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In 2013, the Caribbean underwent an unprecedented epidemic
of Chikungunya that affected 29 islands and mainland
territories throughout the Caribbean in the first six months.
Analysing the spread of the epidemic among the Caribbean
islands, we show that the initial patterns of the epidemic can
be explained by a network model based on the flight
connections among islands. The network does not follow a
random graph model and its topology is likely the product
of geo-political relationships that generate increased
connectedness among locations sharing the same language.
Therefore, the infection propagated preferentially among
islands that belong to the same cultural domain, irrespective
of their human and vector population densities. Importantly,
the flight network topology was also a more important
determinant of the disease dynamics than the actual volume
of traffic. Finally, the severity of the epidemic was found to
depend, in the first instance, on which island was initially
infected. This investigation shows how a simple epidemic
model coupled with an appropriate human mobility model
can reproduce the observed epidemiological dynamics. Also,
it sheds light on the design of interventions in the face of
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the emergence of infections in similar settings of naive subpopulations loosely interconnected by host

movement. This study delves into the feasibility of developing models to anticipate the emergence of
vector-borne infections, showing the importance of network topology, bringing valuable methods for
public health officials when planning control policies. Significance statement: The study shows how a
simple epidemic model associated with an appropriate human mobility model can reproduce the
observed epidemiological dynamics of the 2014 Chikungunya epidemic in the Caribbean region.
This model sheds light on the design of interventions in the face of the emergence of infections in
similar settings of naive subpopulations loosely interconnected by the host.
/journal/rsos
R.Soc.Open

Sci.10:230909
1. Introduction
Chikungunya fever is an acute febrile illness caused by Chikungunya virus (CHIKV) and transmitted
by Aedes spp. mosquitoes. It was first recognized as a human pathogen during the 1950s in Africa.
Since then, sporadic epidemics have occurred throughout Africa and South and Southeast Asia up
until the early 2000s [1,2]. In 2004, there was a resurgence of cases reported in many African countries
and a large epidemic spanned from Africa to the southwestern Indian Ocean region, India, and
Southeast Asia [3]. In late 2013, there was an unprecedented epidemic in the Caribbean following its
first introduction into this immunologically naive territory. The explosive nature of its spatial
propagation since the first confirmed case was reported in the island of St Martin, resulting in an
epidemic that affected 23 countries in the first six months, 35 countries in the first 12 months [4] and
by February of 2016 had already produced more than 1.7 million new infections in the Americas in 45
countries [5].

The Caribbean outbreak was remarkable not only for its intensity but also for the unpredictable
nature of its spread across the myriad of islands comprising the region. Insofar as the islands are
principally connected by air travel and given that a significant proportion of CHIKV infections are
asymptomatic [6], it is reasonable to assume that infected humans and not mosquitoes spread the
virus amongst the islands. Thus, in such a spatially structured epidemic setting where a
communicable disease is invading a totally naive population, the geometry of the mobility pattern of
the host individuals will probably play a key role. We conjecture that the topology of population
mobility is the most important factor driving disease dynamics. In such a context, spatially explicit
models are clearly necessary [7,8]. Attempts to model the movement of individuals as a means to
understand the rapid propagation of infectious diseases have been numerous and approaches diverse:
cellular automata [9], networks [10,11], individual-based models [12] and metapopulation approaches
[13]. For spatial spread, both distributed contacts and distributed-infective models have been used
with some success [10,14,15]. Here we use a similar approach to that of contact networks to analyse
the Caribbean Chikungunya outbreak. Because public health preparedness can enable intervention
mitigating against viral invasion, we focused on the first 10 months of the expansion of CHIKV in the
Caribbean in 2013 to better understand the main factors determining the initial phase of invasion and
propagation (figure 1a). This was also selected to avoid potentially confounding effects of within-
island herd immunity.

Previous work has introduced the importance of contact networks between human populations in
the spread of diseases. Guzzetta et al. [17] show the importance of the spatial component in the
spreading of Chikungunya in Italy. Zhang et al. [18] focused on the continental area and not on the
geographical spread throughout the Caribbean island system, which may show a different dynamic
due to the isolation of the nodes. The present paper focuses exclusively on the initial stages of the
epidemic, avoiding re-seeding stages of the infection in the islands.

Finally, Salje et al. [19] assessed the effect that social structures have on rural communities
in Bangladesh. Once again, the role of connectivity and contact networks established by these
communities was studied, but in a different environment than that represented by island systems, in
which the isolation of the nodes makes the network structure a preponderant factor in the overall
dynamics of the system.

Thus, the work is structured as follows. Firstly, in the Model formulation section, we proceed to
properly describe the compartmentalized model that underlies the node level and the network model
that provides the spatial component and how both approaches complement each other. Next, the
Results section describes the main results obtained by the model using different topological
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Figure 1. (a) Caribbean modelled region and network model based on commercial airline traffic connections during the years 2013–
2014 (www.openflights.com [16]). (b) Flight network model aggregated by geopolitical entities and colours indicating spoken
languages in the simulated locations. (c) Aggregated reported Chikungunya cases of the outbreak (blue) and mean model daily
solution (red line), the red shadow is the standard deviation for 1000 model evaluations with different parameters from the
parameter’s set. (d ) Weekly reported real case data and model solution (top) and Lomb-scargle periogram for the model
aggregated solution and real data (bottom).
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configurations in the contact network in order to validate the hypothesis of the importance of linguistic
grouping in the spread of the outbreak. In the Discussion section, each of the modelled counterfactual
scenarios is analysed in detail and contrasted with the real scenario, showing the importance of
linguistic clustering and demonstrating that more serious outbreaks could have occurred if the initial
conditions of the system had been different. Finally, in the electronic supplementary material, a more
detailed analysis of the model is offered, explaining how the main parameters that determine the
dynamics were determined; a parameter sensitivity analysis determines the robustness of the method
and finally, the model is validated using a different dataset from the original one.
2. Material and methods
2.1. Model formulation
An epidemic compartmental model built as a set of coupled SEIR (susceptible-exposed-infected-
recovered classes) ordinary differential equations (ODEs) was coupled by a host mobility model
developed on the basis of a commercial flight network dataset (model (2.1)). This way, the topology of
the mobility network that interconnects the equations describing the infection dynamics represents
the flight connection network of the region at the time of the outbreak. The flight dataset was obtained
from openflights.org [16]. In order to recreate a network that is as realistic as possible to the 2013
context, we use the data from the aforementioned repository (open-flights) corresponding to that year
(2013). As a consequence, this topology reflects an approximation of the mobility pattern of people in
the region, namely during the epidemic event investigated. The epidemic global SEIR model is
structured as a network where each node of the network represents a local population and is modelled

http://openflights.org
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as a deterministic local SEIRODE system. This local node ODE system is in turn coupled with other similar

SEIR nodes via migration rates given by the link strengths drawn from the flight network of connections.
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The assumptions of the model (2.1) are as follows: (i) Each node can be modelled as a homogeneous
SEIR ODE system that represents the local epidemic dynamics of a particular isolated population in an
area (island, country, territory, etc.); (ii) Nodes are coupled with other nodes by host migration rates;
(iii) The network of flight connections is a good approximation of the pattern of the human host
mobility among locations in the Caribbean region; (iv) Mosquitoes are in excess and therefore their
population dynamics do not matter for explaining the infection dynamics in the host population.
This assumption transforms the vector-borne model into a host-to-host infection process, but with
the addition of a transmission rate parameter that integrates mosquito mediated infection as a
constant. Under this assumption, the infection term, i.e. the force of infection times the number of
susceptible individuals, λS, simply depends on the number of susceptible and infectious hosts, βSI,
as there are always enough mosquitoes to infect people. Finally S, E, I, R, N are the number of
susceptible, exposed, infectious, recovered and total individuals, respectively; and lastly, we assume
that (v) mosquito movement between nodes is zero or it can be neglected.

One of the characteristics of the proposed model is that it does not explicitly consider the population of
vectors asmentioned above. Vector dynamics play a role in a vector-driven system, butwe assume there is a
non-limiting mosquito population size, which is realistic in tropical regions. Previous models have been
shown to adequately match observed Chikungunya epidemic data in La Réunion and Colombia without
the need to complicate the model with vector dynamics for which detailed data are lacking [20,21].

One consequence of the former assumptions is that human hosts are the only carriers involved in the
geographical spread of CHIKV in the region. The mathematical description of the SEIR model is given by
the ODE system (2.1), where the indices i, j denote locations and n is the total number of nodes. We have
then 4n coupled equations. Si, Ei, Ii, Ri denote the local population fractions of susceptible, exposed,
infected, recovered, Ni = Si + Ei + Ii + Ri is the total population of human hosts at each location i. We
thus assumed in (iv) of the previous model assumption list that the per capita transmission rate
integrates the local mosquito dynamics.

These assumptions hypothesize that the main mechanism for the propagation of CHIKV during the
outbreak in the Caribbean would essentially be a process driven by the human host mobility carrying
the virus to remote locations and that a flight network should capture the spatio-temporal dynamics
in the early stages of the outbreak. Additionally, these assumptions permit the implementation of a
relatively simple epidemic model with few infection parameters to fit the data—namely the transmission
rate of infection β, the rate of change from exposed to infection classes σ, and the recovery rate γ, where
σ−1 and γ−1 are the incubation period (average time of a typical exposed individual to become infectious)
and the duration of infection (i.e. average time of a typical infected individual to recover from the
infection), respectively [22] (see table 1). This approach with few parameters to estimate produces a
convenient framework for analysis, tractability and especially to facilitate intuition on the qualitative
behaviour of the epidemic dynamics. Because the mobility network is relatively stable in time when
compared with the time scales of infection spreading, the model can serve as an operational framework to
create strategic control policies for the geographical propagation of arboviral infections of loosely
connected naive territories.

Figure1b showsthenetworkmodel basedon reported flight connections andused forcouplingat eachnode
the local SEIR sub-models. Each node in the network models a location for which data exist on reported
incidence of Chikungunya (both confirmed and suspected cases) as reported by PAH Organization [23].



Table 1. Main model parameters. The network-related parameters are explained later in the network model section. β, σ and γ
are the common parameters of a classic SEIR model and the meaning in this model is well explained above in this section.

parameter definition

β transmission rate

σ incubation rate

γ recovery rate

τi,j immigration rate of individuals to node i from nodes j ¼ 1, . . ., n

ρi emigration rate at which individuals move out from node i
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For setting the model’s initial node population sizes, corresponding real inhabitant numbers from
censuses for these locations were used [24]. The existence of a link between any two nodes indicates
that there is at least one commercial airline operating between them at the time of the outbreak. Each
link has an associated strength. The link strength between any two locations is proportional to the
number of commercial air flights operating between them and, here, it is assumed to be directly
proportional to the number of passengers traveling. Countries/Islands represented as local
populations by the network nodes are the following: Puerto Rico, Dominican Republic, Jamaica, Haiti,
Cuba, Cayman Islands, Bahamas, Colombia, Venezuela, Antigua and Barbuda, Barbados, Dominica,
Martinique, Guadeloupe, Grenada, Virgin Islands, Saint Kitts and Nevis, Saint Lucia, Aruba, Bonaire,
Curaçao, Sint Eustatius, Sint Maarten, Anguilla, Trinidad and Tobago, British Virgin Islands, Saint
Vincent and the Grenadines, Montserrat, Saba and Saint Barthelemy.
3. Results
Within 10months of the first reported case on the island of SaintMartin inOctober 2013, 4148 Chikungunya
cases were reported sequentially in 28 additional islands or mainland territories throughout the Caribbean
[23]. The flight connection network of these islands for that time span, alongwith the number of commercial
flight companies between each location, were retrieved from openflights.org [16].

Figure 1a shows the flight connection network in the Caribbean and northern South America. Using
the observed flight network structure, an epidemic network model was developed (equation set (2.1)).
The data provided by openflights.org gather the number of commercial carriers operating between
any two airports in the region. These airport connection data were used to develop a human mobility
network model. We assume that the numbers of flights are proportional to the number of passengers
traveling. In the fitting process, a scaling factor is computed to adjust for this assumption. In the
network model, each island is considered a node and these nodes are connected according to
the observed flight network topology; the connections or links represent the air transportation paths
between the local populations of the islands or mainland territories in the investigated region. All the
airports belonging to the same location were grouped into a single node and their respective link
strengths were summed. This produces a network model where nodes represent local homogeneous
populations and links represent the entire mobility flux that enters or exits each node population. This
generates a model of closed subpopulations that are loosely connected by mobility links. Additionally,
the epidemic network model was constructed as a set of local susceptible-exposed-infected-recovered
(SEIR) population compartmental models, with one SEIR population model for each node of the
network. Each SEIR node model assumes a homogeneous contact structure. This renders the spatial
resolution of the model structure at the level of nodes. The mathematical description of the model is
given by the set of ordinary differential equations (2.1). The nodes represent defined locations, either
island or mainland territories that reported Chikungunya cases during the first 10 months, so the model
can be fitted to the available incidence data. We computed numerical solutions of the model (2.1) at the
level of individual nodes. The numerical solutions represent simulated local outbreaks on each island or
mainland territory. The node-level numerical solutions were then aggregated (all local node solutions
were summed) into a single global solution. The aggregated solution was in turn parametrized and
fitted by a nonlinear least-squares method [25] to the Chikungunya aggregated case incidence data [23].
The data fitted numerical solutions used were produced by equation set (2), where the network epidemic
parameters βnet, σnet, γnet were estimated globally for the network (electronic supplementary material,

https://openflights.org
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table S1). It is important to note that this parameter set is estimated for the aggregated numerical solution
across all local node solutions, and should not be interpreted as if the parameters were describing the
epidemic dynamics of an unstructured homogeneous or quasi-homogeneous single population.

The main idea to fit the aggregated data of all islands to the sum of all network individual nodes
solutions, rather than fitting each observed population to a particular node model, is that this
approach produces a unique parametrization of the SEIR for all the nodes of the network. The
estimation of the global parameters βnet, σnet, γnet allows us to focus on the effect of the network
structure alone on the dynamics of the infection spread, which is one of our main concerns in this
study. This would not be clearly examined if we, instead, would attempt to parameterize individual
nodes, producing 29 sets of parameter estimates, one for each possible node. This is because we
would be introducing an additional source of heterogeneity in the network model, namely the
variation of individual node parameters that may modulate the dynamics at local levels in addition to
the effect of network topology alone. Therefore, the epidemiological network estimates, βnet, σnet, γnet

should not be used to describe epidemic features of individual nodes or particular populations but to
describe the whole network. Doing the former would be falling into the ecological fallacy problem [26].

Figure 1c shows the reported aggregated data (dotted, blue) for the first 10 months of the
Chikungunya epidemic in the Caribbean in 2013, and the data-fitted numerical aggregated solution
(continuous, red) of the SEIR-network model (equations set (2)). Their respective smoothed (Lomb-
Scargle) spectra are plotted in the two (d ) panels, showing how the simulated Chikungunya system
correctly captures the main variability features dominating the boundary conditions of the system
(figure 1d, top). Spectral peaks and their relative strengths are both largely comparable between the
data and the simulated model observations (figure 1d, bottom). The ability of the model to capture
the fundamental variability components is notable given the short timespan of data available for
model calibration. The model covers well the slower time scales of variability showing up at around
11–50 weeks, and it is sensitive to variability even at the scale of four weeks. Analogous results for
the fit to the TYCHO dataset can be found in electronic supplementary material, figure S2a,b. See
electronic supplementary material, table S1 for the obtained parameter values for TYCHO.

Figure 2 shows the decomposition of the aggregated epidemic solution into its local island
components. Each vertical line marks the time when local epidemics reached their maximum, and it
depicts islands and mainland contributions to the global dynamics. Also shown in colour coding is
the dominant language spoken on each island. It can be also seen that islands speaking the same
language are affected concomitantly by the Chikungunya outbreak. Ignoring local dialects, such as
Papieamento and Creole, there are four official spoken languages in the Caribbean region: Spanish,
English, Dutch and French [27]. Similar results when using TYCHO can be found in electronic
supplementary material, figure S3. Figure 1b shows the flight network model where nodes represent



Table 2. Network metrics for the different model scenarios: (i) observed network, (ii) Saint Martin node with randomized links,
(iii) Saint Martin node fully connected with all other nodes and (iv) Erdös–Rényi (E–R) completely randomized network. Metrics
for the scenario of Saint Martin with randomized connections, and scenario for E–R were computed and averaged over 5000
random simulations.

network metric (i) Obs. network
(ii) St Martin +
rand. links

(iii) St Martin
fully connected

(iv) E–R
network

r—assortativity Coef. 0.293 0.249 0.167 −0.051
L—aver. shortest path 2.19 2.17 1.74 2.43

C—aver. clustering 0.492 0.464 0.717 0.1376

Table 3. Parameters of the epidemic model obtained by a nonlinear least-squares estimation from the observed incidence
Chikungunya series from PAHO. Notice that βnet, σnet and γnet are network parameters that integrate both the different local
epidemic parameters βi, σi, γi where the sub-model nodes are homogeneous and the links strength connecting these sub-
models.

parameter definition mean fitted value

βnet network transmission rate 1:395 d�1 + 0:072

σnet network incubation period 1:430 d�1 + 0:139

γnet network recovery rate 1:186 d�1 + 0:068
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islands/mainland territories and colours label nodes grouped by linguistic communities. Based on
the conjecture that, for historical reasons, cultural or linguistic related regions tend to be more
connected, the structure of the network of the observed commercial flights in the Caribbean would
exhibit a topology distinct from that of a random network with no preferential attachment or
community structure. If linguistically similar islands or territories were physically more connected by
commercial flights, one would expect to observe a higher transit of people among linguistically
similar locations. Following this idea, and assuming that the spread between any two locations is
carried solely by the movement of infected humans traveling between these two locations, then
infectious agents would first spread preferentially within a particular set of islands with a common
language (table 2).

To this end, we applied the network epidemic model (2.1) to explore four scenarios where we can
alter the flight connection topology by (i) linking the initially infected island, St. Martin, to all the
others, or by (ii) randomizing the flight connections of St. Martin. Finally, we also test changes if we
were (iii) randomizing all island connections. In a fourth scenario, we change the initially infected
island to that being the most important representative node of each language.

In addition to numerically computing the epidemic dynamics of each scenario, we have computed their
correspondingNewman’s assortativity coefficient, r(a). Thismeasures the tendencyof nodes of a network to
be connected to other nodes that are like them according to some attribute a [28]. In our case, the attribute is
the particular spoken language in a node (i.e. English, Spanish, French or Dutch). In general, r = 0 when
there is no assortative mixing, r = 1 if there is perfect assortative mixing, i.e. nodes are connected only
with those alike according to a given node attribute, and r < 0 if the network is disassortative. In general,
−1 < r≤ 1 and varying degrees of positive assortativity occur for 0 < r≤ 1 [28,29]. The largest assortativity
coefficient computed with respect to the language spoken in the node is that of the observed network
when compared with the other three scenarios based on the same number of nodes and links of the
observed network—including a pure random network. This supports the assumption that nodes (islands
or territories) with the same spoken language tend to be more (flight-wise) connected among themselves
than with others (table 3).

Besides the assortativity coefficient, other common metrics to characterize network structure are the
average shortest path L, and the average clustering coefficient C. The average shortest path is the mean
number of node-to-node jumps or steps needed to travel along the shortest path between any two nodes
over all node pairs of the network [29–31]. The local clustering coefficient of each node can be computed
as the proportion of observed triangles or closed triplets over all possible triangles in its neighbourhood.
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The average clustering coefficient of a network is the mean of individual node clustering coefficients
and it gives a measure of the tendency of the nodes of a network to be clustered together [29,32,33].
Table 3 shows the network metrics for (a) the observed flight connection network, (b) the observed
network with randomized connections for Saint Martin, (c) the observed network with Saint Martin
fully connected to all other nodes of the network and (d) the fully randomized network. The average
shortest path length is not defined for disconnected networks. By definition, a network is connected if
there are no isolated nodes or sub-network components. Because the E–R algorithm may produce
disconnected networks as a result of the random pairing of links and nodes, we computed the
average shortest path length for a random selection of 5000 E–R produced random networks that
were connected networks.

3.1. Network model with initially infected node connected to all other nodes
In this scenario, we set the initial infected node, Saint Martin, to have a connection to all the other nodes
in the network while leaving the remaining original topology based on the observed flights. Link
strengths (assumed as scaled parameters proportional to the number of flights per unit of time) were
assigned to each new connection by randomly picking strength values from the observed network.
5000 simulations were produced this way. Thus, for each simulation, we randomly varied the link
strengths while keeping the topology constant.

The simulation solutions of this super-connected network scenario are depicted in figure 3a,b by the
solid blue curve. All 5000 trajectory solutions are nearly identically single-peak shaped and appear
totally overlapped when plotted. The observation that all solution trajectories seemingly lie on a
single curve suggests that the link geometry rather than the distribution of link strengths has the
predominant role in determining the spatio-temporal spread of the disease among the local
populations at each node. This scenario serves as a benchmark case scenario to assess the role of
topology in the dynamics of CHIKV, because by connecting the initial infected node to all
other nodes, we essentially eliminate the network structure and make the model a quasi-complete
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mixed homogeneous SEIR system with no explicit space. Thus, individuals in any node have

very similar encounter probabilities with individuals in any other node, independent of their
geographical locations.

Wiring the first infected node (Saint Martin Island) to every other node in the network dramatically
changes the observed network links and node geometry by reducing the average shortest path
length. A smaller average shortest path length means that one can navigate the network from a
node to any other node through fewer connected intermediate nodes. The average shortest path
length L of the network produced by connecting Saint Martin Island to each of the other islands of
the network is 1.74, while for the observed network it is much larger, namely 2.19 (table 3). This
implies that the contact structure is more closely interconnected in this scenario producing faster
disease dynamics that resemble non-spatial homogeneous settings, as can be seen by the solid blue
curves in figures 3a,b.

The assortative coefficient with respect to the node’s spoken language of this scenario case is 0.17, which
is significantly smaller than the value 0.29 of the observed network (table 3). This implies that the process of
rewiring Saint Martin to all other nodes partially dismantles the language structure of the observed flight
connection network. The average clusteringC for this scenario case is 0.72,which is larger than the observed
0.49 (table 3). This difference is expected because the density of node triangles increases as new links are
added to a network with no proportional increase in the number of nodes.

3.2. Network model with randomized connections of the initially infected node
In this scenario, the fitted network SEIR model was used to generate simulations when the connections of
the initially infected node Saint Martin were totally randomized. The original six links representing flight
connections to/from Saint Martin were mingled to form new connections with six other random nodes
(excluding self-connection to Saint Martin) along with their corresponding strengths in the observed
network. The rest of the links that were not involved in this random perturbation were preserved.

Figure 3a shows, in light-red, 5000 random simulations of the aggregated epidemic curve that resulted
from implementing this random connection rewiring. For comparison, the model solution for the
aggregated cases starting in Saint Martin as observed is plotted with the solid black curve. The solid blue
curve corresponds to the previous homogeneous benchmark scenario. All epidemic curves are plotted
up to the time when they reach their global maximum. Even though each simulation is random in the
sense that the links at the initially infected node are randomly rearranged for each simulation, the SEIR
models at each node are deterministic, so that each curve represents a particular deterministic path
trajectory of the model solution for the spread of the infection across the network’s nodes.

Disturbing the network by randomly changing the connections of the initial node, even though keeping
the same number of connections and preserving the rest of the network intact, can have a profound impact
on the course of the epidemicwave. This is shownby the observed variation of the light-red epidemic curves
in figure 3a. The infection can follow many different paths producing a variety of epidemic geographical
diffusion patterns due to a small disturbance in the network structure, i.e. the links of the initial infected
node. As can be seen, the epidemic duration of the outbreak produced by the model based on the
observed flight connections (black curve) lies towards the tail of all the simulation distributions of this
scenario. This implies that the actual observed epidemic is atypically slower, reaching its maximum later
when compared to most other possible epidemic trajectories. Thus, the epidemic dynamics are sensitive
to small changes and perturbations in the topology of the network mobility, and the actual observed
outbreak is seemingly one of the slowest outbreak outcomes. Assessing this outcome may have profound
implications in terms of public health, which we later discuss.

The average assortative coefficient r of the networks with regard to language is 0.25 compared with
the observed 0.29 (table 3). This shows, as one would expect, that the random rewiring of Saint Martin
breaks apart the language structure of the observed flight network. Notably, the randomization of the
links of only one node in the observed network is sufficient to produce a less assortative network
structure. On the other hand, the average shortest path L for networks in this scenario is comparable
to the observed network, with values of 2.17 and 2.19, respectively. Similarly, the average clustering C
of the networks in this scenario and the observed network are comparable with values of 0.46 and
0.49, respectively (table 3), with at most a decrease of the clustering effect by the random rewiring of
Saint Martin.

Finally, figure 3a shows different heat-maps for these assumptions. Under the assumptions made
in this scenario, outbreaks reach their maximum peaks in around 300 days for most of the network
nodes. This behaviour has to do with the number of people in the population who are exposed to
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first-degree risk. This first-order risk affects the time it takes an epidemic to reach the peak of outbreaks.

For this particular scenario, the time to reach the epidemic peaks seems quite variable in comparison to
the subsequent ones.

3.3. Fully randomized E–R network
In this scenario (figure 3b, light red curves), we investigate how a network with the same number of
nodes and links as the observed network, but built instead by a process that theoretically produces a
fully random set of connections between the nodes, would impact on the epidemic trajectory. The
algorithm used to completely randomize the observed flight connection model is that of 3 [29]. An
uncorrelated random E–R G(n, p) network is a graph where n is the number of nodes and p is the
probability of link formation so n nodes are connected through l edges which are chosen randomly
from n(n− 1)/2 all possible configurations. Every pair of nodes is connected with probability p. The
total number of edges is a random variable with an expected value np(n− 1)/2 hence p = 2l/(n(n− 1)).
Thus, introducing the observed number of nodes and observed number of links as n and l in the
expression p, we obtained the necessary probability of connection to generate a comparable fully
random network from the number of nodes of links in the observed network. For details, see [29,34].
Any deviation or difference in the spatio-temporal pattern dynamics of the epidemic between an E–R
network and the observed flight network is an indication that the latter is not the consequence of a
random process when connecting nodes, but that there is some underlying intended or deliberate
reassortment process. This scenario serves also as a null network model when studying fundamental
features of the observed network.

Figure 3b shows the aggregated epidemic curves of 5000 simulations (in light red) of a fully
randomized network based on both the number of links and nodes of the observed model of flight
connections. While the number of links is kept the same as in observations, they are rearranged in a
random manner according to the E–R algorithm. Outbreaks are always shown up to the maximum
peak. The black curve corresponds to the epidemic dynamics of the model fitted to the observed data.
In comparison to the observed outbreak, the outbreaks now simulated on the fully randomized
network exhibit a reduced overall epidemic length. Only five simulations out of 5000 had longer
durations than the observed network in our random sample. The simulated epidemics are all growing
generally earlier and faster than the observed epidemic trajectory.

The average assortativity coefficient based on language was r =−0.0507 compared with r = 0.29 of the
observed network (table 3). This difference reveals that the full randomization of the observed network
completely eliminates the language structure of the observed network, transforming it into a network
with no assortative mixing. The average shortest path length was L = 2.43 and the average clustering
was C = 0.14 (table 3). By normalizing these values against their respective values in the observed
situation (observed/ER), their significance can be weighted. Normalized quantities bL ¼ 0:902 andbC ¼ 3:58 indicate that the average path length is similar in both the null full random network model
and the observed flight network, but the clustering of the observed one is more than 3.5 times higher
than that of the fully random model. This difference again indicates that the clustering structure of the
observed network is not a product of chance alone and that conversely, it may have a small-world
type of structure, a feature reported in many social and man-made networks [29,34,35]. The positive
assortativity coefficient of the observed flight network regarding the language of the island further
supports this conjecture and suggests that cultural and political factors are influenced by the
particular spoken language of the island. These factors likely have a prominent role in the formation
and maintenance of the topology of the current flight connection, and hence also in the human
mobility patterns in the region.

Given that the average shortest paths are similar in both the observed network and the fully
randomized E–R network but that the observed network has a higher clustering, one would expect to
see at least a similar speed of the epidemic in both cases or even a faster outbreak dynamic in the
observed network. Therefore, the observation that the actual observed epidemics show a relatively
slow evolution suggests that the initial condition, i.e. the start of the epidemic in the node of Saint
Martin, has had a significant role in slowing the outbreak. Should the epidemic have started in some
other location, we would likely have observed a much faster progression of the disease in the region.
As expected and as can be seen in figure 3c, under the assumptions made in this scenario, the rate of
spread of outbreaks seems to slow down overall compared to the previous scenario. The outbreaks
reach their maximum peaks at a time close to 250 days for most of the network nodes and very high
dispersion of the results exist, which is a product of the topology changes. This slowdown may again



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230909
11
be linked to the number of people in the population exposed to first-degree risk, affecting the time it takes

to reach the peak of the outbreaks.

3.4. Network with the initial infection started at each of the different network linguistic nodes
In this scenario, we address the significance of the island where the epidemic started on the resulting
regional epidemics. Therefore, we simulate the outbreak from each of the nodes of the observed
network. The outbreak trajectories starting in distinct islands are represented by the light-red curves
shown in figure 3c. The simulated outbreaks coloured in blue, green, yellow-orange and brown show
simulations that started in the most populated locations of the four linguistic groups that dominate
the Caribbean region. That is, the blue curve is the outbreak that starts in Haiti (French-speaking
location); the green curve is the outbreak starting in Jamaica (English), the yellow-orange outbreak
starts in Curaçao (Dutch) and the brown outbreak starts in Colombia (Spanish). As with the previous
scenarios, the outbreaks are depicted until they reach the largest peak and thus the epidemic severity
is described as the height of this largest peak.

We observe that for this scenario, epidemic trajectories starting at distinct nodes retain the epidemic
patterns observed in the outbreak produced by the epidemic starting in Saint Martin, namely the
multi-peak curves of aggregated cases, thereby indicating a heterogeneous spatial epidemic wave.
However, the speed and magnitude of the epidemic trajectories vary significantly. Since the
topology of the network is unmodified and only the initial infected node is varied, this scenario
reveals that the observed topology regarding the starting location of the infection has a central role in
the spatio-temporal spread of the epidemic in the first stages of the outbreak.

Electronic supplementary material, figure S1 shows the times at which the local epidemic peaks
(i.e. the maximum number of infecteds) are achieved at each node for distinct starting points of
the infection (a selection of 12 different nodes are shown in the figure), for the fitted model and the
observed connection matrix. The colour indicates to which linguistic group the node belongs.

The sequences display how the epidemic evolution would have looked if the initial infected seed was
located somewhere other than Saint Martin. These sequences predict how the geographical progression
of the infection would have taken place. The pattern of coloured bars suggests a correlation in the order
of appearance of the infection with regard to the spoken language in the islands. This spatio-temporal
correlation seems to be especially noticeable for French (blue bars) and English (green bars) nodes,
supporting the hypothesis that the linguistic aspect of each island in the Caribbean designed the
structure of the flight connection and therefore drove Chikungunya epidemics in the Caribbean.
Figure 3c shows heat-maps for the configuration proposed in this scenario. Under the assumptions
made in this scenario, the outbreaks reach their maximum peaks at a time that is above 300 days for
most of the network nodes. Again, this change in the initial conditions of the network has a direct
effect on the number of people in the population exposed to first-degree risk, affecting the time it
takes to reach the peak of the outbreaks.

3.5. Impact of scenarios on the geographical spread of the Chikungunya epidemic
Electronic supplementary material, figure S2 shows the cumulative and normalized number of
Chikungunya cases (with respect to the total number of cases) as the epidemic spreads through the
Caribbean region. The observed cases (first row), the simulated cases of the fitted model (second row)
and the average numbers of cases from the two flight network randomized model scenarios (namely,
the randomized connections to Saint Martin and the fully randomized E–R) are mapped (third and
fourth rows, respectively).

We can see in electronic supplementary material, figure S2 that the temporally spatially scattered
diffusion pattern of the observed data is captured by the fitted model and to a lesser extent by the
scenario of the initial node with randomized rewiring of its connections. The last scenario, the E–R
random network, shows a less scattered structure in the geographical spread of the epidemic, and the
pattern is instead more similar to that of a homogeneous spatial model with a smoother and more
continuous diffusion among the islands.

3.6. Impact of the flight network and language clustering in the dynamics of the outbreak
Finally, in this section, we discuss the relationship between the structure of the contact network and the
linguistic grouping with the dynamics of the outbreak.
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The first scenario we considered was the homogeneous connection of the initially infected node to all

nodes in the network; this scenario served as (i) a benchmark test to evaluate the role of topology in the
dynamics, since it is homologous to an unstructured, spatially homogeneous epidemic model and (ii), to
assess the importance of the strength of link connections, at least at the scales observed in the network of
flights reported for the Caribbean in 2013–2014, and for the dynamics of the initial phase of an outbreak.

As discussed earlier, connecting the initially infected node on Saint Martin Island to every other node in
the network drastically changes the observed network connections and node geometry by reducing the
average length of the shortest path. In terms of network structure, this means that the outbreak can
spread faster than in the real network topology because the contact structure in this scenario is more
tightly connected, resulting in faster disease dynamics that resemble a non-spatial homogeneous
environment. This scenario serves as a benchmark scenario to evaluate the role of topology in CHIKV
dynamics, as by connecting the initially infected node to all other nodes, we essentially eliminate
network structure and make the model a quasi-complete mixed homogeneous SEIR system without
explicit space. Thus, individuals in each node have very similar encounter probabilities with individuals
in every other node, regardless of their geographic location. On the other hand, if we set up the model
with random connections of the initially infected node, all epidemic curves are plotted up to the time
when they reach their global maximum. Although each simulation is random in the sense that the
connections of the initially infected node are randomly rearranged at each simulation, the SEIR models
are deterministic at each node, so that each curve represents a particular deterministic path trajectory of
the model solution for the spread of infection across the nodes of the network. Thus, since only six links
of the original infected node of Saint Martin are randomly rewired to other 29− 1 = 28 nodes, the rest of
the network remains unchanged. It is then possible to compute the number of possible epidemic

trajectories as a combinatorial number 28
6

� �
¼ 28!=ð6!ð28� 6Þ!Þ, i.e. 376 740 possible combinations and

thus as many different epidemic waves are possible. Owing to computational constraints, we randomly
selected and simulated a sample of 5000 of these possible trajectories, confident that this is a
representative sample of all possible combinations. The simulated sample represents about 1:3% of all
possible trajectories. Disturbing the network by randomly changing the connections of the initial node,
even if the number of connections remains the same and the rest of the network remains intact, can have
a profound effect on the course of the epidemic wave (figure 3a).

Completely random networks with exponential degree distributions, such as those generated by the E–
R algorithm, have smaller average shortest path lengths than corresponding non-random networks, which
are a mixture of structured and completely random topologies, and skewed degree distributions [29,34].

If we hypothesize that the observed flight link network was not generated as a completely random
network because common sense dictates that the establishment of flight links does not follow random
rules, but that decisions to establish flight links are anything but random, then we would expect
qualitative differences between epidemics generated by completely random networks and the
observed network based on flight patterns. Accordingly, we expect completely random networks with
exponential degree distributions, such as those generated by the E–R algorithm, to have an average
shortest path length that is shorter than these path lengths found in natural networks with a more
organized topology that has a mixture of structured and random link geometries and skewed degree
distributions [29,34].

This would explain the significantly shorter epidemic duration of the fully random model compared
with the observed model. The shortest average paths of the fully random networks are more efficient in
spreading the disease in the network and lead to faster outbreaks with shorter extinction times and larger
epidemic peaks (figure 3b).

Finally, the importance of the network structure becomes clear when comparing 3a,b. In the first case,
the network topology remains similar by simply varying the connection of the initial node, and the
dynamics of the outbreaks resemble the real one. The aggregation by cultural nodes is clear, as shown
by the results in table S2, where there is a clear aggregation. When the network topology moves away
from the real scenario, the aggregation also disappears and the propagation resembles more of a wave
(electronic supplementary material, figure S1).
4. Discussion
Population spatial sub-structure is known to have a significant impact on infectious disease dynamics,
but the relative contribution of sub-population connectedness has remained largely theoretical [36,37].
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Here, using the large Chikungunya epidemic in the Caribbean as an example, we show that network

topology rather than the strength of network connectedness is the crucial determinant in governing
infectious disease propagation, at least during the initial phases of the epidemic. We also reveal the
importance of language assortativity and show that the epidemic could have been even more
explosive if it had started on another island belonging to a different linguistic domain.

The absence of any impact on the volume of air traffic has been noted before, with the suggestion that
maritime transport rather than air traffic was the major contributing factor [38]. While this may indeed
be relevant for islands in close proximity, maritime transport is likely to be of little relevance across the
greater Caribbean domain. One potential explanation for the reduced impact of air traffic volume is
the relatively small probability of a person travelling being infected, especially during the initial
phases of the epidemic when the number of cases was relatively small. While individuals with
symptomatic Chikungunya would be highly unlikely to travel, asymptomatic CHIKV infections occur
albeit with a very variable frequency, ranging from 5 to 80% [6,39,40]. Nevertheless, although
asymptomatic or incubating CHIKV infections could lead to inter-island transportation and thus be
amplified by the overall traffic volume, it is possible that their number is too low and the variation in
traffic too small to be able to detect an impact of overall traffic volume.

The chronologyof islands affected clearly shows a linguistic component for both the French andEnglish-
speaking sets of islands. Starting slowly in Saint Martin, the next four islands affected were all French-
speaking. Remarkably, the northern part of Saint Martin (French), Saint Maarten (Dutch), only declared
cases six weeks after Chikungunya occurrence in Saint Martin, suggesting an important structuring
effect dominating even at the within island level. The first cases in an English-speaking setting occurred
in the islands of Antigua and the Virgin Islands. Subsequently, the epidemic rapidly burnt through all
the surrounding English-speaking islands. The significance of language is also suggested by the late
occurrence of Chikungunya in Dominica, which lies between the French-speaking islands of Guadeloupe
and Martinique, but which only had cases three weeks later. Similarly, Chikungunya cases were signaled
at an interval of two weeks in Haiti and the Dominican Republic, both located on the island of
Hispaniola. In contrast to the clustering observed in the French and English-speaking islands, the Dutch
and Spanish-speaking territories were significantly less clustered in time. It is notable that overall, the
largest islands and territories reached their peaks later. This is to be expected as there are more
susceptible individuals to infect and thus the peak is reached later. This would explain, at least to some
extent, why the Spanish and Dutch islands and territories are less clustered in time.

The persistence of new and emerging infections in the American continent over the subsequent years
was presumably attributable to vast numbers of immunologically naive populations along the continent.
This is in stark contrast to the Caribbean islands, with more limited populations that are likely to have
acquired herd immunity and thus less likely to temporally sustain CHIKV transmission (PAHO). In 2020,
however, there were several cases of travelers arriving in metropolitan France having voyaged in the
French Caribbean. This would suggest continued transmission in the Caribbean, potentially being
persistently re-introduced from the American mainland, likely acting as a large reservoir feeding the
Caribbean region (Santè Publique France). For other naive settings worldwide, it is of extreme
relevance to focus on the very first stages of the epidemic propagation, as later containment may be
absolutely impractical, not to speak about the costly and often ineffective massive mosquito
eradication campaigns [41]. Our study delves into the feasibility of developing powerful operational
models to anticipate the emergence of vector-borne infections based on simple network mobility
patterns that can be obtained from public airport available statistics. Our modelling framework
correctly incorporated the temporal and spatial scales of variability in population disease dynamics,
using a relatively simple compartmental framework that we applied to a sub-network of the complex
Caribbean region. Despite this simplification, the reduced system of 29 islands can effectively
incorporate the main spatial drivers of the regional dynamics of spread during the Chikungunya
epidemic. This could be further extended to land transportation infrastructure, where road
development increases connectivity [42]. The information gained could therefore be used as guidance
and serve public health officials to more effectively intervene and mitigate developing epidemics and
thereby improve potential containment measures in naive geographical areas. Indeed, conversely, to
other diseases and settings [43], transmission at the microscale would not appear to be of particular
relevance towards the establishment of an alert system for the entire Caribbean region. The complex
simulation of social dynamics in spatial networks [44] appears in this case dramatically simplified by
the more dominating cultural framework. This is seemingly the main modulating factor in the CHIKV
epidemic spread. Thus, in practical terms, finer-scale high-resolution surveillance and control systems
would likely add little extra benefit despite coming at a much greater cost.

https://www.paho.org/en/topics/chikungunya
https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-a-transmission-vectorielle/chikungunya/articles/donnees-en-france-metropolitaine/chikungunya-dengue-et-zika-donnees-de-la-surveillance-renforcee-en-france-metropolitaine-en-2020
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Limitations of this work are that our network simulations assumed a static framework persists—the

connections have remained constant over time. As the turnover of connections is slow or very slow
relative to the time scale of the pathogen spatial spread, we can assume there was little or no change
in the network during the epidemic phase of infection studied here. Further progress of this work
may incorporate recent advances in mobile phone technology and GPS location. This may enable us
to more accurately track the movement of people in real-time, something that would allow us, in the
face of a severe epidemic, to build more comprehensive networks for such arboviral diseases, and also
to track any changes occurring in the network structure [45]. In any case, the fact that very similar
conclusions can be obtained with two different databases of Chikungunya incidences in the region
(e.g. PAHO and TYCHO), yields further support to the conclusions of this study.

In conclusion, our study illustrates that people’s movement among islands through flight connections
was a fundamental infection mechanism in the epidemiological setting of the Chikungunya outbreak in
the Caribbean that started in late 2013. Flight connections among islands come as a natural mobility
model. We found that, unlike a homogeneous spatially unstructured model, a simple SEIR system
coupled to a network model derived from the observed flight connection pattern in the region captured
well the global epidemic curve at these initial stages. We identified that the network had a structure that
is far from a purely random structured network, with higher clustering and positive assortativity with
respect to the language spoken at each node. Network topology is a crucial determinant in the early
phases of the epidemic, and this has important consequences for public health preparedness insofar as
the network topology can be known prior to the arrival of any infectious agent and thus the disease
dynamics may become more predictable. Additionally, network structure through clustering and
language assortativity can enable the simplification of prediction through the simulation of infection
dynamics by reducing the complexity of the associated models. This in turn enables better planning of
intervention and management strategies based on network topology.
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