


DUDLEY KNO : ARY

NAVAL

F

MONTEREY. CALIFORNIA C ^3











NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
THE FEASIBILITY OF AUTOMATIC

STORAGE RECLAMATION WITH CONCURRENT
PROGRAM EXECUTION IN A LISP ENVIRONMENT

by

Kevin G. Cassidy

December 1985

Thesis Advisor: Bruce J. MacLennan

Approved for public release; distribution is unlimited

T226207





SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER 2. GOVT ACCESSION NO

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Feasibility of Automatic Storage
Reclamation with Concurrent Program
Execution in a LISP Environment

5. TYPE OF REPORT & PERIOD COVERED

Master's Thesis
December 1985

S. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Kevin G. Cassidy

8. CONTRACT OR GRANT NUMBER(»)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5100

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5100

12. REPORT DATE
December 1985

13. NUMBER OF PAGES
107

U. MONITORING AGENCY NAME 4 ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (ot this report)

UNCLASSIFIED

15«. DECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (ot the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide II necessary and Identify by block number)

Garbage Collection, list processing, parallel § real-time
collection, storage reclamation, parallel processing, LISP,
compaction

20. ABSTRACT f Continue on reverse aide If necessary and Identify by block number)

In "classical" LISP implementations, program execution/computation
continues until there is no more memory available (i.e. the free
list of available cells has become exhausted). When this happens,
user program(s) HALT and then storage reclamation, in the form
of garbage collection

,
takes over. This halting of programs in

the midst of their computation is not only frustrating to pro-
grammers and researchers but can also be of crucial importance in
other applications. This paper investigates (Continues)

,

DD
t JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



SECURITY CLASSIFICATION O F THIS RAPE fWhmt Dmm Bnt~*«)

ABSTRACT (Continued)

the feasibility of allowing concurrent program execution with
garbage collection. Proof of correctness and performance issues
are not discussed. Neither allocation of memory techniques/
procedures nor garbage collection in virtual memory systems are
thoroughly discussed. These issues are thoroughly described in
the lisrted references. LISP has been selected because it has
been estimated that typical LISP programs take 101-30% of their
processing time to perform garbage collection.

S N I 07- LF- C 14- 661

•ECUBITY CLASSIFICATION O r THIS P*Gf*ln



Approved for public release; distribution is unlimited

The Feasibility of Automatic
Storage Reclamation with Concurrent

Program Execution in a LISP Environment

by

Kevin G. Cassidy
Lieutenant Commander ,' United States Navy

B.S., U.S. Naval Academy, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

Naval Postgraduate School
December 1985



ABSTRACT

In "classical" LISP implementations, program execution/

computation continues until there is no more memory avail-

able (i.e. the free list of available cells has become ex-

hausted). When this happens, user program (s) HALT and then

storage reclamation, in the form of garbage collection , takes

over. This halting of programs in the midst of their compu-

tation is not only frustrating to programmers and researchers

but can also be of crucial importance in other applications.

This paper investigates the feasibility of allowing con-

current program execution with garbage collection. Proof of

correctness and performance issues are not discussed. Neither

allocation of memory techniques/procedures nor garbage col-

lection in virtual memory systems are thoroughly discussed.

These issues are thoroughly described in the listed references

LISP has been selected because it has been estimated that

typical LISP programs take 10%-30% of their processing time

to perform garbage collection. ^^^^^^^^^^^^^



TABLE OF CONTENTS

I

.

BACKGROUND 9

A. INTRODUCTION 9

B . HI STORY 10

C. LISP LANGUAGE 12

II. STORAGE RECLAMATION TECHNIQUES 16

A. PROGRAMMER RESPONSIBILITY STORAGE RECLAMATION. 16

B. REFERENCE COUNT STORAGE RECLAMATION 20

C. GARBAGE COLLECTION STORAGE RECLAMATION 27

D. CONCLUSION 30

III . GARBAGE COLLECTION PROCESS 32

A. PHASE ONE: MARKING 3 2

B. PHASE TWO: SWEEPING 37

C. COMPACTION 38

D. CONCLUSION 41

IV. PARALLEL/ CONCURRENT GARBAGE COLLECTION 43

A. INTRODUCTION 43

B. TWO PROCESSOR METHOD 46

C. TIME SLICE METHOD 47

D. DYNAMIC PROCESSOR ALLOCATION METHOD 49

E. VIRTUAL MEMORY (VM) METHOD 51

F. CONCLUSION 52

V. "TWO PROCESSOR" GARBAGE COLLECTION IMPLEMENTATION. 56

A. DIJKSTRA'S METHOD (SOFTWARE APPROACH) 57



1. Mutator Tasks/Responsibilities 60

2. Collector Tasks/Responsibilities 62

a. Marking Phase of the Collector 63

b. Collecting/Sweeping Phase of the
Collector 67

5. Conclusion of Dijkstra's Approach 70

B. STEELE'S METHOD (HARDWARE APPROACH) 71

1. Synchronization of the Two Procesors 73

2. The Garbage Collector Processor 76

3. The List Processor 78

C. CONCLUSION 78

VI . OTHER ALGORITHMS/FUTURE POSSIBILITIES 81

A. INTRODUCTION 81

B. OTHER ALGORITHMS 81

C. FUTURE POSSIBILITIES 87

D. CONCLUSION 90

VII . CONCLUSION 92

A. ASSUMPTIONS 96

B. FINAL REMARKS 98

LIST OF REFERENCES 102

BIBLIOGRAPHY 104

INITIAL DISTRIBUTION 107



LIST OF FIGURES

1.1 S-expression Tree 15

2.1 Dangling Reference Example 19

2 . 2 Reference Count Example 22

2.3 Circular List Structure 25

3.1 LISP Cell Format 33

3 . 2 Marking Phase Example 36

5.1 Three-Color Cell Format 59

5 .

2

Memory Snapshot During Mark Phase 66

5.3 Memory Snapshot During the Scan Phase 69



ACKNOWLEDGEMENTS

I wish to acknowledge and thank three "key" people for

their support and assistance on this thesis. First, I wish

to thank Dr. B. J. MacLennan for his patience, guidance, and

assistance. It was from Dr. MacLennan's course of instruction

that I first became interested in the study of garbage col-

lection . Secondly, I wish to acknowledge my father, John R.

L. Cassidy, for his wisdom and direction, for whom I have

everything to thank for. Lastly and most importantly, I

wish to give formal and public appreciation to the number

ONE person that totally and whole-heartedly supported me

during the many long hours required in the research, writ-

ing, and editing of this thesis: that person is my loving

wife, ORENA.



I . BACKGROUND

A. INTRODUCTION

Interest in storage reclamation methods, in particular

garbage collection , has increased dramatically the past

several years. Storage reclamation is the process of re-

claiming discarded information and returning the memory space

occupied by that discarded information to an available area

or list in memory that is available to be utilized by pro-

grammers. This increased interest in storage reclamation is

a result of the increasing use of list-processing environ-

ments. A list-processing environment is a system in which

the language manipulates data structures called "lists." In

other words, in a list-processing environment, the information

to be reclaimed is in the form of list cells.

One of the better known and more popular languages that

mainpulates lists is LISP, which is designed to facilitate

programming of complex symbolic processes. It eases this

burden by providing automatic storage allocation and reclamation

[Ref . 1: p. 522] .

During the period of time that storage reclamation is

taking place, program execution comes to a halt. While this

time period may appear to be insignificant to the programmer

(say in terms of seconds), it can become frustrating and be-

comes increasingly larger as the number of programmers on the



system increases, resulting in longer "wait" times for each

user. Therefore, if it were possible to conduct storage

reclamation without having to stop program execution, it

would allow program execution to continue at the same time

that the necessary storage reclamation operations are taking

place

.

Experience with large LISP programs indicates that 10% to

301 of their execution time is spent in garbage collection

[Ref. 2: p. 341], This paper investigates the feasibility of

being able to perform garbage collection concurrently with

program execution in LISP.

B. HISTORY

As programs that utilize extensive list-processing be-

come more and more common and as they continue to grow and

become more complex, it becomes essential that a method for

efficient and real-time storage reclamation be used. Delays

due to storage reclamation are a nuisance to programmers and

researchers but they could be of critical importance in some

applications. For example, a natural language interface to

an emergency medical database, that is written in a list-

processing language such as LISP, could be considered untrust-

worthy if garbage collection caused lengthy delays [Ref. 3:

p. 1143], A method for returning discarded information to

memory (to a structure called the " free list ") is an essential

ingredient of any list-processing system. This free list, a

10



space in memory that is available to be utilized by user

programs, contains all cells that are not being used by

any program (i.e. cells are system representations of memory

space). Initially, the free list contains all storage not

occupied by the programs; cells are removed from it and

formed into list structures as the programs are executed

[Ref. 4: p. 501]. The term "working list " is the set or list

of cells that is currently being utilized by a user's program.

There are several storage reclamation methods. Each

method is described in the following chapter. One of the

classical methods, and the one that most LISP implementations

use for reclaiming unused memory space, is called garbage

collection . Basically it is the operation of first marking

all cells in memory reachable from the main program and then

sweeping or returning all unmarked cells to an available free

list [Ref. 5: p. 491]. Garbage collection is usually invoked

only after the main program has run out of memory. The time

when garbage collection is invoked depends upon the implementa-

tion of the storage reclamation method on the computing system

in question.

A requirement of any storage reclamation method, including

garbage collection, is to return cells back to memory, or the

free list, only when that cell is no longer needed by the

program (i.e. it is discarded and no longer accessible from

the program) . Storage reclamation causes program interruption

normally when the program has no more memory to use (i.e. no

11



more cells in the free list) , and thus program execution

is suspended until the storage reclaimer has finished.

C. LISP LANGUAGE

It is assumed that the reader has a fundamental grasp

and understanding of LISP. LISP was selected as the language

to investigate the feasibility of CONCURRENT storage reclama-

tion because it is used for highly interactive programming.

The language has several properties, including program/data

equivalence, that enable a certain style of programming to

develop that is characterized by powerful interactive sup-

port for programmers, non-standard program structures and

non-standard program development methods [Ref. 6: p. 35].

A LISP list is really nothing more than a linear list of

elements called cells. These ceils have fields and may con-

tain pointers to other lists. The list is a "finite sequence

of zero or more cells or other lists" [Ref. 7: p. 406]. A

cell can be thought of as one or more continuous computer

words, representing memory space, that can be made available

to a user [Ref. 8: p. 534]. These cells are requested from

the free list by the user's program. Because there is a

finite number of available cells, there may come a time that

there are no more cells still in memory for the program to

use. When this happens, LISP uses an automatic method of

reclaiming discarded cells of the user's program. This

method is called garbage collection or " regular " garbage

12



collection. A cell becomes discarded (commonly referred to as

"garbage") when it can no longer be pointed at or accessed

through the pointer fields of any reachable or accessible cell.

It is then left to the garbage collector to reclaim this

"garbage" and return these cells to the free list [Ref. 2:

p. 342]. The garbage collector can be implemented using

hardware methods, software methods, or a combination of both

hardware and software.

A cell is called "accessible" if it is reachable from at

least one root via any directed path. LISP terminology will

be used throughout the remainder of this paper and the words

"cell" and "node" will be used interchangeably.

Each node has a separate identity, which means that it

can be identified independently of the structure of any di-

rected graph. Finding this node from a "root" and finding

any left or right successors of this node are called "primitive

operations . " The process of locating or finding the pre-

decessors of this node involves a search through the entire

list of nodes; i.e. through the entire area of memory allocated

to the users' programs. This is the reason that identifying

garbage is not such a simple or easy task. The task is dele-

gated to the garbage collector, which maintains the free list.

Again, the free list is just a collection of nodes that have

been identified as "garbage" and are available to a user's

program.

13



LISP is a high level language and as such contains

primitives that automatically call the garbage collector. In

LISP the function cons triggers the garbage collector when

no more free cells are available.

LISP functions are called S-expressions (where S means

symbolic). The basic elements of an S-expression are called

atoms. These expressions are surrounded by parenthesis and

these parenthesis must balance in a meaningful way. For ex-

ample, the expression:

(add 8 9)) (add(add 2 1)

is not a proper S-expression. However, the following express-

ion is a properly written S-expression:

(times (difference 8 6) (sum 3 1)).

In the latter expression the proper answer is: 8.

Although it is awkward to use functional notation for

simple arithmetic, one of the good features of LISP is that

everything in the language can be expressed as a function

[Ref. 9: p. 140]. These functions are represented by the

basic data structure of LISP, which is the list. When the

components or cells of a list contain pointers in their

cell fields, then the list data structure topology resembles

a tree. The head of this tree is called the root and the

elements of the tree are called nodes. For example, in Figure

1.1 the S-expression used above is expressed in a tree-like

structure

.

14



,t imes

difference sum

/\ /\
8 6 3 1

Figure 1.1 S-expression Tree.

Some common LISP functions are car and cdr , which respect-

ively locate and provide the first element in a list and the

remaining elements in the list (if there are any) [Ref. 9:

p. 140], Another feature of LISP which is invaluable in an

interactive system is that LISP can manipulate symbols as well

as numbers. For example, the function (SETQ K 95) serves a

dual purpose in that it not only acts as an assignment state-

ment but it also gives the variable "K" the value of 95.

Whereas the function (SET K E) equates the variable that is

the value of "K" to the value of "E" and takes-on whatever

value that "E" has.

Every atom in LISP has a value. Numbers or literals are

atoms whose values are themselves, but the value of an atom

also can be another atom with a symbolic name. NIL is the

terminator that indicates the end of a list.

The next chapter provides a look at the various methods

of storage reclamation.

15



II. STORAGE RECLAMATION TECHNIQUES

There are two basic methods for Storage Reclamation:

(1) Manual --

(a) the responsibility for reclamation lies with the
programmer

.

(2) Automatic -- Eliminates programmer responsibility and
includes the following two subtypes:

(a) Reference counts

The list manipulation primitives maintain a reference
count for each cell that indicates the number of other
cells which point to it [Ref. 10: p. 495].

(b) and garbage collection .

Each of these methods is discussed further in the subse-

quent sections of this chapter.

A. PROGRAMMER RESPONSIBILITY STORAGE RECLAMATION

The first method of storage reclamation is the manual or

programmer responsibility method. There are several languages

that provide the capability for the programmer to allocate

storage and deallocate storage (i.e. storage reclamation).

IPL-V includes instructions that cause lists and list structures

to be erased and their cells to be returned to the free list

[Ref. 4: p. 501]. These instructions are for use by the pro-

grammer; what this means is that the programmer has to keep

track of the current status of all lists, sublists, and other

data structures. One immediately recognized disadvantage of

this method is that, in addition to maintaining a table of

16



the status of each data structure, the programmer, when "de-

allocating" storage, may accidentally erase a cell (or even

a list of cells) that are being shared with other lists: i.e.

being pointed at by cells in other lists. These other cells

may still be required in the user's program and be accessible

from/to the user's program. This will result in the " dangling

reference " problem , which is discussed later in this chapter.

Other languages, such as Pascal, use " explicit erasure ,

"

which means that whenever a running program no longer re-

quires a particular cell, then the programmer himself must

explicitly return it to the free storage area [Ref. 11: p.

440]. Pascal uses two procedures to accomplish this task:

(1) The "dispose" procedure returns to the free storage
area whatever cell was pointed to by the argument of
"dispose." This is done by linking the discarded
cell onto the free list. Later, the storage allocator
will be able to reuse this cell from the free list to
satisfy a request from a user's program.

(2) The "new" procedure obtains an available cell from the
free list to satisfy a request for memory space from
a user's program.

There are several other inherent disadvantages in this

method of storage reclamation in which the programmer

shoulders the burden of allocating and deallocating memory

spaces. The programmer has to work harder. He has to re-

member additional items, such as the current status of each

cell and whether that cell is still active (i.e. still re-

quired for his program) or if the cell is non-active (garbage)

In a list-processing system, this also means that he has to

17



remain aware of which lists, sublists, cells in the lists,

etc. are active and which are non-active. This is a large

task and one that few programmers can accomplish successfully

and accurately, especially as the size and complexity of the

user's program increases. The programmer's main task should

be to concentrate on the more important issues-at-hand, such

as program structure and organization.

As mentioned earlier, there may be times when a cell will

be returned to the free list but that cell is still being

pointed at by other cells in the same list or possibly a sub-

list. In either situation, this results in what has been

called the dangling reference problem . Figure 2.1 illustrates

a simple example of this problem.

The dangling reference problem occurs when a cell is

classified as "garbage" and returned to the free list but

the cell still has pointers from allocated cells in the

user's program. Why is this such a problem,? In Figure 2.1,

cells H, B, C, and E have been designated as "garbage" and

are returned to the free list. When this happens, cells A,

D, and F are said to have dangling references because they

reference (i.e. have pointers to) non-existent cells. Now

the problem is that whenever the storage allocator reuses

cell B for the user's program, these dangling references will

most likely cause undesired and unpredictable side effects

(if pointers are not reinitialized)

.

18



F G

N
~7

} L-
\UB

User's _
Program ->

1 1

1 1

N/

H

Freelist
1 1 1

-a :

L _ J

Figure 2.1 Dangling Reference Example.

Some LISP processors provide a feature allowing the user

to invoke the storage collector. Normally, the storage re-

clamation method used is a type of garbage collection. This

can be a very helpful feature if the programmer has a good

idea of when would be the best time to invoke the collector.

In computing systems where the user has the capability to

invoke the garbage collector, the programmer is concerned

that there is sufficient memory for his program to run without

"crashing." He does this by knowing how much memory his pro-

gram has used and how much more memory is still available

to his program. This is a difficult assignment in an inter-

active system where the number of users fluctuates and each

19



user is trying to figure out the memory requirements for his

program. Forgetting just one pointer to a cell that has been

sent to the free list will result in the dangling reference

problem. In LISP systems where the programmer determines

allocation and deallocation, the function "return " can also

cause this problem. The only way that a programmer can

stop this problem from occurring is to take extreme care

NOT to reuse any cell that he may think has a pointer to it.

Again, this is just another thing for the programmer to

remember

.

Because of the dangling reference problem and the additional

programmer burden, the MANUAL reclamation method in LISP or

any other language that has such features is NOT considered

an adequate selection for concurrent storage reclamation.

B. REFERENCE COUNT STORAGE RECLAMATION

The second method of automatic storage reclamation is

called the " reference count " method. This means that the

programmer's responsibility for both storage allocation and

deallocation is eliminated and is automatically taken care

of by the system. The reference count method of storage

reclamation requires an additional field in each cell, which

contains a count of how many other cells point to it. The

count is a positive integer number, with a lower limit of

zero. Whenever the numerical count in the cell's field be-

comes zero, then it is available to be used for users' pro-

grams. Cells are returned to the free list as soon as

20



possible after they become inaccessible; consequently,

"garbage" cells that are inaccessible and unavailable to be

reused again will NEVER accumulate [Ref. 11: p. 443].

Do not confuse available with accessible ! In LISP, a

cell is accessible if it is pointed at or referenced by

other accessible cells. The only cells that are directly

accessible are those cells that are used by the system's

interpreter, such as those cells that contain a user's

program that is being interpreted and its corresponding

association lists that represent the environments still in

use [Ref. 11: p. 441]. A cell is " available " if it is on

the free list, ready and available to be utilized by user

programs

.

Reference counts maintain track of the number of access-

ible references to each cell. Figure 2.2 illustrates an ex-

ample of a simple LISP structure that contains cells with

three fields each: the reference count field, and the left

and right pointer fields.

In the reference count method whenever a cell is returned

to the free list, it means that the cell's reference count

field became zero and thus the cell is inaccessible. There

is an additional operation required in reference counting in

that whatever cells were pointed at by the cell that has been

termed "garbage" and returned to the free list must also have

their reference count fields decremented by one. This is be-

cause there is one less accessible cell reference to each.

21



This decrement operation may in turn cause any of these cell's

reference count fields to also become zero and thus become

inaccessible and available for return to the free list. In

other words, decrementing a reference count could be a re-

cursive operation [Ref. 11: p. 442].

4

A 1
s*

B
A*

-> 1
"N

1

//

c
A

D E F

—^ 2 \ 2
*

> 1
1

\ 1

if
S • A

A 4
«v

G
V

-± 1

>/

Figure 2.2 Reference Count Example.

There is a modification of the reference count technique

suggested by Weizenbaum , that uses "doubly linked " list

structures. In this method, a reference count is placed only

in the header of each list (this means that there are no

reference count fields in individual cells) . Doubly linked

lists were examined because they provide more efficient

22



operations (e.g. transversing back and forth at will in

examining doubly linked lists) than singly linked lists.

Also in this method, the programmer plays a more active role

in both the allocation and deallocation of memory. The pro-

grammer must remember the rules for maintaining reference

counts for a list of cells so that he can avoid performing

any operations that may refer to a particular list whose

reference count has reached zero. Additionally, the pro-

grammer can explicitly override the reference count and re-

turn a specific list to the free list even before the reference

count becomes zero. These are features that have to be

utilized with caution because, in the hands of inexperienced

programmers, they can cause side effects that are neither

wanted nor constructive (e.g. dangling references). Weizenbaum's

approach is excellent for the handling of list structures:

whenever a list's reference count has become zero, then it is

appended at the end of the free list. [Ref. 7: p. 412].

However, the time required to find the head may be ex-

travagant and not worth the unnecessary delay. Besides being

time consuming and increasing the programmer's burden, this

reference count technique may prevent part of the list from

being returned to the free list. Why? A part of this list

may still be required by other lists in the user's program

while the remaining part of the list is "garbage"; the prob-

lem lies with the part of the list that is still required,

because this list must now be treated as a separate list with

23



a new reference counter [Ref. 4: p. 501]. These are opera-

tions that are normally not provided in the doubly linked

garbage collection method.

In LISP, as in other languages, reference counts must

be maintained accurately and the status of all cells' reference

counts being kept current. Whenever an additional reference

to an accessible cell is made, that cell's reference count

field must be increased by the number of additional references

pointing to the cell. Similarly, whenever a reference to a

particular cell is removed then that cell's reference count

field must be decremented by the number of references removed.

In LISP, there are two ways that a cell can be destroyed:

(1) A pointer can be overwritten by using an assignment
operation, or by using the functions rplaca or rplacd
[Ref. 11: p. 441]

.

(2) and the cell containing the pointer itself can become
inaccessible [Ref. 11: p. 441].

In Figure 2.2 (reference count example), there is a poss-

ibility that no cells could be returned to the free list even

if the cells were all inaccessible. This can happen whenever

there is a cycle somewhere in the list structure, which

means that there is a path from a cell back to itself. In a

reference count system, cyclic data structures are NOT re-

claimed, and these cells will be lost forever [Ref. 11: p. 442]

Reference counts provide a different approach to the

problem of storage reclamation than the programmer responsi-

bility technique. While it removes the programmer's burden,

24



it causes several additional problems. The reference count

method does not work at all in the case of a circular list
,

a list that is a sublist of itself. Figure 2.3 illustrates

an example of a circular list structure. Reference counts

do not work because the reference count field can never be

reduced to zero, even when the entire list becomes inaccessible

[Ref . 4: p. 501]

.

Figure 2.3 Circular List Structure

25



In Figure 2.3 (circular list structure), each cell has

again the same three fields as earlier discussed. This

structure was created by using the rplacd function where

the right pointer of cell D points to cell A. There is one

and only one accessible path and that is from the pointer

that points to cell A from the left direction.

There are other disadvantages in the reference count

method. These are:

(1) It requires an additional field in each cell to serve
as a counter. In small cells this may cost 251 or
more extra memory space [Ref. 10: p. 495]. Theoretical-
ly, the reference count field in each cell must be large
enough to handle the maximum number of cells that are
in memory.

(2) The basic list processing primitives which create ob-
jects and copy pointers must spend their time updating
the cells' reference count fields [Ref. 10: p. 495],
This is an expensive overhead.

(3) Reference counting does not always free all the cells
that are available. Circular lists (i.e. lists that
refer back to themselves) will NEVER have a reference
count that will reach zero. This holds true even when
no other list that is accessible to a "running" pro-
gram points to them [Ref. 7: p. 412].

(4) Reference counting is unacceptable to use as a memory
management scheme because there are "unbounded" de-
lays whenever a cell is returned to the free list; this
occurs because all successors of the returned cell may
become "garbage" and should be returned to the free list
at the same time when that original cell is being re-
turned [Ref. 12: p. 112]. This again is a vast over-
head to pay and may result in non-uniform execution
times

.

Measurements of actual LISP programs show that about 97%

of all list cells have just one reference to them [Ref. 2: p.

351]. But because of its inability to handle cyclic

26



structures, reference counting is NOT considered an adequate

method for concurrent storage reclamation.

C. GARBAGE COLLECTION STORAGE RECLAMATION

The third and last method of storage reclamation is

" garbage collection " and like reference counting is an auto-

matic reclamation method. As previously stated, garbage

collection is the process of reclaiming unused storage space.

It is an automatic storage reclamation method that can handle

circular data structures [Ref. 11: p. 443]. The basic

garbage collection method requires an additional field in

each cell, like that required for the reference count method.

However, unlike the reference count method, the additional

field is only a one-bit field. This one-bit is called the

"mark " bit . The general idea of garbage collection is that

a program continues to run without returning any cells to

the free list until no more storage is available (this is

called REGULAR garbage collection). When this happens, the

program halts and a "recycling" algorithm uses the mark bits

to first determine or mark which cells are "garbage" and then

to sweep (return to the free list) all inaccessible or "gar-

bage" cells. This creates memory space through the reuse of

previously used cells to allow continuation of the user's

program.

Regular garbage collection postpones the problem of

storage reclamation until the free list cells is exhausted

27



[Ref. 10: p. 495]. When this occurs, the user's program is

temporarily halted during which a garbage collector routine

determines which cells are no longer accessible to the

user's program and returns these cells to the free list

where they can be reused again by the user's program. A

simple way of viewing garbage collection is that storage

reclamation is NOT a problem until there is no more memory

for users' programs to utilize; and then with all available

memory exhausted, the garbage collector becomes involved.

Garbage collection, unlike reference counts, does reclaim

cyclic structures. Normally, the garbage collector is an

independent routine, relatively disjoint from the rest of the

list-processing system [Ref. 10: p. 496].

Although garbage collection has several advantages, there

are some problems with using garbage collection in a list-

processing environment. The garbage collector has to scan

all of memory in order to identify "garbage" cells and non-

garbage cells. This scanning requires significant processing

time. With LISP programs spending 10% to 30% of their time

doing garbage collection, it is NOT unusual for a large LISP

program to take 3-6 seconds to perform garbage collection

[Ref. 5: p. 491]. If these run times were to be multiplied

by a factor of 2-5 (or more) in order to obtain the correspond

ing "real" run times in a time-shared and interactive system,

it can be seen that performing garbage collection can lead to

delays that are inconvenient and excessive to users in an

28



interactive system; and as programs continue to grow and

become more complex and as memory sizes continue to expand,

delays due to garbage collection may reach the state of

becoming intolerable.

Just as the two previous storage reclamation methods

had their disadvantages, there are some disadvantages in

utilizing garbage collection. The most obvious one is that

an additional "marking" bit is required in each cell.

Additionally, garbage collection traditionally runs very

slow when all of memory is in use. This is because the

garbage collector must scan the entire memory area that is

occupied by the user's program in order to identify "garbage"

cells. In some instances, the number of reclaimed cells

that are returned to the free list may not be worth the

effort [Ref. 7: p. 412]. The unp redictability of when

garbage collection occurs is a difficult design concept in a

real-time system. In other words, when does garbage collection

occur? It may not occur and normally does not occur at the

same time every time it is invoked. Delaying program execution

is another disadvantage, and combined with the unpredictability

of garbage collection can be frustrating and dangerous. This

results from the fact that the garbage collector is relatively

disjoint from the rest of the list -processing functions [Ref.

10: p. 495]

.

As list -processing databases continue to grow, garbage

collection problems will also continue to surface more

29



frequently and become more noticeable to programmers (i.e.

garbage collection will take longer and longer to complete)

.

Depending on the size of memory, the delay caused by gar-

bage collection is proportional to the amount of memory being

used [Ref . 1: p. 522] .

However even with the above disadvantages, garbage col-

lection is a worthwhile and necessary activity, especially

in a LISP environment. Garbage collection has always been

needed because the amount of addressable space in memory

has always been much less than the total space both re-

quired and used during execution of a list-processing pro-

gram. Thus, garbage collection enables a "reusing" of the

system's finite amount of addressable memory. Additionally,

garbage collection reclaims cyclic or circular data structures

Garbage collection frees not only the programmer but also

most of the list-processing primitives and functions from

the concern about storage reclamation; now only those primi-

tives that create new cells from the free list can invoke

the garbage collector [Ref. 10: p. 495]. In LISP, the func-

tion cons requests new cells from the free list [Ref. 2: p.

351] .

D. CONCLUSION

The major problems that arises when attempting to reclaim

a part of a list structure (i.e. an individual cell or a list

of cells) is knowing which part of the structure is "garbage"

30



and which part is still required for the user's program

[Ref. 10: p. 496]. Each of the above three methods of

storage reclamation are responsible for this reclamation.

Of the three methods, the remainder of this paper is de-

voted to garbage collection . Garbage collection removes

the responsibility of reclaiming "garbage" from the program-

mer and allows him to concentrate on his program. Garbage

collection also reclaims circular data structures which

reference counts could not handle. Circular recursive struc-

tures are common features in a list -processing system, such

as LISP.

Additionally, it has been convenient to classify garbage

collection according to the size of the cells that are used

by the users' program and reclaimed by the garbage collector

[Ref. 2: p. 343]. LISP cells illustrate the problems that

are involved in marking and sweeping " single-size " cells or

cells that are of the same size (i.e. all cells have the same

number of fields and each field has the same number of bits

per cell). This paper will discuss the LISP garbage collection

methods; consequently, single-sized cells are assumed to be

the "norm."

The next chapter examines the basic process and techniques

used in garbage collection.

31



Ill . GARBAGE COLLECTION PROCESS

As discussed in the previous chapter, garbage collection

is a method of reclaiming unused areas of the memory that

are being used and allotted to the users' programs. Garbage

collection will be referred to as "G_C" throughout the remain-

der of this paper.

There are two basic phases that constitute GC. These

have been termed the "marking " and the " sweeping " phases.

Marking is the process of transiting through memory and

identifying any cells that may be reclaimed. Sweeping is the

process of incorporating these cells into the memory area

that is available to the user. This memory area is called

the free list.

A. PHASE ONE: MARKING

This phase is usually performed with the garbage collector

maintaining a list of immediately accessible cells; when the

garbage collector is activated, the links (or pointers) that

connect one cell to another are traced (followed) and every

accessible cell is then marked.

In the marking phase, all mark bits are assumed set to

zero (usually by the preceding sweep phase) . The phase starts

from the beginning of memory and from these cells that are

accessible to the user's program. Cells that are no longer

required by the program are called "garbage." To save

32



time, a list of immediately accessible cells is maintained

and the garbage collector simply traces the links of those

cells that are on this list. This ensures that every

single accessible cell is marked and unmarked cells are

thus ready to be reclaimed.

For illustration purposes, each LISP cell has two fields

that contain pointers to other cells. Other LISP implementa

tions may have other cell formats. The left cell field can

be found by using the function car and the right cell field

can be found by using the function cdr . Each cell addition-

ally has two boolean (one-bit) fields; one that is used to

differentiate between atomic and non-atomic cells and the

other field is used for marking [Ref. 2: p. 343]. Figure

3.1 illustrates such a LISP cell.

S T L R

Legen

S(s

T(t

Lef

Note

:

d

ign) : "mark" bit used in GC
= garbage

1 = non-garbage

ype):
T = indicates atomic
T = 1 indicates non-atomic

t, Right: pointers to other cells/li

Full word of data associated with
pointers) when T =

sts or NIL

this cell (by

Figure 3.1 LISP Cell Format.

33



The "marking" algorithm is recursive and is able to re-

claim circular list structures. But being recursive also

means that memory space is required (i.e. a stack) in order

to place and thus save the accessible cells. This sounds

like a "catch-22" in that the garbage collector was original-

ly called because there was no more memory area for the

users' programs. How then can there be memory available to

handle the recursive marking algorithm when the garbage

collector was called? This situation becomes a problem be-

cause the marking algorithm is operating entirely in main

memory and not secondary storage. To solve this problem,

several algorithms have been proposed. All these algorithms

reduce the required storage by trading it for longer time

needed to perform the marking phase (whereas most recursive

marking algorithms reserve some memory space for a fixed-

length stack, which is used for the marking). [Ref. 2: p.

345] .

One algorithm is the Deu t s ch- Schorr- Wait

e

algorithm, in

which the cells of a list structure are traced and inspected

without having to use a stack. This algorithm reverses suc-

cessive links until either the leaves (i.e. atoms) in the

structure or cells that have already been visited are found.

The link reversal is then undone by reconstructing the original

list structure. All cells are visited three times. The

additional visit and the overhead to restore all pointers and

for inspecting and marking the bits render this method less

34



efficient. Additionally, this algorithm requires the use of

another bit field in each cell. This bit is called the " tag

bit " , and indicates the direction in which the restoration of

the reversed links should proceed (i.e. whether to follow the

left or right pointer field in each cell) [Ref. 2: p. 344],

Another marking algorithm that solves the above problem

is that proposed by Kurokawa . His algorithm uses a fixed-

length stack and a tag bit (similar to Deutsch-Schorr-Waite '

s

tag bit). When the stack overflows, some of the pointers

from the stack are deleted but the information is preserved

by turning on the tag bit of the unstacked cells: these cells

form a chain (the pointer to this chain is left on the stack)

.

Removal of stack cells makes space available to continue the

marking phase. Whenever a pointer is removed from the stack,

it is examined to determine whether the cell it points to is

tagged. If it is, then the linked tagged cells are retraced

[Ref. 2: p. 345]

.

Figure 3.2 illustrates the marking phase of garbage col-

lection. The dashed line reflects the sequential trace

through the cells in memory. For additional information, see

[Ref. 11].

By the end of the marking phase, ALL accessible cells have

been marked and are ready to be reclaimed. The mark phase

basically determines which cells remain accessible to the

users' programs and which cells are not needed by the user's

35



Root A

@z~lZl
~~~^®

1
- $ i

-

•
Root B / ;

(D- »&
i i

Root C

• --r:-.-~-*z>-
^, — ^

^^A

1 ... N
I —

1 ™~ S

(g)<-
>

GARBAGE CELLS

L R

CELL STRUCTURE

S: "mark bit"
L,R: pointers

Figure 3.2 Marking Phase Example

36



program and thus are "garbage." This reclamation is the

function of the second phase of garbage collection: sweeping.

B. PHASE TWO: SWEEPING

The marking phase traced and identified ALL non-garbage

cells, after having started from those cells that were im-

mediately accessible to the user's program. The sweeping

phase now makes a sequential pass in memory of all the cells

that were traced by the marking phase and incorporates ALL

unmarked cells onto the free list in memory. In other words,

ALL unmarked cells are concluded to be "garbage" and are

appended to the free list, in which available cells are

linked by pointers [Ref. 11: p. 445].

The simplest method for reclaiming the marked cells

consists of linearly sweeping through memory. Each cell is

visited in order (i.e. sweeping through memory). If a cell

is unmarked then it is inaccessible to the user and can now

be linked onto the free list. However, if the cell is marked,

then it is accessible and its mark bit is reset back to zero

in preparation for the next marking phase of garbage collection

The garbage collector moves on to the next cell in order, re-

peating this process until there are no more cells to "sweep."

Thus, there are two sequential passes through memory: one for

the marking phase and the other for the sweeping phase.

The sweeping phase is usually separated into 2 distinct

subphases . These are:

37



(1) Incorporation of all available cells, that are linked
or connected to other cells by pointers into a free
list

.

(2) Compaction , which will be explained later, is where
all unused cells are "moved" to one end of memory
while the other end of memory contains those cells
that are currently accessible and being utilized by
users' programs.

The incorporation of cells being returned (sweeping

phase) to the free list can be subdivided into specific func-

tion areas, depending on whether compaction is required or

not. If compaction is not required, then the sweep phase just

consists of removing all cells identified as garbage and

placing them anywhere on the free list. However, if compac-

tion is used then ALL available cells are compacted into one

contiguous area in memory; compaction also necessitates the

updating of all pointer references to the cells that have

been relocated. Compaction prevents "thrashing" and performs

better (significant time gains) than a non-compacting garbage

collector. This paper will be concerned with garbage collection

with compaction .

C. COMPACTION

As mentioned earlier, when compaction is considered a de-

sirable feature of the garbage collector, memory is basically

divided into two areas; compaction moves all available cells

to one end of memory (containing the free list) and the other

end of memory contains accessible cells that are being utilized

by users' programs. There are several areas of concern that a

"compacting" GC scheme has to be concerned with.

38



(1) It must know exactly where each cell is to be moved to.

(2) All pointers in use must be adjusted to the "planned"
address of the cells that they reference.

(3) and all cells in use must be moved to its "planned"
address [Ref . 13: p. 204]

.

Compacting garbage collectors are more complicated than

non-compacting garbage collectors. Most garbage collectors

today are non-compacting [Ref. 13: p. 204], because of the

increased overhead in using "compaction." Compaction is

really an option in GC. It can be invoked only when needed.

Although speed of the garbage collector with compaction is

not crucial, it must be efficient and should make a minimum

of demands on the storage area itself. If compaction is an

option and is not invoked a great many times, why then should

we be concerned with compaction in the first place?

In its bare and simplest version (no compaction) , GC re-

claims unused or discarded cells while leaving the areas where

the cells are located exactly where they are physically lo-

cated in memory. Eventually, a snapshot of memory after GC

has occurred will look like a piece of swiss cheese in that

the memory area will be fragmented . Consequently, there may

be a situation where there is no single space or area in

memory large enough to accommodate or satisfy a user's re-

quest even though the total amount of available memory space

is large enough. Therefore, one solution to this potential

problem, is compaction .

39



Compacting memory areas basically means that all unused

areas of memory are moved (compacted) to one end of memory

and the other end of memory is reserved for the areas that

are currently being utilized by users' programs. The resulting

list structure has the identical topological structure as its

old structure [Ref. 13: p. 204].

Compacting GC has been shown to have significant time

gains in terms of performance in LISP programs [Ref. 2: p.

345]. Even though GC with compaction is more costly than

GC without compaction, its advantage is that it indirectly

helps to reduce the number of transfers from secondary storage

in virtual memory systems. In other words, " thrashing " is

greatly reduced.

The decision whether or not to use GC with compaction

should be based upon the ratio between the total amount of

computation time and the amount of time the processor spends

in GC. If the ratio is small, then compaction is unnecessary

[Ref. 14: p. 26]

.

With the garbage collector maintaining the free list, it

is possible to incorporate the returned garbage cells in one

contiguous area in memory through compaction . Compaction

becomes a concern of the programmer ONLY if program execution

terminates due to insufficient memory, even though garbage

collection has taken place.

There are several types of compaction, classified by the

relative positions in which cells are left after compaction.

These are:

40



(1) Arbitrary -- cells that originally point to each other
do not necessarily occupy contiguous memory positions
after compaction. Arbitrary compaction has also been
called the two-pointer scheme because the garbage
collector uses two pointers: one pointer sweeps from
the top address and the other pointer sweeps from the
bottom address in memory. When the top pointer reaches
a garbage cell and the bottom pointer reaches an ac-
cessible cell, then the accessible cell is moved to
the garbage cell's address. The process ends when the
two pointers meet. This has an additional overhead
involved in the updating of the pointers but it is a

simple technique to describe and implement [Ref. 2: p.
343] .

(2) Linearizing -- Cells that originally point to each
other have adjacent memory positions after compaction.

(3) Sliding -- Cells are moved toward one end of memory
without altering their linear or relative order. This
is usually applicable for heaps of odd size cells; but
this technique also requires the destruction of occupied
cells before all pointers to them have been updated [Ref
2: p. 343] .

(4) Copying -- This is a compaction method in which the
garbage collector creates a second storage area for
each cell that is to be compacted and then copies these
cells from the old area to this second area. This
method is normally reserved for virtual memory systems
because of the extra memory areas required for copying.

D. CONCLUSION

The compaction method that is normally used and one that

will be assumed to be the type of GC Compaction technique in

the remainder of this paper is the two-pointer or arbitrary

method. Memory is scanned two times. In the first scan,

two pointers are used as previously discussed. When an ac-

cessible cell is moved to its new location in memory, its

mark-bit is turned off to await the next GC cycle. The

second scan of memory is needed for pointer readjustment: this

41



is because some cells have been moved and now have new

memory addresses. It is critical to update all pointers to

any obsolete cell locations. If this was not done then the

dangling reference problem can and usually will occur. The

second scan also scans only the compacted area. Pointers

are readjusted whenever they point to cells that have been

moved to new memory locations.

For the remainder of this paper, whenever garbage collection

is mentioned, compaction is assumed to be one of its features.

This assumption takes into account the fact that in systems

that utilize single-size cells, garbage collection compaction

is not really a problem except on VM systems.

Whether or not compaction is used with GC, the same original

problem of suspension of program execution remains. HOW this

problem can be eliminated will be discussed in the following

chapter, where parallel (concurrent) GC methods and techniques

are examined.

42



IV. PARALLEL/ CONCURRENT GARBAGE COLLECTION

Parallel garbage collection is one of the more desirable

approaches for eliminating the periodic and unpredictable

suspension of program execution in a list processing system;

it is also desirable in an interactive and real-time system

[Ref. 15: p. 1]. For example, being able to implement paral-

lel garbage collection in LISP will enable simultaneous list

processing and execution of user programs, thus eliminating

the user having to be concerned about his program halting

because of lack of memory space. The garbage collection

process will be taking place without the system's users being

aware of it

.

It is difficult for an interactive and real-time list

processing environment to provide satisfactory service when

operations must be halted to allow GC to occur. As programs

become larger, as list processing systems become larger and

more complex, as list processing databases become larger, and

as the GC takes longer and longer to perform, this difficulty

becomes worse and more noticeable to the users [Ref. 16: p. 113]

A. INTRODUCTION

A GC system that ensures users' programs are never sus-

pended due to lack of available memory has been termed a real-

time garbage collection system [Ref. 5: p. 491]. This is be

cause it provides real-time responses to each user's request

43



A real-time GC system avoids suspension of list processing

operations and does NOT halt program execution. Clarifica-

tion between real-time garbage collection and regular garbage

collection is needed to avoid any confusion in readings about

garbage collection. The only real difference between these

two types of garbage collection is WHEN the GC process oc-

curs. In "real-time" GC, garbage collection and program

execution run concurrently (i.e. at the same time); while in

"regular" GC, the user's program executes until it runs out

of memory when it halts and waits for the GC process to re-

claim some memory.

Attention in this paper is devoted to "real-time" garbage

collection and NOT "regular" garbage collection. The terms

parallel or concurrent garbage collection will be used inter-

changeably throughout this paper.

In a computing system that has a significantly large

memory, which is not an uncommon occurrence today, GC can

become very expensive in both time and money due to its re-

quirements to scan and sweep through this entire large memory

to identify (mark) and return (sweep) all garbage cells. In

an interactive LISP system, WHEN garbage collection is actually

occurring becomes very apparent to the user, especially when

his program halts and the system then informs him that there

is no more memory available for him to use. This can be

very frustrating to the users on that system. How then can

this programmer frustration be eliminated? As previously

44



stated, one of the possible solutions is through parallel

garbage collection.

With this parallel approach, garbage collection occurs

simultaneously with program execution. One method to eliminate

the problem of the temporarily halting of users' programs

(so as to allow GC to occur) would be to construct faster

hardware (i.e. processors, buses, disk drives, etc.); this

would allow faster and larger transactions between main

memory and secondary store. In other words, one solution is

a fast system where paging occurs and where the garbage col-

lector is speeded up by implementing it in microcode as a

primitive operation of the list -processing computer. However,

this hardware method does have some limitations. While the

current trend of memory sizes continues to increase, it is

very doubtful that it is possible to increase processor speed

to the point of eliminating GC time, so that it is unnoticeable

to the users of the system [Ref. 5: p. 492].

But even if the garbage collector were to be microprogrammed

in the hardware of the computing system, GC would still be

necessary; and the GC process may even still necessitate some

halting of program execution. Additional methods and tech-

niques to allow GC to occur simultaneously with program execu-

tion are presently available. If the selected GC method for

a particular system (with or without compaction) is still de-

sired to have the goal of eliminating the halting of user

programs due to lack of available memory, then the only

45



satisfactory way to ensure that program execution is not

halted while garbage collection is taking place is through

parallelism or concurrency [Ref. 10: p. 496],

The efficiency of parallel GC will play a major role in

the widespread use of list -processing systems [Ref. 3: p.

1143] . There are several techniques to implement concurrent

GC, each of which are subsequently explained. Because the

focus of this paper is on non-virtual memory systems, the

Virtual Memory (VM) approach is only briefly described.

These concurrent GC methods are:

(1) two processor method
(2) time slice method
(3) dynamic processor allocation method
(4) Virtual Memory (VM) method

B. TWO PROCESSOR METHOD

In this method, two separate and distinct processors are

used. The first processor, termed the "collector", is re-

sponsible only for garbage collection. The second processor,

termed the "mutator", is responsible for program execution

[Ref. 2: p. 354]. Having two processors available allows

parallel operations to take place. In other words, the col-

lector can be conducting GC at the same time that the mutator

is performing list processing tasks. The collector operates

in such a manner that the free list never becomes empty, re-

sulting in there not being any noticeable delay caused by

garbage collection [Ref. 5: p. 492]. Both processors share

a common memory.

46



(1) The "Collector" -- The collector performs the pre-
viously described tasks of marking and incorporating
(sweeping) all unmarked cells into the free list. It
collects the list structures that the mutator has dis-
carded [Ref. 5: p. 493]. While these GC tasks are
occurring, the mutator remains active and continues
its own operations of computation proper.

(2) The "Mutator" -- The mutator provides all storage re-
quired by users' programs but the mutator can not
request cells from the free list until the collector
makes them available. The mutator "mutates" (processes)
list structures in memory [Ref. 5: p. 492].

C. TIME SLICE METHOD

Probably the simplest method to eliminate the halting of

program execution while GC is occuring is to t ime-share or

time-slice one processor between list processing operations

and garbage collection tasks. The GC could be done at times

that would not be inconvenient or noticeable to the user;

such as during typing (keyboard inputting) in a interactive

system or at other times that could be setup or scheduled by

a system clock. GC could be conducted at regularly scheduled

intervals and the duration of GC could be determined by the

system's characteristics (i.e. number of users , time of the

day, job priorities, etc.).

If the GC is to be conducted on a regular basis, then the

duration of each GC cycle could be programmed to be relatively

small; this would of course depend on several criteria of which

one of the more important is the size of memory. The larger

the size of memory, the less the number of times necessary to

be set aside for GC (i.e. the garbage collector would be

47



called less frequently). Alternatively, the system could be

designed so as to reduce the length of each time slice. But

no matter how often GC is conducted or how long a time slice

is, it is important to remember that GC could be temporarily

suspended at any time and later resumed [Ref. 5: p. 492].

This suspension of garbage collection would be controlled by

the system operators and not the system users. Of course,

this suspension of GC is dependent on the fact that sufficient

memory always remains to allow program continuation. Although

this would alleviate but not necessarily eliminate the aggra-

vating problem of users waiting for GC, it would introduce

still another problem, that of increased overhead in context

switching , and still may not result in any net gain of sys-

tem speedup [Ref. 10: p. 496].

There currently exist algorithms for both time sharing

the operations of both the collector and mutator processors

and the two processor scheme mentioned in the previous section.

These algorithms demand a greater percentage of the process-

ing time than does regular garbage collection. Additionally,

the results from these algorithms have shown that the garbage

collector with one processor being time-shared wastes (i.e.

does not use) more processing time than if there were two

processors dedicated to separate operations and functions.

The main reason for this is that the time allotted for the

garbage collection in a time-sharing environment must pro-

ceed even if there was no demand for it. A system that

48



time-shares one processor between list-processing tasks and

garbage collection tasks has specific times set aside for

both these tasks. These times are created by the system

designers at design time. For example, if a one processor

system were designed to conduct garbage collection every 100

milliseconds and there was no necessity for GC during one or

more of these 100 millisecond allotted GC times, then there

is an apparent waste of processing time; because the processor

could be doing productive work (list-processing) rather than

idly waiting for the allotted garbage collection time to ex-

pire so it could conduct list -processing [Ref. 2: p. 355].

If the design decision for a particular computing system

was made to have only one processor to SHARE the list process-

ing and the garbage collection duties, then the dynamic

processor allocation method might be more appropriate.

D. DYNAMIC PROCESSOR ALLOCATION METHOD

This technique involves dynamically allocating one processor

to both garbage collection tasks and to list processing opera-

tions as real-time needs dictate [Ref. 10: p. 496]. However,

if the trend of decreasing hardware costs including processor

costs continues, it would be more practical to devote one

processor strictly to GC requirements and devote another

processor to list -processing operations, even if there were

times that there would be no need for GC (resulting in one

processor being idle part of the time) . But having ONE

49



processor, being used either in a time-shared or dynamically

allocated method, would reduce the overall system cost and

eliminate synchronization problems between the two processors.

In addition to the previously mentioned "time-slice" method,

the other method of using only one processor to conduct gar-

bage collection would be to dynamically share this processor

between GC tasks and list-processing tasks. Steele has stated

that dynamic processor allocation could be utilized to achieve

a fair performance level [Ref. 10: p. 496].

Dynamic processor allocation is similar to the time-shared

scheme in that there is only one processor being utilized for

both GC and list-processing tasks; however there is no con-

ception of time with the dynamic processor allocation method

(i.e. the time at which the garbage collector takes control

of the processor operations is NOT pre-established or pre-

designed). Rather, the garbage collector is only invoked

WHEN absolutely necessary. The big implementation question

with this method is this "WHEN."

The dynamically allocated processor method is different

from the regular GC methods found in most LISP processors

in that the algorithm that decides this "WHEN" is more complex

and is developed with special considerations in mind: how much

memory remains available to the users, job priorities, job

sizes, etc. One implementation method for the dynamic method,

could be that the garbage collector would be invoked at times

that the users would not find it harmful to their program's

50



execution. In an interactive system, these times (that GC

could occur) may be based on when users are utilizing a

"read-only" file or when users first check into the system.

The point is that there is no set or established time for the

garbage collector to take control of the system in the dynam-

ically allocated processor method.

E. VIRTUAL MEMORY (VM) METHOD

This is a GC scheme, first proposed by Baker , that operates

and collects garbage in a virtual memory system. In this

method, secondary storage is utilized through paging. The

basic concept is that available memory is divided into two

areas called semispaces . These two areas are allowed to grow

from opposite ends. The sizes of the two semispaces vary at

execution time and the moving of accessible cells is done

whenever a new cell is requested [Ref. 2: p. 363]. One area

(resembling a stack that uses contiguous locations for the

users' programs) is reserved for the list processor. The

other area is available for providing new cells (also from

contiguous locations). These two areas respectively resemble

the previously mentioned working list and the free list.

Bobrow and Murphy have shown that the use of a selective

cons , which is LISP's function that requests a cell from the

allocator, can improve the efficiency of subsequent list-

processing and GC operations [Ref. 2: p. 351]. In a VM sys-

tem, each time that a cell is requested (i.e. a cons is

51



executed) a fixed number of cells are moved from one semi-

space to the other.

Compaction is necessary for garbage collection in this

method in order to avoid thrashing. For example, it has been

advocated to keep one free list per page. In a paging environ-

ment, the extra memory that is needed is of less importance

than the size of the working list. Since the moved cells are

compacted
,
page faults are more likely to be minimized. The

moving of cells during a cons execution corresponds to the

cell tracing in regular garbage collection. This method dis-

tributes some of the GC tasks during list-processing operations;

this guarantees that actual garbage collection CANNOT last more

than a fixed or tolerable time: i.e. the time necessary to flip

semispaces and readjust a fixed number of pointers declared in

the user's program [Ref. 2: p. 355].

For the purpose of this paper, the virtual memory method is

NOT reviewed in depth nor is it considered a worthwhile task

to pursue to determine if it is an adequate method for concur-

rent garbage collection. This decision is based on the fact

that systems with very large memories currently abound and

are becoming more commonplace as time passes on.

F. CONCLUSION

The successful implementation of a list-processing system

with parallel garbage collection provides a strong foothold for

parallel list evaluation [Ref. 15: p. 8]. List processing and

list evaluation is exactly what LISP provides.

52



Typical large LISP jobs may spend 10%-30$ of their time

in garbage collection tasks. Running GC in parallel could

cut the total real time for a given task by close to this

amount, without requiring the user to plan explicitly for

parallelism. Since the cost of CPUs has been steadily drop-

ping, it would be practical to devote one processor to GC

even if it would be idle part of the time [Ref. 10: p. 496].

Although dynamic processor allocation and time- sharing

processor allocation have some advantages and disadvantages,

the Two Processor implementation method is the one that the

remainder of this paper is devoted to. The complexity of

the algorithm for the dynamic processor method and the likely

possibility that the garbage collector may at times not be

performing any useful operations in the time-sharing method

preclude either of these two methods from providing the

optimum solution for a parallel garbage collection scheme.

Additionally, the VM method is not pursued because of the ready

availability of computing systems with large memories.

With the current trend of decreasing hardware costs, it

is practical and cost-effective to utilize the Two - Processor

method: one processor devoted to list-processing tasks and the

other processor strictly devoted to garbage collection tasks.

This decision takes into account the advantages and disadvantages

offered by the other methods. Both the two processor method and

the time-shared method require at most twice as much processing

power as regular garbage collection, but, since the list

53



processor no longer has to perform garbage collection, there

is a net speedup in the list-processing operations [Ref. 5:

p. 492]. As the cost of processors is steadily decreasing,

the feasibility of conducting GC with two processors should

increase with time. As the cost of hardware continues to

fall, one more processor in a system would not be infeasible.

In fact, having this processor devoted entirely to GC would

in the long haul provide more advantages and would alleviate

user frustration; but more importantly, it would eliminate

the halting of execution of user programs while GC is taking

place because of lack of available memory.

The specific operation of the mutator processor in the

succeeding chapters will NOT be discussed in detail because

basically it is just a typical, currently existing type processor

and studying its operation would reveal no significant or

new techniques for the operation of the collector.

Instead the collector processor is examined because it has

unique and different characteristics and is devoted entirely

to the task of garbage collection. Synchronization between

the two processors will be looked at.

Because of the numerous algorithms and implementations

that currently exist for concurrent garbage collection, only

one hardware and one software method of the Two Processor

method will be examined. However, the selected hardware and

software methods are both considered to be the ones that are

used in comparison with other garbage collection methods.

54



These two methods for two processor allocation with concur

rent garbage collection are examined in the next chapter.

55



V. "TWO PROCESSOR" GARBAGE COLLECTION IMPLEMENTATION

A garbage collection cycle is defined as the total exe-

cution time required for both the marking and sweeping (re-

claiming or scanning) phases. For the concurrent GC system,

there exists a requirement (primarily system efficiency) to

reduce the length of the garbage collection cycle [Ref. 16:

p. 113]

.

Implementing concurrent GC in a LISP environment with the

Two Processor Method raises an important question: Is it

feasible to utilize hardware or software techniques or possibly

a hardware and software combination to achieve concurrent

garbage collection? This question will be examined in this

chapter

.

There are numerous methods and algorithms proposed for

implementing a parallel garbage collection with two processors.

Some methods are: Ben-Ari's two-color scheme [Ref. 17],

Dijkstra's three-color schme [Ref. 18], Kung and Song's four-

color scheme [Ref. 3], and Steele's special coded or micro-

coded scheme [Ref. 10]. However, this paper will only

concentrate on reviewing two classic approaches to parallel

garbage collection:

(1) Dij kstra '

s

Software Implementation Method
(2) and Steele '

s

Hardware Method.

These two methods were chosen for review not only because

they represent some of the earliest ideas on the problem of

56



garbage collection, but also because each proposed a different

type of solution.

A. DIJKSTRA'S METHOD (SOFTWARE APPROACH)

Dijkstra's algorithm for parallel garbage collection re-

quires two distinct and separate processors, called the mutator

and the collector . Both processors operate from and on a

common memory from which cells required for a user's program

are allocated and deallocated. The collector continually

executes a two-stage cycle while maintaining the free list

of available cells for the mutator [Ref. 3: p. 1144]. The

mutator is dedicated to executing the user's list -processing

program and the collector is responsible for garbage collection

tasks

.

With two processors operating on the same memory there are

sure to be coordination and synchronization problems whenever

the collector is marking the in-use cells on the working list

at the same time that the mutator is modifying cells on the

same working list. One solution to this problem (and the one

that Dijkstra's approach proposes) is to utilize colors, which

indicate the status of each cell; in particular, a third color

(gray) is used during the mark stage to ensure all in-use

cells are marked.

Dijkstra's software-oriented method for concurrent GC with

two processors has sometimes been called "Dijkstra's three-

color" garbage collection algorithm [Ref. 3: p. 1143]. In

57



other literature, it has been referred to as an " on-the-f ly "

garbage collector. On-the-fly garbage collection is a sys-

tem that allows concurrent execution of both the mutator

and the collector [Ref. 17: p. 334].

The three colors for cell marking proposed by Dijkstra

are

:

(1) "white": indicates unmarked or unused

(2) "black": indicates marked or used

(3) and "gray": indicates that the cell has been requested
to be used by the user's program [Ref. 2: p. 354].

Garbage collection is performed by a two-stage cycle (i.e

a two-phase algorithm): the collector marks all cells access-

ible from the root and then appends all unmarked (and hence

inaccessible) cells to the free list. The basic algorithm

continually executes mark and sweep phases that are similar

to the phases discussed in Chapter 3. The algorithm that is

used applies a simple scan and mark method for mark propaga-

tion. However, the marking phase is a little more complex

than the mark phase in regular GC systems because two mark

bits are now required instead of one mark bit. Two mark bits

are used because a cell can be in any of three states , which

correspond to the above three colors.

A description and illustration of the collector's marking

phase and collecting/appending phase is provided later in

this chapter.

58



Each cell in memory contains the following:

(1) A data field.

(2) Two fields that contain pointers to other cells.

(3) and A two-bit color field that is used by the collector
to mark cells either black , white , or gray [Ref. 3: p.
1144] .

Figure 5.1 illustrates a typical cell. Notice that this

is a different cell configuration than that in Chapter 3, and

is not necessarily the only configuration of a typical LISP

cell

.

All cells contain the two extra bits for marking the cell

as black, white or gray. During the mark phase, the collector

blackens all cells that are accessible to the mutator. During

the scan phase, all white cells are returned to the free list

and all black cells are whitened.

Color Left Pointer Right Pointer

Note: Color field is 2-bits

Figure 5.1 Three-Color Cell Format.

Located within main memory, which is common to both

processors, are two distinguished cells:

59



(1) One cell points to the beginning and end (i.e. head
and tail) of a linked list of cells that are available
for users' programs. This linked list is similar to
the previously discussed free list.

(2) The second cell also points to a list: a working list
of cells that are currently being used by the mutator.
A cell is accessible if it is located within the work-
ing list; and a cell is in-use if it is either access-
ible or located on the free list [Ref. 3: p. 1144],

In a compacting GC system, these two lists are located

at opposite ends of memory. The mutator and the collector

tasks and responsibilities are subsequently discussed.

1 . Mutator Tasks/Responsibilities

The mutator uses primitive operations that allow it

to change a pointer of any accessible cell to point to any

other accessible cell, including NIL. The mutator operations

include pointing to a new cell that is removed from the head

of the free list after that cell was requested by a user's

program [Ref. 3: p. 1144]. In essence, the mutator is re-

sponsible for conducting the list-processing operations re-

quired by a user's program. The mutator is doing useful work

while the collector is collecting and recycling garbage cells

to permit their reuse by the mutator.

The color gray is used during the mark stage to ensure

that all accessible cells are marked. The mutator helps the

marking phase of the collector by changing a "white" cell to

"gray" when that cell is requested and used by a user's pro-

gram [Ref. 2: p. 354]. Cells that are black are used by the

mutator to perform list-processing in the user's program.

60



All other cells are white (i.e. cells that are not being used

or requested from the free list by the mutator are white).

Cells, that are no longer being used by the mutator and have

not been already reclaimed by the collector, will eventually

be returned to the free list.

For synchronization purposes (between the mutator and

the collector), there is a restriction placed on the mutator's

operations. During the marking phase, no cell can ever be-

come "lighter" [Ref. 18: p. 969]. In other words, whenever

the mutator changes a pointer in the pointer field of a cell,

that cell must be shaded . Shading is a primitive operation

that turns a white cell to gray. It has no effect on black

cells or other gray cells [Ref. 3: p. 1144].

The mutator will initiate an interruption and will

halt only when the free list is reduced to one cell. It

resumes list-processing when the collector returns additional

cells to the free list (i.e. the free list is now greater

than one cell) [Ref. 2: p. 354]. It has been determined

that the probability that the number of available cells on

the free list will ever contain only one cell is very low

[Ref. 17: p. 336]. This is because the algorithms for the

mutator and the collector are designed to avoid this situation

through the use of the two "distinguished" cells that exist

in memory.

Removal of cells is done at one end of the free list

and appending of garbage cells occurs at the other end of

61



the free list. The algorithms for the two processors are

designed to take into account the required synchronization

between the mutator and the collector so as to avoid having

only one cell on the free list. But if the free list were

ever reduced to ONE cell, then the mutator would have to

wait until the collector returns more cells to the free list.

Again, this situation will occur very infrequently.

The mutator's execution can result in cells that are

neither on the working list (pointers are now removed) or

are NOT yet on the free list. These cells are the "garbage"

cells which will be reclaimed by the collector.

2 . Collector Tasks/ Responsibilitie s

The basic function of the collector is to identify

"garbage" cells and collect them at the end of the free list

in memory by repeatedly executing the two-stage cycle. This

cycle first marks (blackens) all cells that are in-use . Then

it appends all the unmarked cells (white cells), during a

linear scan of memory, to the free list; next it unmarks or

whitens the marked cells (black cells) in preparation for the

beginning of the next GC cycle [Ref. 3: p. 1144]. Figure 5.2

and Figure 5.3 illustrate the above two-stage cycle of the

collector. Appending a garbage cell to the free list is the

collector's ONLY modification of the existing topology (i.e.

the shape of the data structure) [Ref. 18: p. 969].

How are the collector and mutator synchronized? In

other words, how is it possible to ensure that the collector

62



or mutator does not change a nongarbage cell (black) to white

or does not change a garbage cell (white) to nongarbage

(black)? As previously mentioned, the algorithms are designed

to ensure this necessary synchronization. Additionally, the

use of the third color ("gray") also helps in providing syn-

chronization between the two processors.

There are some constraints placed on the mutator.

The mutator can only shade cells (i.e. white cells to gray

cells) and it can only change pointers in the cells' fields

to point ONLY to other already accessible cells.

At the end of the marking phase, there are no gray

cells. The absence of white reachable cells prevents the

mutator from introducing gray cells while the absence of

gray cells prevents the collector from doing so [Ref. 18: p.

971]. The marking and the appending phases of the collector

are reviewed next

.

a. Marking Phase of the Collector

The collector marks or colors: the used cells of

a user's program black, the cells in the free list white, and

all other cells gray.

Initially, before any cells are allocated to a

user's program, all cells are white [Ref. 18: p. 969]. The

collector accomplishes the marking task by initially "graying"

the first used cell on both the working list and the first

cell on the free list (i.e. the roots of both the free list

and the working list) . The collector then selects a gray

63



cell and tracing proceeds by the collector graying any other

cells that are linked to this gray cell (this selection of

the initial gray cell is dependent on the particular algorithm

implementation, but the simplest method to implement is to

have the collector utilize the first cell it encounters dur-

ing its sequential scan of memory). Those cells that are

linked to this gray cell, including the initial gray cell,

are then "blackened." All cells that are still white after

the marking phase is completed will be "garbage" [Ref. 18:

p. 969]. Figure 5.2 provides an illustration of the above

operations

.

Tracing through memory is complete when all the

white cells are incorporated into the free list and all black

cells are whitened in preparation for the next mark phase.

During the next cycle of the collector, these white cells

are swept to the tail of the free list [Ref. 3: p. 1144].

Every garbage cell is eventually appended to

the free list. In other words, no garbage cell will ever

remain unreclaimed or uncollected for more than two con-

secutive garbage collection cycles. With a GC cycle con-

sisting of a marking phase followed by a sweeping/appending

phase, it is impossible to guarantee that each sweeping phase

will collect and append all garbage cells that existed at

its start. This is because new garbage could have been

created between the current sweeping phase and the preceding

marking phase [Ref. 18: p. 968].

64



Figure 5.2 displays memory with respect to time

as the collector performs the marking phase. The only cell

fields illustrated in Figure 5.2 (and Figure 5.3) are the

left and right pointer fields. Cells are either initially

on the free list or the working list or are "garbage" that

has not yet been appended to the free list. Cells 1 and 2

are marked garbage cells ("marked" garbage is explained

later in this chapter). Cells 3-5 constitute the initial

working list, cells 6-9 constitute the initial free list,

and cells 10 and 11 are unmarked garbage cells not yet ap-

pended to the free list ("unmarked" garbage is explained

later in this chapter) . Cell 5 is the starting cell (initial

cell) for the mutator and cell 6 is the starting cell of

the free list.

The various subphases of the collector's marking

phase (as illustrated in Figure 5.2) are:

(1) Subphase A is the beginning of the mark stage (see
Subphases G and H in Figure 5.3 for the reason why
cell 1 is initially gray)

.

(2) Subphas'e B grays the roots (cells 5 and 6) .

(3) Subphase C indicates the halfway point through the
mark stage (grays the sons of the root and blackens
all grays)

.

(4) Subphase D darkens cells (blackens gray cells and grays
white cells) through the use of primitives. This sub-
phase operation is performed to ensure that all used
cells and all requested cells are marked in preparation
for the collector's sweeping phase.

(5) Subphase E is the end of the mark stage. Cells 10 and
11 are "unmarked" garbage cells which will be collected
during the scan phase of the current GC cycle.

65



B D

1

2

8

9

10

11

C G

at;" i
IV W

B

G

1 IB U
B B

£

i
t

>-*
£

aJ

W

W

w

w

w

w

w

w

?
Jk

G

G

W

W

W

£
c.

H" 3f 3f 3f tw
B

7F

jg

Urf

B

G

g m

t
B

£
I

G

b m

i
B

1
j

M
l.
E- t

w w
a

TiMi; *
Legend

:

W-wh ite
G-gray
B - b 1 a c k

Gel 1 5

Gell 6

Initial cell o

Initial cell o

the mutator
the free list

Figure 5.2 Memory Snapshot During Mark Phase

66



The operations of the collector and the mutator

preserve Dijkstra's invariance property:

"Every white in-use cell can be reached from a gray cell
along a path passing through white cells exclusively."

No gray cells present implies that all in-use cells are

marked black; and when this happens, it signifies the end

of the mark phase [Ref. 3: p. 1144].

b. Collecting/Sweeping Phase of the Collector

This is Dijkstra's scanning phase. It is also

the collecting, sweeping, and the appending phase. This

phase returns garbage cells to the free list. Although it

was not originally designed to include the compaction feature

it can also be implemented to relocate cells for compaction
,

with all pointers "being updated as necessary. At the end

of this phase, all unmarked cells are eventually returned

to the free list; and compaction of cells can occur as they

returned to the free list.

When the marking phase is completed, there exist

two different types of garbage cells:

(1) Unmarked garbage cells which are collected during the
scan phase of the current GC cycle. These cells are
called "quick" garbage.

(2) and Marked garbage cells which are not collected until
the scan phase of the next collection cycle. These
cells are called "slow" or "floating" garbage [Ref. 3:

p. 1144].

Differentiation is made between the two types of

garbage cells to illustrate that there may be occasions that

some marked cells become garbage while the garbage collector

67



is still in its marking phase: these garbage cells will

remain uncollected until the next garbage collection cycle.

Memory is examined in a linear or sequential

fashion. White cells are now appended to the free list and

black cells are whitened in preparation for the next mark

phase

.

Figure 5.3 illustrates the collector's scanning

phase in memory with respect to time. It shows memory from

where the last mark phase ended (see Figure 5.2) to the be-

ginning of the next mark phase.

The various subphases of the collector's collect-

ing/appending phase (as illustrated in Figure 5.3) are:

(1) Subphase F is the end of the mark phase and the begin-
ning of the scan phase.

(2) Subphase G is the halfway point through the scan phase.
The right pointer from cell 3 to cell 4 was dropped
and cell 3's left pointer adjoined while cell 4 was
still black (hence, the mandatory shading operation
had no effect on cell 4) . If this pointer manipula-
tion occurred after cell 4 was scanned and whitened,
cell 4 would now be gray rather than white [Ref. 3:

p. 1145], This situation occurs because of some
primitive operations in the user's program that are
taking place at the same time as garbage collection is
occurring

.

(3) Subphase H shows memory immediately after the scan
phase. Cell 3 is gray because the right pointer from
cell 4 to cell 3 has been dropped and cell 4's left
pointer has been adjoined; this is the same reason
why cell 1 in Figure 5.2 (Subphase A) is initially
gray. Cells 7 and 8 are now being used by the mutator
(i.e. the user's program). This subphase is also the
beginning of the NEXT mark phase if compaction is not
a feature of the garbage collection process. "White
cells 4 and 5 ("marked" garbage cells) will be appended
to the free list during the next GC cycle.

68



H

1

I

4

5

m

B

B

B

B

B

B

B

B

B

10

11

W

n

t
ID

W

w

w

w

w

w

w

3L.

I
w W

w

V /

w

> /

B

> /

u B

H
W

w

w

v

w

V

m *->

V

7}Jw

OJw

3 G

4 W

5 W

7 G

8 G

6 W

9 W

10 W

11 W

1 W

2 W

Legend:
W-white
G-gray
B-black

Time
->

Figure 5.3 Memory Snapshot During the Scan Phase

69



(4) Subphase I illustrates memory if compaction were a

feature of the system. Cells 6, 9 , 10, 11, 1, and 2

represent the free list with cell 6 being the head
of the free list and cell 2 being the tail of the free
list. Nhite cells 4 and 5 ("marked" garbage cells)
will be appended to the free list during the next GC
cycle. Cells 7 and 8 are on the working list. Cell
3 is in the same situation as cell 1 in Figure 5.2
(Subphase A)

.

5 . Conclusion of Dijkstra's Approach

Dijkstra's method uses software techniques: two bits

per cell are used for coloring or marking of the cells in

memor; No use of semaphores or other interprocessor com-

munication is needed with Dijkstra's r.ethod [Ref. 5: p. 1144].

The mutator and the collector are separate processors, each

with specific tasks and responsibilities. The synchronization

and coordination features betweer. these two processors are

incorporated in the design of the respective algorithms,

which are more complex than that of regular garbage collection

The algorithms' descriptions in this paper have been greatly

simplified. Zr.e purposes of discussing Dijkstra's r.ethod

Are t: rrovide a view into :r.e ulassioal -.iz'r.:i :£ ; :r.duc t ir.;

concurrent garbage collection and to show that concurrent

;3.rbage collection is possible by using software techniques.

For additional information, see [Ref. 18].

The next section examines a different approach: that

of using hardware techniques for the implementation of con-

current garbage collection with two processors. It is not

the objective of this paper to compare the two methods of

using two processors to accomplish concurrent garbage

::



collection; instead, it is the intention to determine the

feasibility of using software or hardware methods to accomplish

this goal.

B. STEELE'S METHOD (HARDWARE APPROACH)

Steele's algorithm for parallel garbage collection, like

Dijkstra's approach, uses two processors, called the list

processor and the garbage collection processor . While

Dijkstra's method does not explicitly provide for compaction,

although it could be implemented, Steele's method does ex-

plicitly allow for compaction. Compaction is done using

the two-pointer technique previously discussed [Ref. 2: p.

354] .

Each processor has its own stack, which are used for

temporary storage and recursion. The list processor's stack

is used for:

(1) List structure manipulation.

(2) and Temporary variables, such as local variables, for
LISP functions.

The garbage collection processor's stack is used for:

(1) Marking of the accessible list structure.

(2) and recursive tracing [Ref. 10: p. 497].

One of the goals with Steele's approach was to keep the

list processor's overhead to a minimum by using necessary

synchronization features between the two processors [Ref. 19:

p. 50]. Semaphores are used for this interprocessor communica-

tion and synchronization.

71



Both processors operate from and on a common memory from

which cells required for users' programs are allocated and

deallocated. The cells that are located in memory are similar

to the cell's configuration previously discussed: the cells'

fields may contain pointers to other cells.

Steele introduced a new concept in the internal organiza-

tion and representation within memory. Cells are organized

into sets called spaces . A space is nothing more than an

ordered sequence of cells [Ref. 10: p. 497]. The cells are

of the same size and of the same format; in other words,

the cells are homogenous and therefore the spaces are also

homogeneous. There is no consideration of cells of various

sizes .

Steele's garbage collector makes exclusive use of sema-

phores and requires two bits per cell: the mark bit and the

flag bit. These two bits are used NOT only for the required

marking of cells but also for compaction and readjustment

of pointers in the cells' fields [Ref. 2: p. 355].

A "space" has two pointers associated with it. These

pointers are called freelist and lastfree , which respective-

ly point to the first and last cells in a linked list of

available cells within that particular space. These two

pointers resemble Dijkstra's two distinguished cells located

in memory; except thate there may be many freelist and last-

free pointers depending on the number of spaces; while in

Dijkstra's approach, there are only two such distinguished

72



cells. These two pointers are actually structures that each

have two components:

(1) A space indicator.

(2) and an integer which is a valid index within that
space's sequence of cells. In other words, this
integer identifies a particular cell within a space
[Ref . 10: p. 497]

.

The size of the spaces is predetermined by the system

designers: it is a system design decision. The concept of

these combined spaces resembles the notion of the free list

and the working list previously discussed.

The synchronization between the two processors and the

tasks of the two processors is subsequently discussed.

1 . Synchronization of the Two Processors

As it was with Dijkstra's software approach, the

synchronization of the two processors is necessary because

the GC processor may be relocating cells within a space

(which is required for garbage collection and compaction) at

the same time that the list processor is trying to operate on

these same cells. The way that Steele's approach handles

this problem is through the use of the flag bit and semaphores.

This flag bit is the key principle that allows the garbage

collector processor to relocate cells with the list processor

being aware of it [Ref. 10: p. 498]. Before the list processor

performs any operation on a cell, it first must check the flag

bit of that cell. If that bit is set to true then it means

that the cell has been relocated and that the new address

of that cell is in the first component field of that cell

73



[Ref. 10: p. 498], Steele calls this process "normalization "

(to assist in the processor synchronization, Steele incor-

porated the normalization process into a single function)

.

The garbage collector processor sets the flag bit after re-

locating the cell.

Additionally, the "P" and "V" semaphore primitives

defined earlier by Dijkstra are used for synchronization

[Ref. 10: p. 498]. Steele carried the idea of the above

semaphores to a higher degree in that more complex synchron-

ization operators were defined (in terms of the "P" and "V"

primitives). These semaphore primitives permit exclusive

access to a single cell for only one processor at a time but

in doing so the entire space where that cell is located is

NOT locked out to the other processor.

Semaphores are used to interlock access to the free-

lists. For efficiency and to provide a greater degree of

synchronization, it is necessary to have a freelist inter-

locked as little as necessary. Synchronization is accomplished

by having a pointer to the last cell of the free list and

stipulating that the garbage collector processor can only

append cells to the end of the free list and the list

processor can only remove cells from the beginning of the

free list. With this method a free list itself is inter-

locked with a semaphore ONLY when the free list is reduced to

one cell. This situation will occur very seldom in practice

[Ref. 10: p. 499]

.

74



Each processor also has a global register which con-

tains the address of the particular cell that a processor

wants exclusive access to. If the first processor tries to

use that cell before the second processor has released it,

then the second processor will loop (busy wait) until it

can have access to it [Ref. 10: p. 498]. Furthermore, it is

necessary to keep the garbage collector from shifting from one

phase to another phase while the list processor is trying to

determine what phase it is in. To accomplish this goal,

Steele uses two global "variables", gcstatesem and gcstate

(the former is a semaphore controlling access to the latter,

which in turn has as its value: mark, relocate, update, or

reclaim) . If "gcstatesem" were executed by the list processor

then the garbage collector is prevented from changing phases

[Ref. 10: p. 499]

.

All spaces, cells, pointers, and semaphores can be

operated on by either processor. However for synchronization

purposes, some constraints and restrictions must be placed

on the processor operations. Neither processor can push or

pop cells from a stack at the same time that the other

processor is doing so because this could result in erroneous

stack indexes. The solution to this problem is to use another

semaphore with each stack. Additionally, the list processor

can access and modify ONLY accessible cells. This is accom-

plished by having the list processor follow the following

rule

:

75



If the list processor modifies a marked cell during the
garbage collector's mark phase, it must ensure that the
garbage collector reexamines that cell and any other cells
that may be affected by the original cell modification
[Ref . 10: p. 499]

.

Each processor has its own internal registers that can be

used as "temporaries." However, neither processor can ex-

amine the other processor's internal registers [Ref. 10: p.

498] .

2 . The Garbage Collector Processor

The two bits in each cell (the "mark" and the "flag"

bits) determine the current status of a particular cell with

respect to the current phase of the garbage collector. These

two bits and the use of these bits by the two processors pro-

vide one of the biggest reasons why concurrent garbage col-

lection is possible.

Table I provides a summary of the meanings of these

two bits. For additional information, see [Ref. 10].

The garbage collector repeatedly executes in sequence

the following four phases that comprise garbage collection

with compaction:

(1) Mark Phase -- A simple recursive and trace method for
locating all accessible cells. Through the use of
one of the global variables, the garbage collector
processor locks out the list processor during this
phase

.

(2) Relocate Phase -- Uses the two-pointer scheme pre-
viously discussed (see Table I).

76



TABLE I MEANINGS OF THE MARK AND FLAG BITS

Mark bit false false true true

Flag bit false true false true

Mark Cell not yet (Does not oc- Cell seen by Cell on
phase seen by mark cur during mark and freelist

.

and trace mark phase) trace routine Should not
routine. Cell is there-

fore access-
ible.

be seen by
mark and
trace rou-
tine.

Relocate Discarded Relocated Accessible Cell on
phase cell .May be cell. First cell. May be freelist.

used to re- pointer com- relocated Ignored by
locate an ac- ponent indi- into new relocate
cessible ob- cates new place if phase.
ject into if location. necessary.

necessary.

Update Discarded Relocated Accessible Cell on

phase cell. Ignored cell. Ignored cell. Pointer freelist

.

by update by update components Ignored by
phase. phase. may need to

be normalized.
update
phase.

Reclaim Discarded Relocated Accessible Cell on

phase cell. May be cell, now dis- cell. Ignored freelist

.

returned to carded. May by reclaim Ignored
freelist

.

be returned
to freelist.

phase. by reclaim
phase.

77



(3) Update Phase -- Sweeps over each space and normalizes
all pointers in all accessible cells and also on the
list processor's stack. Combined with the relocate
phase, this constitutes the required compaction.

(4) Reclaim Phase -- Sweeps over all spaces and looks for
cells with their mark bit set to false (see Table I).

3 . The List Processor

The list processor accomplishes its task of being

able to continue list-processing at the same time that gar-

bage collection is taking place through the creation and use

of list manipulation primitives . Some of the more common of

these primitives are:

(1) Creation of new cells from the list available cells.
In LISP, this is accomplished by cons .

(2) Selection of cells' components. In LISP, this is ac-
complished by car and cdr .

(3) Determination which space a cell belongs to. In LISP,
this is atom .

(4) Comparison of pointers , where pointers identify a particu
lar cell within a space. In LISP, this is eq [Ref. 10:
p. 502].

C. CONCLUSION

Steele's approach provides a method to achieve concurrent

garbage collection using specialized hardware (i.e. micro-

coded processors) . His use of semaphores to assist in syn-

chronization is in itself not a new concept. But his use of

the flag bit that basically serves as an indirection marker

that permits the garbage collector processor to relocate cells

within the same space as the list processor is operating is

a new idea.

78



Two different approaches to achieve parallel or con-

current garbage collection have been briefly discussed.

Dijkstra's method proposes software techniques while Steele's

approach proposes hardware techniques. Which method is bet-

ter depends on many factors, such as the size of the system,

especially main memory and secondary store; the speed of

the processor (s) ; the number of users on the system (average

and worst-case); which high level language is being used

(for example, LISP); the cost of the system, etc.

Table II illustrates the major characteristics of the

two methods. Steele's algorithm, which is more complicated

than Dijkstra's algorithm (mainly because of its compacting

capability) , requires all active cells to be bound in a

stack. Dijkstra's algorithm uses multicolored marking (white,

gray, and black). The gray nodes inform the garbage collector

of list modification occurrences. The garbage collector

counts not-gray nodes during the mark propagating phase. The

existence of gray nodes, when the garbage collector examines

the count, indicates that the list processor has performed

some list modifications. Dijkstra's algorithm is obliged to

apply a simple scan and mark method for mark propagation (be-

cause it must correctly count not-gray nodes) [Ref. 15: p.

6]. For additional information, see [Ref. 2].

It is recommended that a technique using hardware tech-

nology be utilized to implement concurrent garbage collection

because hardware costs are continuing to decrease, while

software costs are continually increasing.

79



TABLE II PARALLEL AND REAL-TIME GARBAGE COLLECTION

ALGORITHM STORAGE REQUIRED COMMENTS

Dijkstra No stack; 2 bits/ce 11. Uses a free list;
Main objective is
to prove correct-
ness .

Steele Stack; 2 bits/cell, Designed to be
several semaphores. microcoded ; does

compaction

.

It has been shown with the two previously reviewed

garbage collection methods of Dijkstra and Steele that con-

current GC is feasible, including having the feature of com-

paction. There are numerous other methods and techniques to

implement concurrent GC. The next chapter briefly looks

at some of these other methods and the future possibilities

of concurrent garbage collection.

80



VI . OTHER ALGORITHMS/ FUTURE POSSIBILITIES

A. INTRODUCTION

Algorithms for concurrent garbage collection are too

numerous to list, let alone describe. Instead, this chap-

ter will briefly introduce several other concurrent garbage

collection methods and some future possibilities in the

area of garbage collection. These methods are not necessarily

restricted to two processors nor do they have compaction as

a feature. Additionally, the configurations of the LISP cells

for these algorithms differ from those presented in this

paper

.

B. OTHER ALGORITHMS

The first algorithm is that proposed by Lamport . Al-

though efficiency of garbage collection systems has been

basically ignored in this paper, it remains an important

consideration in the design of any computing system.

Lamport informally proposed that possibly the best way to

improve the efficiency of a garbage collection system is to

use several processors for garbage collection. Lamport's

algorithm allows any number of processors to be used in a

GC system, both as mutators and as collectors [Ref. 3: p.

1153]

.

Lamport's proposal of using multiple list processors for

concurrent garbage collection solved two problems:

81



(1) Concurrent execution of multiple mutator processes.

(2) Increasing the speed of the garbage collector.

These two problems were solved through the use of constraints

placed on the processors and through parallelizing the gar-

bage collection phases. Lamport's goal was to keep the

overhead of the mutator to a minimum; consequently, no un-

necessary synchronization between the collector and the

mutators was introduced [Ref. 19: p. 50].

Lamport's algorithm guarantees to mark any structure.

It requires a two-bit field in each node to allow marking.

In a multiple garbage collector system, Lamport's algorithm

effectively requires each garbage collector to access a

physically separate portion of the node space. Each garbage

collector examines nodes until ONE collector finds and marks

an accessible (shaded) node and then it shades its successors

All garbage collectors are then reset , restarting the search

of their assigned node space. Consequently, with most list

structures, only one garbage collector does any useful work

between "resets" [Ref. 20: p. 367].

A substantially improved version of Lamport's algorithm

is obtained by allowing each garbage collector to complete

its sequential pass through its assigned section of the node

space before resetting, instead of resetting as soon as one

garbage collector has found and "colored" a node. This

version has two advantages:

82



(1) Several garbage collectors may find shaded nodes on
each pass, be able to mark them, and shade their
successors

.

(2) Successors to a marked node may themselves be marked
in the same pass through the node space [Ref. 20:

p. 368].

Kung and Song's algorithm is introduced next.

Kung and Song '

s

algorithm, which is a variant of Dijkstra's

three-color collector, uses FOUR colors (white, off-white,

gray, and black) and has two independent processors that

share a common memory; one processor for list -processing and

the other for GC. This algorithm requires that the nodes of

the free list always be off-white; this requirement shortens

the marking stage because the nodes on the free list do not

have to be marked (i.e. the free list does not need to be

traced) [Ref. 3: p. 1145]. Each cell contains three fields:

a left and right pointer field and a color field.

Kung and Song's algorithm also introduces a deque , which

permits application of a recursive trace and mark method

(this is different from Dijkstra's simple scan and mark

method) . The insert operations to the deque increases the

overhead of the list processor, creating a new problem of

how to allocate the deque [Ref. 15: p. 1]. Although usage

of a deque for the marking phase increases the complexity

of proving the correctness of the system, a deque is used

in order to avoid possible access conflicts, since both

processors may manipulate the deque at the same time [Ref.

15: p. 1] .

83



As previously stated, efficiency has not been specifical-

ly addressed in this paper, and neither has system performance

Kung and Song's algorithm satisfies the following prop-

erties, which are important to the system's performance:

(1) The time to perform the marking phase by the garbage
collector is independent of the size of memory, and
depends only on the number of active nodes.

(2) The nodes on the free list do not have to be marked
during the garbage collector's marking phase.

(3) Only two active bits for encoding four colors are re-
quired for each node.

(4) Minimum overheads for the list processor are introduced.

(Dijkstra's method does not satisfy properties one and two

above) [Ref . 21: p. 120]

.

Kung and Song's system is designed such that the marking

phase has an execution time proportional to the number of

active nodes and independent of size of the memory. The re-

sults of their parallel garbage collection system show that

a parallel garbage collector is usually significantly more

efficient in terms of storage and time than a regular gar-

bage collector [Ref. 21: p. 120].

The next method of concurrent GC is that introduced by

Bonar and Levitan.

Bonar and Levitan '

s

method uses specialized hardware,

Content Addressable Memory (CAM) , that creates a very fast

real-time LISP system (they define a real-time list -process-

ing system as having the property that the time required by

each of the elementary operations is bounded by a constant

84



independent of the number of cells in use). Each word con-

tains one "simplified" LISP cell with only three fields: a

left (car ) and right (cdr)field, which can both point to

another LISP cell; and a garbage one-bit field (that in-

dicates if the cell is free) . The key observation about GC

with such a cell is that pointers to any given cell can be

located with only two CAM operations:

(1) A CAM search of the left fields of all cells in memory.

(2) A CAM search of the right fields of all cells in memory

When a free cell is needed, a CAM search is executed (using

constructed routines or algorithms), for a cell whose gar-

bage bit is set. Their algorithm requires that all cells be

initialized with the garbage bits set and the left and right

pointer fields set to nil. A part of the list structure be-

comes potential garbage when any one of may pointers to it

is deleted: this can occur by using the functions replaca

and replacd , that respectively replace pointers in the left

(car) and the right (cdr) fields of LISP cells. CAMS are

used to examine all memory cells in parallel and are con-

structed in such a manner that each word (a "word" is an

inherent regular sub- structure of CAMS) can compare its con-

tents, rather than its address, with a value broadcast by

the CPU. This comparison process is done by all CAM words

simultaneously. The CPU then interrogates the CAM to dis-

cover which words, if any, match the broadcast value [Ref.

12: p. 112]

.

85



Some advantages of this implementation are:

(1) It performs all elementary operations in real-time.

(2) All cells are available for use.

(3) Even though the cost of a CAM has been estimated to be
1.5-3.0 times the cost of an equivalent size RAM, it
is well suited for sufficiently inexpensive implementa-
tion with VLSI technology.

(4) It retrieves the correct value for a name associat ively

,

requiring only two CAM operations.

(5) Strings and other dynamic data types (in addition to
the simplified LISP cells discussed above) can be ele-
gantly and efficiently integrated into the basic scheme
without partitioning memory.

Some disadvantages of this system are:

(1) Circular lists cannot be easily collected.

(2) Does not support a virtual memory environment [Ref. 12:

p. 116] .

Hibino's method is the next and last additional method

of concurrent garbage collection introduced in this paper.

Hibino proposed a special processor for a parallel GC

system, which consists of two independent processes sharing

a common database: the list process and the garbage collector
,

which cooperate with each other to perform garbage collection.

Hibino's algorithm is designed on the condition that all

active cells are bound in a linear stack: this condition is

necessary for a practical list -processing system. Additionally

it needs one mark bit per cell and has a scan-request -flag

(SREQ) for the system (the SREQ is used by the garbage col-

lector for deciding whether to go into the reclaiming phase

or to again perform the mark propagating phase) [Ref. 16: p.

113] .

86



The SREQ informs the garbage collector of list modifica-

tion occurrences, thus requiring only one mark bit for each

cell. It applies a recursive trace and track method for

the marking phase (Dijkstra's algorithm applies a simple

scan and mark method) [Ref. 15: p. 6].

Hibino's special processor, which performs concurrent

garbage collection, was actually implemented using two

TOSBAC-40L processors (whose architecture is similar to the

INTERDATA 6/16). The processor cycle time is less than 200

nanoseconds. The processor is built using standard TTL

circuit technology. The microinstructions for this processor

are specifically tailored for garbage collection [Ref. 16:

p. 119]

.

Hibino's method requires very little overhead due to

parallelism [Ref. 15: p. 8].

The next section provides an insight into future possi-

bilities in the area of garbage collection.

C. FUTURE POSSIBILITIES

Thus far the only application of parallel garbage col-

lection has involved one or two processors. With the advent

of VLSI technology, having multiple processors on a single

chip is not only possible by potentially cost-effective.

Lamport first explored the possibility of concurrent garbage

collection in a multiprocessor environment. There are numerous

87



other possible multiprocessor configurations, which can in-

volve any number and any combination of collectors and list

processors. Two simple examples are:

(1) A system with only one garbage collection processor
and having a finite number of list processors.

(2) A system with several garbage collection processors
and at least one list processor.

The former example could be implemented by using a varia-

ion of Steele's method. Steele's synchronization interlocks

would require redesign but may not be as complex as in his

original method (e.g. require one primitive to lock out all

the list processors, except the one list processor that is

manipulating the free list) [Ref. 10: p. 506].

The latter example could be implemented by having all

the garbage collectors in the same phase at the same time

and then divide the work in each phase among them; or it

could be implemented by assigning specific "spaces" (as in

Steele's method) semi-permanently to the processors and al-

lowing each processor to collect garbage asynchroneously

[Ref. 10: p. 506]. One implementation of this method (multi-

ple garbage collectors) could be to have all the garbage

collectors active simultaneously. The garbage collector

would still have four basic phases (only three if compaction

not desired)

:

(1) Set-up
All nodes are marked as garbage by setting a mark bit
(or bits). This is similar to Dijkstra's coloring
(white cells) . This phase is typically executed as a
by-product of the collection phase.

88



(2) Marking
All nodes accessible from the roots of the list struc-
ture are marked as accessible. This is similar to
Dijkstra's coloring black. The marking phase may have
several stages in which the mark stage (color) of the
node changes. This will necessitate having more than
one marked bit

.

(3) Collection
All unmarked (white) nodes are added to the free list.

(4) Compaction. [Ref. 20: p. 367]

While concurrent garbage collection, using either hard-

ware or software techniques, is being pursued as a desired

feature in list-processing systems, future possibilities

in the variations of other garbage collection methods are

also being studied.

For example, an extension of the previously discussed

concurrent GC method (with multiple processors) could be

dynamic allocation of several processors to list -processing

or garbage collection (i.e ; perform GC or list -processing

as necessary) . Clever heuristics would be needed to describe

whether switching a processor at time "t" is desirable to

forestall having to wait on an empty free list at time "t +

n" [Ref. 19: p. 50]

.

Another example is in the case of one processor being

time-shared between list-processing and GC; a special micro-

coded processor could be designed to switch to garbage

collection ONLY on completion of a list -processing primitive,

which would eliminate many of Steele's synchronization

interlocks [Ref. 10: p. 506].

89



In the last example, it is known that garbage collection

with one processor typically consumes a substantial per-

centage of the total computation time used by list-process-

ing systems. Shifting storage reclamation costs, away from

a program's run time overhead, to compile time would reduce

the system cost of operating list-processing systems. This

can be accomplished using a Deutsch-Bobrow scheme (which

uses a combination of garbage collection and reference count

methods). This scheme maintains reference counts in a way

that can be expected to require less space than usual. It

has the property that the counts need to be updated far

less often than by traditional methods. Moreover their

method is incremental: consequently, unlike regular garbage

collection, it is not disruptive of real-time computation

[Ref . 22: p. 514] .

Automatic storage reclamation, when viewed in the Deutsch-

Bobrow model, can benefit from compile time optimization

[Ref. 22: p. 518]

.

These last three examples were only provided to illustrate

that studies in the variations of garbage collection methods

for list-processing systems are still receiving attention

and will continue to do so as the popularity of list-process-

ing systems grows

.

D. CONCLUSION

With the advent of VLSI technology, many limitations on

restricting the number of processors (collectors or list

90



Drocessors) because of cost or feasibility, are eliminated.

Of course, more processors in a system means more coordina-

tion and control among the processors is necessary. This

results in an increase in system complexity and in the syn-

chronization algorithms. If implemented in software, this

will mean an increase in the cost of maintaining these soft-

ware algorithms.

This chapter has shown that there exists a wide range of

algorithms and techniques for concurrent Parbage collection.

VLSI technology has Dushed the continuation of future studies

in this area, as has the popularity of list-processing

systems

.

The last chapter of this Daper provides conclusions about

the feasibility of conducting concurrent garbage collection.

91



VII . CONCLUSION

Storage reclamation in most list -processing systems, in-

cluding LISP, is a necessity. Most LISP implementations

utilize garbage collection to reclaim storage (memory oc-

cupied by unused cells) as the data structures of a program

grow and shrink. LISP is a highly interactive list -process-

ing system, that is useful in many applications and is grow-

ing in popularity. The flexibility and expressibility of

LISP have made it the "work-horse" of the AI community TRef.

12: p. 112]

.

The use of garbage collection for reclaiming unused

storage should always be considered when implementing a list-

processing system [Ref. 4: 'p. 506]. Is it better to utilize

regular GC or concurrent GC in a list --processing system?

This is a design decision that must be made before imple-

mentation. Both garbage collection methods ("regular and con-

current) have advantages and disadvantages.

Regular garbage collection has the problem of unpredict-

able suspension of users' programs while garbage collection

is being conducted. This occurs when the free list has been

exhausted. As previously illustrated (and depending on the

size of memory), regular GC can cause serious list -processing

delays, which can occur any time the program needs a new

cell [Ref. 12: p. 1121 .

92



Concurrent garbage collection eliminates these list-

processing delays, which are caused by insufficient memory

being available. Concurrent GC also allows program execution

to continue without interruption even during periods when

garbage collection is occurring. The difficulties in parallel

garbage collection are caused by the fact that the list :

processor is modifying the list data (i.e. creating new cells

or changing cell pointers) while the garbage collector deter-

mines which cells are garbage (non-accessible) [Ref. 15: p.

11 . Which implementation is better? In the comparison be-

tween regular GC and concurrent GC, the productivity of a

parallel GC system can be as much as 150% that of regular

garbage collection [Ref. 3: p. 1151].

The idea of performing concurrent garbage collection has

been around for some time. Knuth credits this idea to M.

Minsky. Though concurrent garbage collection is an appeal-

ing idea for real-time processing applications, no papers

were published until about 1975. Both Steele and Dijkstra

were among the first to investigate such a system [Ref. 21:

p. 127]. Steele in 1975 presented the first concrete al-

gorithm for the problem of garbage collection, which in-

volved a high degree of interleaving of the processors'

actions [Ref. 15: p. 1].

Garbage collection can be implemented with compact ion

or without compaction. As previously noted, GC with com-

paction has been shown to have significant time gains in

93



terms of performance in LISP programs. Garbage collection

without compaction is typically performed in a two phase

process of first tracing and marking all active cells and

then sweeping all unmarked cells back to the free list.

Garbage collection with compaction prevents "thrashing."

While compaction is not a necessity even in a systems that

utilize single-size cells, compaction in list -processing sys-

tems is recommended.

Garbage collection with compaction may be the only way to
prevent intolerably slow processing of lists having ele-
ments which are widely scattered in memory. In these
cases, automatic GC could be triggered when the number of
transfers from slow memory, per unit of time, becomes
larger than a specified maximum [Ref. 14: p. 26].

This paper has attempted to show that concurrent storage

reclamation in the form of garbage collection, with compaction

and without compaction, is feasible today using software or

hardware techniques; and if implemented will provide better

services to the system users (i.e. less program execution

interruptions, increased speed-up of list-processing, etc.)

than regular garbage collection can provide.

Many possible methods of concurrent garbage collection

systems have been presented, and study of the behavior and

design (including implementation) of concurrent garbage

collectio n systems is an increasing field of investigation

as list-processing systems becomre more commonplace. These

studies are occurring because regular garbage collection is

unsatisfactory in many situations. For example, regular

94



garbage collection delays may cause more serious problems

than frustration and discomfort among interactive users. For

example, in list-processing programs designed to control

physical devices, such as robotics applications, suspending

processing operations for the time garbage collection normal-

ly requires may be intolerable: consider the plight of a

future tennis playing robot forced to halt in mid-swing while

it performs garbage collection [Ref. 5: p. 491].

While this is a trivial example, imagine the consequences

of a regular GC list-processing system, which is designed to

provide time-critical decisions, such as the system whose

design and purpose is centered around "space defense." Now

imagine if program execution had to halt for garbage collect-

ion at a most crucial time (e.g. unknown air targets approach

ing Washington, D.C. from the NORTH at a high rate of speed):

this would not only be an unsatisfactory and unreliable sys-

tem but the results could prove to have unpredictable, dis-

asterous, and extremely sensitive consequences.

If concurrent GC is being used at its maximum capacity,

it requires twice as much processing power as regular GC. A

system with two processors (one dedicated to list-processing

and the other dedicated to garbage collection) will provide

an increase in the execution speed and possibly a decrease

in the total amount of memory required as well [Ref. 5: p.

500]. With the decreasing costs of processors, the drawback

95



of requiring twice as much processing power is offset by

the advantage of avoiding garbage collection interruptions.

Wadler developed an idea that compares regular garbage

collection and concurrent garbage collection using a term

called the power drain of the collector, which is the amount

of time that is used by the collector divided by the amount

of time required by the mutator in a single cycle. Since

list-processing systems typically spend 10-30% of their time

in garbage collection, the power drain of regular GC is

typically 11-43%. For concurrent GC systems, this means that

the full capacity of a parallel collector will not normally

be used [Ref . 5: p. 498]

.

The ratio of the power drain between parallel and regular
garbage collection can reach infinity. For example, in
the situation where NO cells are used or released (i.e.
the collector is never invoked) , the "power drain" of a

regular drain" of a regular GC system is zero. However,
in parallel garbage collection, the power drain is one
because the collector is still being kept busy even though
it does not return any cells. Wadler has shown that when
two processors operate at maximum capacity, the power
drain is 2. This means that parallel GC requires twice as
much processing power as regular GC," [Ref. 2: p. 358]

The power drain ratio between concurrent GC and regular

GC will have its minimum value whenever the concurrent gar-

bage collector is being used to its maximum capacity [Ref.

5: p. 498] .

A. ASSUMPTIONS

While this paper has shown the feasibility of concurrent

garbage collection, it must be remembered that several

96



assumptions were made in order to reach this conclusion.

Some of the major assumptions in this paper are:

(1) Economics is not considered an issue: the cost of
adding additional hardware (i.e. processors) is con-
sidered negligible, as is the assumption of having
large memories. Memory space is not at a premium:
large memory systems are becoming more commonplace.

(2) Processing time in interactive systems is not taken
into consideration. In other words, the only require-
ment emphasized in program processing is that program
execution will not halt due to GC activities. The
length of time for list -processing is not considered.

(3) Performance issues and proof of correctness are not
discussed

.

(4) Efficiency issues (e.g. productivity, system cost ef-
fectiveness, throughput, and system viability), im-
portant considerations in any system, are also not
discussed. This includes the problem that most gar-
bage collection algorithms seem to have in common:
they spend a lot of time "coloring" or marking garbage.
This can be inefficient if the application contains
large data structures that are modified only occasionally
[Ref . 17: p. 340] .

(5) Memory allocation, while related to memory deallocation
(i.e. storage reclamation), is only briefly mentioned.

(6) All cells are of the same size. Cells of various sizes,
which present a different problem and solution, are
not discussed.

(7) Future hardware costs will continue to fall; thus mak-
ing it advantageous to pursue concurrent garbage col-
lection with at least two independent processors.

(8) The operatio
ing processo
studied.

n of the list processor is a typical exist
r; consequently, its operation was not

(9) Garbage collection in virtual memory systems was only
briefly discussed. Garbage collection in a large
VM system might be bypassed altogether, although this
would degrade system performance by scattering the
active cells sparsely throughout memory; thereby re-
quiring frequent paging [Ref. 3: p. 1153].

97



(10) A basic understanding of list-processing languages,
in particular LISP, is required to grasp the dis-
cussion of the various storage reclamation methods.

(11) Overhead for the list processor is ignored: the defi-
nition of overhead (in parallel garbage collection)
is whenever the mutator performs any list data modi-
fication, it must then perform some additional opera-
tions to inform the garbage collector [Ref. 15: p.
2]. For example, consider how frequently list modi-
fication occurs in list processing systems. If this
occurred extremely often, it would be impossible to
introduce parallelism into garbage collection. For-
tunately in the case of LISP, this list data modifica-
tion occurs explicitly only when cons and replace
operations are performed [Ref. 15: p. 2].

While it is not the purpose nor intention of this paper

to prove any of the above assumptions, it still must be noted

that many of the above assumptions are critical to the de-

sign, implementation, and maintenance of a list -processing

system that uses garbage collection (in particular concurrent

garbage collection) . The above assumptions should first be

considered separately and then jointly when deciding on a

particular scheme to take care of "garbage cells" in a list-

processing system.

B. FINAL REMARKS

The simplest example of a parallel garbage collection sys

tern consists of two independent processes (the list processor

and the garbage collector) that share a common memory. Both

processors must "cooperate" with each other to allow garbage

collection

.

98



Successful implementation of list-processing systems,

with parallel garbage collection, gives a foothold for

parallel list evaluation [Ref. 15: p. 8],

The problem of parallel GC, which involves a high degree

of interleaving of the processors' actions, is one of the

most challenging problems in parallel programming [Ref. 16:

p. 113]. The latest trend in the computing industry shows

that software costs are increasing annually. This is due

largely to increased maintenance costs of this software and

the associated personnel costs related to developing and

maintaining this software. On the other hand, hardware costs

have been declining, and with the advent of VLSI technology

have made it possible to have numerous processors on a single

chip at a reasonable cost. Consequently, concurrent garbage

collection using software is not considered the optimum solu-

tion. Addition of a second processor for garbage collection

requires very little overhead [Ref. 19: p. 50].

As prices of processors continue to fall and as micro-

coded processors become more common, the design of these

special processors becomes more feasible. If this is done,

then the list processor can operate unimpeded; since processor

interlocking is necessary, it could be achieved through

special hardware in such a way that the list processor al-

most never has to wait on the garbage collector and then only

for very brief periods of time [Ref. 10: p. 506].

99



Synchronization, which must be done when the mutator

attempts to remove a node from an empty free list, can be

accomplished if cell removal and cell appending operations

are conducted at opposite ends of the free list. An empty

free list should happen infrequently and any convenient

synchronization primitive can be used to prevent this [Ref.

17: p. 335]

.

It is the conclusion of this paper that concurrent gar-

bage collection is not only possible, but that it has al-

ready been implemented. The simplest (and least costly)

method of parallel garbage collection with list-processing

is to use one processor strictly for list -processing opera-

tions and another processor strictly for garbage collection

tasks. Parallel garbage collection with more than two in-

dependent processors (easily attainable with VLSI technology

at a reasonable cost) is possible but is not considered

optimum because of algorithm complexity and increased syn-

chronization problems.

Two independent processors designed with separate tasks

(list-processing and garbage collection) will mean that the

list processor will not have to wait while garbage collection

is being conducted as in regular garbage collection systems.

There are some immediate advantages to concurrent GC:

(1) A net speedup in list processing operations.

(1) An increase in the efficiency of memory usage [Ref.
5: p. 492]

.

100



Consequently, it is recommended that concurrent garbage

collection (with compaction) be implemented in a list-

processing system with hardware techniques. The least costly

and simplest method is to have one processor dedicated to

list-processing and another processor dedicated to GC.

101



LIST OF REFERENCES

1. Deutsch, L.P. and Bobrow, D.G., "An Efficient, Incremental,
Garbage Collector", Communications of the ACM , v. 19 #

9, pp. 522-526, September 1976.

2. Cohen, J., "Garbage Collection of Linked Data Structures",
ACM Computing Surveys , v. 13 #3, pp. 341-367, September
1981.

3. Cohen, J. and Hickey, T., "Performance Analysis of On-
the-Fly Garbage Collection", Communications of the ACM

,

v. 27 #11, pp. 1143-1154, November 1984.

4. Schorr, H. and Waite, W.M., "An Efficient Machine-
Independent Procedures for Garbage Collection in Various
List Structures", Communications of the ACM , v. 10 #8,
pp. 501-506, August 1967.

5. Wadler, P.L., "Analysis of an Algorithm for Real Time
Garbage Collection", Communications of the ACM , v. 19,
#9, pp. 491-500, September 1976.

6. Sandewall, E., "Programming in an Interactive Environment:
the LISP Experience", Computing Surveys , v. 10 #1, pp.
35-71, March 1978.

7. Knuth, D.E., The Art of Computer Programming , 2nd Ed.,
v. 1, pp. 406-420, Addison-Wesley, 1973.

8. Cohen, J. and Nicolau, A., "Comparison of Compacting
Algorithms for Garbage Collection", ACM Transactions on
Programming Languages and Systems , v~ 5 #4 , pp . 532 - 553

,

October 1983.

9. Bates, W. , The Computer Cookbook
, pp. 139-140, Garden

City, 1984.

10. Steele, G.L. Jr., "Multiprocessing Compact ifying Garbage
Collection", Communications of the ACM , v. 18 #9, pp.
495-508, September 1975.

11. MacLennan, B.J., Principles of Programming Languages:
Design, Evaluation~and Implementation

, pp . 439 -449
,

CBS College Publishing, 1983.

102



12. Bonar, J.G. and Levitan, S.P., "Real Time LISP Using
Content Addressing Memory", 1981 Conference on Parallel
Processing , pp. 112-119, 1981.

13. Wegbreit, B., "A Generalized Compactifying Garbage
Collector", Computer Journal , v. 15 #5, pp. 204-208,
August 1972.

14. Cohen, J. A. and Trilling, L., "Remarks on Garbage Col-
lection Using a Two Level Storage", Bit , v. 7 #1, pp.
22-30, 1967.

15. Hibino, Y., "A Parallel Garbage Collection and its
Application in LISP", The Transactions of the IECE of
Japan , v. E63 #1, pp. 1-8, January 1980.

16. Hibino, Y., "A Practical Parallel Garbage Collection
Algorithm and its Implementation", Computer Architecture
1980

, pp. 113-120, 1980.

17. Ben-Ari, M., "Algorithms for On-the-Fly Garbage Collection"
ACM Transactions on Programming Languages and Systems

,

v. 6 #3, pp. 333-344, July 1984.
'

18. Dijkstra, E.W., Lamport, L., Martin, A.J., and Scholten,
C.S., "On-the-Fly Garbage Collection: An Exercise in
Cooperation"

,

Communications of the ACM , v. 21 #11,
pp. 966-975, November 1978.

19. Lamport, L., "Garbage Collection with Multiple Processing:
An Exercise in Parallelism", Proc . IEEE Conf. Parallel
Processing

, pp. 50-54, August 1976.

20. Newman, I. A., Stallard, R.W., and Woodward, M.C.,
"Improved Multiprocessor Garbage Collection Algorithms",
1983 Parallel Processing Conf ., pp. 367-368, 1983.

21. Kung, H.T. and Song, S.W., "An Efficient Parallel Garbage
Collection and its Correctness Proof", 1977 18th Annual
Symp . on Foundations of Comp . Sci., pp. 120-131,
November 19 77.

22. Barth, J.M., "Shifting Garbage Collection Overhead to
Compile Time", Communications of the ACM , v. 20 #7,

pp. 513-518, July 1977.

103



BIBLIOGRAPHY

Arnborg, S., "Optimal Memory Management in a System with
Garbage Collection", Bit , v. 14 # 4, 1974.

Baecker, H.D., "Garbage Collection for Virtual Memory
Computer Systems", Communications of the ACM , v. 15, # 11,
November , 1972

.

Beck, L.L., "A Dynamic Storage Allocation Technique Based
on Memory Residence Time", Communications of the ACM , v. 25,
# 10, October, 1982.

Berry, D.M. and Sorkin, A., "Time Required for Garbage
Collection in Retention Block-Structured Languages", Int

.

J. Comput . Information Sci. , v. 7, # 4, 1978.

Caluwaerts, L.J., Debacker, J., and Peperstrate, J. A., "A
Data Flow Architecture With a Paged Memory System", 1982
Computer Architecture , 1982.

Campbell, J. A., "Optimal Use of Storage in a Simple Model
of Garbage Collection", Information Processing Letters , v. 3

# 2, November, 1974.

Christopher, T.W., "Reference Count Garbage Collection",
Software-Practice and Experience , v. 14 # 6, June, 1984.

Dewar, B.K., Sharir, M. , and Weixelbaum, E., "Transformational
Derivation of a Garbage Collection Algorithm", ACM Transactions
on Programming Languages and Systems , v. 4 # 4, October, 1982

.

Fenichel, R.R. and Yochelson, J., "A LISP Garbage Collector
for Virtual Memory Computer Systems", Communications of the
ACM , v 12 # 11, November, 1969.

Fitch, J. P. and Norman, A.C., "A Note on Compacting Garbage
Collection", Computer Journal , v. 21 # 1, February, 1978.

Hansen, W.J., "Compact List Representation: Definition,
Garbage Collection and System Implementation", Communications
of the ACM , v. 12 # 9, September, 1969.

Hoare, C.A.R., "Optimization of Store Size for Garbage
Collection", Information Processing Letters , v. 2 #6, April,
1974.

104



Jonkers, H.B.M., "A Fast Garbage Collection Algorithm",
Information Processing Letters , v. 9 #1, July, 1979.

Kain, R.Y., "Block Structures, Indirect Addressing, and
Garbage Collection", Communications of the ACM , v. 12 #7,
July, 1969.

Kucera, L
.

, "Parallel Computation and Conflicts in Memory
Access", Information Processing Letters , v. 14 #2, April,
1982.

Larson, R.G., "Minimizing Garbage Collection as a Function
of Region Size", Siam J. Computing , v. 6 #4, December 1977.

McCarthy, J., "Recursive Functions of Symbolic Expressions
and the Computations by Machine, Part I", Communications
of the ACM , v. 3 #4, April, 1960.

Martin, J.J., "An Efficient Garbage Compaction Algorithm",
Communications of the ACM , v. 25 #8, August, 1982.

Morris, F.L., "A Time and Space Efficient Garbage ..Collection
Algorithm", Communications of the ACM , v. 21 #8, August,
1978.

Morris, F.L., "A Comparison of Garbage Collection Techniques"
Communications of the ACM , v. 22 #10, October, 1979.

_

Morris, F.L., "Another Compacting Garbage Collector",
Information Processing Letters , v. 15 #4, October, 1982.

Owicki, S. , "Making the World Safe for Garbage Collection",
ACM Symposium on Principles of Programming Languages

,

January, 1981.

Ramesh, S. and Mehndiratta, S.L., "The Liveness Property of
On-the-Fly Garbage Collector-A Proof", Information Processing
Letters , v. 17 #4, November, 1983.

Terashima, M. and Goto, E., "Genetic Order and Compact ifying
Garbage Collectors", Information Processing Letters, v. 7 #1,
January , 1978

.

Thorelli, Lars-Erik, "A Fast Compactifying Garbage Collector"
Bit , v. 16 #4, 1976.

Vermeulan, F.L., "On the Combined Problem of Compaction and
Sorting", IEEE Transactions on Software Engineering , v. 8

#4, July, 1982.

105



Weizenbaum, J., "Knotted List Structures", Communications of
the ACM , v. 5 #3, March, 1982.

Wise, D.S., "Morris Garbage Compaction Algorithm Restores
Reference Counts", ACM Transactions on Programming Languages
and Systems, v. 1 #1, July, 1979.

106



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Va 22304-6145

2. Chairman, Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

3. Dr. Bruce J. MacLennan 1

Code 52M1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. CDR Ronald E. Rautenberg, USNR 1

Code 52Rt
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5100

6. Computer Technology Programs 1

Code 37
Naval Postgraduate School
Monterey, California 93943-5100

7. CDR J.R.L. Cassidy, USN (Ret.) 1

7409 Forrester Lane
Manassas, Virginia 22110

8. LCDR K. G. Cassidy, USN 3

3801 Forrester Lane
Virginia Beach, Virginia 23452

107



L>o*-W1











Thesis
C283
c.l

Cassidy
The feasibility of

automatic storage re-
clamation with con-
current program execu-
tion in a LISP envi-
ronment .

Thesis

C283

c.l

216181
Cassidy

The feasibility of

automatic storage re-

clamation with con-

current program execu-

tion in a LISP envi-

ronment .

/

'""*»

£?*><*




