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The unchecked spread of misinformation is recognized as an
increasing threat to public, scientific and democratic health.
Online networks are a contributing cause of this spread, with
echo chambers and polarization indicative of the interplay
between the search behaviours of users and reinforcement
processes within the system they inhabit. Recent empirical
work has focused on interventions aimed at inoculating
people against misinformation, yielding success on the
individual level. However, given the evolving, dynamic
information context of online networks, important questions
remain regarding how such inoculation interventions interact
with network systems. Here we use an agent-based model of
a social network populated with belief-updating users. We
find that although equally rational agents may be assisted by
inoculation interventions to reject misinformation, even among
such agents, intervention efficacy is temporally sensitive. We
find that as beliefs disseminate, users form self-reinforcing
echo chambers, leading to belief consolidation—irrespective of
their veracity. Interrupting this process requires ‘front-loading’
of inoculation interventions by targeting critical thresholds of
network users before consolidation occurs. We further
demonstrate the value of harnessing tipping point dynamics
for herd immunity effects, and note that inoculation processes
do not necessarily lead to increased rates of ‘false-positive’
rejections of truthful communications.
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1. Introduction

The spread of misinformation—both online and offline—is a significant and growing societal challenge
with negative impacts on science, democracy and public health [1]. For example, misinformation about
climate change undermines people’s confidence in the scientific consensus [2,3], disinformation spread
on WhatsApp has led to mob lynchings [4], 5G conspiracy theories have motivated people to set
phone masts ablaze [5], and susceptibility to misinformation has been linked to reduced willingness
to get vaccinated against COVID-19 [6], potentially compromising future herd immunity [7]. In
response, researchers have emphasized the role of behavioural science in mitigating the spread of
misinformation [8]. Although a variety of approaches have been proposed to counter misinformation
(see [9] for a recent review), a particularly prominent approach is to develop interventions (such as
games, messages, infographics or short videos) that build psychological resistance against unwanted
persuasion, an approach known as inoculation theory [10–12]. However, while the principle of
cognitive inoculation has been shown to be effective at conferring psychological resistance against
misinformation at the individual level, for example in the context of COVID-19 [13], political
disinformation [14] and climate change [15], a crucial open question with significant theoretical and
applied importance is to what extent ‘psychological herd immunity’ against misinformation is feasible
[13,16]. To address this challenge, we integrate inoculation theory within an agent-based model
(ABM) to explore the effects of applying psychological inoculation on the spread of misinformation,
belief polarization and the formation of echo chambers [17–19]. ABMs allow for implementation of
cognitive, social and structural elements related to the spread of misinformation and enable
researchers to test the effectiveness of the inoculation model on a societal scale.
1.1. Inoculation theory
Misinformation is known to spread in social networks much like a viral pathogen. To capture this,
models from epidemiology, such as the SIR (susceptible-infected-recovered) model, are increasingly
used to study how misinformation may cascade [20–23]. One possible solution to the misinformation
problem is to psychologically immunize people against misinformation [24]. Indeed, researchers have
asked ‘how feasible it is to try to make people “immune” to misinformation’ [25, p. 1]. Inoculation
theory is a model from social psychology inspired by the biomedical analogy [12,26]. Just as
administering a weakened dose of a viral pathogen triggers the production of antibodies to help fight
off future infection, inoculation theory posits that the same can be achieved with information. By pre-
emptively exposing people to sufficiently weakened doses of a persuasive attack, immunity to
persuasion can be conferred. Inoculation theory works through a process known as ‘prebunking’ (i.e.
refuting false information in advance), which helps people fortify their cognitive defences. Meta-
analyses have shown that inoculation theory is one of the most robust frameworks for countering the
persuasive efficacy of misinformation [10].

Inoculation theory has only recently been applied to the context of misinformation, but applications
have varied from immunizing people against misinformation about climate change [2,3,15], immigration
[27] and extremism [28,29] to conspiracy theories [5] and misinformation about COVID-19 [13,30]. For
reviews of this burgeoning literature, we refer to [16] and [11].

Typically, inoculation messages or campaigns forewarn people of an impending attack and pre-
emptively refute specific myths. For example, to get ahead of voting misinformation, Twitter
implemented a prebunking campaign based on inoculation theory in advance of the 2020 Presidential
election where they forewarned all US users that they might come across false information about
voting by mail on their platform. This inoculation contained a specific refutation; ‘Election experts
confirm that voting by mail is safe and secure, even with an increase in mail-in ballots’ [31].

However, it is difficult to ‘prebunk’ or ‘inoculate’ people against every single myth. For this reason,
inoculation theory has recently seen major advances to improve scalability of the cognitive ‘vaccine’ by
exploring general techniques that underlie misinformation production. A series of studies show that
revealing the techniques of manipulation—including tactics such as polarizing people, using moral-
emotional language, relying on fake experts and creating conspiracy theories—can effectively
inoculate people against misinformation that they have not seen before, consistent with the notion of
attitudinal ‘cross-protection’ [32]. These technique-based inoculations were delivered in the form of
games, such as Bad News, Go Viral!, Radicalise and Harmony Square, which simulate a social media
environment and pre-emptively expose people to weakened doses of the strategies used in the
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production of misinformation. These games have shown to improve people’s ability to recognize

misinformation, boost people’s confidence in their own truth-discernment abilities, and reduce self-
reported willingness to share misinformation in people’s social networks [13,14,29,33–36], effectively
encouraging people to actively generate their own misinformation ‘antibodies’ [14,33]. We note here
that an effect size of d = 0.3 is the lower-bound effect size for a typical inoculation intervention in the
field, which forms the basis for a citizen’s ability to detect misinformation in the simulation described
below. Such general or ‘broad-spectrum’ immunity against future exposure to misinformation through
evidence-based interventions ties into research conducted within the sphere of information science,
and specifically information behaviour [37]. Researchers in this field have argued for a convergence
between research and practice when it comes to designing interventions that seek to improve how
people search for and use information, including news sources [38]. For example, previous research
into this area has found that an appropriate learning and teaching intervention that incorporates
aspects of digital and information literacy can engender ‘pro-active scepticism’, which enhances
people’s information discernment and enables them to make better news consumption and sharing
decisions [39].

Yet, recent reviews have identified one major open question: how to move from the development of a
cognitive vaccine to population-level herd immunity [11,16]. Indeed, scholars have argued that the most
important yet underdeveloped area of inoculation theory research is how the vaccine can spread from
one individual to the next and unfold within a social network [24,40]. It has been hypothesized that
cognitive inoculation can spread beyond those who have directly received the ‘vaccine’ through word-
of-mouth communication within social networks [40].

At present, little computational research exists on inoculation theory that explores how the spread of
inoculation in a social media environment might confer population-level herd immunity (for exceptions
see [20,25]). This is a complex question. First, inoculation interventions are known to decay over time
[10,34]. Second, misinformation and inoculation techniques may spread socially through bottom-up
networks. Given known decay rates and effect sizes of inoculation interventions, what percentage of
an online population needs to be inoculated so that misinformation no longer has a chance to
persuade people? What are the characteristics of the spread of misinformation in an online network
when people can share the psychological inoculation they receive versus when they cannot? What role
do factors play such as prior beliefs and trust in the message? To what extent are these findings
dependent on the structure of the social network? And is it more efficient to inoculate a large
percentage of the population up front as part of an inoculation campaign or to let the vaccine diffuse
organically throughout a population over time? The current research seeks to provide preliminary
answers to these important yet unanswered questions. Because these questions rely on a complex and
dynamic system of interacting agents [25], we use an agent-based model (ABM) in the current study
to explore these questions.

1.2. Agent-based models
Due to dynamic interactions between people over time, social media platforms can be described as
complex. A complex system is computationally irreducible [41]. This means that the evolution of a
macro state that emerges from a system cannot be fully expressed in equations, even if a low-level
understanding exists. Complex problems cannot be described or predicted by ‘multiplying-up’ each
component in isolation [42]. ABMs can be used to capture dynamics and emergent properties of
complex systems, explore the consequences of cognitive and social psychological models and simulate
the impact of policy ([18], see also [43], for a discussion of ABMs and policy).

ABMs are computer-simulated multi-agent systems that describe the behaviour of and interactions
between individual agents operating in synthetic environments [44,45]. ABMs have been used in
economics [46], the social sciences ([47,48], see [49] for an overview) and ecology [50]. They are
interactive systems [51] with self-organizing capacities [52]. ABMs consist of three general elements:
agents (the individual actors within the model), environment (the synthetic world in which the agents
(inter)act) and interactions (connections between agents within the model). This makes them ideal to
explore the above questions, as they can represent cognitive features (e.g. belief revision and impact of
inoculation), social features (e.g. passing information or inoculation techniques to other agents in their
network) and interventions (e.g. different inoculation training interventions).

ABMs are particularly relevant to study how misinformation and inoculation methods may spread in
social networks, as this relies on individual, social and structural factors. On the individual and cognitive
level, agents revise their beliefs when encountering new information, on the social level, they may prune
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their networks and potentially share inoculation techniques with their friends, and on the structural level,

broadcasters and the structure of the network itself impacts citizen beliefs. To test how psychological
inoculations may impact these complex and dynamic information systems, we integrate inoculation
theory within an ABM. Previous work has used ABMs to explore belief diffusion [53], cascading
effects [19], echo-chamber formation [17,51], micro-targeting [54,55], how climate change scepticism
can spread in social networks [56] and emergent polarization [57].
lishing.org/journal/rsos
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2. Model description, assumptions and settings1

We populate the model with two agent types: citizens and broadcasters. Citizens are exposed to
information from both broadcasters and peers. Citizens seek to communicate their beliefs honestly
and to the best of their ability. We note here that communication is captured via a mechanism of
public ‘posting’ information, to which one’s peers may or may not attend. Comparatively,
broadcasters may share information for various reasons, including purposeful biasing or
misinforming, as well as for accuracy or truthfulness. Citizens are randomly allocated across a two-
dimensional space where they can communicate and form linked networks with each other. These
networks are formed by citizens as they search for information over the course of the simulation run,
thus localized networks are constructed organically in response to their evolving internal and external
information contexts, rather than assumed as pre-existing structures. These localized networks are
assessed when determining echo-chamber effects.

Citizens evaluate new information in two ways: first, they assess the subjective perception of the
credibility of the source (see Method/technical appendix) and dismiss information from sources that
are deemed not to be credible. Second—and novel to this work—they assess the information for signs
of misinformation. In line with work on inoculation against misinformation techniques [13–15],
communicated information carries with it misinformation ‘cues’ (given a numerical value in the
model, in the real world these might be, inflammatory language, conspiratorial reasoning, or logical
fallacies such as ad hominem attacks; see [35]—a full discussion of the types of misinformation and
persuasion cues is beyond the scope of the current paper, but has been studied in areas such as
cognitive psychology [58], social psychology [59] and rhetoric [60]) that are correlated with the
likelihood of information being false or misrepresentative. In line with inoculation theory, the citizens
will reject information they deem to be misleading (i.e. misinformation) on the basis of detected
accompanying ‘cues’. The likelihood of a citizen detecting these cues is a function of the number of
cues attached to the communication, the baseline sensitivity of the citizen to misinformation cues, and
the citizen’s exposure to inoculation training. In our model, this process is informed by empirical work
on inoculation training (e.g. [13,35]), and the parameters of training are either calibrated to existing
empirical data (e.g. training efficacy) or manipulated between simulations to explore our hypotheses
(e.g. how many citizens to inoculate in order to achieve ‘herd immunity’ against misinformation, how
many times they require the training, and over what time period?). The model leaves open the option
for false positives, such that citizens may misidentify well-intentioned communications as
misinformation (e.g. if they are ‘over-sensitive’ to cues), reflecting a real-world possibility of
inoculation training initiatives [13].

If citizens do not reject the communicated information (based on the above), they update their beliefs
in a Bayesian manner in light of the information they have received, using the perceived credibility of the
source, and the coherence of this information with their current beliefs, according to the Bayesian Source
credibility model (see Method/technical appendix). Along with the update of their beliefs (i.e. what they
believe), citizens similarly update their confidence in their current beliefs (i.e. to what degree do they believe
they are correct in their current belief ). We note here that our definition of equally ‘rational’ agents is based
on agents’ use of this inaccuracy minimizing belief-updating Bayesian model (e.g. [61]), and their related
search criteria to prefer sources deemed credible (again representing inaccuracy minimization
motivations)—cognitive machinery implemented and used across all citizens equally.

Citizens then decide whether to share information with their peers, and if so, whether to simply pass
on the information they were exposed to (e.g. sharing the link to the same news article), or their own
generated opinion (which is a product of all pieces of information the citizen has encountered). This
decision-making process is a function of their perceived credibility of the source of the information
1We describe the technical and formal components of the model in the Method/technical appendix section. Here, we describe the
components informally.
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they have assessed, and their own confidence in their belief, wherein sources the citizen deems highly

credible are more likely to be directly shared, and higher confidence citizens are more likely to want
to pass on their own opinions (see Method/technical appendix). As a result, information shared (or
‘posted’) by citizens will be found and integrated by a number of fellow citizens (i.e. a successful
‘communication’) within a given time point as a function of how popular (or acceptable) the content
of their shared information may be. More precisely, on the one hand less acceptable items of shared
information will have a smaller potential audience of searching citizens, but among those searchers
will be found by a higher percentage of that audience (i.e. in the extreme, there is a smaller audience,
but fewer public declarations for that audience to find). On the other hand, a more broadly acceptable
item of information has the potential to reach a far larger audience, but that audience will have a far
larger number of sharing citizens to choose between (i.e. in the mainstream, someone sharing
information will have a smaller share of a larger potential audience).

Finally, having decided to share (or not) a piece of information with their peers, citizens lastly seek to
prune their local networks, such that any peers who are actively sharing information that runs contrary
to the updated beliefs of this citizen (i.e. information that is now deemed not credible) are now severed
from the immediate network of this citizen.

Thus, within each simulation a ‘round’ consists of each citizen receiving information, evaluating that
information, updating their beliefs in light of this new information (if it passes evaluation), deciding on
this basis whether to share this information (or their own, updated beliefs) with others, and pruning their
networks in light of their updated beliefs. The simulation continues until either a predetermined end
point has been reached (in the current simulations, this is set at 25 ‘rounds’), or until all citizens are
confident that they are correct in their individual beliefs.

Within this context, we manipulate two central variables. First, the influence of inoculation training at
the start of a round, and second, the influence of broadcasters sharing (mis)information at the start of a
round.

2.1. Operationalizing inoculation in the agent-based model
Informed by recent empirical work, we deploy different forms of inoculation training aimed to reduce
susceptibility to misinformation. Inoculation training takes place in the model at the start of a
simulation ‘round’, where a randomly selected number of citizens (this number is manipulated)
receive training. The number of participants targeted for training is manipulated (InocNum), along with
how often training occurs during the simulation (InocFreq).

This training raises a citizen’s sensitivity to misinformation cues by a fixed amount (InocEffect = 0.3,
based on effect sizes of anti-misinformation inoculation interventions reported in previous inoculation
research; see [13,14]). This effect decays linearly for each time point after training, such that decay was
fixed at 0.075 per time point after an initial 2 time point period for the current simulations (this
period and subsequent decay is informed by results reported by [15]). Lastly, we manipulate whether
those citizens that have received training will share their training with peers (fixed at 5% for current
simulations, see [13]). Peer-to-peer sharing of the inoculation training (if enabled) also occurs at the
start of a simulation round (i.e. prior to information communication/sharing functions).

2.1.1. Broadcasts

Broadcasters within the model operate by disseminating their ‘belief’ (i.e. (mis)information) to all citizens
within the network in the communication phase of a simulation round. How often a broadcaster
communicates (BCFreq; i.e. how often does a round include a broadcaster communicating, rather than
just peer-to-peer sharing) is manipulated. In the current simulations, we implement two types of
broadcaster strategies (BCStrat): an honest broadcaster that communicates a belief value corresponding
to the ground truth (i.e. 0.5 in the current simulations), or a biased broadcaster that communicates a
belief value deviating from the ground truth (i.e. 0.75). Aside from the communicated value, these
two broadcaster strategies operate in the same manner. When both broadcasters are present in the
simulation, they take turns to communicate with the citizenry, such that only one broadcaster
communicates during any one simulation round.

When a broadcaster communicates, along with the belief value, it also generates accompanying
misinformation cues (represented along a single dimension between 0 and 1). These cues are
determined based on the degree to which the intended communication belief value deviates from the
broadcaster’s understanding of the typical (i.e. average) audience belief value, such that
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communications that deviate further from audience expectations are correlated with increasing

misinformation cue deployment (see Method/technical appendix for details). As mentioned in the
above, citizens use these cues, along with the perceived credibility of the broadcaster, to evaluate the
broadcasted information, either dismissing it, or taking that information forward to update their
beliefs. If a citizen decides to directly share a broadcaster’s content, then the misinformation cues
attached to the original broadcast are preserved when shared with peers.

In summary, each citizen starts off with a prior belief about the world (µown), based on independent
samples from a parent distribution, a baseline confidence in their belief (P(H|E), fixed to 0.05 for these
simulations), and a baseline sensitivity to misinformation cues (BaseMCS). In this way, citizens are
heterogeneous in their beliefs and their baseline sensitivity to misinformation, but homogeneous in
their (lack of) confidence at the beginning of the simulation. In the current model and simulation
runs, misinformation is only shared by broadcasters. Of course, in actual social networks, bad faith
actors who willingly distribute mis- and disinformation is a significant challenge [62]. Extending
malicious intentions to the citizenry would represent an additional challenge. As such, in the current
simulations, citizens rationally share information they think is most credible. Future work should
extend the challenge of the spread of misinformation in social networks to also include bottom-up
contributions from bad faith actors, monetized incentives for spreading disinformation, and the
spread of malinformation. However, these dynamics go beyond the scope of the current paper.

2.1.2. Manipulations

2.1.2.1. Inoculation training manipulations
To determine the potential interplay between complex system dynamics and inoculation training, we
initially deploy three conditions to test inoculation training effects. First, we have a baseline No
Training condition, where there is no training conducted throughout the simulation (i.e. InocFreq = 0;
InocNum = 0). This condition serves as a baseline comparison for the other training conditions. Second,
we have an Upfront training condition, where a one-off percentage of the citizenry receives the
inoculation training at the beginning (in this case, 60% of citizens, i.e. InocFreq = 1; InocNum = 60%).
Third, we contrast this with a Staggered training condition, where the same percentage of citizenry is
trained, but spread over multiple, smaller training sessions (in this case, three sessions of training 20%
of citizens, with one occurring every five time points—i.e. initial, 5th and 10th ‘rounds’; InocFreq = 3;
InocNum = 20%). These conditions allow us to investigate the efficacy of training when considering the
temporal dynamics in play within the social network (e.g. echo-chamber formation over time,
preventing further intervention).

2.1.2.2. Broadcaster manipulations
We manipulate three broadcaster scenarios. First, when there is only a single, honest broadcaster (i.e.
BCStrat =Honest, where the broadcasted value = 0.5), communicating twice every three time points.
Second, when there is only a single, biased broadcaster (i.e. BCStrat = Biased, where the broadcasted
value = 0.75), communicating twice every three time points (i.e. BCFreq = 2/3). Third, when there is
both an honest and a dishonest broadcaster competing, with each communicating once every three time
points (staggered, such that each broadcaster communicates on a separate time point, with a third
time point left for peer-to-peer communication only). Thus, the three broadcaster conditions are
Honest, Biased and Competing.

2.1.2.3. Citizen manipulations
We manipulate two citizen scenarios. To understand the potential efficacy of misinformation (and
training to inoculate against it), it is important to understand the impact of how sensitive citizens are
to misinformation at a baseline level. Accordingly, we manipulate three levels of baseline citizen
misinformation cue sensitivity, Low (BaseMCS = 0.05), Medium (BaseMCS = 0.2), and High (BaseMCS = 0.35).
These settings cover a broad range of hypothetical values, covering sensitivity values informed by
empirical work [13–15].

2.1.3. Dependent variables

We are interested in three primary dependent variables to assess the impact of inoculation training. Each
is measured over the entire time period of the simulation (i.e. 25 time points).
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2.1.3.1. The distribution of citizens’ beliefs

The belief value of each citizen (µown) is recorded within a distribution, allowing us to determine the
dispersion or clustering of beliefs across the entire citizen population. This is important to inform
understandings of global versus local patterns of behaviour (e.g. degrees of network coalescence).

2.1.3.2. The purity of citizens’ local networks
This measure takes the amount of agreement within the local (i.e. direct) network of a citizen, using the
squared difference in belief values between a citizen and their directly connected peers. Inverting this
value (1 – value), 1 corresponds to complete agreement between a citizen and their directly connected
peers, while 0 corresponds to maximal disagreement. The mean purity across citizens is then used as
an indicator of echo-chamber formation (i.e. epistemic purity is a key indicator of echo chambers).

2.1.3.3. The numbers of misinformation rejections and false positive rejections
As the simulation progresses, we record the number of times citizens, having received a communication
that has passed credibility evaluations, decide to reject that communication on the basis of
misinformation cues. We additionally split these rejections on the basis of their proximity to a ground
truth (for now, set as ±5% from the ground truth, 0.5), wherein those sufficiently close to the ground are
considered a false positive rejection (i.e. an erroneous rejection of the ‘truth’), while communications
with a value outside of this proximity are considered correct rejections of misinformation.

Further, we are also interested in three secondary dependent variables to more comprehensively
check inoculation efficacy, and better understand the context of citizen beliefs. These are:

2.1.3.4. The percentage of citizens who have received the training
To monitor the effects of inoculation training initiatives, we record the percentage of the population of
citizens that have received the training—irrespective of whether this inoculation has been provided to
a citizen externally, or shared laterally between citizens.

2.1.3.5. The levels of misinformation cue sensitivity among citizens
Across the simulation, we measure the average misinformation cue sensitivity of citizens. This allows us
to investigate how levels of cue sensitivity are correlated with changes in the distribution of beliefs
among citizens (e.g. in light of attempted dishonest broadcasts). It is further important to keep track
of this sensitivity, given its complexity: citizens have a baseline sensitivity, modified by training, and
the effect of that training decays over time (but may be refreshed by further training).

2.1.3.6. The confidence citizens have in their beliefs
At each time point, we measure the confidence citizens have in their current belief (P(H|E)) being
the truth. Confidence is updated according to the Bayesian source credibility model (see Method/
technical appendix) each time a citizen has received information that has passed their evaluation
checks. As the degree to which citizens will engage in further search and updating is dictated by their
level of confidence (i.e. a citizen confident they are correct, will not search out further information: see
Method/technical appendix), it is useful to measure how quickly confidence builds to determine
factors like receptiveness to new information.

For all dependent variables, the simulation approach allows us to look at how these effects unfold
over time. In our simulations, each parameter permutation was run 100 times, with the results
averaged for plotting. The model was implemented in NetLogo v. 6.0.4 [63], and simulations were
conducted using the RNetLogo package in R [64].
3. Results
Simulations were conducted using a broad range of parameter values, and a range of dependent
variables were measured for each permutation. For the sake of brevity, not all results are reported
here in the main text. The remaining results not reported in the main text are reported in the
electronic supplementary materials (available at https://osf.io/vjk64/). For the sake of clarity, we
present here:

https://osf.io/vjk64/
https://osf.io/vjk64/
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Findings regarding the levels of misinformation cue sensitivity among the citizenry, to investigate the
direct impact of inoculations on misinformation sensitivity; the corroborative percentage of the network
that has received training is reported in the appendix. To follow this through to the evaluative process
impact, we investigate a subset of the misinformation rejection and false positive rejection data
(‘medium’ baseline citizen sensitivity to misinformation); with the remaining conditions (‘low’ and
‘high’ baseline citizen sensitivity to misinformation) detailed in the electronic supplementary materials.

Next, to investigate the impact of evaluative process changes on the beliefs of citizens, we investigate
the same subset of the belief distribution data (with remaining baseline citizen sensitivity to
misinformation conditions also reported in the electronic supplementary materials).

Given the importance of temporal sensitivity to the belief formation process (as found in previous
work, e.g. [17]), confidence citizens have in their beliefs over time is also investigated here. The
related purity of citizens local networks, though briefly explained in the main text, is more
substantially reported in the electronic supplementary materials, appendix.

3.1. The direct impact of psychological inoculations (manipulation check)
To determine the direct impact of inoculations on the intermediary psychological component (i.e. citizen
sensitivity to misinformation), we investigate the misinformation cue sensitivity of citizens over the
course of the simulation. This serves in part as a manipulation check and also explores the temporal
dynamics of a citizenry that can also share inoculation training with one another. Figure 1 shows that
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when there is no inoculation training (solid lines, figure 1), the baseline sensitivity condition (columns,

figure 1) dictates the constant level of misinformation cue sensitivity throughout the simulation.
Both training regimes (60% at time point 1, versus 20% over three time points—1, 5 and 10) yield

similar levels of misinformation cue sensitivity—regardless of baseline sensitivity or broadcaster
condition, their pathways to reaching this ‘saturation point’ differ. This ‘saturation point’ is affected by
the baseline misinformation cue sensitivity and the broadcaster condition. More precisely, the higher
the baseline sensitivity, the more effective (i.e. the larger the increase) the training is on the final
‘saturation point’, and the more predominant a biased broadcaster is (i.e. from no biased broadcaster,
through competing with a truthful broadcaster, to there only being a biased broadcaster; top to
bottom row of figure 1), the higher still this ‘saturation point’ reaches. Citizen activity is the likely
reason for this. When citizens have a higher level of baseline misinformation cue sensitivity, it
produces a higher intention rate of re-sharing the inoculation (citizens who are more attuned already
to detecting misinformation are also more intent upon dissemination of assistive information). Second,
when citizens are faced with biased broadcasters, there are longer periods of deliberation on average
among them (as there is more belief-updating required to move the priors to the biased posterior).
This longer period of active engagement among more of the citizenry allows for more of the ‘mass’ of
citizens to share inoculation training later into the simulation.

Finally, in comparing the two inoculation regimes directly, differences are found earlier in the
simulation timeline. The misinformation cue benefit of training provides an initial benefit (which is
more pronounced in the single 60% training condition), but then dips as those initially trained start to
experience a decay that competes against the rate of training sharing. As the mass of willing
inoculation sharers grows (faster when baseline misinformation cue sensitivity raises the rate of
sharing), a critical mass of sharers builds to counteract decay rates. Eventually the dynamic then shifts
to favour a new, ‘trained’ equilibrium. Although this process is ‘smoother’ when training is staggered,
the larger spike of sensitivity at an earlier, potentially critical, time period (even accounting for the dip
from this spike, which is still higher than the sensitivity of the staggered regime at the same point in
time) plays an important role in the knock-on effects to the evaluative and belief formation processes
of citizens, as explained below.
3.2. The effect of sensitivity changes on the evaluative process of citizens
To determine the carry-through of inoculation effects onto the intermediary evaluative mechanisms, we
turn next to the rates of misinformation rejection among citizens. Importantly, we contextualize these
rejections by plotting them against both the overall amount of communication occurring at a given
time point and the number of false positive rejections (i.e. rejections of information that lies within
±5% of the ‘true’ value), illustrated in figure 2 below.

Broadly, we observe the general trend of reduced amounts of communication as simulations progress
(dashed lines, figure 2), reflecting the belief consolidation process as agents update their beliefs. The
spikes in these trends reflect broadcaster dissemination to agents, which affects all those who find the
information credible. This is why, when the broadcaster is truthful (top row, figure 2), broadcasts
continue to reach the majority that has consolidated around this truthful value (an effect borne out in
belief distribution data, see next section). However, when biased broadcasters are included,
broadcaster reach becomes gradually less effective, reflecting the consolidation of beliefs among those
rejecting the biased content. Lastly, the ‘dips’ between peaks in the total amount of communications
reflect how much peers are searching and accepting each other’s shared information between
broadcasts with rapidly decreasing trends again showing the temporal sensitivity of the belief
formation process.

Turning to the effects of inoculation training conditions (columns, figure 2), we note that although
these do not affect overall amounts of communication, they do affect the amount of misinformation
rejections (dotted lines, figure 2) during the early stages of the simulation, when communication and
belief formation are most prolific. Importantly, rejections occur at this early stage the more biased
broadcasters have command of information dissemination (i.e. least rejections when truthful
broadcasters have sole command (top row, figure 2); more when a biased broadcaster is competing
with a truthful broadcaster (middle row, figure 2); and more still when only a biased broadcaster has
sole command (bottom row, figure 2). This suggests inoculation training is targeting its intended
purpose (i.e. increasing the rates of misinformation rejection), without affecting more truthful
information dissemination. Such an effect is further borne out by the rates of false positive rejections
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(solid lines, figure 2), which remain low throughout all conditions, albeit fractionally higher when large
numbers of rejections are occurring (e.g. biased broadcaster ×60% initial inoculation condition).

This leads to the final effect discussed here2: given the identified temporal sensitivity of the belief
formation process among citizens in the network, we note the higher rates of misinformation rejection
in the early critical period of the simulation, when a 60% one-off initial inoculation training regime is
used (versus a more spread-out set of inoculations over 15 time points; right-hand versus middle
column, figure 2).
3.3. The impact on citizens’ belief (formation)
We turn next to measures of the belief formation process itself—the distribution of beliefs across the
population of citizens, and the confidence those citizens have in their beliefs. Having explored both
the direct impact of inoculations on misinformation sensitivity, and the subsequent impact on the
evaluative processes of citizens (i.e. their capacity to identify and reject misinformation), it is necessary
2Although we only show the medium (0.2) baseline misinformation cue sensitivity condition here, we note that the same pattern is
observed irrespective of whether this baseline sensitivity is high or low. The exception to this is a general moderating impact of
baseline sensitivity on the pattern as a whole, with higher levels of baseline sensitivity producing higher levels of both correct and
false-positive rejections.
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to understand how these changes affect the belief landscape itself: what do citizens end up believing, and
how swiftly do they become confident that their belief is correct?

To address the first question, figure 3 illustrates the distribution of citizens’ beliefs (μown) over time,
separated by inoculation training condition (columns) and broadcaster conditions (rows). First, when
broadcasters are truthful (top row, figure 3), we find that inoculation training does not impede
convergence of beliefs on this truthful value—corroborating our findings of low levels of
communication rejection when truthful broadcasters are disseminating information. Second, when
biased broadcasters are present (middle and bottom rows, figure 3), the ‘mass’ of citizen beliefs is less
impacted by the pull of these biased broadcasters. More precisely, the quantiles indicate that fewer
citizens are persuaded toward the biased broadcasters’ communicated value of 0.85, when inoculation
training is in place. However, we note that this effect is more pronounced when the inoculation is a
single, early inoculation of 60% (e.g. bottom-right facet, figure 3) than when that 60% is spread over a
gradual time period (three sessions of 20%, see bottom-middle facet, figure 3). This further
corroborates the demonstration of the importance of time sensitivity (i.e. temporal dependence) when
considering misinformation prevention across online networks where peer-reinforcement exists.

Although figure 3 illustrates citizen belief distributions over time when baseline misinformation
sensitivity is at a ‘medium’ value (0.2), we point the reader to the electronic supplementary materials
(available at https://osf.io/vjk64/), where high and low baseline misinformation sensitivity
conditions are also shown. There, we show that the higher the baseline misinformation cue sensitivity,
the more pronounced the above inoculation training benefits become for citizens’ resistance to biased
broadcasters.

Finally, we turn to the confidence citizens have about their beliefs being true (P(H|E)), plotted over
time in figure 4. The s-curve shape of the confidence lines illustrates both the accrual process of
confidence acquisition, and also the temporal sensitivity of the belief formation process—as citizens
become less open to new information, the more confident they are that their own belief is correct. This
corroborates previous findings of confidence acquisition in belief formation across social networks [17].

https://osf.io/vjk64/
https://osf.io/vjk64/
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As we can see from the overlapping lines (solid, dashed and dotted, figure 4), the inoculation training
condition does not affect the rate at which citizens become confident about their belief. Put another way,
inoculations may impact what we believe (see figure 3), but not how quickly we acquire a belief. This is further
underlined by the fact that baseline misinformation cue sensitivity (columns, figure 4) does not affect the
rate of confidence gain. Taken together these findings suggest that the in rich networks (i.e. where plenty
of information is available from potential peers, not just broadcasters), information that passes citizens
evaluation process can always be found—resulting in an inevitability of the belief formation process.
Of course, further work should investigate the potential mathematical relationship here between
available sample size and evaluation thresholds.

Lastly, we find lower degrees of confidence (and shallower slopes of confidence accrual) when
citizens are faced with a biased broadcaster (bottom row, figure 4), especially when contrasted with
the impact of a truthful broadcaster that reinforces the population prior (top row, figure 4). This effect
reflects the uncertainty provoked by persuasive attempts that lie further outside prior expectation,
especially when coupled with the contradicting information shared by like-minded peers.
4. Discussion and conclusion
In this study, we conducted a first exploration of inoculation theory within the context of agent-based
modelling (ABM), using inoculation efficacy benchmarks established in previous inoculation research.
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We asked whether inoculation training (e.g. by playing ‘fake news games’) (i) can reduce misinformation

susceptibility and belief polarization at a population level (rather than at an individual level, as has been
explored in previous research); (ii) can do so without inadvertently backfiring by making people
oversensitive to reliable information (i.e. false positive rejections of information); (iii) can remain
effective over time.

First, we find that both ‘upfront’ (inoculating approximately 60% of the population simultaneously)
and ‘staggered’ (inoculating smaller groups within the population at different points in time) approach
increase misinformation cue sensitivity (i.e. how good people are at picking up on misinformation cues in
news content) at the population level, with both approaches eventually reaching an equilibrium of
misinformation cue sensitivity that is significantly higher than if no inoculation treatment were
administered. Our findings thus offer initial support for the feasibility of leveraging inoculation theory
to achieve psychological ‘herd immunity’ against misinformation. In the simulations, we operate with
60% inoculated citizens, which is probably optimistic, but the simulations provide proof in principle
that herd immunity is achievable through inoculation for the information scenario we describe in the
model. Furthermore, we find that the number of correct misinformation rejections (i.e. a citizen
choosing to ignore a piece of misinformation rather than allowing it to influence their beliefs)
increases significantly post-inoculation, and far outpaces the number of false positives (i.e. wrongful
rejections of reliable information as misinformation), indicating that the risk of inadvertently
increasing broad-level scepticism of ‘real news’ through inoculation interventions is likely to be low.

Second, in terms of belief polarization, we find that inoculation trainings can impact how much a
population is affected by biased broadcasters. In other words, while the inoculation training has no
effect on people’s perceptions of reliable broadcasters, the ‘pull’ of biased broadcasters (who are more
likely to use misinformation cues as a persuasion mechanism) is less impactful when a population is
inoculated. This effect is more pronounced when citizens’ baseline level of misinformation cue
sensitivity is higher. This has potential implications for longer-term strategies aimed at countering
misinformation at a societal level: educational initiatives aimed at raising baseline misinformation cue
sensitivity may play an enhancing role in increasing the efficacy of later inoculation interventions. In
other words, the more familiar a population is with the tell-tale signs of misinformation, the more
impactful inoculation interventions are likely to be.

Third, we find that the impact of inoculation trainings in terms of the number of misinformation
rejections overwhelmingly occurs early on, i.e. before people’s beliefs about a particular topic have
crystallized. This finding has implications for inoculation training design, given the temporal
dynamics of belief formation across a network, suggesting it may be better to front-load trainings to
pre-empt misinformation initiatives before the network reinforces the consolidation of (misinformed)
beliefs. In other words, inoculation interventions are likely to be more effective when administered
before or immediately after a persuasive attack or misinformation campaign.

Our study design has several important limitations. First of all, agent-based models (ABMs) are
limited in their capacity to model real-world human behaviour, and ours relies on relatively simple
assumptions about news consumption, sharing behaviour, belief polarization and the effects of
misinformation exposure. Second, our model was not able to take into account peer-to-peer instigation
of wilful sharing misinformation (we built our model so that only broadcasters wilfully share
misinformation, not agents). Third, we were unable to account for complex dynamics surrounding
individual broadcasters’ or narratives’ persuasiveness or the varying effects on different groups within
society (as well as potential resistance to being ‘inoculated’, which may reduce the efficacy of the
training for some agents and groups). We acknowledge the role that future research can play in
behavioural validation (and extension) of the findings laid out in principle here.

Nonetheless, using agent-based modelling to assess the effects of administering inoculation
interventions at a population level allows us to draw several (tentative) conclusions: (i) large-scale
inoculation programmes can be effective at reducing misinformation susceptibility and the persuasive
power of biased broadcasters at scale; (ii) the risk of inadvertently increasing general scepticism of
reliable information appears low; (iii) the impact of inoculation interventions is most prominent early
on, before people’s beliefs have crystallized, which is consistent with predictions from inoculation
theory [16]; (iv) inoculation programmes are likely to be more effective when a population’s baseline
ability to identify misinformation is higher, highlighting the potential benefits of media- and digital
literacy education [65] on top of administering inoculation trainings. These findings have important
implications for policymakers as well as social media companies: when choosing to inoculate, it is
probably better to do so early on (before, during or just after a targeted misinformation attack takes
place), and to aim at reaching as large a share of the population as possible.
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5. Method/technical appendix
To explore the effects of misinformation inoculation training on a human information system, replete with
phenomena like emergent echo chambers, we employ an agent-based model. This allows us to outfit a
population of agents (e.g. citizens) with relevant cognitive functions (Bayesian belief revision), the
capacity for interaction (sharing their beliefs), create broadcasters that disseminate information according
to predetermined strategies over time, and deploy inoculation (training) initiatives among citizens.

The model specifically explores whether misinformation inoculation training can assist in reducing the
misleading effects of misinformation (e.g. when disseminated from dishonest broadcasters) as information
sharing and updating plays out across social networks of citizens. Included within the scope of possible
emergent behaviour, via the interactions between citizens, who search, update and prune their (social)
information networks (which in turn informs the information context, and subsequent behaviours, of
their peers), are phenomena like echo-chamber formation and entrenchment. In the following, we
describe how the social network is structured, how broadcasters and citizens are initialized, how they
engage with one another, how citizens are ‘inoculated’, and how all of the above influences the
evaluation and updating process, as well as subsequent search and pruning behaviours.
pen
Sci.9:211953
5.1. Model set-up
Citizens are part of a randomly connected social network. To initialize the network, 1000 agents (classed
as citizens) are placed on a 100 × 100 spatial grid in random positions. Upon initialization, each citizen
generates the necessary variable values for operating within the simulation, these are:

The baseline sensitivity a citizen has to detect misinformation cues (BaseMCS), drawn from a truncated
normal distribution (0–1) with standard deviation 0.05, and mean manipulated across three
permutations: Low (BaseMCS = 0.05), Medium (BaseMCS = 0.2) and High (BaseMCS = 0.35).

The credibility halo that dictates the degree of openness (in terms of acceptable credibility) citizens
have is a fixed value of 1 in the present simulations, but values greater than 1 result in an expanded
credibility ‘halo’ around the credibility distribution (which is overlaid on the belief distribution of the
agent, explained below).

The initial belief distribution each citizen starts with are generated through a several-stage process.
First a ‘raw’ sample (size = 5) is drawn from a truncated normal distribution with a mean of 0.5
(reflecting the ‘true’ state of the world) and standard deviation of 0.25 (truncated between 0 and 1).
This ‘raw’ sample is then weighted by two factors: temporal position (how recently was information
received) and perceived credibility associated with source. For initialization, the latter is held constant
across each sampled information item (5 for all), but when the information starts to arrive from
sources during the main simulation, these numbers change (explained below). The temporal
weighting is based on multiplying position number (1 = oldest, to 5 = newest, given a ‘raw’ sample
size of 5) using an exponent set to a fixed weighting value, in this case 2. More formally:

TempWeight ¼ Position2: ð5:1Þ

Having calculated these two weighting values for each ‘raw’ sample item, the processed belief
distribution for each citizen is generated by multiplying the frequency of a ‘raw’ sample item by the
two weights. For example, the first (i.e. oldest) raw sample item will appear in the final
distribution (12 × 5) 5 times, while the last (i.e. newest) raw sample item will appear in the final
distribution (52 × 5) 125 times. This frequency-weighted final distribution allows not only for the
generation of a weighted mean belief value that takes into account these two factors (recency and
credibility), but also generates an appropriately weighted variance around that mean—something not
readily possible via other mathematical methods. The mean of this final distribution thus corresponds
to the citizen’s current belief (i.e. µown). This distribution is then used (and updated) as the simulation
progresses, allowing citizens to determine not only their current beliefs, but also their associated
distribution of perceived credibility associated with those beliefs (i.e. as information diverges from the
central belief, it is deemed increasingly incredible).

Lastly, the confidence the citizen has in their belief being true (i.e. P(H|E)) is initialized as 0.05 for
each citizen. This subsequently updates as the citizen updates their beliefs in light of new information
(explained below).

Broadcasters are initialized (based on permutation) as separate agents, with parameters defined by
the simulation settings. Specifically, the number of broadcasters (BCNum), their communicated value
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(BCStrat; i.e. their strategy), the frequency of their communication with citizens (BCFreq), and any necessary

staggering of the communication timing (e.g. if multiple broadcasters are active). Broadcasters are not
affected by physical position within the simulation, and are thus located in the two-dimensional
centre of the simulation space.

At the completion of model set-up, the citizenry has their key variables (e.g. prior beliefs and
confidence) initialized, but are yet to form any networks with their peers. Broadcasters are set up to
disseminate according to their pre-ordained schedule/strategy, but have not done so yet, and no
inoculation training has yet taken place.

5.2. Running the model
The model runs across 25 time points. Within each time point, processes occur in the following order
(each process is then detailed below):

First, if any inoculation training is scheduled for this time point, it takes place, followed by an
opportunity for any trained citizens to share their inoculation training with their peers.

Second, if any broadcasts are scheduled for this time point, those broadcasters ready their broadcasts
and disseminate them to all citizens. Citizens will evaluate the broadcast, either accepting or rejecting its
contents. If the former is the case, the citizen will update their beliefs in light of this new information, and
decide whether they wish to publicly share (i) the original broadcast, (ii) their own (updated) opinion, or
(iii) nothing at all.

Third, any citizens that have not accepted broadcasted content (either because no broadcast occurred
this time point, or the citizen rejected the broadcast) will search for any publicly declared information
shared by their directly connected peers (i.e. their immediate social network). Shared information that
passes the citizen’s evaluation is then (in the same way as broadcasted content) used to update the
citizen’s beliefs, and the citizen decides whether to publicly share in the same manner.

Finally, all citizens determine whether, and to what degree, they wish to prune their network links to
other agents, in light of the new changes to their own (and their peers) beliefs.

Consequently, we can divide up the requisite functions into seven categories: inoculation training,
broadcasting, search, information evaluation, belief updating, information sharing and pruning.

5.2.1. Inoculation training

The inoculation training function is run at the beginning of each time point, and works through three
stages:

First, any citizens that have received training in previous time points determine whether they will
share their inoculation training with their (directly connected network) peers. This decision rule is
based on a likelihood defined by

PeerShareProb � MCSOwn

InocEffect

� �
, ð5:2Þ

where the PeerShareProb is set to the expected likelihood of sharing drawn from empirical work (i.e. 5%),
multiplied by the ratio of the citizens current misinformation cue sensitivity (which incorporates the
effect of the inoculation), to the inoculation effect size itself. In this way, a citizen is more likely to
share inoculation training materials, the more they are individually sensitive to misinformation.

If a citizen has decided to share the training materials, all of the peers connected to that citizen receive
the training. This means the effect of training is added to the peer’s baseline misinformation cue
sensitivity and the age-since-training is set to 1. This means citizens receiving training information
have the effects of training refreshed if they have previously received training.

Next, all citizens that have received training in previous time points age (1 per time point), and if the
age since training exceeds the specified training duration (again drawn from empirical work, and set as
2 time points), then the citizens’ misinformation cue sensitivity moves towards their baseline level at a
fixed linear decay rate (0.15 sensitivity per time point, again informed by empirical work).

Lastly, if this time point is a determined ‘external’ training round, then a random sample (drawn
without replacement within a single time point, but with replacement across time points) of citizens is
contacted and provided with the training, adding/refreshing the inoculation effect to the citizens’
baseline misinformation cue sensitivity, and setting the age since training back to 1. The size of this
sample is manipulated between simulations as a fixed percentage of the total population size
(InocNum), as is the frequency of training time points (InocFreq).
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5.2.2. Broadcasting

In the same manner as the inoculation training, broadcasts only occur on pre-ordained time points. The
number of broadcasters (BCNum), what those broadcasters choose to communicate (i.e. the belief value;
BCStrat), and when (how often) those broadcasters communicate (BCFreq) to the citizenry is
manipulated as part of the simulation conditions.

Before broadcasting, an activated broadcaster will first generate an associated misinformation cue
value (0–1) for their broadcasted message. This cue value is generated via a single sample drawn from
a truncated normal distribution (0–1) that takes as its mean

MiCueDistMean ¼ abs(ComOwn � TruthOwn), ð5:3Þ
where ComOwn is the broadcasters’ intended message, and TruthOwn is broadcasters’ perception of what
the average citizen believes (i.e. the mean µown value across the citizen population). In this way, the more
the broadcaster is trying to persuade away from the central narrative, the more likely the broadcaster is to
rely on misinformation cues to do so (irrespective of the underlying veracity of either their
communication, or the public consensus). The standard deviation informing this misinformation cue
distribution width for the current simulations is set to 0.2.

Having generated an associated misinformation cue value, the broadcaster (assuming it has been
activated to communicate this round), will seek to share their message with all citizens. Those citizens
will then evaluate the message based on (i) their perceived credibility of the broadcaster, and (ii) the
attached misinformation cue value—described in the Information evaluation section below.
53
5.2.3. Search

Next, any citizens that have not yet had an opportunity to evaluate new information this round (e.g. there
has been no broadcast) conduct a search for any publicly declared information from their fellow citizens.
Citizens become increasingly less likely to conduct a search the more confident they are that their current
belief is correct (i.e. as P(H|E) approaches 1).

To conduct a search, citizens first gather the subset of other citizens that are within search range (for
the purposes of this manuscript, the search range encompasses all possible social network users, see [17]
for a manipulation of this factor), and are actively/publicly sharing information (which may either be
their own opinion or simply sharing information they themselves have received). Of this selected
subset of citizens, the searcher will determine whether any meet the credibility requirements (i.e. if
any other citizens are perceived as credible, given the information they are publicly declaring). This
credibility check is performed by determining if the information declared by the citizen (X ), when
contrasted against the credibility distribution of the searching citizen (which is an overlay of the
searching citizen’s belief distribution), corresponds to a perceived credibility value (the y axis value of
that point along the searching citizen’s distribution x axis, of height relative to the distribution peak).
This height is then compared with the determined credibility cut-off (here set to 0.5, meaning beliefs
perceived as less than 0.5 are deemed non-credible), as follows:

ð1=ðsSC�
ffiffiffiffiffiffi
2p

p ÞÞ� e�ððX� mSCÞ2=2s2
SCÞ

SCVal
þ CredBonus . SCCutoff , ð5:4Þ

where SC is the source credibility distribution of the searching citizen, X is the assessed (declared)
information, and SCVal is the peak height of the SC distribution. For citizens evaluating peers, there is
no supplementary/independent credibility taken into account (i.e. CredBonus = 0). The SCVal (i.e. peak
of the citizens credibility distribution) used to calculate the relative height of the credibility value
associated with the information value is calculated as illustrated in equation (5.5) below

SCVal ¼ 1
sSC�

ffiffiffiffiffiffi
2p

p : ð5:5Þ

Consequently, if there are any acceptable declaring citizens (i.e. citizens deemed credible by the
searcher), then the most recently declaring citizen is passed forward for further information
evaluation (i.e. misinformation cue checking). The searching citizen continues through this subset of
declaring agents from most recently declaring backwards through time (reflecting the way social
media algorithms favour most-recent first posting), until the searcher either finds an acceptable piece
of information, or runs out of acceptable declaring citizens. If an acceptable citizen is found (i.e. one



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211953
17
who passes the full information evaluation), then a link is forged between the searcher and declarer,

representing the immediate peer connection.

5.2.4. Information evaluation

When citizens are exposed to information, it is evaluated in two ways. First, the information is assessed in
terms of perceived credibility. When information is searched for by a citizen, this stage of evaluation
occurs within the search process (described above). When information has been received from a
broadcaster, the same evaluative process (using equation (5.4) above) is conducted, with rejection (and
thus no further evaluation) occurring if the perceived credibility of the message source is calculated as
below the predetermined cut-off (0.5). However, when it is a broadcaster being evaluated, the
credibility calculation of the message also includes an added term for an independent (i.e. not
message dependent) credibility ‘bonus’. This corresponds to the potential for broadcasters being
deemed credible (or not) to some degree irrespective of the content they are broadcasting. In the
present simulation, this broadcaster credibility ‘bonus’ is set to +0.3. Thus, citizens will be more
accepting of deviating messages when they stem from broadcasters, as the blanket ‘bonus’ credibility
assigned to them by citizens means less credibility derived from message-compatibility is needed to
pass the credibility minimums of the citizen.

If information has passed this credibility check, the citizen then evaluates it for possible
misinformation. To do this, the citizen compares the misinformation cues attached to that information
(a value between 0 and 1), with a sampled distribution value

(1�miValue) � TNorm(MCSOwn,0:25,0,1); ð5:6Þ
such that if the inverse of the misinformation cue value (miValue) is less than or equal to the sampled
misinformation cue assessment—drawn from a truncated (0–1) normal distribution with a mean equal
to the citizens current misinformation cue sensitivity value (and standard deviation = 0.25)—then the
information is considered misinformation and rejected. Otherwise, it is accepted as valid/true. In this
way, the higher the misinformation cue value, the more likely it is to be rejected, but also the higher
the misinformation cue sensitivity of the citizen, the more likely they are to make rejection decisions—
irrespective of whether that information is misinformation, or not (representing the possibility of false
positives).

For the purposes of categorizing these correct/incorrect rejections, a classifier decision is added for
simulation recording purposes. This records the total number of rejections at each time point, but also
those rejections made for information that in fact lies within ±5% of the ‘ground truth’ value used in
the simulations (0.5)—reflecting an approximation of a false positive rejection.

5.2.5. Belief updating

To update their beliefs, citizens first determine the related credibility values associated with the
information they have received this round, using the source credibility height calculation described
above (left-hand side of equation (5.4)), and any independent credibility ‘bonus’ is added (i.e. if the
information is sourced from a broadcaster whom the citizen deems independently credible of
information communicated). It should be noted that if the citizen failed to find any relevant
information, then this calculated credibility value is set to 0.01, reflecting the lack of credibility the
citizen has in their current belief, given their recent failure to find corroboration.

Having calculated this credibility value, the citizen updates their belief distribution via the weighting
process described in the Model set-up section above. To reiterate, the citizen’s ‘raw’ distribution of the
past five information items (i.e. the recent history of information received that has passed evaluation)
has the frequency of each item multiplied by two weights: one based on recency, the other on
perceived credibility. The sole difference between the calculation occurring during belief updating,
and that used during the model set-up, is the credibility weight is not fixed, but rather dynamically
calculated for each information item using the relative height of the citizens source credibility
distribution (using the left-hand side of equation (5.4)), which is then converted into a weight as follows:

SCWeight ¼ SCHeight�100�(CredInf�2), ð5:7Þ
where CredInf represents the universal influence of credibility set in the simulation settings (here set
to 0.3). In this way, a belief deemed highly credible (e.g. 0.8) will result in a weighting of 48, whilst a
belief deemed highly incredible (e.g. 0.2) will result in a weighting of 12. These weights are then used



Table 1. Conditional probability table relating the expected effect of trust (T) and expertise (Exp) on the updating strength of
testimony on the hypothesis (H)

evidence T, Exp T, ¬Exp ¬T, Exp ¬T, ¬Exp

H 0.8 0.65 0.35 0.2

¬H 0.2 0.35 0.65 0.8
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in conjunction with the temporal weight associated with the information items to multiply up the
frequency of that information item in the final, processed distribution. As mentioned before, this
allows for both the accurate weighting of the distribution mean (i.e. µown) by these two factors, but
also an appropriate weighting for measures of variance (i.e. σown). In the case where no information
was found, then the information value is assumed to be both 0.01 and 0.999 for the purposes of
calculating the new distribution, as this works to expand the distribution—reflecting the reduction in
confidence. These two values are multiplied by a credibility weight using the equation above, with
the aforementioned 0.01 inserted value for SCHeight.

It should be noted that whenever this belief distribution update takes place, the overlaid source
credibility distribution naturally updates as a function of the former: the SC distribution uses the
peak/mean of the (Gaussian) belief distribution as its peak, and takes the standard deviation of the
belief distribution as its own, creating a 1:1 correspondence.

Having updated their belief distribution, citizens also then update their confidence in their belief
being true (P(H|E)) using the Bayesian source credibility model [66,67]. This model takes as inputs
the prior degree of confidence (i.e. P(H)) going into this update, and the calculated credibility value
associated with this update round (generated via left-hand half of equation (5.4)), and returns a
posterior degree of confidence (P(H|E)) having taken into account the credibility of the latest
information. The model performs this update using

PðHjEÞ ¼ P(H): PðEjHÞ
P(H): PðEjHÞ þ P(:H): PðEj:HÞ , ð5:8Þ

where P(E|H) = P(E|H, Exp, Trust) � P(Exp) � P(Trust) + P(E|H, ¬Exp, Trust) � P(¬Exp) � P(Trust) + P(E|H,
¬Exp, ¬Trust) � P(¬Exp) � P(¬Trust) + P(E|H, Exp, ¬Trust) � P(Exp) � P(¬Trust); mutatis mutandis for
P(E|¬H).

In order to calculate the conditional probabilities, P(E|H) and P(E|¬H), we follow previous work [68]
and integrate perceived trust, P(Trust), and perceived expertise, P(Expertise) as an amalgam input, P(Cred)
– the credibility value associated with the update, for both arguments. The conditional probabilities that
dictate the strength of the credibility update on the belief (H) are set as shown in table 1.

These have broad correspondence to previously empirically elicited parameters for the model
(see [69]), but provide a working symmetry—given the amalgam (P(Cred)) of expertise and trust.
Values toward 0.5 result correspond to neutral/no influence, while those toward 1 indicate a strong
positive influence (increasing update strength positively), and towards 0 a strong negative influence
(increasing update strength negatively). As can be seen from table 1, the presence or absence of trust
changes the direction of the update, while the presence or absence of expertise changes the strength of
the update. Having performed this update for P(H|E), the citizen has thus completed their belief and
confidence updating for the round.

5.2.6. Information sharing

Any citizens that have made a belief update this round may decide to publicly share information. This
can either take the form of sharing the information they themselves received, or of sharing their own
updated beliefs (i.e. sharing their opinion). Consequently, this decision-making process has two
components to it:

First, if a citizen received information from another source (be it broadcaster or peer), the citizen is
able to share this information directly. To do so, the citizen uses their calculation of their perceived
credibility of this information (left-hand side of equation (5.4))—which incorporates any independent
credibility attached to the source, if that source is a broadcaster—and feeds it into a probabilistic
decision-rule, such that the higher the perceived credibility, the more likely the citizen is to share the
information directly. If the perceived credibility is higher than a randomly sampled value (uniform
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between 0 and 0.4), then the citizen has decided to publicly share the information they themselves

received, and importantly, the misinformation cues associated with that information. If the
information was originally shared by a broadcaster, then any associated independent credibility bonus
attached to that broadcaster is also shared, representing any potential source cue effect.

Second, if the citizen is not directly sharing information they received (either because they received
none that passed their evaluation, or because they did not deem it sufficiently credible to want to
share it publicly), then the citizen uses their current level of confidence that their current belief is
correct (P(H|E)) to decide to share their own opinion, using the same probabilistic decision rule (the
higher their confidence the more likely they are to share their opinion). Importantly, in sharing their
own opinion (i.e. sharing their µown value), the citizen also shares a generated misinformation cue
value associated with their post. To generate this value, the citizen samples from a truncated (0–1)
normal distribution with a mean corresponding to

abs(ComOwn � TruthOwn)�aCitizen, ð5:9Þ
where ComOwn corresponds to the belief of the citizen, TruthOwn corresponds to the average information
value of those directly linked network peers of the citizen (who are currently publicly sharing), and
αcitizen corresponds to the proclivity of citizens to engage in misinformation cue deployment. For the
present simulations this is set to 0.2, reflecting the lower levels of engagement with misinformation
cue deployment [13,14]. In this way, citizens who perceive a more substantial deviation between the
belief they are communicating and those they perceive among their peers will be more inclined to use
misinformation cues, but this is at a substantially lower level (20%) than the tendency among
broadcasters. The standard deviation of this truncated normal distribution for generating the
misinformation cue is set to 0.2 in the present simulations (as described in the broadcasting section
above), reflecting the general correlation between this perceived deviation purpose behind
misinformation cue generation, and the misinformation cue generation itself.

Consequently, having shared this information and attached cues, for information is publicly available
to the peers of that citizen, if the citizen decides to share nothing, then other citizens will remain oblivious
to their beliefs. This allows for the possibility of deviations between public and private consensus.

5.2.7. Pruning

Lastly, all citizens still active in the network (i.e. those still not completely decided that they are correct;
P(H|E) less than 0.999) prune their local (directly connected) networks. They do this by looking at any of
their directly connected peers who are actively sharing information, determining any whose publicly
declared information lies outside of the acceptable credibility range of the pruning citizen as no
longer credible. This decision-rule uses the credibility cut-off evaluation (equation (5.4)) explained
above. Any of the directly connected peers to the pruning citizen deemed no longer acceptable (i.e. no
longer credible) are severed from the network of the pruning citizen.
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