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ABSTRACT 

 We propose an algorithm modifying a popular exact conditional test involving the 

goodness-of-fit of contingency tables.  This study focuses on improving the efficiency of 

Markov chain Monte Carlo (MCMC) when sampling three-way contingency 

tables--defined as log-linear models with three discrete random categorical variables 

consisting of finite levels--under the no-three-way interaction model.  Standard to 

MCMC, we approximate the null distribution by sampling tables from the conditional 

distribution.  However, our proposal involves expanding the conditional state space to 

include tables with cell count values of -1.  We apply the proposed methodology, 

described in full detail, to randomly generated sparse and non-sparse data sets.  Our 

results show that traditional asymptotic methods on sparse contingency tables yield 

inaccurate results.  We also prove mathematically that a Markov chain with our 

proposed method is connected (i.e., ergodic) on the conditional state space for 3x3xK, 

with K  >= 3.  The output from applying the proposed methodology provides conclusive 

evidence that the distribution of the test statistics for sparse data sets does not resemble 

the asymptotic distribution. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definitions, Motivation, and Literature Review 7
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methodology and Data 27
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Mathematical Proof, Results, and Analysis 39
4.1 Proof of Connectivity . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 47
5.1 Follow-On Work . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendix A Simulation R Code 49

Appendix B Simulation Results 59
B.1 Non-sparse Data Histograms . . . . . . . . . . . . . . . . . . . . 59
B.2 Sparse Data Histograms. . . . . . . . . . . . . . . . . . . . . . 66

List of References 75

vii



Initial Distribution List 77

viii



List of Figures

Figure 1.1 2x2x2 Contingency Table Example . . . . . . . . . . . . . . . . 1

Figure 2.1 Transition Graph Example . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.2 Goodness-of-Fit Test Workflow . . . . . . . . . . . . . . . . . . 20

Figure B.1 Distribution of Test Statistics for 3 × 3 × 3 Non-Sparse Tables . . 60

Figure B.2 Distribution of Test Statistics for 3 × 3 × 4 Non-Sparse Tables . . 61

Figure B.3 Distribution of Test Statistics for 3 × 3 × 5 Non-Sparse Tables . . 62

Figure B.4 Distribution of Test Statistics for 3 × 3 × 6 Non-Sparse Tables . . 63

Figure B.5 Distribution of Test Statistics for 3 × 3 × 7 Non-Sparse Tables . . 64

Figure B.6 Distribution of Test Statistics for 4 × 4 × 4 Non-Sparse Tables . . 65

Figure B.7 Distribution of Test Statistics for 5 × 5 × 5 Non-Sparse Tables . . 66

Figure B.8 Distribution of Test Statistics for 3 × 3 × 3 Sparse Tables . . . . . 68

Figure B.9 Distribution of Test Statistics for 3 × 3 × 4 Sparse Tables . . . . . 69

Figure B.10 Distribution of Test Statistics for 3 × 3 × 5 Sparse Tables . . . . . 70

Figure B.11 Distribution of Test Statistics for 3 × 3 × 6 Sparse Tables . . . . . 71

Figure B.12 Distribution of Test Statistics for 3 × 3 × 7 Sparse Tables . . . . . 72

Figure B.13 Distribution of Test Statistics for 4 × 4 × 4 Sparse Table . . . . . 73

Figure B.14 Distribution of Test Statistics for 5 × 5 × 5 Sparse Table . . . . . 74

ix



THIS PAGE INTENTIONALLY LEFT BLANK

x



List of Tables

Table 1.1 Example, 2x2 Contingency Table with Fixed Variables. Table con-
sists of 2 categorical variables: Cat1, Cat2. "Cat" shortened from
Category, with 2 Levels per Cat. Marginal sums on the last row and
column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Table 1.2 Another Example, 2x2ContingencyTablewith FixedVariables. Table
consists of 2 categorical variables: Cat1, Cat2. "Cat" shortened from
Category, with 2 Levels per Cat. Marginal sums on the last row and
column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table 2.1 Another Example, 2x2ContingencyTablewith FixedVariables. Table
consists of 2 categorical variables: Cat1, Cat2. "Cat" shortened
from Category, with 2 Levels per Cat. Table belongs outside of the
conditional state space due to negative cell count values. Note that
the marginal sums still equal those of Tables 1.1 and 1.2. . . . . . 13

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



List of Acronyms and Abbreviations

CDA Categorical Data Analysis.

DTMC Discrete Time Markov Chain

IPF Iterative Proportional Fitting

K–S Test Kolmogorov–Smirnov Test

MCMC Markov chain Monte Carlo

MLE Maximum Likelihood Estimator

SIS Sequential Importance Sampling

xiii



THIS PAGE INTENTIONALLY LEFT BLANK

xiv



Executive Summary

We propose an algorithmmodifying a popular exact conditional test involving the goodness-
of-fit of three-way contingency tables, defined as log-linear models with three discrete
random categorical variables consisting of finite levels [1]. A goodness-of-fit hypothesis test
checks for significantly strong associations (i.e., correlations) between categorical variables
[1]. With three-dimensional tables, we call a table where all three variables share no
correlation, a no-three-way interaction model. We develop an alternative method in our
research to conduct a goodness-of-fit test in order to determine whether we select a no-three-
way interaction model or a more complicated model for use in Categorical Data Analysis
(CDA).

We focus particularly on improving the efficiency of Markov chain Monte Carlo (MCMC)
when sampling three-way contingency tables under the no-three-way interaction model.
Standard to MCMC, we approximate the null distribution by sampling tables from the
conditional distribution [2]. However, our proposal involves expanding the conditional
state space to include tables with cell counts of −1. We apply the proposed methodology to
randomly generated sparse and non-sparse data sets.

Two approaches currently account for the traditional ways of conducting CDA: asymptotic
and exact. An asymptotic distribution, or limiting distribution, represents the convergence
of a sequence of distributions [3]. When calculating exact statistical results prove difficult,
approximating the results based on known properties or behaviors of certain statistics in
large samples offers the best alternative.

However, asymptotic distributions typically require certain stipulations in order to ensure
accuracy. In other words, we usually use the asymptotic distribution of the test statistics as
the null distribution for goodness-of-fit tests if all of the expected cell counts exceed five [1].
Therefore, goodness-of-fit tests conducted with asymptotic methods on sparse contingency
tables, or tables with mostly zeroes or values less than five, might produce inaccurate or
biased results.

Fisher’s exact test provides an alternative for smaller tables, such as 2 × 2 × 2, that do
not satisfy the conditions needed to use the asymptotic distribution [1]. Fisher’s exact test

xv



involves enumerating all possible tables in the conditional state spacewith the fixed sufficient
statistic from the observed table. However, enumerating every table in the conditional state
space may require infeasible amount of computation for large contingency tables, such as
3 × 3 × 3 and beyond.

We can neither use the asymptotic distribution nor Fisher’s exact test for large sparse
contingency tables. Instead, we can approximate the null distribution by sampling tables
from the conditional tables, in a similar fashion to the MCMC developed by Diaconis and
Sturmfels [2]. Our limitations in conducting CDA with sparse data serve as the motivation
behind our proposed modification to this popular MCMC sampling method. In order
to efficiently and properly sample three-way contingency tables, under the no-three-way
interaction model, we look to fill in the gap where no effective test currently exists.

Our proposed MCMC sampling method properly functions in sampling three-way tables,
under a no-three-way interaction model, for both sparse and non-sparse tables. We also
prove mathematically that the proposed method can sample a table from anywhere in the
conditional state space without any bias in the case of 3 × 3 × K tables for K ≥ 3. Our
simulation results show strong evidence that for larger tables, such as 4 × 4 × 4 and greater,
the proposed method samples contingency tables from anywhere in the conditional state
space without bias. We can deduce that our proposed MCMC method simulates a Markov
chain on the connected transition graph so that it will not produce a sampling bias by
observing the unimodal distribution of test statistics for sparse data; a not-well-mixed chain
generally outputs a multimodal distribution of test statistics.

The results of both sparse and non-sparse data simulations allow us to conclude that
the no-three-way interaction model fits well with the three-way tables sampled from the
conditional distribution. For non-sparse tables, the results of our simulations show that the
χ2 distribution accurately summarizes the null distribution of the test statistics, validating
our algorithm with established norms. Conversely, the results for sparse tables show that
the null distribution is not well summarized by the χ2 distribution. Thus, we can reasonably
conclude that for sparse tables, the χ2 distribution does not accurately approximate the null
distribution of test statistics.

We believe our algorithm contributes to the development of accurate algorithms for CDA
of sparse data and exact conditional tests. Since contingency tables will likely remain

xvi



as a widely used means of analysis for CDA, we anticipate this algorithm to further the
development of sampling and testing methods for MCMC. Our proposed algorithm can
sample any sparse or non-sparse I × J × K contingency table, under the no-three-way
interaction model, in any field of research for conducting goodness-of-fit tests. For sparse
tables, our method estimates the null distribution of test statistics more accurately than
traditional methods that involve asymptotic distributions, since our results provide strong
statistical evidence that traditional asymptotic methods on sparse contingency tables yield
inaccurate results.
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CHAPTER 1:
Introduction

This chapter provides the background and objective of our research. We will explain the
technical terms and definitions used below in greater depth in Chapter 2.1. This chapter
introduces the problem as well as the general concepts about the topics covered in this study.

1.1 Background
In Categorical Data Analysis (CDA), researchers typically employ contingency tables in or-
der to identify potential associations or interrelations betweenmultiple categorical variables.
As seen in Figure 1.1, contingency tables display counts of outcomes by each categorical
level, or unique groups within each category. This research delves into three-dimensional
(or three-way) contingency tables, selects the appropriate model to properly analyze those
tables, and proposes a modification to a popular way of collecting samples to analyze.

The following example displays a 2×2×2 contingency table with three categorical variables:
victims’ race, defendants’ race, and death penalty [1].

Figure 1.1. Death Penalty Verdict by Defendant’s Race and Victims’ Race.
Source: [1].

Here, the data shows the cross-classification of observations by the levels of the three
aforementioned categorical variables. Through this example, we observe the relationship
of race as it relates to the individuals convicted of homicide receiving the death penalty [1].
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The organization of data in this structure provides researchers the format needed to answer
whether or not an association exists between receiving the death penalty, defendants’ race,
and victims’ race.

The first step in studying potential associations between variables involves establishing the
appropriate model to use for analysis. Since data drives data science and statistics, we want
to ensure that we select the model that best fits with the given data. We call this process of
selecting the proper model the model selection.

One of the first steps in model selection includes computing the Maximum Likelihood
Estimator (MLE), which represents the contingency table with parameter values that will
maximize the probability of getting the observed table under the given model. In order to
compute the MLE, we have to calculate a sufficient statistic from the observed table. We
define sufficient statistic as the statistic that facilitates the calculation of the MLE under a
certain model. Note that many contingency tables may have the same sufficient statistic. We
call this collection, or set, of all possible contingency tables satisfying the given sufficient
statistic as the conditional state space. Identifying the best model will help explain all of
the other tables in the conditional state space.

For example, Table 1.1 displays a simple 2 × 2 contingency table.

Table 1.1. Example, 2x2 Contingency Table with Fixed Variables. Table con-
sists of 2 categorical variables: Cat1, Cat2. "Cat" shortened from Category,
with 2 Levels per Cat. Marginal sums on the last row and column.

Cat2

Cat1 Cat2-Level1 Cat2-Level2 Total by Cat1

Cat1-Level1 1 0 1
Cat1-Level2 0 1 1
Total by Cat2 1 1 2

If we use marginal sums as the fixed sufficient statistic, we find Table 1.2 as the only other
table in the conditional state space that shares the same column and row sum values.

2



Table 1.2. Another Example, 2x2 Contingency Table with Fixed Variables.
Table consists of 2 categorical variables: Cat1, Cat2. "Cat" shortened from
Category, with 2 Levels per Cat. Marginal sums on the last row and column.

Cat2

Cat1 Cat2-Level1 Cat2-Level2 Total by Cat1

Cat1-Level1 0 1 1
Cat1-Level2 1 0 1
Total by Cat2 1 1 2

Another step during model selection includes a test called a goodness-of-fit test. A form of
hypothesis test, the goodness-of-fit test checks for significantly strong associations (i.e., cor-
relations) between categorical variables. After computing the MLE of the null model, we
calculate a test statistic, which we elaborate on in Chapter 2.1, to measure the closeness
between each sampled table from the conditional state space and the MLE. The distribution
of this test statistic forms the null distribution, which we use to observe the characteristics
of the tables in the conditional state space. We also take note of what value would deem a
test statistic as rare if we assume that the null model best fits the data.

A common evaluation in selecting a model for three-way tables includes a hypothesis test to
determine whether a correlation exists between all three variables at once. In this particular
case, we call a table where all three variables share no correlation a no-three-way interaction
model. In Figure 1.1, we can use the goodness-of-fit test in order to determine whether
we can use this model under which no correlation exists between race and death penalty
sentencing. For the purposes of our research, we developed an alternativemethod to conduct
a goodness-of-fit test in order to determine whether we select a no-three-way interaction
model or a more complicated model.

Two approaches currently account for the traditional ways of conducting CDA: asymptotic
and exact. An asymptotic distribution, or limiting distribution, represents the convergence
of a sequence of distributions [2]. When calculating exact statistical results prove difficult,
approximating the results based on known properties or behaviors of certain statistics in
large samples offer the best alternative. The asymptotic distribution theory attempts to find
this convergence through a series of distributions [2].
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However, asymptotic distributions typically require certain stipulations in order to ensure
accuracy. In other words, there is guidance that we should only use the asymptotic distribu-
tion of the test statistics as the null distribution for goodness-of-fit tests if all of the expected
cell counts exceed five [1]. Therefore, goodness-of-fit tests conducted with asymptotic
methods on sparse contingency tables, or tables with mostly zeroes or values less than five,
might produce inaccurate or biased results.

Fisher’s exact test provides an alternative for smaller tables, such as 2 × 2 × 2, that do
not satisfy the conditions needed to use the asymptotic distribution [1]. Fisher’s exact test
involves enumerating all possible tables in the conditional state spacewith the fixed sufficient
statistic from the observed table. However, enumerating every table in the conditional state
space may require infeasible amount of computation for large contingency tables, such as
3 × 3 × 3 and beyond.

Since we can neither use the asymptotic distribution nor Fisher’s exact test for large sparse
contingency tables, we instead approximate the null distribution by sampling tables from
the conditional distribution. Diaconis and Sturmfels [3] developed one of the most popular
exact conditional tests throughMarkov chainMonte Carlo (MCMC), which samples through
the conditional state space via a relatively simple procedure, which we will explain in more
detail in Chapters 2.1 and 3. In this research, we propose a modification to this popular
MCMC sampling method in order to efficiently and properly sample three-way contingency
tables, under the no-three-way interaction model, to fill in the gap where no effective test
currently exists.

1.2 Research Objectives
We look to address the following objectives in this thesis:

• Conduct MCMC sampling for three-way contingency tables under a no-three-way
interaction model using the idea from Bunea and Besag [4].

• Prove mathematically that the proposed method can sample a table from anywhere in
the conditional state space without any bias in the case of 3× 3× K tables for K ≥ 3.

• Provide evidence through simulations that the proposed method can sample a table
from anywhere in the conditional state space without any bias for any I × J ×K tables
for I, J, K ≥ 3.

4



• Employ our proposed algorithm on sparse three-way contingency tables, under the
no-three-way interaction model, to show that the asymptotic distribution does not
apply to the distribution of test statistics for sparse tables.

5
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CHAPTER 2:
Definitions, Motivation, and Literature Review

The research in this thesis builds on several related studies and findings. This chapter
outlines the definitions of frequently used terminology and terms. It also includes the
motivation behind the research as well as the literature review of specific works this thesis
builds on.

2.1 Definitions
This section defines key words, concepts, and algorithms as applied to the research of this
thesis. This selection also explains in greater detail some of the concepts addressed in
Chapter 1. Therefore, please note that some definitions refer to figures and tables from
Chapter 1.

2.1.1 Basic Notations
We define levels as a finite subset of categories, cell as a specific event with discrete (or
countable) frequency counts, and cell count as the number of occurrences observed for
that particular event. Each cell count may reflect the outcome of a multinomial probability
distribution [5]. In Figure 1.1, each type of race and death penalty sentencing represents
the levels while values inside the table represent the cell count.

We also frequently use variables N and Z during definitions, equations, and algo-
rithms. Let N = {1, 2, . . .} (i.e., N) represent the set of all natural numbers and
Z = {. . . ,−2,−1, 0, 1, 2, . . .} (i.e., Z) represent the set of all integers. These definitions
apply throughout this thesis.

2.1.2 Contingency Tables
We define categorical variables as a type of data with measurement scales separable into
groups or a set of categories [1]. Contingency tables display the multivariate frequency
distribution, or counts of outcomes, of those categorical variables in amatrix or table format,

7



as seen in earlier examples. Analysts use contingency tables to study potential relationships
or correlations between the set of categories.

2.1.3 Poisson Distribution
This discrete probability distribution measures the probability of the count of random and
mutually independent occurrences for a particular event within a specified period of time.
Simply stated, we often use this distribution in order to model counts, particularly to model
the arrival of events in a given time period. µ represents the parameter of the distribution
which denotes the mean number of occurrences in one time period [6]. If x represents
discrete number of observed occurrences over a period of time, the Poisson distribution
takes the probability mass function:

P (x) =
e−µµx

x!
.

We draw each cell count values for the contingency tables used in this study from the
Poisson distribution.

2.1.4 Log-Linear Models
As natural tools for analyzing multinomial categorical data, we use log-linear models to
analyze relationships between categorical variables [7]. These models can provide informa-
tion regarding potential association or interaction patterns between categorical variables [1].
Log-linear models typically assume nominal (qualitative and unordered) discrete variables,
but can also work for ordinal and matched data [7]. For example, the Poisson distribution
models the simple example shown in Table 1.1 with the parameter µi j such that

log(µi j) = λ + λ
Cat1
i + λCat2

j + λCat1,Cat2
i j ,

where i represents the levels in Cat1, j represents the levels in Cat2, and λCat1,Cat2
i j represents

the relationship between the two categorical variables.

8



2.1.5 Maximum Likelihood Estimator
Themaximum likelihood estimate of a parameter represents a value where the probability of
the initial data takes on the most likely value [1]. Simply put, MLE represents the estimate
of the parameters; we use these parameters in order to estimate cell counts for contingency
tables.

2.1.6 Sufficient Statistics
Sufficient statistics represent values computed from a given data set such that the set of those
values contains enough information to infer the MLE. For the purposes of this research, we
define the sufficient statistic as the marginal sums, or the sums of each dimension’s vectors,
of the observed table [1], [8]. Simply put, the sufficient statistic consists of the sums of each
level within each categorical variable. In Tables 1.1 and 1.2, we see the sufficient statistic
represented under the "total" counts on the last row and column.

2.1.7 No-Three-Way Interaction Model
For this study, we define three-way tables as log-linear models with three discrete random
variables such that each random variable consists of finite levels. For example, Figure 1.1
represents a three-way table that includes finite levels within three discrete randomvariables.
In order to analyze a potential correlation between variables, we define our working model.

Suppose we have three categorical variables T ∈ {1, . . . , I}, Y ∈ {1, . . . , J}, and Z ∈

{1, . . . ,K}. Also, suppose Xi j k represents a cell count in the ith level of T , the jth level of
Y , and the kth level of Z . Under this model, the contingency table X has cell counts Xi j k ,
for i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . ,K . The Poisson distribution models this table
with the parameter µi j k such that

log(µi j k) = λ + λ
T
i + λ

Y
j + λ

Z
k + λ

TY
i j + λ

T Z
ik + λ

Y Z
jk + λ

TY Z
i jk . (2.1)

Note that the above forms a log-linear model for a three-way table. Furthermore, if we have

λTY Z
i jk = 0,

then we state that the three random variables have no interaction. We call this model the
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no-three-way interaction model.

Under this model, one can show that the marginal sums can serve as the sufficient statistics
of the model [1]. We define marginal distributions as the sum of the levels within each
categorical variable; in other words, we calculate the total count in each dimension without
accounting for the other variables:

X· j k :=
∑I

i=1 Xi j k,

Xi·k :=
∑J

j=1 Xi j k,

Xi j · :=
∑K

k=1 Xi j k .

Recall that we call the set of all possible contingency tables satisfying the given sufficient
statistics the conditional state space. In the case of Table 1.1, we saw Table 1.2 as the only
other table in the conditional state space.

2.1.8 Iterative Proportional Fitting
Iterative Proportional Fitting (IPF) involves an iterative method for estimating the MLE for
a particular model of log-linear models. Specifically, IPF estimates the MLE under the
no-three-way interaction model. This procedure takes the following algorithm:

Algorithm 2.1.1 IPF Algorithm

• Input: The observed table, x0 =
(
x0

ijk

)
1≤i≤I, 1≤j≤J, 1≤k≤K

∈ ZI×J×K for I, J,K ∈ N.

• Output: The estimated MLE, m =
(
mi j k

)
1≤i≤I, 1≤ j≤J, 1≤k≤K , under the no-three-way

interaction model.
• Algorithm:

1. Initialize m1
i j k = 1 for 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K .

2. Compute the marginals:

xi j+ =
∑K

k=1 x0
i j k for 1 ≤ i ≤ I, 1 ≤ j ≤ J,

xi+k =
∑J

j=1 x0
i j k for 1 ≤ i ≤ I, 1 ≤ k ≤ K,

x+ j k =
∑I

i=1 x0
i j k for 1 ≤ j ≤ J, 1 ≤ k ≤ K .
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3. Until convergence, iterate for l = 1, 2, . . .:

m3·l−1
i j k =

m3·l−2
i jk

xi j+∑K
k=1 m3·l−2

i jk

for 1 ≤ i ≤ I, 1 ≤ j ≤ J,

m3·l
i j k =

m3·l−1
i jk

xi+k∑J
j=1 m3·l−1

i jk

for 1 ≤ i ≤ I, 1 ≤ k ≤ K,

m3·l+1
i j k =

m3·l
i jk

x+jk∑I
i=1 m3·l

i jk

for 1 ≤ j ≤ J, 1 ≤ k ≤ K .

4. Return m.

For our research, we simplify the problem by forcing each dimension and its marginal sums
to remain consistent and fixed throughout the procedure. Furthermore, we also force the
marginal sums to not equate to zero since that may result in a scenario where the MLE
does not exist. We enforce these restrictions during the table generation process, shown in
Appendix A. Failure to adhere to these stipulations will negate our proposed algorithm.

2.1.9 Markov Chain
Markov chains model a wide array of fields through stochastic systems that transition from
one state, an event or occurrence in the form of values, to another state. Markov chains
connects a series of these randomly generated states where each state in the chain only
depends on the previous state and not the sequences prior to that immediate predecessor
[1]. This principle of "memorylessness" (or "Markov" property) simplifies the conditional
probability. We also define a "connected" transition graph for a Markov chain as, if for any
states u, v in the conditional state space, u can traverse to v and v can traverse to u.

Conditional probability denotes the probability of an event happening given that another
event already occurred. A stochastic process, Xn for n = 0, 1, . . ., refers to a collection
of random variables where Xn represents a state (or event) at period n, while n (random
variable) accounts for an index (such as time) [9]. In such cases, X0 denotes the initial state
and the subsequent states at period n depend upon the state preceding it.

A contingency table in the conditional state space represents a "state" in our Markov chain
for this study. For example, Table 1.1 would represent the initial state, X0, while Table 1.2
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would represent the subsequent state, X1, since both states belong to the same conditional
state space. Figure 2.1 illustrates a simple transition graph.

Figure 2.1. Simple Transition Graph. States u, v represent tables in the
conditional state space while the red arrows represent a one-step transition,
or basic move. Red arrows that circle back to themselves represent moves
that connects the initial state to states outside of the conditional state space.
The arrow circles back to itself because the state eventually connects back
to the conditional state space.

2.1.10 Basic Move
Let b represent a I × J × K table such that

i

k k′

j 1 −1
j′ −1 1

i′
k k′

j −1 1
j′ 1 −1

,

where 1 ≤ i, i′ ≤ I, 1 ≤ j, j′ ≤ J, 1 ≤ k, k′ ≤ K , i , i′, j , j′, and k , k′, with all other
cells at zero. We call b a basic move, or a one-step transition from one connected table to
another [3].

In this study, a set of all possible basic moves links each state in the Markov chain for all
states within the conditional state space. For example, if we apply the ith level (e.g., two-
dimensional version) of the above b to Table 1.2, it connects that table directly to Table
1.1. The red arrows in Figure 2.1 represent a single basic move in the Markov chain. In the
same figure, the red arrow that circles back to itself indicates that applying the basic move
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takes the contingency table outside of the conditional state space. For example, if we apply
the ith level of above b to Table 1.1, the resulting table would result in negative cell count
values, as seen Table 2.1.

Table 2.1. Another Example, 2x2 Contingency Table with Fixed Variables.
Table consists of 2 categorical variables: Cat1, Cat2. "Cat" shortened from
Category, with 2 Levels per Cat. Table belongs outside of the conditional
state space due to negative cell count values. Note that the marginal sums
still equal those of Tables 1.1 and 1.2.

Cat2

Cat1 Cat2-Level1 Cat2-Level2 Total by Cat1

Cat1-Level1 2 −1 1
Cat1-Level2 −1 2 1
Total by Cat2 1 1 2

Since it would not make sense for a categorical variable to take a negative value (i.e., a
negative yes or no count for death penalty in Figure 1.1), the table would fall outside of the
conditional state space.

We must also distinguish basic moves from moves. Moves also represent a one-step tran-
sition; however, a move includes more than four elements in a single layer. For example,
the following table represents a move, as opposed to a basic move, because it includes more
than four elements in a single layer:

+1 −1 0 0
0 +1 −1 0
−1 0 +1 0

.

The marginal sums for a move must still equate to zero, as shown above.

2.1.11 Discrete Time Markov Chain
Discrete Time Markov Chain (DTMC) transitions from a state i to a state j over discrete
periods n, although it may transition to the same state for multiple periods in a row. In
a DTMC, pi j represents the one-period transition probability that a system moves to state
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j during the next period, given current state i. The transition probability must satisfy the
following properties:

• 0 ≤ pi j ≤ 1, ∀i, j. The transition probability cannot take on negative values or values
greater than 1.

•
∑

j pi j = 1, ∀i. This condition states that the system must transition to some state next
period.

In this research, each state of the DTMC represents each connected contingency table
(through basic moves) that satisfies the sufficient statistics. The transition graph reflects
the connection of states within the Markov chain. Figure 2.1 represents a simple DTMC
transition graph.

2.1.12 Markov Basis
In a previous study, Diaconis and Sturmfels defined the notion of a Markov basis for a log-
linear model [3]. Suppose x0 = (x0)i j k1≤i≤I,1≤ j≤J,1≤k≤K represents an observed three-way
table. Then, Fx0 represents the conditional state space with all tables that share the same
marginal sums as candidate table, x0:

Fx0 =
{

Xi j k ∈ R
I×J×K : Xi j k ≥ 0, X· j k = (x0)· j k, Xi·k = (x0)i·k, Xi j · = (x0)i j ·

}
.

We define Markov basis, M , as a collection of all moves such that for fixed positive integers
I, J,K , for any tables X, X′ ∈ Fx0 , we find a sequence

X′ =
S∑

s=1
(X + Ms) ,

with
s′∑

s=1
(X + Ms) ∈ Fx0,

for all 1 ≤ s′ ≤ S, any Mi ∈ M , S ≥ 1, and for any possible observed table, x0 [5]. Stated
simply, a Markov basis represents a set of moves that allows for all tables in the conditional
state space to connect via a Markov chain while remaining within that conditional state
space. For a more comprehensive explanation of the Markov basis, please refer directly to
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the cited sources for reference.

2.1.13 Irreducibility and Aperiodicity
Ideally, Markov chains possess both fundamental characteristics of irreducibility and aperi-
odicity. Irreducibilitymeans that any state in the state space consists of a positive probability
of visiting all other states in the chain [10]. Aperiodicity means that the transition of the
chain should not include an inescapable cycle in their transitions [10]. In our Markov
chain of contingency tables, a state remains in the same state only if the cell counts exceed
acceptable parameters (i.e., cell count takes −2 as a value) once we apply the basic move.
We look to prove the irreducibility of our Markov chain, in the extended conditional state
space that includes −1 cell count values for 3 × 3 × K tables, in Chapter 4.

2.1.14 Hypergeometric Distribution
The hypergeometric distribution serves as our conditional distribution because the process
involves sampling without replacement [6]. We categorize the hypergeometric distribution
as a conditional distribution since each outcome requires the development of a new dis-
tribution. For example, suppose we have N items, of which k number of defective items
exist. If we remove one item at a time sequentially, the outcome of the previous draw will
influence the next draw so long as that first item remains out of the original group of items.
Thus, the hypergeometric distribution involves dependent trials [6].

We illustrate the example in a 2 × 2 contingency table format, where N represents the total
number of items, k represents the number of defective items, x represents the number of
defective items drawn, and n represents the number of non-defective items drawn:

Drawn Not Drawn Total
Defective x k − x k

Non-defective n − x N + x − n − k N − k

Total n N − n N

.

If x represents the number of defective items drawn, the hypergeometric distribution takes
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the probability mass function which simplifies to [6]:

P(X = x) =

(k
x

) (N−k
n−x

)(N
n

) .

2.1.15 Monte Carlo Simulation
Monte Carlo simulationsmodel stochastic systems and calculate probabilities for a variety of
outcomes [11]. Monte Carlo simulations perform random sampling within a large number
of experiments in order to provide empirical data to evaluate statistical characteristics [12].
This technique uses inputs to conduct upwards of tens of thousands of simulations in order to
evaluate complex models. Mathematicians employ this method in order to find approximate
solutions to numerical problems difficult to solve by other means [9].

2.1.16 Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm samples a sequence of random observations from a
proposed probability distribution [10]. The Metropolis-Hastings algorithm generally sup-
ports sampling from high-dimensional distributions. Furthermore, this algorithm forces the
Markov chain toward points with higher probabilities in the conditional state space. That
process allows us to sample points according to the proposed probability distribution. The
output determines whether the initial table or the proposed table becomes the next state.

Algorithm 2.1.2 Metropolis Algorithm on the Set of Tables

• Input: The proposed state,X∗, and the initial state,X, along with a general log-linear
model, F.

• Output: Next state, X′

• Algorithm:
1. Compute the ratio of probability, which represents the ratio of the probability

of the proposal over the probability of the current state. We use this ratio as
a metric to accept or reject the proposal. We calculate the ratio through the
equation,

r =
p(X∗ |m)
p(X |m)

,
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where, m, represents the sufficient statistics under, F. Since marginal sums
serve as the sufficient statistic for no-three-way interaction models, the equation
translates to

r =

∏
all cell counts j in X j!∏
all cell counts k in X∗ k!

,

where
∏
all cell counts j in X j! represents the product of the factorial of all

cell counts, j, in X and
∏
all cell counts k in X∗ k! represents the product of the

factorial of all cell counts, k, in X∗, as shown in Example 2.1.3
2. Set:

X′ =


X∗ With probability min(r, 1) and if X∗ ≥ 0
X Otherwise.

3. Return X′.

Example 2.1.3 Suppose we have a table,

X =
1 2 3
4 5 6

.

Then we calculate ∏
all cell counts j in X

j! = 1!2!3!4!5!6!.

This Metropolis-Hasting algorithm ensures that MCMC samples from the hypergeometric
distribution.

2.1.17 Markov Chain Monte Carlo
A commonly used, computer-driven statistical sampling method, MCMC combines the
properties of both Markov chain and Monte Carlo simulation. This method involves
traversing through the state space by adhering to the fixed marginal sums of the given
contingency table [13]. MCMC simulations allow for the characterizing of a distribution
despite limited knowledge of the distribution’s mathematical properties [12]. Simply put,
the MCMC simulation estimates the expectation of statistics for hard combinatorial prob-
lems [10]. In statistics, MCMC remains one of the most popular methods to sample from
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the conditional distribution of multi-way contingency tables. Data sets continue to grow in
size and magnitude; therefore, so does the importance of an efficient sampling approach.

The following algorithm simulates a DTMC on the conditional state space:

Algorithm 2.1.4 MCMC Basic Move Algorithm on Contingency Tables

• Input: The observed I × J × K table, X0, with I, J,K ∈ N, and sample size, N .
• Output: Sample tables in accordance with the conditional distribution.
• Algorithm:

1. Initialize the set of sampled tables, S = ∅.
2. For i = 1, · · · , N , do the following:

2.1. Pick distinct pairs of dimensional indices, i, i′ ∈ {1, 2, . . . , I}, j, j′ ∈

{1, 2, . . . , J} and k, k′ ∈ {1, 2, . . . ,K}.
2.2. Let basic move, b, represent a I × J × K table such that

i

k k′

j 1 −1
j′ −1 1

i′
k k′

j −1 1
j′ 1 −1

with all other cells at zero.
2.3. Sample a proposal table, Xi = b + Xi−1.
2.4. Accept the proposal according to the Metropolis Hasting Algorithm, de-

scribed in Algorithm 2.1.2.
2.5. Verify that the marginal sums of the proposal table matches the marginal

sums of the initial table and that no cell count has a negative value. If
verification fails, return to the initial state.

2.6. Upon verification, add Xi to S.
3. Return S.

This algorithm describes the basic MCMC sampling process employed in this study. The
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simple example outlined under the definition for basic moves illustrates this process. How-
ever, this approach does not guarantee a connected Markov chain; in other words, this
process does not guarantee aperiodicity and irreducibility. For a more comprehensive
definition of this sampling method, please refer directly to the cited references from this
subsection.

2.1.18 Asymptotic Distribution
When calculating exact statistical results proves difficult, approximate results based on
known properties or behaviors of certain statistics in large samples offer the best alternative.
An asymptotic distribution, or limiting distribution, represents the hypothetical distribution,
or convergence, of a sequence of distributions [2]. The asymptotic distribution theory
attempts to find this convergence through a series of distributions [2].

2.1.19 Chi-Squared (χ2) and Goodness-of-Fit Tests
In CDA, the χ2 test examines two statistical phenomena. The χ2 test for independence
involves checking for the independence of variables while the goodness-of-fit test involves
calculating the likelihood that the observed distribution happened by chance. Typical uses
of the goodness-of-fit tests involve evaluating how well a proposed probability model, or
theoretical model, fits to an observed data set.

A commonly used form of hypothesis testing, goodness-of-fit tests look to see how well a
proposed model fits to a given data set by comparing the observed table with the MLE [1].
In the case of three-way tables, the test measures how well the observed distribution of data
(i.e., reality) fits to a theoretical model that distributes the data under the assumption that
all three variables have an interaction. We reject the null hypothesis if the observed data
does not fit the model because the likelihood of an interaction between variables increases.
Figure 2.2 shows the work flow diagram of a goodness-of-fit test used in this research.
Please note that the arrows denote required tasks prior to the start of the subsequent step.
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Figure 2.2. Step-by-Step Goodness-of-Fit Test Workflow

The null hypothesis of a χ2 test states the independence of variables. Mathematically,
independencemeans that the product of the normalizedmarginal sums equals the probability
of any cell. For this research, we use the test to analyze the relationship between three
variables and consider the following hypotheses:

H0 : λTY Z
i jk = 0

H1 : λTY Z
i jk , 0.

Like all hypothesis testing, we begin by assuming the null hypothesis is true. In this case,

H0 : λTY Z
i jk = 0.

We conduct hypothesis testing using the following procedure. First, we calculate the test
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statistics of the observed table x0. The test statistics serves as a metric to measure a distance
from a given table to theMLE under the proposed model to the observed table. In this case,
a test statistic measures how far a given table varies from the MLE under the no-three-way
interaction model. In our research, we use Pearson’s χ2 test statistics. The χ2 test statistic
measures the deviation from the observed values and the calculated expected values in order
to determine the conclusion of the test. The calculation itself involves summing the squared
differences between the observed data set and the MLE,

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(x0
i j k − mi j k)

2

mi j k
,

where mi j k represents the MLE. Under the hypothesis test, the null distribution mirrors
the test statistics between a table X generated under the conditional distribution given
the sufficient statistics and the MLE under the no-three-way interaction model. In this
situation, hypergeometric distribution represents the conditional distribution, given the
sufficient statistics computed from the observed table x0.

χ2 tests apply the asymptotic distribution theory. We must note that we can only use the
asymptotic distribution of the test statistics as the null distribution for goodness-of-fit tests
if all of the expected cell counts exceed five [1]. Asymptotic distribution theory shows that
the asymptotic distribution of Pearson’s χ2 test statistics for tables, X, generated under the
conditional distribution is the χ2 distribution with degree of freedom (I − 1)(J − 1)(K − 1).
However, we cannot use the asymptotic distribution with sparse tables. Instead, we want to
conduct the exact conditional test.

2.1.20 Fisher’s Exact Test
Fisher’s exact test, one of the most famous exact conditional tests, exists as an alternative for
smaller tables, such as 2×2×2 or 3×3×3, that do not satisfy the condition that each of the
expected cell counts exceed five [1]. Fisher’s exact test involves enumerating all possible
tables in the conditional state space with the fixed sufficient test statistics (i.e., marginal
sums) from the observed table, X0. We then compute the null distribution by calculating all
test statistics (such as the χ2 test statistic or the log-likelihood ratio test statistic) for each
table in the conditional state space. However, enumerating every table in the conditional
state space may not be feasible for large contingency tables. Therefore, we approximate the
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null distribution by sampling tables from the conditional distribution.

2.1.21 P-Value
During hypothesis tests, we calculate the p-value in order to determine the results of our tests.
The value will dictate whether we have sufficient evidence to reject the null hypothesis, H0,
for the alternate hypothesis, H1. We employ the following exact conditional test algorithm
in order to calculate the p-value:

Algorithm 2.1.5 Exact Conditional Test

• Input: The observed table, x0 ∈ ZI×J×K for I, J,K ∈ N. Sample size, n.
• Output: The estimated p-value.
• Algorithm:

1. Compute the estimated MLE via IPF, as shown in Algorithm 2.1.1.
2. Compute the sufficient statistics from x0 for the MLE under the null model.
3. Compute the test statistic, χ2(x0).
4. Sample tables, x1, . . . , xn, from the conditional state space using the sufficient

statistics.
5. Estimate p-value for the hypotheses by computing∑n

i=1 Iχ2(xi)≥χ2(x0)

n
,

where I represents the indicator function for all of the test statistic values greater
than the χ2 value of the MLE.

The significance level, α, determines the threshold of whether or not to reject the null
hypothesis. For example, if we set α at .05, we can only reject the null hypothesis in favor
of the alternative hypothesis if the p-value calculates below .05. If the p-value does drop
below .05, it indicates evidence against the null hypothesis. In our research, we set the
significance level, α, at .05.
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2.1.22 Sparse Tables
In CDA, sparse tables describe tables populated with many cells with small counts (the
expected cell count fails to exceed five) and/or zeroes. For example, Tables 1.1, 1.2, and
2.1 represent sparse tables. As we consider higher-dimensional contingency tables, the
likelihood of encountering sparseness will increase. Since log-linear models correspond to
marginal sums, biased or inaccurate MLE may result when sampling from sparse contin-
gency tables [14]. In this case, χ2 distributions may do a poor job of approximating the
sampling distribution of test statistics [14].

As stated earlier, traditional asymptotic methods require that each cell count exceed five
in all or most cells of the contingency table. If this condition does not hold, we label the
table as sparse since the χ2 approximations of goodness-of-fit statistics may inaccurately
evaluate the fit of the proposed model to the data set [1]. Thus, identifying a proper method
in analyzing these types of tables serves as one of the primary motivations for this research.

2.2 Motivation
In this research, we examine whether or not our proposed MCMC sampling method can
efficiently and properly sample three-way contingency tables, under the no-three-way in-
teraction model, from a hypergeometric distribution. The analysis of contingency tables
applies to a multitude of fields involving data science. We look to fill a need for accurate
model fitting and sampling in these fields due to an increasing demand by both industry and
government.

Traditional methods may yield inaccurate or biased results for large sparse contingency
tables. The likelihood of encountering sparseness in contingency tables increases as the
dimensions of the table increase. Therefore, a growing need exists to find an efficient and
appropriate statistical method to conduct analysis given the prevalence of and sparseness
in “big data.” In the field of CDA, data sets will almost certainly have some cell counts of
zero. However, many researchers still opt to use asymptotic distribution analysis for sparse
contingency tables despite concerns of inaccurate results because of a lack of alternative
procedures.

We study MCMC primarily because another popular sampling method, Sequential Im-
portance Sampling (SIS), cannot draw samples from the conditional distribution–namely,
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the hypergeometric distribution. In order to run MCMC properly, the transition graph of
the chain must connect–unlike SIS that samples independently from the conditional state
space [15]. If the transition graph consists of unconnected chains, we cannot sample tables
from those parts of the graph. This leads to a biased conclusion. Therefore, this thesis
shows that our

Many researchers have previously studied MCMC approaches developed by Diaconis and
Sturmfels using Markov bases [3]. However, we cannot compute Markov bases for tables
larger than 4×4×4 under this model because of computational limitations [16]. Computing
a Markov basis for the no-three-way interaction model proves difficult because, generally,
the number of elements (moves) in a Markov basis can become arbitrarily large (i.e., no
upper bound exists) [17]. Additionally, SIS may draw rejected samples, or samples outside
of the conditional state space, and require computationally inefficient integer programming.

This thesis focuses on three-way contingency tables under the no-three-way interaction
model, a special case of log-linear models. Since no methods currently exist to compute
a Markov basis for tables larger than 4 × 4 × 4, we apply the idea proposed by Bunea and
Besag (1996) and Chen et al. (2005) in order to connect a Markov chain in the conditional
state space. Their proposed method involves allowing −1 as a cell count in order to connect
Markov chains in the conditional state space [4], [5]. We elaborate more on their work in
the next section.

Combined with the idea of Bunea and Besag, we will prove that a MCMC with a set of
basic moves on 3 × 3 × K , for K ≥ 3, connects within the conditional state space. We will
also provide evidence through simulations that our method works for I × J × K tables, for
I, J, K ≥ 3, under the no-three-way interaction model. This work produces a new statistical
method for sampling and analyzing categorical data. Furthermore, this research may aid
efforts in identifying appropriate statistical analysis procedures for big data. We anticipate
this algorithm will aid in efforts to analyze data pertaining to data and information sciences.

2.3 Literature Review
Several works laid the foundation for this research. Although this research draws from
many established statistical practices and influences (e.g., Categorical Data Analysis by
Agresti), this research combines the findings from three primary works in related fields for
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the proposed modification to MCMC sampling. Therefore, this section focuses on those
works to set the proper context of this research. For a more comprehensive understanding
of these studies, please refer directly to the cited sources for reference.

2.3.1 Diaconis and Sturmfels
The findings of Diaconis and Sturmfels contributed the most to this research given that
they developed MCMC sampling for the discrete exponential family with Markov basis.
Applying theMCMCmethod involves approximating the null distribution of the test statistic
for goodness-of-fit test by sampling contingency tables from the conditional distribution.
In 1998, Diaconis and Sturmfels defined the notion of a Markov basis. For example, if
we consider the independence model on two random variables, the Markov chain on all
contingency tables in the conditional state space connects through a set of basic moves.
They called this guarantee—to connect all states of a Markov chain in the conditional state
space—a Markov basis. With any given sufficient statistics under the model, they initiated
a MCMC approach based on a Gröbner basis computation for testing statistical fitting [3].
Their research also involved constructingMarkov chain algorithms for sampling contingency
tables from discrete exponential families [3]. Since its inception, studies pertaining to the
structure of Markov bases remain a popular source for academic interest in computational
algebraic statistics. Despite computational advances, one may fail to calculate a Markov
basis for some statistical models because the minimal Markov basis for a model may include
an exponential number of moves.

2.3.2 Bunea and Besag
Bunea and Besag’s work initiated the idea of allowing −1 cell count values for contin-
gency tables while sampling via MCMC. However, their particular study only focused on
contingency tables with dimensions 2 × J × K , where I, J ∈ N, under the no-three-way
interaction model. Their paper reviews MCMC exact tests for assessing the goodness-of-fit
of probability models to observed data sets [4].

In our study, we apply this concept in order to expand the conditional state space to include
tables with cell count values of −1. For example, applying this principle would allow us
to include Table 2.1 in the expanded conditional state space because it shares the sufficient
statistics as Tables 1.1 and 1.2. Although we would normally not include tables with
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negative values, we make an exception for those tables with −1 values that still share the
same sufficient statistic as the other tables in the conditional state space.

2.3.3 Chen et al.
The work by Chen et al. introduces multiple concepts studied by this current research. Chen
et al. presented algebraic methods for studying the connectivity of Markov moves with the
assumption of all positive margins [5]. They also developed Markov sampling methods for
exact conditional inference of statistical models, where computing aMarkov basis may pose
challenges [5]. Their study focused on positive marginal sums greater than zero and found
that sets of Markov moves that connect tables with positive margins may work better than
calculating a full Markov basis [5]. Chen et al. also investigated the condition of allowing
−1 cell count values from a theoretical perspective. They found some necessary conditions
to identify connecting Markov chains when allowing negative table entries [5].
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CHAPTER 3:
Methodology and Data

This chapter introduces the methodology, simulation procedures, and simulation data sets.
The methodology section will also include the proposed modification to the already-popular
MCMC sampling method developed by Diaconis and Sturmfels. The simulation section
introduces hypothesis testing as it relates to our simulation.

3.1 Methodology
This section discusses the proposed modification to a sampling method developed by Dia-
conis and Sturmfels. Already popular in exact conditional testing, Diaconis and Sturmfels
proved that contingency tables within the same conditional state space can connect through
a set of MCMC basic moves called a Markov basis [3]. The foundational principle of this
procedure involves approximating the null distribution by sampling from the conditional
distribution [3]. Specifically, the approach involves approximating the null distribution of
the test statistic, calculated from each table sampled from the hypergeometric distribution.

We must note that we cannot always compute a Markov basis for every problem because
computing the minimal Markov basis for larger models may require an infeasible amount of
computational time. Therefore, we propose aMCMC sampler without computing aMarkov
basis by allowing any cell count to possess−1 as a value in order to connectMarkov chains in
the conditional state space, effectively expanding the conditional state space to temporarily
include those tables. However, we do not accept a sampled table with −1 as a cell count
value; we only allow a table to have −1 as a means of connecting to another table in the
conditional state space.

The following algorithm describes our proposed method. The only difference between this
algorithm and the MCMC Algorithm 2.1.4 involves allowing cell counts to take −1 (Step
2.2.5).

Algorithm 3.1.1 Proposed MCMC Basic Move Algorithm on Three-way Contingency Ta-
bles, under the No-Three-Way Interaction Model
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• Input: The observed I × J × K table, X0, with I, J,K ∈ N, and sample size, N .
No-three-way Interaction Model, F.

• Output: Sampled tables in accordance with the hypergeometric distribution.
• Algorithm:

1. Initialize the set of sampled tables, S = ∅.
2. For i = 1, · · · , N , do the following:

2.1. Pick distinct pairs of dimensional indices, i, i′ ∈ {1, 2, . . . , I}, j, j′ ∈

{1, 2, . . . , J} and k, k′ ∈ {1, 2, . . . ,K}.
2.2. Let basic move, b, represent a I × J × K table such that

i

k k′

j 1 −1
j′ −1 1

i′
k k′

j −1 1
j′ 1 −1

with all other cells at zero.
2.3. Sample a proposal table, Xi = b + Xi−1.
2.4. Accept proposal according to the Metropolis-Hasting Algorithm, as defined

Algorithm 2.1.2.
2.5. Verify that the marginal sums of the proposal table match the marginal

sums of the initial table and that no cell count has a value less than −1. If
verification fails, return to the initial state.

2.6. Upon verification, add Xi to S.
3. Return S.

We illustrate our modification through the following example. Suppose we have a i × j × k
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contingency table, where i = 2, j = 3, and k = 3,

i = 1
1 0 0
0 1 0
0 0 1

i = 2
0 1 0
0 0 1
1 0 0

,

where the two-way marginal sums equate to one. From this table, we want to get to the
following table in the same conditional state space

i = 1
0 1 0
0 0 1
1 0 0

i = 2
1 0 0
0 1 0
0 0 1

,

which by definition shares the same marginal sums. In order to connect these two tables
via basic moves, we must use a table in the extended conditional state space. Specifically,
we must allow any cell count from this table to possess a value of −1. Thus, if we apply the
following basic move to the original table,

i = 1
−1 +1 0
+1 −1 0
0 0 0

i = 2
+1 −1 0
−1 +1 0
0 0 0

,

we get the following table from the extended conditional state space, which shares the same
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marginal sums as the previous table but with −1 as a cell counts:

i = 1
0 1 0
1 0 0
0 0 1

i = 2
1 0 0
−1 1 1
−1 0 0

.

From here, if we apply one more basic move,

i = 1
0 0 0
−1 0 +1
+1 0 −1

i = 2
0 0 0
+1 0 −1
−1 0 +1

,

we end up with the next state in the Markov chain within the traditional conditional state
space:

i = 1
0 1 0
0 0 1
1 0 0

i = 2
1 0 0
0 1 0
0 0 1

.

Although the combination of these two basic moves connects these tables from the same
conditional state space, we cannot call this set of moves a Markov basis because the process
included a table outside of the traditional conditional state space.

So to summarize the proposed modifications from this research to Diaconis and Sturmfels’
MCMC:

30



• We prove connectivity for 3 × 3 × K contingency tables, for K ≥ 3, through MCMC
with a set of basic moves, but without computing the Markov basis, by allowing any
cell counts to take values of −1. As defined earlier, a Markov basis represents a set
of one-step transition moves, which allow for all tables in the conditional state space
to connect via a Markov chain.

• We use marginal sums as the sufficient statistics, as defined by the no-three-way
interaction model. By simplifying the likelihood function when computing the MLE,
we see that the marginal sums provide sufficient information to infer the MLE.

• Wecalculate the χ2 test statistic fromeach sampled table in order to conduct goodness-
of-fit testing, where the null hypothesis states a no-three-way interaction.

• We conduct a Kolmogorov–Smirnov Test (K–S Test) to show that the null distribu-
tion of the test statistics for sparse contingency tables does not come from the χ2

distribution. For non-sparse tables, the K–S Test shows that the null distribution of
the test statistics matches the χ2 distribution.

• We determine that we cannot use asymptotic distributions (i.e., χ2 distribution)
for sparse contingency tables. Therefore, we sample contingency tables from the
expanded conditional state space in order to estimate the null distribution of the test
statistics.

We apply this sampling method to three-way contingency tables under the no-three-way
interaction model. For this type of model, no methods currently exist in computing a
Markov basis for tables larger than 4 × 4 × 4. To summarize, we apply the ideas of Bunea
and Besag (2000) and Chen et al. (2005) in order to connect a Markov chain the in the
extended conditional state space. These ideas involve temporarily allowing −1 as a valid
cell count value for contingency tables in order to connect tables via a Markov chain.

3.2 Simulation
We provide strong evidence through simulations that our method works for any I × J × K

tables, for I, J, K ≥ 3, under the no-three-way interaction model. We break up the
simulations into two parts: non-sparse and sparse contingency tables. In order to apply
our proposed algorithm on sparse data, we must first prove that it functions properly on
non-sparse data. We must ensure that our proposed methodology aligns with already-
established procedures for conventional non-sparse data since mathematicians proved and
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validated such methods.

3.2.1 Procedures
Both parts of the simulations adhere to the following procedures. Elaboration on certain
steps not defined in detail in Chapter 2.1 will follow in subsequent sections. This report
includes the R codes used for the simulations in Appendix A.

1. Sample a three-dimensional table, where sampling for each cell comes from a Poisson
distribution. Each table must not have any marginal sums that equal zero for the
algorithm to function properly.

2. Estimate the MLE for the sampled table through the IPF approach as described in
Algorithm 2.1.1.

3. Calculate the χ2 statistic, using the observed table and MLE as arguments.
4. Sample tables from the conditional state space via MCMC as described in Algorithm

3.1.1, using the marginal sums as the sufficient statistic. During the MCMC sampling
process, tables can have cell count values of −1 but it will not count as a sampled
table. Tables with −1 will exist in the expanded conditional state space in order to
allow tables within the traditional conditional state space to connect.

5. Calculate the χ2 statistics using each sampled table and the MLE as the argument.
6. Conduct a goodness-of-fit test on the null hypothesis that states a no-three-way interac-

tion. This test concurrently involves model selection between the null and alternative
models. The test itself depends on the calculation of the p-value from the test statis-
tics collected throughout the simulation. We calculate the p-value in accordance with
Algorithm 2.1.5.

7. Conduct the K–S Test to check whether the null distribution of the test statistics
closely resembles an asymptotic distribution.

8. Record the p-value of both goodness-of-fit and K–S Tests for the simulation.

3.2.2 Parameters
Simulations will run for both sparse and non-sparse contingency tables with dimensions of
3 × 3 × K , for K ≥ 3, and a 4 × 4 × 4 and 5 × 5 × 5 table. Although we sample the cell
counts of the observed table from the Poisson distribution, we sample each table from the
hypergeometric distribution. This applies to both sparse and non-sparse simulations.
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3.2.3 MCMC and Metropolis-Hastings Algorithm
The MCMC process, as described in Algorithm 2.1.4, plays the most crucial role in the
sampling process. During the simulation, the MCMC function takes the observed contin-
gency table as the input argument along with the desired sample size, N . The algorithm
continues until the set of sample tables from the conditional state space equate to N . If, and
only if, the sampled table’s marginal sums equal the marginal sums of the initial table once
we apply the basic move, and the table does not have a −1 as a cell count value, we add that
sample table to the set.

TheMetropolis-Hastings algorithm, Algorithm 2.1.2, ensures that theMCMC samples from
the hypergeometric distribution. In our employment of this algorithm, we do not calculate
a Markov basis for the MCMC due to the general infeasibility of computing them for the
no-three-way interaction model. We instead expand the conditional state space to include
tables with negative values. We skip calculating a Markov basis because, stated simply,
a Markov basis represents a set of moves that allows for all tables in the conditional state
space to connect via a Markov chain without leaving the conditional state space. A set of
moves only becomes a Markov basis if, and only if, applying the set of moves to any state
x in the conditional state space connects that table with any other state x′ in the conditional
state space via a single chain while staying within the conditional state space. Therefore,
by leaving the conditional state space, we do not calculate a Markov basis.

We introduced the ratio of probability in Algorithm 2.1.2 as the following general equation

r =

∏
all cell counts j in X j!∏
all cell counts k in X∗ k!

,

where X represents the current state and X∗ represents the proposed state in the conditional
state space. In the simulation, we take the log of this function in order to avoid potential
numerical errors from computing large numbers. In the simulation Metropolis-Hastings
function (re: compute.ratio function in R code, Appendix A), we calculate the ratio, r ,
through the following equation [3],

r =
I∑

i=1

J∑
j=1

K∑
k=1

log
(
xn+1

ijk !
)
− log

(
xn

ijk!
)
,
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where xn represents the current table, or state, in the MCMC and xn+1 represents the
proposed state. We then establish a random parameter, u, from the uniform distribution,
U ∈ [0, 1]. If min (1, er) ≤ u, we accept the move and continue the iteration with the
accepted move as the initial state; otherwise, we do not accept the move and the table
remains in the same state.

3.2.4 Burn-In
Burn-in describes the process of throwing away a set number of initial samples at the
beginning of each trial. We conduct this process in order to minimize the influence of the
initial table. We want to minimize any potential for bias at the start of each trial.

3.2.5 Goodness-of-Fit Test
This simulation incorporates the goodness-of-fit test, defined in Chapter 2.1, for model
selection. Using the approximated MLE from the step prior, we calculate the χ2 test
statistic for each table. Suppose we have the null hypothesis, H0, versus the alternative
hypothesis, H1. We apply MCMC for the goodness-of-fit test via the following algorithm.

Algorithm 3.2.1 MCMC for Goodness-of-Fit

• Input: An observed three-way table, x0, and the sample size, N . Number of burn-in,
B. Model for H0: F0.

• Output: A list of test statistics computed from sampled tables from the hypergeometric
distribution.

• Algorithm:
1. With initial table x0, sample B many tables (where x0∗ represent the last, or Bth,

sampled table) under F0, using Algorithm 2.1.4.
2. Initiate L = ∅.
3. Compute the MLE, µ0, under H0, via IPF (Algorithm 2.1.1).
4. For i = 1, · · · , N , do the following:

4.1. Sample a table, xi∗, under F0, with x(i−1)∗ using Algorithm 2.1.4.
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4.2. Compute the Pearson’s χ2 test statistic:

s =
∑
j,k

(xi∗
j kl − µ

0
j kl)

2

µ0
j kl

.

4.3. Add s to L.
5. Return L.

Ultimately, we conduct the goodness-of-fit test in order to determine whether we select a
no-three-way interaction model or a more complicated model. The distribution of this test
statistic forms the null distribution, which we use to observe the characteristics of the tables
in the conditional state space. We also take note of what value would deem a test statistic
as rare if we assume that the null model best fits the data.

As defined earlier, goodness-of-fit tests help determine whether the null model or alternative
model fits better with an observed data set. If the observed data set does not significantly
differ from the expectation under the null model, then we select the null model. If signifi-
cantly different, then we will select an alternative model. In order to measure the difference
in models, we utilize the χ2 test statistic to measure the difference between two tables. The
alternative model suggests an interaction (e.g., a correlation) between variables.

3.2.6 K–S Test
The K–S Test serves as a means of testing the equality of distributions:

H0 : Two distributions are the same.
H1 : Two distributions are not the same.

For this research, we employ the K–S Test to check whether the null distribution of the test
statistic resembles an asymptotic distribution:

H0 : Null distribution of test statistics resembles the χ2 distribution.
H1 : Null distribution of test statistics does not resemble the χ2 distribution.
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3.3 Data
For both non-sparse and sparse simulations, we generated random tables from a Poisson
distribution with a parameter λ. As previously defined, this means that we sampled each cell
count from a Poisson distribution. The random table generator function also ensures that
no marginal sums equate to zero. Once we generated a complete table, we used this table
as an observed table given the fixed sufficient statistic. Sample tables from the conditional
state space come from a hypergeometric distribution via MCMC. We included the code
that specifies the method in which we generate these random tables in Appendix A.

3.3.1 Non-Sparse Data
For non-sparse simulation data, we set the Poisson distribution variable with λ = 20. As
stated earlier, we want to first test our algorithm on non-sparse data in order to ensure that
it functions properly in accordance with the asymptotic distribution. If our simulations
results align with established procedures, it would validate our algorithm as an appropriate
approach for sparse data as well. We generated five tables of varying dimensions for this
simulation.

1. 3x3x3
2. 3x3x4
3. 3x3x5
4. 3x3x6
5. 3x3x7
6. 4x4x4
7. 5x5x5

We expect two outcomes from the simulation results involving non-sparse tables. First, we
expect to fail in rejecting the null hypothesis from the goodness-of-fit test results 95% of the
time; we expect to fail in rejecting the null model that states a no-three-way interaction 95%
of the time. Second, we expect to fail in rejecting the null hypothesis from the K–S Test
results; we expect to see that the distribution of the test statistic comes from the asymptotic
distribution.
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3.3.2 Sparse Data
For sparse data, we set µ = λ = 6 in Equation 2.1 so that it ensures that the observed
cell counts do not meet the criteria needed to use the asymptotic distribution. Unlike non-
sparse data, we do not know what to expect from the test results. We do not expect the
K–S Test results to show that the distribution of the test statistic comes from the asymptotic
distribution. We apply our algorithm to the following tables:

1. 3x3x3
2. 3x3x4
3. 3x3x5
4. 3x3x6
5. 3x3x7
6. 4x4x4
7. 5x5x5

We display the results for these tables in Chapter 4.

37



THIS PAGE INTENTIONALLY LEFT BLANK

38



CHAPTER 4:
Mathematical Proof, Results, and Analysis

This chapter provides the mathematical proof of the connectivity for 3×3×K tables. It also
examines the results of the simulations. We include the analysis for each type of simulation
within the respective section.

4.1 Proof of Connectivity
In this section, we prove mathematically that the set of basic moves with the proposed
scheme of allowing each cell count to assume values of −1 guarantees a connected MCMC
for any marginal sums, under the no-three-way interaction model, in the case of 3 × 3 × K

tables, for K ≥ 3. The significance of the no-three-way interaction model involves how the
model constrains the computation of the marginal sums. For example, suppose b represents
a move in a 3 × 3 × 3 table format. Then the no-three-way interaction model constrains the
cell counts in b as follows: ∑3

i=1 bi j k = 0,∑3
j=1 bi j k = 0,∑3
k=1 bi j k = 0.

Theorem 4.1.1 Consider 3 × 3 × K contingency tables, for K ≥ 3, under the no-three-
way interaction model. A MCMC on the conditional state space, the set of all 3 × 3 × K

contingency tables with fixed 2-dimensional marginal sums, connects with the set of basic
moves if each cell count can assume values of −1. We label this connected MCMC as
ergodic.

Proof We use the results from Aoki and Takemura (2003) to begin our proof. In their
study, Aoki and Takemura computed the minimal Markov basis for 3 × 3 × K contingency
tables, for K ≥ 3, under the no-three-way interaction model where seven combinatorial
types categorized all possible moves in the Markov basis [18]. If we can show that we can
connect the positive component to the negative component of each element of the minimal
Markov basis through basic moves by allowing each cell to assume a −1 cell count value,
we prove our theorem.
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Let b represent a I × J × K table such that,

i

k k′

j 1 −1
j′ −1 1

i′
k k′

j −1 1
j′ 1 −1

where 1 ≤ i, i′ ≤ I, 1 ≤ j, j′ ≤ J, 1 ≤ k, k′ ≤ K , i , i′, j , j′, and k , k′, and
with all other cell counts at zero. We call ±b a basic move. We denote this table, b, as
(i, i′; j, j′; k, k′).

Degree indicates the sum of positive or negative components of the move; the sum of the
positive components must equal the sum of the negative components. For example,

i

k k′

j 1 0
j′ 0 1

i′
k k′

j 0 1
j′ 1 0

represents the positive component of b, or b+. While,

i

k k′

j 0 1
j′ 1 0

i′
k k′

j 1 0
j′ 0 1
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represents the negative component of b, or b−. Thus,

b = b+ − b−

and degree equals the sum of the positive or negative component. In this case, we have a
move with a degree of 4. We must also note that all matrices of varying degrees represent
a sub-matrix of a move. For example, a 5 × 5 × 5 table may consist of the above move with
a degree of 4 with all other cell counts equal zero.

We begin the proof with a move with a degree of 4; we require no further proof since all
moves with a degree 4 in the Markov basis are already basic moves (as defined in Chapter
2.1).

For moves with a degree of 6, the following three categories characterize the moves after
we apply permutations:

(i)
+1 −1 0 0
0 +1 −1 0
−1 0 +1 0

−1 +1 0 0
0 −1 +1 0
+1 0 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

(ii)
+1 −1 0 0
−1 +1 0 0
0 0 0 0

0 +1 −1 0
0 −1 +1 0
0 0 0 0

−1 0 +1 0
+1 0 −1 0
0 0 0 0

(iii)
+1 −1 0 0
−1 +1 0 0
0 0 0 0

0 0 0 0
+1 −1 0 0
−1 +1 0 0

−1 +1 0 0
0 0 0 0
+1 −1 0 0

.
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For type (i), we have

+1 −1 0 0
0 +1 −1 0
−1 0 +1 0

−1 +1 0 0
0 −1 +1 0
+1 0 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

=

+1 0 0 0
0 +1 0 0
0 0 +1 0

0 +1 0 0
0 0 +1 0
+1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

−

0 1 0 0
0 0 1 0
1 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

=: b1
+ − b1

−.

If we allow Xi j k ≥ −1 for 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K , we can show that

b1
+ = b1

− + (1, 2; 1, 2; 1, 2) + (1, 2; 2, 3; 1, 3).

Similarly, for type (ii), we set the positive part of the move as b2
+ and the negative part of

the move as b2
−. We can then write

b2
+ = b2

− + (1, 2; 1, 2; 1, 2) + (2, 3; 1, 2; 1, 3).

Similarly, for type (iii), we set the positive part of the move as b3
+ and the negative part of

the move as b3
−. We can now write

b3
+ = b3

− + (1, 2; 1, 2; 1, 2) + (2, 3; 1, 3; 1, 2).

For the move with a degree of 7 in the Markov basis, Aoki and Takemura showed that only
one combinatorial type of move remained after applying these permutations [18]:

0 0 0
0 +1 −1
0 −1 +1

−1 0 +1
+1 −1 0
0 +1 −1

+1 0 −1
−1 0 +1
0 0 0

.
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Similar to the moves with a degree of 6, we let b4
+ represent the positive component of the

move and let b4
− represent the negative component of the move. Then, we have

b4
+ = b4

− − (1, 2; 2, 3; 2, 3) + (2, 3; 1, 2; 1, 3).

For the move with a degree of 8 in the Markov basis, Aoki and Takemura identified two
combinatorial types of the move after applying the permutation:

(i)
+1 −1 0 0
−1 +1 0 0
0 0 0 0

−1 0 +1 0
+1 0 0 −1
0 0 −1 +1

0 +1 −1 0
0 −1 0 +1
0 0 +1 −1

(ii)
0 +1 0 −1
0 0 −1 +1
0 −1 +1 0

0 −1 0 +1
+1 0 0 −1
−1 +1 0 0

0 0 0 0
−1 0 +1 0
+1 0 −1 0

.

We let b5
+ represent the positive component of the move (i) and let b5

− represent the negative
component of the move (i). We also let b6

+ represent the positive component of the move
(ii) and let b6

− represent the negative component of the move (ii). Then, we have

b5
+ = b5

− + (1, 2; 1, 2; 1, 2) − (2, 3; 1, 2; 2, 3) + (2, 3; 2, 3; 3, 4),
b6
+ = b6

− + (2, 3; 2, 3; 1, 3) − (1, 2; 1, 3; 2, 4) + (1, 2; 1, 3; 2, 4).

For the move with a degree of 10, Aoki and Takemura showed that only one combinatorial
type of move remained after applying the permutations:

+1 −1 0 0 0
−1 +1 0 −1 +1
0 0 0 +1 −1

−1 0 +1 0 0
+1 0 0 0 −1
0 0 −1 0 +1

0 +1 −1 0 0
0 −1 0 +1 0
0 0 +1 −1 0

.

Similar to the moves with a degree of 8, we let b7
+ represent the positive component of the

move and let b7
− represent the negative component of the move. We now have

b7
+ = b7

− + (1, 2; 1, 2; 1, 2) − (2, 3; 1, 2; 2, 3) + (2, 3; 2, 3; 3, 4) − (1, 2; 2, 3; 4, 5).
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Since we can write all seven types of moves in the Markov basis as a linear combination of
basic moves if we allow cell count values of −1, we conclude the proof.

4.2 Results
We examine the results of the simulations in this section. Each trial of the simulation follows
the procedures as outlined in Section 3.2.1, with the elaboration of the tests in subsequent
sections in Chapter 3. Please note that we include every resulting histogram, displaying the
distribution of χ2 test statistics, in Appendix B.

As outlined in Section 3.2.1, both non-sparse and sparse simulations conducted two tests:
the goodness-of-fit test and the K–S Test. We employ the goodness-of-fit test for model
fitting, where we analyze the relationship between the three variables. Recall that we
considered the hypotheses:

H0 : λTY Z
i jk = 0.

H1 : λTY Z
i jk , 0.

We begin by setting the significance level, α, at .05 and assuming that the null hypothesis
is true. Thus, we only reject the null hypothesis, which states that there is no interaction
between the three variables in favor of the alternative hypothesis, which states that there is
an interaction between them, if the p-value calculates below .05.

For K–S Test, we test the following hypotheses:

H0 : Null distribution of test statistics resembles the χ2 distribution.
H1 : Null distribution of test statistics does not resemble the χ2 distribution.

Similar to the goodness-of-fit test, the p-value dropping below .05 indicates a strong evidence
against the null hypothesis.

4.2.1 Non-Sparse Data
For each unique dimension, the simulation involved ten trials of n = 10, 000 samples. Each
trial begins with a generation of a contingency table. We set the burn-in value, B, at 2, 500.
The following table outlines the average p-value from each simulation. Since the tables
meet the requirements of the asymptotic distribution, we expect the results to follow.

44



Dimensions Goodness-of-Fit Avg. P-value K–S Test Avg. P-value
3 × 3 × 3 0.3259 0.4571
3 × 3 × 4 0.6169 0.4007
3 × 3 × 5 0.3959 0.2093
3 × 3 × 6 0.6146 0.2631
3 × 3 × 7 0.6523 0.2818
4 × 4 × 4 0.4970 0.2363
5 × 5 × 5 0.3664 0.2480

.

Analysis
As expected, we fail to reject the null hypothesis for both tests. The results of the goodness-
of-fit test shows that the no-three-way interaction model appropriately fits with the observed
data. The K–S Test shows that the null distribution of the test statistic matches the χ2 dis-
tribution, validating our algorithm with established norms. In other words, the distribution
of the test statistics converges to the χ2 distribution. Therefore, we can conclude that our
proposed MCMC sampling method properly functions in sampling three-way tables under
a no-three-way interaction model.

4.2.2 Sparse Data
For dimensions 3 × 3 × K for K ≥ 3, the simulation involved ten trials of n = 100, 000
samples. For larger dimensions, we decreased to a single trial but increased the samples
to n = 10, 000, 000. We increased the sample size in order to avoid having the simulation
get stuck at a particular state. We set the burn-in value, B, at 25% of the sample size. The
following table outlines the average p-value from each simulation. Since the tables do not
meet the requirements of the asymptotic distribution, we anticipate that the distribution of
the test statistics do not converge to the χ2 distribution.
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Dimensions Goodness-of-Fit Avg. P-value K–S Test Avg. P-value
3 × 3 × 3 0.2650 0.0000
3 × 3 × 4 0.3449 0.0000
3 × 3 × 5 0.1295 0.0000
3 × 3 × 6 0.0957 0.0000
3 × 3 × 7 0.2361 0.0000
4 × 4 × 4 0.7742 0.0000
5 × 5 × 5 0.9119 0.0000

.

Analysis
Since all of the p-values exceeds the significance threshold at α = .05, we conclude that,
on average, the no-three-way interaction model appropriately fits with the observed data.
Although too difficult to prove mathematically, the simulation also shows that for larger
tables, such as 4 × 4 × 4 shown in Figure B.13 and B.14, the proposed method appears to
sample contingency tables from the conditional state spacewithout bias since the distribution
of test statistics looks unimodal. If not well mixed, then the chain tends to get stuck in
some states and it causes a multimodal distribution. A smooth unimodal distribution shows
strong evidence that we sampled everywhere in the state space.

The K–S Test showed that the χ2 distribution does not accurately summarize the null
distribution of the test statistic for sparse contingency tables, as seen from highly significant
p-values. Based on these results, we can reasonably conclude that using the asymptotic
distribution for sparse tablesmay result incorrect conclusions during goodness-of-fit testing.
We can thus conclude that our proposed MCMC sampling method properly functions in
sampling sparse three-way tables under a no-three-way interaction model for sparse data.
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CHAPTER 5:
Conclusion

Our proposed MCMC sampling method properly functions in sampling three-way tables,
under a no-three-way interaction model, for both sparse and non-sparse tables. In Chapter
4, we proved mathematically that the proposed method can sample a table from anywhere
in the conditional state space without any bias in the case of 3 × 3 × K tables for K ≥ 3.
We believe our algorithm contributes to the development of accurate algorithms for CDA
of sparse data and exact conditional tests.

Our simulation results show strong evidence that for larger tables, such as 4 × 4 × 4 and
greater, the proposed method samples contingency tables from anywhere in the conditional
state space without bias. However, we found it too difficult to mathematically prove that
this algorithm samples without bias. We can deduce that our proposed MCMC method
simulates a Markov chain on the connected transition graph so that it will not produce a
sampling bias by observing the unimodal distribution of test statistics for sparse data; a
not-well-mixed chain generally outputs a multimodal distribution of test statistics.

The results of both simulations allow us to conclude that the no-three-way interaction model
fits well with the three-way tables sampled from the conditional distribution. For non-sparse
tables, the K–S Test shows that the χ2 distribution accurately summarizes the null distribu-
tion of the test statistics, validating our algorithm with established norms. Furthermore, the
K–S Test showed that the χ2 distribution does not accurately summarize the null distribution
of the test statistics for sparse contingency tables. Thus, we can reasonably conclude that
for sparse tables, the χ2 distribution does not accurately approximate the null distribution
of the test statistics.

Since contingency tables will likely remain as a widely used means of analysis for CDA,
we anticipate this algorithm to further the development of sampling and testing methods for
MCMC. Our proposed algorithm can sample any sparse or non-sparse I×J×K contingency
table, under the no-three-way interaction model, in any field of research for conducting
goodness-of-fit tests. For sparse tables, our method estimates the null distribution of test
statistics more accurately than traditional methods that involve asymptotic distributions.
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5.1 Follow-On Work
For follow-on work, we recommend configuring the algorithm to allow the function to sam-
ple tables where some marginal sums equate to zero. Additionally, we recommend applying
this algorithm to real-world data in fields of data and information science. Finally, integrat-
ing this modification with SIS may result in an even more efficient sampling algorithm for
multidimensional contingency tables.
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APPENDIX A:
Simulation R Code

l i b r a r y ( ca t ) ## l i b r a r y f o r MLE IPF

## f u n c t i o n t o check t h a t two arguments sha re t h e same marg ina l
sums

ma r g i n a l s _ check <− f unc t i on ( mat1 , mat2 ) { ## two ma t r i c e s t o
compare as argument s

c o n f i rm a t i o n <− ( ( rowSums ( mat1 ) ==rowSums ( mat2 ) ) && ( colSums (
mat1 ) ==colSums ( mat2 ) ) )

re turn ( c o n f i rm a t i o n )
}

## f u n c t i o n t o check t h a t two arguments sha re t h e same marg ina l
sums i n 3− d imen s i on s

ma r g i n a l s _ check3d <− f unc t i on ( mat1 , mat2 ) { ## two ma t r i c e s t o
compare as argument s

x1 <− apply ( mat1 , c ( 2 , 3 ) , sum )
y1 <− apply ( mat1 , c ( 1 , 3 ) , sum )
z1 <− apply ( mat1 , c ( 1 , 2 ) , sum )
x2 <− apply ( mat2 , c ( 2 , 3 ) , sum )
y2 <− apply ( mat2 , c ( 1 , 3 ) , sum )
z2 <− apply ( mat2 , c ( 1 , 2 ) , sum )
c o n f i rm a t i o n <− ( ( x1==x2 ) && ( y1==y2 ) && ( z1==z2 ) )
re turn ( c o n f i rm a t i o n )

}

## f u n c t i o n t o g e n e r a t e 3− d imen s i o na l t a b l e s , w i t h lambda from
t h e Po i s son d i s t r i b u t i o n f o r samp l ing

## t h i s f u n c t i o n en su r e t h a t g en e r a t e d t a b l e s do no t have any
marg ina l sums t h a t equa l z e r o

gen . t a b l e s <− f unc t i on ( d , lambda =6 , nonze ro=FALSE) { ## d :
l <− prod ( d )
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u <− rpo i s ( l , lambda )
x <− array ( u , d )
sum1 <− apply ( x , c ( 1 , 2 ) , sum )
sum2 <− apply ( x , c ( 1 , 3 ) , sum )
sum3 <− apply ( x , c ( 2 , 3 ) , sum )
i f ( nonze ro==TRUE) {

whi le ( sum ( sum1==0)+sum ( sum2==0)+sum ( sum3==0) > 0) {
u <− rpo i s ( l , lambda )
x <− array ( u , d )
sum1 <− apply ( x , c ( 1 , 2 ) , sum )
sum2 <− apply ( x , c ( 1 , 3 ) , sum )
sum3 <− apply ( x , c ( 2 , 3 ) , sum )

}
}
re turn ( x )

}

## f u n c t i o n t o en su r e a l l c e l l c o un t s are p o s i t i v e
pos_ check <− f unc t i on ( x ) { ## c o n t i n g e c y t a b l e as argument

a l l ( x %in% 0 :max ( x ) )
}

## f u n c t i o n t h a t s e r v e s as a component i n a l l ow i n g n e g a t i v e c e l l
c o un t s

s l a c k _ check <− f unc t i on ( x , k ) {
## x : c o n t i n g e n c y t a b l e
## k : maximum number o f c e l l s a l l owed t o l e a v e t h e c o n d i t i o n a l
s t a t e space

( a l l ( x %in% −1:max ( x ) ) && ( sum ( x==−1) <= k ) )
}

## f u n c t i o n t h a t r e t u r n s t h e proper i n d e x n e c e s s a r y f o r
r andom i z a t i o n o f ma t r i x p e rmu t a t i o n s

## code i n v o l v e s a s imp l e modulus c a l c u l a t i o n so t h a t
p e rmu t a t i o n s remain w i t h i n t h e ma t r i x i n d e x r e g a r d l e s s o f
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ma t r i x s i z e
ge t . index <− f unc t i on ( x , k ) {

## x : random inde x
## k : v a r i a b l e r e p r e s e n t i n g t h e number o f samples
i f ( x%%k == 0) k
e l s e x%%k

}

## f u n c t i o n t o compute z ma t r i x ( b a s i c move )
moves <− f unc t i on ( r , c ) {

## r : number o f rows
## c : number o f columns
k <− min ( c ( r , c ) ) # c o n s t r a i n t v a r i a b l e t o l i m i t z ma t r i x
L <− sample ( 2 : k , 1 )
## no t e : L r e p r e s e n t s t h e r andom i z a t i o n o f p o t e n t i a l z ma t r i x (
b a s i c move ) s i z e s

R <− sample ( 1 : r , L )
C <− sample ( 1 : c , L )
zz <− diag (L )

f o r ( i i n 1 : ( L−1) ) zz [ i , i +1] <− −1
zz [L , 1 ] <− −1

z <− zz
I I <− sample ( 1 : L , 1 )
f o r ( i i n 1 :L ) z [ i , ] <− zz [ ge t . index ( I I + i , L ) , ]
## a l t e r n a t i v e approach ( permute columns ) :
f o r ( i i n 1 :L ) z [ , i ] <− zz [ , ge t . index ( I I + i , L ) ]
z .mat <− array ( rep ( 0 , r∗c ) , c ( r , c ) )
f o r ( i i n 1 :L )

f o r ( j i n 1 :L )
z .mat [R[ i ] , C[ j ] ] <− z [ i , j ]

re turn ( z .mat )
}
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## f u n c t i o n t h a t s u p p o r t s Me t ropo l i s −Has t i ng a l g o r i t hm ;
c a l c u l a t e s r a t i o t e s t s t a t i s t i c

compute . r a t i o <− f unc t i on ( c u r r e n t , p r o p o s a l ) {
## c u r r e n t : i n i t i a l t a b l e
## p ropo sa l : proposed t a b l e
r <− 0
m <− dim ( c u r r e n t ) [ 1 ]
n <− dim ( c u r r e n t ) [ 2 ]
l <− dim ( c u r r e n t ) [ 3 ]
f o r ( i i n 1 :m) {

f o r ( j i n 1 : n ) {
f o r ( k i n 1 : l ) {

## i f ( c u r r e n t [ i , j , k ] ! = p ropo sa l [ i , j , k ] )
r <− r + ( l f a c t o r i a l ( c u r r e n t [ i , j , k ] ) −

l f a c t o r i a l ( p r o p o s a l [ i , j , k ] ) )
}

}
}
re turn (min ( r , 0 ) )

}

## f u n c t i o n t h a t c onduc t s t h e proposed approach ; mcmc samp l ing
p roposed . a l g <− f unc t i on ( x_ c u r r e n t ,N) {

## d i s c l a i m e r : t h i s f u n c t i o n s l i c e s ma t r i c e s by h e i g h t
## x_ c u r r e n t : 3− d imen s i o na l 0−1 t a b l e
## N: number o f d e s i r e d sample ma t r i c e s
sample s <− l i s t ( ) # i n i t i a t e l i s t t o c o l l e c t a c c e p t a b l e
ma t r i c e s ( empty s e t , S )

d <− dim ( x_ c u r r e n t ) # s e t v a r i a b l e as d imen s i on s o f argument
ma t r i x ( l i s t o f i n t e g e r s )

## wh i l e loop t o c o l l e c t a c c e p t a b l e ma t r i c e s a f t e r c ondu c t i n g
mcmc ba s i c moves
i <− 1 # i n i t i a t e c oun t e r v a r i a b l e
sample s [ [ i ] ] <− x_ c u r r e n t
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i <− 2
mat <− x_ c u r r e n t # i n i t i a t e i t e r a t i o n v a r i a b l e t o t a k e
p e rmu t a t i o n s o f t a b l e s w i t h o u t mod i f y i n g o r i g i n a l

s u c c e s s <− FALSE # i n i t i a t e suc ce s s − c o n d i t i o n boo lean v a r i a b l e
whi le ( ! s u c c e s s ) {

t <− sample ( c ( 1 : d [ 3 ] ) , 2 , r ep l a c e=F ) # s e l e c t 2 t ime s t e p s (
re : d i s c l a i m e r )

a <− mat [ , , t [ 1 ] ] # f i r s t da ta t a b l e
b <− mat [ , , t [ 2 ] ] # second da ta t a b l e
z <− moves ( d [ 1 ] , d [ 2 ] ) # s t e p ma t r i x v i a proposed method
x_ s t a r 1 <− a + z # p ropo sa l ma t r i x 1
x_ s t a r 2 <− b − z # p ropo sa l ma t r i x 2
t e s t 1 <− ma r g i n a l s _ check ( a , x_ s t a r 1 ) # en su r e marg ina l sums

match be tween o r i g i n a l and p ropo sa l ma t r i c e s
t e s t 2 <− ma r g i n a l s _ check ( b , x_ s t a r 2 ) # en su r e marg ina l sums

match be tween o r i g i n a l and p ropo sa l ma t r i c e s
## t e s t s 3 and 4 l i m i t t h e number o f −1 c e l l coun t v a l u e s

a l l owed
t e s t 3 <− s l a c k _ check ( x_ s t a r 1 , d [ 1 ] ∗d [ 2 ] ) # en su r e c e l l s f a l l

w i t h i n a c c e p t a b l e range o f s l a c k
t e s t 4 <− s l a c k _ check ( x_ s t a r 2 , d [ 1 ] ∗d [ 2 ] ) # en su r e c e l l s f a l l

w i t h i n a c c e p t a b l e range o f s l a c k
## c a t ( t e s t 1 , " " , t e s t 2 , " " , t e s t 3 , " " , t e s t 4 , " \ n " )
i f ( t e s t 1 && t e s t 2 && t e s t 3 && t e s t 4 == TRUE) { # i f t h e

proposed t a b l e s meet a l l c r i t e r i a
mat [ , , t [ 1 ] ] <− x_ s t a r 1 # r e p l a c e o r i g i n a l t a b l e w i t h

new t a b l e
mat [ , , t [ 2 ] ] <− x_ s t a r 2 # r e p l a c e o r i g i n a l t a b l e w i t h

new t a b l e
i f ( pos_ check (mat ) == TRUE) { # i f a l l c e l l s w i t h i n t h e

new 3−way ma t r i x are b i n a r y
r <− compute . r a t i o ( samples [ [ i −1 ] ] ,mat )
## ca t ( r , " \ n " )
i f ( run i f ( 1 ) <= exp ( r ) )
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sample s [ [ i ] ] <− mat # append new ma t r i x t o t h e
c o l l e c t i o n s e t

e l s e {
sample s [ [ i ] ] <− sample s [ [ i −1] ]
mat <− sample s [ [ i −1] ]

}
}
e l s e { # i f p r opo sa l has n e g a t i v e v a l u e s

sample s [ [ i ] ] <− sample s [ [ i −1] ] # s t a y a t t h e same
s t a t e

}
} e l s e {

sample s [ [ i ] ] <− sample s [ [ i −1] ]
}
i <− i +1
s u c c e s s <− ( l eng th ( s amples ) ==N+1) # s u c c e s s c o n d i t i o n

}
re turn ( s amples )

}

## f u n c t i o n t o c a l c u l a t e MLE f o r t h r e e −d imen s i o na l t a b l e s
MLE. IPF <− f unc t i on ( x ) {

## x : ob s e r v ed t a b l e
m <− c ( 1 , 2 , 0 , 1 , 3 , 0 , 2 , 3 )
f i t 1 <− i p f ( x , marg ins=m, s how i t s =TRUE)
re turn ( f i t 1 )

}

## f u n c t i o n t o c a l c u l a t e Pearson ’ s Chi−square t e s t s t a t i s t i c s
c h i s q S t a t <− f unc t i on ( x0 , e xp e c t e d ) {

## x0 : sample t a b l e
## e x p e c t e d : MLE
c h iMa t r i x <− ( x0−expe c t e d ) ^2 / expe c t e d
s t a t V a l u e <− sum ( c h iMa t r i x )
re turn ( s t a t V a l u e )
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}

m<−7 ; n<−7 ; l<−7 ; # ma t r i x d imen s i on s
## S imu l a t i o n c h a r a c t e r i s t i c s
N <− 10000000 # sample s i z e
B <− . 2 5∗N # number o f burn− i n ( number o f i n i t i a l samp les t o

i g no r e )
S <− 1 # t h i n n i n g va l u e ( i n c r emen t s o f samples t o s k i p )

## C o l l e c t i o n v a r i a b l e s
# t <− 0 # compu ta t i on t im e s f o r each t r i a l
#p1 <− 0 # p−v a l u e s from obse r v ed t a b l e s
#p2 <− 0 # p−v a l u e s from Kolmogorov−Smirnov T e s t f o r each t r i a l

## S imu l a t i o n
obse rved <− gen . t a b l e s ( c (m, n , l ) , nonze ro=TRUE)
mu <− MLE. IPF ( ob s e rved )
f0 <− c h i s q S t a t ( obse rved , mu)
obs <− 0 # i n i t i a l i z e d empty s e t f o r ob s e r v ed Chi−sq t e s t

s t a t i s t i c from sample
s t a r t . t ime <− Sys . t ime ( ) # beg in compu ta t i on t ime
tmp <− p roposed . a l g ( obse rved , N∗S+B) # f i r s t i t e r a t i o n o f t h e

s i m u l a t i o n
obs <− sapply ( tmp , c h i s q S t a t , mu) # c o l l e c t i o n o f t e s t s t a t i s t i c s
end . t ime <− Sys . t ime ( ) # end compu ta t i on t ime
t <− end . time− s t a r t . t ime # du r a t i o n

## An a l y s i s :
## burn t h e f i r s t B samples and t h i n e v e r y S samples ; a d j u s t e d

o b s e r v a t i o n s
## burn− i n & t h i n n i n g m i t i g a t e s t h e e f f e c t s o f b i a s
a d j . obs <− obs [ seq (B , l eng th ( obs ) , S ) ]
## manua l l y c a l c u l a t e p−va l u e ; ob s e r v ed p−va l u e
obs . pva l u e <− sum ( a d j . obs > f0 ) / l eng th ( a d j . obs )
a d j . obs <− obs [ seq (B , l eng th ( obs ) , S ) ]
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## manua l l y c a l c u l a t e p−va l u e ; ob s e r v ed p−va l u e
obs . pva l u e <− sum ( a d j . obs > f0 ) / l eng th ( a d j . obs ) # goodness −of − f i t

t e s t
## h i s t og ram o f o b s e r v a t i o n s f i t t e d w i t h a ch i −square cu rve
wf i l e <− s p r i n t f ( " s p a r s e _ h i s t _7x7x7 . pdf " )
pdf ( f i l e = w f i l e )
h i s t ( a d j . obs , b r e a k s =100 , p r o b a b i l i t y =T , x l ab =" Observed ␣Chi−

Squared ␣ S t a t i s t i c s " ,
main="Chi−Square ␣ Den s i t y ␣Graph␣ f o r ␣7x7x7␣ Spa r s e ␣ Con t ingency ␣
Tab le " )

x <− pchisq ( f0 , (dim ( ob s e rved ) [1 ] −1)∗ (dim ( ob s e rved ) [2 ] −1)∗ (dim (
ob s e rved ) [3 ] −1) , lower . t a i l =FALSE)

## e s t a b l i s h t h e s t anda rd curve f o r a ch i −sq d i s t r i b u t i o n f o r
compar i son

curve ( dchisq ( x , (dim ( ob s e rved ) [1 ] −1)∗ (dim ( ob s e rved ) [2 ] −1)∗ (dim (
ob s e rved ) [3 ] −1) ) , c o l= ’ r ed ’ , add=T)

## d i a g n o s t i c s
t e s t . s e t <− rch i sq ( 1000 , ( dim ( ob s e rved ) [1 ] −1)∗ (dim ( ob s e rved )

[2 ] −1)∗ (dim ( ob s e rved ) [3 ] −1) )
dev . o f f ( )

## R e s u l t s
t # s im u l a t i o n d u r a t i o n
obs . pva l u e # r e s u l t s o f t h e Goodness−of −F i t T e s t ( Nu l l Hypo t h e s i s

: No−Three−Way I n t e r a c t i o n )
ks . t e s t ( t e s t . s e t , a d j . obs ) $p . v a l u e # r e s u l t s o f t h e ks . t e s t ( n u l l

h y p o t h e s i s : Chi−squared d i s t r i b u t i o n )

## S imu l a t i o n s f o r 10 t r i a l s
# f o r ( j i n 1 : 10 ) { # 10 t r i a l s o f s i m u l a t i o n s
# ob se r v ed <− gen . t a b l e s ( c (m, n , l ) , nonzero=TRUE)
# mu <− MLE. IPF ( ob se r v ed )
# f 0 <− c h i s q S t a t ( observed , mu)
# obs <− 0 # i n i t i a l i z e d empty s e t f o r ob s e r v ed Chi−sq t e s t

s t a t i s t i c from sample
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# s t a r t . t ime <− Sys . t ime ( ) # beg in compu ta t i on t ime
# tmp <− proposed . a l g ( observed , N∗S+B) # f i r s t i t e r a t i o n o f t h e

s i m u l a t i o n
# obs <− s a pp l y ( tmp , c h i s q S t a t , mu )
# end . t ime <− Sys . t ime ( )
# t [ j ] <− end . t ime − s t a r t . t ime
# ## T r i a l a n a l y s i s :
# ## burn t h e f i r s t B samples and t h i n e v e r y S samples ; a d j u s t e d

o b s e r v a t i o n s
# ## burnn ing & t h i n n i n g m i t i g a t e s t h e e f f e c t s o f b i a s
# ad j . obs <− obs [ seq (B , l e n g t h ( obs ) , S ) ]
# ## manua l l y c a l c u l a t e p−va l u e ; ob s e r v ed p−va l u e
# obs . p va l u e <− sum ( ad j . obs>f 0 ) / l e n g t h ( ad j . obs )
# p1 [ j ] <− obs . p va l u e
# ## h i s t og ram o f o b s e r v a t i o n s f i t t e d w i t h a ch i −square cu rve
# w f i l e <− s p r i n t f ( " s pa r s e _ h i s t _6 x6x6 _%d . pd f " , j )
# pd f ( f i l e = w f i l e )
# h i s t ( ad j . obs , b r eak s =100 , p r o b a b i l i t y=T , x l ab="Observed Chi−

Squared S t a t i s t i c s " ,
# main="Chi−Square Den s i t y Graph f o r 6 x6x6 Spar se Con t i ngency

Tab le " )
# x <− pch i s q ( f0 , ( dim ( ob se r v ed ) [1] −1)∗ ( dim ( ob se r v ed ) [2] −1)∗ ( dim

( ob se r v ed ) [3] −1) , lower . t a i l =FALSE )
# ## e s t a b l i s h t h e s t anda rd curve f o r a ch i −sq d i s t r i b u t i o n f o r

compar i son
# curve ( d ch i s q ( x , ( dim ( ob se r v ed ) [1] −1)∗ ( dim ( ob se r v ed ) [2] −1)∗ ( dim

( ob se r v ed ) [3] −1) ) , c o l =’ red ’ , add=T )
# ## d i a g n o s t i c s
# t e s t . s e t <− r c h i s q (1000 , ( dim ( ob se r v ed ) [1] −1)∗ ( dim ( ob se r v ed )

[2] −1)∗ ( dim ( ob se r v ed ) [3] −1) )
# dev . o f f ( )
# p2 [ j ] <− ks . t e s t ( t e s t . s e t , ad j . obs ) $p . v a l u e }
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APPENDIX B:
Simulation Results

Every histogram in this appendix displays the distribution of the test statistics from each
simulation. The red line denotes the χ2 distribution. Note that distribution of test statistics
from non-sparse data fits well with the χ2 distribution, indicating that the χ2 distribution
accurately estimates the null distribution of test statistics. However, the distribution of
the test statistics from sparse data clearly does not fit the asymptotic distribution. Since
the distribution does not converge to the asymptotic distribution, we should not use the
asymptotic distribution as the null distribution of test statistics for sparse data. These
graphs supplement the analysis of the results as described in Sections 4.2.1 and 4.2.2.
Please refer to Appendix A for the codes used to generate the simulations.

B.1 Non-sparse Data Histograms
This section displays the outputs of the simulations described in Section 4.2.1. The simula-
tion ran for ten trials, each with a sample size of n = 10, 000 and burn-in value of B = 2, 500.
These simulations provide strong evidence that our proposed algorithm aligns with histor-
ical findings from traditional methods. The histograms show that the null distribution of
the test statistic matches the χ2 distribution, per established norms. In other words, the
distribution of the test statistics converges to the χ2 distribution.
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B.1.1 3 × 3 × 3 Non-Sparse Tables

Chi−Square Density Graph for 3x3x3 Contingency Table
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Figure B.1. Histogram of 3× 3× 3 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.

60



B.1.2 3 × 3 × 4 Non-Sparse Tables

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

Chi−Square Density Graph for 3x3x4 Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

Figure B.2. Histogram of 3× 3× 4 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.
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B.1.3 3 × 3 × 5 Non-Sparse Tables
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Figure B.3. Histogram of 3× 3× 5 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.
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B.1.4 3 × 3 × 6 Non-Sparse Tables
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Figure B.4. Histogram of 3× 3× 6 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.
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B.1.5 3 × 3 × 7 Non-Sparse Tables
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Figure B.5. Histogram of 3× 3× 7 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.
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B.1.6 4 × 4 × 4 Non-Sparse Tables
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Figure B.6. Histogram of 4× 4× 4 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.
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B.1.7 5 × 5 × 5 Non-Sparse Tables
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Figure B.7. Histogram of 5× 5× 5 Tables’ Distribution of Test Statistics for
all trials. The distribution converges to the χ2 distribution, as expected for
non-sparse data. The red curve indicates the χ2 distribution.

B.2 Sparse Data Histograms
This section displays the outputs of the simulations described in Section 4.2.2. For 3×3×K

tables, the simulation ran for ten trials, each with a sample size of n = 1, 000, 000 and burn-
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in value of B = 250, 000. We increase the sample size because of the tendency for states
to get stuck in the same state for sparse tables, requiring an increased number of samples
in order to accurately capture the distribution. For larger tables, we increase the sample
size further to n = 10, 000, 000 but only run the simulation for a single trial due to run
time. Although too difficult to prove mathematically, the simulations show that for larger
tables, the proposed method appears to sample contingency tables from the conditional state
space without bias since the distribution of test statistics looks unimodal. If not well mixed,
then the chain tends to get stuck in some states and it causes a multimodal distribution. A
smooth unimodal distribution shows strong evidence that we sampled everywhere in the
state space. These simulations provide strong evidence that the distribution of test statistics
do not converge to the χ2 distribution, supporting our claim that traditional approaches to
analyzing sparse data may yield inaccurate or biased results.
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B.2.1 3 × 3 × 3 Sparse Tables
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Figure B.8. Histogram of 3 × 3 × 3 Tables’ Distribution of Test Statistics
for all trials. The red curve indicates the χ2 distribution. Since the distri-
bution does not converge to the χ2 distribution, we should not use the χ2

distribution as the null distribution of test statistics for sparse data.
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B.2.2 3 × 3 × 4 Sparse Tables
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Figure B.9. Histogram of 3 × 3 × 4 Tables’ Distribution of Test Statistics
for all trials. The red curve indicates the χ2 distribution. Since the distri-
bution does not converge to the χ2 distribution, we should not use the χ2

distribution as the null distribution of test statistics for sparse data.
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B.2.3 3 × 3 × 5 Sparse Tables
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Figure B.10. Histogram of 3 × 3 × 5 Tables’ Distribution of Test Statistics
for all trials. The red curve indicates the χ2 distribution. Since the distri-
bution does not converge to the χ2 distribution, we should not use the χ2

distribution as the null distribution of test statistics for sparse data.
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B.2.4 3 × 3 × 6 Sparse Tables
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Figure B.11. Histogram of 3 × 3 × 6 Tables’ Distribution of Test Statistics
for all trials. The red curve indicates the χ2 distribution. Since the distri-
bution does not converge to the χ2 distribution, we should not use the χ2

distribution as the null distribution of test statistics for sparse data.
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B.2.5 3 × 3 × 7 Sparse Tables
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Figure B.12. Histogram of 3 × 3 × 7 Tables’ Distribution of Test Statistics
for all trials. The red curve indicates the χ2 distribution. Since the distri-
bution does not converge to the χ2 distribution, we should not use the χ2

distribution as the null distribution of test statistics for sparse data.

B.2.6 4 × 4 × 4 Table
Figure B.13 displays the distribution of χ2 test statistics for a single trial.
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Chi−Square Density Graph for 4x4x4 Sparse Contingency Table
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Figure B.13. This figure displays the distribution of the χ2 Test Statistics
for 10 million sampled tables. The red curve indicates the χ2 distribution.
Since the distribution does not converge to the χ2 distribution, we should
not use the χ2 distribution as the null distribution of test statistics for sparse
data.

B.2.7 5 × 5 × 5 Table
Figure B.14 displays the distribution of χ2 test statistics for a single trial.
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Chi−Square Density Graph for 5x5x5 Sparse Contingency Table

Observed Chi−Squared Statistics

D
en

si
ty

40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

Figure B.14. This figure displays the distribution of the χ2 Test Statistics
for 10 million sampled tables. The red curve indicates the χ2 distribution.
Since the distribution does not converge to the χ2 distribution, we should
not use the χ2 distribution as the null distribution of test statistics for sparse
data.
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