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PEEFACE

For some years past, one of tlie authors has given a course in

this subject at the University of Wisconsin, and has felt keenly

the need of a suitable text. The present volume has been written

primarily to meet this need, and in the hope that it might stim-

ulate the more extensive study which the subject deserves ; for

the theory of heat conduction is of importance, not only intrin-

sically but also because its broad bearing and the generality of

its methods of analysis make it one of the best introductions to

more advanced mathematical physics.

The aim of the authors has been twofold : They have attempted,

in the first place, to develop the subject with special reference

to the needs of the student who has neither time nor mathemati-

cal preparation to pursue the study at great length. To this end

fewer types of problems are handled than in the larger treatises,

and less stress has been placed on purely mathematical derivations

such as uniqueness, existence, and convergence theorems.

The second aim has been to point out more clearly and spe-

cifically than apparently has been done before, the many applica-

tions of which the results are susceptible; for in its practical

bearing this field is second to no other in mathematical physics.

This feature invariably awakens and holds the interest of the

student who feels, all too frequently, that much of his previous

mathematical training has been devoid of application.

It is hoped also that in this respect the subject matter may be

of interest to the engineer, for the authors have attempted to

select applications with special reference to their technical impor-

tance, and in furtherance of this idea have sought and received

suggestions from engineers in many lines of work. While many

of these applications have doubtless only a small practical bear-

ing and serve chiefly to illustrate the theory, it is not impossible
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that the results in some eases, for example, the "theory of the fire-

proof wall," may be found worthy of note. The same may be

said of the geological problems.

While a number of solutions are here presented for the first

time, it is believed, no originality can be claimed for the under-

lying mathematical theory, which dates back, of course, to the

time of Fourier. The authors are glad to acknowledge their

indebtedness to Byerly's Fourier's Series and Spherical Har-

monics, and to Carslaw's Fourier s Series and Integrals and the

Mathematical Theory of the Conduction of Heat ; also, it is hardly

necessary to add, to Riemann's and Weber-Riemann's Partielle

Differential- Gleichungen, and to many of Lord Kelvin's writ-

ings. In the first few chapters they have also drawn from

Preston's Heat, while the general arrangement of the material

— proceeding from the simpler to the more complex problems,

and with the treatment of Fourier's series deferred till such cases

as can be handled without it are completed— is borrowed from

the chapter on Heat Conduction in Christiansen's Theoretical

Physics, to which acknowledgment is also due for material.

They have also drawn, especially for tables, from the articles by

Graetz in Winkelmann's Handbuch, while acknowledgments to

a number of original sources are scattered through the text.

In conclusion, the authors take pleasure in thanking their

many engineering and geological friends who have contributed

information and advice, while they are particularly indebted

to Professors Max Mason and H. W. March for many useful

suggestions.

L. K. INGERSOLL
Madison, Wisconsin O. J. ZOBEL
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MATHEMATICAL THEORY OF
HEAT CONDUCTION^

CHAPTER I

INTRODUCTION

1. Historical. The mathematical theory of heat conduction,

historically speaking, is due principally to Jean Baptiste Joseph

Fourier (1768-1830) and was set forth by him in his Theorie

analytique de la Chaleur. While Lambert, Biot, and others had

developed some more or less correct ideas on the subject, it

was Fourier who first brought order out of the confusion in

which the experimental physicists had left the subject. Professor

Tait has said of his work :
" Its exquisitely original methods

have been the source of inspiration of some of the greatest

mathematicians ; and the mere application of one of its simplest

portions to the conduction of electricity has made the name of

Ohm famous," while Lord Kelvin remarks :
* " Returning to

the conduction of heat, we have first to say that the theory of

it was discovered by Fourier, and given to the world through

the French Academy in his Theorie analytique de la Chaleur, with

solutions of problems naturally arising from it', of which it is

difficult to say whether their uniquely original quality, or their

transcendently intense mathematical interest, or their perennially

important instructiveness for physical science, is most to be

praised."

While Fourier treated a large number of cases, including

most of those we shall have occasion to consider, his work was

* Article on Heat, Encyclopedia Britannica, ninth edition,

1



2 THEOEY OF HEAT COISTDUCTIOlSr

extended and applied to more complicated problems by his

contemporaries Laplace and Poisson, and later by a number of

others, including Lame, Sir W. Thomson (Lord Kelvin), and

Riemann, to which latter writer all students of the subject

should feel indebted for the very readable form in which he has

put much of Fourier's work.

2. Definitions. When different parts of a solid body are at

different temperatures, heat flows from the hotter to the colder

portions by a process of transference— probably from molecule

to molecule— known as conduction. The rate at which heat

will be so transferred has been found by experiment to depend

on a number of conditions which we shall now consider.

To fix the ideas, imagine in a body two parallel planes, or

laminae, of area A and distance apart x, over each of which the

temperature is constant, being 9^ in one case and 6^ in the other.

Heat will then flow from the hotter of these isothermal surfaces

to the cooler, and the quantity Q which will be conducted in

time t will be given by

Q = k
^^~^^

At, (1)
X

where ^ is a constant for any given material known as the

thermal conductivity of the substance. It is then numerically

equal to the quantity of heat which flows in unit time tlirough

unit area of a plate of unit thickness having unit difference of

temperature between its faces.

The limiting value of — , or — , is known as the tempera-
X ox

ture gradient at any point. If due attention is paid to sign, we

see that if — is taken in the direction of the flow of heat, it is
ox

intrinsically negative. Hence we may write for the rate at which

heat is transferred across an isothermal surface, per unit area.

This is called the flux of heat across the surface at that point

and may be denoted by W. If, instead of an isothermal surface,
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we consider another, making an angle <j> with it, we can see that

both the flux across this surface and the temperature gradient

along the normal to such surface will be' diminished by the

factor cos (ji, so that we may write in general for the flux across

any surface

where the derivative is taken along the outward-drawn normal;

that is, in the direction of decreasing temperature.

While the rate at which heat is transferred in a body, for

example, along a thermally insulated rod, is dependent only on

the conductivity and other factors noted, the rise in temperature

which this heat will produce will vary with the specific heat c and

density p of the body. We must then introduce another con-

stant, A^, whose significance will be considered later, determined

by the relation ,

h^ = ^. (4)
cp

The constant h!' has been termed by Kelvin the diffusivity of the

substance, and by Maxwell its thermometric conductivity.

Equations (1) and (3) express what is sometimes referred to

as the fundamental hypothesis of heat conduction. Its justifica-

tion or proof rests on the agreement of calculations made on this

hypothesis, with the results of experiment, not only for the very

simple but for the most complicated cases as well.

3. Field of Application. From equation (1) we may infer in

what field the results of our study will find their application.

We may conclude, first, that our derivations will hold good for

any body in which heat transference takes place according to

this law, if ^ is the same for all parts and all directions in the

body. This includes all homogeneous isotropic solids, and also

liquids and gases in cases where convection and radiation are

negligible. The equation also shows that, since only differences of

temperature are involved, the actual temperature of the system

is immaterial. We shall have frequent cause to remember tliis

statement, for, while many cases are derived on the supposition
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that the temperature at the boundary is zero, the results are made

applicable to cases in which this is any other constant temperature

by a simple shift of the temperature scale.

But the results of the study of heat conduction are not limited

in their application to heat alone, for parts of the theory find

application in certain gravitational problems, in static and current

electricity, and in elasticity, while the methods developed are of

very general application in mathematical physics. As an exam-

ple of such relationship to other fields it may be pointed out

that if ^ in (1) is interpreted as electrical potential, and k as

electrical conductivity, we have the law of the flow of electricity,

and all our derivations may be interpreted accordingly.

4. Units ; Dimensions. There is probably no subject in which

the confusion of units is greater than that of heat conduction.

While the physicist uses the metric or C.G.S. unit,— that is,

the (gram) calorie per second, per square centimeter of area, for

a temperature gradient of a degree centigrade per centimeter,

—

there is no such uniformity of practice among engineers. The
steam engineer refers his observations to the B.T.U.* per hour,

per square foot, per degree Falirenheit, per inch in thickness,

while the refrigerating engineer prefers the day as the unit of

time rather than the hour, and the electrical engineer uses various

systems, based frequently on the kilowatt, as representing the

rate of heat fiow. There are also numbers of other units,t

some of themt making use of the idea of thermal resistance,

analogous to electrical resistance, and therefore being reciprocally

related to conductivity. These various engineering units have

been introduced to simplify the computation of heat losses in

various types of problems, and on these grounds perhaps justify

their existence ; but from the standpoint of the present work

* The British Thermal Unit (B.T.U.) is the quantity of heat required to raise the
temperature of one pound of water one degree Fahrenheit, at its temperature of
maximum density (39° F.).

t Norton, '" Thermal Properties of Concrete," Proc. Nat. Assoc, of Cement Users,

7, p. 89 (1911), mentions that he has even seen a report in terms of hogsheads of water
raised to the boiling point, time not mentioned

!

X Hering, "' The Thermal Ohm and the Thermal Mho, " Met. and Chem. Bng.,
9, p. 13 (1911).
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they are, with one or two exceptions, not usable. This is because,

in a large majority of the cases we shall have occasion to consider,

it is not the conductivity but the diffusivity, or thermometric

conductivity, which enters directly into the computations, and

this latter is too complex a unit (see Art. 2) to use profitably

with a mixture of English and metric systems, or an English sys-

tem involving two different units of length— for example, feet

and inches, as in common engineering practice. Only two, then,

of the many heat-conduction units lend themselves readily to our

purpose— the B.T.U. per hour, per square foot, for a tempera-

ture gradient of a degree Fahrenheit per foot, and the metric

unit. But the former is practically never used (the gradient

being expressed in degrees per inch in the common engineering

unit), while the latter is becoming of more general use every

day, so we shall confine our units and calculations to the metric

system, giving in many cases, however, the English equivalents.

The following relations and transference factors may prove

of use:

1 m. = 39.37 in. = 3.2808 ft. = 1.0936 yd.

1 in. = 2.540 cm.

1 sq. m. = 10.764 sq. ft. = 1.196 sq. yd.

1 sq. in. = 6.452 sq. cm.

1 kg. = 2.2046 lb.

1 lb. = 453.6 g.

1 B.T.U. = 252.0 cal.

1 watt = 0.2389 cal. per second.

1 kilowatt = 56.88 B.T.U. per minute.

1 watt per square foot = 3.413 B.T.U. per square foot per hour.

1 cal. per square centimeter

= 3.687 B.T.U. per square foot.

1 cal. per square centimeter per second

= 318,500 B.T.U. per square foot per day.

Temperature in centigrade

= 4 (temperature in Fahrenheit minus 32°).

To reduce conductivity expressed in B.T.U. per hour, per

square foot, per degree Fahrenheit, per inch, to metric units,

divide by 2903. If the day is the unit of time instead of the
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hour, divide by 69,670. If thermal resistivity expressed in

" thermal olims per centimeter cube " * is given, the conductivity

in metric units is deduced by multiplying the reciprocal of the

resistivity by 0.2389. A diffusivity expressed, as in some Eng-

lish writings, in terms of French feet and year units is reduced

to metric by multiplying by 0.00003346. In other cases the

transference factor is readily arrived at from a consideration of

the dimensions of the units. From (1),

Now since the unit of heat is that necessary to raise unit mass

of water one degree, its dimensions are mass and temperature, so

the dimensions of — are simply [-M"]. Hence

so that in another system in which the units are M', L', T', the

number k' which represents the conductivity in this system is

determined by wr t' t>

Similarly, it is easily shown for the diffusivity that

A'^ = A^ — .^. (8)

In some cases the unit of heat is taken as that which will

raise unit volume, rather than unit mass, of water one degree.

The above relations then become

^' = ^^•1^' (9)

and A'^=A^4^-^~. (10)

5. Values of the Constants. In Appendix A is given a table of

the conductivity constants for a number of substances, including

* Bering, Met. and Chem. Eng., 9, p. 652 (1911).
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most of the metals. The conductivity and diffusivity are not

absolute constants, but depend in some degree on external con-

ditions, chiefly on the temperature, hence this is specified where

possible. Most pure metals show . a small and nearly linear

decrease of conductivity with increase of temperature, although

a few show the reverse effect, as also do many alloys. For mod-

erate ranges of temperature the variation, however, is small (for

iron, nickel, and copper the decrease is about 2% in going from

18° C. to 100° C. ; aluminum shows an increase of about the

same amount), but for higher ranges it is by no means negligible.

Angell * finds the conductivity of nickel to reduce by a half

when the temperature is raised from 0° C. to 700° C, while alu-

minum, on the other hand, shows a conductivity at 600° C. more

than double that at 0° C.

Nonmetallic substances show an even greater temperature

effect, and Nusseltt seems to find that for many materials the

conductivity is nearly proportional to the absolute temperature,

that is, increases by ^^g for every degree above 0° C.

When possible, this change of the thermal constants with

temperature should be taken account of in calculations, and this

may be done approximately by using the conductivity for the

average temperature involved, t The diffusivity usually shows

a smaller change with temperature than does the conductivity,

for in many cases the specific heat increases with the conductivity

so as to leave their quotient very nearly the same. This seems to

be the case for concrete.!

There is a very noticeable relation between the thermal and

electrical conductivities of the metals, and this has given rise to

the so-called law of Wiedemann and Franz, which states that the

one is proportional to the other. While this holds in a general

way where different metals are under consideration, it does not

* Phys. Rev., 33, p. 430 (1911).

t Ztschr. d. Ver. deutseher Ing., 52, p. 906 (1908).

X For a more rigorous discussion of this point see Hering, "Effects of the Va-
riations of Thermal Resistivity with Temperature," Trans. Am. Elect. Chem. Soc,

21, p. 511 (1912).

§ See Norton, "Thermal Properties of Concrete," Proc. Nat. Assoc. Cement

Users, 7, p. 78 (1911).



8 THEOEY OP HEAT CONDUCTIOISr

express the facts when a single metal at several different tem-

peratures is concerned, for the electrical conductivity decreases

with rise of temperature, while the thermal conductivity is more

nearly constant. L. Lorenz * took account of this fact and ex-

pressed it in the law that the ratio of thermal divided by

electrical conductivity increases for any given metal propor-

tionally to the absolute temperature. It holds only for pure

metals with any degree of approximation and only for very

moderate temperature ranges.

* L. Lorenz, Wied. Ann., 13, p. 422 (1881).



CHAPTER II

THE FOURIER CONDUCTION EQUATION

6. Differential Equations. In any mathematical.study of heat

conduction use must continually be made of differential equations,

both ordinary and partial. These occur, however, only in a few

special forms whose solutions can be explained as they appear, so

only a brief general discussion of the subject is necessary here.

Differential equations are those involving differentials or dif-

ferential coefficients, and are classified as ordinary or partial,

according as the differential coefficients have reference to one,

or to more than one, independent variable. A solution of such an

equation is a function of the independent variables which satisfies

the equation for all values of these variables. For example,

y = sin.x + c

is a solution of the simple differential equation

dy = cos xdx.

The general solution, as its name implies, is the most general

function of this sort which satisfies the differential equation, and

will always contain arbitrary, that is, undetermined, constants

or functions. A particular solution may be obtained by substi-

tuting particular values of the constants or functions in the

general solution. But while this is theoretically the method of

obtaining the particular solution, we shall find in practice that

in many cases where it would be almost impossible to obtain

the general solution of the differential equation, we are still able

to arrive at the desired result by combining particular solutions

which can be obtained directly by various simple expedients.

7. A differential equation is linear when it is of the first

degree with respect to the dependent variable and its deriva-

tives. It is also homogeneous if, in addition, there is no term
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which does not involve this variable or one of its derivatives.

Practically all the differential equations we shall have occasion

to use are both linear and homogeneous, as are indeed a large

share of those occurring in all work in mathematical physics.

As examples we may mention the following partial differential

equations which are both linear and homogeneous

:

Laplace's equation, of constant use in the theory of potential,

the equation of the vibrating cord,

df " dx"

the Fourier conduction equation,

8. If such an equation, that is, linear and homogeneous, is

written so that all the terms are on the left side, the right-hand

member being consequently reduced to zero, a very useful propo-

sition can at once be deduced. For any value of the dependent

variable which satisfies the equation must reduce the left-hand

term to zero, so if such particular solution is multiplied by a con-

stant, it will still reduce this term to zero, since it will be merely

equivalent to multiplying each term by the constant. In the same

way it can be seen that the sum of any number of particular solu-

tions will still be a solution. We may then state as a general

proposition that, in the case of the linear, homogeneous differential

equation (^ordinary or partial^, any combination formed by adding

particular solutions, ivith or without multiplication by arbitrary con-

stants, is still a solution. We shall have frequent occasion to make

application of this law.

9. Boundary Conditions. The solution of practically all heat-

conduction problems involves the determination of the tempera-

ture ^ as a function of the time and space coordinates. Such

value of 6 is assumed to be a finite and continuous function of
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a;, y, z, and t, and must satisfy not only the general differential

equation, which in one modification or another is common to all

heat-conduction problems, but also certain equations of condition

which are characteristic of each particular problem. Such are

:

(a) Initial Conditions. These express the temperature through-

out the body at the instant which is chosen as the origin of the

time coordinate, as a function of the space coordinates, that is,

^0 =/(^' y^ 2) "^lien t = 0.

(b) Boundary or Surface Conditions. These are of several sorts

according as they express : (1) the temperature on the boundary

surface as a function of time, position, or both, that is,

^s =/(«5 y^ 2r ;

(2) that at the surface of separation of two media there is con-

tinuity of flow of heat, expressed by the relation

or (3) that radiation takes place at the surface, in which case

\dnjs

assuming Newton's law of cooling and calling E the emissivity,

that is, the rate of loss of heat by radiation and convection per

square centimeter of surface, per degree above the temperature

of the surroundings.

Newton's law states that the rate of cooling is proportional to

the temperature, 6, above the surroundings, and, when this tem-

perature difference is small, can be shown to be consistent with

Stefan's law of radiation

R = C(T* - 1;*),

where T and T^ are the absolute temperatures of the radiating

body and of the surrounding walls respectively. For with small

values of T— T^ we have

^4 _ ^^4 = S (I'l) = 4 Tl -ST, or jK = 4 CT^ 8T.

* See equation (3) , Chapter I.



12 THEORY OF HEAT CONDUCTION

Noting that ST is equivalent to ^ in Newton's law, we see that

this law holds with any degree of accuracy for only small values

of 0. However, at ordinary atmospheric pressures and for small

differences of temperature, the convection part of the loss is much

greater than the radiation.

There are also other possible boundary conditions, such as

that the bounding surface shall be impermeable to heat, all of

which we shall have frequent occasion to use and shall treat

more at length when they occur. Following a common practice,

we shall hereafter refer to both initial and surface conditions as

simply " boundary conditions."

10. Our task in general, then, in solving any given heat-con-

duction problem is to attempt, by building up particular solutions

of the general conduction equation, to secure one which shall

satisfy the given boundary conditions. It is easy to see that

such a result is one solution of our problem, and it may be shown

that it is also the only solution, but for the proof of this unique-

ness theorem the reader is referred

to larger treatises on the subject.*

11. The Fourier Equation. Before

taking up the treatment of specific

problems we must deduce a general

equation of conduction wliich, with

its modifications, will determine the

flow of heat under any conditions.

Choose three mutually rectangular

axes of reference OX, OY, and OZ
(Fig. 1) in any isotropic body and

consider a small rectangular parallel-

epiped of edges Bx, %, and Sz parallel respectively to these three

axes. Call the temperature at the center of this element of vol-

ume 6; then since the temperature will in general be variable

throughout the body, we may express its .value on any face of

the parallelepiped— this being so small that the temperature

is sensibly uniform over any one face— as being greater or less

* Carslaw, Fourier's Series and Integrals, p. 206.

r- ^
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than this mean temperature ^ by a small amount. The magni-
tude of this small amount for the case of the S«/& faces we
may readily show to be . „^

i- 8(7 ^

2 3-J^^
(1)

for the temperature gradient — measures the change of tem-
ox '^

perature per unit length along OX, and the distance of Si/8s

from the center is evidently l Sx. Then the temperature of the

right- and left-hand faces may be written

1 d0 1 /^ff

^ + n — Sa; and ^ ~'^J~^^ respectively. (2)

Now since equation (1) of Chapter I, which defines the

coefficient of conductivity, may be written in the differential

form as
8Q , ^ 80

then the flow of heat per second in the positive x direction

through the left-hand face Si/Sz is

and through the right-hand face in the same direction

-''^'4x{'^Vi'^} (^)

the negative sign being used, since a positive flow of heat evi-

dently requires a negative temperature gradient. The differ-

ence of these two quantities is evidently the gain in heat of the

element due to the x component of flow alone ; then since similar

expressions holdffor the other two pairs of faces, the differences

of these three pairs of expressions, or

p2i3 /)2i3 /52Z3

]c— SxSi/Sz + ^«^ SxSySz + ^^ SxSi/Sz, (6)

represents the difference between the total inflow and total out-

flow of heat, or the amount by which the heat of the element is
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being increased per second. If the specific heat of the material

of the body be c and its density p, this sum must equal

(7)

(8)

(9)

(10)

This is known as Fourier's equation. It expresses the condi-

tions which govern the flow of heat in a body, and the solution

of any particular problem in heat conduction must first of all

satisfy this equation, either as it stands, or in a modified form.



CHAPTER III

STEADY STATE—ONE DIMENSION

12. A body in which heat is flowing is said to have reached a

steady state when the temperatures of its different parts do not

change with time. Such a state occurs in practice only after the

heat has been flowing for a long while. Each part of the body

then gives up on one side as much heat as it receives on the

other, and the temperature is therefore independent of the time t,

although it varies from point to point in the body, being a func-

tion of the coordinates a;, y, and z. For the steady state, then,

Fourier's equation (9), Chapter II, becomes

We shall investigate one or two applications of this equation

for the case of flow in the x direction only.

13. One-Dimensional Flow of Heat. This includes the common
cases of flow of heat through a thin plate or along a rod, the two

faces of the plate, or ends of the rod, being at constant tempera^

tures 6^ and 6^, and in the latter case the surface of the rod be-

ing protected so that heat can enter or leave only at the ends.

It also includes the case of the steady flow of heat in any body

such that the isothermal surfaces, or surfaces of equal tempera-

ture, are parallel planes.

For these cases the general equation of conduction reduces to

s=«- (^>

the ordinary derivative being vrritten instead of the partial, since

in the case of only a single independent variable a partial deriva-

tive would have no particular significance. This integrates into

e = Ax+B. (3)
15
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The constants A and £ are determined from the boundary

conditions for this case, which are that the temperature is 6^ at

the face of the plate (or end of the bar) whose distance from

the «/2-plane may be called I, and 0^ for the face of distance m

;

or, as these conditions may be simply expressed,

(a) e = e^&tx=l; (b) e = e^sitx=m. (4)

Therefore 6^ = Al + B and 0^ =Am + B. Evaluating A and B,

we get as the temperature at any point in the plate distant x

from the «/2-plane

^^ (m0,-l0,~) (0,-0,)x
5

Qm-T) (m-T) ^ ^

If we define the rate of flow of heat W as the rate at wJiich

heat energy is being transferred through unit cross section, then

equation (3), Chapter II, becomes

W=-k^^, (6)
ex

which in this case gives us

^^k(0^-0^^k(0^^-0^

where u is the thickness of the plate or the length of the rod.

14. This, which is essentially the simplest case considered in

heat conduction, has been made the basis of a number of methods

of determining coefficients of conductivity. One of the first was

that of Peclet,* who used a plate whose two faces were in con-

tact with streams of flowing water at two different temperatures.

The heat conducted through the plate was calculated from the

change in temperature of the flowing water, and the fall in tem-

perature taken as the difference of that of the two streams ; al-

though, as has been shown since, this is only approximately true

and may involve a large error.

15. A more usable method is that of Gray,''' who experimented

with small rods of the material to be studied. The rod, which

was perhaps 6 cm. long and 3 mm. in diameter, was fastened on

the one end to a copper hot-water bath and on the other to a

*E. Tec\et, Ann. chim.pJujs., (3), 2, p. 107(1841) ; Ann. Phys. Chem., 55, p. 167(1842).

t J. H. Gray, Proc. Roy. Soc. London, 56, p. 199 (1894).
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copper sphere of some 5.5 cm. diameter. A thermometer inserted in

a small hole in the sphere gave its rise of temperature, from which,

knowing its heat capacity, the rate of transfer of heat could be

computed and the conductivity determined by the aid of (7).

16. Steady Flow of Heat in a Long Thin Rod. This case differs

from the preceding in that losses of heat by radiation and con-

vection are supposed to take place from the sides of the bar and

must be taken into account in our calculation. To do this we

must add to the Fourier equation — = J^—-: a term which shall

represent this loss of heat. Now by Newton's law of cooling the

rate of this loss will be proportional to the excess of temperature

of the surface element over that of the surrounding medium which

we shall assume to be at zero, and hence may be represented by

h^9 where W is a constant. Fourier's equation for this case then

becomes dd d'^Q

l =
^''i.-^% (8)

and when the steady state has been reached, this reduces to

This is readily solved by the usual process of substituting e"'' for 0,

which gives is

aV- = ^e- (10)

from which we get a = ± -, and hence

b

= Ae >• +Be "
(11)

as the sum of two particular solutions.

17. The significance of the constant &^ is most easily shown

by considering the problem entirely independently of Fourier's

equation. For when the steady state has been reached in such

a bar, the flow of heat per unit of time across any area of cross

section S of the bar will be, at the point x,

-ksf^, (12)
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and, at the point x + hx,

and consequently the excess of heat left in the bar between

these two points Sx apart is

kS^Bx. (14)

This must escape by loss from the surface, and such loss per

unit of time will be given by. UOphx, where E is the so-called

surface emissivity of the bar, that is, its rate of radiation and

convection loss per unit of surface per degree of temperature

above the surroundings * (see Art. 9), and where phx is the

product of the perimeter p of the bar and the length hx of the

element, that is, the element of surface. Hence we have

^^^^ = ^^P^ (15)

By comparison with equation (9) we then see that

"Writing for shortness, say, —~ = fi^, our general solution (11)

takes the form
e=Ae^>^ + Be->''=. (18)

18. We may use this solution to investigate the state of tem-

perature in a long bar, whose far end has the same temperature

as the surrounding medium, while the near end is at 6^, say, the

temperature of the furnace. The point at which an intermediate

temperature 9^ is reached must also be known.

Here the boundary conditions are

(a) 6 = aA, X = <x>,

(b) e = e^2Lt x=Q, (19)
(c) e = e^ at x=l.

* For values of E, see Appendix A.
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From condition (a) we get

0=^6"" + 56-"", (20)

so that ^e- = or A = 0. (21)

Condition (b) then gives

e^^Be-"-" or B = e^, (22)

and (c) means that

^, = ^^6-"' or /.Z = log^. (23)
2

X

••• ^ = ^^©"'- (24)

For different bars subject to the same conditions (a) and (b)

and having the same temperature 6^ at points l^, l^, l^, • • we have

a

log —̂ = /lijZj = fij^ = /XgZg • • • = a constant, (25)
2 .

which, from the definition of /i, means that

^ _ ^ — ^ — . . . ^
72 72 72 ''72'
'1 '2 'S ''n

providing the several bars have each the same perimeter, cross

section, and coefficient of emission.

19. This is the fundamental equation underlying the so-called

Ingen-Hausz experiment for comparing the conductivities of dif-

ferent metals. The metals, in the form of rods of the same size

and character of surface, are coated thinly with beeswax (melt-

ing point ^2) ^iid ^^^ placed with one end in a bath of hot oil at

temperature d^. After standing for some time the wax is foupd

to be melted for a certain definite distance (?) on each bar, and

the conductivities are therefore in the ratio of the squares of

these distances.

20. Another application of (18) is found in the solution for

the case of the bar, heated as above, with the temperatures known

at three equidistant points.*

* See Preston, Heat, p. 634.

(26)
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21. These principles were made use of by ' Despretz * ia a

series of experiments on the relative conductivities of bars of

various metals ; also by Wiedemann and Franz, t and, to a cer-

tain extent, by Jager and Diesselhorst,t whose determinations

of the conductivities of pure metals are probably the best we

have. Forbes § sought to measure absolute as well as relative

conductivities by this type of experiment, with the aid of a

separate test of the rate of cooling of the bar in air.

APPLICATIONS

22. There could be pointed out an almost unlimited num-

ber of practical applications of these deductions for the steady

flow of heat in one dimension, particularly of equation (7),

but as these are treated at length in general physics and en-

gineering works, and especially in texts on furnaces, boilers,

refrigeration, and the like, we shall be content with a few

common examples.

23. Ice House. As a first example consider the heat flow

through the walls of an ice house. Suppose the walls to be of

double I" boarding on each side of an 8" core of shavings, mak^

ing with the weatherproof paper a wall 12" (30.5 cm.) thick.

If the two sides are at temperatures of 0° C. and 21.1° C.

(32° F. and 70° F.), what is the rate of heat flow through

the wall?

The conductivity for such material, if dry, is about 0.0002311;

hence, from equation (7),

W= '- ——

—

'— = .000159 cal. per square centimeter per second

= 50.7 B.T.U. per square foot per day.

The flow per day (86,400 sec.) tlirough such a wall of 1000 sq. m.

(1196 sq. yd.) would be sufficient to melt 1720 kg., or 3790 lb.,

of ice.

* Ann. chim. phys., (2), 19, p. 97 (1821) ; 36, p. 422 (1827).

t A7in. chlm. phys., (3), 41, p. 107 (1854).

X Abh. d. phys.-tech. Reichsanstatt, 3, p. 269 (1900).

§ Phil. Trans. Roy. Soc. Edinburgh, 23, p. 133 (1862).

II
Deduced from Cooper, Practical Cold Storage, p. 81.
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24. Furnace Walls. "What is the loss of heat through a fur-

nace wall 45.7 cm. (18") thick if the two faces are at 1000° C.

and 120° C. (1832° F. and 248° P.), assuming an average .con-

ductivity of 0.0024 * for the masonry of the wall ?

Here we have

W= '- —

—

= .0462 cal. per square centimeter per second,

or 180 watts per square foot.

Despite its small conductivity, air, as in the air space fre-

quently built in such a furnace wall, proves in practice a poor

insulator, as pointed out by Ray and Kreisinger.t For at high

temperatures the transmission of heat through the air space by

radiation is more rapid than if the space were filled with some

poorly conducting material such as ashes or sand. For ordinary

temperatures, however, as in a refrigerator wall or house wall,

such an air space is quite effective, especially if convection is

prevented by breaking up the air space into small parts. It is

undoubtedly to the entrapped air that porous substances such

as cotton, wool, or feathers owe their good heat-insulating

properties.

25. In any practical consideration of heat transference it is

disastrous to overlook what is generally termed the contact or

surface resistance which is offered to the heat flow by any dis-

continuity in the material. Thus brick masonry, as in a thick

wall, shows hardly more than half the conductivity of the brick

itself, while powdered brick dust may have ten times the insu-

lating quality of the solid material.

As pointed out by Hering,t this consideration is of the highest

practical importance in many cases. Thus for a boiler plate of

^" material (.635 cm.) a flow of 1 kilowatt per square foot

(.257 cal. per second per square centimeter) through the plate

* Clement and Elgy (Univ. of 111. Eng. Exp. Station, Bull No. 30) give .0024 as

the conductivity of firebrick at 700° C. Although it is frequently quoted somewhat

higher than this (about .0040), the above is probably a fair average for a masonry wall

partly of fire brick and partly of ordinary brick.

t "The Flow of Heat through Furnace Walls," Bull. No. 8, Bureau of Mines,

Department of Interior. J Met. and Chem. Eng., 10, p. 40 (1912).
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would necessitate a temperature difference of less than 1.5° C.

between the faces, which is inconsiderable compared with the

temperature difference between the hot gas and the metal.

That this temperature drop through the metal may be of con-

siderable importance, however, is proved by the common experi-

ence that a thick-walled hot-air furnace is generally less efficient

than one with thinner (for example, sheet-steel) walls.

PROBLEMS

1. Compute the heat loss per day through 100 sq. m. of brick wall

(k = .0020) 30 cm. thick, if the inner face is at '20° C. and the outer at

0° C. How much coal must be burned to compensate this loss, if the heat

of combustion is 7000 cal./gram and the efficiency of the furnace 60% ?

(11.5 X 10' cal. ; 27.4 kg.)

2. In determining the conductivity of iron by Gray's method the follow-

ing data was obtained : diameter of iron rod, 3 mm. ; length, 8 cm. ; tem-

perature of hot end, 95.6° C. ; mean temperature of copper sphere, 21.2° C.

;

mass of sphere, 603 g. ; rate of- rise of temperature, .1008° per minute.

What is the conductivity of the iron rod? (0.141.)

3. A long nickel bar is heated at one end. It is found by the aid of

inserted thermometers that at a point where the temperature is 65°

above that of the room the variation of temperature gradient is .246° per

centimeter per centimeter. A separate experiment on a small section of the

same bar showed that when this was heated to 65° the rate of cooling was
2.25° per minute. What is the diffusivity of this sample of nickel? (This

is the principle of Forbes's method.) (0.152.)



CHAPTER IV

THE STEADY STATE— MORE THAN ONE DIMENSION

26. Flow of Heat in a Plane. We shall solve Fourier's problem

of the permanent state of temperatures in a thin rectangular plate

of infinite length, whose surfaces are insulated. Call the width of

the plate tt and suppose that the two long edges are kept con-

stantly at the temperature zero, while the one short edge, or base,

is kept at temperature unity. Heat will then flow out from the

base to the two sides and toward the infinitely distant end, and

our problem will be to find the temperature at any point.

Take the plate as the xy-plane with the base on the a;-axis and

one side as the jr-axis. Then equation (9) of Chapter 11 becomes

To solve this problem, then, we must find a value for the tem-

perature at any point which shall not only be a solution of (1),

but shall also satisfy the boundary conditions for this case,

which are
(-g.) 61 = at a; = 0,"

(b) ^ = at a; = ir,
'

(c) 6'=1 at ?/ = 0, ^ *

(d) 61 = at «/ = oo.

We shall attempt to find a simple particular solution of (1)

which will satisfy all the conditions of (2), but, failing this, it

may still be possible to combine several particular solutions, as

explained in Art. 8, to secure one which will do this.

27. Of the several ways of arriving at such a particular solu-

tion we may outline two. The first is with the aid of a device

which always succeeds when the equation is linear and homo-

geneous with constant coefficients. This is to assume that

^ = 6"" + ^% (3)
23
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where a and /8 are constants. Substituting this in (1), we find

at once that a^ + ff = (4)

which is then the condition to be satisfied in order that 6 ^e""^^"

may be a solution. But this means that

6 = 6'"'^'"^, (5)

for any value of a, is a solution, which is equivalent to saying

that ^ gfV^oion
(^Q^

and e^e'^er""^ (7)

are solutions, and by Art. 8 their sum or difference divided by

any constant must be a solution also. Then since *

g.-« + g-.* ^ 2 cos 0, (8)

and e'* — e' '* =2i sin ^, (9)

we get, upon adding (6) and (7) and dividing by 2,

e = e"" cos ax, (10)

and upon subtracting and dividing by 2 i,

e = e"" sin ax. (11)

Now obviously (10) does not satisfy condition (a) of (2),

so we turn to (11), which can be seen at once to satisfy (a) and

(b), also (d) if a is negative. As it stands (11) fails to

meet condition (c), but it may still be possible to combine a

number of particular solutions of the type of (11) which will

do this. For if w is any positive integer,

0=Ae-'"'sinnx (12)

fulfills the first, second, and last of the above conditions, as will

also the sum

' sin 3 2; + . (13)
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where A^, A^, are constant coefficients. For y = this becomes

=Aj^smx + A^sia2x + A^smBx-\ , (14)

and if it is possible to develop unity in such a series, we may
still be able to satisfy (c) of (2). Now, as we shall discuss at length

in Chapter VI, Fourier showed that such a development in a

trigonometric series is possible, the expression in this case being

1 = —J sin a; + - sin 3a; + -sin52;H I ClS^
TT

[
3 5

J
^ ^

for all values of x between and tt. Therefore our required

solution is

= -}e-'-'smx + - e-^" sin 3 a; + - e'^" sin 5 a; -| I (16)

which satisfies (1) as well as all the boundary conditions of (2).

28. In the second method of solving (1) we shall separate

the variables at once by assuming that =X-Y where X is a

function of x only, and F of t/ only. Substituting, we obtain

1 d^Y 1 8^X

Since the two sides of this equation are functions of entirely in-

dependent variables, they can be equal only if each is equal to a

constant which we may call A,^. The solution of the partial dif-

ferential equation (1) is thus reduced to that of the two ordinary

differential equations

^-x^r=o, (19)

and ^+x^x=0. (20)

These may be solved by substitutions similar to (3) but some-

what simpler, namely,

Y=e^" and X= e"^" respectively. (21)
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The first gives /S = ± X, therefore

T = Ae'^+Be-''K (22)

The second gives a = ± i\, so that

X= ^V^=" + B'e-'"'', (23)

which, from the note to Art. 27, reduces, if we call QA' — -B') i = lH

and ^'+5' = ^ to -tr ^ • N , r, ^ ^OA\
£) X=C sm \x-\-D cos \x. (z4)

Choosing ^ = J) = to satisfy (a), (b), and (d) of (2), the solu-

tion resulting from the product of (22) and (24) reduces at once

to (12), and the remainder of the process is the same as before.

29. It may be noted that this same sort of solution will hold

even if the temperature Q of the base of the plate is other than

unity, indeed even if it ceases to be constant and is instead a

function of «, provided it can be expressed also in this latter

case by a Fourier series. In case we wish to have the values

of X run from to a instead of from to tt, we must introduce

as a variable the quantity — , and the expressions will otherwise

be the same as before. We shall discuss this at length in

Chapter VI.

It is also of interest to note that our solution is entirely inde-

pendent of the physical constants of the medium, so that the

temperature at any point is independent of what material is

used, so long as the steady state exists.

30. Flow of Heat in a Sphere. To investigate the radial flow

of heat in a sphere, we must first replace the rectilinear coordi-

nates x^ y, and z in equation (9), Chapter II, by the single

variable r. This is done by means of the following transformation

:

de_(,dO dr
„ -r- , „ ;, and this equals , (25)
ox \dr 031 dr "^r

because, since
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with similar expressions for the derivatives with respect to y
and z. We thus obtain

dx"" df dz" dr" r dr' ^ ^
Since, howgxer, __^^

"

(Urey dd
,

„ 7~^^^r cZ't
,

„-<?^-
^^^^js^= r —- + 8, and —tt"^ = »' ^-^ + 2

we have V¥ = ^^—

^

^r^ dr
'

(^r^ c?r^ dr'

(29)

The Fourier equation thus becomes for the steady state

^^-. (3«)

and its integral may, at once be written as

d = A + -. (31)
r

For boundary conditions we may take

(a) ^ = ^^ at r = r^,

(b) e^e^ at r = r,, ^ ^

where r^ and r^ are respectively the internal and external radii

of the hollow sphere. These conditions give, on substitution in

(31), after the elimination of A and B,

This expresses the temperature for any pomt of the sphere

and also shows that the isothermal surfaces are concentric

spheres. The rate of flow of heat per unit area in the direction

r is given by d0 kfO — d^rr^ ^ W=-h— =^ "-^JJ^, (34)
dr r (r^ — r^

and the total quantity which flows out in unit time is

4^,^^=i^lM^i^^a>i!i. (35)

31. Radial Flow of Heat in a Cylinder. Let the axis of the

cylinder be the 2-axis. Then the problem is similar to that for

the sphere, save that now we are concerned with only two
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dimensions and may put r^=a:^+«/^- By a- process similar to

that by which (27) and (29) were obtained we then get

de

V^^=^ + l^ = iA>=0. (36)
dr^ r dr r dr

The integral of this is q^^^^^^^^^ (37)

which gives, by the use of boundary conditions quite similar to

those of (32),

e^ = A\ogr^ + B; then 6^ = A log r^ + B, (38)

and from these we obtam

g _ (^1 - ^2) log ^
I

^1 log ^2 - ^2. log ^1
(39-)

log r-j — log r^ log r^ — log r^

The rate of flow is given by

W= ^^^--^->
, (40)

r (log r^ — log r-j)

and the quantity of heat which flows out through unit length of

the cylinder per second by

log r^- log r^

32. Niven* has developed an ingenious method of measuring

conductivities based on this case. Heat is supplied by a wire

carrying an electrical current along the axis of the cylinder, and

when a steady state has been reached, the conductivity is given

in terms of the difference of temperature at known distances

from the axis. These temperatures may be determined by small

thermoelectric junctions embedded in the material at the de-

sired places, while the rate at which the heat is being supplied

is known from the current and the difference of potential at

the two ends of the wire. Thus for a current / amperes and

a potential drop of E volts in length I of the wire the heat lost

per centimeter length of the cylinder is as follows

:

* Proc. Roy. Soc, 76, p. 34 (1905).
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M_ eal./sec. = £zM^^ ^ 2^rK^,.-^.
^43)

4.19 r r ^ ^
log,^ 2.3026 log^„

J
1 1

The method is especially useful for the study of cement, rock,

and other poor conductors.* The material may also be used in

the spherical form and the conductivity determined with the aid

of (35).

APPLICATIONS

33. Equation (41) applies at once to the flow of heat through

the walls of a boiler flue, although ia this case the thickness is

so small in comparison with the radius that it can be treated as

the flow through a plate (Art. 13, equation (7)). That (40) re-

duces to this if we put

log r^ — log r^= d (log r) =—

,

is evident.
*"

34. Covered Steam Pipes. A better application is found in the

case of the covered steam pipe, for the thickness of the covering

in this case is frequently comparable with the diameter of the

pipe itself. As an application of (41) let us investigate the loss

of heat per unit length of a 2" steam pipe (outside diam. 2.375",

or 6.04 cm.), protected with a special magnesia covering 2.54 cm.

(1") thick. Let the temperature of the pipe be 185°C. (365.2° F.),

that is, 150 lb. steam pressure ; and of the outer surface of the

covering, 47.2°C. (117°F.). The conductivity of the covering

will be taken in this case as 0.000156.

Then

„ „^ 2 TTX.000156x137.8 _, . , ^.
2 7rr Tr= —— = .zzl cal. per second per centi-

2.3026 logj^—^ meter length of pipe

= 96. 2t B.T.U. per hour per foot

length.

* For the description of a method analogous to this but applicable to good con-

ductors, see paper by M. F. Angell, Phys. Rev., 33, p. 421 (1911). The material is

used in the form of a rod -which is heated by the passage of a large current. The
temperature gradient is obtained from thermocouples at the center and at the surface.

t This is the result obtained in a test by Barrus under the above conditions. See

C. P. Paulding, "' Loss of Heat from Covered Steam Pipes," Stevens Indicator, 19,

p. 110 (1902).
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It is of interest to note tliat double this thickness of covering

would still allow a loss of .137 cal./sec. per centimeter length

for the same temperature range, or only 38% decrease in loss

for 158% added covering material. That the proportional sav-

ing is greater for a larger pipe is shown by the curves of Fig. 2.
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magnesia, which might cause a greater loss of heat than would

occur from the bare pipe.

36. Equations (34) and (35) or (40) and (41) may also be used

to find the approximate heat loss from a " flaring " conductor,

such as the corners or edges of a furnace, these being treated

approximately as portions of a sphere or cylinder respectively.*

PROBLEMS

1. Plot the temperatures for a dozen points in a plane such as treated in

Chapter IV, and draw roughly the isothermals and lines of flow. Use only

the first two terms of equation (16).

2. A wire whose resistance per centimeter length is .1 ohm is erdbedded

along the axis of a cylindrical cement tube of radii .05 cm. and 1.0 cm. An
electric current of 5 amp. is found to keep a steady difference of 125° between

the inner and outer surfaces. What is the conductivity of the cement, and

how much heat must be supplied per centimeter length ?

(.0023; .596 cal./sec.)

3. A hollow lead sphere whose inner and outer diameters are 1 cm. and

10 cm. respectively is heated electrically by a 10-ohm coil placed within

the cavity. From the conductivity of lead given in Appendix A compute

what current will keep the two surfaces at a steady difference of temper-

ature of 5°. Also, at what rate must heat be supplied ?

(1.10 amp. ; 2.89 cal./sec.)

4. Two steam pipes of 20 cm. diameter, protected with 10 cm. thick cov-

erings of concrete (k = .0022) and magnesia (Jc = .00017) respectively, are

run underneath the soil. If the outer surfaces are at 30° C. and the pipes

themselves are at 160° C, compute the losses in the two cases.

(2.59 and .20 cal. per second per centimeter length.)

* For a lengthy treatment of this subject see Hering, " Heat Conductance through

Walls of Furnaces," Trans. Am. Electrochem. Soc, 14, p. 215 (1908) ; also paper

before Boston meeting, April, 1912.



CHAPTER V

PERIODIC FLOW OF HEAT IN ONE DIMENSION

37. We shall now take up the problem of the flow of heat in

one dimension which takes place in a medium when the boundary

plane, normal to the dii'ection of flow, undergoes simply-periodic

variations in temperature. This problem occupies in a way an

intermediate place between those of the steady state already

considered and the more general cases which can be treated only

after a familiarity has been gained with Fourier's series ; for in

the former cases the temperature at any point has been constant,

while in the latter it is a more or less complicated function of

the time, rarely reaching the same value twice at a given point

;

but in the present case the temperature at each point in the

medium varies in a simply-periodic manner with the time, and

while the temperature condition is by no means " steady," as we

have defined this term, it duplicates itself in each complete period.

The problem derives its interest and importance from its very

practical applications. The surface of the earth undergoes daily

and annual changes of temperature which are nearly simply-

periodic, and it is frequently desirable to know at just what time

a maximum or minimum of temperature will be reached at any

point below the surface, as well as the actual value of this tem-

perature. Such knowledge would be of value, for example, in

determining the necessary depth for water pipes, to avoid danger

of freezing, or in giving warning of just when to anticipate such

danger after the appearance of a "cold wave," that is, one of those

roughly periodic variations of temperature which frequently

characterize a winter.

38. Solution. Our fundamental equation for this case is the

Fourier conduction equation

dt ^ ^

32
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written in one dimension,

and the solution must fit the boundary condition

d = d^sma)ta.tx= 0. (3)

As the equation (2) is linear and homogeneous with constant

coefficients we can arrive at a particular solution by the same

device used in Art. 27, namely, by the assumption that

(9 = ^6'" + ^".
(4)

Substitution in (2) shows that this is a solution, provided only

that a = ¥^^; (5)

so we have as a solution

at i:^' ^Ja
e=Ae " . (6)

If a is replaced by ± yi, this becomes

e=Ae _ . (7)

But Vi = ± 1 V2 (1 + 1)* (8)

and Vr^ = ± 1V2 (1 - i)
; (9)

so that (7) becomes

^ = ^/^"^^^<^^*\
(10)

^ = ^e*^'^.e*''(^'^^^). (11)

From the several solutions contained in (11) other particular

solutions may be built up by addition, such as

e = AM[^^'-'^^^-e-<^'-'^^^, (12)

and from Art. 27 this may be written

e = Bi^^^'^smL-lJi). (13)

Other solutions may be formed in the same way, care being

taken to note, however, that, from the manner of its formation
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(see (6)), the sign before i in each term of (10) must be the

same. This will be found equivalent to saying that the same

sign must be used before t "V^ in each term of equations like

(12). With tliis in mind we may write at once as other partic-

ular solutions
I-

_

= W^^'.sin(7^ + |^^j, (14)

^^(7.-^^.cos(7«-|^), (15)

-^^^--(^-X^i)-
and 6l=C"e*'^^-cos 7i + y-J^). (16)

Of these four solutions, (14) and (16) demand that the tem-

perature increase indefinitely as x increases, which is evidently

absurd, while (15) is excluded by (3). Equation (13) will

satisfy this condition if B is put equal to 6^ and 7 to cd. Making

these changes, we have then as the solution

^ = ^/^^"^.sin(.^-^^), (17)

which expresses the temperature for any time t at any distance

X from the surface.

39. Amplitude, Range. This is the equation of a wave motion

whose rapidly decreasing amplitude is given by the factor

O^e * ^. The range of temperature, or maximum variation, for

any point below the surface is given by

= 2e^e ^^^,
(18)

putting for (o its value ^, where T is the period. 0^ is the

amplitude, or half range, at the surface. This shows at once

that the slower the variation of temperature the greater the

range in the interior of the body.
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40. Lag, Velocity, Wave Length. The time at which a maxi-

mum or miaimum of temperature will occur at any point is

evidently that for which

-^-i^|l=(2- +
l)|, (19)

or < = i2i i, (20)
ft)

^ ^

odd values of n giving minima, and even, maxima. Fixing our

attention on the minimum which occurs at the surface when,
3 TT

say, <ot = —— , we see that if x and t are both supposed to increase

so that , a; fft) 3 TT ,^ . ^

we may think of this particular minimum being propagated into

the medium and reaching any point x at the time given by this

equation. This is later than its occurrence at the surface by an

^-AN2ft,-2AN7r' ^^^^

which may be called the lag of the temperature wave. The same

reasoning holds for the maximum, or zero, or any other phase.

The apparent velocity of such a wave in the medium is given

from (22) by ^ HZ
F=^=2A^5, (23)

but this is merely the rate at which a given maximum or mini-

mum may be said to travel, and has nothing to do with the actual

speed with which the heat energy is transmitted from particle to

particle, for this latter is very large,

—

poaaibly the oamc aa the

velocity'' of transmiooion of pound in tho cubstance .

From (23) we may deduce as the expression for the wave

length of such a wave ^^yrp^^j^ V^^. (24)

Equations (22)-(24) may be used to measure the diffusivity

of any medium from determinations of the lag, velocity, or

wave length.
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41. Temperature Curve in the Medium. The form of this curve

at any given time may be conveniently investigated by differ-

entiating (17) with respect to x to find the maxima and minima

of the curve, which, of course, will be distinguished from the

maxima and minima above treated. Then writing

1

we have- tan (at — jxx) = — 1, (25)

(i+-) (^+-) c^^-)or x=^ ^, 1^ i, ^^ '-,..., (26)
IX, il ^

Tins shows that the minima and maxima are equally spaced,

and if we note that the corresponding minima and maxima of

the pure sine curve y ^ ^:^ ^^^ _ ^^^ ^^27)

occurat x=^ L, 1 /,..., (28)
fX. fj.

they are seen to be nearer the surface than these latter by an

amount This means that when t = iiT (ot: (w + 1-) T) the

first minimum (or maximum) is found at just half the distance

of the corresponding minimum (or maximum) for the sine curve.

This is illustrated in the solid line curve in Fig. 3, which gives

the temperatures for different depths for the diurnal wave in

soil of diffusivity = .0049. The broken line is the curve of am-

plitudes for an amplitude, or half range, of 5° at the surface.

42. Flow of Heat per Cycle through the Surface. This is readily

computed by forming the temperature gradient from (17) and

then integrating over the half period. Thus

de , -fV^ / 1
e " ^•l-^A(-)-isin|(B<

dx ' \ A \2. ,

h N2/i'

-I^)
+ cos(o,!-f,B|. (29)
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Jo V^^A=o Jo V^l=a
h \t= ^0-7 A — cal. per square centimeter. (^0)

This amount of heat flows tlirough the surface into the material

during one half the cycle and out again during the other half.

B
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made extensive use of the periodic method in determining the

conductivity of metals in the form of bars. These had ther-

mometers inserted in holes at frequent intervals along their

lengths and were heated and cooled in the middle. As radia-

tion took place from the surfaces of the rods, and as, moreover,

the temperature was not a simply-periodic function of the time,

the preceding equations had to be modified to take account of

these facts.*

APPLICATIONS

44. With the aid of the foregoing equations we may inves-

tigate the penetration of periodic temperature waves into the

earth. The questions of interest and importance in this connec-

tion are, first, the range or variation of temperature at A^arious

depths for the diurnal and annual changes ; and, second, the

velocity of penetration of such waves, and hence the time at

which the maximum or minimum may be expected to occur at

various depths.

45. Diurnal Wave. First consider the diurnal wave. Suppose

the surface of the soil to vary daily, at a certain season, from

+ 16° C. to - 4° C. (60.8° F. to 24.8° F.), what is the range at

30 cm. (11.8") and 1 m. (39.4")? The mean of the above

temperatures is + 6°, and as condition (3) supposes a mean tem-

perature of zero, our temperature scale must be reduced by the sub-

traction of 6°, which can be added again later if necessary. In this

case, then, ff^ is 10° and T = 86,400 sec. Using the constants for

ordinary moist soil (A^ = .0049), equation (18) shows that the

range is reduced from 20° at the surface to only .07 of this, or

1.4° C. (2.5° F.), at 30 cm. below, and to less than .004° C. at 1 m.

below. Since a range of 12° would just be sufficient in this case

— assuming an average temperature of 6° in the soil— to reach

a freezing temperature, we conclude that a layer of soil 6 cm.

thick will be enough to prevent freezing under these conditions.

Dry soil will afford even smaller penetration than this, and in

the damp soil we have neglected the latent heat of freezing of

* See Preston, Seat, p. 654; Byerly, Fourier's Series, p. 91,
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the soil, which, while nearly negligible for small water content,

would still reduce the penetration of the freezing temperature

somewhat. We may also deduce from (22) that the maximum
or minimum temperature at 30 cm. would lag some 35,000 sec,

or 9.7 hr., behind that at the surface. In a series of soil tempera-

ture measurements by MacDougal * the lag of the maximum at

30 cm. depth was found to be from 8 to 12 hr., and the range

generally less than a tenth of the range in air, both figures being

in substantial agreement with the above deductions.

46. Annual Wave. For the annual wave the variation for

temperate latitudes may be taken as 22° C. to — 8° C. (71.6° F.

to 17.6° F.). The range at 1 m. will then be reduced to 19° C,
while at 10 m. below the surface it will be only .33° C. The
freezing temperature will penetrate to a depth of less than

170 cm. (5.6 ft.).t From (23) the velocity of penetration of

such a wave is .000045 cm. per sec, or 3.9 cm. per day. For

a soil of this diffusivity, then, the minimum temperature at

a depth of about 7 m. (23 ft.) would occur in July and the

maximum in January.

The following table is compiled from measurements of under-

ground temperatures in Japan, cited by Tamura.t The computed

temperature range and lag were calculated for a diffusivity

of A' = .0027 by (18) and (22).

TABLE

Depth
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It will be noted that for the greater depths, where the soil is

doubtless more nearly uniform, the agreement of observed and

computed values is good.

47. " Cold Waves." While the preceding formulas were de-

veloped on the assumption of a simply-periodic temperature

wave which continues indefinitely, they are still applicable with

a fair degree of approximation to temporary variations of a

roughly periodic nature, such as " cold waves." A good example

of this is furnished by observations on underground temperatures

by Rambaut.* The curve of temperatures for March, 1899,

shows a marked drop, or cold wave, of about 10 days' duration,—
whole period 20 days,— the lowering (^6^') amounting to about

8.6° C. The magnitude of the temperature fall and lag of the

minimum, as observed by platinum thermometers at various

depths, is given in the table below, and also the computed

values. These latter were obtained by using the value of

A^ = .0074 computed by Rambaut from the annual-wave curve.

TABLE

Depth
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freezing temperature to penetrate into a concrete mass or wall

at 4° C. (39.2° F.), a depth of 56 cm. (22"), while the yearly

variation of temperature at a depth of 2 m. (6.6 ft.) in a mass

of concrete (for example, a dam) is only .43 of what it is at

the surface.*

49. Periodic Flow in Cylinder "Walls. As another instance of

the periodic flow may be mentioned the heat penetration in the

walls of a steam-engine cylinder. Callendar and Nicolsont found

that for 100 revolutions per minute the temperature range of

the inner surface of the cylinder wall (cover) during a cycle was

2.8° C. (5.1° F.). > Putting for cast iron A' = .121, we find from

(18) that this variation is reduced at a depth of .25 cm. (.1") to

2.8 e
-vAm V

60 ^ 2.8 x lO"'^ = .54° C. (1° F.),

and at three times this depth to only 0.021° C. (0.04° F.). The

heat flow into and out of the walls which takes place each cycle

is given from (30) as

1.4 . ^
= .190 cal. per square centimeter

.348 NlOO TT ^ jQ-^ B.T.U.t per square foot.

This discussion of the heat flow into cylinder walls has a direct

bearing on the question of steam jacketing such cylinders ; for

the inflow is attended by a wasteful condensation of steam—
followed by evaporation during the subsequent outflow— and

the steam jacket is designed to keep the cylinder hot enough to

prevent this condensation. There are greatly differing views,

however, as to the efficiency of such an arrangement.§

50. Temperature Stresses. As an example of these we may

outline briefly what might be termed the problem of the " bonded "

street-railway rail. From the preceding calculations it is evident

* For a series of temperature measurements in a concrete bridge see a fortlicom-

ing Bulletin of the Iowa Agricultural College Experiment Station. The authors are

indebted to Mr. W. D. Maxwell of the city engineer's office, Des Moines, Iowa, for a

preliminary report on this work.

t Proc. Inst. Civ. Eng., 131, p. 147 (1898).

I Forreasons which are not evident, Callendar and Nicolson use a formula lead-

ing to values larger than this by the factor V2.

§ See, for example, Kent, Mech. Eng. Pocketbook, p. 975 (1910).
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that the customary burying of the body of the rail will afford

small protection from the annual wave, although it may protect

it from the severity of short cold waves and diurnal changes.

Assuming that the top of the rail is flush with the surface, and

that its temperature at every point is that of the adjoining mate-

rial (soil, granite blocks, etc.), the average temperature through-

out the rail at any time will be given by

1 r^
@ = i

/ edx.d
where d has the value given in (17) and I is the depth of the

rail. The maximum or minimum temperature may be found by

differentiating this with respect to time and equating to zero.

This gives the time at which a maximum or minimum occurs,

and its value can be found accordingly. The tension which

exists in the rail will be proportional to the difference between

its average temperature and that at which it was bonded, and

may be arrived at by the following simple reasoning : If a free

rail be allowed to cool, it will contract by an amount a, per

degree per unit of length, a being the linear coefficient of

expansion. To stretch this rail again to its original length

would require a tension, per unit area of section, of P = Ma
units of force for each degree it had cooled, M being Young's

modulus. This, then, may be regarded as the tension which

will just keep the rail from contraction as it is cooled, and,

from the minimum temperature attained, the maximum stress

can be readily computed.

It should be realized that this will give at best only a roughly

approximate solution of the practical case, for the assumption

that the rail takes the temperature of the surrounding materials

is questionable, while, of course, it is not the same thickness top

and bottom, as tacitly assumed in the above integral. The

method might also be used to gain some idea of the temperature

stresses set up in the outer layers of a concrete surface, for

example, sidewalk; but a more satisfactory way, especially if

the concrete be reenforced, is to take these stresses as largely
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determined by the temperature gradient at any point. Differen-

tiating (17), we can put this in the form

which shows that temperature stresses due to periodic variations,

are greatest for the surface layers of the material.

PROBLEMS

1. If the diurnal change of temperature at the surface of a soil of

diffusivity .0049 is 20° C, what is the range at 10 cm. and 1 m. below

the surface? (8.4°; .0036°.)

2. Solve the preceding problem for an annual range of 30° C, and for

points at depths of 10 cm., 1 m., and 10 m. (28.7°; 19.1°; .33°.)

3. Compute the periodic heat flow into and out of the surface for the

two preceding problems. (87.6 ; 2510 cal./cm^.)

4. A long copper rod is carefully insulated throughout its length,

and one end is alternately heated and cooled through the range 0°-100°

every half hour. Plot the temperatures along the bar for such time as will

make the heated end at 50°. Determine the wave length and velocity for

this case ; alsp for the case in which the period is one-fourth hour.

(A. = 160 cm., V= .089 cm./sec. for r= i hr. ; X = 113 cm.,

V= .126 cm./sec. for r= i hr.)

5. A cold wave of two weeks' duration (7' = 4 weeks) brings a tempera-

ture fall (amplitude) a,t the surface of 20°. What will be the fall at a depth

of 1 m. in very dry soil (h^ = .0031), in ordinary moist soil (h^ = .0049), and

in concrete (A^ = .0058) ? Also compute the time lag of the minimum in

these cases. (2.5°, 3.9°, 4.4°; 9.1, 7.3, 6.7 days.)



CHAPTER VI

FOURIER'S SERIES

51. Before we can proceed farther with our study of heat-con-

duction problems we shall be obliged to take up the develop-

ment of functions in trigonometric series. The necessity for this

was apparent in Chapter IV, and could indeed be foreseen in the

last chapter ; for it was evident that if the boundary condition

had been expressed by other than a simple sine or cosine function,

as it was, it could not have been satisfied by any of the solutions

obtained, unless it should be of such a nature that it could be

developed as a series of sine or cosine terms, in which case it

might be possible to build up particular solutions to fit it.

Such a development was shown by Fourier to be possible for

all functions which fulfill certain simple conditions. For example,

the curve y =/(«) may be represented between the limits a; =
and z = TT, by adding a series of sine curves, thus

:

f(x) = ?/ = a^ sin a; -f- a^ sin 2 a; + ffig sin 3 a; H , (1)

or by a similar cosine series. The f{x) can be represented in this

way if it is single-valued within the region considered,— that is,

if for every x there is one and only one value of t/,— and is

moreover finite, with a finite number of maxima and minima, and

continuous, or at least has only finite discontinuities. The func-

tion which represents the initial state of temperature in a body

will satisfy these conditions, for there can be but a single

value of the temperature at each point of a body, and this

value must be finite. Furthermore, while there may exist

initial discontinuities, as at a surface of separation between

two bodies, such discontinuities will always be finite. This

indicates the applicability as well as importance of Fourier's

series in the theory of heat conduction.

44
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52. Development in Sine Series. To accomplish this devel-

opment it is necessary to find the values of the coefficients

ftj, a^, %^--- of the series (1). It is possible to find the value of

a finite number, n, of these by solving n equations of the type

.

«/j= ai sin a;^+ a^ sin 2 K^ H 1- a„ sin nx^,, (2)

where x^ is one of n particular values of x chosen between and tt.

This process also has the merit of making plausible the possibility of

expanding a function in such a series ; for with n terms the curve

made up by summing the trigonometrical series coincides with

the curve y =f(x) at the n points, and can be made identical

with it if we take n large enough. But while this method is

possible, it is not the simplest way, for the results may be obtained

by a much shorter procedure, as follows

:

We shall proceed on the assumption that the expansion (1)

is possible, and consider this assumption justified if we can

find values for the coefficients. Multiply both sides of (1) by

sin mxdx, where- m is the number of the coefficient we wish to

determine ; then integrate from to tt:*

.f(x) sin moidx = a^\ sin mx sin xdx -\ \- a^ I sin^ mxdx
a Jn Jo

-\ [-Op
I

sin mx sinpxdx -\ . (3)

sin. mx sinpxdx

1 r" 1 r"= x I cos (j)— m')xdx— - j cos (j) + m')xdx

ir 1 I'' ir 1 1"
= - sinC»— m):B — - sm.(p+m^x\ =0; C4)
2\_p-m ^ ^

J„ 2Yp+m ^^ ^ \,

hence the only term remaining on the right-hand side of (3) is

sin^ mxdx = a^ —• (5)
Jo

2 r^a^=— I f(x) sin mxdx, (6)

* It can be shown that this procedure is essentially the same as that employed

above if n is large. See Byerly, Fourier's Series, p. 38.

Therefore
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and the complete series may be written

/(a;) = — J /

I
/(x) sin xdx

j
sin a; +

( j /(x) sin 2 xdx j
sin 2 2;

I
/(a;) sin }i2;c?2;

j
sin na; H I . (7)+ ••• +

X-- —T i; T
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= if m is even

4 c .=— if «i is odd.
rrm

Hence the even terms will be lacking, and we get

» , . 4 e Fsin x sin 3 a; , sin 5 x

47

(10)

(11)

(12)

Fig. 4c. Three terms

:s:3?
i^

es-

FiG. 4 (J. Four terms

The approximation curves for the sine series for y=^f(x), where /(a:) = a constant,

(0 < a: < TT)

For a; = g) this enables us to write the expansion for- thus

:

- = i_l + l_l + ....

4 3^5 7^



48 THEORY OF HEAT CONDUCTION

(b) Let us reproduce the curve

fQsc) = X, from a; = to x = — ,

f(x') = TT — X, from a; = — to a; = tt.

-n---
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„, . 2 fsina; 7rsin2a; sin 3 a: 2 tt sin 4 a;

sin 5 a; 3 TT sin 6 a: i

/Pfi^

25 36

IT
It may be noted that at the point of discontinuity, x = — i the

value of the series is

1 "''
9 ^ 25 ^ 49 ^

r^ (see Appendix F), (27)

which is the mean of the values approached by the function as

X approaches — from opposite sides.
Li

54. Development in Cosine Series. In a manner quite similar

to the foregoing we are also able to develop such functions as

fulfill the conditions we have mentioned, in cosine series between

the limits a; = and x = tt. Thus

f(x) = h[ + \ cos x + h^ cos 2 a- + Jj cos 3 a; H . (28)

The constant term which appears here, though not in the sine

series, may be thought of as the coefficient of a term h'^ cos (0 • a;),

which shows at once why the corresponding term for the sine

series is lacking.

To find the value of any coefficient 6^, we proceed as before,

multiplying both sides of (28) by cos mxdx and integrating

from to TT ; then, since terms of the type

5„ cos nx cos mxdx (29)

vanish just as did similar terms in (4), we have remaining on

the right-hand side only

cos^mxdx = —^ \_(mx + cos mx sin mx)']^ (30)

=
I

*» if »« ^ 0.

2 r^
• •• K, = —

I fC^} cos mxdx. (31)

f
Jo
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To get 6q we must multiply (28) by dx only and integrate

from to tt; then

f(x) dx= \ h\dx +
I

^1 cos xdx -\ = h'^ir, (32)

since all terms but the first vanish. Therefore

1 r"
.^o = -

I
f{x)dx. (33)

This is just half the value that (31) would give if m = were

substituted; therefore, to save an extra formula, (28) is gen-

erally written

/(x) = I 6^ + 6j cos a; + Jj cos 2 a:; + 6g cos 3 « H , (34)

where the value of any coefficient, including the first, is given

by (31). The complete cosine series may then be written

/(2;)=-J- / f(x)dx + i
I

f(x)eosxdx]

I /(^) cos 2 xdx

]

cos 2x + -

cos a;

I
/(a;) cos mxdx | cos mx -\ l. (35)

+

+

55. As an example take the same function as we developed

in a sine series under (b),

f(x') = X, from a; = to a; = —

,

f(x) = ir — X, from a; = — to a; = tt.

Then h. -Wi X cos mxdx +

2 fcos mx + mx sin mx'\ ^
.
2 tt

-l[

IT

]

cos mxdx

sm jwa:

(36)

-l[
2 fcos mx + mx sin mx

m'
when mi=(i (37)



54 THEOEY OF HEAT CONDUCTION

TT m
TT . imr

sin
2 m 2

WITT

TT . WITT— sm —

—

TO TO

cos-
COS TOTT ^

TO wr

TT . TOTT

2 f^ TOTT
^ ]= ; ^ 2 COS -^ COS TOTT — 1 ^ .

TTTO^[2 J

(38)

(39)
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If TO = 1 or 4^ + 1, bracket = 0.

TO = 2 or 4j9 + 2, bracket = — 4.

K =
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of the sine terms will change sign with change to negative angle,

while the cosine terms will not. Thus the cosine development

for the curve

series gives _/^

gives a periodic curve of the sort

while the sine

2a-.

57. We may conclude from this, then, that if /(a;) is an even

function, that is, if f{x) =./ (— a;), it may be represented by a

cosine series from — tt to + tt. Similarly, an odd function

(Jix) = —/(— xy) will be given by a sine series for these same

limits. Not all functions are either odd or even, for example, e%

but it is possible to express any function, as the sum of an odd

and an even function ; thus

/(^)
2 2^ (45)

the first term being even, since it does not change sign with a;,

while the second does, and is therefore odd. To expand any

function satisfying our primitive conditions, then, between

x=— TT and a; = + TT, we may write

f(x) =16^ + h^ cos x + h^ cos 2 a; H

+ a^ sin a; + a^ sin 2 a; H ,

where the coefficients are determined by

_2 r-/(a^)-/(-a.)

---rri 2
• sin mxdx

(46)

(47)

and
2 r^f(x)+f(-x)_2 r

cos mxdx. (48)

Since the values of definite integrals are functions only of the

limits and not of the variable of integration, we may replace x in
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these expressions by any other variable X ; thus

and &,„ = - f/C^) +/(- ^)
cos wXix. (50)

It must be kept in mind that tlie symbol X, which will be in con-

stant use in the following pages, has merely the significance of

a variable of integration, and that we may at any time substitute

for it any other variable of integration, for example, a, 7, etc., with-

out in any way affecting the value of the definite integral. Its

use must be distinguished from that of x, particularly when we

return to the study of conduction problems, for here x usually

refers to a particular point or plane in the body.

We can simplify expressions (49) and (50) somewhat, for

the former is equivalent to

— J
I
/(X) sin mXdX —

| /(— X) sin m\d\ I

;

(51)
^

I, Jo Jo J

and if we replace X by — X' in the second integral, it is trans-

formed into „--r

- { fQJ) sm mX'dX'. (52)
Jo

This is equal to
5

+ /
/(^') sin mX'dX', (52 a)

which, from the above discussion of the integration variable, may

as well be written _o

+
I

/(X)sinTOX<iX. (53)

1 C'"''
Hence we have a,„ = —

(
/(X) sin mXdX. (54)

'^J-lT

In a similar way we obtain as the value for h^

1 C^"
&„, = — I /(X) cos mXd\. (55)

The complete expression (46) is generally known as the true

Fourier's series.
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58. Change of the Limits. While our expansion as heretofore

considered holds only for the region a; = — tt to a; = + tt, we can,

by a simple change of variable, make it hold from x = — oto + c.

For let 2 =^ ; then /(^) =/(f)
= -^C^)-

... f(x) = FQz) = 1-
6^ + 5j cos 2 + 5^ cos 2 2 H

+ flj sin 2 + «, sin 2 a -I (56)

for values of z from — tt to + tt, and

/(*) = 2 ^'o
+ \ cos— + J, cos^ + • •

•

. TTX . 2 TTX
,

,r/i n+ a, sm ha, sm 1 (ob a)
^ c c

for values of x from — c to + c, where

b^ = - ( F(z) cos mzdz = - i f(x)cos dx, (57)

77" 7" TtdiX
since 2 =— » and cZa = This may also be written

cos dx. (58)
c

Similarly,

1 r+°

In the same way the sine series (1) may be written

. Tra;
,

. 2 vra; ,„„
a sm \-a sm—— H , (oO)

- r/(X)sm^^iX; (61)
1 2 r"^,, ^ . «27rX

where a

while (34) becomes

/(^) = |^ + *xCos^%6,cos^ + ..., (62)

2 C rmrX
where b^ = —

j
f(X) cos dX. (63)

While series (56 a) applies generally, (60) and (62) hold

only from x= to e, unless /(a;) is an even function, in which

case the cosine series will be good from — c to + c, while if odd,

the sine series will hold over this range.
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59. Fourier's Integral. In the foregoing we have developed

f(x) into a Fourier's series which represented the function from

— c to + e where c may have any value whatever. "We shall

now proceed to express the sum of such a series in the form of

an integral, and, by allowing the limits to extend indefinitely,

obtain an expression which holds for all values of x. Write the

series (56 a) with the aid of (58) and (59).

f(x) = -\^ry(X)dX+r /(X) COS^ cos^ dX

+
I

/ (X) cos cos dX-\
J-c ^ ^

+ / / (X) sm— sm— dX
J-c ^ ^

Collecting terms, this becomes

1 r "*"%
^, ^ „ r 1 -s-A mirX mirx

. cos cos
C

mirX . mirx']
+2,sm sm V. (65)
7n=l J

But since cos r cos s + sin r sin s = cos (r — s), this may be written

/(^) = -
/ f_W <iM 2 +X cos— (X - a.)

; (66)

or, if we remember that cos (<^) = cos (— 0),

/(^)=2^j /(X)(^xJl+|;cos— (X-a;)

+2cos^(X-:r) (67)
m= — 1 J

since cos -^ (X — a;) = 1. As e increases indefinitely, we may
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OTlTT TT
write 7 =— and dy = —, and the bracket of (68) then becomes

c c

/+»cos 7 (X — 2;) dy. (69)

Therefore f(x) =~ C^ /(X) d\ C* "cos 7 (X - a;) dy, (70)

an expression holding for all values of x, and for the same class

of functions as previously defmed. It is known as Fourier's

integral.

60. Equation (70) can be given a slightly different form by

means of the foUowmg deduction, which will prove of use. For

any function, <^(X),

r "(^Q^ydX^ r<f> (X) dX+ C 4> (X) d\. (71)
*/ —

c

t/o xJ—c

In the last term substitute — X' for X ; then

r (^ (X) iX = - r </) (- X') dX' (72)
*J—c %J c

= - f ct>(-X-)d\, (73)

since its value is independent of the integration variable (see

(53)). If ^(X) is even, that is, if <^(X)= (^(— X), (73) means

that ^0 ^c
i (j)(X)dX = - 0(X)c?X=/ (}>(X)dX, (74)

*J— c Uc U

so that r <f>(X)dX=2 C ^(X)dX, (75)
t/-c Jo

while if </>(X) is odd,

C V (^) dX= r^} (X) dX- r<f> (X) cZX = 0. (76)

As the cosine is an even function, we may write at once, instead

of (70), ^ ^„
/(a:) = - / f(X)dX I cosy(X-x')dy. (77)
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61. Again, if /(x) is either odd or even, we may put (77) in

somewhat simpler form. Since the limits of integration in (77)

do not contain either \ or 7, the integration may be performed

in either of two possible orders ; that is,

/(X) d\ I cos 7 (\ — a;) c?7

= Hdy C "fQC) cos 7 (X - a;) d\. (78)
c/0 t/ — 00

/(X) COS y(\ — x) dX
CO

=
I

/(X) cos 7 (X — a;) d\

+ f fW COS y(\-x)dX; (79)
«y — 00

and following the general methods of the previous article we
may write the last term

X/(X) cos 7 (X — a;) d\
03

= - r /(- X') cos 7 (- X' - x) d\' (80)
t/ CO

= r /(- X') cos 7 (X' + x) d\' (81)
Ja

= C /(- X) cos 7 (X + a:) d\ (82)

= - r "fQC) cos 7 (X + «) iX, if /(X) is odd, (83)

= r /(X) cos 7 (X + a;) c?X, if /(X) is even. (84)

Therefore, if /(a;) is oc^c?, (77) becomes, for all values of x,

f(x) = - ndj r7(X)|cos7(X-a;)-cos7(X + a;) MX (85)

- I dX I /(X)sin7X sin 7a;<?7, (86)
TT.
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while if it is even, we have, instead,

f(x) = - r°k7 r/(X)j cos 7 (X-a:) + cos 7(X+ a;) jc^X (87)

= —
I

dX
\

fQC) cos 7X cos '^xd'y. (88)

Equations (86) and (88) hold for all positive values of a; in the

case of any function.

62. Harmonic Analyzers. The analytical development of a

function in a Fourier's series, with the determination of a large

number of coefficients, is well-nigh impossible in many cases, and

iu any event involves considerable computation. To eliminate

this there have been invented several machines which are de-

signed to compound automatically a limited number of sine or

cosine terms mto the resulting curve, or to perform the more

difficult inverse process of analyzing a given function into its

component Fourier's series. One of the earliest of these has

become well known because of its great simplicity, as well as

from the fame of its designer. Lord Kelvin. A long cord is

passed over a series of fixed and movable pulleys, to each of

which latter a simple harmonic motion of appropriate period

and amplitude is given. The end of the cord will then have

a displacement at each instant equal to double the sum of the

displacements of the movable pulleys. The drawback to such a

machine is that the number of elements it is possible to use to

advantage is small, because of the unavoidable stretch and

elasticity of the cord.

These defects are done away with in a form of analyzer de-

signed by Michelson and Stratton,* in which the component

motions are added not by the pulling of a cord but by the

stretching of a number of small spiral springs. The machinet

illustrated in Fig. 8 has 80 elements, one of which is represented

in section in Fig. 9. The eccentric A is arranged by means of

gearing to rotate with a period varying from 1 to 80, according

* Phil. Mag., 45, p. 85 (1898).

t A number of analyzers of this type have been made by Wm. Gaertner & Co., of
"""'fiago.
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to the location of the element in the machine. By means of the

rod B, which rests on the lever B, there is produced in the small

spring s a harmonic stretching

which is proportional in ampli-

tude to d. The 80 small springs

s are connected to the pivoted

cylinder C, and their additive ef-

fect rotates it in varying amounts

against the pull of the single

stiff spring S'. This motion is

amplified by a lever and trans-

mitted by a cord to the pen which

writes vertically on paper carried

on a plate which is moved at the

same time horizontally, so that

the result is a curve.

The process of combining sine

or cosine terms is that of adjust-

ing each rod H on its lever B
so that it has the proper am-

plitude d for its period, ampli-

tudes being reckoned positive or negative from the center o.

On turning the crank which actuates the machine and at the

same time slides the plate holding the paper, the curve repre-

sented by the series will be obtained.

63. The method of reversing this process and finding for any

given function the coefficients of the corresponding Fourier's

series may be seen from the following considerations

:

Suppose we wish to develop a function in terms of the sine

series. Then

Pig. 9

where

f(x') = a^smx + a^sm2x + a^smSx-\ , (89)

' "^ '

(90)a =— I f(x) sin pxdx.

Now call the total width of the m elements of the machine tt,

and the width of the space devoted to each element a, so that
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the a;-cobrdinate of the element whose number is n is na. Then

if the distance d, or amplitude factor, of each element is made

proportional to f(na), the machine will give the sum

^ f(na) sin W7, (91)

where 7 has any value between and tt. But, since n evidently

has the value — m, the above may be written
IT

2;V(^)sin^7^- (92)

If fv =-^ so that » =— , the above expression is evidently pro-
m IT

portional to a^. The curve thus obtained for a^ is a continuous

function of p and approximates more closely to the value of the

integral as the number of terms is increased.

To illustrate, suppose we wish to analyze a certain (^(2;) into

its harmonic constituents for values of x between and tt. Call

the width of the to elements of the machine tt, and set each rod

on its lever B so that the distance d is proportional to the cor-

responding ordinate of the curve y = 4' (*) '> i^ other words, set

the rods so that their ends form this curve. On turning the

machine, then, there will be traced on the paper a curve whose

abscissas are values of 7 in (92) and whose ordinates are propor-

tional to the values of the various coefficients. To find h^, say,

we choose a value of 7 equal to — = ^77' if to = 80 ; then the
TO 16

ordinate for this value of 7, which is one sixteenth of the whole

length of the curve in this case, is proportional to h^. The

various other coefficients are found in the same way, and the

great advantage of the machine is that all the coefficients are

determined by a single process.

To change the motion of the elements from the cosine

to the sine form, each eccentric is turned through 90°. The

accuracy of such a machine of 80 elements may be placed at

about 1%.
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APPLICATIONS

64. From the preceding discussion it is evident that the har-

monic analyzer is of use in any case where it is desired to add

a number of harmonic sine or cosine curves, or, as is more fre-

quently the case, when some curve is to be analyzed and the

amplitudes of its component harmonics determined. Tracings

of sound waves can be analyzed in this way, but probably the

best example of an application is in the analysis of alternating

current waves. Here the simple manipulation of the machine

takes the place of the more or less tedious algebraic methods

usually given in works on this subject.*

PROBLEMS

1. Develop the sine series which gives ^ = for x between and — ; and

V = c for X between - and tt. Plot and add the first four or five terms.

/ 2 c r sin a: 2 sin 2 a; , sin 3 a; , sin 5 x 2 sin 6 x , 1 \

\y=^\-i 2- +-3- +^ 6— +••);•

2. Do this for the corresponding cosine series.

/ 2c ( TT cos X , cos 3 X cos 5a;, ~l \

(^=tu-—+^

—

—'])
„ „_ .1 i „ fsina; sin 2 a;

,
sin 3 x 1 j. , ,

_ ,

3. Show that a; = 2 -^
—

1 • ^,for a; between and tt.

: - , for a; = to -
;

3 3'

I c
4. Develop f(x) in a sine series if f{x) = - , for a; = to -

;
/(a;) = 0,

. c,2c.. . I , 2 c
for a; = g to —

;
/(a:) =- - , for x =— to e.

/ -^ ^ Z f . 2 TO ,
1 . 4 irx 1 . 8 irx

,
1 . 10 TTX \\

( f(x^ = - -^ sm V - sm + - sm h - sm + • • M'
\ ^ ^

IT \. c 2 c4 c5 c J/

5. Verify

1 e" - 1 e" + 1 TTX ,
e'^ — 1 2 ttx

cos + —

;

; ; COS
2 C^ C2 + TT^ C C^ + iTT^ C

e<'+l Sttx, 1. .,
cos f- • • • ? from x = to x = c.

C2 + 9 77= c J

^ = 2c|

* For a simple graphical method of analysis see paper by Charles S. Slichter,

"Graphical Computation of Fourier's Constants for Alternating Current Waves,"

Electrical World, July 15, 1909.
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6. If /(x) = from x =— tt to ; and /(x) = x from a; = to tt, show

that

... TT 2 r cos a;
, cos 3 a;

,
cos 5 a:

, 1 .
„

/«=i-;{-rr-—-—^-^'^,
" S f 3

7. Develop c + sin x in a cosine series between and ir ; and in a com-

plete Fourier's series (see equation (46)) between — ir and + t.

(2 r 2 2 2 1 \
y = c >r - <\ — - cos 2 a; — — cos 4 a; — — cos 6a;+ •!; 2' = c + sinxl-

8. Outline the curve between — tt and + ir, formed by the addition of

series (20) and (44).



CHAPTER VII

THE LINEAR FLOW OF HEAT

65. In Chapters III-V we have already discussed a number

of the simpler problems of heat flow. These have included the

case of the steady state for several different conditions, and the

simplest case in which the temperature varies with time, namely,

the periodic flow. With the single exception of the steady state

for a plane, in which we were forced to assume one of the

results derived later in the study of Fourier's series, these prob-

lems could all be solved without the use of this analysis; but

we now come to a class of problems, at once more interesting

and more difficult, in which continual use is made of Fourier's

series and integrals.

In the present chapter we shall take up a number of cases of

the flow of heat in one dimension. These will include the prob-

lem of the infinite solid, in which the heat is supposed to have a

given initial distribution,— that is, the initial temperature is

known for every point,— and starts to flow at time ^ = ; the

so-called semi-infinite solid which has one plane bounding face,

usually under a given condition of temperature ; the slab with

its two plane bounding faces ; also the case of the long rod with

radiating surface ; and the problem of heat sources. In these

several cases the solutions hold equally well for the one-dimen-

sional flow of heat in an infinite solid, or for the flow along a

rod whose surface, save in the fourth case above mentioned, is

supposed to be impervious to heat. In all the problems discussed

in this chapter, save that of the radiating rod, the solutions

must first of all satisfy the Fourier conduction equation, which

becomes for one dimension

67



68 THEORY OF HEAT CONDUCTIOJST

As we saw in Art. 16, this must be modified for the case of the

radiating rod by the addition of a third term.

Case I

Infinite Solid. Initial Distribution of Heat given

66. Take the a;-direction as that of the flow of heat. Then all

planes parallel to the ^s-plane will be isothermal surfaces, and

the initial temperature of these surfaces is known as a function

of their x-coordinates. The problem is to determine their tem-

peratures at any subsequent time.

The solution must satisfy (1) and the condition

e =f(x) when t = 0. (2)

We shall solve (1) by a process which is, at the outset, the

same as that employed in Art. 38, namely, the substitution in

(^) °^ 6 = 6""^^^.
(3)

This gives a = A'/3l (4)

Putting now ^ = ± ij, (5)

instead of a = ± iy as before, we get

6l = Xe-*'^''-e'>, (6)

and 6' = Jfe-"'^''-e-*n (7)

But since e =^ ''^ = cos yx ± i sin yx, (8)

we get, on combination of (6) and (7) by addition or subtrac-

tion, — choosing suitable values for L and M,— the particular

solutions a -h^y2t ,„.= e ^ • cos 72;, (9)

and d = e-''"^''.smyx. (10)

These are particular solutions of (1) for any value of y, the

latter being neither a function of x nor t. Now we can multiply

these by A and B, any functions of 7, and obtain the sum of an

infinite series of terms represented by

e=C (^Acosjx + Bsmyx')e-''"''"'dy, (11)
Jo

also as a solution of (1) by the proposition of Art. 8.
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The functions A and B must be so determined that for ^ = 0,

(11) goes over into/(a;). Now Fourier's integral (VI, (77))
gives

1 ^» ^ + „

/(^) = -
I

^T r /(^) cos 7 (^ - a;) d\, (12)

and from (11) this must equal

J(^A cos jx+B sin yx) dy. (1 ^)

1 T'*'"'
Hence A = —

\ f(S) cos ^Xc^X, (14)

1 /• + "

and -B = -
I

/(X) sin 7Xc?\, (15)

and if these values are substituted in (11), we finally have

e = - T" e- "'y^'d-/ C ''

"/(X) cos 7 (X - «) d\. (16)

This is then the required solution, for it satisfies (1) and reduces

for i = to (12), that is, to /(a;). It gives the value of 6 for any

chosen values of x or t.

67. This equation can be simplified and put in a more useful

form by changing the order of integration and evaluating one

of the integrals. For

d = - C "/(^) d\("°e- "''"' cos 7 (X - a;) dy, (1 7)

r" 1 (^
-^-°^''

and
I

e-''y''cosj(\-x~)dy = ^Jj-e '"''
, (18)

since (see Appendix C)

r e-"^"'" co%nydy = lJLe^-^\ (19)
Jo 2ot

1 ^+„ -^^-^>^

e = —=
\

f(X)e '"'' dX. (20)
2AV7r^J_«,

- (A - a;)'

Hence

Byputting ^ = -—^, or X = a;+ 2 A V«;8, (21)
2 Avi
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we secure the still shorter form

e = -^ f^'°f{x + 2hVt/3)e-^'d^. (22)

We may regard tliis as our final solution, as it is much easier

to handle than the other forms. If /(a;) = C, a constant, then

/(a; + 2 hVt/3') — C, and the integral reduces to the " probability

integral " (see Appendix D). If/(a;) = x% say, then (22) becomes

e =^ f^'°{x' + 4:hxVtl3 + ihH/3'')e-^'d^. (23)

Remembering that a; is a constant as regards this integration,

these three integrals can be readily evaluated (see Appendixes

B, C, and D). Also for many other forms of /(a:) the integra-

tion is not difficult.

68. If /(a;) is of more than one form, or possesses discon-

tinuities, it may be necessary to split the integral (22) into two

or more parts. For example, suppose that /(a;) = 6^ between the

limits X = I and x= ni, and that /(*') = outside these limits —
a condition which would correspond to the sudden introduction of

a slab at temperature 0^ between two infinite blocks of the same

material and at zero temperature. We write the integral (22)

61 = -^ f''0-e-^'-d/3 +^ f e^e-f'd^
V7rJ-» ^irJa

+^ fO-e-^'d^. (24)

In determining the limits a and b it must be remembered that x

(as well as i) is a constant for each particular evaluation of the

integral, and that the initial temperature condition is really ex-

pressed as a function of the variable of integration X, that is,

0^=f(X). The limits a and b will then be the values of /S cor-

responding to X = Z and X = m ; and from (21) these are seen to

be -= and -l respectively. Equation (24) then reduces to
^ fl, \ j-i ft \ J/

61 =A f^^'e-P'd^. (25)

ShVt
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This solution may be readily applied to the case in which

fQc) = 6^ for a; > 0, and fQc) — for a; < 0, for in this event the

X
limits are seen at once to be — —-,—- and + oo

.

APPLICATIONS

69. Concrete Wall. While perhaps not having the variety of

applications which we shall find for Case II, next to be con-

sidered, the foregoing equations admit of the solution of many

interesting problems. For example, suppose a concrete wall

60 cm. (23.6") thick is to be formed by pouring concrete in a

trench cut in soil at a temperature of — 4° C. (24.8° F.), the

concrete being poured at 8° C. (46.4° F.). It is desired to know

how long before the freezing temperature will penetrate the

wall to a depth of 5 cm. (2"). In other words, will the wall

as a whole have time to " set " before it is frozen ?

To apply the foregoing equations we must first assume that

the soil has the same diffusivity as the concrete, as would be

approximately true in many cases, and that latent-heat considera-

tions can be neglected. The solution then follows at once from the

equation of the last article. Taking the origin at the center of the

wall, we have Z = — 30 cm., m = + 30 cm., and a;= ± 25 cm. Choos-

ing, say, the positive value for x, and shifting our temperature scale

so that the initial soil temperature is brought to zero, while the

freezing temperature becomes 4° and the initial wall temperature

12°, (25) becomes -, ^ ^_

/ -55

To find t we must determine the limit q I = —-—p ) so that

VTrJ-llg \ VttJo VttJo / ^

With the aid of the probability integral curve we readily find q

to be about .055, which gives

' = (if*) = .0121 X.0058 =
''''""> ^- = '' ^'J'^-
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70. It may be remarked that in solving this problem we have

also accomplished the solution of another which, at first sight,

appears by no means identical with it. Suppose the same tem-

perature conditions to exist, but the wall to be only half as thick,

and one face in contact, not with earth, but with some material

practically impervious to heat, or at least a very much poorer

conductor than cement ; for example, cork or concrete forms of

dry wood. To see the similarity of the two problems, notice that

in the first one conditions of symmetry* show that there would be

no transference of heat across a middle plane in the wall ; hence

this plane could be made of material impervious to heat without

altermg the conditions. We could then remove half of the wall

without affecting the half on the other side of this impermeable

plane, in which case we should have our present problem.

71. In the above solutions we have omitted consideration of

three important factors which would generally be present in any

practical case, and which would serve to retard to a considerable

extent the freezing of the wall. These are the latent heat of

freezing of the water of the concrete, the heat of reaction which

accompanies the setting of concrete, and the insulating effect of

wooden forms which are frequently used for such a wall. The

theoretical treatment of these factors would be beyond the aims

of the present work.

72. Thermit Welding. As a further application let us take

another and more difficult problem. Suppose two sections of a

steel shaft 30 cm. (11.8") in diameter are to be welded end to

end by the thermit process. The crevice between the ends is 8 cm.

(3.1") wide, and the pouring temperature of the molten steel is

assumed to be about 3000° C, while the shaft is heated to 500° C.

(that is, some "preheating"). It is found that a temperature much
above 700° C. (the " recalescence point ") modifies to some extent

the character of the steel of the shaft, and it is desired to know,

then, to what depth this temperature will penetrate, or, in other

words, how far back from the ends this overheating will extend.

* It is to be noted that this point of view demands a temperature condition sym-
metrical about the middle plane of the wall. That this is satisfied in the present case,

that is,/ (X) = 6(j, a constant, is evident.
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We shall attempt only an approximate solution of this problem,

neglecting any changes which the thermal constants undergo at

higher temperatures, also radiation losses and other complicating

factors ; and shall interpret it as that of the introduction of a

"slab" of steel at 3000° C. between two infinite masses of steel

at 500° C. Taking the origin in the middle and putting ? = — 4

and m = + 4c, (25) becomes, after shifting the temperature

scale 500°, 4-x

Vtt J^*^
2hVi

Our problem is then to find the largest value of x which will

satisfy the above relation, that is, which will afford a value of

the probability integral equal to -^^-^q, or .16.

We can most conveniently arrive at a solution by the method

of "trial and error." Thus, if a; =5, that is, 1 cm. from the

original end of the shaft, the limits of the above integral may

be called —^q and — qlq= ^ J, and a little inspection of

the table in Appendix D shows that to give the integral the

value .16, q must be either .018 or .994. For a; = 10 the limits

are — 14 ^ and —65', which necessitates q being either .019

or .165 ; and a few more trials show that H x = 24.5, with

corresponding limits of — 28.5 g' and — 20.5 q, there is only

a single value to be found for q, and this is approximately

equal to .027.

This, then, is the key to the solution, for the second and larger

of the two q values in the above pairs will evidently give the

shorter time, or, in other words, the time at which the point first

reaches this temperature. For the smaller values of x the tem-

perature goes higher than this value of 700° and later falls to

this point at a time afforded by the first value of q. When
the two values are just equal it means that the temperature just

reaches this value, and the time in this case will be given by

^ == 4JV - 4 X.I2L. 027- = ''''""•
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The overheating* then extends in to 20.5 cm. (8.1") from the

end and reaches this point in 47 min.

73. It is well to note in these, as in any other applications,

how the results would be affected by changes in the conditions

which enter. In the first case, for instance, it is readily seen

that the time will come out the same for any two temperatures

of the soil and concrete which have the same ratio ; for example,

— 2° and + 4°, or — 15° and + 30°. Moreover a consideration of

the limits shows that the time is inversely proportional to the

diffusivity A". In the last illustration this same inverse propor-

tionality of time and diffusivity also holds, and we can in addi-

tion draw the rather striking conclusion that the depth to which

a given temperature will penetrate under such conditions is in-

dependent of the thermal constants of the medium, t The time it

takes to reach this depth, however, depends, as just mentioned,

on the diffusivity.

PROBLEMS

1. Show that if the initial temperature is everywhere 6^, a constant, the

temperature must always be 0^.

In this case ^ = ~F^ [^"e-fi'dfi = B^.

(See Appendix D for values of the probability integral.)

2. Show that if 6 is initially equal to x, it must always be equal to x
;

and if it is initially equal to x^, it will be x^ + 2 JiH at any time later.

3. In the application of Art. 69 determine when the freezing temperature

would reach the center of the wall. (4.8 days.)

4. A slab of m^olten lava at 1000° and 40 m. thick is intruded in the

midst of rock at about 0°. What will be the temperatures at the center

and edges of the slab after cooling for 1 day and for 100 years? (Use

li^ = .0118 for both lava and surrounding rock.)

(Center, 1000° and 183° ; edge, 500° and 178".)

5. Frozen soil at — 6° C. is to be thawed by spreading over the surface

a 15 cm. layer of hot ashes and cinders at 800° C. and then covering the

* Whether or not such heating is injurious to the material depends largely on the
rate of cooling. This in practice is slow, so as to anneal the material.

t This is only true, ol course, when the heated material introduced is of the same
character as the hody itself.
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surface of this layer to prevent heat loss. Assuming that the diffusivity

of soil and ashes may be taken at .0049, and that the latent heat of fusion

of the water content may be taken account of by supposing that the soil

has to be raised to, say, 5° instead of merely to zero, to produce melting,

how far will the thawing proceed in half a day?

Suggestion. Try a; = 50 cm., 60 cm., etc. Note that the problem is

equivalent to that for a slab of twice the thickness, with ground on each

side. (45 cm., or x = 60 cm.)

6. A bar I cm. long, in which the temperatures have assumed a steady

state with one end at 0° and the other at 100°, is placed in end-to-end con-

tact between two very long similar bars at 0°. It is assumed that the sur-

faces of the bars are protected from loss of heat, and the origin is taken

at the zero end of the middle bar. Work out the formula for the tempera-

ture at any point of the bar and apply it to the case of an iron bar

Qfi = .173) 100 cm. long after 15 min. of cooling. Find the temperatures

at the center, at the hot end, and at the cold end. (49.75", 42.95°, 7.05°.)

7. A great pile of dry soil (h^ = .0031) at — 30° C. is deposited on simi-

lar soil at + 2° C. How long will it take the zero temperature to penetrate

to a depth of 1 m. ? (7.9 days.)

8. In the application of Art. 72 compute the distance to which the tem-

perature 1300° C. will penetrate.* (2 cm.)

Case II

Semi-infinite Solid with One Plane Bounding Face at Constant Tempera-

ture. Initial Distribution of Heat given

74. This is the case of the body extending to infinity in the

positive a;-direetion only, and bounded by the «/2-plane, which is

kept at a constant temperature. The temperature for every

point (plane) of the body is given for the time t = 0.

75. Boundary at Zero Temperature. We have here to seek a

solution of „/, ^2/]

subject to the conditions 6 = at a; = 0, (26)

and 6 =f(x) when t = 0. (27)

* Waterhouse (Proc. Am. Soc. Testing Materials, 6, p. 248 (1906)), finds that for 1%
carbon nickel steel a temperature above 1300° C. results in "" burning " or injuring the

metal ; hence the application of the above problem.
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It is possible to treat this case as a special form of I (Arts. 66-68)

by imaguiing that for every positive (or negative) temperature

at distance x there is an equal negative (or positive) tempera-

ture at distance — x. In other words, if there should be a dis-

tribution of heat on the side of the negative x identical with, but

opposite in sign to, that on the positive side, the flow of heat

would be such as to continually keep the temperature of the

«/2-plane zero. A little thought on the symmetry of such a tem-

perature distribution will suffice to show that this conclusion is

sound ; for there is no more reason for the boundary surface to

take positive temperatures under these conditions than negative,

and hence its temperature will be zero.

To express this condition mathematically, let us suppose that

for points on the positive side of the origin X = X^, and on the

negative side X = — X^. Then X^ and X^ are each essentially posi-

tive, and the temperature (/(X)) can be expressed as/(X^) for

the positive region, and —/(X^) for the negative. Equation (20)

can then be written for this case

Ih^wt w>
Q= -'

J7(\)«'^"

+J-/(\)«
'

^^''^\- d\)\^, (28)

the lower limit of the second integral being + oo instead of

— 00 , as it would be if X were the variable. But since the

value of a definite integral is independent of the variable of

integration (cf. Arts. 57 and 60), we can substitute X (or any

other symbol) for X^ and X^ in the above equation, which can

then be reduced to

Making substitutions similar to (21), namely,

P = y:, and /S'= ,

2 hVt 2 AV<



2h-\ft

THE LINEAR ELOW OE HEAT 77

this becomes = —=\ H f{2^hVt + x)e- ^'d^
Vtt I.J -^^

f{2^'hy/t-x)e-»"d^'\, (30)

or, what amounts to the same thing,

=~\ r f{2/3hVi + x)e-^'d^
Vtt [J^^

2hVt

- P f{2^hVt-x)e-^W 1 • (31)

+ x

hVt

+ 1

;iv7

It is well to assure ourselves that (31) is the required solu-

tion. From the manner of its formation, that is, originally from

(9) and (10), it must be a solution of (1), while for x=Q the

two integrals are evidently equal and opposite in sign, so condi-

tion (26) is fulfilled. As to condition (27) we see that for i =
the second integral vanishes, and the whole expression reduces to

e. --f(x)^ r\-^W=f(xy (32)

76. An interesting special case is that in which the initial tem-

perature is
6f,

throughout the body except at the «/2-surface, which

is still kept at zero. /(X) (=/(2 ^h s/i + x} or /(2 /SA Vi - a;))

then reduces to 6^, so that (31) becomes

e = -^i f e-^'d/3-
f"

e-^'d^l (33)

= -^ f^^'e-^'dj3 (34)

2hVt

=^ f^^'e-^'d^, (35)
Vtt J

since e~^' is an even function (Art. 60).
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77. Boundary at B^; Initial Temperature of Body Zero. By an

extension of (35) we can handle this case at once. For if (35)

is written for a negative initial temperature — ^o>
'^® have

e = 1 /
^"^e-PW/S;

Vtt Jo
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79. Rate of Flow of Heat. We can now determine the rate at

which heat flows into or out of a body through any unit of area

of plane surface parallel to the boundary. To do this write (38)
as a function of the limits of integration,

^-ih">-Ks^) (41)

Then differentiate,

^ = fZg - e*"''—!-= (see Appendix F) (42)

h^TTt
(43)

The rate of flow of heat through any unit area of surface paral-

lel to the «/2-boundary plane is then

W=-h^-^ =-!^^\ (44)

or for the boundary plane x=Q

The same expressions, save with a negative sign, hold for the

case of the boundary at zero.

80. Temperature of Surface of Contact. Suppose two infinite

bodies A and B of conductivities and diffusivities h^, h^ and k^, h^

respectively, each with a single plane surface and with these sur-

faces placed in contact. Assume that A and B are initially at

temperatures 6^ and 6^ respectively, and imagme for the moment

that the boundary surface is kept, either by the continuous addi-

tion or subtraction of heat, at the constant temperature 6^, where

6^> 9^> ^2- We shall determine what conditions must be ful-

filled that this surface of contact may receive as much heat from

one body as it loses to the other, and hence will require no gain

or loss- of beat from the outside to keep constantly at 6^ ; in

other words, we shall determine this temperature o:& the surface

of contact.
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Each unit of area of surface of contact receives heat from A
at the rate , ^/j a \^ lc,iO,-0,}

^ (46)
\ V ttJ

while it loses to B at the rate

Then if these two are equal, the boundary plane will neither

gain nor lose heat permanently and hence will remain constant in

temperature, so
^,(^,-g„) ^,(g,-g,)

\K K j

^o- \; // • (49)

2
If ^j = Ic^ and Aj = A^, Q^ = ^-^^—^ , as we should expect.

APPLICATIONS

81. Concrete. In a fire test the surface of a large mass of con-

crete was heated to 700° C. (1292° F.) ; how long should it take

the temperature of 100° C. (212° F.) to penetrate 30 cm. (11.8")

if the initial temperature of the mass was 20° C. (68° F.) ? From

(38) we have 9 ^»
80 = 680-4=.

I
e^^'^^A

2/i-v/(

or t = 31,500 sec. = 8.8 lir. For 300° C. (572° F.) the time turns

out to be 32 hr.

82. Soil. How far will the freezing temperature penetrate in

24 hr. in soil Qi"- = .0049) at 5° C. (41° F.) if the surface is

lowered to - 10° C. (14° F.) ?

-5=-15^ r°° e-^'dfi; 2; =28.2 cm. (11.1").
•Vtt J_^_

2/1 V(

For twice this depth it will take 4 days, etc.
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If the initial temperature of soil is 2° C. (35.6° F.) and the

surface is cooled to — 24° C. (— 11° F.), how long before the

temperature will fall to zero at the depth of a meter ?

-2 = -26^ f" e-^"d^; «= 326,000 sec. = 3.8 days.

As no account has been taken of the latent heat of freezing

for the moisture of the soil in the last two problems, the distance

in the first problem is undoubtedly too large, and the time in the

second too small, for the actual case. Even in the case of con-

crete, unless it is old and thoroughly dry, there is a considerable

'lag in the heating effect as the boiling point is passed,* showing

latent-heat effects.

An exact treatment of these latent-heat considerations must

be reserved for Chapter IX, but in the following problem an

approximate solution for a particular case is suggested.

83. The Thawing of Frozen Soil. Soil at - 6° C. (21° F.), of

diffusivity .0049 and moisture content 3%, is to be thawed by

heating the surface with a coke fire to 800° C. (1472° F.). The

question is : How far will the thawing proceed in a given time ?

To take account of the latent heat of fusion of the 3% mois-

ture we will note that, since the specific heat of such soil is taken

as .45 (undoubtedly, however, this is a rather high figure for

such small moisture content), the heat required to thaw this

moisture per gram of soil would be the same as that which

would raise this soil .03 x 80 -=- .45, or about 5° in temperature.

This is nearly equivalent to saying that the soil must be raised

to 5°C. (41° F.) to produce thawing, that is, a total rise of

11° C. Then

and we find that

2

'

r
2h-\/t

11 = 806-^ r e-^'d^,

must be about 1.74, or « = „-^_ = 16.8 a;".

2AV« -0595

* See Woolson, Proc. Am. Soe.for Testing Materials, 6, p. 441 (1906).
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Then for a thawing of 45 cm. (1.5'), t = 34,000 sec, or 9.5 hr.

;

and for 90 cm. (3'), 38 hr., etc.

While local conditions (varying diffusivities and moisture

contents) would alter these figures considerably, the law that

the time for thawing would vary as the square of the depth

holds good in any case in which the soil is initially at sensibly

the same temperature throughout. If it is not as cold below,

the thawing will proceed faster than this law would indicate.

_ 84. " Shrunk " Fittings. As a problem of a somewhat different

type from the preceding let us consider the thermal principles

involved in the removal by heating of a ring or collar which

has been " shrunk " on to a cylinder or wheel. If the thickness

is small compared with the diameter, it may be treated as a case

of one-dimensional transmission, and as a very good example we

may cite the case of the locomotive tire. Suppose such a tire

7.62 cm. (3") thick is to be removed by heating its outer sur-

face ; let us question at what time the differential expansion of

tire and rim would be a maximum and hence the tire be most

readily removed. We shall assume that this differential expan-

sion is determined by the magnitude of the temperature gradient

across the boundary of tire and rim.

OjO a n^
From (43) ^ = ^ e"''.

ox h y/TTt

To find when this is a maximum, differentiate with respect to t

and equate to zero. Then -. 2

'-2 1- («»)

.../«f) =^. (60a)

So in this case (A^ =.121) t = 240 sec, or 4 min.

The above discussion of the problem is based on the conditions

of Art. 77, namely, for tlie surface heated suddenly to the tem-

perature 6^, as by immersion in a bath of molten metal. As a

matter of fact the surface heating in the practical case would
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generally be a more gradual process, brought about in many
cases by a gas flame. A rigorous solution of this complicated

problem is very difficult, but the following is offered as being a

good approximate solution. Imagine in the case of the locomo-

tive tire just considered that 5 cm. thickness is added to the tire

and that the outer surface is, as before, suddenly raised to tem-

perature 6^. The temperature of the original surface will then

f-i
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The problem is then reduced to the preceding, save that the tire

is imagined to be 5 cm. thicker. The time comes out 11 min. For a

slower rate of heatmg the time would be correspondingly longer.

A point of interest in this connection is a comparison of the

actual maximum temperature gradients for the rapid and slow

s
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the time for which it is desirable to continue this heating. From
the shape of the curve in Fig. 11 it is evident that it is much
better to continue the heating too long than to cut it too short.

The considerations of this article would also apply to the so-

called " thermal test " of car wheels, which consists in heating

the rim of the wheel with molten metal for a given time. The

temperature gradient might reasonably be taken as a measure of

the stresses introduced in this way, and it could be determined

at once from (43).

85. Hardening of Steel. A large ingot of steel (A^ = .121) at

6^ has its surface suddenly chilled to 0^. Discuss the rate of

cooling as a function of the time and of the depth in the metal.

We shall first put 6^ = 6^ — 6^ (that is, shift the temperature

scale) and then get the rate of cooling by differentiating (35)

just as we did (38) in Art. 79, save that now the differentia-

tion is performed with respect to t. Then

dO
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should, if possible, be high enough so that the recalescence point

will not be passed until the rate of cooling has reached its maxi-

mum value.

The rapid chilling of large ingots introduces temperature

stresses which frequently result in cracks. Taking the tempera-

ture gradient as a measure of this tendency to crack, the subject

might be studied theoretically with the equations of the last article.

86. Cooling of Lava. We now turn to some applications of a

geological nature, the first of which is the cooling of lava under

water. Suppose a thickness of, say, 20 m. of lava at 6^ (about

1000° C.) is flowed over rock at zero and immediately covered

with water,— perhaps it is ejected under water,— what will be

its rate of cooling ?

As the water will soon cool the surface at least well below

the boiling point, the problem is that of the cooling of a semi-

infinite medium with boundary at zero and initial temperature

conditions of 6^ as far &s x=l, and zero from there on to infinity.

Formula (33) is for the case where the initial condition is 0^ to

infinity, and we may use it by splitting each integral into two,

according to the principles explained in Art. 68, the second in-

tegral vanishing in each case, since the initial temperature for it

would be zero. We have as the formula, then,

6 = -^ f^^^'e'P'd/3- f^^^e-^'d^ . (53)

2/tV( 2;i-\/(

Putting Kelvin's value of A^ = .0118 for both lava and under-

lying rock, the accompanying curves (Fig. 13) are computed for

Z = 20 m. From the relationship between x and t in the above

limits we readily conclude that these same curves apply to a

layer n times as thick if the times are taken n^ times as large,

and the distances n times as large.

87. The Cooling of the Earth. The problem of the cooling of

the earth and the estimate of its age based on such cooling has

been discussed by Kelvin * and others t as a special case of the

* Math, and Flujs. Papers, III, p. 293 ; Smithsonian Report, 1897, p. 337.

t For a good resume of the subject see Becker, Smithsonian Miss. Coll. v. 56, No. 6,

June, 1910.
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solid with one plane bounding face ; for it has been shown that

the error introduced in neglecting the curvature is quite negli-

gible. Geologically speaking, the age of the earth is counted

from the epoch of Leibnitz's consistentior status, when the globe,

or rather the crust, had attained a " state of greater consistency
"
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geothermal gradient at the surface has its present measured
value, namely, 1° in 27.76 m.

Differentiate (35), first writing it as a function of the limits of

integration: g^ 2 0„ 3 f^/ x \ , ,,
'

(54)

}l\e"'".-^-0\ (55)
V7ri 2hVt J

^ ^

(56)h^t

and when a; = (^^\ =—^ ,
- (57)

' =—% (58)

Putting in the constants given above, Kelvin got a value of

100,000,000 years for the age of the earth, but because of the

uncertainty of the assumptions and data he placed the limits at

20-400 million years, later modifying them to 20-40 million years.

88. If the initial temperature of the earth, that is, its tem-

perature condition at the consistentior status, instead of being

uniform throughout, increased with the depth, obeying the law *

=f(x) = mx + S, (59)

where S is the initial surface temperature and m the initial

gradient, we can solve the problem with the aid of (31) ; for

substitution of (59) in this gives, after some simplification,

e = mx+S-^ f^^'e-^'d^. (60)
Vtt Jo

Differentiating, -— = m-\ ;= e*''\ (61)
^^ h V TTf

* Barus, United States Geological Survey, Bull. No. 103, p. 65 (1893).
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When m and x are zero, this reduces, as it should, to Kelvin's

solution (58). As it stands, (62) affords a value for the age

of the earth, t, in terms of the geothermal gradient — at any

depth X, under the conditions that the initial temperature of

the earth increased uniformly toward the center from some

value 8 at the surface, and that since that time the surface has

been kept at the constant temperature zero.

89. Effect of Radioactivity on the Cooling of the Earth. Since

the discovery of the continuous generation of heat by disinte-

grating radioactive compounds, much speculation has been in-

dulged in as to the possible effect of such heat on the earth's

temperature.* Surface rocks show traces of radioactive materials,

and while the quantities thus found are very minute, the aggre-

gate amount is sufficient, if scattered with this density through-

out the earth, to supply, many times over, the present yearly loss

of heat. In fact, so much heat could be developed in this way

that it has been practically necessary to make the assumption

that the radioactive materials are limited in occurrence to a sur-

face shell only a few kilometers in thickness.

While a satisfactory mathematical treatment of this problem is

impossible with the meager data now available, it can be seen at

once that radioactivity would tend to retard the cooling of the

earth and hence increase our estimate of its age. A rough idea

of the extent to which this is true may be had by assuming that

one fourth of the present annual loss of heat is due to this cause,

and that the radioactive substances are contained in a very thin

outer shell. The geothermal gradient at the bottom of this shell

will then be only three fourths of its observed value on the sur-

face, because only three fourths of the heat which passes out

from the earth crosses the lower surface. Then, since from (62)

the age of the earth is inversely proportional to the square of the

present gradient at a; = Z, the depth of the radioactive shell (if

TO = 0, and I is small), this would nearly double the calculated

age of the earth.

* Becker, Bull. Geol. Soc. of America, 19, p. 113 (1908).
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90. The Effect of Radioactivity on Earth Temperatures; Mathe-

matical Treatment of a Special Case. While, as remarked above,

we know too little of the actual conditions as regards the extent

of distribution of radioactive substances in the earth to attempt

any rigorous or complete treatment of their effect on the age

and temperature of the earth, we can still solve the problem for

specially assumed conditions. The assumptions we shall make

are at least as consistent as any others with the facts as we now

know them. The first is that only a fraction, -, of the total
n

annual heat lost by the earth is due to radioactive causes. The

rate of liberation of heat by the disintegration of such sub-

stances is supposed to be independent of the time, and the

density of distribution of these heat-producing substances is

assumed to fall off exponentially with increasing depth below

the surface. It was mentioned above that some such assump-

tion as this is practically necessary, for if these substances were

scattered throughout the earth with their surface density of dis-

tribution, vastly more heat would be generated per year than

is actually being conducted through the surface. The second

assumption concerns the initial temperature state of the earth;

that is, its temperature distribution at the time of the con-

sistentior status. Instead of supposing, as in Kelvin's origiaal

calculation, that the earth was at a constant temperature at this

time, we shall make the more reasonable assumption of Art. 88,

which is based upon data obtained by Barus,* showing the

relation of melting point to pressure to be nearly linear for a

considerable depth.

In solving the problem we must first modify our funda-

mental conduction equation so as to take account of this con-

tinuous internal generation of heat. We found in Chapter II

that the rate at which heat is added by conduction to any
element of volume dxdydz is

kV^Odxdydz.

* Am. Journ. Set, 45, p. 16 (1895),
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If in addition heat sources, such as these radioactive products,

produce an amount of heat per second represented by

(j>(x, y, z, t)dxdydz,

80
then the temperature of this element will be raised at a rate —
such that

80
hV^0dxdydz + ^ (x, y, z, f) dxdydz =— cpdxdydz. (63)

Therefore — = h^V'0 + '^'^''' ^' ^' ^^
• (64)

8t cp

This is our fundamental equation. For linear flow it takes

tl^eform a.^^.^ K^,
8t 8x^ cp ^ ^

In the present case the assumption is made that

<^(x,t) = Ae-'", (66)

where A is the quantity of heat generated per unit volume per

second at the surface. Separate determinations of this quantity

vary greatly, but the average result may be placed at about

.47 X 10"-'^ calories per cubic centimeter per second for crustal

rocks.* The total amount of heat generated in this way per

second, and escaping through each square centimeter of the

earth's surface, is „„ .

R= { Ae-"dx = ~. (67)
Jo «

But if T is the total amount of heat lost by the surface per

square centimeter per second,

B=-. (68)
n

When n is assumed, this enables us to determine a, since both A

and T are known ; that is, a =— • (68 a)

Our fundamental equation (65) then becomes

^-A^!!^ =-e— = ^e—

,

(69)
8t 8x cp

* From data furnished by Professor A. N. Winchell.



94 THEORY OF HEAT CONDUCTION

where B is written for — . The solution of this equation must
cp

satisfy the boundary conditions

6/ = at a; = 0, (70)

e = mx+ S when t = 0. (71)

We shall first change (69), by substitution, into a form which

is homogeneous and linear. Assume that

e = u-^,e-- (72)

where u is some function of x and t. Then

and (69) becomes,
g

02

(73)

:^_A^:^ = 0. (74)

The boundary conditions then become

u = -^j^ at x=0, (75)

u = mx + S +—-€-'" when t = 0. (76)

As the problem would be much easier to handle if the first

boundary condition were m = at x=0, we shall make the

further substitution „

which gives us, in place of (74),

8t dx'

and for boundary conditions

V =0 at a; = 0,

S-*'S=«= m

v=fix') = mx + (s-—\ + -—^e-'" when i! = 0. (79)
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This now becomes the problem of Art. 75, where was obtained

the solution

v = -^i r e-^y\x +2h Vt^) d^

2hVt

- r e-^'f{- x+2h Vt/3) d^\

.

(80)

2h-\ft

Substituting for f{x+2 hVi0) and /(- a; + 2 7iV7/3) from

(79), this may be written

2 SVf 2 A -v/j

2hm^t[ C" , C a s^ 7^1

ih-yft 2A-\/(

B
4

2 aV* 2 /iV(

Of the above four terms the first two can readily be shown to

equal , n \ 9 r "

..and(.-^)-^|--e-.^ (82)

respectively, while the third vanishes. In evaluating the fourth

we note that T -(,.+2„.V7^)^^_ ,a^,., r,-(^ + aAV;)^^^.
^83^

Making use of this fact, and of the substitution 7 = /S + aA V7,

we have, finally, since -575 = -^

\ a'k)^J„ ^
a'ky

1 f ga^»^< - a. r
"

g- V^^^ _ ga^AV+ «x T
"

fi" ^'(^7 11 . (85)
yfirl J^Lf^ + ahVl J^_ + ah^t J J

ZAV< 2AV(



96 THEORY OF HEAT CONDUCTION

When A = 0, that is, when there is no radioactive material

present, this solution reduces, as it should, to equation (60) of

Art. 88.

A computation of the age of the earth has been made

on the basis of (85) for the following assumed conditions

:

^ = .47 X 10-1'; ^=1.285 x lO""*; w = 4, that is, one fourth

of the present heat loss is due to radioactivity ; Jc = .0045

;

c = .25
; /3 = 2.8 ; m = .00005 ; and ^ = 995° C. Then the time

required to cool from the initial conditions * of surface at 995°

and temperature gradient of 5° per kilometer to the present sur-

face gradient of 1° C. in 35 meters comes out to be 45.85 x 10*

years. Without radioactivity the same initial conditions give

22.0 X 10* years, so we see that in this case the continuous

generation of heat under these conditions increases the computed

age of the earth by over 100 per cent.

It may be added that since the estimates of the earth's age

based purely on refrigeration are of the same order of magnitude

as those arrived at from geological considerations, such as strati-

graphy, sodium denudation, etc., many geologists are inclined to

believe that radioactivity is not as important in this connection

as might be supposed ; that is, that it contributes not more than

about one fourth of the present total annual heat loss. If some

such small fraction of the total heat loss is attributed to radio-

active causes, estimates of the earth's age based on cooling will

be in fair agreement with geological estimates.

PROBLEMS

1. Show that, under the conditions of Art. 75, if 6 is initially equal to x,

it will always be equal to x ; and if it is initially x^, its value at any time

later will be given by

2A.^..:-+(2..+.^)^p-

* strictly speaking, the conditions are really lor a temperature ol 1000° at a depth
of 5 km. below the surface, the surface itself being, in accordance with the idea of
the consistentior status, at or near zero in temperature. The above assumption of a
surface initially at 995°, which is then suddenly cooled to and thereafter kept at
zero, is made to render the problem mathematically simpler. That this would not
substantially affect the result may be concluded from the curves of Fig. 14,
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2. If the surface of dry soil (Ifi = .0.031), initially at 2° C. throughout, is

lowered to — 30° C, how long before the zero temperature will penetrate to

the depth of 10 cm.? Im.? (Compare Problem 7, p. 75.) (77min. ; 5.3 days.)

3. An enormous mass of cast iron at 100° C, with one plane face, is

dropped into water at 10° C. Assuming no convection currents in the water

(these would be minimized by choosing the face horizontal and on the

underside), what will be the temperature of the surface of contact? How
long before a point 2 m. inside the surface will fall in temperature to 95° C. ?

(90.3° C. ; 4.5 days.)

4. In the preceding problem calculate at what rate heat is passing out

through each square meter of the boundary surface after 10 min.

(694 cal./sec.)

5. Show by a method of reasoning similar to that of Art. 75, that if the

plane surface of the solid is made impervious to heat, instead of being kept

at constant temperature, then

e =—^=
\ /(?){ e *"'' +« '"'' \dX.

2hWTri I I J

6. Water pipes are buried 1 m. below the surface in concrete masonry

(^2 _ .0058), the whole being at 8° C. If the surface temperature is lowered

to — 20° C, how long before the pipes are in danger of freezing? (9 days.)

7. If the initial temperature of the earth was 3900° C. throughout and

it has been cooling 100 million years since then, with the surface at zero,

plot its present state of temperatures as a function of the distance below

the surface. (Use Kelvin's constants ; that is, h^ — .0118 and k = .0042.)

8. Under the conditions of the previous problem compute the present

loss of heat per square centimeter of surface per year. How thick a layer

of ice would this melt? (49 cal. ; 0.6 cm.)

Case III

Heat Sources

91. We shall now make use of the conception of a heat source,

an idea which has been used very successfully by Lord Kelvin *

and other writers in handling problems in heat flow. If a cer-

tain amount of heat is suddenly developed in each unit of area

of a plane surface in a body, this surface becomes an instan-

taneous source of heat, while if the heat is developed continuously

instead of suddenly, it is known as a. permanent sourceJ

* Math, and Fhys. Papers, II, pp. 41 ff

.

t The problem of Art. 90 involved a special case of permanent sources with a

volume distribution.
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92. Let q units of heat be suddenly generated on each unit area

of a plane in an infinite body, or on each unit area in some cross

section of a long rod whose surface is impervious to heat. If the

material is of density p and specific heat e, the unit of heat will

raise unit volume of the material — degrees. The quantity

Q = ^ (86)
pc ^ ^

is called the strength of this instantaneous source. If q units are

produced in each second, then Q' is the strength of the permanent

source.

93. Regard the plane x = \ over which the instantaneous

source of heat is spread as of thickness AX; then its tempera-

ture when the heat is suddenly generated will be raised by

^ =^ degrees, (87)

and we have a case to be handled by (20). The temperature at

any point will be given by

e = -

Q /-A + AA -<->^-':')'

2 AAX VTri
e

*""' -dX, (88)

since /(X) = outside these limits of integration. Now let the
- (A - a:)' -<.K'-x)^

mean value of e *''"' between the above limits be e *''"' where

X < X' < (X + AX). Then

1 Q
-(K'-xf

(9 =—^—,.-^e *"'' .AX, (89)
2h-V^t AX ^ ^

which, as AX = 0, approaches the limit

e =—^~=e '"''
, (90)

where the heat source is at a plane X distant from the origin.

Shifting this to the origin, (90) becomes

— a-2

e = %=e^'. (91)
2 AVvrt

^
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94. This gives us temperatures at any point for any time if

we have a linear flow of heat from an instantaneous source of

strength Q at the origin, the temperature of all other parts being

initially zero. It is well to test the correctness of this solution

by seeing if we can derive from it what is an inevitable conclu-

sion from the conditions given, namely, that the total amount in

the material at any time is just equal to the original amount q

(per unit area of section). From (91) the quantity of heat in

my element dx is _^
dpcdx = ^ e^t, ^^ (-92)

whence the total amount present in the body at any time is rep-

resented by ^ + » ^
I

dpcdx = L / e^"''-dx (93)
J- « 2 A \'rrt J- «

= ^ f^'°e-''-2hVidy (94)

= q.

'

(95)

Siace the additive effect of any number of such sources could

be obtained by a summation of such terms as (90), formula (20)

may be regarded as applying to the case in which we start with

an instantaneous source of strength /(X)c?X in each element of

length, d\, of the solid or bar ia the a;-direction.

95. Since it appears on expanding (91) in a series that ^ =

(x ^ 0) when t=0 and also when t = oo, it must have a maxi-

mum value at some time t^. To get this, differentiate (91) and

equate to zero,

gg^ Q JX^e^'+e^'(-l-t-i)\=0, (96)
8t 2h^A-^tSt ^ \ 2 Jl

from which ^i~2^" ^^'^^

Putting this value of if in (91), we get for the value of this

maximum ^0=_^. (98)
2;V2 7re
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The maximum temperatures, then, for various points are in-

versely proportional to the distances of these points from the

instantaneous source, while these maxima are reached in times

directly proportional to the squares of the distances.

APPLICATIONS

96. Electric Welding. Two round iron bars 8 cm. (3.1") in

diameter are being electrically welded end to end. If a current

of 30,000 amperes at 4 volts is required for 4 sec, and if this

energy is supposed to be all developed at the plane of contact,

how far from the end will the temperature of 1200° C. (2192° F.)

penetrate, supposing the initial temperature of the bars to be 0°C.?

The total heat developed will be

Qn AAA I (
• 1 480000 , 480000 , ,

dO,000 X 4 X 4 loules = —-— cal., or —- -—— cal./sq. cm.;
'

4.2 4.2 X IGtt ^

that is, <>=2740.*

Hence we have, from (98),

1200. § _ 2740

v^2^ :r.4.13

or x=.55 cm.; that is, the temperature of 1200° C. will pene-

trate to a depth not greater than .55 cm. (.22")— somewhat

less, in fact, since the generation of heat is not instantaneous,

as the solution assumes.

97. Casting. A large plate of iron 3 cm. (1.2") thick is to be

cast in a sand mold. Assuming that the pouring temperature is

1620° C. (2948° F.) while the mold is at 20° C. (68° F.), what

will be the maximum temperature in the mold 10 cm. (4") from

the plate, and when will this occur ?

We shall neglect the thickness of the plate, that is, consider

it a plane source, and also neglect the changes in the thermal

constants of iron with high temperatures. Then

9 = 3 X 7.85 X .1055 x 1600 cal./cm^,

or Q =-t8M: ^^6'0

* Strictly speaking, the time element in the generation of this heat must be over-
looked in this solution,
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So from (98), with a 20° shift of our temperature scale, and

with V = .0049, that is, using the same diffusivity as for soil,

4800 ^30

which will occur, from (97), at

t = 10,200 sec. g^
For half the distance away this temperature would be-S8^ C. and

the corresponding time a quarter as large as before. Adding 20° C.

to shiftour scale back again, these temperature^becomej at 10 cm.

(4"j,4f^°C. (SW°F.); and at 5 cm. (2"),^l&l' C. (-4ii^F.).

The solution of the first of the above problems gives an idea

of how far from the welded joint we might expect to find the

grain of the material injured by overheating, while from the

second we could draw some conclusion as to how near such a

casting, wood, say, might be safely located in the mold.

98. Temperatures in Decomposing Granite. We shall now take

up a problem involving permanent sources with a volume dis-

tribution. While of some interest from the geological standpoint,

it is difficult, and the solution of only one or two particular cases

will be attempted.

It has been noted in some instances that areas of granite

undergoing decomposition are several degrees warmer than the

surrounding rock. It is known that granite gives out heat

during decomposition, the total amount being of the order of

100 cal. per gram, but it is an extremely slow process, and our

problem is to see if any reasonable assumption of the rate at

which such heat is given off would serve to explain this in-

creased temperature.

99. To be able to treat the case as a specific problem we shall

assume first that the decomposing granite is in the form of a wall

of thickness ?, whose faces are kept at zero. Then if A! calories

are generated per second per cubic centimeter of the decomposing

material, we have for our fundamental equation

dt ox cp
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with boundary conditions

6=0 at x=0 and x = l (100)

and = when t = 0. (101)

Let u = d + 4>(x^ (102)

where ^(a;) is a function of x (only), yet to be determined.

Replacing ^ by m in (99),

^ _ ;,^ /^ _ s" (x-)] =- = A. (103)

But if we determine
(f)

(a;) so that

</,"(z) = |, (104)

Ax''
or <f> («) =27^ + ^'^' + ^' (105)

To satisfy (100) and also make u=0 at a; = and x = l,

<j) (x) must vanish at a; = and x = l; therefore

AI
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This is nothing but the problem of the slab with faces at zero,

which will be treated in Case IV, next to be considered. "While

in this particular example the form of f(x) makes the determi-

nation of M a rather lengthy process, it offers no special difficul-

ties and gives us as a final solution of the problem

^=2^-^-^^-^ X ;;r»' T-y
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100. A second hypothetical case, much simpler than the

above, is as follows : Suppose that this wall or slab of decom-

posing granite I cm. tliick is in contact on each side with ordi-

nary granite. Suppose also that this slab is initially heated to

some temperature 6^ about 50° C. above that of the surrounding

rock and allowed to cool for a year. This gives a temperature

at the center, as may be readily computed from (25), of .355 6^,

or about 17.7° above that of the surrounding rock at some dis-

tance away. Now by differentiation of (25) witlf' respect to x

and multiplication by .0081, the conductivity of granite, we get

the rate of heat flow out through each face of this slab as

4=(1 — e ihH') = .000057 cal. per sq. cm. per second,

2 hs/'rvt

for Z= 915 cm.

So far we have taken no account of the heat of decomposition,

for the above discussion is merely to find a reasonable assump-

tion for the temperature distribution in this slab and the sur-

rounding rock as we find it at present. We may now question

at what rate decomposition would have to take place in order to

furnish heat at just the rate required to maintain this tempera-

ture state steady for some time, and at once compute this rate

as such that the 100 cal. would be liberated, that is, the process

finished, in about sixty-eight years.

The preceding discussion should enable the geologist to form

some idea of the temperatures which might be caused by or ex-

plained by decomposition. As the rate of such decomposition

is generally supposed to be very much slower than that taken

above, it is evident that a large thickness of such decomposing

granite would be required to cause even a few degrees of excess

temperature.

PROBLEMS

1. Derive (20) and (29) on the basis of heat sources (see Art. 94).

2. In electrically welding two large copper bars 2640 cal. are suddenly

developed in each square centimeter of the contact plane. Assuming the

initial temperature to be 20° C, when will the maximum occur at 40 cm.

from this plane and what will be its value ? (706 sec. ; 39.7° C.)
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3. A plate of lead 1 cm. thick is cast in a sand mold (/j^ = .0049). If the

mold is initially at zero while the lead is poured at 450° C, what will be

the maximum temperature at 3 cm. away, and when will this occur ?

(%^S°C.; 918 sec.)

/T'.OS'
4. Show from (90) that if we have a permanent source of constant

strength Q' located in a plane distant X from the origin, which begins to

liberate heat in a body initially at zero at time t = 0, then the temperature

at any time t will be given by

« -(A -a;)'

e =—^ I
e4''H'-n.(<_r)-JrfT.

2 h. V^Jo

Case IV

Solid with Two Parallel Bounding Planes— the Slab

101. In this case we have to deal with a body bounded by

two parallel planes distant I apart, with the initial temperature

condition of the body given. The problem is to find the subse-

quent temperature for any point. The solution will of course

fit equally well the case of a short rod with protected surface.

102. Both Faces at Zero. The boundary conditions here are

= g,tx=0, (114)

^ = at « = Z, (115)

e=f(x) when i = 0. (116)

Now we have already seen (Art. 66) that

5' = e-"V<.sin7a; (117)

and e = e- "'•>"''
• cos 7a; (118)

are particular solutions of the fundamental equation

'^ = K^% (1)

Form (117) satisfies (114) for any value of 7, and also (115)

if 7 =— where m is a whole number. It does not, as it stands,

fulfill (116), but it may be possible to combine a number of
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terms like (117) and secure an expression which shall be a

solution of (1) and which satisfies (116). For

e = A,e i' • sm —- + ^ e f" • sm --—

+ A^e <f .sm-y-+--- (119)

is still a solution of (1), satisfying (114) and (115), which

reduces, when i = 0, to

^ = ^j sm — + A^ sm —— + A^ sm —— ^ , (120)

and from Art. 58 this equals /(a;) if the function fulfills the

conditions of Art. 51 between and Z, and if

^» = fj[/(^)sin^iX. (121)

The solution of our problem then is

c^^^f-JflrM.
_ OTTO f ' .. , . WITtX,^! .^n„,= -Vje " sm —— / /(X) sm—— rfX, U (122)

103. Adiabatic Cases— Slab with Nonconducting Faces. If

the faces instead of being kept at constant temperature are

impervious to heat, we shall have the same differential equation

but quite different boundary conditions ; namely,

^ = at a: = 0, (123)
ox

^=Oata;=Z, (124)
ox

e=f(x) when t = 0. (125)

Conditions (123) and (124) are fulfilled by solution (118) if

7 = -y- just as before, and (125) may be satisfied by combining

a number of terms of this type. This gives

O f-|
r'l

m= » / — li'^m^ir'^t

e '^ • cos ^J>(X)cos^cZx)|. (126)
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104. If only one face is nonconducting, the other being kept

at zero, the solution is contained in equation (122). This may
be shown by the same considerations which were used in Art. 70,

that is, by imagining a nonconducting plane "cutting through the

center of a slab of double thickness, parallel to its faces, where

the temperature conditions are supposed perfectly symmetrical

on each side of such a plane. There would then be no tendency

to a flow of heat across such a surface, and hence placing a

nonconducting division plane there and removing half of the slab

will not affect the solution in any way. Therefore in handling

a problem of this nature, that is, one face impervious to heat,

we solve it as a case of a slab of twice the thickness, and the

temperatures of the nonconducting face would be found as

those at the middle of the slab of double thickness.

APPLICATIONS

105. The Theory of the Fireproof Wall. With the aid of the

foregoing deductions we can now develop a theory which finds

immediate application to a large number of practical problems,

namely, that of heat penetration into a slab or wall, one side of

which is subjected to sudden heating, as by fire ; or, as we shall

call it for brevity, the " theory of the fireproof wall." It is to be

understood that this theory applies only to the purely thermal

aspects of the question of fire-protecting walls and floors, and

not at all to the very important considerations of strength,

ability to withstand heating and quenching, and other questions

which must be largely determined by experiment.

We shall treat the problem for four cases of somewhat differ-

ing conditions. It is assumed in all cases that the wall is rela-

tively homogeneous in structure, a condition which would be

fulfilled by practically all masonry or concrete walls, floors, or

chimneys. For hollow tiling or other cellular structure the theory

would not apply directly, but would still afford at least an indi-

cation of the laws for these cases. It is also assumed that the

wall is initially at about the same temperature throughout its

thickness, as would be true in almost every practical example.
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106. Case A. The conditions assumed for this case are that

the front face of the wall is suddenly raised to the temperature

6 and maintained there, while the rear face is protected so that

it suffers no loss of heat. It is desired to know the rise in tem-

perature of the rear face for various intervals of time. The

latter condition is fulfilled sufficiently well by a wall which is

backed by wood, that is, door casing, or better by a concrete

or masonry floor on which is piled poorly conducting (for

example, combustible) material.

As explained in Art. 104, such a case as this, involving an

impervious surface, can be treated as that of a slab of twice the

thickness, the rear (impervious) face of the wall corresponding

to the middle of the slab (x=^T). To apply (122) we must

proceed as in Art. 77, writing — 6^ iov f(X). Then

e^ =—T-^Zt\e ^ -sm—- / sm—— (^X I (127)
^ m=l L

I' Jo '
J

This corresponds to a slab initially at — 6^, while the faces are

at zero. Adding 6^ to each side, we then have as the solution

for the present case

o = o^\l-- 2,>i '' sm ——
I
sm —— dX i , (128)

I ' nt = l ''Jo '
J

where I is twice the thickness of the wall. For the rear face the

sine term becomes sin l tott, so that only terms in odd values

of m are present. Hence we may write (128) after evaluating

the integral

. = .„|l--.-^^+-.- ^ --.- . +...}. (129)

In most cases the terms after the third in the above series are

negligible.

107. Case B. This differs from the preceding in that the tem-

perature of the front face is supposed to rise gradually instead

of suddenly. If the rise is rapid at first, as it would be in most

cases,— for example, if the wall were exposed to a flame,— an

approximate solution may be arrived at by the device suggested
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in discussing the removal of shrunk-on fittings (Art. 84) ; tliat is,

the assumption of an added thickness whose outer surface is sud-

denly raised to, and kept at, a constant temperature 6^. By
properly choosing 6^, as well as the thickness to be added, a

temperature-time curve can be found for the plane representing

the original surface, nearly like many actual heating curves;

the computation is then carried out accordingly. The results

obtained, however, are generally only slightly different from

those for Case A if the mean value of 6^ is used.

108. Case C. We have here an important diiiference to take

account of in the conditions. While the front surface is supposed

to be suddenly brought to the temperature 6^, as in Case A, the

rear surface in the present case is supposed to lose heat by radia-

tion and convection instead of being protected, and hence will

not rise to as high a temperature as in Case A.

The rigorous handling of this problem is extremely difficult

and would be well beyond the limits of the present work, but,

as in many previous cases, it is still possible to reach a solution

accurate enough for all practical purposes, arid at not too great

an expense of labor. This may be done as follows : In the treat-

ment of the semi-infinite solid with boundary at zero (Art. 75)

we found that the equations could be deduced from those for

the infinite solid by a suitable assumption for the temperatures

on the negative side of the origin, that is, for/(— X), the latter

being so determined that the boundary should remain constantly

at zero. Now if the boundary instead of being at zero radiates

with an emissivity E, this condition can be introduced * by put-

ting into the relation (identical with (20))

2 h Vvri,

the condition that

' See Weber-Riemann, Part. Diff. Gleichungen, II, Art, 39.
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This gives the temperatures for a semi-infinite medium with

radiating surface and initial temperature conditions determined

by /(X). Now let us make the assumption that /(X) has the

value zero for a distance h from the radiating face, and 2 0^

from there to infinity. This gives the somewhat complicated

equation

+ 2 e^ r^'-^^>
.

{i -^jT^^S^l-.^ a^y (132)

and if we investigate with the aid of this equation the tempera-

ture in the plane distant h from the radiating face, we find that,

for small values of E and not too small values of 6, this is

almost constant for a considerable time and has the value 6^.

We have, then, the solution of our problem in the above equa-

tion. This plane which is kept at 6^ corresponds to the front

face of the wall whose thickness is h, and the temperatures of

the rear or radiating face will be given by putting a; = in this

equation. The value of the emissivity constant E may be taken

for small ranges of temperature at about .0003 calories per sec-

ond per square centimeter per degree centigrade above the tem-

perature of the surroundings, for an average surface such as a

wall (see Appendix A). Strong convection such as a wind,

or higher temperature differences, will increase this figure con-

siderably ; in some cases, however, it may be even less than the

above value.

To gain some idea of the difference of the results for this case

and for Case A, a few computations have been carried out with

(132) and plotted in Fig. 16. These are for a wall of stone con-

crete (h^ = .0058) 20.3 cm. (8") thick, whose front face is heated

to 6^. For two hours, under these conditions, the temperatures of

the rear face for Case C are lower than they would be for Case A
in the ratio of 35 to 53. For a granite wall (V = .0155) with the

same thickness and same time this ratio would be about 28 to 35.
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109. Case D. This differs from the last only in the supposi-

tion that the temperature rises gradually instead of suddenly.

No attempt * will be made at treatiiig this case mathematically,

but from the conclusions reached for Case B we are reasonably

safe in handling it as Case C, using a mean value for the

temperature 6^.

110. Discussion of the General Principles. Having treated in

detail the several cases, we may"now draw some general conclu-

sions in regard to thermal insulation under fire conditions. From
the preceding discussion we see that Case A is the one from

which we can most safely make these deductions ; for B and D
are more or less minor modifications, while C would invariably

lead to lower results. Hence for a margin of safety we shall

make our deductions largel}^ from (the ideal) Case A.

The first conclusion to be drawn from (129) is that the tem-

perature of the rear face is a function of h^ rather than of k. In

other words, the insulating value of material for such a wall is

dependent not alone on its conductivity, but rather on its con-

ductivity divided by tlie product of its specific heat and density

;

that is, its diffusivity. ]\Iaterial for such purpose should there-

fore have as low a conductivity and as high a density and specific

heat as possible, for if the density happens to be low, it may prove

no better insulator than something of higher conductivity but of

correspondingly higher density. This is true in some cases for

slag or cinder concrete,'' although the latter has as a rule a lower

diffusivity than stone concrete.

The second conclusion from (129) is that any change which

alters t and T in the same proportion does not affect the tem-

perature 6 of the rear surface of the wall. In other words, for a

given temperature rise of the rear face the time will vary as the

square of the thickness. Since one measure of the effectiveness

of such a fireproof wall or floor would be the time to which it

* For a fairly approximate treatment the method used for Case B might be
followed ; that is, the assumption of a small added thickness.

t See Woolson, Proc. Am. Soc.for Testing Materials, 6, p. 438 (1906). He notes

that in one case cinder concrete gave hardly better insulation tests than gravel con-

crete. The explanation is evident from the above discussion.
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would delay the penetration of a dangerously high temperature

to the rear face, this makes the efficiency of such wall or floor

proportional to the square of its thickness (compare the " law

of times " in Art. 78).

111. These conclusions are represented graphically . in the

curves of Figs. 17-21. The temperature 6 of the rear face of

a wall whose front face is at 6^ is expressed for various times
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TABLE

Values of the function ?/ = 1 - _ / 10-^ - - 10- 9^ + - 10- 25^ _ _ io-49:r + . . . I
7r i_ 3 5 7 J

X
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that between the two sets of observations. This is a very satis-

factory proof of the " law of times."

On a larger scale there are available the fire tests on various

walls, made by R. L. Humphrey.* These were two-hour tests,

mostly on 8" walls, the temperature 6^ of the front faces being

in the neighborhood of 700° C. His results have been plotted,

where possible, in the curves of Figs. 17-21, being denoted by

the symbol @. The agreement (overlooking radiation losses) for

the case of stone concrete is very good, his point representing the

mean of three concordant results. As the diffusivity (.0058)

used in computing the curves of Fig. 17 was obtained from an

entirely different sourcejt this may be regarded as a reasonably

good check on the theory. The other agreements are poor,
,

but no worse than might be expected, considering the varying

qualities of such materials and our imperfect knowledge of their

thermal constants. In general it appears that cracks and fis-

sures which develop in the heated surface under such tests

cause at first a more rapid penetration of heat than the theory

would anticipate.

The effect of steel reenforcement in such a wall is of interest

in this connection. A consideration of (129) shows that a steel

wall should afford the same temperature rise of the rear face

under the same heating conditions of the front face as a con-

crete wall of about one fifth the thickness. Placing a steel bar

running through the wall, therefore, would be almost equiva-

lent, thermally, to drilling a hole of the same diameter four

fifths through the wall.

113. Copper Converter. We may make brief mention of a num-

ber of other problems to which the foregoing principles apply

directly. For example, take the case of the copper converter, a

somewhat shallow container lined with magnesia. fire brick in

many cases about 30.5 cm. (1') thick, in which molten copper

at an average temperature of perhaps 1300° C. is kept for two

* United States Geological Survey, Bull. No. 370. The authors are also indebted
to Mr. Rudolph P. Miller, Superintendent of Buildings, New York City, for much
valuable information and data on tests.

t Norton, Proc. Nat. Assoc. Cement Users, 7, p. 78.
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or three hours: how hot may the outside of the brick be

expected to get if the radiation from the surface is small?

Usmg W = .0074 and I = 61, we find, with the use of the Table

of Art. Ill, that the temperature of the outside would rise only

8° C. in 2 hr., while in 4 hr. it should not exceed 95° C. The
conductivity and diffusivity of magnesia,. brick are sometimes

quoted as half as large again as the values here used. In this

latter case the temperatures would be 42° and 230°.

114. Fire Brick. In a number of practical cases it is desirable

to know to what extent and also how rapidly the temperature

in the inside of a brick follows that of the outside. This is of

particular interest in connection with the burning of brick, and

also in the case of the " regenerator," where heat from flue gases

is stored up in a checkerwork wall of fire brick, to be utilized

shortly in heating other gases. Using A^= .0074, we find that

the center of such a brick 6.35 cm. (2.5") thick— the larger

dimensions being of little influence if the two flat sides are

exposed— will rise in 5 min. to .26 of the temperature of the

faces, in 10 min. to .57, and in 20 min. to .85. For building

brick of perhaps two thirds this diffusivity the figures would be

.12 for 5 min., .88 for 10 min., and .70 for 20 min.

115. Optical Mirrors. In the process of finishing huge tele-

scopic mirrors it is necessary that they be allowed to remam in

a constant-temperature room before testing, until the glass is at

sensibly the same temperature throughout. For such a glass

mirror (A' = .0057) 25 em. thick, x (in the Table of Art. Ill)

is .0000395 t. Then if the surface temperature is changed by 6^

and we wish to be sure that the change at the center is, say, 90%
of this, we find for y = .9 that x = 1.10. Therefore t = 27,700 sec,

or the mirror should be kept at this constant temperature d^ for

at least 7.7 hr. For 14.2 hr. the figure would be 98.7%.

The above is on the assumption that both faces of the glass

plate are exposed. If only one face is exposed, it would be the

protected face rather than the center which would be the last to

assume the constant temperature, and the delay would be four

times as long.
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116. Annealing Castings. While a large number of other

applications of the foregoing theory might be mentioned, such

as numerous cases of fireplace insulation, resister-furnace insula-

tion, fireproof-safe construction, and the like, we shall content

ourselves with one more example, namely, the problem of an-

nealing steel castings ; that is, the question of how long the

heatmg must continue to briag the interior temperature to the

desired value. This is quite similar in principle to the illus-

tration of the last article, and we may readily compute that for

a mild steel casting Q^ = .173) in the form of a plate 30.5 cm.

(1') in thickness, it would take 23 min. for the center to rise

to withm 90% of the temperature of the faces, providing these

were quickly raised to their final temperature. For a plate of

half this thickness it would take only one quarter the time, etc.

If the faces are gradually rather than suddenly heated, the

process would take longer, but would have the advantage that

in this case the difference in temperature between outside and

inside would be lessened, as well as the time it would be neces-

sary to keep the faces at the highest temperature.

PROBLEMS

1. A plate of steel (A^ = .121) of thickness 2.54 cm. and temperature

0° C. is to be tempered by immersion in a bath of stirred molten metal at &'.

Plow long should it be left to assure that the steel is throughout within

98% of this higher temperature ? (23 sec.)

2. A fireplace is insulated from wood by 15 cm. of fire brick. If the face

is kept for some time at 400° C, how long before the wood at the rear will

char, supposing this to occur at 250° C. ? How long for a thickness of

25 cm.? (4.2 hr.; 11.6 hr.)

3. Compare the results for the three following problems based on Cases

I, II, and rV of the present chapter. A plate of copper 10 cm. thick and

at Q^ is placed between two large slabs of similar material at zero : how
long before the center will fall in temperature \a\&^'>. If instead of a plate

we have a large mass originally at 0^, while the surface is afterwards kept

at zero, how long before the temperature 5 cm. in from the surface will fall

to 5 ^g ? If the slab is of the same thickness as in the first case, but the

faces are kept at zero, solve this same problem for the center.

(24.4 sec; 24.4 sec; 8.3 sec)
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4. A sheet of ice 5 cm. thick, in which the temperature varies uniformly

from zero on one face to — 20° on the other, has its faces protected by an

impervious covering. What will be the temperature of each face after

10 min.? (- 10.56° and -9.44°)

Case V
Long Rod with Radiating Surface

117. This differs from Cases I and II of this chapter in that

there is a continual loss of heat by radiation from the surface of

the rod. We have already handled the steady state for this case

in Arts. 16-21, where we found that the Fourier equation had

to be modified by the addition of a term taking account of the

radiation, and became „^ „2/i^ = /,;2^_5^0. (133)

We shall assume as before that the rod is so thin that the

temperature is sensibly uniform over the cross section, and that

the surroundings are at zero.

118. Initial Heat Distribution given. We must seek a solution

of (133), subject to the conditions

6=f(x) when t=0, (134)

6=0 when «=oo. (135)

Now the substitution ue~'''' = (136)

du d u
reduces (133) at once to -;r- = ^^^' (1^'^)

where u fulfills the condition

u=f(x} when t=0, (138)

and, indirectly (135), since u is finite. But this is identical with

Case I, so the solution for u is given by equation (22) of Art. 67.

Using this, we may write at once

e^t^r '°f{x +2h ^t/3) e- ^' d/3. (139)

In other words, this differs from the nonradiating case only

by the factor e"'"''.
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119. One End of Rod at Zero ; Initial Distribution of Heat given.

The boundary conditions are

e = at x=0, (140)

e =f(x) when t = 0. (141)

If we make the substitution (136), then u must satisfy (137) and

also the conditions a , a ^-. ^ «nM = at x=<), (142)

u =/(2;) when t = 0. (143)

As this is the case already treated in Art. 75, we may write,

using (31),

2hVt

-L
/(2 /3hVt - x)

e-^'- d^ I

.

(144)
+ 1

120. End of Rod at Constant Temperature 6^ ; Initial Temper-

ature of Rod Zero. We cannot solve this problem directly, like,

the two preceding, as an extension of cases already worked

out ; for the boundary condition 6 = 0^ at x=Q would mean

u = d^-e'^'''' at x=0, which would not fit any case we have

-treated. But we can handle this case with equation (144) by

the aid of an ingenious device * whereby we first solve the

problem for the boundary conditions

(9 = at x=0,
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is a particular solution of (133), as is also (147) just precediug,

so the sum of (147) and (148),

2;iV(
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Setting 6^ = in (154), we get

\l+-l= r e-y'dy--^ r e-y'dy\, (156)
I VTT.y ..

which is readily seen to be identical with the results of Art. 77

for the linear flow of heat in an infinite body.

PROBLEM

1. A wrought-iron rod 1 cm. in diameter and 1 m. long is shielded with

an impervious covering and subjected to temperatures 0°C. and 100° C. at

its ends, until a steady state is reached. The covering is then removed and

the rod placed in close contact at its ends with two long similar rods at

zero, the temperature of the air being zero also. If E is .0003, what will

be the temperature at the middle of the meter rod after 15 min. ? (Compare

Problem 6, p. 75.) (13.5°)



CHAPTER VIII

THE FLOW OF HEAT IN MORE THAN ONE DIMENSION

122. In this chapter we shall consider a few of the many

heat-conduction problems involving more than one dimension.

In particular we shall take up the case of the radial flow of

heat, including " cooling of the sphere " problems ; also the

general case of three-dimensional conduction.

Case I

Radial Flow. Initial Temperature given as a Function of the Distance

from a Fixed Point

123. This is the case analogous to the first discussed under

linear flow in the last chapter, the essential difference being that

the isothermal surfaces instead of being plane are here spherical.

In the discussion of the steady state for radial flow (Art. 30), we

had occasion to express Fourier's equation in terms of the variable

r, finding that i d^(rO\^ v^0=i4?^, (1)
r or

the partial notation being used iere to show differentiation with

respect to r alone, Q now depending on t as well ; so the funda-

mental equation becomes dd h^ d^ (rd')

The solution of our problem must satisfy this equation, and the

boundary condition q =/(^) when t = 0. (4)

Let M = rd, (5)

and our differential equation (3) reduces to

125
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where u = rf^f) wlien i = (7)

and M = at r = 0, (8)

u being always positive if, 6 is taken as positive. But the solu-

tion of (6) under these conditions will be identical with that for

the case of linear flow with one face at zero, treated in Art. 75.

Using, as in this case, X as the variable of integration, and remem-

bering that when < =
M = X/(X), (9)

we have the temperature at any distance r from the point, given,

from (29) of Art. 75, by the equation

^A -rf

] { \ f(\ \ P

2AV^
u = re =—^j r\f(X)e "'' d\

- a + r)'

Xf(\)e "'' dXl. (10)

With the substitutions

^ = -—J-, or X = r+2AV^A
2AVf

X + r

this becomes

and /3'=^^^^, or X = -r + 2AVi/3', (11)
2 AV<

2h-\/t

- r {-r + 2h-^0')f{-r+2hVi^')e-'^''d^'\. (12)

124. If the initial temperature is a constant, 0^, within a sphere

in the solid of radius B, and zero everywhere outside, the subse-

quent temperatures are given from (10) by

= '-j^\ \ \e '"'' d\- / \e '"" dxi; (13)
2rAV^lJo Jo J
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or, from (12), by

a r
/t —

r

e =-^ \ f^'^-/'{r + 2 hVtl3) e-^V/3

2ftV«

2'.v;(_^^2AViy3)e-^'cZ/3L (14)

This gives directly for all points save r = Q, where it becomes

indeterminate and must then be evaluated by differentiation.

APPLICATIONS

125. The Cooling of a Laccolith. By means of equation (14)

we can solve a problem of interest to geologists, namely, that of

the cooling of a laccolith. This is a huge mass of igneous rock,

more or less spherical or lenticular in shape, which has been in-

truded in a molten condition into the midst of a sedimentary

rock, for example, limestone. The importance of the formation,

from a geological standpoint, lies in the fact that ores are fre-

quently found in the region immediately adjoining the original

surface of the laccolith, and the conditions and time of cool-

ing of the igneous mass would naturally have a bearing on any

explanation of the deposition of such ores.

The temperature curves given in Fig. 23 were computed for

the following conditions: radius, B, of laccolith, 1000 m. ; diffu-

sivity = .0118 (Kelvin's estimate. This is also a good mean of

the value for granite and limestone ; the medium must here be

assumed to be uniform). The initial temperature of the igneous

rock is taken as d^, probably between 1000° and 2000° C, while

the surrounding rock is assumed at zero.

The conclusions to be drawn from the curves are : first, that

the cooling is a very slow process, occupying tens of thousands

of years ; second, that the boundary-surface temperature quickly

falls to half * the initial value and then cools only slowly, and

* strictly speaking, the initial temperature of the boundary surface -would he
somewhat higher than this ; for the conductivity of hot igneous rock is considera'bly
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also that for a hundred or more years there is a large temper-

ature gradient over only a few meters and a very slow progress

of the heat wave ; third, the maximum temperature in the lime-

stone, or the crest (so to speak) of the heat wave, travels out-

ward only a few centimeters a year. The mass behind it will

then suffer a contraction as soon as it begins to cool, and the

cracking and introduction of mineral-bearing material* is doubt-

less a consequence of this.

PROBLEM

1. Molten copper at 1085° C. is suddenly poured into a spherical cavity

in a large mass of copper at 0°C. If the radius of the cavity is 20 cm., find

the temperature at a point 10 cm. from the center after 15 min. Neglect

the latent heat of fusion. (24°.)

Case II

Instantaneous Heat Source at a Point

126. If q units of heat are suddenly developed at a point in

the interior of a solid which is everywhere else at zero, a radial

flow will at once take place and the temperature at any point

for any subsequent time can be found in terms of the time and

the distance from this center. This case is analogous to that

discussed in Art. 93, where we had a linear flow from an in-

stantaneous heat source located in a plane of infinitesimal thick-

ness. Just as in this case, too, we can deduce the solution by a

special application of a more general one. For if in (13) we let

the radius B of the spherical region, which is initially at constant

temperature 6^, become vanishingly small, while its initial tem-

perature is correspondingly increased so as to make the amount

of heat finite, we shall have a solution of the present problem.

To get this, put n ^ -r.^ ^^ tn

greater than that of the cold limestone, although, in order to he able to handle the

problem, we have had to consider their thermal constants as the same. The tempera-

ture of the boundary surface for the first hundred years or so could best be estimated

from equation (49) of Art. 80. The error introduced by assuming the diffusivities to

be the same becomes less and less as the cooling proceeds.
* See Leith and Harder, United States Geological Survey, Bull. No. 338.
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as the amount of heat in a very small sphere of radius B, and

substitute the value of 0^ deduced from this in (13). Then

= 5J ,1 / xe "'' d\- \e *"'' d\[. (16)
icpB'7ri-2rh-^t\Jo Jo J

Now we may write
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127. Having derived (23) it may be instructive to reverse the

process and show that it is our desired solution. To do tliis we

must show that it satisfies (3) and the boundary conditions

= when « = oo , (24)

^ = when t = 0, save at r=0, (25)

and also the condition that the total amount of heat at any time

shall equal q.

Differentiation gives

Hrff)^f^±^^\re, (26)
dt \ 2t 4A¥

d(r&)_(l

dr \r 2m re, (26 a)

d\re') _( 3

(-lfc + 4&)'^' (^"^

showing that (3) is satisfied. That conditions (24) and (25)

are fulfilled may be shown if we rewrite that part of (23) con-

taining t,
^ 1

(27)
3 a

(''K^^^P^)
The denominator is seen to be infinite for i = or oo; hence

(23) vanishes for each of these values. As to the last condition,

the total amount of heat is given by

rpce4. Trr-'dr = Cq Lj^-^}j ^' '
^ '^^^*'- C^^)

If we put
^^ibft

^^^^

the second member becomes

il. r .-y'
. r^^drf, (30)

VTT Jo

which (Appendix C) is equal to q.
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128. The time t^ at which d reaches its maximum value is given

by differentiating (23) and equating to zero. This gives

The corresponding value of the temperature is

129. Equation (23) shows that 9 has a value different from

zero in all parts of space even when t is exceedingly small, or, in

other words, that heat is propagated apparently with an infinite

velocity. As a matter of fact the heat disturbance is undoubtedly

transmitted with great rapidity tlirough the medium, although

it is continually losing so much energy to this medium, which it

has to heat up as it passes through it, that the actual amount of

heat which travels to any appreciable distance from the source

in a very short time is very small.

PROBLEMS

1. A 50-g. bullet is cast in a wrought-iron mold. Assuming the pouring

temperature at 450° C. and the mold at zero, and neglecting the heat of

fusion of lead, find the temperature 3 cm. away from the bullet in 10 sec.

;

also 6 cm. away. (iSfegleet dimensions of bullet.) (2.23°; .046°)

2. If heat equivalent to the combustion of 1,000,000 kg. of anthracite

(heat of combustion 8000 cal/g.) is suddenly generated at a point in the

earth, when will the maximum temperature occur at a point 50 ra. distant

and what will be its value ? (Use Ji^ = .0064, k = .0045.) (20 years; 6° C.)

Case III

The Cooling Of a Sphere with Surface at Constant Temperature

130. Surface at Zero. To solve this problem we must find a

solution of (3), which satisfies the boundary conditions,

e=f{r) when < = 0, (33)

e=0 at r = B. (34)

Making the substitution u = r6, (^5)
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(3) reduces to ^ = ^'5' (^6)

where u must fulfill the conditions

u = rf{f) when « = 0, (37)

M = at r = R, (38)

M = at r = 0. T (39)

It will be seen that this makes the problem similar to that of the

slab (Art. 102) with faces at temperature zero, and initial tem-

perature r/(r). With the aid of (122) we may then write

Rr^^,
Vsm—--e "

/ x/(\)sm-—-c?A.. (40)
m = l

-^ Jo -^

If the initial temperature is a constant, 6^, we may write (40)

Isut
I

X sm^—- d\ = cos mir, (42)

so that (40) may be written for this case

z BQ.
I

. Trr —s- 1 . 2 7rr
^ = il^^oJsin— - ^^ _-=;.^^-. ^"— - sm -

ivr
\

R 1 R
-iitVt

1 . 37rr ™
I"^3^""^^"'^ [ '^^

131. Initial Temperature Zero ; Surface at 6^. By the method

of Art. 77 we may at once write this equation for the case of the

initial temperature zero and surface at 6^ as

while by a suitable shift of the temperature scale it may of

course be applied to the case of any two constant temperatures,

initial and surface.

132. The average temperature Q' of the sphere for any time t

may be found from (43) by multiplying each element of volume

by its corresponding temperature, summing such terms for the
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whole sphere, and dividing by the volume of the sphere. Thus,

since ^ is a function of r,

0'=-^, C^eiivr'dr (45)
4 7ri?Vo

r
I

r sir

r"" • Sot,
] ^,„^

\ r sin ar — • • • }- C^o)
Jo -'^

J

i
J5.2

/ . O

+r

:^L -' +\e «^ +ie -^ +...). (47)

APPLICATIONS

133. Mercury Thermometer. Equation (47) may be applied

to a spherical-bulb thermometer immersed in a stirred liquid.

Neglecting the effect of the glass shell, the temperature of the

mercury is given to a close approximation by the first term of

(47) unless t is very small. The rate of cooling is

-'£ = ^6'. (48)

134. Spherical Safes. Compare the fire-proteeting qualities

of two safes of solid steel (A^ = .121) and solid concrete

(A^ = .0058), each spherical in form, of diameter 150 cm. (59"),

and of very small internal cavity. Assuming that the surfaces

are quickly raised from initial temperatures of 20° C. (68° F.)

to 500° C. (932° F.), determine the temperatures at the centers

after various periods of time.

Applying (44), we note that while it apparently takes an

indeterminate form for r = 0, this is readily evaluated, since

. rmrr
sm

limit = 1.
r^o mirr
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This gives

e '^ +e "' i), (49)

from which we may compute that the temperature in the center

of the steel safe would be 98° C. (208° F.) at the end of 1 hr.,

and 455° C. (850° F.) after 4 hr. ; while in concrete the tem-

peratures would run only 25° C. (77° F.) at the end of 10 hr.,

and not exceed 140° C. (284° F.) before 24 hr.

135. Steel Shot. Such a shot 3 cm. (1.18") in diameter, at

800° C. (1472° F.), has its surface suddenly chilled to 20° C.

(68° F.) ; what is the temperature 1 cm. below the surface in

1.8 sec? Putting j- = .5 and i?=1.5, also A' = .121 in (43),

and makiug a suitable shift (20°) of the temperature scale,

we readily find 6 to be 501° C. (934° F.). It will be noted

that the cooling is much more rapid than in the case treated

in Art. 85.

The rate of cooling may be found by differentiating (48)

with respect to t. This gives

— = — 2—li— Jsm-

—

-e " — 2 sm -e -" +-'4- (50)
. dt Br \ £: B

]

This equation might be used in an investigation of the relation

between rapidity of cooling and hardness for approximately

spherical steel ingots.

136. The preceding equations might be applied to a large

number of practical problems of somewhat the same nature

as those discussed in the last chapter. It is frequently desira-

ble to know to what extent the temperature in the interior

of mass of metal or other material departs from that at the

surface, and by treating all roughly spherical shapes (for

example, cubes) as spheres of the same volume, these equa-

tions may be applied at once. The theory might prove of

service in such problems as the annealing of large steel cast-

ings, or in a study of the temperature stresses and conse-

quent tendency to cracking which accompanies the quenching

of large steel ingots.
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PROBLEMS

1. The surface of a sphere of cinder concrete (7j^ = .0031) 30 cm. in

diameter is rapidly raised to 1500° C. and held there. If it is all initially

at zero, what will be the temperature of the center in 1 hr. ? in 5 hr. ?

(48°; 1240°.)

2. A mercury thermometer .of spherical bulb 1 cm. in diameter, at tem-

perature 40° C, is immersed in a stirred mixture of ice and water. Neg-

lecting the thickness of the glass, determine how soon, approximately, its

average temperature is within .01°C. of that of the bath. (6.04 sec.)

3. Show from (44) or (47) that the common rule for roasting meats—
of allowing so much time per pound, but decreasing somewhat this allow-

ance per pound for the larger roasts— rests on a good theoretical basis.

Case IV

The Cooling of a Sphere by Radiation

137. We shall now solve a more difficult problem than any

we have before attempted, namely, that of the temperature state

in a sphere cooled by radiation. The solution will apply to the

case of the sphere either in air or in vacuo, for the only assump-

tion made in regard to the loss of heat is that Newton's law of

cooling holds ; that is, that the rate of loss of heat by a surface

is proportional to the difference between its temperature and

that of the surroundings.

As we shall see, the solution can also be applied to the case

of a sphere of metal or other material of high conductivity,

covered with a thin coating of some poorly conducting sub-

stance and placed in a bath at constant temperature. For the

rate of loss of heat by the surface of the metal sphere will be

proportional to the temperature gradient through the surface

coating, that is, to the difference of temperature between the

inner and outer surfaces of this coating, which, by the con-

ditions of the problem, is equal to the difference of tempera-

ture of the metal surface and the bath. An example of this

latter case is the mercury thermometer with spherical bulb,

immersed in a liquid, it bemg desired to make correction

for the glass envelope.
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138. The differential equation for this case is, as before,

^ = A^^, (51)

with the boundary conditions

e=f(r) when ^ = 0, (52)

-h— = Ee at r = B. (53)

The last condition states that the rate at whicli heat is brought

to unit area of the surface by conduction, namely, —Jc— -, must

be the rate at which it is radiated from this area, and this is E6,

where E is the emissivity or coefficient of radiation of the sur-

face. The surroundings are supposed to be at zero.

As before, put u — r9;
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If m^ is a root of this transcendental equation, then

M = e~ *'"'-?' sin rn^r (62)

is a particular solution of (55) satisfying (57) and (58). We
must now endeavor to build up, with the aid of terms of the

type (62), a solution which will also satisfy (56).

Since the sum of a number of particular solutions of a linear,

homogeneous partial differential equation is also a solution, we

note that

u = A^e" '"'"'•''
• sin m^ + A^~ '''"'^''

sin m^
+ A/- "'"'»'

• sia w^r H , (63)

where A^^ A^, A^, , are arbitrary constants, is a solution of (55)

satisfying (57). It moreover satisfies (58) if m^, m^, m^, • • •, are

roots of equation (61). It evidently reduces for i = to

A^ sin m^r + A^ sin m^r + A^ sin m^r -j
, (64)

and if it is possible to develop rf(r'), for all values of r between

and S, in terms of such a series, we shall have (56) satisfied

as well.

139. The solution of our problem, then, will consist of two

parts : first, the solution of the transcendental equation (61),

that is, the determination of the roots m^, m,, m^, (we antici-

pate a fact shortly to be shown, namely, that there are an infinite

number of such roots) ; and second, tlie expansion of the func-

tion rf(r) in the sine series (64). The second part of the prob-

lem is analogous to development in terms of a Fourier's series,

but more complicated because the numbers m^, m^, m^, instead

of being the integers 1, 2, 3, as in the regular Fourier's series,

must m the present case be roots of equation (61).*

140. The Solution of the Transcendental Equation. The roots

of equation (61) are easily obtained by computation, but a study

of their values under various conditions may be most easily made

by graphical methods. If we make the substitutions

a = mB (65)

* This is the most general sine development which can he obtained by Fourier's

method; See Byerly, Fourier's Series and Spherical Harmonics, p. 121.
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and /8 = 1 - OR,

equation (61) becomes

a cos a = /3 sin a,

or, more simply, « = /3tana.

Then if we construct the curves

y = tan x

and
X

(66)

(67)

(68)

(69)

(70)

their points of intersection will give the values of x for which

(71)— = tan X

:

/8

that is, the roots of (68) and hence of (61).

141. We may draw some general conclusions as to these roots.

In the first place there are evidently an infinite number of

positive roots, and the same number

of negative, which are equal in abso-

lute value to the positive. The values

of the roots vary between certain

limits with the slope of the line y =
E

that is, with the value of C, or—
K

/3'

Since

C can have, theoretically at least, any

value between and oo but must

always be positive, the slope

1_ 1
(72)

Pig. 24
can have any value between 1 and oo

or between and — op.

We can easily show with the aid of a figure the approximate

values of the roots for the several cases as follows

:

Let C = 0, corresponding to the case of a sphere protected

with a thermally impervious covering. The roots then corre-

spond to the intersections of the line (a) (Fig. 24) of 45° slope.
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Their values are 0, a^, a^, •••, where

^<a^<^; 2^<a^<^; . wrr < a^ < (n + ^\ -rr
; (73)

«„ in this case approaches the limit (n + 1^) tt as w increases.

Next let G lie between and - so that < (1 - CK) < 1.
R

The line (J) corresponds to this case, and the roots 0, a^, a^, a^, ',

have the values

0<«i<|; '^<%<^;---(n-l)'7r<a„<fn-fj7r, (74)

approaching the larger values as C increases. When C = — , then
R

the roots become 0, — ,
—— ,

—— , • • •

.

^75^
2 2 2

Finally, if C lies between — and oo, the intersecting straight
R

line will fall below the axis in some position such as (c), and

the roots 0, a^, a^, , will have values

I
< ctj < TT ; -^ < a:^ < 2 tt; • • 7w - -W < a;„ < jiTT. • • (76)

which become for C = oo

ffj = TT, a;^ = 2 TT, • • • , a^ = mr . (77)

From these roots a^, a^, a^, the values m^, m^, m^, • • • , satisfying

equation (61) are obtained at once with the aid of (65).

142. The General Sine Series Development. We shall arrive

at this development by assuming that it is possible to expand

rf(r) in a series

r/(r) = A, sin mr + A^ sin mr + • • •

•^ ^ y 1 1'2 2 6=00

+ A^ sin OT^r -\ s V J^ sin ni^r, (78)
6 = 1

just as we assumed before that such a function could be ex-

panded in an ordinary Fourier's series, and then proceed to find

the values of the coefficients A^, A^, A^,-..,to which this assump-

tion leads. The values w^, 7n^, m^, ••, are the roots of equation
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(61) determined above. While zero is a root in each case, there

is no corresponding term in the series since sin = 0. -The neg-

ative roots which occur are included with the positive .'n the

terms of (78), for since sin (—x) = — sin x, we may write '%

A[ sin n%r + A'^ sin (— m^r) = A^ sin m^r. (79)

Multiplying each side of equation (78) by sin mjrdr and inte-

grating from to R,

Jr\R
h — to pit

ff(f) sin mjrdr =^9.-^b \
^"^ ™6^

" ^^ m^rdr. (80)
D J^ Jo

Now j sin TOi,r sin mj-dr

°1 r^
=

2 /
{°°^ tC™" ~ '^^y'l - eos[(m, + mjr'jjdr (81)

_ sin [(m, - mj -R] sin [(m, + wj i?]

2(mj-mJ 2(m, + m„)

{m^ sin m.i2 • cos m^E — Wj cos m^E sin to^-^} ^qqn= 7
—

5

K C°^)(m^ - ml)

But since TO^ and m^ are roots of (61),

mji = (1 - Ci?) tan m^ ; m^E = (1 - C^) tan m,E, (84)

so that OT„ tan wi^JS = m^ tan to„-S, (85)

or m„ sin m^E cos OT„i2 = m^ sin wi^iE • cos m^iJ. (86)

sin mj sin mjrdr = 0, (87)

when w„ and m^ are different. If they are equal, we have

XR 1 r^
siri' mjdr = —

j
[1 — cos(2m„r)]cZ/- (88)

E sin 2 m^E
= 2 1^- ^^^^

Now sin2M„i? = :^4^^5^ (90)
1 + tan m„Ji

2 m„-R (1 - CE)

(CE-iy + m^E''
(91)
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.r

Therefore^. j sm mjdr=-
'^.j,.^^cji-iy '

^^^^

Apphying this in the series (80), that is, in

I'Sif) sin mjrdr = A^\ sin m^ sin mjrdr

sm.m^-&m'mj-dr-\ , (93)+A /

we have

A = -2— ^ ^^-— / Tf (r) sm m„rdr. ( y4 )
i?<i?'+ C^(C^-l) Jo

143. Final Solution. Our problem is now solved, for we have

evaluated the coefficients of the series (78) in terms of the roots

of equation (61), which roots we have shown to have real values

which are easily determined. The solution may be written

M = V ^„e~ '''"«'
• sin mjr, (95)

a=l

or, evaluating A^ from (94), and remembering that u = r6,

„ 2"^" m!R'+(CR-iy _,,„., .

6 =— y ——2~ ^^ ^4;— . e " "« • sm m„r
rR f^^ ml R'-^CRiCR-V)

X/(X) sin m^XdX. (96)I/o
144. Initial Temperature d„. In the case in which the initial

temperature of the sphere is everywhere the same, that is,

/(ry = 6^, we find that

r" 6
6^

I
X sin mXdX = —\ {sin mR — mR cos mR} (97)

Jo "*

and, with the use of (61), =—~ sin mR. (98)
TO

So that (96) becomes for this case

„ 2ce,{ mlR^ + CCR-Vf ..,, . „ .
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145. Special Cases. If CB is small in comparison with unity,

as it would be in many cases, the problem is greatly simplified.

For an inspection of Fig. 24 shows that in this case mji will be

very small, while the other values of mR will be larger than tt,

so that only the first term of the series (99) need be considered.

The value of m^ is readily determined from (61) by developing

the sine and cosine in seriSs and neglecting higher powers of m^B,

in which case we obtain

1 - \mlB^ = (1 - CB') (1 - i mlB''-), (100)

from which it follows that

ml=^^. (101)

With the aid of (101), equation (99) may be still further

simplified if it be remembered that m^R and m^r are small quan-

tities, and if CfB'^ is neglected, for it reduces at once to

- 3 ChH

e = e^e
" (102)

= e^e "''«
,

•

(103)
c being the specific heat.

146. The assumptions involved in this last formula are that

the sphere is so small or the cooling so slow that the tempera-

ture at any time is sensibly uniform throughout the whole

volume. "With this assumption it may be derived independently

in a very simple manner ; for the quantity of heat which the

sphere radiates in time dt is

4 TrB'^Eddt. (104)

This means a change in temperature of the sphere of d6, which

Con-esponds to a quantity of heat given up equal to

-^irB^cpde, (105)

the negative sign being used, since dO is a negative quantity.

Hence we have ^ ^^.^^^^ ^ _ .^^.^^^q^ ^106)
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the integration of which gives, since the temperature of the

sphere is 6^ at the time t=0,

e = e/^^, (107)
as above.

147. Applications. Equations (96) or (99) make possible the

treatment of the problem of the cooling of the earth by radiation

before the formation of a surface crust, which was kept, by the

evaporation of the water, at a nearly constant temperature. The

solutions of Cases III and IV of the present chapter would

enable one to treat the problem of terrestrial temperatures with

account taken of the spherical shape of the earth, but as already

noted our present data would by no means warrant such a rig-

orous solution, which would alter the result in any case by only

a very small fraction. It may be noted that the solution of the

problem of radiation for the semi-infinite solid is gained from

the present case by letting B approach infinity.

As already suggested^ the solution for the present case will

fit another which at first sight seems quite foreign to it, namely,

the cooling of a mercury-in-glass thermometer in a liquid. If the

glass is so thin, as it usually is, that its heat capacity can be

neglected, we have only to set in place of E, in the above equa-

k . .

tions, -, where I is the thickness of the glass and k its con-

ductivity, and we shall have a solution of this problem.

148. An experimental method of determining the conductivity

of poor conductors has been based on the solution of the prob-

lem of the radiating sphere, and used by Ayrton and Perry * in

determining the conductivity of stone. The series (95) converges

so rapidly that after a sufficient length of time the terms after

the first may be neglected. The temperature is then given by

and for the center of the sphere this becomes

6'„ = 4iWje-*'<'. (109)

* Phil. Mag. (5), 5, p. 241 (1878) ; see Carslaw's Fourier's Series and Integrals,

p. 336.
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The coefficient A may be determined just as before by multiply-

ing each side of equation (109) by sinm^rdr and integrating

from to JR, when ^ = 0. Then

A=d.
r sin m^sin m,rdr

n-"o ^ie
- (110)

sin^ mrdr

2 6„ ( sin m^E — m^B cos m^R
m^R — sin mji cos m^B)

Therefore g,= 2 ff/^"
^'-^~^'^ ^"^^'^^ g-^V ai2)

m^B — sin m^B cos m^B ^ ^

= Ne-"\ say. (113)

The value of n can be obtained from observations of the tem-

perature at the center at two different times. N can then be

found, knowing n, and from a table of values of the expression

sin a; — a; cos x .-, h ,

,

-. , (114)
X — sm X cos X ^

the value of m^ can be determined from the known value of N.

Then since n = Wm^, the diffusivity li is determined, and from

this, knowing the specific heat and density, the conductivity.

PROBLEMS

1. A wrought-iron cannon ball of 10 cm. radius and at a uniform tem-

perature of 50° C. is allowed to cool by radiation in a vacuum to surround-

ings at 30° C. If the value of E for the surface is .00015 cal. per sec. per

square centimeter per degree, what will be the temperature at the center

and at the surface after 1 hr.? (46.3°; 46.2°)

2. A thermometer with spherical mercury bulb of 3.5 mm. outside, and

2.5 mm. inside radius, heated to an initial temperature of 30° C, is plunged

into stirred ice water. Find, to a first approximation, how long before

the temperature at its center will fall to within ^° of that of the bath.

Neglect the heat capacity, but not the conductivity of the glass. (7.5 sec.)

3. The initial temperature of an orange 10 cm. in diameter is 15° C.

while the surroundings are at 0°C. If the emissivity of the surface is

.00025 and the thermal constants of the orange the same as those of water,

what will be the temperature 1 cm. below the surface after 8 hr. ? (.38°.)
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Case V

General Case of Heat Flow in an Infinite Medium

149. In Case II of this chapter we solved the problem of the

flow of heat from an instantaneous point source. We shall ex-

tend this result to cover the case in which we have an initial

arbitrary distribution of heat, the initial temperature being given

as a function of the coordinates in three dimensions.

Let X, y, 2, be the coiirdinates of any point whose temperature

we wish to investigate at any time i, while X, jx, v, are the coordi-

nates of any heated element of volume, and become in general

the variables of integration. Then the initial temperature is

^„=/(X, /.,!/), (115)

and the quantity of heat initially contained in any volume

element dXd/xdp is -,

dq =f(\, /x,, vy — dXdfidv. (H^)

If this quantity of heat is propagated through the body, it will

produce a rise in temperature which can be obtained at once

from (23), and which is, since

r' = (X^xy + iix-yy+(v-zy, (117)

/ -f \ B - [g - x)'^ + (n - y)' + (I' - zf-j

de = l ~^)e <''^' f(X,/x,vydXdfidv. (118)

The temperature at any point will be the sum of all these in-

crements of temperature and may be obtained by integrating (118)

(-^ \8 ^ + » p + a ^ + 00 - [(A - xf + ()i - y)' + (y - a)']

2AV^J j_» j_„ J_„

Making the substitutions

\ — x „
a = -; ^ =

2AV( _.. . _.. ..
this becomes

y + 2 A^ V<, 2 + 2 A7 Vt)dad^dy. (121)

e ^''''
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150. It will be instructive to show how this solution may be

obtained independently as a particular integral of the condilc-

tioa equation
a. r^^ 8^.1

subject to the boundary condition

e =/(X, fj., v) when t = 0, (123)

Assume 6 = XYZ, where X is a function of x and t, and where

T and Z are functions of y, t and z, t respectively. Then we
have from (122)

But since X, Y, and Z are essentially independent, being func-

tions of the independent variables x, y, 2, this can only be true

if the corresponding terms on each side of the equation are

equal, that is, if „2

with similar equations for Y and Z.

Now it may be easily shown by differentiation that

1
-l.\-xf

X =^e ^"^' (126)

is a particular solution of (125),— a type of solution already

made use of in Art. 93,— so that

= J-e "'« .-i=e **'' .-i=e "'' (127)
y/i -Vt -^t

.

is an integral of (122). Therefore if C is any constant, and

<j)(\, fi, v) an arbitrary function of X, ^ct, v,

J-„ J-» J-» \Vv
. e

*''''

^(\,li,v)dXdfidv (128)
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is also a solution of (122). By the substitutions (120) this

reduces to

i/+2hl3Vt,z+2hy \^t)dad/3dy. (129)

If we now let t = 0, this becomes

e=C(2hy-<f>(x,y,z) C^^e-^'da C^'e'^'-d/S C " e-^'dr^, (130)
«y— 00 ty — 00 tJ—<x>

and, remembering that

r^''e-''"dq = V^, (131)

this becomes
^^ ^ ^("^ A V;;)V(., y, .). (132)

From (123) we see that if

C^(-^X (133)
\2hV^/

and (^(2:, y, 2) =/(a-, «/, 2) =/(X, n, v), since « = (134)

the boundary condition (123) is fulfilled. Putting in (129)

these values of C and
(f>,

we find at once that it reduces to

the solution (121) already found.

PROBLEMS

1. Molten copper at 1085° C. is suddenly poured into a cubical cavity in

a large mass of copper at 0°C. If the edge of the cube is 40 cm., find the

temperature at the center after 15 min. Neglect the latent heat of fusion.

(Compare Problem 1, p. 129.) (43°.)

2. Solve the problem of the steady stale of temperature in a long rod, one

half of whose surface (that is, one half the circumference of each section)

is kept at 6 and the other at zero.

The Fourier equation for cylindrical coordinates becomes in this case,

for the steady state, g , g^^ gs^
r —'( r— ) H — = 0.
dr\ dr) S<^2

If the radius of the rod is R, the surface temperature being ^^ for < <^ < tt,

and zero for it <<f> <2 tt, then the temperature at any point will be found to

be given by
e, e^r^^. r^sinS^^sinS^

|_
2 n \U ^ li^ 3 R^ 5 f



CHAPTER IX

THE FORMATION OF ICE

151. We shall now take up the study of the formation of ice,

that is, of the relationship which must exist between the thick-

iiess and rate of freezing or melting of a sheet of ice and the

time when a lake of still water is frozen or a sheet of ice thawed.

In our previous study of the various cases of heat conduction in a

medium we have assumed that the addition or subtraction of

heat from any element of the medium serves only to change its

temperature and does not in any way alter its conductivity con-

stants or other physical properties. In ice formation, however,

we have essentially a more complicated case, for the freezing of

water or thawing of ice results not only in a change from one

medium to another which has entirely different thermal con-

stants, but also in the accompanying release or absorption of

the latent heat of fusion.

152. We shall treat the problem in two somewhat different

ways, the first following substantially the method of Franz

Neumann * and the second that of J. Stefan.t In each case we

have initially a surface of still water lowered, as by contact with

the air or some other body, to some temperature 6^, which must

always be below the freezing point. There will then be formed

a layer of ice whose thickness e is a function of the time t.

Take the upper surface of ice as the «/3-plane, and the positive

a;-direction as running into the ice. Let d^ apply to temperatures

in the ice, and 6^ to the water ; and similarly, let k^, e^, h^-, be the

thermal constants for ice, while \, c^, A/, are those for water. It is

assumed that there is no convection in the water, and the changes

of volume which occur on freezing or melting are neglected.

* Weber-Riemann, Part. Diff. Qleichungen, II, p. 117.

t Wied. Ann., 42, p. 269. See also Tamura, Monthly Weather Review, February,

1905. ^
149
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153. Neumann's Solution. Instead of one fundamental equa-

tion, as in the case of a single homogeneous medium, there will

now be two, applying respectively to the ice and to the water

under the ice. These are

^-M^-^ in the ice, QO < x < e), (1)

and —^ = h^ —-- in the water (e < a;). (2)
ot oar

The temperature of the boundary surface of ice and water

(at a; = e) must always be 0° C. and there will be continual

formation of new ice. If the thickness increases by de in time dt,

there will be set free for each unit of area an amount of heat

Q = Lpde, (3)

where L is the latent heat of fusion. This must escape upward

by conduction through the ice, and in addition there will be a

certain amount of heat carried away from the water below, so

that the total amount of heat which flows outward through unit

area of the lower surface of the ice sheet is

Of this amount the quantity

Q" = h(^-^)^t (5)

flows up from the water below; hence we obtain for our first

boundary condition

1 dx ^ dx I '^dt ^ '

The other boundary conditions are to be

e_^ = e^ = c^&t x = (7)

e^ = e^ = o 2,t x = e (8)

e^ = C^z,t a; = 00 . (9)

We also have three other boundary conditions derived from the

fact that when i = 0, e is fixed, while 6^ and 6^ must be given
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as functions of x, the first between the limits and e and the

last between e and oo. We shall investigate later the particular

form of these functions.

154. A general solution of the problem for these conditions

is not possible as yet, for the condition (6) containing the un-

known function e is not linear and homogeneous, and we cannot

then expect to reach a solution by the combination of particular

solutions. Our method of solution then will be to seek particular

integrals of (1) and (2), and after modifying them to fit bound-

ary conditions (7), (8), and (9), find under what conditions the

solution will satisfy (6). This will then determine the initial

values of e, 6^, and 6^,

From equation (35) of Art. 76 we can conclude that if we

define the function ®(x) by the equation

0(a;)sA rV^V^*, (10)
Vtt Jo

then 0/—^—:) is a solution of the differential equations (1)
\2hVtJ

and (2). . Consequently, if A_^, B^, A^, B^, are constants,

and ,, = ^_ +^.e(^) (12)

are also solutions. Now boundary condition (8) means that

@ (

—

-— ) must be constant, which will be true if e = 0, e = co,

\2AV^/

or if e is proportional to V^. The first two of these assumptions

are evidently uiconsistent with (8), so there remains only the

last, which we may put in the form

e = aVt, (13)

where a: is a constant we shall determine later, together with

A^, B^, A^, and B^.

* See Appendix D.
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From the properties of the integral (10) we know that

©(0) = and @(od) = 1. Then fitting boundary conditions (7),

(8), and (9) in (11) and (12) with the use of (13), we find that

A=C,, (14)

a
^^ + ^^®i2XJ

= «' (1«>

A + ^. = C,, (17)

while (11), (12), and (13) in connection with (6) give

— a^ — a^

Solving equations (14)-(17) for B^ and B^, we get

and substituting these values in (18), we have finally

«iWe J 1^2^ _ ^ _ ^p^^^

.

(-20)

7 r^ ' o:

-'A
2

155. This transcendental equation can be solved for a by the

method employed in Art. 140. Plot the curves

y = -Lp^.a, (21)

and «/=/(«), (22)

where /(a) represents the left-hand side of (20). Then a is

given as the abscissa of the intersection of the two curves.

Having found a, the problem is solved, for from (13) we can

then express the exact relation between the thickness and time,

and having solved (14)-(17) for A_^, B^, A^, and B^, we have from

(11) and (12) the temperatures at any point in the water or ice.
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156. We are now able to specify the initial conditions for

which we have solved the problem, and which have up to this

time been indeterminate. It follows from (13) that when t = 0,

e=0, and from (12) that 6^ is initially equal to A^ + B^= C^,

everywhere except at the point x=0, where it is indeterminate.

This means that we have taken the instant i = as that at which

the ice just begins to form, the water being everywhere at the con-

stant temperature C^. Inasmuch, then, as there is no ice at time

^= 0, the temperature 6^ must be indeterminate, as is shown by (11).

157. In the ease of freezing as just treated, C^ is necessarily

a negative and C^ a positive quantity. By reversing the signs

and making C^ positive and C^ negative we have equations

applicable to thawing. But thawing in this case means that a

layer of water is formed on the ice and that the heat flows in

from the upper surface of the water, which is then at tem-

perature Cj. But this means that the ice and water have just

changed places, so that in the case of thawing, C^, k^, h^, and

Cj apply to the water, while C^, k^, 1%^, and c^ apply to the ice.

158. Stefan's Solution. Stefan simplified the conditions of the

problem by assuming that the temperature of the water was

everywhere constant and equal to zero. The fundamental equa-

tion (1) then becomes

5 = ^,^^for 0<:r<6, (23)
01 ox

while the second is missing. Likewise the boundary conditions

(6)-(9) are simplified to

e^ = e^=c^^\. x = 0, (25)

61^ = at a; = e. (26)

As may be expressed as a function of both time and place,

we may write its total differential

^ ox ot
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From (26) we see that this total differential must be zero at

so that with the aid of (24) we have

As a special solution of (23) we shall examine the integral

O^aC e-^'dz (30)

and see if the constants A and /3 can be so chosen that this solu-

tion is consistent with the conditions (24), (25), (26), arid (28).

We need not prove that (30) is a particular integral of (23), for

in Chapter VII we have used this type of integral many times

as a solution of the Fourier equation in one dimension, so we

can proceed at once with our attempt at fitting it to these

boundary conditions.

Condition (25) demands that

C^ = A C e-'"dz, (81)

which gives one relation between A and /8. Condition (26) means

that the two limits of the integral must be the same for x = €,

so that g
yS = -

-p or e = 2y8AVt (32)

This gives the same law of thickness as found by Neumann's

method (13), namely, that the thickness increases with the square

root of the time. However, we have not yet determined the con-

stant /S, and to do this we must use (29). The differential

coefficients —^ and —^ are obtained from (30) after the method
dt ox

described in Art. 79, and are



THE FORMATION OF ICE 155

^ = -^e"^ ^. (34)

If we now put in these expressions a; = e = 2 /SA^ Vf and then
apply (29), we have

^.-.•.^=_&^,--.jl^. (36)

or, with the use of (31),

^e^' Ce-''dz=-^, (36)

and this equation enables us to determine /S. The integral may be

evaluated by expanding e"^' in the customary power series and

performing the integration. When this result is multiplied by
the series for ^e^', we get a series whose first two terms are

/3^(l+^)- (37)

To a first approximation, then, (36) gives

/3^ =
-fj; (38)

consequently, to the same degree of approximation, (32) means

that e^ = -M^
For the second approximation

'=

—

T^- (^»)

from which /S, and consequently e, is readily determined.

Since C^ is intrinsically negative, the right-hand member of the

above equation is a positive quantity.

It should be noted that the same law of freezing holds in each

case, that is, the proportionality of thickness with the square root

of the time ; the proportionality constant only is changed. Indeed

if we put Cg = in Neumann's solution (20), it reduces at once

to Stefan's solution (36), ii a = 2 /3h. This makes the two
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expressions for the thickness, (13) and (32), identical, and

shows that Stefan's solution may be regarded as only a special

case of Neumann's.

159. Thickness of Ice Proportional to Time. Stefan also out-

lined the solution of one or two special cases which we shall

find interesting.

Consider the expression

6'j = -(e'>'-'--l), (41)

where A, p, and q are constants.

It may be readily seen upon differentiation that if

P = Mq% (42)

(41) is a solution of the fundamental equation (23). Now

6^ = ior pt-qx=0; (43)

and from (26) 6^=0 at x = €, (44)

from which pt— qx=0 at x= e (45)

or e = qh^t. (46)

This shows that the thickness of ice may increase in direct

proportion to the time if 0^ is not a constant, as we have here-

tofore taken it. Equation (41) shows that (since ^j = 0^ when
a; = 0) 0^ must be a function of the time, and it will be our task

to investigate the form of this function.

Since (29) must hold, we find on substitution of (41) and

(46) that ^ = _Mli£__£i±, ('47N

p^L pL ^ ^

so that the relation between A and p is

P = -^- (48)

For a; = we find from (41) that

^o = ^(«^'-l) (49)

i [2 ^i^ [3
^^^
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This shows, since A is negative, that if the thickness of ice is to

increase directly as the time, the surface temperature must, vary

more rapidly than as a linear function of the time. For any value

we wish to give A the thickness is determinate from (46).

160. Simple Solution for Thin Ice. If we assume that the ice

is thin enough so that the temperature gradient can be considered

as uniform from the upper to the lower surface, we can derive at

once a very simple solution ; for the quantity of heat which flows

upward per unit area through the ice in time dt will then be

-k^dt, (51)

and this must equal the heat which is released when the ice

increases in thickness by de. Hence we have

^iMo^^Zpde. (52)

Integrating this and assuming that e is zero when t is zero,

we have ^,^ -2e,k,t
^

Lp

which is identical with (39). This shows that the approxima-

tion involved in (39) amounts to the assumption of a uniform

temperature gradient through the ice.

161. With the aid of some of his formulas Stefan calculated

k for polar ice from the measured rates of ice formation at

Assistance Bay, Gulf of Boothia, and other places, and found

k = 0.0042. (54)

This value lies between the values attributed to Neumann

(0.0057) and to Forbes (0.00223), and it is only slightly

lower than that now accepted (.0052 ; see table of conductivity

constants).

162. The fact that the conductivity of ice is considerably larger

than that of water gives rise to an interesting phenomenon which

has been noted by H. T. Barnes. When ice is being frozen on

still water, particularly when the surface is kept very cold as by



158 THEORY OF HEAT CONDUCTION

liquid air, ice crystals grow out into the water and are found in

the ice with their long axes all pointing normal to the plane of

the surface. It is probable also that their conductivity is greater

along this axis.

163. It may be noted in connection with the study of the

formation of ice that the temperature of the surface, which, as

we have seen, is the controlling factor as regards the rate of

freezing, is determined by a variety of conditions ; for, while in

most climates and under most weather conditions this is largely

dependent on the temperature of the surrounding air, in cases

where the air is exceptionally clear so that an appreciable amount

of radiation can take place to the outer space which is nearly at

absolute zero, the surface of the ice may be considerably cooler

than the air. Thus the natives of Bengal, India, make ice by

exposing water in shallow earthen dishes to the clear night sky,

even when the air temperature is 16° to 20° F. above the freez-

ing point.*

164. Applications. While problems involving latent heat have

been handled in the preceding chapters, the solutions have either

neglected this consideration or taken account of it by some more

or less rough approximation method. With the aid of the deduc-

tions of the present chapter many of these problems could now

be treated rigorously, in particular such as relate to the freezing

or thawing of soil. The equations would be directly applicable

to this case if the thermal constants for soil were used instead of

those for ice or water, and if the latent heat of fusion of ice was

modified by a factor depending on the percentage of moisture

in the soil.

The theory would also apply to many cases of ice forma-

tion in still water, for either natural or artificial refrigeration,

while, as already noted, it has been used by Stefan in connection

with polar ice.

* See Tamura, Monthly Weather Review, February, 1905.
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PROBLEMS

1. Applying Stefan's formulas, find how long, iid^=— 15° C, it will take

to freeze 5 cm. of ice (a) to the first approximation ; and (b) to the second

approximation. (3.28 hr.; 3.39 hr.)

2. Using only the first approximation of Stefan's formula, find how long

it would take to thaw 5 cm. deep in a cake of ice, supposing that the water

remains on top, and that the top surface of water is at + 15° C.

(12.95 hr.)

3. Using Stefan's first approximation formula, find how long it would

take for the soil to freeze to a depth of 1 m. if the average surface tem-

perature is — 10° C. and the soil initially at 0°C., and if the soil has 10%
moisture. (21 days.)

4. Assume that fl^ varies with time, so that the rate of freezing of ice is

constant, and that this rate is such that 5 cm. will be frozen in the time

determined in Problem 1 (a). Determine 0^ for 1 hr., 4 hr., and 10 hr.

(-9.5°; -41°; -123°.)

5. If Cj =— 15° C. and C^=+ 4°C. in Neumann's solution, how long

will it take to freeze 5 cm. of ice ? (Compare with Problem 1.) (3.9 hr.)





APPENDIX A

VALUES OF THE THERMAL CONDUCTIVITY CONSTANTS

The following table has been compiled from a large variety

of sources,* those results being selected which in the authors'

judgment are most worthy of confidence. However, while the val-

ues for the metals (in most cases those of Jager and Diesselhorst)

are probably correct to about 1 %, no such accuracy can be claimed

in the case of the poorer conductors, as the disagreement between

different observers is frequently 50% or even more.

When not otherwise specified ordinary temperatures are assumed.

THERMAL CONDUCTIVITY CONSTANTS IN C.G.S. UNITS
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THERMAL CONDUCTIVITY CONSTANTS (Continued)
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VALUES OF THE EMISSIVITY EACTOR E FOR AIR AT ONE
ATMOSPHERE PRESSURE

Excess
Temperature
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APPENDIX B

INDEFINITE INTEGRALS

I
udv = «ii —

I
vdu. j e'^dx =

rdx , r , e"^ , ,

.

( — = loff X. I xe^dx =— (ax — 1 ).

>/ I .^ a^

x™dx = , if m 5^ — 1. I a''^(&
))! +1 ^m +1 J h log a

/cia- 1 ^ , a;— = - tan-i - •

or + x^ a a

f{x'' ± a^)* c/x = i [3; Vx^ ± a' ± a^ log (x + ^x'^ ± a^]-

I
(a^ — x^ydx = -\xVa'' — x^ + a^ sin-^ - •

I
sec^ xdx = tan x. / x^ sin xrfx = 2 x sin x — (x^ — 2) cos x.

j tan xcix = — log cos x. / x^ cos xrfx = 2 x 00s x + (x^ — 2) sin x.

/x sin axc/x = — fsin ax — ax cos axl.

/x cos nxrfx = — [cos ax + ax sin axl.

/• . , , sin(a — i)x sinCa + i'jx
I sm ax sm hxdx = ^^ ^ i ^—

, a ^h.
J 2(a-b) 2(a + h)/, ,

cos (a — J) X cosCn + i)x
sin ax cos wxrfx = ^^ ^ ^^ i—

2 (a - 6) 2 (a + i)

r , , sin (a — 6) X . sinCa + i'jx
I cos ax cos ijrrfx = >^ i-— i i—

.

J 2 (a - fi) 2 (a + 6)

I
sin^ axdx = —- (ax — sin ax cos ax).

' 2 a

I
cos^ axrfx = -— (ax + sin ax cos ax\.

J la ^/goa:
e'^ sin Jx(7x = — Ca sin 6x — & cos Jx").

a-* +42^ >*

/goa:
e"^ cos Jxrfx = — (a cos Jx + i sin fix"),

a-' + i^
-^
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DEFINITE INTEGRALS

I
^ sin" xdx = I

^ cos" xdx.
Jo Jo

" sin^ xdx rr

X x^ 2

" sin axdx ir

I
= - , if a > ; 0, It a = ;

— - , if a < 0.
Jo X- 2 2

/ " sin a; cos axr/a: n -c ^ ^ ^i""., . ,,
I

= 0, ifa< — lor>l: -, ifa=— lor+1:
Jo X 4

• " sin X cos axdx

X

2
'^, if l>a>-l.

J^
cos (x2) rf^ =

J^
sin (a;2) '^^ =

2 \^
'

( sin ax sin JxfZa; = ( cos ax cos bxdx = 0, ii a ^ b.
Jo Jo

i sin'' axdx = | cos^ axdx = -
Jo Jo 2

./o 2a

^00 In

I a:"e- <™(fa = -^=—
Jo a»+i

r -JiL
["6-"'=^ cos 6:crfa; = ^^ e *"', if a > 0.
Jo 2 a

XA~ ^dx = •

- n 2
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TABLE OF VALUES * OF THE " PROBABILITY INTEGRAL '

FOR VALUES OF THE ARGUMENT 7

n



APPENDIX E

VALUES OF e-^

These may best be taken at once from an ordinary logarithm table as

values of ttttjtj- > but the following abbreviated table may prove of occa-

sional convenience.

X



APPENDIX F

MISCELLANEOUS FORMULAS

e = 2.71828.

a:^ . x"

log(l + a;) = a;-iK2^ia;8-ix4+ ••. \_x^ <\.-\

log, 2: = log„ X log, a = 2.3026 logn, x.

cos^=l-| + g-^+.... [^^<co.]

e" = cos 3; + i sin 2:.

4 1 3 5 7

8 12 3-= 52 72

d_

(lb f f(x)dx=f(b).

rf{x)dx=-f{a).

I
/(x) dx = (b — a)f(a), where a < a: < 6.

f(x + /i) =/(a.) + Tif'ix + a/i), where < a< 1.

d_

da

da

dc Ja'' ^ ' ' Ja sC ^ ' '' ~ ' ' ^ ' ^ dc '' ^ ' '' dc
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Adiabatio cases, 97, 106
Air space, effectiveness for insulation,

21

Alternating-current waves, method of

analysis, 65
Amplitude, in periodic flow, 34
Angell, 7, 29
Angstrom, 37
Annealing of castings, 120, 135
Annual wave, 39
Applications : annual wave in soil, 39;

boiler flue, heat flow through, 29

;

brick wall, penetration of heat into,

114 ; casting, 100 ;
cold waves, 40

;

concrete, penetration of heat into,

from heated surface, 80 ; concrete,

temperature waves in, 40 ; concrete
wall, freezing of, 71 ; concrete wall,

penetration of heat into, 112 ; cop-

per converter, 118 ; covered steam
pipes, loss from, 29 ; cylinder walls,

periodic flow in, 41 ; decomposing
granite, temperatures in, 101 ; di-

urnal wave, 38; earth, cooling of,

87, 90 ; earth, estimate of age,

89, 96 ; electric welding, 100 ; fire

brick, temperatures in, 119; fireproof

safes, steel and concrete, compared,
134 ; fireproof wall, theory of, 107

;

freezing problems, consideration of,

149 ; furnace walls, flow of heat
through, 21 ;

granite wall, penetra-

tion of heat into, 115 ; hardening of

steel, 85, 135 ; ice, formation of, 149;

ice-house walls, flow of heat through,

20 ; insulated wires, cooling of, 30
;

laccolith, cooling of, 128 ; lava, cool-

ing of, under water, 87 ; locomotive

tires, removal of, 82 ; marble wall,

penetration of heat into, 114 ; mer-
cury thermometer, heating and cool-

ing of, 134, 144; optical mirrors,

119 ; regenerator, storage of heat

in checkerwork wall of, 119 ; safes,

fireproof, steel and concrete com-
pared, 134 ; shrunk fittings, removal

of, 82 ; soil, annual wave in, 39 ; soil,

diurnal wave in, 38 ; soil, penetration

of freezing temperature into, 80
;

soil, thawing of frozen, 81 ; steel,

tempering of, 85, 135 ; temperature
stresses, 41, 87, 135 ; thermit welding,
72 ; wall, fireproof, theory of, 107

;

welding, electric, 100 ; welding, ther-

mit, 72

Approximation curves, 46, 47, 48, 50,

51, 54
Ayrton, 144

Barnes, 157
Barrus, 29
Barus, 89, 92
Becker, 87, 88, 90
Biot, 1

Boiler flue, flow of heat through walls
of, 29

Bonded rail, 41
Bornstein, 161
Boundary conditions, see Differential

equations
Brick dust, powdered, insulating value

of, 21

Brick masonry, insulating value of,

21
Brick wall, penetration of heat into,

114
British Thermal Unit (B.T.U.), de-

fined, 4
Byerly, 38, 45, 122, 138

Callendar, 41

Carslaw, 12, 144
Casting, 100 ; annealing of, 120, 185
Clement, 21

Cold waves, 40
Concrete, penetration of heat into,

from heated surface, 80 ;
periodic

flow in, 40
Concrete wall, freezing of, 71 ;

pene-
tration of heat into, 112

Conductivity, thermal, defined, 2

Conductivity constants, values of,

161
Conductor, flaring, equations for, 31
Conductors, poor, methods applicable

to, 29, 144

169
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Consistentior status, 88
Cooper, 20
Copper converter, 118
Cosine series, 52
Covered steam pipes, loss from, 29
Cylinder, steady state of radial flow

in, 27
Cylinder walls, periodic flow in, 41

Decomposing granite, temperatures in,

101

Deflnite integrals, table of, 165
Despretz,-20
Diesselhorst, 20, 161

Differential equations, boundary con-
ditions, 10 ; examples of, 10 ; linear

and homogeneous, defined, 9 ; ordi-

nary and partial, defined, 9 ; solu-

tions of, general and particular,

defined, 9
Diffusrvity, defined, 3 ; importance of

considering, in a fireproof wall, 113
Dimensions of heat units, 6

Diurnal wave, 38

Earth, cooling and age of, 87, 89 ; effect

of radioactivity on cooling, 90, 92
Electric welding, 100
Elgy, 21

Emissivity, defined, 11 ; values of, 163
Even functions, 60, 61
Experiments in support of theory,

116, 118

Fire brick, temperatures in the interior

of, 119
Fireplace insulation, 120
Fireproof safes, steel and concrete,

compared, 134
Fireproof wall, theory of, 107
Flux of heat, defined, 2

Forbes, 20, 37, 157 ; method of, 22
Formulas, miscellaneous, 168
Fourier, 1, 23, 44
Fourier's equation, derived, 14 ; in

cylindrical coordinates, 148
Fourier's integral, 59
Fourier's series, conditions for devel-
opment in, 44

Franz, 7, 20
Freezing problems, consideration of,

149
Furnace walls, flow of heat through, 21

Gaertner, 62
Granite wall, penetration of heat into,

115
Gray, method of, 16, 22

Hardening of steel, 85, 135
Harder, 129
Harmonic analyzers, 62

Heat sources, instantaneous, defined,

97 ; instantaneous, at a point, prob-
lem of, 129

;
permanent, defined, 97

;

problem of, 97
Heat wave, rapidity of transmission

of, 35, 132
Hering, 4, 6, 7, 21, 31, 161
Humphrey, 118

Ice, formation of, 149 ; in warm cli-

mate, 158
Ice house, flow of heat through walls

of, 20
Indefinite integrals, table of, 164
Infinite solid, problem of linear flow

in, 68

Ingen-Hausz experiment, 19
Instantaneous heat source, 97
Insulated wires, cooling of, 30
Integrals, definite, table of, 165 ; in-

definite, table of, 164

Jager, 20, 161

Kelvin, 1, 2, 3, 62, 87, 88, 89, 90, 91,

92, 97, 128
Kent, 41

Kreisinger, 21

Laccolith, cooling of, 128
Lag, in periodic flow, 35
Lambert, 1

Lam^, 2

Landolt, 161
Laplace, 2
Lava, cooling of molten slab, 74 ; cool-

ing of, under water, 87
Leibnitz, 88
Leith, 129
Limits,, change of, in Fourier's series,

58 ; extension of, in Fourier's series,

55
Linear flow of heat, 67
Locomotive tires, rehioval of, 82
Lorenz, 8

MacDougal, 39
Marble wall, penetration of heat into, 114
Maxwell, 3
Maxwell, W.D., 41
Mercury thermometers, rapidity of

heating and cooling, 134, 144
Meyerhoffer, 161
Michelson, 62
Miller, 118
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Neumann, 149, 150, 154, 155, 157
Newton's law of cooling, discussed, 11

Nicolson, 41

Niven's method, 28
Norton, 4, 7, 118
Nusselt, 7

Odd functions, 60, 61

Ohm, 1

One-dimensional flow, steady state, 15
Optical mirrors, 119

Patten, 161

Paulding, 29, 30
P^clet, method of, 16
Periodic flow, 32
Permanent source, 97
Perry, 144
Plane, steady state of flow in, 23
Poisson, 2
Preston, 19, 38
Probability Integral, table of values

of, 166

Quenching of a steel ingot, 86

Radial flow, problem of, 125
Radiating rod, 121 ; steady state in, 17

Radiating sphere, problem of, 136
Radioactive materials, heat developed

by, in orustal rocks, 93
Radioactivity, effect of, on the cooling

of the earth, 90, 92
Rambaut, 40
Range, in periodic flow, 34
Ray, 21
Recalescence point, 72, 85, 86
Reenforced concrete, stresses in, 42
Regenerator, 119
Resister-furnace insulation, 120
Riemann, 2, 109, 149

Safes, steel and concrete compared,
134

Semi-inflnite solid, problem 'of linear

flow in, 75
Shrunk fittings, 82

Sine series, 45 ;
general development

in, 140
Slab, problem of, 105
Slichter, 65
Soil, annual wave in, 39 ; diurnal

wave in, 38 ; freezing and thawing
of, 81, 158 ;

penetration of freezing

temperature into, 80

Sphere, cooling with surface at constant
temperature, 132 ; cooling by radia-

tion, 136 ; steady state of radial flow
in, 26

Steady state, defined, 15
Steam jacketing of cylinders, 41
Steam pipes, covered, loss from, 29
Steel, tempering of, 85, 135
Steel reenforcement, effect of, in fire-

proof wall, 118
Stefan, 149, 153, 155, 156, 157, 158
Stefan's law, 11

Stratton, 62
Strength of heat source, 98
Surface of contact, temperature of,

79
Symmetry conditions, use of, 72

Tait, 1

Tamura, 39, 149, 158
Telescopic mirrors, 119
Temperature, effect of, on conduction

constants, 7

Temperature curve, form of, in peri-

odic flow, 36
Temperature gradient, defined, 2
Temperature stresses, 41, 87, 135
Tempering of steel, 85, 135
Thawing of frozen soil, 74, 81

Thermal conductivity, defined, 2

Thermal test for car wheels, 85
Thermit welding, 72
Thermometric conductivity, see Dif-

fusivity

Thin ice, solution for, 157
Times, law of, 78, 113
Transcendental equation, 138
Transference factors, 5

Units, conduction, 4

Velocity, in periodic flow, 35

Wall, fireproof, theory of, 107
Waterhouse, 75
Wave length, in periodic fiow, 35
Weber, 109, 149
Welding, electric, 100 ; thermit, 72

Wellisch, 166
Wiedemann, 20 ; and Franz, law of, 7

Winchell, 88, 93
Wires, insulated, cooling of, 30
Woolson, 81, 113












