$
s^{3}+1.75 w_{n} s^{2}+2.15 w_{n}^{2} s+w_{n}^{3}=0
$$

where w_{n} is the desired controller natural frequency.
Therefore the control gains can be calculated for a given natural frequency, as

$$
\begin{aligned}
& \alpha_{1}=2.15 w_{n}^{2} \\
& \alpha_{2}=1.75 w_{n} \\
& \alpha_{0}=w_{n}^{3}
\end{aligned}
$$

D. CALCULATION OF OBSERVER GAINS

If we define A as the Jacobian matrix of the system

$$
A=\left[\begin{array}{lll}
0 & 1 & -\ell_{\Psi} \\
0 & a & -\ell_{r} \\
1 & 0 & -\ell_{y}
\end{array}\right]
$$

the characteristic equation of the matrix A is

$$
\lambda^{3}+\left(\ell_{y}-a\right)+\left(\ell_{\Psi}-a \ell_{y}\right) \lambda+\left(\ell_{r}-a \ell_{\Psi}\right)=0
$$

If the desired characteristic equation has the general form

$$
\lambda^{3}+\gamma_{2} \lambda^{2}+\gamma_{1} \lambda+\gamma_{0}=0
$$

the observer gains can be found as

$$
\begin{aligned}
\ell_{y} & =a+\gamma_{2} \\
\ell_{\Psi} & =a \ell_{y}+\gamma_{1} \\
\ell_{r} & =a \ell_{\Psi}+\gamma_{0}
\end{aligned}
$$

Applying the ITAE criteria, observer gains can be calculated for a given natural frequency as

$$
\begin{aligned}
\gamma_{1} & =2.15 w_{n 0}^{2} \\
\gamma_{2} & =1.75 w_{n 0} \\
\gamma_{0} & =w_{n 0}^{3}
\end{aligned}
$$

where $w_{n 0}$ is the observer natural frequency.

E. CHARACTERISTICS OF ITAE CRITERIA

In the calculations of gains we applied the ITAE criteria. If we look at Figure 2.2 for the step response of ITAE, we see that the response gets faster as the natural frequency increases. For example, the settling time is 10 normalized seconds, or 10 seconds for $w_{n}=1,1$ second for $w_{n}=10$, and so on.

Figure 2.2: Step response of ITAE.
[THIS PAGE INTENTIONALLY LEFT BLANK]

III. HOPF BIFURCATION

A. INTRODUCTION

An important quantity in assessing the robustness of a particular control law design to parameter variations and unmodeled dynamics is the gain margin. This is defined as the extent to which changes can be inflicted on the system gain without loss in stability. to this end, we assume that the heading error gain K_{ψ} is multiplied by a constant C. By definition, of Hopf bifurcation occurs when a pair of complex conjugate eigenvalues cross into the right hand half-plane. When this occurs the system will deviate from a steady solution in an oscillatory manner. This deviation can be either supercritical or subcritical [Seydel (1988)]. As the parameter C crosses the critical value, one pair of complex conjugate eigenvalues of the linear system matrix crosses transversely the imaginary axis. Locally, as C approaches $C_{\text {crit }}$, the periodic solutions are located on the two dimensional Eucledian plane spanned by the eigenvectors of the Jacobian matrix of the system which corresponds to the critical pair of eigenvalues. In this chap stability properties of the periodic solutions are established. In order to establish those properties the main nonlinear terms that dominate the system are isolated. Center manifold theory is used to reduce the flow to a two dimensional manifold. The method of averaging is then applied to the reduced system.

The critical value of c for stability of straight line motion remains the same as [Oral (1993)], which is

$$
C_{\text {crit }}=0.2658
$$

This is because the dynamics of the controller are independent from the dynamics of the observer as explained in Chapter II.

B. THIRD ORDER EXPANSIONS OF THE SYSTEM EQUATIONS

1. Perturbation in K_{Ψ}

In the previous chapter we worked on the linear system. Now we are going to introduce the nonlinear terms to our compensator. In this case the equations of motion are

$$
\begin{align*}
\dot{\Psi} & =r \tag{3.1}\\
\dot{r} & =a r+a_{3} r^{3}+b \delta \tag{3.2}\\
\dot{y} & =\sin \Psi \tag{3.3}
\end{align*}
$$

where

$$
\begin{align*}
\delta & =\delta_{\text {sat }} \cdot \tanh \left(\frac{\delta_{0}}{\delta_{\text {sat }}}\right) \tag{3.4}\\
\delta_{0} & =C K_{\Psi}(\Psi-\tilde{\Psi})+K_{r}(r-\tilde{r})+K_{y}(y-\tilde{y}) \tag{3.5}
\end{align*}
$$

or in compact form,

$$
\begin{equation*}
\dot{X}=f(x), \quad X=[\Psi, r, y, \tilde{\Psi}, \tilde{r}, \tilde{y}]^{T} \tag{3.6}
\end{equation*}
$$

This system can be written in the form

$$
\begin{equation*}
\dot{X}=A X+g(x) \tag{3.7}
\end{equation*}
$$

A is the Jacobian matrix of $f(x)$ evaluated at $X=0$, and $g(x)$ contains all nonlinear terms of Equations (3.1), (3.2), and (3.3). Taylor expansion of the nonlinear terms about the equilibrium, where we keep the first non-vanishing nonlinear coefficients
only, gives

$$
\begin{align*}
\sin \Psi & =\Psi-\frac{1}{6} \Psi^{3} \tag{3.8}\\
\delta & =\delta_{0}-\frac{1}{3 \delta_{\mathrm{sat}}^{2}} \delta_{0}^{3} \tag{3.9}
\end{align*}
$$

Substitution of Equations (3.8) and (3.9) into Equations (3.1), (3.2), and (3.3) gives us the A matrix in Equation (3.7) as follows,

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \tag{3.10}\\
b c K_{\Psi} & a+b K_{r} & b K_{y} & -b c K_{\Psi} & -b K_{r} & -b K_{y} \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\ell_{\Psi} \\
0 & 0 & 0 & 0 & a & -\ell_{r} \\
0 & 0 & 0 & 1 & 0 & -\ell_{y}
\end{array}\right]
$$

The nonlinear parts are,

$$
g(x)=\left[\begin{array}{c}
0 \tag{3.11}\\
a_{3} r^{3}-\frac{b}{3 \delta_{\text {sat }}^{2}} \delta_{0}^{3} \\
\frac{1}{6} \Psi^{3} \\
0 \\
0 \\
0
\end{array}\right]
$$

If we introduce the transformation matrix (T) of eigenvectors of A evaluated at the bifurcation point,

$$
\begin{align*}
T & =\left[m_{i j}\right] \quad i, j=1,2,3,4,5,6 \tag{3.12}\\
T^{-1} & =\left[n_{i j}\right] \quad i, j=1,2,3,4,5,6 \tag{3.13}
\end{align*}
$$

the linear change of coordinates,

$$
\begin{equation*}
x=T z, \quad z=T^{-1} x \tag{3.14}
\end{equation*}
$$

transforms system (3.7) into its normal form

$$
\begin{equation*}
\dot{z}=T^{-1} A T z+T^{-1} g(T z) \tag{3.15}
\end{equation*}
$$

With this transformation we get,

$$
T^{-1} A T=\left[\begin{array}{cccccc}
0 & -w_{0} & 0 & 0 & 0 & 0 \tag{3.16}\\
w_{0} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & P_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & P_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & P_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & P_{4}
\end{array}\right]
$$

Using center manifold theory we get, as shown in [Chow and Mallet-Paret (1977)],

$$
g=\left[\begin{array}{c}
0 \tag{3.17}\\
\ell_{21} z_{1}^{3}+\ell_{22} z_{2}^{3}+\ell_{23} z_{1}^{2} z_{2}+\ell_{24} z_{1} z_{2}^{2} \\
\ell_{31} z_{1}^{3}+\ell_{32} z_{2}^{3}+\ell_{33} z_{1}^{2} z_{2}+\ell_{34} z_{1} z_{2}^{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

Substitution of Equation (3.14) into Equation (3.7) yields,

$$
\begin{align*}
& \dot{z}_{1}=-w_{0} z_{2}+r_{11} z_{1}^{3}+r_{12} z_{1}^{2} z_{2}+r_{13} z_{1} z_{2}^{2}+r_{14} z_{2}^{3} \tag{3.18}\\
& \dot{z}_{2}=w_{0} z_{1}+r_{21} z_{1}^{3}+r_{22} z_{1}^{2} z_{2}+r_{23} z_{1} z_{2}^{2}+r_{24} z_{2}^{3} \tag{3.19}
\end{align*}
$$

2. Integral Averaging

We write Equations (3.18) and (3.19) in the form

$$
\begin{align*}
& \dot{z}_{1}=-w_{0} z_{2}+F_{1}\left(z_{1}, z_{2}\right), \tag{3.20}\\
& \dot{z}_{2}=w_{0} z_{1}+F_{2}\left(z_{1}, z_{2}\right) \tag{3.21}
\end{align*}
$$

If we introduce polar coordinates in the form,

$$
\begin{equation*}
z_{1}=R \cos \theta, \quad z_{2}=R \sin \theta \tag{3.22}
\end{equation*}
$$

Equations (3.20), (3.21) result in

$$
\begin{align*}
\dot{R} & =F_{1}(R, \theta) \cos \theta+F_{2}(R, \theta) \sin \theta \tag{3.23}\\
R \dot{\theta} & =w_{0} R+F_{2}(R, \theta) \cos \theta-F_{1}(R, \theta) \sin \theta \tag{3.24}
\end{align*}
$$

Equation (3.23) yields

$$
\begin{equation*}
\dot{R}=P(\theta) R^{3} \tag{3.25}
\end{equation*}
$$

where $P(\theta)$ is a 2π-periodic function in the angular coordinate θ. If Equation (3.25) is averaged over one cycle in θ, we get an equation with constant coefficients,

$$
\begin{equation*}
\dot{R}=K R^{3} \tag{3.26}
\end{equation*}
$$

where,

$$
\begin{equation*}
K=\frac{1}{2 \pi} \int_{0}^{\pi} P(\theta) \cdot d \theta \tag{3.27}
\end{equation*}
$$

Equation (3.27) is simplified after evaluation of the integral as,

$$
\begin{equation*}
K=\frac{1}{8}\left[3 r_{11}+r_{13}+r_{22}+3 r_{24}\right] \tag{3.28}
\end{equation*}
$$

where the coefficients are as follows,

$$
\begin{aligned}
& r_{11}=n_{12} \ell_{21}+n_{13} \ell_{31} \\
& r_{13}=n_{12} \ell_{24}+n_{13} \ell_{34} \\
& r_{22}=n_{22} \ell_{23}+n_{23} \ell_{33} \\
& r_{24}=n_{22} \ell_{22}+n_{23} \ell_{32}
\end{aligned}
$$

where the n_{12}, n_{13}, n_{22}, and n_{23} are the elements of the inverse of transformation matrix T. The values of the coefficients $\ell_{i j}$ are given by the following expressions

$$
\begin{aligned}
\ell_{21}= & a_{2} m_{21}^{3}-b_{\ell}\left[c^{3} K_{\Psi}^{3} m_{41}^{3}+K_{r}^{3} m_{51}^{3}+K_{y}^{3} m_{61}^{3}+3 c^{2} K_{\Psi}^{2} K_{r} m_{41}^{2} m_{51}\right. \\
& +3 c^{2} K_{\Psi}^{2} K_{y} m_{41}^{2} m_{61}+3 c K_{\Psi} K_{r}^{2} m_{51}^{2} m_{41}+3 c K_{\Psi} K_{y}^{2} m_{61}^{2} m_{41}+3 K_{r} K_{y}^{2} m_{61}^{2} m_{51} \\
& \left.+3 K_{r}^{2} K_{y} m_{51}^{2} m_{61}+6 c K_{\Psi} K_{r} K_{y} m_{41} m_{51} m_{61}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{22}= a_{3} m_{22}^{2}-b_{\ell}\left[c^{3} K_{\Psi}^{3} m_{42}^{3}+K_{r}^{3} m_{52}^{3}+K_{y}^{3} m_{62}^{3}+3 c^{2} K_{\Psi}^{2} K_{r} m_{42}^{2} m_{52}\right. \\
&+3 c^{2} K_{\Psi}^{2} K_{y} m_{42}^{2} m_{62}+3 c K_{\Psi} K_{r}^{2} m_{52}^{2} m_{42}+3 c K_{\Psi} K_{y}^{2} m_{62}^{2} m_{42}+3 K_{r} K_{y}^{2} m_{62}^{2} m_{52} \\
&\left.+3 K_{r}^{2} K_{y} m_{52}^{2} m_{62}+6 c K_{\Psi} K_{r} K_{y} m_{42} m_{52} m_{62}\right] \\
& \ell_{23}= 3 a_{3} m_{21}^{2} m_{22}-b_{\ell}\left[3 c^{3} K_{\Psi}^{3} m_{41}^{2} m_{42}+3 K_{r}^{3} m_{51}^{2} m_{52}+3 K_{y}^{3} m_{61}^{2} m_{62}\right. \\
&+3 c^{2} K_{\Psi}^{2} K_{r}\left(m_{41}^{2} m_{52}+2 m_{41} m_{42} m_{51}\right)+3 c^{2} K_{\Psi}^{2} K_{y}\left(m_{41}^{2} m_{62}+2 m_{41} m_{42} m_{61}\right) \\
&+3 c K_{\Psi} K_{r}^{2}\left(m_{51}^{2} m_{42}+2 m_{51} m_{52} m_{41}\right)+3 c K_{\Psi} K_{y}^{2}\left(m_{61}^{2} m_{42}+2 m_{61} m_{62} m_{41}\right) \\
&+3 K_{r} K_{y}^{2}\left(m_{61}^{2} m_{52}+2 m_{61} m_{62} m_{51}\right)+3 K_{r}^{2} K_{y}\left(m_{51}^{2} m_{62}+2 m_{51} m_{52} m_{61}\right) \\
&\left.+6 c K_{\Psi} K_{r} K_{y}\left(m_{41} m_{51} m_{62}+\left(m_{41} m_{52}+m_{42} m_{51}\right) m_{61}\right)\right] \\
& \ell_{24}= 3 a_{3} m_{21}^{2} m_{22}^{2}-b_{\ell}\left[3 c^{3} K_{\Psi}^{3} m_{41} m_{42}^{2}+3 K_{r}^{3} m_{51} m_{52}^{2}+3 K_{y}^{3} m_{61} m_{62}^{2}\right. \\
&+3 c^{2} K_{\Psi}^{2} K_{r}\left(m_{42}^{2} m_{51}+2 m_{41} m_{42} m_{52}\right)+3 c^{2} K_{\Psi}^{2} K_{y}\left(m_{42}^{2} m_{61}+2 m_{41} m_{42} m_{62}\right) \\
&+3 c K_{\Psi} K_{r}^{2}\left(m_{52}^{2} m_{41}+2 m_{51} m_{52} m_{42}\right)+3 c K_{\Psi} K_{y}^{2}\left(m_{62}^{2} m_{41}+2 m_{61} m_{62} m_{42}\right) \\
&+3 K_{r} K_{y}^{2}\left(m_{62}^{2} m_{51}+2 m_{61} m_{62} m_{52}\right)+3 K_{r}^{2} K_{y}\left(m_{52}^{2} m_{61}+2 m_{51} m_{52} m_{62}\right) \\
&\left.+6 c K_{\Psi} K_{r} K_{y}\left(m_{42} m_{52} m_{61}+\left(m_{41} m_{52}+m_{42} m_{51}\right) m_{62}\right)\right] \\
& \ell_{31}=-\frac{1}{6} m_{11}^{3} \\
& \ell_{34}=-\frac{1}{2} m_{11} m_{12}^{2} \\
& \ell_{32}=\frac{b}{3 \delta_{s a t}^{2}} \\
& \ell_{33}=-\frac{1}{6} m_{12}^{3} \\
&
\end{aligned}
$$

C. RESULTS

The value of K is important for us to determine whether the bifurcation is supercritical $(K<0)$ or subcritical $(K>0)$. In this study we wanted to see the effects of observer dynamics to our system, especially the value of K. To do that we used the Fortran code (Appendix A) for the numerical results. The result was that the value of K was not affected by changes in the observer natural frequency. The reason for this can be traced back to the definition of K, Equation (3.28). It can be seen that in the definitions for $r_{i j}$ and $\ell_{i j}$ only the first two eigenvectors $m_{i 1}$, $m_{i 2}$ for $i=1,2, \ldots 6$ of the A matrix, Equation (3.10) appear. Therefore, we have to show that these remain the same for all observer natural frequencies.

This A matrix, Equation (3.10), actually consists of 4 block matrices, each 3×3, which are the same as shown in Equation (2.22). Let us denote the A matrix as follows,

$$
A=\left[\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
0 & \mathcal{C}
\end{array}\right]
$$

The eigenvalues of A can be computed by

$$
\left|\begin{array}{cc}
\mathcal{A}-\lambda I & \mathcal{B} \\
0 & \mathcal{C}-\lambda I
\end{array}\right|=0
$$

or

$$
|\mathcal{A}-\lambda I| \cdot|\mathcal{C}-\lambda I|=0
$$

We can group the eigenvalues in two different groups: $\lambda_{1, i}$ for $i=1,2,3$ are the eigenvalues of \mathcal{A} an $\lambda_{2, i}$ for $i=1,2,3$ are the eigenvalues of \mathcal{C}. The eigenvectors associated with these eigenvalues can be found as follows.

For $\lambda=\lambda_{1, i}$,

$$
\left[\begin{array}{cc}
\mathcal{A}-\lambda_{1, i} I & \mathcal{B} \\
0 & \mathcal{C}-\lambda_{1, i} I
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\begin{aligned}
{\left[\mathcal{A}-\lambda_{1, i} I\right]\left[v_{1}\right]+[\mathcal{B}]\left[v_{2}\right] } & =0 \\
{[0]\left[v_{1}\right]+\left[\mathcal{C}-\lambda_{1, i} I\right]\left[v_{2}\right] } & =0
\end{aligned}
$$

Since $\lambda_{1, i}$ is an eigenvalue of \mathcal{A} and the eigenvalues of \mathcal{A} and \mathcal{C} are distinct, the matrix $\left[\mathcal{C}-\lambda_{1, i} I\right]$ is nonsingular which means that $\left[v_{2}\right]=0$. Therefore, we get

$$
\left[\mathcal{A}-\lambda_{1, i} I\right]\left[v_{1}\right]=0
$$

which means that v_{1} is an eigenvector of \mathcal{A}. Therefore, the first three eigenvectors of A are the same as the eigenvectors of \mathcal{A} and they are independent of the dynamics of the observer. Of course, the remaining three eigenvectors of A depend on the oberver natural frequency, but, as we pointed out earlier, none of these appear in the definition of the nonlinear stability coefficient K.

IV. COMPENSATOR IN A DIFFERENT BASIS

A. CRITICAL VALUE OF C

If we look at Equation (3.6), we can see that the basis for our system was $[X, \tilde{X}]$. Now we are going to represent our system in $[X, \hat{X}]$ basis where \hat{X} is the estimate of X. In this compensator basis the critical value of C in Equation (4.3) is no longer constant. Therefore, we used a Fortran code (Appendix B) to calculate the critical C values for different observer natural frequencies. A plot of these critical C values for different observer natural frequencies can be seen in Fig. 4.1. The observer natural frequencies are in nondimensional seconds whereas the control natural frequencies are normalized with respect to the corresponding observer natural frequencies. The system is unstable for values of C less than the critical value.

B. THIRD ORDER EXPANSIONS OF THE SYSTEM EQUATIONS

1. Perturbation in K_{Ψ}

In the previous chapters we worked on the $[X, \tilde{X}]$ basis. Now we are going to represent our system in the new basis, which is $[X, \hat{X}]$, where \hat{X} is the estimate of X. Our equations of motion were,

$$
\begin{align*}
\dot{\Psi} & =r \\
\dot{r} & =a r+a_{3} r^{3}+b \delta \tag{4.1}\\
\dot{y} & =\sin \Psi
\end{align*}
$$

Figure 4.1: $C_{\text {crit }}$ versus natural frequency for K_{ψ}.
where

$$
\begin{align*}
\delta & =\delta_{\text {sat }} \tanh \left(\frac{\delta_{0}}{\delta_{\text {sat }}}\right) \tag{4.2}\\
\delta_{0} & =C K_{\psi} \hat{\Psi}+K_{r} \hat{r}+K_{y} \hat{y} \tag{4.3}
\end{align*}
$$

or in compact form,

$$
\begin{equation*}
\dot{X}=f(x), \quad X=[\Psi, r, y, \hat{\Psi}, \hat{r}, \hat{y}]^{T} \tag{4.4}
\end{equation*}
$$

This system can be written in the form

$$
\begin{equation*}
\dot{X}=A X+g(x) \tag{4.5}
\end{equation*}
$$

A is the Jacobian matrix of $f(x)$ evaluated at $X=0$, and $g(x)$ contains all nonlinear terms of Equation (4.1). Taylor expansion of the nonlinear terms about the equilibrium, where we keep the first non-vanishing nonlinear coefficients only, gives

$$
\begin{align*}
\sin \Psi & =\Psi-\frac{1}{6} \Psi^{3} \tag{4.6}\\
\delta & =\delta_{0}-\frac{1}{3 \delta_{\text {Bat }}^{2}} \delta_{0}^{3} \tag{4.7}
\end{align*}
$$

Substitution of Equations (4.6) and (4.7) into Equation (4.1) gives us the A matrix in Equation (4.5) as follows

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \tag{4.8}\\
0 & a & 0 & b c K_{\Psi} & b K_{r} & b K_{y} \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ell_{\Psi} & 0 & 1 & -\ell_{\Psi} \\
0 & 0 & \ell_{r} & b c K_{\Psi} & b K_{r} & -\ell_{r}+b K_{y} \\
0 & 0 & \ell_{y} & 1 & 0 & -\ell_{y}
\end{array}\right]
$$

The nonlinear parts are,

$$
g(x)=\left[\begin{array}{c}
0 \tag{4.9}\\
a_{3} r^{3}-\frac{b}{3 \delta_{\text {sat }}^{2}} \delta_{0}^{3} \\
-\frac{1}{6} \Psi^{3} \\
0 \\
-\frac{b}{3 \delta_{\text {sat }}^{2}} \delta_{0}^{3} \\
0
\end{array}\right]
$$

If we introduce the transformation matrix (T) of eigenvectors of A evaluated at the bifurcation point,

$$
\begin{align*}
T & =\left[m_{i j}\right] \quad i, j=1,2,3,4,5,6 \tag{4.10}\\
T^{-1} & =\left[n_{i j}\right] \quad i, j=1,2,3,4,5,6 \tag{4.11}
\end{align*}
$$

the linear change of coordinates,

$$
\begin{equation*}
x=T z, \quad z=T^{-1} x \tag{4.12}
\end{equation*}
$$

transforms system (4.5) into its normal form

$$
\begin{equation*}
\dot{z}=T^{-1} A T z+T^{-1} g(T z) \tag{4.13}
\end{equation*}
$$

At the bifurcation point

$$
T^{-1} A T=\left[\begin{array}{cccccc}
0 & -w_{0} & 0 & 0 & 0 & 0 \tag{4.14}\\
w_{0} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & P_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & P_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & P_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & P_{4}
\end{array}\right]
$$

with $w_{0}>0$ and $P_{i}<0$.
Using center manifold theory we get, as shown in [Chow and Mallet-Paret (1977)],

$$
g=\left[\begin{array}{c}
0 \tag{4.15}\\
\ell_{21} z_{1}^{3}+\ell_{22} z_{2}^{3}+\ell_{23} z_{1}^{2} z_{2}+\ell_{24} z_{1} z_{2}^{2} \\
\ell_{31} z_{1}^{3}+\ell_{32} z_{2}^{3}+\ell_{33} z_{1}^{2} z_{2}+\ell_{34} z_{1} z_{2}^{2} \\
0 \\
\ell_{51} z_{1}^{3}+\ell_{52} z_{2}^{3}+\ell_{53} z_{1}^{2} z_{2}+\ell_{54} z_{1} z_{2}^{2} \\
0
\end{array}\right]
$$

Substitution of Equation (4.12) into Equation (4.5) yields,

$$
\begin{align*}
& \dot{z}_{1}=-w_{0} z_{2}+r_{11} z_{1}^{3}+r_{12} z_{1}^{2} z_{2}+r_{13} z_{1} z_{2}^{2}+r_{14} z_{2}^{3} \tag{4.16}\\
& \dot{z}_{2}=w_{0} z_{1}+r_{21} z_{1}^{3}+r_{22} z_{1}^{2} z_{2}+r_{23} z_{1} z_{2}^{2}+r_{24} z_{2}^{3} \tag{4.17}
\end{align*}
$$

where the terms $r_{i j}$ are evaluated by a Fortran code (Appendix C).
For values of C close to its critical value, Equations (4.16) and (4.17) become,

$$
\begin{align*}
& \dot{z}_{1}=\alpha^{\prime} \varepsilon z_{1}-\left(w_{0}+w^{\prime} \varepsilon\right) z_{2}+r_{11} z_{1}^{3}+r_{12} z_{1}^{2} z_{2}+r_{13} z_{1} z_{2}^{2}+r_{14} z_{2}^{3} \tag{4.18}\\
& \dot{z}_{2}=\left(w_{0}+w^{\prime} \varepsilon\right) z_{1}+\alpha^{\prime} \varepsilon z_{2}+r_{21} z_{1}^{3}+r_{22} z_{1}^{2} z_{2}+r_{23} z_{1} z_{2}^{2}+r_{24} z_{2}^{3} \tag{4.19}
\end{align*}
$$

where ε is the difference between C and its critical value C_{Ψ}. The terms α^{\prime} and w^{\prime} denote the derivative of the real and imaginary part, respectively, of the critical pair of the eigenvalues with respect to C evaluated at C_{Ψ}
2. Integral Averaging

We write Equations (4.18) and (4.19) in the form,

$$
\begin{align*}
& \dot{z}_{1}=\alpha^{\prime} \varepsilon z_{1}-\left(w_{0}+w^{\prime} \varepsilon\right) z_{2}+F_{1}\left(z_{1}, z_{2}\right) \tag{4.20}\\
& \dot{z}_{2}=\left(w_{0}+w^{\prime} \varepsilon\right) z_{1}+\alpha^{\prime} \varepsilon z_{2}+F_{2}\left(z_{1}, z_{2}\right) \tag{4.21}
\end{align*}
$$

If we introduce polar coordinates in the form,

$$
\begin{equation*}
z_{1}=R \cos \theta, \quad z_{2}=R \sin \theta \tag{4.22}
\end{equation*}
$$

Equations (4.20), (4.21) result in

$$
\begin{align*}
\dot{R} & =\alpha^{\prime} \varepsilon R+F_{1}(R, \theta) \cos \theta+F_{2}(R, \theta) \sin \theta \tag{4.23}\\
R \dot{\theta} & =\left(w_{0}+w^{\prime} \varepsilon\right) R+F_{2}(R, \theta) \cos \theta-F_{1}(R, \theta) \sin \theta \tag{4.24}
\end{align*}
$$

Equation (4.23) yields

$$
\begin{equation*}
\dot{R}=\alpha^{\prime} \varepsilon R+P(\theta) R^{3} \tag{4.25}
\end{equation*}
$$

where $P(\theta)$ is a 2π-periodic function in the angular coordinate θ. If Equation (4.25) is averaged over one cycle in θ [Chow and Mallet-Paret (1977)], we get an equation with constant coefficients,

$$
\begin{equation*}
\dot{R}=\alpha^{\prime} \varepsilon R+K R^{3} \tag{4.26}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{1}{2 \pi} \int_{0}^{\pi} P(\theta) d \theta \tag{4.27}
\end{equation*}
$$

Equation (4.27) is simplified after evaluation of the integral as,

$$
\begin{equation*}
K=\frac{1}{8}\left[3 r_{11}+r_{13}+r_{22}+3 r_{24}\right] \tag{4.28}
\end{equation*}
$$

where the coefficients are as follows

$$
\begin{aligned}
& r_{11}=n_{12} \ell_{21}+n_{13} \ell_{31}+n_{15} \ell_{51} \\
& r_{13}=n_{12} \ell_{24}+n_{13} \ell_{34}+n_{15} \ell_{54} \\
& r_{22}=n_{22} \ell_{23}+n_{23} \ell_{33}+n_{25} \ell_{53} \\
& r_{24}=n_{22} \ell_{22}+n_{23} \ell_{32}+n_{25} \ell_{52}
\end{aligned}
$$

where the $n_{12}, n_{13}, n_{15}, n_{22}, n_{23}$, and n_{25} are the elements of the inverse of transformation matrix T. The values of the coefficients $\ell_{21}, \ell_{22}, \ell_{23}, \ell_{24}, \ell_{31}, \ell_{32}, \ell_{33}$, and ℓ_{34} are the same as in Chapter III. The values of the other $\ell_{i j}$ coefficients are given by the following expressions:

$$
\begin{aligned}
\ell_{51}= & -b_{\ell}\left[c^{3} K_{\Psi}^{3} m_{41}^{3}+K_{r}^{3} m_{51}^{3}+K_{y}^{3} m_{61}^{3}+3 c^{2} K_{\Psi}^{2} K_{r} m_{41}^{2} m_{51}\right. \\
& +3 c^{2} K_{\Psi}^{2} K_{y} m_{41}^{2} m_{61}+3 c K_{\Psi} K_{r}^{2} m_{51}^{2} m_{41}+3 c K_{\Psi} K_{y}^{2} m_{61}^{2} m_{41}+3 K_{r} K_{y}^{2} m_{61}^{2} m_{51} \\
& \left.+3 K_{r}^{2} K_{y} m_{51}^{2} m_{61}+6 c K_{\Psi} K_{r} K_{y} m_{41} m_{51} m_{61}\right] \\
\ell_{52}= & -b_{\ell}\left[c^{3} K_{\Psi}^{3} m_{42}^{3}+K_{r}^{3} m_{52}^{3}+K_{y}^{3} m_{62}^{3}+3 c^{2} K_{\Psi}^{2} K_{r} m_{42}^{2} m_{52}\right. \\
& +3 c^{2} K_{\Psi}^{2} K_{y} m_{42}^{2} m_{62}+3 c K_{\Psi} K_{r}^{2} m_{52}^{2} m_{42}+3 c K_{\Psi} K_{y}^{2} m_{62}^{2} m_{42}+3 K_{r} K_{y}^{2} m_{62}^{2} m_{52} \\
& \left.+3 K_{r}^{2} K_{y} m_{52}^{2} m_{62}+6 c K_{\Psi} K_{r} K_{y} m_{42} m_{52} m_{62}\right] \\
\ell_{53}= & -b_{\ell}\left[3 c^{3} K_{\Psi}^{3} m_{41}^{2} m_{42}+3 K_{r}^{3} m_{51}^{2} m_{52}+3 K_{y}^{3} m_{61}^{2} m_{62}\right. \\
& +3 c^{2} K_{\Psi}^{2} K_{r}\left(m_{41}^{2} m_{52}+2 m_{41} m_{42} m_{51}\right)+3 c^{2} K_{\Psi}^{2} K_{y}\left(m_{41}^{2} m_{62}+2 m_{41} m_{42} m_{61}\right) \\
& +3 c K_{\Psi} K_{r}^{2}\left(m_{51}^{2} m_{42}+2 m_{51} m_{52} m_{41}\right)+3 c K_{\Psi} K_{y}^{2}\left(m_{61}^{2} m_{42}+2 m_{61} m_{62} m_{41}\right) \\
& +3 K_{r} K_{y}^{2}\left(m_{61}^{2} m_{52}+2 m_{61} m_{62} m_{51}\right)+3 K_{r}^{2} K_{y}\left(m_{51}^{2} m_{62}+2 m_{51} m_{52} m_{61}\right) \\
& \left.+6 c K_{\Psi} K_{r} K_{y}\left(m_{41} m_{51} m_{62}+\left(m_{41} m_{52}+m_{42} m_{51}\right) m_{61}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\ell_{54}= & -b_{\ell}\left[3 c^{3} K_{\Psi}^{3} m_{41} m_{42}^{2}+3 K_{r}^{3} m_{51} m_{52}^{2}+3 K_{y}^{3} m_{61} m_{62}^{2}\right. \\
& +3 c^{2} K_{\Psi}^{2} K_{r}\left(m_{42}^{2} m_{51}+2 m_{41} m_{42} m_{52}\right)+3 c^{2} K_{\Psi}^{2} K_{y}\left(m_{42}^{2} m_{61}+2 m_{41} m_{42} m_{62}\right) \\
& +3 c K_{\Psi} K_{r}^{2}\left(m_{52}^{2} m_{41}+2 m_{51} m_{52} m_{42}\right)+3 c K_{\Psi} K_{y}^{2}\left(m_{62}^{2} m_{41}+2 m_{61} m_{62} m_{42}\right) \\
& +3 K_{r} K_{y}^{2}\left(m_{62}^{2} m_{51}+2 m_{61} m_{62} m_{52}\right)+3 K_{r}^{2} K_{y}\left(m_{52}^{2} m_{61}+2 m_{51} m_{52} m_{62}\right) \\
& \left.+6 c K_{\Psi} K_{r} K_{y}\left(m_{42} m_{52} m_{61}+\left(m_{41} m_{52}+m_{42} m_{51}\right) m_{62}\right)\right]
\end{aligned}
$$

C. RESULTS

Existence and stability of limit cycles can be determined by analyzing the equilibrium points of the averaged Equation (4.26), which correspond to periodic solutions in z_{1}, z_{2} as can be seen from Equation (4.22). From Equation (4.26) we can easily see that:

1. If $\alpha^{\prime}>0$, then
(a) if $K>0$, then unstable periodic solutions co-exist with the stable equilibrium for $\varepsilon<0$, and
(b) if $K<0$, then stable periodic solutions co-exist with the unstable equilibrium for $\varepsilon>0$.
2. If $\alpha^{\prime}<0$, then
(a) if $K>0$, then unstable periodic solutions co-exist with the stable equilibrium for $\varepsilon>0$, and
(b) if $K<0$, then stable periodic solutions co-exist with the unstable equilibrium for $\varepsilon<0$.

We refer to $K<0$ as the supercritical, and $K>0$ as the subcritical $P A H$ bifurcation. In the supercritical case, after the equilibrium state loses its stability the system converges to a stable periodic solution with amplitude which increases continuously as the difference ε is increased.

In the subcritical case, however, before the equilibrium state loses stability, its domain of attraction becomes very small since it is bounded by the amplitudes of the unstable limit cycles. In such a case, an initial disturbance of sufficient magnitude can throw the system off the nominal path even before its domain of attraction has completely shrunk to zero. As the nominal equilibrium becomes unstable, the system jumps to a different state of motion with a locally, at $\varepsilon=0$, discontinuous increase in the amplitude [Papoulias (1993)].

In our case, the value of α^{\prime} is always negative, which can be seen easily from Figure 4.1. If we look at the nature of the curve for the critical value of C for different natural frequencies, we will see that as the value of critical C decreases for the same natural frequency, the system becomes unstable.

After using a Fortran code (Appendix C) we observed that the nonlinear stability coefficient K depends on observer dynamics. Figure 4.2 shows that for a given control design, the observer must be as responsive as possible to ensure negative K (stable limit cycle). On the other hand, for a given observer design, if the control law is too slow we get subcritical behavior (unstable limit cycle).

Figure 4.2: $K_{K_{\psi}}$ versus w_{n} for different observer w_{n}.
[THIS PAGE INTENTIONALLY LEFT BLANK]

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

An investigation of the nonlinear dynamic response characteristics of a marine vehicle has been presented. Particular emphasis in this work was placed on analyzing the effects of observer design on system response after initial loss of stability of straight line motion. Bifurcation theory techniques were utilized in order to assess that behavior. The main conclusions of this work can be summarized as follows.

1. There exists a critical point for a certain combination of system gains and system parameters for stability of straight line motion. The loss of stability occurs generically in the form of Poincare-Andronov-Hopf bifurcations. As the parameter crosses its critical value, a family of periodic orbits, self sustained oscillations develops. Center manifold reduction and integral averaging techniques were used in order to establish the direction of the bifurcation and stability of the resulting periodic solutions [Papoulias, Oral (1993)].
2. For $[X, \tilde{X}]$ basis the critical point does not depend on the observer dynamics (separation principle). The nonlinear stability coefficient K was not influenced by observer dynamics. The previous reduction process shows that K depends on the first two eigenvectors of the 6×6 matrix A. Matrix algebra shows that these eigenvectors are associated only with the controller dynamics.
3. For $[X, \hat{X}]$ basis the critical value depends on observer dynamics. For a given control design, the observer must be as responsive as possible to maximize the
region of stability. On the other hand, for a given observer design, the control must be as slow as possible to maximize region of stability.
4. The nonlinear stability coefficient K depends on observer dynamics for this basis. For a given control design, the observer must be as responsive as possible to ensure negative K (stable limit cycles). In this benign loss of stability the resulting periodic solutions are continuous single-valued functions of the parameter distance from its critical value. On the other hand, for a given observer design, if the control law is too slow we get subcritical behavior (unstable limit cycles). In such a case, the periodic solutions develop with what appears to be a discontinuous increase in the amplitude of oscillations [Papoulias, Oral (1993)].

B. RECOMMENDATIONS

The differences between the two bases with respect to robustness properties of the system have to be analyzed.

APPENDIX A

HOPF BIFURCATION PROGRAM FOR $[X, \tilde{X}]$ BASIS

PROGRAM HTKPSI
HOPF BIFURCATIONS
NOMOTO'S FIRST ORDER MODEL
CALCULATIONS FOR K AND CCRITICAL IF KPSI CHANGES W/ C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION K1,K2,K,LPSI,LY,LR,IZ,L,
\&
\&
\&
\&
\&
\&
\&
$\&$

MASS, NV, NR, NVDOT, NRDOT, NDRS, NDRB, KPSI, KR , KY, K3, L21, L22, L23, L24, L31, L32, L33, L34, L51, L52, L53, L54, M11, M12, M13,M14, M15, M16, M21, M22, M23, M24, M25, M26, M31,M32,M33,M34,M35,M36,M41,M42,M43,M44,M45,M46, M51,M52,M53,M54,M55,M56,M61,M62,M63,M64,M65,M66, N11, N12, N13, N14, N15, N16, N21, N22, N23, N24, N25, N26, N31, N32, N33, N34, N35, N36, N41, N42, N43, N44, N45, N46, N51,N52,N53,N54,N55,N56,N61,N62,N63,N64,N65,N66

DIMENSION $\operatorname{AMAT}(6,6), T(6,6), \operatorname{TINV}(6,6), \operatorname{FV} 1(6), \operatorname{IV1}(6), \operatorname{YYY}(6,6)$ DIMENSION $\operatorname{WR}(6), \operatorname{WI}(6), \operatorname{TSAVE}(6,6), \operatorname{TLUD}(6,6), \operatorname{IVLUD}(6), \operatorname{SVLUD}(6)$ DIMENSION ASAVE $(6,6)$, A1 $(6,6)$, A2 $(6,6)$
OPEN (11,FILE='AKPSI.MAT',STATUS='NEW')

WEIGHT	$=435.0$
IZ	$=45.0$
L	$=7.3$
RHO	$=1.94$
G	$=32.2$
XG	$=0.0104$
MASS	$=$ WEIGHT $/ G$
MASS	$=$ MASS $/(0.5 * R H O * L * * 3)$
IZ	$=I Z /(0.5 * R H O * L * * 5)$
XG	$=\mathrm{XG} / \mathrm{L}$
YRDOT	$=-0.00000$
YVDOT	$=-0.03430$
YR	$=+0.00000$
YV	$=-0.10700$
YDRS	$=+0.01241$
YDRB	$=+0.01241$
NRDOT	$=-0.00047$
NVDOT	$=-0.00000$
NR	$=-0.00390$

```
            NV =-0.00000
            NDRS =-0.337*YDRS
            NDRB =+0.283*YDRS
            DH =(IZ-NRDOT) * (MASS-YVDOT) -
            & (MASS*XG-YRDOT) *(MASS*XG-NVDOT)
            A11=((IZ-NRDOT) *YV-(MASS*XG-YRDOT) *NV) /DH
            A12 = ((IZ-NRDOT) * (-MASS+YR) -
& (MASS*XG-YRDOT)* (-MASS*XG+NR))/DH
            A21= ((MASS-YVDOT) *NV-(MASS*XG-NVDOT) *YV) /DH
            A22 = ((MASS-YVDOT) * (-MASS*XG+NR) -
& (MASS*XG-NVDOT)*(-MASS+YR)) /DH
    B11=((IZ-NRDOT) *YDRS-(MASS*XG-YRDOT) *NDRS) /DH
    B12=((IZ-NRDOT) *YDRB-(MASS*XG-YRDOT) *NDRB) /DH
    B21=((MASS-YVDOT) *NDRS-(MASS*XG-NVDOT) *YDRS) /DH
    B22 = ((MASS-YVDOT) *NDRB-(MASS*XG-NVDOT) *YDRB) /DH
    B1 =B11-B12
    B2 =B21-B22
C
    200 WRITE (*,1004)
    READ (*,*) WNMIN,WNMAX,IWN
    INCR=IWN
    WRITE (*,*) 'ENTER OBSERVER WN'
    READ (*,*) WNO
    205 WRITE(*,1007)
    READ (*,*) A3
    DO is Dsat
50 WRITE (*,1006)
    READ (*,*) D0
    WRITE (*,1008)
    READ (*,*) CCRIT
    C1=(A11*A22-A21*A12)* (A21*B1-A11*B2)
    C2=(A11+A22)*(A21*B1-A11*B2)+B2*(A11*A22-A21*A12)
    C3=-(A21*B1-A11*B2) **2
    A=C1/C2
    B=C3/C2
C
    DO 1 II=1,INCR
    WN =WNMIN+(WNMAX-WNMIN) *(II-1)/(INCR-1)
        print *,wn
    ALPHAO=WN**3
    ALPHA1=2.15*WN**2
    ALPHA2 =1.75*WN
    KPSI=-ALPHA1/B
    KY =-ALPHAO/B
    KR =- (ALPHA2+A)/B
    GAMA0 =WNO* * 3
    GAMA1=2.15*WNO* *2
```

GAMA2 $=1.75$ *WNO
$\mathrm{LY}=\mathrm{A}+\mathrm{GAMA} 2$
LPSI =A*LY+GAMA1
$\mathrm{LR}=\mathrm{A} * \mathrm{LPSI}+\mathrm{GAMA} 0$
A MATRIX
$\operatorname{AMAT}(1,1)=0.0$
$\operatorname{AMAT}(1,2)=1.0$
$\operatorname{AMAT}(1,3)=0.0$
$\operatorname{AMAT}(1,4)=0.0$
$\operatorname{AMAT}(1,5)=0.0$
$\operatorname{AMAT}(1,6)=0.0$
$\operatorname{AMAT}(2,1)=B * C C R I T * K P S I$
$\operatorname{AMAT}(2,2)=A+\left(B^{*} K R\right)$
$\operatorname{AMAT}(2,3)=B * K Y$
$\operatorname{AMAT}(2,4)=-\mathrm{B}^{*} \mathrm{CCRIT} * \operatorname{KPSI}$
$\operatorname{AMAT}(2,5)=-B^{*} \operatorname{KR}$
$\operatorname{AMAT}(2,6)=-\mathrm{B}^{*} \operatorname{KY}$
$\operatorname{AMAT}(3,1)=1.0$
$\operatorname{AMAT}(3,2)=0.0$
$\operatorname{AMAT}(3,3)=0.0$
$\operatorname{AMAT}(3,4)=0.0$
$\operatorname{AMAT}(3,5)=0.0$
$\operatorname{AMAT}(3,6)=0.0$
$\operatorname{AMAT}(4,1)=0.0$
$\operatorname{AMAT}(4,2)=0.0$
$\operatorname{AMAT}(4,3)=0.0$
$\operatorname{AMAT}(4,4)=0.0$
$\operatorname{AMAT}(4,5)=1.0$
$\operatorname{AMAT}(4,6)=-\operatorname{LPSI}$
$\operatorname{AMAT}(5,1)=0.0$
$\operatorname{AMAT}(5,2)=0.0$
$\operatorname{AMAT}(5,3)=0.0$
$\operatorname{AMAT}(5,4)=0.0$
$\operatorname{AMAT}(5,5)=A$
$\operatorname{AMAT}(5,6)=-\operatorname{LR}$
$\operatorname{AMAT}(6,1)=0.0$
$\operatorname{AMAT}(6,2)=0.0$
$\operatorname{AMAT}(6,3)=0.0$
$\operatorname{AMAT}(6,4)=1.0$
$\operatorname{AMAT}(6,5)=0.0$
$\operatorname{AMAT}(6,6)=-L Y$
DO $11 \mathrm{I}=1,6$ DO $12 \mathrm{~J}=1,6$
$\operatorname{ASAVE}(I, J)=\operatorname{AMAT}(I, J)$ CONTINUE

CONTINUE

CALL RG (6, 6, AMAT,WR,WI, 1, YYY, IV1, FV1, IERR)
CALL DSOMEG (IEV,WR,WI, OMEGA, CHECK)
WRITE (*,*) IEV

```
    WRITE (60,*) (WR(IREAL), IREAL=1, 6)
    OMEGA0=OMEGA
    DO 5 I=1,6
        T(I,1)=YYY(I,IEV)
        T(I,2) =-YYY(I,IEV+1)
    CONTINUE
    IF(IEV.EQ.1) GO TO 13
    IF(IEV.EQ.2) GO TO 14
    IF(IEV.EQ.3) GO TO 15
    IF(IEV.EQ.4) GO TO 16
    IF(IEV.EQ.5) GO TO 17
    STOP 3004
    DO 21 I=1,6
        T(I, 3) =YYY(I, 3)
        T(I,4) =YYY(I,4)
        T(I,5) =YYY(I,5)
        T(I, 6) =YYY(I, 6)
    CONTINUE
    GO TO 30
14 DO 22 I=1,6
        T(I, 3) =YYY(I, 1)
        T(I,4) =YYY(I,4)
        T(I, 5) =YYY(I, 5)
        T(I, 6) =YYY(I, 6)
    CONTINUE
    GO TO 30
    DO 23 I=1,6
        T(I, 3) =YYY(I, 1)
        T(I,4) =YYY(I, 2)
        T(I, 5) =YYY(I,5)
        T(I, 6) =YYY(I, 6)
    CONTINUE
    GO TO 30
    DO 24 I=1,6
        T(I, 3) =YYY(I, 1)
        T(I,4) =YYY(I, 2)
        T(I, 5) =YYY(I, 3)
        T(I, 6) =YYY(I, 6)
    CONTINUE
    GO TO 30
    DO 25 I=1,6
        T(I, 3) =YYY(I, 1)
        T(I,4) =YYY(I, 2)
        T(I,5) =YYY(I, 3)
        T(I, 6) =YYY(I,4)
    CONTINUE
    CONTINUE
NORMALIZATION OF THE CRITICAL EIGENVECTOR
```

CALL NORMAL (T)
INVERT TRANSFORMATION MATRIX

```
DO 2 I=1,6
    DO 3 J=1,6
        TINV (I,J) =0.0
        TSAVE (I,J) =T (I,J)
    CONTINUE
CONTINUE
CALL DLUD(6,6,TSAVE,6,TLUD,IVLUD)
DO 4 I=1,6
    IF (IVLUD(I).EQ.0) STOP 3003
CONTINUE
CALL DILU (6,6,TLUD,IVLUD,SVLUD)
DO }8\mathrm{ I=1,6
    DO }9\textrm{J}=1,
        TINV (I,J) =TLUD (I,J)
CONTINUE
CONTINUE
CHECK Inv(T)*A*T
IMULT=1
IF (IMULT.EQ.1) CALL MULT(TINV,ASAVE,T,A2)
IF (IMULT.EQ.0) STOP 3007
P1=A2 (1, 1)
P}2=A2(2,2
P=A2 (3,3)
Q=A2 (4,4)
R=A2 (5,5)
S=A2 (6,6)
WRITE (21,*) P1, P2,P,Q,R,S
DEFINITION OF Nij
N11=TINV (1,1)
N21=TINV (2,1)
N31=TINV (3,1)
N41=TINV (4,1)
N51=TINV (5,1)
N61=TINV (6,1)
N12=TINV (1,2)
N22=TINV (2,2)
N32=TINV (3,2)
N42=TINV (4,2)
N52=TINV (5,2)
N62=TINV (6,2)
N13=TINV (1,3)
N23=TINV (2,3)
```

```
N33 =TINV (3,3)
N43=TINV (4,3)
N53=TINV (5,3)
N63=TINV (6,3)
N14=TINV (1,4)
N24=TINV (2,4)
N34=TINV (3,4)
N44=TINV (4,4)
N54=TINV (5,4)
N64=TINV (6,4)
N15=TINV (1,5)
N25=TINV (2,5)
N35=TINV (3,5)
N45=TINV (4,5)
N55=TINV (5,5)
N65=TINV (6,5)
N16=TINV (1,6)
N26=TINV (2,6)
N36=TINV (3,6)
N46=TINV (4,6)
N56=TINV (5,6)
N66=TINV (6,6)
```


DEFINITION OF Mij

```
M11=T(1,1)
M21=T(2,1)
M31=T(3,1)
M41=T(4,1)
M51=T (5,1)
M61=T(6,1)
M12=T (1,2)
M22=T (2,2)
M32 =T (3,2)
M42=T(4,2)
M52=T(5,2)
M62=T(6,2)
M13=T (1,3)
M23=T (2,3)
M3 3 =T (3,3)
M43=T(4,3)
M53=T (5,3)
M63=T (6,3)
M14=T (1,4)
M24=T (2,4)
M34=T (3,4)
M44=T (4,4)
M54=T (5,4)
M64=T (6,4)
M15=T(1,5)
```

```
M25=T (2,5)
M35=T (3,5)
M45=T (4,5)
M55=T(5,5)
M65=T (6,5)
M16=T(1,6)
M26=T (2,6)
M36=T (3,6)
M46=T(4,6)
M56=T(5,6)
M66=T (6,6)
WRITE(70,*) N11,N12,N13
WRITE(71,*) N14,N15,N16
WRITE(72,*) N21,N22,N23
WRITE(73,*) N24,N25,N26
WRITE(74,*) N31,N32,N33
WRITE(75,*) N34,N35,N36
WRITE(76,*) N41,N42,N43
WRITE(77,*) N44,N45,N46
WRITE(78,*) N51,N52,N53
WRITE(79,*) N54,N55,N56
WRITE(80,*) N61,N62,N63
WRITE(81,*) N64,N65,N66
    K1=1./8.*((ALPHA2**3) +ALPHA0) / (ALPHA2)
    K2=3.*A3-.5*(ALPHA2**2)/ALPHAO
    K3=1./((B**2)*(D0**2))*(ALPHA2+A)*((ALPHA0/ALPHA2) + (A**2))
    K=K1* (K2+K3)
    print *, wn,k,ccrit
BL=B/(3*D0**2)
C2345678901234567890123456789012345678901234567890123456789012345
    L21=A3 *M21**3-BL* (CCRIT**3*KPSI**3*M41**3 +KR** 3 *M51**3+
    & KY**3*M61**3+
    & 3*CCRIT**2*KPSI**2*KR*M41**2*M51+
    & 3*CCRIT**2*KPSI**2*KY*M41**2*M61+
    & 3*CCRIT*KPSI*KR**2*M51**2*M41+3*CCRIT*KPSI*KY**2*M61**2*M41+
    & 3*KR*KY**2*M61**2*M51+3*KR**2*KY*M51**2*M61+
    & 6*CCRIT*KPSI*KR*KY*M41*M51*M61)
    L22=A3 *M22**3-BL* (CCRIT** 3*KPSI** 3 *M42** 3 +KR** 3 *M52 ** 3+
    & KY**3*M62**3+
    & 3*CCRIT**2*KPSI**2*KR*M42**2*M52+
    & 3*CCRIT**2*KPSI**2*KY*M42**2*M62+
    & 3*CCRIT*KPSI*KR**2*M52**2*M42+3*CCRIT*KPSI*KY**2*M62**2*M42+
    & 3*KR*KY**2*M62**2*M52+3*KR**2*KY*M52**2*M62+
    & 6*CCRIT*KPSI*KR*KY*M42*M52*M62)
        L23=3*A3*M21**2*M22-BL*(3*CCRIT**3*KPSI** 3 *M41**2*M42 +
            3*KR**3*M51**2*M52+
```

6789012
\&
3*KY**3*M61**2*M62+
\& 3 *CCRIT** 2 *KPSI** 2 *KR* (M41** 2 *M52 + 2 *M41*M42*M51) +

\& 3 *CCRIT*KPSI*KR**2* (M51**2*M42+2*M51*M52*M41) +
\& 3 *CCRIT*KPSI*KY**2* (M61**2*M42+2*M61*M62*M41) +
\& $\quad 3 * K R * K Y * * 2 *(M 61 * * 2 * M 52+2 * M 61 * M 62 * M 51)+$
\& $\quad 3 *$ KR**2*KY* (M51**2*M62 + 2 *M51*M52*M61) +
\& 6*CCRIT*KPSI**KR*KY* (M41*M51*M62+(M41*M52+M42*M51) *M61))
$\mathrm{L} 24=3$ *A3*M21*M22**2-BL* (3*CCRIT**3*KPSI**3*M41*M42**2+
\& $\quad 3 *$ KR** $3 * M 51 * M 52 * * 2+$
\& 3 *KY**3*M61*M62**2+
\& 3 *CCRIT**2*KPSI**2*KR* (M42**2*M51+2*M41*M42*M52) +
\& $3 * C C R I T * * 2 * K P S I * * 2 * K Y *(M 42 * * 2 * M 61+2 * M 41 * M 42 * M 62)+$
\& 3 *CCRIT*KPSI*KR**2* (M52**2*M41+2*M51*M52*M42) +
\& 3 *CCRIT*KPSI*KY**2* (M62**2*M41+2*M61*M62*M42) +
\& $\quad 3 *$ KR*KY**2* (M62**2*M51 + $2 *$ M61*M62*M52) +
\& $\quad 3 * K R * * 2 * K Y *(M 52 * * 2 * M 61+2 * M 51 * M 52 * M 62)+$
\& $\quad 6 *$ CCRIT*KPSI*KR*KY* (M42*M52*M61+(M41*M52+M42*M51)*M62))
L31 = ($-1 . / 6$.$) *M11**3$
L32 $=(-1 . / 6)$.$* M12 **3$
L33 $=(-1 . / 2)$.$* M11 ** 2 *$ M12
L34 $=(-1 . / 2)$.$* M11*M12**2$
$\mathrm{R} 11=\mathrm{N} 12 * \mathrm{~L} 21+\mathrm{N} 13 * \mathrm{~L} 31$
R12 $=$ N12 * L2 3 + N13 * L3 3
R13 $=$ N12 * L $24+$ N13 * L3 4
R14 $=$ N12 * L $22+$ N13 * L 32
R21 $=$ N22*L21+N23*L31
R22 $=$ N22 * L23 +N23*L33
R23 $=$ N22 *L2 $4+$ N23*L34
R24 = N22 * L2 $2+\mathrm{N} 23$ * L 32
C
$\mathrm{K}=(3 * R 11+\mathrm{R} 13+\mathrm{R} 22+3 * R 24) / 8$
WRITE $(11,2001) \mathrm{WN}, \mathrm{K}, \mathrm{CCRIT}$

1 CONTINUE
STOP
1004 FORMAT (' ENTER MIN,MAX, AND INCREMENTS OF WN(stepstodivide)')
1006 FORMAT (' ENTER DELTASAT.')
1007 FORMAT (' ENTER A3')
1008 FORMAT (' ENTER CCRIT')
2001 FORMAT (3E15.5)
END
$C==1$
SUBROUTINE DSOMEG (IJK,WR,WI, OMEGA, CHECK)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR (6),WI (6)
CHECK=-1.0D+25
DO $1 I=1,6$
IF (WR(I).LT.CHECK) GO TO 1 CHECK=WR (I)
$I J=I$
CONTINUE
OMEGA=DABS (WI (IJ))
IF (WI(IJ).GT.O.DO) IJK=IJ

```
IF (WI(IJ).LT.0.D0) IJK=IJ-1
RETURN
END
```

SUBROUTINE NORMAL (T)
IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION $T(6,6), \operatorname{TNOR}(6,6)$
$\mathrm{CFAC}=\mathrm{T}(1,1) * * 2+\mathrm{T}(1,2) * * 2$
IF (DABS (CFAC).LE. (1.D-10)) STOP 4001
$\operatorname{TNOR}(1,1)=1 . \operatorname{DO}$
$\operatorname{TNOR}(2,1)=(\mathrm{T}(1,1) * \mathrm{~T}(2,1)+\mathrm{T}(2,2) * \mathrm{~T}(1,2)) / \mathrm{CFAC}$
$\operatorname{TNOR}(3,1)=(T(1,1) * T(3,1)+T(3,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(4,1)=(T(1,1) * T(4,1)+T(4,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(5,1)=(T(1,1) * T(5,1)+T(5,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(6,1)=(\mathrm{T}(1,1) * \mathrm{~T}(6,1)+\mathrm{T}(6,2) * \mathrm{~T}(1,2)) / \mathrm{CFAC}$
$\operatorname{TNOR}(1,2)=0 . \operatorname{DO}$
$\operatorname{TNOR}(2,2)=(\mathrm{T}(2,2) * \mathrm{~T}(1,1)-\mathrm{T}(2,1) * \mathrm{~T}(1,2)) / \mathrm{CFAC}$
$\operatorname{TNOR}(3,2)=(T(3,2) * T(1,1)-T(3,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(4,2)=(T(4,2) * T(1,1)-T(4,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(5,2)=(\mathrm{T}(5,2) * \mathrm{~T}(1,1)-\mathrm{T}(5,1) * \mathrm{~T}(1,2)) / \mathrm{CFAC}$
$\operatorname{TNOR}(6,2)=(\mathrm{T}(6,2) * \mathrm{~T}(1,1)-\mathrm{T}(6,1) * \mathrm{~T}(1,2)) / \mathrm{CFAC}$
DO $1 \quad I=1,6$
DO $2 \mathrm{~J}=1,2$
$T(I, J)=\operatorname{TNOR}(I, J)$
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE MULT (TINV, A, T, A2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION $\operatorname{TINV}(6,6), A(6,6), T(6,6), A 1(6,6), A 2(6,6)$
DO $1 \quad I=1,6$
DO $2 \mathrm{~J}=1,6$
$\mathrm{A} 1(I, J)=0 . D 0$
A2 $(I, J)=0 . D 0$
CONTINUE
CONTINUE
DO $3 \quad I=1,6$
DO $4 \mathrm{~J}=1,6$
DO $5 \mathrm{~K}=1,6$
$A 1(I, J)=A(I, K) * T(K, J)+A 1(I, J)$

5	CONTINUE
4	CONTINUE
3	CONTINUE
	DO $6 \mathrm{I}=1,6$
	DO $7 \mathrm{~J}=1,6$
	DO $8 \mathrm{~K}=1,6$
	A2 $(I, J)=\operatorname{TINV}(I, K) * A 1(K, J)$
8	CONTINUE
7	CONTINUE
6	CONTINUE
	DO 11 I=1,6
C	WRITE (*, 101) (A $(1, J), J=1,6)$
11	CONTINUE
	DO $12 \mathrm{I}=1,6$
C	WRITE (*,101) (T(I,J), J=1,6)
12	CONTINUE
	DO $10 \mathrm{I}=1,6$
C	WRITE (*,101) (A2 (I, J) , J = 1, 6)
10	CONTINUE
C	WRITE (*,101) A2 (1,1)
	RETURN
101	FORMAT (4E15.5)
	END

APPENDIX B

CRITICAL VALUE OF C FOR $[X, \hat{X}]$ BASIS

	PROGRAM NCCRIT
C	HOPF BIFURCATIONS
C	NOMOTO'S FIRST ORDER MODEL
C	
C	CALCULATIONS FOR CCRITICAL
C	
C234567	
	IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
	DOUBLE PRECISION K1, K2, K, LPSI, LY, LR, IZ, L,
	\& MASS,NV,NR,NVDOT, NRDOT, NDRS, NDRB, KPSI , KR, KY, K3
C	
	DIMENSION AMAT (6, 6), $\operatorname{FV} 1(6), \operatorname{IV1}(6), \operatorname{YYY}(6,6)$
	DIMENSION WR (6$), \operatorname{WI}(6), \operatorname{TSAVE}(6,6), \operatorname{TLUD}(6,6), \operatorname{IVLUD}(6), \operatorname{SVLUD}(6)$
	DIMENSION ASAVE $(6,6), \operatorname{A1}(6,6), \mathrm{A} 2(6,6)$
	OPEN (11,FILE='CVWN1.RES', STATUS='NEW')
	OPEN (12,FILE='CVWN2.RES', STATUS='NEW')
	OPEN (13,FILE='CVWN3.RES', STATUS $=$ 'NEW')
	WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN CCRIT'
	READ (*,*) CMIN, CMAX, IC
	WRITE (*,*) 'ENTER MIN, MAX, AND INCREMENTS IN WN'
	READ (*,*) WNMIN, WNMAX, INCR
	WRITE (*,*) 'ENTER WNO'
	READ (*,*) WNO
	WEIGHT=435.0
	$\mathrm{IZ}=45.0$
	$\mathrm{L} \quad=7.3$
	RHO $=1.94$
	$\mathrm{G} \quad=32.2$
	XG $\quad=0.0104$
	MASS =WEIGHT/G
	MASS $=$ MASS $/(0.5 *$ RHO*L**3)
	IZ $=$ IZ $/(0.5 *$ RHO*L**5)
	XG =XG/L
	YRDOT $=-0.00000$
	YVDOT $=-0.03430$
	YR $\quad=+0.00000$
	YV $=-0.10700$
	YDRS $=+0.01241$
	YDRB $=+0.01241$
	NRDOT $=-0.00047$
	NVDOT $=-0.00000$
	NR $\quad=-0.00390$
	NV ($=-0.00000$

```
    NDRS =-0.337*YDRS
    NDRB =+0.283*YDRS
    DH =(IZ-NRDOT) * (MASS-YVDOT) -
& (MASS*XG-YRDOT)*(MASS*XG-NVDOT)
    A11=((IZ-NRDOT) *YV-(MASS*XG-YRDOT) *NV) / DH
```

 A12 \(=((\) IZ \(-N R D O T) *(-M A S S+Y R)-\)
 \& (MASS*XG-YRDOT)* (-MASS*XG+NR)) /DH
A21 $=(($ MASS $-Y V D O T) * N V-(M A S S * X G-N V D O T) * Y V) / D H$
A22 $=(($ MASS-YVDOT $) *(-M A S S * X G+N R)-$
\& (MASS*XG-NVDOT)* (-MASS+YR)) /DH
B11 = ((IZ-NRDOT) *YDRS - (MASS*XG-YRDOT) *NDRS) /DH
B12 $=(($ IZ-NRDOT $) * Y D R B-(M A S S * X G-Y R D O T) * N D R B) / D H$
B21 $=(($ MASS - YVDOT $) *$ NDRS $-($ MASS*XG-NVDOT $) ~ * Y D R S) ~ / D H ~$
B22 $=\left((\right.$ MASS $-Y V D O T){ }^{*}$ NDRB $-($ MASS * XG-NVDOT) *YDRB) $/ D H$
B1 =B11-B12
B2 =B21-B22
$\mathrm{C} 1=(\mathrm{A} 11 * \mathrm{~A} 22-\mathrm{A} 21 * \mathrm{~A} 12) *(\mathrm{~A} 21 * \mathrm{~B} 1-\mathrm{A} 11 * \mathrm{~B} 2)$
$\mathrm{C} 2=(\mathrm{A} 11+\mathrm{A} 22) *(\mathrm{~A} 21 * \mathrm{~B} 1-\mathrm{A} 11 * \mathrm{~B} 2)+\mathrm{B} 2 *(\mathrm{~A} 11 * \mathrm{~A} 22-\mathrm{A} 21 * \mathrm{~A} 12)$
$\mathrm{C} 3=-(\mathrm{A} 21 * \mathrm{~B} 1-\mathrm{A} 11 * \mathrm{~B} 2) * * 2$
$\mathrm{A}=\mathrm{C} 1 / \mathrm{C} 2$
$B=C 3 / C 2$
C
EPS=1.D-5
ILMAX=1500
C
DO 1 II=1,INCR
C
WN $=W N M I N+(W N M A X-W N M I N) *(I I-1) /(I N C R-1)$
print *,wn
ALPHA0 $=W N^{* *}$ *
ALPHA1 $=2.15 * W N * * 2$
ALPHA2 $=1.75 * W N$
KPSI=-ALPHA1/B
KY =-ALPHA0/B
$\mathrm{KR}=-(\mathrm{ALPHA} 2+\mathrm{A}) / \mathrm{B}$
GAMA0 $=$ WNO * * 3
GAMA1 $=2.15$ *WNO * * 2
GAMA2 $=1.75$ *WNO
$\mathrm{LY}=\mathrm{A}+\mathrm{GAMA} 2$
LPSI =A*LY+GAMA1
LR=A*LPSI+GAMA0
C234567
DO $2 \mathrm{~J}=1$,IC
CCRIT $=$ CMIN $+(J-1)$ * (CMAX-CMIN) /(IC-1)
C A MATRIX
$\operatorname{AMAT}(1,1)=0.0$
$\operatorname{AMAT}(1,2)=1.0$
$\operatorname{AMAT}(1,3)=0.0$

```
\(\operatorname{AMAT}(1,4)=0.0\)
\(\operatorname{AMAT}(1,5)=0.0\)
\(\operatorname{AMAT}(1,6)=0.0\)
\(\operatorname{AMAT}(2,1)=0.0\)
\(\operatorname{AMAT}(2,2)=A\)
\(\operatorname{AMAT}(2,3)=0.0\)
\(\operatorname{AMAT}(2,4)=B^{*} C C R I T * K P S I\)
\(\operatorname{AMAT}(2,5)=B^{*} \operatorname{KR}\)
\(\operatorname{AMAT}(2,6)=B * K Y\)
\(\operatorname{AMAT}(3,1)=1.0\)
\(\operatorname{AMAT}(3,2)=0.0\)
\(\operatorname{AMAT}(3,3)=0.0\)
\(\operatorname{AMAT}(3,4)=0.0\)
\(\operatorname{AMAT}(3,5)=0.0\)
\(\operatorname{AMAT}(3,6)=0.0\)
\(\operatorname{AMAT}(4,1)=0.0\)
\(\operatorname{AMAT}(4,2)=0.0\)
\(\operatorname{AMAT}(4,3)=\mathrm{LPSI}\)
\(\operatorname{AMAT}(4,4)=0.0\)
\(\operatorname{AMAT}(4,5)=1.0\)
\(\operatorname{AMAT}(4,6)=-\operatorname{LPSI}\)
\(\operatorname{AMAT}(5,1)=0.0\)
\(\operatorname{AMAT}(5,2)=0.0\)
\(\operatorname{AMAT}(5,3)=\mathrm{LR}\)
\(\operatorname{AMAT}(5,4)=\mathrm{B}^{*} \mathrm{CCRIT} * \operatorname{KPSI}\)
\(\operatorname{AMAT}(5,5)=B * \operatorname{KR}\)
\(\operatorname{AMAT}(5,6)=-L R+B^{*} K Y\)
\(\operatorname{AMAT}(6,1)=0.0\)
\(\operatorname{AMAT}(6,2)=0.0\)
\(\operatorname{AMAT}(6,3)=L Y\)
\(\operatorname{AMAT}(6,4)=1.0\)
\(\operatorname{AMAT}(6,5)=0.0\)
\(\operatorname{AMAT}(6,6)=-L Y\)
CALL RG (6, 6, AMAT,WR,WI, 0, ZZZ, IV1, FV1, IERR)
CALL DSTABL (DEOS,WR,WI, FREQ)
U=CCRIT
IF (J.GT.1) GO TO 10
DEOSOO=DEOS
\(\mathrm{UOO}=\mathrm{U}\)
LL=0
GO TO 2
DEOSNN=DEOS
UNN=U
PR=DEOSNN*DEOSOO
IF (PR.GT.O.DO) GO TO 3
\(\mathrm{LL}=\mathrm{LL}+1\)
IF (LL.GT.3) STOP 1000
IL=0
\(\mathrm{UO}=\mathrm{UOO}\)
```

$\mathrm{N}=\mathrm{UNN}$
DEOSO=DEOSOO
DEOSN=DEOSNN
UL=UO
UR=UN
DEOSL=DEOSO
DEOSR=DEOSN
$\mathrm{U}=(\mathrm{UL}+\mathrm{UR}) / 2 . \mathrm{DO}$
CCRIT=U
$\operatorname{AMAT}(1,1)=0.0$
$\operatorname{AMAT}(1,2)=1.0$
$\operatorname{AMAT}(1,3)=0.0$
$\operatorname{AMAT}(1,4)=0.0$
$\operatorname{AMAT}(1,5)=0.0$
$\operatorname{AMAT}(1,6)=0.0$
$\operatorname{AMAT}(2,1)=0.0$
$\operatorname{AMAT}(2,2)=A$
$\operatorname{AMAT}(2,3)=0.0$
$\operatorname{AMAT}(2,4)=B^{*} C C R I T * K P S I$
$\operatorname{AMAT}(2,5)=B^{*} \operatorname{KR}$
$\operatorname{AMAT}(2,6)=B^{*} \operatorname{KY}$
$\operatorname{AMAT}(3,1)=1.0$
$\operatorname{AMAT}(3,2)=0.0$
$\operatorname{AMAT}(3,3)=0.0$
$\operatorname{AMAT}(3,4)=0.0$
$\operatorname{AMAT}(3,5)=0.0$
$\operatorname{AMAT}(3,6)=0.0$
$\operatorname{AMAT}(4,1)=0.0$
$\operatorname{AMAT}(4,2)=0.0$
$\operatorname{AMAT}(4,3)=\operatorname{LPSI}$
$\operatorname{AMAT}(4,4)=0.0$
$\operatorname{AMAT}(4,5)=1.0$
$\operatorname{AMAT}(4,6)=-\operatorname{LPSI}$
$\operatorname{AMAT}(5,1)=0.0$
$\operatorname{AMAT}(5,2)=0.0$
$\operatorname{AMAT}(5,3)=\mathrm{LR}$
AMAT $(5,4)=B^{*} C C R I T * K P S I$
$\operatorname{AMAT}(5,5)=B * \operatorname{KR}$
$\operatorname{AMAT}(5,6)=-L R+B^{*} K Y$
$\operatorname{AMAT}(6,1)=0.0$
$\operatorname{AMAT}(6,2)=0.0$
$\operatorname{AMAT}(6,3)=L Y$
$\operatorname{AMAT}(6,4)=1.0$
$\operatorname{AMAT}(6,5)=0.0$
$\operatorname{AMAT}(6,6)=-L Y$
CALL RG(6, 6, AMAT,WR,WI, 0, ZZZ, IV1,FV1, IERR)
CALL DSTABL (DEOS,WR,WI, FREQ)
U=CCRIT
DEOSM=DEOS

```
    UM=U
    PRL=DEOSL*DEOSM
    PRR=DEOSR*DEOSM
    IF (PRL.GT.O.DO) GO TO 5
    UO=UL
    UN=UM
    DEOSO=DEOSL
    DEOSN=DEOSM
    IL=IL+1
    IF (IL.GT.ILMAX) STOP 3100
    DIF=DABS (UL-UM)
    IF (DIF.GT.EPS) GO TO }
    U=UM
    GO TO 4
    IF (PRR.GT.O.DO) STOP 3200
    UO=UM
    UN=UR
    DEOSO=DEOSM
    DEOSN=DEOSR
    IL=IL+1
    IF (IL.GT.ILMAX) STOP 3100
    DIF=DABS (UM-UR)
    IF (DIF.GT.EPS) GO TO 6
    U=UM
    LLL=10+LL
    CCRIT=U
    WRITE (LLL,*) CCRIT,WN
    UOO=UNN
    DEOSOO=DEOSNN
    CONTINUE
    CONTINUE
2 0 0 1 ~ F O R M A T ~ ( 2 I 5 )
    END
C============================================================
    SUBROUTINE DSTABL (DEOS,WR,WI,OMEGA)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION WR(6),WI(6)
    DEOS=-1.0D+20
    DO 1 I=1,6
        IF (WR(I).LT.DEOS) GO TO 1
        DEOS=WR (I)
        IJ=I
    CONTINUE
    OMEGA=WI (IJ)
    OMEGA = DABS (OMEGA)
    RETURN
    END
C==============================================================-
```

[THIS PAGE INTENTIONALLY LEFT BLANK]

APPENDIX C

HOPF BIFURCATION PROGRAM FOR $[X, \hat{X}]$ BASIS

PROGRAM KKPSI

HOPF BIFURCATIONS
NOMOTO'S FIRST ORDER MODEL
CALCULATIONS FOR K AND CCRITICAL IF KPSI CHANGES W/ C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION K1,K2,K,LPSI,LY,LR,IZ,L,
\&
\&
\&
\&
\&
\&
\&
\&

MASS , NV , NR, NVDOT, NRDOT, NDRS , NDRB, KPSI , KR, KY, K3, L21, L22, L23, L24, L31, L32, L33, L34, L51, L52, L53, L54, M11, M12, M13, M14, M15, M16,M21,M22,M23, M24, M25, M26, M31, M32, M33, M34, M35,M36,M41,M42,M43,M44, M45, M46, M51, M52, M53, M54, M55,M56, M61,M62,M63,M64, M65, M66, N11, N12, N13, N14, N15, N16, N21, N22, N23, N24, N25, N26, N31, N32, N33, N34, N35, N36, N41,N42,N43, N44, N45, N46, N51, N52, N53, N54, N55, N56, N61, N62, N63,N64, N65, N66

DIMENSION AMAT $(6,6), \operatorname{T}(6,6), \operatorname{TINV}(6,6), \operatorname{FV1}(6), \operatorname{IV1}(6), \operatorname{YYY}(6,6)$ $\operatorname{DIMENSION} \operatorname{WR}(6), \operatorname{WI}(6), \operatorname{TSAVE}(6,6), \operatorname{TLUD}(6,6), \operatorname{IVLUD}(6), \operatorname{SVLUD}(6)$ DIMENSION $\operatorname{ASAVE}(6,6)$, $\operatorname{A1}(6,6)$, A2 $(6,6)$
OPEN (10,FILE='CVWN1.RES',STATUS='OLD')
OPEN (11,FILE='AKPSI.MAT',STATUS='NEW')
OPEN (12,FILE='IREAL.MAT',STATUS='NEW')
OPEN (13,FILE='RVALS.MAT',STATUS='NEW')
OPEN (14,FILE='KKKKK.MAT',STATUS='NEW')
WEIGHT=435.0
IZ $=45.0$
L $\quad=7.3$
RHO $=1.94$
G $\quad=32.2$
G $\quad=0.0104$
I.ASS =WEIGHT/G

MASS =MASS/(0.5*RHO*L**3)
IZ $\quad=I Z /(0.5 * R H O * L * * 5)$
XG $=X G / L$
YRDOT $=-0.00000$
YVDOT $=-0.03430$
$\mathrm{YR} \quad=+0.00000$
YV $=-0.10700$
YDRS $=+0.01241$
YDRB $=+0.01241$

```
    NRDOT =-0.00047
    NVDOT =-0.00000
    NR =-0.00390
    NV =-0.00000
    NDRS =-0.337*YDRS
    NDRB =+0.283*YDRS
    DH =(IZ-NRDOT)* (MASS-YVDOT) -
        & (MASS*XG-YRDOT)* (MASS*XG-NVDOT)
            A11=((IZ-NRDOT)*YV-(MASS*XG-YRDOT) *NV) /DH
            A12 = ((IZ-NRDOT)* (-MASS+YR) -
& (MASS*XG-YRDOT)*(-MASS*XG+NR))/DH
    A21=((MASS-YVDOT) *NV-(MASS*XG-NVDOT) *YV) /DH
    A22 = ((MASS-YVDOT) * (-MASS*XG+NR) -
& (MASS*XG-NVDOT)* (-MASS+YR)) /DH
B11=((IZ-NRDOT) *YDRS-(MASS*XG-YRDOT)*NDRS) /DH
B12=((IZ-NRDOT) *YDRB-(MASS*XG-YRDOT)*NDRB)/DH
B21=((MASS-YVDOT) *NDRS-(MASS*XG-NVDOT) *YDRS) /DH
B22 = ((MASS-YVDOT) *NDRB- (MASS*XG-NVDOT) *YDRB) /DH
B1 =B11-B12
B2 =B21-B22
C
    200 WRITE (*,1004)
    READ (*,*) IWN
    INCR=IWN
    WRITE (*,*) 'ENTER OBSERVER WN'
    READ (*,*) WNO
    205 WRITE(*,1007)
    READ (*,*) A3
    D0 is Dsat
50 WRITE (*,1006)
    READ (*,*) D0
    C1=(A11*A22-A21*A12)*(A21*B1-A11*B2)
    C2 = (A11+A22) *(A21*B1-A11*B2) +B2*(A11*A22-A21*A12)
    C3 = - (A21*B1-A11*B2) **2
    A=C1/C2
    B=C3/C2
    A3 =0.0
DO 1 II=1,INCR
READ (10,*) CCRIT,WN
    print *,wn
    ALPHAO =WN**3
    ALPHA1=2.15*WN**2
    ALPHA2 =1.75*WN
    KPSI=-ALPHA1/B
    KY =-ALPHAO/B
```

```
KR =- (ALPHA2 + A)/B
```

GAMA0 $=W N O$ * * 3
GAMA1 $=2.15$ *WNO * * 2
GAMA2 $=1.75$ *WNO
$\mathrm{LY}=\mathrm{A}+\mathrm{GAMA} 2$
LPSI $=A * L Y+G A M A 1$
LR=A*LPSI+GAMA0

A MATRIX

$$
\operatorname{AMAT}(1,1)=0.0
$$

$$
\operatorname{AMAT}(1,2)=1.0
$$

$$
\operatorname{AMAT}(1,3)=0.0
$$

$$
\operatorname{AMAT}(1,4)=0.0
$$

$$
\operatorname{AMAT}(1,5)=0.0
$$

$$
\operatorname{AMAT}(1,6)=0.0
$$

$$
\operatorname{AMAT}(2,1)=0.0
$$

$$
\operatorname{AMAT}(2,2)=\operatorname{A}
$$

$$
\operatorname{AMAT}(2,3)=0.0
$$

$$
\operatorname{AMAT}(2,4)=B^{*} C C R I T^{\star} \operatorname{KPSI}
$$

$$
\operatorname{AMAT}(2,5)=B^{\star} \operatorname{KR}
$$

$$
\operatorname{AMAT}(2)=B \star \operatorname{KY}
$$

$$
\operatorname{AMAT} \equiv \quad=1.0
$$

$$
\operatorname{AMAT}(3,-1=0.0
$$

$$
\operatorname{AMAT}(3,3)=0.0
$$

$$
\operatorname{AMAT}(3,4)=0.0
$$

$$
\operatorname{AMAT}(3,5)=0.0
$$

$$
\operatorname{AMAT}(3,6)=0.0
$$

$$
\operatorname{AMAT}(4,1)=0.0
$$

$$
\operatorname{AMAT}(4,2)=0.0
$$

$$
\operatorname{AMAT}(4,3)=\operatorname{LPSI}
$$

$$
\operatorname{AMAT}(4,4)=0.0
$$

$$
\operatorname{AMAT}(4,5)=1.0
$$

$$
\operatorname{AMAT}(4,6)=-\operatorname{LPSI}
$$

$$
\operatorname{AMAT}(5,1)=0.0
$$

$$
\operatorname{AMAT}(5,2)=0.0
$$

$$
\operatorname{AMAT}(5,3)=L R
$$

$$
\operatorname{AMAT}(5,4)=B^{*} C C R I T * \operatorname{KPSI}
$$

$$
\operatorname{AMAT}(5,5)=B \star \operatorname{KR}
$$

$$
\operatorname{AMAT}(5,6)=-L R+B^{*} \operatorname{KY}
$$

$$
\operatorname{AMAT}(6,1)=0.0
$$

$$
\operatorname{AMAT}(6,2)=0.0
$$

$$
\operatorname{AMAT}(6,3)=\mathrm{LY}
$$

$$
\operatorname{AMAT}(6,4)=1.0
$$

$$
\operatorname{AMAT}(6,5)=0.0
$$

$$
\operatorname{AMAT}(6,6)=-L Y
$$

$$
\text { DO } 11 I=1,6
$$

$$
\text { DO } 12 \mathrm{~J}=1,6
$$

$$
\operatorname{ASAVE}(I, J)=\operatorname{AMAT}(I, J)
$$

CONTINUE

CALL RG(6, 6, AMAT,WR,WI, 1, YYY, IV1, FV1, IERR)
CALL DSOMEG (IEV,WR,WI, OMEGA, CHECK)

C WRITE (*,*) IEV
WRITE (12,*) (WR (IREAL), IREAL=1, 6)
OMEGA0 = OMEGA
DO $5 I=1,6$

$$
T(I, I)=Y Y Y(I, I E V)
$$

$$
T(I, 2)=-Y Y Y(I, I E V+1)
$$

CONTINUE
IF (IEV.EQ.1) GO TO 13
IF (IEV.EQ.2) GO TO 14
IF (IEV.EQ.3) GO TO 15
IF (IEV.EQ.4) GO TO 16
IF (IEV.EQ.5) GO TO 17
STOP 3004
DO $21 \mathrm{I}=1,6$

$$
T(I, 3)=Y Y Y(I, 3)
$$

$$
T(I, 4)=Y Y Y(I, 4)
$$

$$
T(I, 5)=Y Y Y(I, 5)
$$

$$
T(I, 6)=Y Y Y(I, 6)
$$

CONTINUE
GO TO 30
14 DO $22 \quad \mathrm{I}=1,6$

$$
T(I, 3)=Y Y Y(I, I)
$$

$$
T(I, 4)=Y Y Y(I, 4)
$$

$$
T(I, 5)=Y Y Y(I, 5)
$$

$$
T(I, \sigma)=Y Y Y(I, \sigma)
$$

CONTINUE
GO TO 30
15 DO $23 \mathrm{I}=1,6$

$$
T(I, 3)=Y Y Y(I, I)
$$

$$
T(I, 4)=Y Y Y(I, 2)
$$

$$
T(I, 5)=Y Y Y(I, 5)
$$

$$
T(I, 6)=Y Y Y(I, 6)
$$

23 CONTINUE
16 DO $24 \quad I=1,6$

$$
T(I, 3)=Y Y Y(I, 1)
$$

$$
T(I, 4)=Y Y Y(I, 2)
$$

$$
T(I, 5)=Y Y Y(I, 3)
$$

$$
T(I, \sigma)=Y Y Y(I, 6)
$$

CONTINUE
GO TO 30
17 DO $25 \mathrm{I}=1,6$ $T(I, 3)=Y Y Y(I, 1)$ $T(I, 4)=Y Y Y(I, 2)$ $T(I, 5)=Y Y Y(I, 3)$ $T(I, 6)=Y Y Y(I, 4)$
25 CONTINUE
30 CONTINUE

CALL NORMAL (T)
INVERT TRANSFORMATION MATRIX

```
DO 2 I=1,6
    DO }3\textrm{J}=1,
            TINV (I,J) =0.0
            TSAVE (I,J) =T (I,J)
        CONTINUE
CONTINUE
CALL DLUD(6,6,TSAVE,6,TLUD,IVLUD)
DO 4 I=1,6
    IF (IVLUD(I).EQ.0) STOP 3003
CONTINUE
CALL DILU(6,6,TLUD,IVLUD,SVLUD)
DO 8 I=1,6
    DO }9\textrm{J}=1,
        TINV (I,J) =TLUD (I,J)
CONTINUE
CONTINUE
```

CHECK Inv(T)*A*T
IMULT=1
IF (IMULT.EQ.1) CALL MULT(TINV,ASAVE, T, A2)
IF (IMULT.EQ.0) STOP
$\mathrm{P}=\mathrm{A} 2(3,3)$
$\mathrm{Q}=\mathrm{A} 2(4,4)$
$\mathrm{R}=\mathrm{A} 2(5,5)$
$S=A 2(6,6)$
WRITE (21, *) P, Q,R,S
DEFINITION OF Nij
N11=TINV (1, 1)
N21=TINV $(2,1)$
$\mathrm{N} 31=\mathrm{TINV}(3,1)$
$\mathrm{N} 41=\operatorname{TINV}(4,1)$
N51=TINV $(5,1)$
N61=TINV $(6,1)$
$\mathrm{N} 12=\mathrm{TINV}(1,2)$
$\mathrm{N} 22=\operatorname{TINV}(2,2)$
$\mathrm{N} 32=\mathrm{TINV}(3,2)$
$\mathrm{N} 42=\mathrm{TINV}(4,2)$
N52 $=$ TINV $(5,2)$
N62 =TINV $(6,2)$
$\mathrm{N} 13=\operatorname{TINV}(1,3)$
$\mathrm{N} 23=\operatorname{TINV}(2,3)$
$\operatorname{N3} 3=\operatorname{TINV}(3,3)$
N43 $=\operatorname{TINV}(4,3)$
N53 $=\operatorname{TINV}(5,3)$
N63 $=\operatorname{TINV}(6,3)$
N14 = TINV $(1,4)$
N2 $4=\operatorname{TINV}(2,4)$
N34=TINV $(3,4)$
N44 = TINV $(4,4)$
N54 =TINV $(5,4)$
N64=TINV $(6,4)$
N15=TINV $(1,5)$
N25 = TINV $(2,5)$
N35=TINV $(3,5)$
N45=TINV $(4,5)$
N55=TINV $(5,5)$
N65=TINV $(6,5)$
N16=TINV $(1,6)$
N26=TINV $(2,6)$
N36=TINV $(3,6)$
N46=TINV $(4,6)$
N56=TINV $(5,6)$
N66=TINV $(6,6)$

DEFINITION OF Mij

M11 $=\mathrm{T}(1,1)$
M21 $=\mathrm{T}(2,1)$
M31 $=\mathrm{T}(3,1)$
M41 $=\mathrm{T}(4,1)$
M51 $=\mathrm{T}(5,1)$
M61 $=\mathrm{T}(6,1)$
M12 $=\mathrm{T}(1,2)$
M22 $=\mathrm{T}(2,2)$
M32 $=\mathrm{T}(3,2)$
M42 $=\mathrm{T}(4,2)$
M52 $=\mathrm{T}(5,2)$
M62 $=\mathrm{T}(6,2)$
M13 $=\mathrm{T}(1,3)$
M23 $=\mathrm{T}(2,3)$
M33 $=\mathrm{T}(3,3)$
M43 $=\mathrm{T}(4,3)$
M53 $=\mathrm{T}(5,3)$
M63 $=\mathrm{T}(6,3)$
M14 $=\mathrm{T}(1,4)$
M24 $=\mathrm{T}(2,4)$
M34 $=\mathrm{T}(3,4)$
M44 $=\mathrm{T}(4,4)$
M54 $=\mathrm{T}(5,4)$
M64 $=\mathrm{T}(6,4)$

M15 $=T(1,5)$
M25 $=\mathrm{T}(2,5)$
M35 $=\mathrm{T}(3,5)$
M45 $=\mathrm{T}(4,5)$
M55 $=\mathrm{T}(5,5)$
M65=T $(6,5)$
M16=T $(1,6)$
M2 $6=T(2,6)$
M36 $=T(3,6)$
M46=T $\left(\frac{1}{2}, 6\right)$
M56=T $(3,6)$
M66=T $(6,6)$

```
K1=1./8.*((ALPHA2**3) +ALPHA0) / (ALPHA2)
K2=3.*A3-.5*(ALPHA2 **2)/ALPHA0
K3=1./((B**2)*(D0**2))* (ALPHA2 +A)* ((ALPHA0/ALPHA2 ) + (A**2))
K=K1* (K2+K3)
```

print *, wn,k,ccrit
$B L=B /(3 * D 0 * * 2)$
C2345678901234567890123456789012345678901234567890123456789012345 L21=A3*M21**3-BL* (CCRIT**3*KPSI**3*M41**3+KR**3*M51**3+
\&
KY**3*M61**3+
3*CCRIT**2*KPSI**2*KR*M41**2*M51+
3*CCRIT**2*KPSI**2*KY*M41**2*M61+
\& 3 *CCRIT*KPSI*KR**2*M51**2*M41 + 3*CCRIT*KPSI*KY**2*M61**2*M41+
\& $\quad 3$ *KR*KY**2*M61**2*M51 + 3*KR**2*KY*M51**2*M61+
\& 6*CCRIT*KPSI*KR*KY*M41*M51*M61)
$\mathrm{L} 22=\mathrm{A} 3$ *M22**3-BL* (CCRIT** 3 *KPSI** 3 *M42** $3+\mathrm{KR}$ * * 3 *M52 ** $3+$
\& KY** 3 *M62** $3+$
\& $3 *$ CCRIT**2*KPSI**2*KR*M42**2*M52+
\& 3 *CCRIT** 2 *KPSI** $2 *$ KY*M42** 2 *M62
\& 3 *CCRIT*KPSI*KR** 2 *M52** 2 *M42 + 3 *CCRIT*KPSI*KY** 2 *M62** 2 *M4 $2+$
\& $\quad 3 * \mathrm{KR} * \mathrm{KY} * 2 * \mathrm{M} 62 * * 2 * \mathrm{M} 52+3 * \mathrm{KR}$ ** 2 *KY*M52** 2 *M62+
\& $\quad 6^{*}$ CCRIT*KPSI*KR*KY*M42*M52*M62)
L23 $=3$ *A3*M21**2*M22-BL* (3*CCRIT**3*KPSI** 3 *M41**2*M42 +
\& $\quad 3 *$ KR** 3 *M51** $2 *$ M5 $2+$
\& $\quad 3 *$ KY** 3 *M61** $2 * M 62+$
\& 3 *CCRIT**2*KPSI**2*KR* (M41**2*M52 + 2 *M41*M42*M51) +
\& $\quad 3 *$ CCRIT** $2 *$ KPSI** $2 *$ KY* (M41**2*M62 + $2 *$ M41*M42*M61) +
\& 3 *CCRIT*KPSI*KR**2* (M51**2*M42 + 2*M51*M52*M41) +
\& $\quad 3$ *CCRIT*KPSI*KY**2*(M61**2*M42+2*M61*M62*M41) +
\& $\quad 3 * \mathrm{KR} *$ KY** 2 * (M61** $2 *$ M5 $2+2$ *M61*M62*M51) +
\& $\quad 3 *$ KR** $2 *$ KY* (M51**2*M62 ${ }^{2}$ *M51*M52*M61) +
\& 6*CCRIT*KPSI**KR*KY* (M41*M51*M62+(M41*M52+M42*M51)*M61))
$\mathrm{L} 24=3$ *A3 *M21*M22**2-BL* (3*CCRIT**3*KPSI**3*M41*M42**2+
\&
\&

$$
3 * \text { KR * * } 3 \text { *M51*M52 **2 }
$$

$$
3 * \text { KY ** } 3 \text { *M61*M62**2+ }
$$ 3*CCRIT**2*KPSI**2*KY* (M42**2*M61 + 2*M41*M42*M62) + 3*CCRIT*KPSI*KR**2* (M52**2*M41+2*M51*M52*M42) + 3*CCRIT*KPSI*KY**2* (M62**2*M41+2*M61*M62*M42) + 3*KR*KY**2* (M62**2*M51 + 2*M61*M62*M52) + 3*KR**2*KY* (M52**2*M61 + 2*M51*M52*M62) +

6*CCRIT*KPSI*KR*KY* (M42*M52*M61+(M41*M52+M42*M51)*M62))
L31 $=(-1 / 6) *$ M11 ${ }^{* *} 3$
L32 $=(-1 / 6) \star$ M1 $2^{\star \star}$ * 3
L33 $=(-1 / 2) \star$ M11 ** $2 *$ M12
L3 $4=(-1 / 2){ }^{*}$ M11*M12**2
C2345678901234567890123456789012345678901234567890123456789012345 L51 = -BL* (CCRIT** 3 *KPSI** $3 *$ M41** $3+$ KR** $3 * M 51 * * 3+K Y * * 3 * M 61 * * 3+$ \& $3 * C C R I T * * 2 * K P S I * * 2 * K R * M 41 * * 2 * M 51+$
\& 3 *CCRIT**2*KPSI**2*KY*M41** 2 *M61
\& 3 *CCRIT*KPSI*KR** $2 *$ M51** $2 * M 41+3 * C C R I T * K P S I * K Y * * 2 * M 61 * * 2 * M 41+$
$\&$ \& 6*CCRIT*KPSI*KR*KY*M41*M51*M61)
L52 $=-$ BL * (CCRIT** 3 *KPSI** 3 *M42** $3+$ KR** $3 * M 52 * * 3+K Y * * 3 * M 62 * * 3+$
\& 3 *CCRIT**2*KPSI** 2 *KR*M42** 2 *M52+
\& 3 *CCRIT**2*KPSI** 2 *KY*M42** 2 *M62+
\& 3 *CCRIT*KPSI*KR** $2 \star$ M52** $2 \star$ M4 $2+3 *$ CCRIT*KPSI*KY** $2 \star$ M62** $2 * M 42+$ $3 * K R * K Y * * 2 * M 62 * * 2 * M 52+3 * K R * * 2 * K Y * M 52 * * 2 * M 62+$
\&
\& 6*CCRIT*KPSI*KR*KY*M42*M52*M62)
$\mathrm{L} 53=-\mathrm{BL} *(3 * C C R I T * * 3 * K P S I * * 3 * M 41 * * 2 * M 42+3 * K R * * 3 * M 51 * * 2 * M 52+$ 3*KY**3*M61**2*M62+ 3*CCRIT**2*KPSI**2*KR* (M41**2*M52+2*M41*M42*M51) + 3*CCRIT**2*KPSI**2*KY* (M41**2*M62+2*M41*M42*M61) + 3*CCRIT*KPSI*KR**2*(M51**2*M42+2*M51*M52*M41) + 3*CCRIT*KPSI*KY**2*(M61**2*M42+2*M61*M62*M41) + 3*KR*KY**2*(M61**2*M52+2*M61*M62*M51) + 3*KR**2*KY* (M51**2*M62+2*M51*M52*M61) + 6*CCRIT*KPSI*KR*KY* (M41*M51*M62 +(M41*M52+M42*M51)*M61)) L54 =-BL* (3*CCRIT**3*KPSI**3*M41*M42**2+3*KR**3*M51*M52**2+
\& $\quad 3 *$ KY** $3 *$ M61*M62**2+ 3*CCRIT**2*KPSI**2*KR* (M42**2*M51+2*M41*M42*M52) + $3 * C C R I T * * 2 * K P S I * * 2 * K Y *(M 42 * * 2 * M 61+2 * M 41 * M 42 * M 62)+$ 3*CCRIT*KPSI*KR**2*(M52**2*M41+2*M51*M52*M42) + 3*CCRIT*KPSI*KY**2* (M62**2*M41+2*M61*M62*M42) + 3*KR*KY**2*(M62**2*M51+2+M61*M62*M52) +

\& 6*CCRIT*KPSI*KR*KY*(M42*M52*M61+(M41*M52+M42*M51)*M62))

$\mathrm{R} 12=\mathrm{N} 12$ * $\mathrm{L} 23+\mathrm{N} 13 * \mathrm{~L} 33+\mathrm{N} 15 *$ L53
R13 $=$ N12 * L $24+$ N13 * L $34+N 15 * L 54$
R14 $=$ N12*L22 + N13*L32 + N15*L52
R21 $=$ N22*L21 + N23*L31+N25*L51
R22 $=$ N22 * L $23+$ N 23 * L $33+$ N $25 *$ L53
$\mathrm{R} 23=\mathrm{N} 22$ * $\mathrm{L} 24+\mathrm{N} 23$ * $\mathrm{L} 34+\mathrm{N} 25 * \mathrm{~L} 54$
$\mathrm{R} 24=\mathrm{N} 22$ * $\mathrm{L} 22+\mathrm{N} 23$ * $\mathrm{L} 32+\mathrm{N} 25 *$ L52

WRITE (13,*) R11,R13,R22,R24
$K=(3 * R 11+R 13+R 22+3 * R 24) / 8$
WRITE (11,2001) WN,K,CCRIT
1 CONTINUE
STOP
1004 FORMAT (', ENTER NUMBER OF DATA')
1006 FORMAT (' ENTER DELTASAT.')
1007 FORMAT ('ENTER A3')
2001 FORMAT (3 E15.5)
END
 SUBROUTINE DSOMEG (IJK,WR,WI, OMEGA, CHECK)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR (6),WI(4)
CHECK $=-1.0 \mathrm{D}+25$
DO $1 I=1,6$
IF (WR (I).LT.CHECK) GO TO 1

CHECK=WR (I)

$$
I J=I
$$

CONTINUE
OMEGA=DABS (WI (IJ))
IF (WI(IJ).GT.O.DO) IJK=IJ
IF (WI (IJ).LT.O.DO) IJK=IJ-1
RETURN
END

SUBROUTINE NORMAL (T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION $T(6,6), \operatorname{TNOR}(6,6)$
$\mathrm{CFAC}=\mathrm{T}(1,1) * * 2+\mathrm{T}(1,2) * * 2$
IF (DABS (CFAC).LE.(1.D-10)) STOP 4001
$\operatorname{TNOR}(1,1)=1 . \operatorname{DO}$
$\operatorname{TNOR}(2,1)=(T(1,1) * T(2,1)+T(2,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(3,1)=(T(1,1) * T(3,1)+T(3,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(4,1)=(T(1,1) * T(4,1)+T(4,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(5,1)=(T(1,1) * T(5,1)+T(5,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(6,1)=(T(1,1) * T(6,1)+T(6,2) * T(1,2)) / C F A C$
$\operatorname{TNOR}(1,2)=0 . \operatorname{DO}$
$\operatorname{TNOR}(2,2)=(T(2,2) * T(1,1)-T(2,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(3,2)=(T(3,2) * T(1,1)-T(3,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(4,2)=(T(4,2) * T(1,1)-T(4,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(5,2)=(T(5,2) * T(1,1)-T(5,1) * T(1,2)) / C F A C$
$\operatorname{TNOR}(6,2)=(T(6,2) * T(1,1)-T(6,1) * T(1,2)) / C F A C$
DO $1 \quad I=1,6$
DO $2 \mathrm{~J}=1,2$
$T(I, J)=\operatorname{TNOR}(I, J)$
CONTINUE
CONTINUE
RETURN

END

```
C=====================================
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION TINV (6,6),A(6,6),T(6,6),A1(6,6),A2(6,6)
    DO 1 I=1,6
    DO 2 J=1,6
        A1 (I,J) =0.D0
        A2 (I,J) =0.D0
2 CONTINUE
1 CONTINUE
    DO }3\mathrm{ I=1,6
    DO 4 J=1,6
        DO 5 K=1,6
            A1 (I,J) =A (I,K) *T (K,J) +A1 (I,J)
                CONTINUE
CONTINUE
3 CONTINUE
    DO 6 I=1,6
    DO 7 J=1,6
        DO 8 K=1,6
            A2(I,J) =TINV (I,K) *A1 (K,J) +A2 (I,J)
            CONTINUE
    CONTINUE
    CONTINUE
    DO }11\textrm{I}=1,
C WRITE (*,101) (A (I,J),J=1, 6)
11 CONTINUE
    DO 12 I=1,6
C WRITE (*,101) (T (I,J),J=1, 6)
CONTINUE
    DO 10 I=1,6
C WRITE (*,101) (A2 (I,J),J=1,6)
10 CONTINUE
C WRITE (*,101) A2 (1,1)
    RETURN
101 FORMAT (4E15.5)
    END
```


REFERENCES

Bahrke, K., "On-line Identification of the Steering and Driving Response of an Autonomous Underwater Vehicle from Experimental Data," Mechanical Engineer's thesis, Naval Postgraduate School, Monterey, CA, 1992.

Carr, J., "Applications of CENTER Manifold Theory," Applied Mathematical Sciences 35, Springer-Verlag, New York, 1981.

Chow, S. N. and Mallet-Paret, J., "Integral Averaging and Bifurcation," J. of Differential Equations, vol. 26, pp. 112-159, 1977.

Crane, C. L., Eda, H., and Landsburg, A, Principles of Naval Architecture, E. V. Lewis, ed., The Society of Naval Architects and Marine Engineers, New York, 1989.

Dorf, R. C., Modern Control Systems, Addison-Wesley Publishing Co., 1992.
Friedland, B., Control System Design; An Introduction to State Space Methods, McGraw-Hill, New York, 1986.

Guckenheimer, J. and Holmes, P., "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Applied Mathematical Sciences 42, SpringerVerlag, New York, 1983.
Hassard, B. and Wan, Y. H., "Bifurcation Formulae Derived from Center Manifold Theory," J. of Mathematical Analysis and Applications, vol. 63, pp. 297-312, 1978.

Hei y, A. J., "Model-based Maneuvering Controls for Autonomous Underwater Vehicles," J. of Dynamic Systems, Measurement, and Control, Trans. of ASME, vol. 114, pp. 614-622, 1992.

Marsen, J. E. and McCracken, M., "The Hopf Bifurcation and Its Applications," Applied Mathematical Sciences 19, Springer-Verlag, New York, 1976.

Oral, Z. O., "Hopf Bifurcations in Path Control of Marine Vehicles," Master of Science thesis, Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA, 1993.

Papoulias, F., A., "On the Nonlinear Dynamics of Pursuit Guidance for Marine Vehicles," submitted for publication to the J. of Ship Research, 1992.

Papoulias, F. A., "Bifurcation Analysis of Line of Sight Vehicle Guidance Using Sliding Modes," Intl. J. of Bifurcation and Chaos, vol. 1, p. 4, 1991.

Papoulias, F. A. and Healey, A. J., "Path Control of Surface Ships Using Sliding Modes," J. of Ship Research, vol. 36, p. 2, 1992.

Parsons, M. G. and Cuong, H. T., "Surface Ship Path Control of Surface Ships in Restricted Waters," Department of Naval Architecture and Marine Engineering, Report No. 233, The University of Michigan, Ann Arbor, 1980.

Parsons, M. G. and Cuong, H. T., " Adaptive Path Control of Surface Ships in Restricted Waters," Department of Naval Architecture and Marine Engineering, Report No. 211, The University of Michigan, Ann Arbor, 1980.

Parsons, M. G. and Cuong, H. T., "Optimal Stochastic Path Control of Ships in Shallow Water," Office of Naval Research Report No. ONR-CR-215-249-2F, 1977.

Seydel, R. From Equilibrium to Chaos, Elsevier, New York, 1986.
Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, John Wiley and Sons, New York, 1986.

Yoerger, D. R. and Slotine, J. J., "Robust Trajectory Control of Underwater Vehicles," IEEE J. of Oceanic Engineering, vol. 10, p. 4, 1985.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2 Cameron Station
Alexandria, VA 22304-6145
2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Chairman, Code ME 1
Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5000
4. Professor Fotis A. Papoulias, Code ME/PA 2
Department of Mechanical Engineering Naval Postgraduate School
Monterey, CA 93943-5000
5. Naval Engineering Curricular Office, Code 34 1
Naval Postgraduate School
Monterey, CA 93943-5100
6. Deniz Kuvveleri Komutanligi 2
Personel Daire Baskanligi
Bakanliklar, Ankara, Turkey
7. Gölcük Tersanesi Komutanligi 1
Golcuk, Kocaeli, Turkey
8. Deniz Harp Okulu Komutanligi 1
81704 Tuzla, Istanbul, Turkey
9. Taşkizak Tersanesi Komutanligi 1
Kasimpasa, Istanbul, Turkey
10. Bülent Olcay 2
Kardesler Sok. Huzur Apt.
A Blok 11/10 Dikilitaş
81150 Beşiktaş, Istanbul, Turkey
 \qquad -

$+5$

$$
5
$$

$$
2
$$

Trime
$\sqrt{2}+2$
-

2 $=-2$

 1 $=$$\qquad$
$1 \mathrm{~F}=$ \qquad θ
\qquad

QUQLEY KNOX LIBRARY
MAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

