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ABSTRACT 
 

This dissertation develops the equations of motion for the structural and 

aerodynamic forces and moments of a rotor blade with a trailing-edge flap using eight 

degrees of freedom.  Lagrange’s equation is applied using normal modes to find the 

flutter frequency and speed similar to the classic fixed-wing method developed by Smilg 

and Wasserman.  However, rotary-wing concerns are addressed including different 

freestream velocities along the blade (variation of reduced frequency along the span of 

the rotor blade) and the influence of previously shed vortices on the aerodynamic forces 

and moments (Loewy’s returning wake).  While Loewy [Ref. 49] did not explicitly state 

that his 2-D theory would apply to rotor blades with trailing-edge flaps, the manner in 

which the theory was developed allows it to be applied in this manner.  Comparisons to 

classic 1DOF, 2DOF and 3DOF flutter theories are made to validate this theory in the 

limiting cases.  Flutter analyses, including g-Ω plots, of an example rotor blade with five 

degrees of freedom are performed for various rigid body flap frequencies. 

Classic methods of rotor blade design of ensuring freedom from flutter are to 

collocate the center of gravity (c.g.), elastic axis (e.a.), and aerodynamic center (a.c) at 

the 25% chord.  With the development of rotor blades with trailing-edge flaps, it is shown 

that this current design practice is not valid when a trailing-edge flap is incorporated.  
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zT  aerodynamic moment coefficient about leading edge of trailing-edge 
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1,n nT T +  torsional moment of blade section (Holzer method) 
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[ ]1+nT  complete transfer matrix for torsion or bending 
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U  potential energy 
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w  downwash velocity 
1, +n nX X  state vector for torsion or bending 

shiftX  horizontal shift of lead airfoil in a two-airfoil oscillating system 
x  chordwise coordinate of displacement 
( )nY k  Bessel function of the second kind of order n, evaluated at k 

y  spanwise coordinate of displacement 

1,n nz z +  deflection of out-of-plane bending (flapping) of blade section 
(Myklestad-Prohl method) 
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0 1,α α  blade torsional deflections due to rigid body and 1st blade torsional 
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0 1,α α  amplitude of rotation for rigid body and 1st blade torsional modes 
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β  angle of deflection for trailing-edge flap 

0 1,β β  flap torsional deflections due to rigid body and 1st flap torsional 
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0 1,β β  amplitude of flap deflection for rigid body and 1st flap torsional modes, 
respectively 

1,n n+β β  angle of out-of-plane bending (flapping) of blade section (Myklestad-
Prohl method) 

rootβ  angle of out-of-plane bending (flapping) at root of blade (Myklestad-
Prohl method) 

1, ,n n+φ φ φ  angle of twist of blade section (Holzer method) 

rootφ  angle of twist at root of blade (Holzer method) 

1φ → φ37

q

 Küssner’s φ-functions 
Γ  total circulation around the airfoil 
, ,a nγ γ γ  vorticity generated by airfoil 
λ  inflow 

vλ  2 vπ
=

ω
, wavelength of layers of shed vorticity 

µ  mass per unit length 
θ  , local pitch angle due to time variation of root pitch angle 

and geometric twist of rotor blade 
0 B= θ + θ

ρ  density of air 
Ω   rotational velocity of rotor blades 

0Ω  normal rotational velocity of rotor blades (203 rpm for example rotor 
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ω  frequency of oscillation (flutter frequency) 
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I. INTRODUCTION  
 

A. AEROELASTICITY 

Aeroelasticity has been defined as the study of the interaction between the 

aerodynamic forces and the elastic structure of a body in an airstream [Ref. 1].  This 

interaction may tend to become smaller over time (convergent) and produce a stable 

condition, or it may become larger over time (divergent) and possibly cause structural 

damage to the aircraft.  If a body is infinitely stiff, aeroelastic problems would not exist 

since the body would not be capable of bending or twisting.  In order to decrease the 

weight of an aircraft, flexible, light-weight structures are normally used in the design.  

The structural flexibility by itself is not an inherent problem for aircraft designers, but 

when coupled with large aerodynamic forces, aeroelastic phenomena may arise.  These 

aeroelastic phenomena may cause additional structural deformations that may produce 

even larger aerodynamic forces, which makes the problem of aeroelasticity a concern. 

In this research, the aircraft structure being considered is a helicopter rotor blade 

with a trailing-edge flap incorporated along a finite portion of the blade.  A schematic of 

this type of rotor blade is shown in Figure 1 [Ref. 2].  The typical design of a rotor blade 

is that of a very flexible, high-aspect ratio wing with the stiffness of the rotor blade being 

increased somewhat by the large centrifugal force acting on it.  The presence of this 

centrifugal force introduces additional dynamic forces into the aeroelastic phenomena 

described above and suggests that inertial forces should be included as a third element, 

and therefore creating a triangle of interaction among the aerodynamic, elastic and 

inertial forces.  The aeroelastic triangle shown in Figure 2 from Bisplinghoff, Ashley and 

Halfman [Ref. 1] is the most comprehensive illustration of the interdisciplinary nature of 

aeroelasticity.  The sides of the triangle represent some of the classic couplings that have 

grown into disciplines of their own.  The interaction between elastic and inertial forces is 

referred to as the field of structural dynamics and encompasses mechanical vibrations.  

The interaction between aerodynamic and inertial forces is referred to as flight mechanics 

and encompasses dynamic stability.  The interaction between aerodynamic and elastic 

forces is normally referred to as static aeroelasticity and encompasses load distribution, 
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torsional divergence, control effectiveness, control reversal, and static stability.  

However, it is the interaction between all three forces – aerodynamic, elastic and inertial 

– that is of concern for most rotary wing aeroelastic analyses.  The three-way interaction 

of the forces is referred to as dynamic aeroelasticity and encompasses flutter, buffeting, 

transient dynamic response, and aeroelastic effects on dynamic stability. 

 
Figure 1.  Rotor blade with trailing-edge flap (from Ref. 2). 

 
Figure 2.  Aeroelastic triangle (from Ref. 1). 
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B. ROTARY WING AEROELASTICITY 

1. Typical Rotor Blade Design 

Flutter is normally defined as an aeroelastic, self-excited vibration, in which the 

external source of energy is the air stream.  When flutter occurs, the air stream provides 

energy to the system more rapidly than it is dissipated by damping [Ref. 3].  The 

requirements for designing helicopter rotor blades to be free of flutter are contained in 

Federal Aviation Regulations under Aircraft Circular 27-1B for normal category 

rotorcraft [Ref. 4] and Aircraft Circular 29-2C for transport category rotorcraft [Ref. 5].   

Section 629 of both circulars state that the rotorcraft must be free from flutter.  

Additionally, section 629A of AC 29-2C requires that 

each aerodynamic surface of the rotorcraft must be free from 
divergence in addition to the requirement of freedom from flutter.  The 
aeroelastic stability evaluations required by this regulation include flutter 
and divergence.  Compliance with this regulatory requirement should be 
shown by analysis and/or flight test, supported by any other means found 
necessary by the Administrator.  The aeroelastic evaluation of the 
rotorcraft should include an investigation of the significant elastic, inertia 
and aerodynamic forces on all aerodynamic surfaces (including rotor 
blades) and their supporting structure.  The forces associated with the 
rotations and displacements of the plane of the rotors should be 
considered. 

The typical approach in designing rotor blades (without trailing-edge flaps) to be 

free from flutter can be summarized in a statement, from the 1960 Sikorsky Report No. 

50131 for the Advanced Tactical Helicopter (A.T.H.) [Ref. 6]: 

Main and tail rotor blades of the A.T.H. have been designed so 
that center of gravity, elastic axis, and aerodynamic center are coincident.  
Also, the control system for the main rotor is stiff with high internal 
damping.  No main or tail rotor blade flutter has been experienced with 
earlier model helicopters possessing these design features. 

Main and tail rotor blades for the HSS-2, which are the same as 
those of the A.T.H., have been installed on Sikorsky whirl stands, and 
tested at maximum design-limit speeds.  Main rotor blades were tested for 
power-on and power-off conditions.  Tail rotor test conditions were 
power-on and power-off.  Observation of blades during these tests 
indicated no flutter or divergence at maximum operating conditions.  

This design practice of collocating the center of gravity, elastic axis and aerodynamic 

center has the advantage of decoupling the aerodynamic, elastic and dynamic equations 
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of motion.  While this assures freedom from flutter and other aeroelastic phenomena, it 

provides additional constraints on rotor blade design not normally followed in fixed-wing 

design.  A rotor blade designed with the center of gravity, elastic axis and aerodynamic 

center coincident at the quarter-chord will be heavier than one free of that restriction.  

The added weight in the rotor blade may necessitate a larger power plant and a larger 

gearbox, and the rotor blade itself may be larger than needed in order to provide the 

necessary rotor thrust to achieve flight.  Also, if strictly followed, this design constraint 

rules out use of a trailing-edge flap because the aerodynamic center will move when the 

flap angle is changed [Ref. 7 and 8], and the elastic axis and center of gravity may shift 

when a trailing-edge flap is incorporated. 

2. Helicopter Vibration Reduction 
The most recent use of trailing-edge flaps is to reduce the vibrations caused by the 

rotor system.  Vibration reduction has long been a concern for helicopter designers.  In 

1957, the American Helicopter Society held a “Rotary Round Table” devoted to the 

subject of “How Can Helicopter Vibrations be Minimized?” with contributions from 

leading experts on the subject [Ref. 9].  Loewy [Ref. 10] cites a quote from Alexander 

Yakovlev, a famous Russian aircraft designer, detailing the persistent frustration in 

reducing helicopter vibrations.  Loewy makes an additional argument referencing 

Bisplinghoff’s aeroelastic triangle (Figure 2) that if the definition of dynamic response 

(Z) is expanded to include periodic phenomena, helicopter vibrations would fall into this 

category since the major source of fixed airframe vibrations is caused by the periodic 

aerodynamic response of the rotating blades.  Bousman [Ref. 11] states, “The problems 

of loads and vibrations have always been part of the helicopter development and in this 

sense have been at the forefront of all efforts by dynamicists in the industry.”  The 

primary motivation for the dynamicist is to reduce the vibration levels during the 

helicopter’s development phase.  

Early efforts to control vibrations in the fixed airframe were normally 

accomplished with some type of vibration control device.  These devices can be 

categorized as “Amplitude Reducers”, “Force Attenuators”, or “Source Alleviators” [Ref. 

10].  Amplitude reducers act to reduce the effects of the response by either isolating part 
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of the helicopter from the fixed system by ensuring the natural frequency of the isolated 

system is low compared to the excitation frequency, or putting dynamic absorbers in the 

structure that produce an opposing force (damping) to the vibration in some particular 

direction.  Both devices are passive and are tuned to reduce vibrations at normal 

operating rpm of the rotor, and they may not provide the necessary vibration reduction 

outside the normal operating range.  Counter-rotating weights and oscillating, weighted 

hydraulic cylinders are active devices that can create inertial forces that oppose the 

vibrational forces and can be tuned to changes in rotor rpm. 

Force attenuators are devices placed between the excitation and responding 

structure to reduce the transmitted vibratory force.  The two primary force attenuators are 

rotor isolation systems and pendulum absorbers.  The rotor isolation systems attenuate in-

plane hub forces or pitching and rolling moments by using the inertia of the isolated rotor 

mass as a counter-force.  These isolation systems are normally tuned to the operating rpm 

of the rotor.  The pendulum absorbers have an advantage in that their natural frequencies 

are proportional to the rotor speed, and they are properly tuned regardless of rotor speed.  

However, pendulum absorbers can become de-tuned when oscillation amplitudes become 

too large.  Sikorsky’s H-60 uses “bifilar” pendulum absorbers to help reduce vibrations as 

shown in Figure 3 [Ref. 12]. 

Source alleviators are devices that reduce the vibrations at their source, the main 

rotor.  Dynamic pendulum absorbers attached to the blades have been used with some 

success, but concerns about weight and aerodynamic drag have limited their use [Ref. 

10]. 

a. Higher Harmonic Control 
The most promising development in reducing helicopter vibrations at their 

source has been the implementation of higher harmonic control (HHC) [Ref. 13].  HHC is 

an active control concept that introduces control inputs into the non-rotating reference 

frame at the rotor hub in order to reduce the vibratory loads caused by the aerodynamic 

loads in the rotating reference frame of the hub.  Higher harmonic blade pitch control is 

achieved by superimposing an Nb/rev input motion upon pilot cyclic and collective 

control inputs.  The Nb/rev inputs in the non-rotating reference frame generate Nb/rev, 
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(Nb–1)/rev and (Nb+1)/rev inputs in the rotating reference frame, which correspond to the 

frequencies at which the primary vibrational loads are transmitted to the fuselage.  

Results from the OH-6A flight tests showed a reduction in vibration levels of up to 90% 

with HHC on.  Additionally, the open loop data showed significant reductions in the main 

rotor shaft torque and engine power indicating that HHC may be providing performance 

improvements along with the vibration reduction [Ref. 13]. 

Rotary wing, unsteady aerodynamics for a thin, oscillating airfoil has been 

used to explain the mechanism behind the performance improvements seen on the OH-

6A [Ref. 14 and 15], which provides a practical example of Loewy’s premise that 

helicopter vibrations are a periodic dynamic response involving all three forces in the 

aeroelastic triangle.  Wind tunnel tests on a scaled model of the Boeing Vertol CH-47D 

with HHC [Ref. 16] installed also showed both vibration reduction and performance 

improvement, but flight tests on the Sikorsky S-76A [Ref. 17 and 18] and the 

Aerospatiale S-349 Gazelle [Ref. 19] showed only vibration reduction.  The reason for 

the lack of observed performance improvements can be explained by the larger freeplay 

in the flight control system that was apparent in the Sikorsky and Aerospatiale HHC 

designs due to the locations that the installed HHC components [Ref. 15]. 

b. Individual Blade Control 
A logical progression from HHC, in which inputs are made in the fixed 

system at the hub, is to make inputs on the blades themselves in the rotating frame of 

reference.  This type of control input is commonly referred to as individual blade control 

(IBC).  There are three common approaches to implementing IBC on the rotor system 

[Ref. 20].  The first approach used is to oscillate each blade in pitch by changing the root 

pitch angle.  This method is similar to HHC in that inputs are made to the entire blade.  

The primary difference is that HHC uses the rotor as a filter so that the rotating reference 

frame experiences the (Nb±1)/rev inputs while IBC can provide any input frequency to 

the rotating reference frame.  The most recent use of this method was reported in the 

wind tunnel tests of a full-scale H-60 rotor blade in which the standard pitch links were 

replaced with hydraulic actuators to allow for the IBC inputs [Ref. 21].  The second 

approach uses embedded piezoelectric fibers to serve as actuators within a composite spar 
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that induce a distributed twisting moment along the span of the rotor.  This approach is 

commonly called the active twist rotor (ATR).  The first closed-loop wind tunnel tests 

were conducted as part of the NASA/Army/MIT/University of Michigan Active Twist 

Program demonstrating the ATR proof of concept, but to date it has not been 

implemented on a full-scale rotor [Ref. 22, 23, and 24].  The third approach incorporates 

a trailing-edge flap located along a finite segment of each rotor span, and inputs are made 

by oscillating the flap angle.  The trailing edge flap is normally located along a portion of 

the blade that includes the point of the resultant aerodynamic force on the rotor blade.  

This research will focus only on the trailing edge flap when referring to IBC. 

 
Figure 3.  Sikorsky H-60 main rotor hub (from Ref. 12). 
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c. The Trailing-Edge Flap 

The concept of incorporating a trailing-edge flap on a rotor blade is not 

new.  The Kaman H-2 was a very successful helicopter that used a trailing-edge flap to 

provide cyclic and collective pitch control [Ref. 25] in all flight regimes.  The most 

recent applications of the trailing-edge flap have focused on the vibration reduction 

potential through the use of smart materials as part of an IBC concept [Ref. 26].   

Analytical studies have indicated that the use of trailing-edge flaps can produce vibration 

reduction levels equivalent to those seen by HHC but for much less power [Ref. 27 and 

28].  Two full-scale active flap programs are currently underway:  Boeing is working on a 

piezoelectric-stack actuated flap for the MD-900 Explorer [Ref. 2], and Eurocopter is 

working on a piezoelectric-stack actuator for the EC-135 [Ref. 29]. 

3. Dissertation Objective 

The aeroelastic analyses for the trailing-edge flaps have been routinely performed 

using a computational code such as CAMRAD II, CAMRAD/JA, 2GCHAS, UMARC, 

and others [Ref. 2, 30, and 31].  While these codes are quite capable of predicting rotor 

vibrations, they all work predominantly in the time domain and require much effort to 

learn how to use them to the fullest extent of their capabilities.  Time history plots are 

generated and analyzed in order to see if any instability, such as flutter, existed.  The lack 

of a closed-form, frequency-domain solution for the aeroelastic analysis of rotor blades 

with trailing-edge flaps is very apparent in a review of the literature.  The purpose of this 

dissertation is to develop the coupled aeroelastic equations of motion in order to perform 

a flutter analysis for rotor blades with trailing-edge flaps.  This flutter analysis will be in 

the frequency domain and take into consideration bending and torsional mode shapes for 

the rotating blade, rigid body motion in pitch and flap, and the effects of rotary-wing 

unsteady aerodynamics.  Comparisons will be made with classical fixed wing unsteady 

aerodynamics to determine the effects of layers of shed vorticity beneath the rotor blade 

on the flutter speed. 
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II. BACKGROUND 
 

A. STRUCTURAL DYNAMICS 

Since a helicopter rotor blade can be treated as a rotating flexible beam, the 

classic methods of determining the structural dynamics of a beam can be used.  Yntema 

[Ref. 32] is a notable example in which beams of variable cross section, but linear with 

span, and different root end suspensions are analyzed in detail for an untwisted rotor 

blade in pure vertical (flapwise) bending.  However, a rotor blade undergoes vertical, 

inplane (chordwise), and torsional (twisting) deformations as it rotates about the main 

rotor drive shaft, and a beam theory that includes motion in more than one plane is 

needed for use with a flutter theory.  Wood and Hilzinger [Ref. 33] developed the fully 

coupled equations of motion for aeroelastic response of rotor blades that is based on the 

superposition of separate harmonics of blade force response, which result from response 

of the blade to individual harmonics of airloads.  While this method is very robust, some 

assumptions will be made in regards to which coupled modes to use in order to develop a 

simplified flutter theory.  This method is an extension of the work by Gerstenberger and 

Wood [Ref. 34] on the coupled equations of motion for flapwise and chordwise bending, 

which uses the method developed by Myklestad [Ref. 35] and Prohl [Ref. 36] for 

calculating natural frequencies and modes.     

In the analysis to follow, the aerodynamic coupling due to blade inplane motion 

has been neglected since it is a higher order effect compared to the flapwise and torsional 

deformations.  Therefore, only the natural frequencies of vertical bending and torsional 

twisting must be determined in order to perform a flutter analysis.  To account for the 

change in structural properties along the blade, lumped-mass parameters will be 

developed so that the partial differential equations of motion can be replaced with a set of 

ordinary differential equations, which can then be written in transfer matrix format so that 

in iterative solution may be obtained.  In each case, bending and twisting, the equations 

of motion account for the large centrifugal forces on the rotor blade. 

 

 

 9



1. Holzer Method for Uncoupled Torsional Natural Frequencies 

The development of linearized, coupled, nonuniform, rotating blade equations for 

torsion are based on the work of Houbolt and Brooks [Ref. 37].  Hodges and Dowell 

[Ref. 38] expanded the work of Houbolt and Brooks to include nonlinear structural and 

inertial effects, however for this analysis only the linearized equations will be used.  The 

differential equations developed by Houbolt and Brooks are derived from the strain-

displacement equations, and for torsion only can be written as 

 

( ) ( )
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where 

µ = mass per unit length 

1 2

2 2
m mk k k= + m , 

km1 = mass radius of gyration of the blade section about the chordwise axis, 

km2 = mass radius of gyration of the blade section about an axis perpendicular to 

the chordwise axis through the elastic axis  
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m

m

C

A G
ds

t s∫
 = torsional rigidity or torsional stiffness, 

C = , local tension due to centrifugal force, 2
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E = Young’s modulus of elasticity 
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 ∫ d , section constant 
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η = chordwise position integration variable measured from trailing edge to 

leading edge 

Ω = rotation velocity of the rotor blade, 

ec = distance between c.g. and elastic axis, positive when mass axis lies ahead 

of elastic axis 

e0 = distance at root between elastic axis and axis about which blade is rotating 

(pitch root axis), positive when elastic axis lies ahead of root pitch axis 

θ  = θ0(t) + θB(y) = local pitch angle due to the time variation of the root pitch 

angle and the geometric twist of the rotor blade, 

Mθ = aerodynamic torque loading per unit length, 

and    Mapp = the total applied moment. 

It should be noted that the GJ term is not simply the product of the shear modulus (G) 

and the polar moment of inertia (J).  In fact, Timoshenko and Goodier [Ref. 39] describe 

torsional rigidity as the factor by which the torque is divided to obtain the twist per unit 

length, or for a nonrotating beam 

 d T
dy GJ
φ
=  (2) 

which is sometimes referred to as the St. Venant-type torsional stiffness.  Since a rotor 

blade has a noncircular, thin-walled cross section, the J term is not the polar moment of 

inertia at all.  Using the method developed by Timoshenko and Goodier with the 

nomenclature used by Craig [Ref. 40], the angle of twist for a thin-walled cross section 

can be written as 

 ( ) ( )
( )24 mCm

T s y dsy
A G t s

φ = ∫ , (3) 

where Cm is the median curve and t(s) is the thickness of the cross section as a function of 

circumferential location (s).  Taking the derivative of the angle of twist with respect to y, 

equation (3) becomes 

 ( )
( )24 mCm

T sd
dy A G t s
φ
=

ds∫ , (4) 
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and thus by the definition of GJ in equation (2), 

 

( )

24

m

m

C

A GGJ ds
t s

=

∫
 (5) 

Equation (1) can be simplified by noting that the total applied moment can be set 

to zero in order to obtain the uncoupled torsional natural frequencies, or 

 0appM = . (6) 

Additionally, since the blade cross-sectional thickness is much less than the chord, the 

mass radii of gyration can be simplified as follows: 

 . (7) 
2 1

2 2 2
m m mk k k k>> ⇒ ≈

2

2
m

If it is assumed that the pitch root axis is coincident with the elastic axis, then 

 0 0e = . (8) 

Applying equations (6) through (8) to equation (1) and noting that the mass moment of 

inertia, 2 ,mI kα = µ  the result is 

 ( ) ( ) ( ) ( )
2 2

2 2
1 2

, ,
cos 2 , 0a

y t y t
GJ Ck EB I I y t

y y y tα α

   ∂φ ∂ φ ∂ ∂θ  + + − − Ω θ φ =   ∂ ∂ ∂ ∂    
. (9) 

Bielawa [Ref. 41] describes the first term (GJ) on the left side of equation (9) is the 

torsional stiffness term.  The second term (Cka
2) is the tension-torsion term that tends to 

untwist a pre-twisted blade due to centrifugal force, and the third term, ( )1EB y∂θ ∂ , is 

the incremental torsional stiffening or the coiled spring effect.  The fourth term ( Iα ) is 

the torsional inertia, and the fifth term ( 2 cos 2IαΩ θ ) in equation (9) is called the “tennis 

racket effect”, or propeller moment, and also tends to untwist a pre-twisted blade.  The 

untwisting effect terms essentially provide extra stiffening of the rotating blade as a 

function of the rotational velocity.  The net effect will be an increase in the uncoupled 

torsional natural frequency.  While the local pitch angle, θ, is a function of both time (the 

sinusoidal variation in pitch of the blade root) and radial position (blade pre-twist), a 

reasonable approximation can be made that the blade root pitch angle is constant, and that 
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the only variation along the span of the blade (pretwist) is needed, or θ = θ(y) only.  If the 

pretwist is restricted to linear twist only, the slope will be a constant, the partial 

derivative with respect to y will be zero, and equation (9) becomes 

 ( ) ( ) ( ) ( ) ( )
2

2 2
2

, ,
cos 2 , 0a

y t y t
GJ Ck I I y t

y y tα α

∂φ ∂ φ ∂
+ − − Ω θ φ ∂ ∂ ∂ 

= . (10) 

A solution to equation (10) can be obtained using the method of separation of 

variables in which it is assumed that 

 ( ) ( ) ( ),y t Y y T tφ = . (11) 

The partial derivatives of equation (11) can be written as 

 ( ) ( )
2 2

2

,y t TY y
t t

∂ φ
2

∂
=

∂ ∂
 (12) 

and 

 ( ) ( ) ( ),y t Y y
T t

y y
∂φ ∂

=
∂ ∂

 (13) 

Allowing the beam to experience simple harmonic motion of the form of T t( ) i te αω= , 

equations (12) and (13) can be substituted into equation (10) yielding 

 ( ) ( ) ( )( ) ( ) ( )(2 2 cos 2a

d yd GJ y C y k y I y
dy dy α α

φ 
+ = − φ ω − 

 
)2Ω θ , (14) 

where it is noted that ( ) ( )y Y yφ = .  Equation (14) can be written as a set of two first 

order ordinary differential equations by noting that 

 ( )
( ) ( )2

a

T yd
dy GJ y Ck y
φ
=

+
 (15) 

and 

 ( )( ) ( ) ( )( 2 2 cos 2d T y I y y
dy α α )= − φ ω −Ω θ  (16) 

In order to solve equation (14) or equations (15) and (16), two boundary 

conditions must be applied.  The first boundary condition is that the torque at the tip must 
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be zero since the blade is free to rotate at that end.  The second boundary condition is 

applied at the root end and is dependent on the type of restraint used on the rotor blade.  

For this research, three root end boundary conditions will be considered for the torsional 

deflection:  articulated with no pitch restraint (T 0root = ), rigid hingeless ( ), and 

finite pitch control stiffness at the root (

0rootφ =

0rootTroot rootK φ − = ).  Since the boundary 

conditions are on opposite ends, the problem becomes one of trial and error to find the 

correct natural frequency, ωα. 

Since the torsional rigidity and torsional inertia can be complicated functions of y 

and may contain discontinuities, it is not always possible to solve equation (14) exactly.  

However, if the rotor blade is divided into a convenient number of segments with the 

mass of each segment divided by two and concentrated at each end of the segment, then a 

lumped-mass parameter system can be developed that would allow for reasonable 

approximations to the continuous beam.  With the mass now concentrated at each end of 

the segment, a massless, flexible connection is made to approximate the continuous 

system as a discrete one.  Figure 4 is the free body diagram for the single, rotating 

lumped-mass segment [Ref. 42], and the torque equation can be written as 

 ( )2 2
1 cos

nn n n nT T I+ α α= + φ ω −Ω θ . (17) 

Applying the fundamental theorem of calculus to equation (15) and rearranging 

the terms yields the incremental torsional deformation for a single segment, 

 
( ) ( )

1
, 1 , 12

1 1

n
n n n n

an n

T l
GJ Ck

+
+

+ +

∆φ =
 + 

+ , (18) 

where  is the distance between concentrated masses n and n+1. The angle of twist of 

a single segment can now be written as 

, 1n nl +

 
( ) ( )

1
1 , 1 1 ,2

1 1

n
n n n n n n n

an n

T l
GJ Ck

+
+ + +

+ +

φ = φ − ∆φ = φ −
 + 

1+ . (19) 
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Figure 4.  Torsional free body diagram for rotating lumped-mass segment. 

Equations (18) and (19) can be written in transfer matrix form as 

( )
( ) ( )2

, 1 1 1
2 2

1

1 0 1
cos 1 0 1n

n n an n

n n n

l GJ Ck
I T T

+ + +

α α +

    − +φ φ    = 


  − ω −Ω θ   
       

. (20) 

The Holzer method [Ref. 3] is normally applied in the following manner after the 

rotor blade is divided into N segments.  (The standard nomenclature is that N refers to the 

segment closest to the tip and 1 refers to the segment closest to the root.)  First, assume a 

natural frequency, ωα.  Second, arbitrarily set the tip torsional deflection to 1 radian, or 

 1.Nφ =  (21) 

This step will normalize the deflection curve so that the tip deflection will be 1 radian 

with the free end torsional moment set to zero.  The third step is to find the torsional 

moment at segment N.  Since Ttip = 0, it is easily seen from equation (17) that  

 ( )2 2 cos .
NNT Iα α n= ω −Ω θ  (22) 

It may seem that equation (22) contradicts the boundary condition of zero torque at the 

tip, but it should be noted that the mass of the last element is concentrated at the tip and 

truly represents an average condition for that segment [Ref. 43]. The fourth step is to find 

the torsional deflection at segment N-1 using equation (19), which yields 

 
( )1 1 N

N
N

T y
GJ , 1.n n− +φ = − ∆  (23) 
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The fifth step is to apply equation (17) again, which yields 

 
1

2
1 .

NN NT T I
−− α α= + ω  (24) 

The fourth and fifth steps can now be repeated for each segment in descending order until 

the torque and torsional deflection at the root are obtained.  The solutions at the root can 

now be compared to the boundary condition at the root.  If the boundary condition 

matches, the assumed frequency is a torsional natural frequency [Ref. 3].  If the boundary 

condition does not match, a new frequency is assumed, and the method continues in an 

iterative manner until the boundary conditions are met. 

While the recursive application of equations (21) through (24) is not difficult, it is 

sometimes more convenient in programming to use equation (20) directly.  Equation (20) 

can be written in the form 

 [ ] [ ]+ +=n n n 1 n 1K X A X  (25) 

where 

1
1

,

,

n

n

T

T+
+

φ 
=  
 
φ 

=  
 

n

n

X

X
 

and [ ]nK and [ ]+n 1A  are defined by the matrices in equation (20).  Pre-multiplying 

equation (25) by [ ] 1−
nK  yields 

 [ ] [ ] [ ]1 .−
+ + += =n n n 1 n 1 n 1 n 1X K A X T X +  (26) 

The boundary conditions at the tip are given as 

 
1
0tip
 

=  
 

X , (27) 

and the boundary condition at the root is given by 
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  (28) 

for an articulated rotor
0

0
for a rigid hingeless rotor

or

where 0 

for a rotor with finite control stiffness.

root
root

root
root

root
root root root root

root

T

K T
T

φ 
=  
 
 

=  
 

φ 
= φ − = 
 

X

X

X

Appendix B contains a MATLAB® function that calculates the torsional natural 

frequencies of a rotor blade using equations (26) through (28).  This function works in 

conjunction with the rotor blade flutter program contained in Appendix A. 

2. Myklestad-Prohl Method for Uncoupled Bending Natural Frequencies 
An extension of the Holzer method can be applied to the uncoupled bending 

modes and frequencies of a beam [Ref. 44].  This method was developed independently 

by Myklestad [Ref. 35] and Prohl [Ref. 36] is essentially the same as the Holzer method 

in that a natural frequency must first be assumed, and then a recursive procedure is 

applied to see if the boundary conditions match the calculated root forces and moments.  

The frequency that causes the boundary conditions to match the calculated forces is a 

bending natural frequency.  The main difference is that the flexural bending problem is a 

solution to a 4th order differential equation instead of a 2nd order equation as for the 

torsional problem.  A solution to the 4th order equation requires that four boundary 

conditions be specified, and as will be shown below, these boundary conditions vary 

depending on the type of restraint used on the rotor blade.  Additionally, the centrifugal 

forces will be included throughout the analysis since they can be calculated in advance, 

and they have a significant effect on the calculated natural frequencies.  Like the case for 

the torsional natural frequencies, the primary effect of the centrifugal forces will be to 

increase the bending natural frequencies over the nonrotating case. 

The flapwise bending motion is the deflection of the rotor blade in a plane 

perpendicular to the plane of rotation.  Let h be the displacement of an element of the 

blade above the flapping plane, and r the distance from the axis of rotation along the y 

axis as shown in Figure 5 [Ref. 43].  The blade element equilibrium equations are 
 17



 2 0dC y dy+µΩ =  (29) 

 ( )2

2

,
0

h y t
dS dy

t
∂

+µ
∂

=  (30) 

 ( ),C dh y t S dy dM 0+ − =  (31) 

where C is the centrifugal tension in the blade, M is the bending moment, S is the local 

shear force, and µ is the mass per unit length.  Since the centrifugal force is a function of 

y only, equation (29) can be integrated from the station, r, to the spanwise end of the 

blade, R, yielding 

 2
R

r
C = µΩ y dy∫ . (32) 

From equation (30), the change in shear force along the spanwise direction of the rotor 

blade is given by 

 ( )2

2

,
,

h y tS
y t

∂∂
= −µ

∂ ∂
 (33) 

and the change in the bending moment along the spanwise direction is given from 

equation (31) as 

 ( ),h y tM C
y y

∂∂ S= +
∂ ∂

 (34) 

Differentiating equation (34) with respect to the spanwise dimension, and substituting 

equation (33) into the result yields 

 ( ) ( )22

2

, ,h y t h y tM C
y y y t

∂ ∂ ∂ ∂
= −µ ∂ ∂ ∂ ∂ 

2  (35) 

The standard beam bending equation for the moment is given as,  

 ( )2

2

,h y t
M EI

y
∂

=
∂

. (36) 
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Figure 5.  Flapwise forces on a blade element (from Ref. 41). 

Substituting equation (36) into (35) yields  

 ( ) ( ) ( )2 22

2 2 2

, ,
0

h y t h y t h y t
EI C

y y y y t
 ∂ ∂ ∂ ∂ ∂ ,

− +µ =   ∂ ∂ ∂ ∂ ∂  
, (37) 

which is a modified Bernoulli-Euler equation.  Equation (37) has been modified to the 

extent that centrifugal force has been included, which acts to stiffen the rotor blade as 

rotational velocity is increased. 

A solution to equation (37) can also be obtained by using separation of variables.   

To find the uncoupled natural frequency, it will be assumed that the beam will experience 

simple harmonic motion of the form 

 ( ) ( ), hi th y t e h yω=  (38) 

where ωh is the natural frequency of oscillation in bending.  Substitution of equation (38) 

into equation (37) yields 

 ( ) ( ) ( ) ( ) ( )
22

2
2 2 0h

d h y dh yd dEI y C y h y
dy dy dy dy

   
− −µω =   

  
 (39) 

Since equation (39) is a fourth order differential equation, four boundary conditions need 

to be specified – two tip end boundary conditions and two root end boundary conditions.  

The tip end boundary conditions are that the shear and the moment must vanish, or 

 0 and 0.tip tipS M= =  (40) 
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The root end boundary conditions are dependent on the type of restraint used on the rotor 

blade.  For this research, three root end boundary conditions will be considered for the 

bending deflection:  articulated with no flap restraint ( 0rooty =  and ), rigid 

hingeless (  and ), and flexible hingeless (  and 

).   

0rootM =

0rooty =0rooty =

0rootM =

0rootβ =

root rootK β +

Obtaining a closed-form solution to equation (39) is normally not possible since 

the bending stiffness and the mass distribution can be complicated functions of the rotor 

span (y) and may contain discontinuities.  In a manner similar to the Holzer method, the 

Myklestad-Prohl method divides the rotor blade into a convenient number of segments 

with the mass of each segment divided by two and concentrated at each end of the 

segment.  This lumped-mass system allows equation (39) to be replaced by a set of four 

1st order ordinary differential equations.  Using the same nomenclature as in the Holzer 

method that the nth segment is closer to the root and the (n+1)th segment is closer to the 

tip, a free body diagram of a lumped-mass blade element [Ref. 34] is shown in Figure 6 

where ωh is the bending frequency of oscillation, Ω is the rotational frequency of the 

rotor, Gn is the flapwise aerodynamic damping constant, and Fn + ifn is the aerodynamic 

lift force acting on the blade element for a particular frequency. 

Following the method of Gerstenberger and Wood [Ref. 34], the equilibrium of 

the in-plane forces can be written as 

 2
10y n n nF C m r+ nC= = + Ω −∑ ,  

or 

 2
1n n nC C m r+ n= + Ω , (41) 

where mn is the concentrated mass and rn is the radial station at which this mass is 

located.  It can be seen from equation (41) that the centrifugal forces at each segment are 

decoupled from the remainder of the solution and can be calculated prior to the iteration 

process.  Using a summation instead of an integral, equation (41) can be written in a 

discrete form of equation (32) as 
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Figure 6.  Free body diagram of a lumped-mass blade element (from Ref. 34). 

 2
N

n i
i n

C m
=

ir= Ω∑ . (42) 

Equilibrium of the out-of-plane forces can be written as 

 , 2
10z n n h n n n h n n niGF S m z S z F+= = + ω − − ω + +∑ if

or 

 2
1n n h n n h n n n niGS m z z F if S +− ω + ω − − = . (43) 

At this point in the development of this flutter theory, only the uncoupled structural 

natural frequencies are needed, and the aerodynamic lift forces and damping can be 

dropped since they will be incorporated in a later section.  Thus, equation (43) can be 

written as 

 2
1n n h n nS m z S +− ω = . (44) 

And finally, equilibrium of the moments about the mass, mn can be written as 

 + ( )1 , 1 1 1 10 n n n n n n n nM M l S z z C M+ + + + ++ − − −= =∑ , 

 21



or 

 1 1 . 1 1 1n n n n n n n n n 1M C z M l S C z+ + + + +− = + − + . (45) 

With the equilibrium equations given in equations (42), (44), and (45), it should 

be noted that the centrifugal force is decoupled from the shear and moment equations.  In 

order to solve for the shear and moments, the force-deformation equations need to be 

written.  Assuming that there on no discontinuities in the station length, l , the 

flapwise slope can be written as  

, 1n n+

 
( ) ( ) ( )

2 2
, 1 , 1 , 1

1 1 11
2 2

n n n n n n
n n n n

n n

l l l
C S

EI EI EI
+ +

1n
n

M+
+ + +

    
β = + β − −        

    
+





, (46) 

and the flapwise displacement can be written as 

 
( ) ( ) ( )

3 3 2
, 1 , 1 , 1

, 1 1 1 1 13 3 2
n n n n n n

n n n n n n n n
n n

l l l
z l z C S M

EI EI EI
+ + +

+ + + +

     
+ β = + − −          

     n
+  (47) 

The in-plane equilibrium equations, (44) and (45), along with the force-deformation 

equations, (46) and (47), can be combined in transfer matrix format as follows 

 

( ) ( ) ( )

( ) ( ) ( )

2

1

, 1

, 1 1
2 2
, 1 , 1 , 1

1

3 2 3
1, 1 , 1 , 1

1

1 0 0
0 1 0
0 0 1 0
0 0 1

1 0 0 0
1 0

1 0 .2 2

1
3 2 3

n h

n

n n n

n n n

n n n n n n
n

n n n

nn n n n n n
n

n n n

Sm
MC

zl

l C S
l l l MC
EI EI EI

zl l l
C

EI EI EI

+

+

+ +

+ + +
+

++ + +
+

 − ω  
   −   
   β
   
    

 
 −   

  
 − − + =
 β 
  
  − −  

(48) 

Equation (48) can be written in the form 

 [ ] [ ]+ +=n n n 1 n 1K X A X  (49) 
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where 

 1

1

, ,

n n

S S
M M

z z

+

+

   
   
  = = 
  β β 
   
  

n nX X



 

and [ ]nK  and [ ]+n 1A  are defined by the matrices in equation (48).  Pre-multiplying 

equation (49) by [ ] 1−
nK  yields 

 [ ] [ ] [ ]1−
+ + += =n n n 1 n 1 n 1 n 1X K A X T X + , (50) 

which can be applied recursively for each blade segment.  By arbitrarily setting the 

deflection equal to one, the boundary conditions at the tip are given as 

 

0
0

1

tip
tip

 
 
 =
 β
 
 

X  (51) 

The boundary conditions at the root are dependent on the type of restraint used for the 

rotor blade, and are summarized as follows: 

  (52) 

0
for an articulated rotor

0

for a rigid hingeless rotor
0
0

or

where 0
 for a rotor with a flexible 

0

root

root
root

root

root
root

root

root root root root
root

root

S

S
M

S
M K M

 
 
 =
 β
 
 
 
 
 =
 
 
 

 
  β + = =
 β
 
 

X

X

X
hingeless restraint.
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In order to solve equation (48) for the entire blade, equation (50) must be 

applied recursively from the tip to the root, or 

 [ ][ ] [ ]=1 2 3 NX T T T XN  (53) 

By letting 

 [ ][ ] [ ] =2 3 NT T T FN   

where 

 

S S S S

M M M M

z z z z

a b c d
a b c d
a b c d
a b c d
β β β β

 
 
 =
 
 
 

NF  (54) 

Just as in the Holzer method, a frequency must first be assumed, and if that frequency 

satisfies the boundary conditions, the assumed frequency is a bending natural frequency.  

If the assumed frequency does not satisfy the boundary conditions, a new frequency is 

assumed, and the method continues in an iterative manner.  Since S1, M1, and β1 are not 

know in advance for the given root boundary conditions, the conditions for which 

equation (53) must be solved are: 

(1) For an articulated rotor, 

  (55) 

1

1

0
0 0

0 1

S S S S

M M M M

N

z z z z

a b c dS
a b c d
a b c d
a b c d
β β β β

    
    
   =
   β β
    

    




Equation (55) can be reduced to 

 
0
0 1

M M N

z z

c d
c d

β   
=  


   
    

, (56) 

and since equation (56) is an homogenous equation, a solution exists only when the 

determinant goes to zero, or 

 0M M

z z

c d
c d

= . (57) 
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(2) Similarly for a rigid hingeless rotor, 

 

1

1

0
0

0
0 1

S S S S

M M M M

N

z z z z

a b c dS
a b c dM
a b c d
a b c d
β β β β

   
   
   =
   




β

   
   




 

which reduces to 

 
0
0 1

N

z z

c d
c d
β β β   

=  


   
    

, 

and is satisfied only when 

 0
z z

c d
c d
β β = . (58) 

(3) Finally, for a flexible hingeless rotor 

  

1

1

1

0
0

0 1

S S S S

M M M M

N

z z z z

a b c dS
a b c dM
a b c d
a b c d
β β β β

   
   
   =
   β β
   

   








which with the additional constraint of 1 1 0rootK Mβ + =  reduces to 

 
0
0 1

root M root M N

z z

K c c K d d
c d
β β+ + β    

=     
    

, 

and is satisfied only when 

 0root M root M

z z

K c c K d d
c d
β β+ +

= . (59) 

Equations (57), (58), and (59) are the boundary conditions that must be satisfied to find 

the bending natural frequencies for the given rotor restraint.  Appendix C contains a 

MATLAB® function that calculates the bending natural frequencies.  This function works 

in conjunction with the rotor blade flutter program contained in Appendix A. 
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B. AERODYNAMIC FORCES AND MOMENTS 

1. Thin Airfoil Theory 
Any general oscillating motion of an aircraft structure can be expressed in terms 

of translation from and/or rotation about some reference axis, assuming the displacements 

from equilibrium are small relative to the dimensions of the structure.  If that structure 

contains a portion that is free to rotate about some hinge axis, the general displacement of 

an element of mass can be expressed in terms of translation from a reference axis, 

rotation about a reference axis, and rotation about the hinge axis.  In the discussion that 

follows, the structure under consideration is a helicopter rotor blade that has a trailing-

edge flap incorporated at the trailing edge as shown in Figure 7.  The reference axis for 

translation will be the elastic axis of the undisturbed rotor blade, and the reference axis 

for blade rotation will also be the elastic axis. 

Applying thin airfoil theory, the geometry of the helicopter rotor blade under 

consideration can be simplified to the two-dimensional representation shown in Figure 8.  

For the case of an inviscid, incompressible fluid, Smilg and Wasserman [Ref. 45] showed 

that the forces and moments per unit span on the airfoil are given as follows: 

 

 
Figure 7.  Schematic of rotor blade with trailing-edge flap. 
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(1) Wing lift force per unit span: 

 ( )3 2 1
2h h

hL b L L a L L c e L
b α β

   ′ z = πρ ω + − + α + − − β        
 (60) 

(2) Moment per unit span due to blade rotation about the wing quarter-

chord: 
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 (61) 

(3) Moment per unit span due to flap rotation about the hinge: 
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 (62) 

 
Figure 8.  Two-dimensional schematic of rotor blade with trailing-edge flap. 
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where b is the semi-chord, k is the reduced frequency, the dimensions for a, c and e are 

given in Figure 8, and the L, M, T and P terms are listed below [Ref. 3 and 45]. 
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Theodorsen’s T-functions and Küssner’s φ-functions given in equations (63) through (78) 

are functions of geometry only and are defined in Appendix F [Ref. 3, 46, and 47]. 

2. The Lift Deficiency Functions 

a. Theodorsen’s Lift Deficiency Function 

The term C(k) given in equations (63) through (78) is the lift deficiency 

function.  In fixed-wing and some rotary-wing analyses Theodorsen’s lift deficiency 

function is used [Ref. 3 and 46] and is defined by 

 ( ) ( )
( ) ( )

(2)
1

(2) (2)
1 0

H k
C k

H k iH k
=

+
, (79) 

where  is a Hankel function of the second kind of order n, and k 

is the reduced frequency defined by 

( ) ( ) ( )(2)
n n nH k J k iY k= −

 .bk
v
ω

=  (80) 

Theodorsen’s lift deficiency function was originally developed for fixed-wing aircraft 

using potential flow theory and derived from the equations of motion for a 2-D 

harmonically oscillating airfoil in an inviscid, incompressible flow subjected to small 

disturbances.  Theodorsen’s lift deficiency function is normally written in terms of its real 

and imaginary parts, or 

 ( ) ( ) ( )C k F k iG k= + . (81) 
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A typical plot of the real and imaginary parts is shown in Figure 9 as a 

function of 1/k.  Since the behavior of the functions F(k) and G(k) as k approaches zero 

and infinity is not easily seen, a semi-logarithmic plot of Theodorsen's lift deficiency 

function can be made and is shown in Figure 10 [Ref. 15 and 48].  This semi-logarithmic 

plot looks similar to a Bode plot of the complex lift deficiency function, C(k), where F(k) 

is the predominant magnitude term and G(k) is the term that influences the phase angle.  

Superimposed on the plots in Figure 10 are the values for G(k) for selected helicopters at 

their Nb/rev-reduced frequencies, where Nb/rev is the blade passage frequency for the 

given helicopter.   That is, Nb/rev frequency is the product of the number of blades, Nb, 

times the rotor rotational speed, Ω.  It should be noted that for the helicopters studied, all 

have their Nb/rev reduced frequencies in a range where G(k) is noticeably non-zero, thus 

producing a natural phase relationship in the unsteady lift term of a rotor blade [Ref. 15]. 

 

 
Figure 9.  Conventional plot of Theodorsen’s lift deficiency function. 
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Figure 10.  Semi-logarithmic plot of Theodorsen’s lift deficiency function with 
Nb/rev reduced frequencies (from Ref. 15). 

b. Loewy’s Lift Deficiency Function 

Helicopter unsteady aerodynamics are more complex than its fixed-wing 

counterpart.  Vorticity is shed by blades on previous revolutions that must be accounted 

for since it will influence the lift and moments on the blade.  Loewy [Ref. 49] explored 

this issue and looked at two cases:  high inflow and low inflow.  The high inflow case is 

shown in Figure 11a, and represents a case where the downwash generated by the rotor is 

of the same order of magnitude as the tip speed velocity.  Practical examples would be 

lift fan designs in which the mass flow rate can be near 3000 lbm/s or about 350 ft/s [Ref. 

50].  It would be difficult in this case to determine the effects of the shed vorticity since it 

would be expected that all shed vorticity beyond a small fraction of a revolution would be 

too far below the reference blade to have a significant effect.  In the low inflow case, 

shown in Figure 11b, layers of shed vorticity tend to remain essentially planar and remain 

close to the reference blade, and thus can have a significant effect on the aerodynamics of 

the rotor blade.  In this case, the downwash generated by the rotor is at least an order of 

magnitude less than the tip speed velocity.  Most conventional helicopters fall into this 
 31



category, including larger H-53E and V-22 aircraft with downwash velocities of 55-65 

ft/s.  Therefore, Loewy developed his theory for the case of low inflow since it could be 

applied to most conventional helicopters.   

Loewy’s lift deficiency function for the rotary-wing case in a hover is 

analogous to Theodorsen’s, but the manner in which it was developed differs.  Loewy 

used the Biot-Savart law instead of potential flow theory to account for the layers of shed 

vorticity beneath the reference rotor blade caused by the reference blade and other blades 

in previous revolutions.  Figure 12 is a schematic of Loewy’s two-dimensional model that 

was used to determine the effects of previously shed wakes on the lift deficiency 

function.  Loewy assumed that there were an infinite number of wakes beneath the 

reference blade and applied the Biot-Savart law to each layer of shed vorticity to add 

together the effects on the differential downwash equation.  Two indices are used to 

account for the vorticity shed by a given wake:  n, which indicates the revolution number 

of the reference blade and q, which indicates the blade whose wake it is.  The induced 

velocity or downwash resulting from an element of vorticity is obtained by, 

 
Figure 11.  Loewy’s inflow models (from Ref. 41 and 49) 
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Figure 12.  Loewy’s aerodynamic model for multi-blade rotor system (from Ref. 49). 
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where γnq is the vorticity, Q is the number of rotor blades, and  is the non-dimensional 

wake spacing defined by 

ĥ

 2 2ˆ ivh r
bQ bQ
π π

= = λ
Ω

,  (83) 

Writing the integrals involving the bound vorticity and the vorticity in the wake of the 

reference airfoil separately from the rows of vorticity below the plane of the rotor yield 
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The first integral represents the effects of the freestream on the airfoil (non-circulatory 

terms).  The second integral represents the downwash velocity created by the vorticity 

generated by the reference wake (circulatory term).  The third and fourth integral 

represent the downwash velocity created by the vorticity generated by previous blades or 

in previous revolutions (circulatory terms).  The main difference between Loewy and 

Theodorsen is the terms which account for the vorticity generated by the reference blade 

and subsequent blades in previous revolutions. 

It should be noted that no mention has been made of whether the blade 

does or does not have a flap incorporated.  In fact, by using the Biot-Savart law and being 

concerned only with the vorticity generated (bound, wake of reference blade, or 

previously shed wake), it becomes unnecessary to state the exact configuration of the 

airfoil.  Thus, while Loewy [Ref. 49] did not explicitly state that his 2-D theory would 

apply to rotor blades with trailing-edge flaps, the manner in which the theory was 

developed allows it to be applied to this rotor blade configuration.  Loewy’s theory will 

now be developed. 

The vorticity shed by the qth blade in the nth revolution is given by 

 ( )mnQmqki
nq

qeik π−π−ξ−ψΓ=γ 2/2  (85) 

where Γ is the total circulation around the airfoil, ψq is the phase angle by which the 

motion of the qth blade leads that of the reference blade, m is the ratio of oscillatory 

frequency to rotational frequency, and k is the reduced frequency.  The variables m and k 

are defined as 

 m ω
=
Ω

 (86) 

   b mb
r r

k ω
= =  (87) 
Ω

Substituting the vorticity expression from equation (85) into the integral downwash 

equation (84) yields 
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The last two integrals in equation (88) have the form 
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Substituting equation (89) into equation (88) and noting that the summations over n are 

convergent geometric series yields 
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where W k  is defined as: ( ˆ, ,h m)
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It should be noticed that the term m (the ratio of oscillatory frequency to rotational 

frequency) always occurs as 2i me π , which makes m periodic.  Therefore, the frequency 

ratio can be divided into two parts: an integer portion, representing the periodicity, and a 

noninteger portion, representing the phase relationship between the sinusoidal frequency 

of oscillation of the rotor blade and the rotational frequency of the rotor [Ref. 49].  In 

other words, oscillatory frequencies that are integer multiples of the rotational velocity 

(1P, 2P, (Nb – 1)P, etc.) correspond to m = integer, and the oscillatory frequencies which 

are noninteger multiples of the rotational frequency correspond to the phase relationship.  

Because of this periodicity, only the range 0 m 1≤ <  needs to be considered. 
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The form of the downwash equation in equation (90) can be solved by 

applying Söhngen’s inversion formula [Ref. 51], which shows that an equation in the 

form 

 ∫
−

ξ−
ξξ

π
=

1

1

)(
2
1)(

x
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Satisfying the condition f(1) = finite is the same as employing the Kutta condition.  The 

bound vorticity becomes 
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Evaluating the circulation over the entire airfoil yields 
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where the Hankel and Bessel functions are evaluated at reduced frequency (k). 

Since the airfoil can be thought of as a vortex sheet, the generalized 

Bernoulli equation becomes 
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If simple harmonic motion is assumed, 
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and equation (96) becomes 
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Substituting the bound vorticity equation (94) and the airfoil circulation equation (95) 

into equation (96) yield 
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The pressure distribution in equation (99) has the same form as Theodorsen [Ref. 46] if 

the factor multiplying the first integral is written as 

2 ˆ1 ( , , )C k h m , ′− π
 

where C k  is Loewy’s lift deficiency function.  Solving for  yields ˆ( , , )h m′ ˆ( , , )C k h m′
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Since  is not a function of the chordwise location along the airfoil (x), the 

integration of the pressure distribution in equation (99) across the airfoil will yield 

ˆ( , , )C k h m′
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equations of motion given in equations (60), (61), and (62) except C(k) will be replaced 

by   It can be shown that as W k  approaches zero, C k  

which corresponds to an infinite wake spacing 

ˆ( , , ).C k h m′ ˆ( , , )h m ˆ( , , ) ( ),h m C k′ =

( )ĥ →∞ . 

ˆ 2

1)
kh i m

m
e e π

=
1−

ĥ

( ) (ˆ ˆ, ,k h m= + ˆiG

Since the wake weighting function is periodic, Loewy showed that the 

wake weighting function for a multi-blade rotor can be expressed by that of a single-

blade rotor with modified values of  and m that yield the same value of W.  For a 

single-blade rotor, the wake weighting function becomes 

ĥ

 ˆ( , , ,W k h  (101) 

where  and m are now the modified values of the wake spacing and frequency ratio.   

Loewy’s lift deficiency function can also be written in terms of its real and 

imaginary parts as 

 ( ) ), , , ,C k h m F k h m′ ′ ′ . (102) 

Semi-logarithmic plots of Loewy’s lift deficiency function are shown in Figure 13 

through Figure 16 for m = 0, 0.25, 0.5 and 0.75 respectively.   

 
Figure 13.  Loewy’s lift deficiency function (m = 0). 
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Figure 14.  Loewy’s lift deficiency function (m = 0.25). 
 

 
Figure 15.  Loewy’s lift deficiency function (m = 0.5). 
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Figure 16.  Loewy’s lift deficiency function (m = 0.75). 

 

c. Finite Wake Lift Deficiency Function 

It can be seen in Figure 13 (m = 0) that the real part of Loewy’s lift 

deficiency function does not converge towards Theodorsen’s solution as k   This 

nonconvergence is particularly evident as h  In fact when h

0.→

ˆ 0.→ ˆ 0=  and m = 0, a 

singularity can be seen in the wake weighting function.  The source of this singularity is 

found in the development of equation (90), in which the solution to the integrals 

associated with the wakes that were previously shed have the form of 
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The third term in equation (88) becomes 
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Since  is always positive, the summation over n is a convergent geometric series of 

the form 
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and equation (103) becomes 
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Similarly, the fourth term of equation (88) can be written as 
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by noting that 
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Combining equations (104) and (105) yields 
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where W k  is defined by equation (91) as  ˆ( , , )h m
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.  

The requirement for the convergence of both geometric series given in equations (103) 

and (105) is that 

 ( )ˆ2 1i m kQhe− π +
< . (106) 

Since Q is always positive and nonzero, when m = 0, if the product , then a 

singularity will exist since equation (106) will not be satisfied.  While the mathematical 

singularity can be identified, its physical significance is still unclear [Ref. 49].  The 

assumptions of thin airfoil theory in which both the airfoil and wakes have zero 

thickness, and that if  the wakes have no displacement from the plane of the rotor 

blade are unrealistic when all are assumed at the same time. 

ˆ 0kh →

ˆ 0,h =

The problem of convergence as  when m = 0 can be avoided by 

using only a finite number of wakes beneath the reference airfoil.  If the number of wakes 

(N) is made sufficiently large, then the infinite geometric series can be approximated by a 

finite geometric series [Ref. 48].  The development of the finite wake lift deficiency 

function is identical to that of Loewy, except the infinite series in equation (84) is 

replaced by a finite series in the form of 

ˆ 0kh →
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Using equation (89) to solve the last to integrals in equation (107) yields 
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where the term in parentheses is the finite wake weighting function defined by 
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and the requirement for convergence given in equation (106) is no longer needed. 

A modified-Loewy, or finite-wake lift deficiency function [Ref. 48] can be 

written as 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(2)
1 1

(2) (2)
1 0 1 0

ˆ2 , ,
ˆ, ,

ˆ2 ,

N

N

N

H k J k W k h m
C k h m

H k iH k J iJ W k h m

+
′ =

+ + + ,
. (110) 

For a single-blade rotor, the wake weighting function becomes 

 , (111) ˆ2

1

ˆ( , , )
N

i mn nkh
N

n

W k h m e e− π −

=

=∑
and for the case of a single wake, the wake weighting function becomes 

 ( )2
1

i m khW e− π += . (112) 
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The finite wake lift deficiency function can also be written in terms of its real and 

imaginary parts as 

 ( ) ( ) ( )ˆ ˆ, , , , , ,N N NC k h m F k h m iG k h m′ ′ ′= + ˆ

)

. (113) 

A semi-logarithmic plot of the finite wake lift deficiency function with N = 100 for m = 0 

is shown in Figure 17.  This figure shows that the singularity introduced by Loewy has 

essentially been eliminated, and the results tend to converge towards Theodorsen’s 

solution as   It is also interesting to look at the lift deficiency function when only a 

single wake is present below the reference airfoil.  Semi-logarithmic plots of the single 

wake lift deficiency function are shown in Figure 18 through Figure 21 for m = 0, 0.25, 

0.5 and 0.75 respectively.  Note that in Figure 20, the real part of the lift deficiency 

function is greater that 1.0.  This figure is a great illustration of the use of the Biot-Savart 

law, in that a single layer of vorticity below the rotor blade can increase the lift of the 

blade if the phase difference between the trailing vortex from the reference blade and the 

single layer of vorticity is 180°.  This efficient alignment of layers of vorticity is depicted 

in Figure 22. 

0.k →

The limitations of both the Loewy and finite-wake lift deficiency function 

are that it is restricted to a helicopter in hover with low inflow velocity, and secondary 

effects such as radial velocity and other three-dimensional effects are neglected.  As can 

be seen in Figure 13 through Figure 21, the effect of layers of vorticity beneath the rotor 

can have a significant effect on the lift deficiency function with the introduction of 

frequency ratio and wake spacing as additional parameters.  The effect of wake spacing 

can better illustrated by Figure 23, in which the real and imaginary parts of Loewy’s and 

the single wake lift deficiency functions are plotted against wake spacing for  and 

  It can be seen that when  which corresponds to high inflow, 

the effects of any shed layer of vorticity is negligible, and C k  and 

  Because of effects of the wake are incorporated into the lift 

deficiency function, the equations of motion for the aerodynamic forces and moments 

given in equations (60), (61) and (62) are the same.  The only difference in the force and 

0.2k =

( ˆ, ,h m

0.25 and 0.5.m =

( )ˆ, ,NC k h m C′ →

ˆ 20,h >

′

( ).k
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moment equations would be the choice of lift deficiency function.  In order to examine 

the effect on the flutter solution, all three lift deficiency functions will be used in the 

flutter analysis. 

 
Figure 17.  Finite wake estimate to Loewy’s lift deficiency function (m = 0). 

 
Figure 18.  Single wake lift deficiency function (m = 0). 
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Figure 19.  Single wake lift deficiency function (m = 0.25). 
 

 
Figure 20.  Single wake lift deficiency function (m = 0.5). 
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Figure 21.  Single wake lift deficiency function (m = 0.75). 
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2b

Figure 22.  Vortex interaction when wakes are 180° out of phase (m = 0.5) (from Ref. 
15 and 48). 
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Figure 23.  Effect of wake spacing on Loewy’s and finite wake lift deficiency 
functions (k = 0.2). 
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III. 3-D ROTOR BLADE FLUTTER THEORY 
 

A. THE FLUTTER EQUATION 
The basic approach to the three-dimensional rotor blade flutter problem is similar 

to that developed by Scanlan and Rosenbaum [Ref. 3] for a fixed-wing aircraft and 

Daughaday, DuWaldt, and Gates [Ref. 52] for rotary-wing aircraft.  Lagrange’s equation 

is applied using the aerodynamic forces and moments given by two-dimensional strip 

theory for an incompressible flow, but with a modified lift deficiency function, such as 

Loewy’s or the finite-wake model.  The problem will be three-dimensional only to the 

extent that the blade sectional variations of mass, geometry and freestream velocity 

( ) are taken into account.  There is an assumption that the aerodynamic forces and 

moments do not change the uncoupled modes shapes.   

v = Ωr

The robustness of the Lagrange approach can best be summarized by Lagrange 

himself in Mechanique Analytique [Ref. 53],  

The methods which I present here do not require either 
constructions or reasonings of geometrical or mechanical nature, but only 
those algebraic operations proceeding after a regular and uniform plan.  
Those who love the Analysis, will see with pleasure Mechanics made a 
branch of it and will be grateful to me for having thus extended its 
domain. 

    - J. L. Lagrange, 1788 

Lagrange’s equation for a conservative system is given as: 

 n
n n n n

d T T U D Q
dt q q q q
 ∂ ∂ ∂ ∂

− + + = ∂ ∂ ∂ ∂ 
 (114) 

where T ≡ kinetic energy, U ≡ potential energy, D ≡ dissipation function, and Qn ≡ 

generalized internal forces.  The  terms are the degrees of freedom (displacements) and 

the  represent the first time derivatives of the degrees of freedom (velocities).   

nq

nq

1. Superposition of Normal modes 
With the aerodynamic forces defined, the bending deflection of the elastic axis at 

station y when the rotor blade is vibrating in the nth uncoupled vertical bending mode may 

be defined as  
 49



  (115) ( ) ( ) (
1

,
N

n n
n

h y t f y h t
=

=∑ )

where fn(y) is the characteristic function (mode shape) for the rotor blade, and the 

quantities hn(t) are normal coordinates that can be considered as weighting functions for 

each mode that contributes to the deflection.  The eigenvector functions ( )nf y  possess 

the property of orthogonality since they can be shown to reduce the kinetic and potential 

energy expressions to sums of squares of the coordinates with no cross product terms 

[Ref. 3].  The rotational deflection of the rotor blade about the elastic axis can be written 

in terms of the blade torsion modes as 

  (116) ( ) ( ) (
1

,
N

n n
n

y t F y t
=

α = α∑ )

)

where Fn(y) is the characteristic function of the nth uncoupled torsional mode of the rotor 

blade, and αn(t) is the corresponding normal coordinate.  The rotational deflection of the 

flap about the hinge line can be written in terms of flap torsion modes as 

  (117) ( ) ( ) (
1

,
N

n n
n

y t G y t
=

β = β∑
where Gn(y) is the characteristic function of the nth uncoupled torsional mode of the flap, 

and βn(t) is the corresponding normal coordinate.  The generalized normal coordinates 

are in the form 

( ) ( )ni t
n nh t h e ω +φ=  

( ) ( )ni t
n nt e ω +θα = α  

( ) ( )ni t
n nt e ω +δβ = β  

where φn, θn and δn are the phase angles relationships.  The bending, blade torsional, and 

flap torsional deflections given in equations (115), (116) and (117) can be written as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, ...h y t h t f y h t f y h t f y= + + +  (118) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, ...y t t F y t F y t F yα = α +α +α +  (119) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, ...y t t G y t G y t G yβ = β +β +β +  (120) 
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where 

( )0
for an articulated rotor

0 for a hingless rotor

y
f y R

 
 =  
  

 

( ) st
1  1  vertical bending modef y =  

( ) nd
2  2  vertical bending modef y =  

( )0

1 for blade rigid body motion
 

0 otherwise
F y

 
=  

 
 

( ) st
1  1  blade-torsional modeF y =  

( ) nd
2  2  blade-torsional modeF y =  

( )0

1 for trailing-edge flap rigid body motion
0 otherwise

G y
 

=  
 

 

( ) st
1  1  trailing-edge flap-torsional modeG y =  

( ) nd
2  2  trailing-edge flap-torsional modeG y =  

Lagrange’s equation can be written in matrix format as 

 { } { } { }M q K q D q Q      + + =        . (121) 

where { }q  is the vector of generalized coordinates, M    is the mass matrix, K    is the 

stiffness matrix, D    is the dissipation matrix, and Q    is the generalized force matrix 

defined by 

 int extW WWQ
q q q

∂ ∂∂  = = +  ∂ ∂ ∂
 

in which W is the total work done on the system and can be divided into an internal 

component and an external component.  For a conservative system, W  since there 0ext ≡
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would be no external forces acting on the system.  If simple harmonic motion is assumed, 

equation (121) becomes 

 { } { } { }2 M q K q i D q Q      −ω + + ω =         (122) 

For structural dynamics, the generalized internal forces will be set to zero.  For unsteady 

aerodynamics, it will be shown that the generalized force matrix can be written as the 

product of an aerodynamic matrix and the generalized coordinates, and equation (122) 

can be written as 

 { } { } { } { }2 0M q K q i D q A q      ω − − ω +        =

t

. (123) 

Note that in equation (123), all forces are functions of displacements and rotations and 

their respective derivatives, and there are no external forces applied to the system.  Thus, 

a solution to equation (123) would involve an eigenvalue problem and would be the 

complementary, or transient solution to equation (121).  A particular, or steady state 

solution would be required to find the response of the blade to externally applied forces. 

Since this dissertation focuses on the flutter solution which solves for the coupled 

natural frequencies of vibration, it is assumed that the system responds in simple 

harmonic motion and that there are no externally applied forces, and thus, equation (123) 

can be used.  The rigid body motions are functions of the generalized displacements and 

their respective derivatives.  If these displacements (or velocities) were set to a specific 

value, such as setting the flap input amplitude to ±3°, then the rigid body motions must be 

taken as an externally applied force.  A steady state or particular solution could be 

obtained by putting this on the right side in the form sinF ω  and premultiplying it by 

the inverse of the dynamic system equations on the left hand side.  However, if the 

displacements are not set to a specific value, the displacements are eigenvectors that are 

relative to each other.  Simple harmonic motion is assumed so that a flutter solution may 

be obtained.  For rigid body flapping of the blade (bending motion), the uncoupled 

natural frequency is given by 

 
0

1 R b
h

b

e S
I

ω = Ω +  (124) 
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where  is the hinge offset,  is the static flapping moment of the blade, and Re bS bI  is the 

mass flapping moment of inertia of the blade [Ref. 54].  For typical hinge offsets, 

.  For rigid body blade torsion motion, the free pitch motion is 

given by 

0
 to 1.04hω ≈ Ω Ω1.02

 
0α

ω ≈ Ω  (125) 

for most pitch hinge offsets [Ref. 55].  For rigid body trailing-edge flap motion, the free 

deflection motion can be written as 

 
0

k
I
β

β
β

ω =  (126) 

where  is the torsional stiffness and kβ Iβ  is the mass moment of inertia of the trailing-

edge flap [Ref. 1].  Since the torsional stiffness of the trailing-edge flap can be varied, it 

can be tuned such that the flap rigid body uncoupled natural frequency is equal to the flap 

input frequency.  In this dissertation, the flap uncoupled natural frequencies will be 

restricted to integer multiples of the rotational velocity in order to study the effects of 

inputs corresponding to higher harmonic control and the natural filtering of frequencies 

provided by the rotor.  Table 1 contains a list of the corresponding flap uncoupled natural 

frequencies to integer multiples of rpm. 

Table 1.  List of Flap Uncoupled Natural Frequencies 

0β
ω  as Integer Multiple of  

Rotational Speed 0β
ω (rad/s) 

0P ⇒ infinite stiffness Extremely high 
1P 21.26 
2P 42.52 
3P 63.77 
4P 85.03 
5P 106.29 
6P 127.55 
7P 148.81 

 

Using this method to account for rigid body motion allows the generalized force 

terms in equation (114) to contain only the aerodynamic forcing functions.  With this 

type of approach, there is an inherent assumption that the aerodynamic forces and 
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moments defined by equations (60) through (62) are the same for both the tuned natural 

frequencies and the rigid body forced response equivalent system.  Therefore, with the 

method of tuned natural frequencies, the bound vorticity defined by equation (94) is 

assumed to contain the vorticity due to the motion of the trailing-edge flap as well as the 

blade bending and torsional modes. 

The number of degrees of freedom that one should consider in equations (118) 

through (120) depends on the particular design of the rotor blade and its corresponding 

structural properties.  At a minimum for an articulated rotor blade with a trailing-edge 

flap, at least five degrees of freedom (5DOF) need to be considered – three rigid-body 

motions (h0, α0 and β0), the first bending mode (h1) and the first blade-torsional mode 

(α1).  A hingeless rotor requires at least three degrees of freedom (3DOF) – the first blade 

bending mode (h1), the first blade-torsional mode (α1), and rigid-body motion for the 

trailing-edge flap (β0).  Scanlan and Rosenbaum [Ref. 3] recommend that in general, if 

the frequency of the corresponding mode is less than 1.2 times that of the 1st blade 

torsional mode, then the mode shape should be considered.   In most helicopter rotor 

blades the second and sometimes the third bending modes normally meet the conditions 

set by Scanlan and Rosenbaum.  Additionally, to illustrate the potential coupling between 

the various modes, the first flap torsional mode will be included.  Thus, an eight degree 

of freedom (8DOF) case will be developed with three rigid body modes (h0, α0 and β0), 

three bending modes (h1, h2 and h3), one blade torsional mode (α1), and one flap torsional 

mode (β1) to cover the majority of cases possible.  A reduction or increase in the degrees 

of freedom can be made when warranted by rotor design (articulated or hingeless) and/or 

application of the uncoupled natural frequency criterion set by Scanlan and Rosenbaum. 

2. Kinetic Energy Equation 
Letting y be the variable along the spanwise direction of the rotor blade as shown 

in Figure 24.  At station y, the motion will be assumed to be a downward deflection of the 

elastic axis, a clockwise rotation of the blade about the elastic axis, and a clockwise 

rotation of the flap about the flap hinge as shown in Figure 7 and Figure 8.  The 

following sectional properties are defined as: 
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( )m y  = mass per unit length of rotor-flap combination 

( )I yα  = mass moment of inertia per unit length of rotor-flap combination 

about the elastic axis 

( )I yβ  = mass moment of inertia per unit length of the trailing-edge flap 

about the flap hinge 

( )S yα  = static mass moment of inertia (static unbalance) per unit length of 

rotor-flap combination about the elastic axis 

( )S yβ  = static mass moment of inertia per unit length of flap about flap hinge 

b  = semi-chord at station y 

( )c a b−  = distance between elastic axis and flap hinge 

If the rotor blade is moving with velocities ( ) ( ),  ,  and h y y yα β( ) , the kinetic 

energy per unit length is given as: 

 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

2 221 1 1
2 2 2

dT y m y h y I y y I y y S y h y y

S y h y y S y c a b I y y y

α β α

β β β

= + α + β +

 + β + − + α β 

α
(127) 

Substituting equations (118), (119) and (120) into equation (127) and integrating along 

the spanwise dimension from the hinge offset (eR) to the rotor radius (R) when no flap 

term (β) is present and from r1 to r2 when a flap term is present yields, 

 

 
Figure 24.  Rotor blade spanwise dimensions. 
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The generalized masses, static unbalance and mechanical coupling terms are defined by 

the following quantities: 

 ( ) ( ) 2
0 0

R

R

e
M m y f y dy =  ∫  (129) 

 ( ) ( ) 2
1 1

R

R

e
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e
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3 3
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  (137) ( ) ( ) ( )
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  (138) ( ) ( ) ( )
10 1 0
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S S y f y F yα α= ∫

  (139) ( ) ( ) ( )
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R
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S S y f y F yα α= ∫
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  (142) ( ) ( ) ( )
11 1 1

R

R

e
S S y f y F yα α= ∫

  (143) ( ) ( ) ( )
21 2 1

R

R

e
S S y f y F yα α= ∫

  (144) ( ) ( ) ( )
31 3 1

R

R

e
S S y f y F yα α= ∫

  (145) ( ) ( ) ( )
2

00
1

0 0

r

r
S S y f y G yβ β= ∫

  (146) ( ) ( ) ( )
2

10
1

1 0

r

r
S S y f y G yβ β= ∫

  (147) ( ) ( ) ( )
2

20
1

2 0

r

r
S S y f y G yβ β= ∫

  (148) ( ) ( ) ( )
2

30
1

3 0

r

r
S S y f y G yβ β= ∫

  (149) ( ) ( ) ( )
2

01
1

0 1

r

r
S S y f y G yβ β= ∫

  (150) ( ) ( ) ( )
2

11
1

1 1

r

r
S S y f y G yβ β= ∫

  (151) ( ) ( ) ( )
2

21
1

2 1

r

r
S S y f y G yβ β= ∫

  (152) ( ) ( ) ( )
2

31
1

3 1

r

r
S S y f y G yβ β= ∫

  (153) ( )( ) ( ) ( ) ( )
2

0 0
1

0 0

r

r
P S y c a b I y F y G yα β β β = − + ∫

 58



  (154) ( )( ) ( ) ( ) ( )
2

1 0
1

1 0

r

r
P S y c a b I y F y G yα β β β = − + ∫ dy

dy

dy

  (155) ( )( ) ( ) ( ) ( )
2

0 1
1

0 1

r

r
P S y c a b I y F y G yα β β β = − + ∫

 and P S  (156) ( )( ) ( ) ( ) ( )
2

1 1
1

1 1

r

r
y c a b I y F y G yα β β β = − + ∫

Substituting equations (129) through (156) into equation (128) yields 

 

0 1 0 1

00 10 20 30 01 11 21 31

00 10 20

2 2 2 2 2 2 2 2
0 0 1 1 2 2 3 3 0 1 0 1

0 0 1 0 2 0 3 0 0 1 1 1 2 1 2 1

0 0 1 0 2 0

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

T M h M h M h M h I I I I

S h S h S h S h S h S h S h S h

S h S h S h S

α α β β

α α α α α α α α

β β β

= + + + + α + α + β + β

+ α + α + α + α + α + α + α +

+ β + β + β +
30 01 11 21 31

0 0 1 0 0 1 1 1

3 0 0 1 1 1 2 1 3 1

0 0 1 0 0 1 1 1.

h S h S h S h S h

P P P P
β β β β β

α β α β α β α β

α + β + β + β + α

+ α β + α β + α β + α β

α (157) 

3. Potential Energy Equation 
The potential energy stored in the system, when the system is deflected, is the 

strain energy of bending, blade-torsion, flap-torsion, and control system strain due to 

bending, blade-torsion and flap-torsion.  The total strain energy can be written as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2

0 0 1 12 2

2 22 2

2 2 3 32 2

2 2

0 0 1 1

1 1
2 2

1 1
2 2

1 1
2 2

1
2

R R

R R

R R

R R

e e

R R

e e

R R

e e

U EI y h f y dy EI y h f y dy
y y

EI y h f y dy EI y h f y dy
y y

GJ y F y dy GJ y F y dy
y yα α

   ∂ ∂
   = +      ∂ ∂   

  ∂ ∂
   + +     ∂ ∂  

  ∂ ∂
   + α + α     ∂ ∂  

+

∫ ∫

∫ ∫

∫ ∫
( )









( ) ( ) ( )
2 2

1 1

2 2

0 0 1 1
1 .
2

r r

r r
GJ y G y dy GJ y G y dy

y yβ β

  ∂ ∂   β + β     ∂ ∂  ∫ ∫ 



 (158) 

The first and second partial derivatives of the mode shapes in equation (158) are 

not normally easy to calculate – the exception being  for the case of a uniform rotor blade 

with linear twist.  Additionally, the first and second derivatives of ( )0F y  and G  are 

zero since these terms are either 0 or 1.  Therefore, simplified expressions for the terms in 

the potential need to be found.  Defining the following quantities: 

( )0 y
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( ) ( )
0

22

02
R

R

h
e

k EI y f y
y

 ∂
 =   ∂ ∫ dy  

( ) ( )
1

22

12
R

R

h
e

k EI y f y
y

 ∂
 =   ∂ ∫ dy  

( ) ( )
2

22

22
R

R

h
e

k EI y f y
y

 ∂
 =   ∂ ∫ dy  

 

( ) ( )
3

22

32
R

R

h
e

k EI y f y
y

 ∂
 =   ∂ ∫ dy  

( ) ( )
0

2

0
R

R

e
k GJ y F y

yα α

 ∂
 =   ∂ ∫ dy  

( ) ( )
1

2

1
R

R

e
k GJ y F y

yα α

 ∂
 =   ∂ ∫ dy  

( ) ( )
2

0
1

2

0

r

r
k GJ y G y

yβ β

 ∂
 =   ∂ ∫ dy  

and ( ) ( )
2

1
1

2

1

r

r
k GJ y G y

yβ β

 ∂
 =   ∂ ∫ dy , 

then equation (158) becomes 

 
0 1 2 3 0 1 0

2 2 2 2 2 2 2
0 1 2 3 0 1 0

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2h h h hU k h k h k h k h k k k kα α β= + + + + α + α + β +

1

2
1β β  (159) 

In order to determine the values of ki in equation (159), it will be assumed that the 

rotor blade is oscillating in simple harmonic motion in a vacuum (no dissipation, or 

damping terms), but it will be restrained so that the oscillation occurs in only one degree 

of freedom at a time.  Therefore, the static moments of inertia are, by definition, zero.  

The eight conditions to be analyzed are: 

(1) 1
0 0 1 2 3 0 1 0 1,  with 0hi th h e h h hω= = = = α = α = β = β =  

(2) 1
1 1 0 2 3 0 1 0 1,  with 0hi th h e h h hω= = = = α = α = β = β =  

(3) 2
2 2 0 1 3 0 1 0 1,  with 0hi th h e h h hω= = = = α = α = β = β =  
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(4) 3
3 3 0 1 2 0 1 0 1,  with 0hi th h e h h hω= = = = α = α = β = β =  

(5) 0
0 0 0 1 2 3 1 0 1,  with 0i te h h h hαωα = α = = = = α = β = β =  

(6) 1
1 1 0 1 2 3 0 0 1,  with 0i te h h h hαωα = α = = = = α = β = β =  

(7) 0
0 0 0 1 2 3 0 1 1,  with 0i te h h h hβωβ = β = = = = α = α = β =  

(8) 1
1 1 0 1 2 0 1 0,  with 0i te h h hβωβ = β = = = α = α = β =  

For condition (1), Lagrange’s equation of motion reduces to 

( ) 0

0

00

0 0 0

0 0 0

0

0

or 0

h

h

d T U
dt hh

d M h k h
dt

M h k h

 ∂ ∂
+ =  ∂∂ 

+ =

+ =

 

Taking the 2nd time derivative of h  yields 0
0

0

2
0 0

hi t
hh h e ω= −ω = −ω

0

2
0h h , and thus 

( )0 0

2
0 0 0h hM k h− ω + =  

At this point, it is assumed that  is non-zero, and the term in parentheses must be equal 

to zero, or 

0h

 
0

2
0hk M

0h= ω  (160) 

Similarly, for conditions (2) through (8), the values of the potential energy coefficients 

can be expressed in terms of the uncoupled natural frequencies as: 

 
1

2
1hk M

1h= ω  (161) 

 
2

2
2hk M

2h= ω  (162)  

 
3

2
3hk M

3h= ω  (163) 

 
0 0

2k I
0α α α= ω  (164) 

 
1 1

2k I
1α α α= ω  (165) 

 
0 0

2k I
0β β β= ω  (166) 
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1 1

2k I
1β β β= ω  (167) 

Substituting equations (160) through (167) in equation (159) yields 

 
0 1 2

0 0 1 1 0 0 1 1

2 2 2 2 2 2 2 2
0 0 1 1 2 2 3 3

2 2 2 2 2 2 2 2
0 1 0

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

h h h hU M h M h M h M h

I I I Iα α α α β β β β

= ω + ω + ω + ω

+ ω α + ω α + ω β + ω

3

1β
 (168) 

4. Structural Damping – Dissipation Function 
Damping can be represented as a force of magnitude proportional to the elastic 

restoring force and in phase with the velocity of oscillation.  Therefore, a dissipation 

function can be defined as 

 

0 0 3 31 1 2 2

0 0 0 0 0 01 1 1 1 1 1

2 2 2 22 2 2 2
0 0 3 31 1 2 2

2 2 2 22 2 2 2
0 01 1

2 2 2 2

2 2 2 2

h h h hh h h hM g h M g hM g h M g h
D

I g I gI g I gα α α β β βα α α β β β

ω ωω ω
= + + +

ω ω ω ω
ω α ω βω α ω

+ + + +
ω ω ω

β

ω

 (169) 

where ω is the flutter frequency and the M and I terms are defined by equations (129) 

through (136). 

5. Generalized Forces 
The oscillatory aerodynamic lift and moment equations per unit length are given 

in equations (60), (61) and (62).  By substituting the expressions for the deflections given 

in equations (118), (119) and (120) into equations (60), (61) and (62), the results are 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0 0 1 1 2 2 3 33 2

0 0 1 1

0 0 1 1

1
2

h

h

z

h f y h f y h f y h f y
L b L

b

L a L F y F y

L c e L G y G y

α

β

  + + +′ = πρ ω   
  
    + − + α +α      


   + − − β +β   



 (170) 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 1 1 2 2 3 34 2

2

0 0 1 1

0 0 1 1

1
2

1 1
2 2

1 1
2 2

h h

h h

z z

h f y h f y h f y h f y
M b M a L

b

M a L M a L F y F y

M a L c e M a L G y G y

α α

β β

  + + +   ′ = πρ ω − +        
      + − + + + + α +α           

        + − + − − − + β +β               

 (171) 

 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

0 0 1 1 2 2 3 34 2

0 0 1 1

2
0 0 1 1

1
2

h h

h h

z z

h f y h f y h f y h f y
T b T c e P

b

T c e P a T c e P F y F y

T c e P T c e P G y G y

α α

β β

  + + +′  = πρ ω − −   
  

    + − − − + − − α +α      
   + − − + + − β +β    

 (172) 

The generalized force in the  degree of freedom, , is determined from the virtual 

work done by displacing the rotor blade from  to 

0h
0hQ

0h ( )0h h0+ δ , while holding all other 

degrees of freedom constant.  This displacement is a result of the aerodynamic forces and 

moments acting on the rotor blade and any control forces that displace the rotor blade, or  

( ) ( ) ( ) (( )0 0 0 1 1 2 2 3 3W L h L h f y h f y h f y h f y′ ′δ = δ = δ + δ + δ + δ )  

Thus, 

 ( )
0 0

0
h

WQ L f
h

yδ′ ′= =
δ

 (173) 

 ( )
1 1

1
h

WQ L f
h

yδ′ ′= =
δ

 (174) 

 ( )
2 2

2
h

WQ L f
h

yδ′ ′= =
δ

 (175) 

 ( )
3 3

3
h

WQ L f
h

yδ′ ′= =
δ

 (176) 

Similarly, 
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 ( )
0 0Q M F yα′ ′=  (177) 

 ( )
1 1Q M F yα′ ′=  (178) 

 ( )
0 0Q M G yβ′ ′=  (179) 

 ( )
1 1Q M G yβ′ ′=  (180) 

To find the generalized forces for the entire rotor blade, the section generalized 

forces given in equations (173) through (180) are integrated along the span of the rotor 

blade from eR to R for blade bending and torsion modes and from r1 to r2 for flap-torsion 

modes, resulting in 

  (181) ( )
0 0

R

R

h
e

Q L f y′= ∫ dy

dy

dy

dy

dy

dy

dy

dy

  (182) ( )
1 1

R

R

h
e

Q L f y′= ∫

  (183) ( )
2 2

R

R

h
e

Q L f y′= ∫

  (184) ( )
3 3

R

R

h
e

Q L f y′= ∫

  (185) ( )
0 0

R

R

e
Q M F yα ′= ∫

  (186) ( )
1 1

R

R

e
Q M F yα ′= ∫

  (187) ( )
2

0
1

0

r

r
Q T G yβ ′= ∫

 . (188) ( )
2

1
1

1

r

r
Q T G yβ ′= ∫

Substituting equations (170), (171) and (172) into equations (181) through (188) yield 
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(

)
0 0 0 0 1 0 2 0 3

0 0 0 1 0 0 0 1

2
0 1 2 3

0 1 0

h h h h h h h h h

h h h h

Q A h A h A h A h

A A A Aα α β β

= πρω + + +

1+ α + α + β + β
 (189) 

 
(

)
1 1 0 1 1 1 2 1 3

1 0 1 1 1 0 1 1

2
0 1 2 3

0 1 0

h h h h h h h h h

h h h h

Q A h A h A h A h

A A A Aα α β β

= πρω + + +

1+ α + α + β + β
 (190) 

 
(

)
2 2 0 2 1 2 2 2 3

2 0 2 1 2 0 2 1

2
0 1 2 3

0 1 0

h h h h h h h h h

h h h h

Q A h A h A h A h

A A A Aα α β β

= πρω + + +

1+ α + α + β + β
 (191) 

 
(

)
3 3 0 3 1 3 2 3 3

3 0 3 1 3 0 3 1

2
0 1 2 3

0 1 0

h h h h h h h h h

h h h h

Q A h A h A h A h

A A A Aα α β β

= πρω + + +

1+ α + α + β + β
 (192) 

    
(

)
0 0 0 0 1 0 2 0 3

0 0 0 1 0 0 0 1

2
0 1 2 3

0 1 0

h h h hQ A h A h A h A h

A A A A

α α α α α

α α α α α β α β

= πρω + + +

1+ α + α + β + β
 (193) 

 
(

)
1 1 0 1 1 1 2 1 3

1 0 1 1 1 0 1 1

2
0 1 2 3

0 1 0

h h h hQ A h A h A h A h

A A A A

α α α α α

α α α α α β α β

= πρω + + +

1+ α + α + β + β
 (194) 

 
(

)
0 0 0 0 1 0 2 0 3

0 0 0 1 0 0 0 1

2
0 1 2 3

0 1 0

h h h hQ A h A h A h A h

A A A A

β β β β β

β α β α β β β β

= πρω + + +

1+ α + α + β + β
 (195) 

and  
(

)
1 1 0 1 1 1 2 1 3

1 0 1 1 1 0 1 1

2
0 1 2 3

0 1 0

h h h hQ A h A h A h A h

A A A A

β β β β β

β α β α β β β β

= πρω + + +

1+ α + α + β + β
 (196) 

where the expressions for aerodynamic terms that couple the modes together and 

incorporate a lift deficiency function are given as 

  (197) ( )
0 0

22
0

R

R

h h h
e

A b f y L =  ∫ dy

dy  (198) ( ) ( )
0 1

2
0 1

R

R

h h h
e

A b f y f y L= ∫
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  (199) ( ) ( )
0 2

2
0 2

R

R

h h h
e

A b f y f y L= ∫ dy

dy  (200) ( ) ( )
0 3

2
0 3

R

R

h h h
e

A b f y f y L= ∫

 ( ) ( )
0 0

3
0 0

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (201) 

 ( ) ( )
0 1

3
0 1

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (202) 

 ( ) ( ) ( )
2

0 0
1

3
0 0

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (203) 

 ( ) ( ) ( )
2

0 1
1

3
0 1

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (204) 

   A b  (205) ( ) ( )
1 0 0 1

2
1 0

R

R

h h h h h
e

f y f y L dy= ∫ A=

dy

dy

dy

  (206) ( )
1 1

22
1

R

R

h h h
e

A b f y L =  ∫

  (207) ( ) ( )
1 2

2
1 2

R

R

h h h
e

A b f y f y L= ∫

  (208) ( ) ( )
1 3

2
1 3

R

R

h h h
e

A b f y f y L= ∫

 ( ) ( )
1 0

3
1 0

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (209) 

 ( ) ( )
1 1

3
1 1

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (210) 

 ( ) ( ) ( )
2

1 0
1

3
1 0

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (211) 
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 ( ) ( ) ( )
2

1 1
1

3
1 1

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (212) 

  (213) ( ) ( )
2 0 0 2

2
2 0

R

R

h h h h h
e

A b f y f y L dy= ∫ A=

A=

dy

dy

  (214) ( ) ( )
2 1 1 2

2
2 1

R

R

h h h h h
e

A b f y f y L dy= ∫

  (215) ( )
2 2

22
2

R

R

h h h
e

A b f y L =  ∫

  (216) ( ) ( )
2 3

2
2 3

R

R

h h h
e

A b f y f y L= ∫

 ( ) ( )
2 0

3
2 0

1
2R

R

h
e

A b f y F y L a Lα α h dy  = −  +   ∫  (217) 

 ( ) ( )
2 1

3
2 1

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (218) 

 ( ) ( ) ( )
2

2 0
1

3
2 0

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (219) 

 ( ) ( ) ( )
2

2 1
1

3
2 1

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (220) 

  (221) ( ) ( )
3 0 0 3

2
3 0

R

R

h h h h h
e

A b f y f y L dy= ∫ A=

A=

=

dy

  (222) ( ) ( )
3 1 1 3

2
3 1

R

R

h h h h h
e

A b f y f y L dy= ∫

  (223) ( ) ( )
3 2 2 3

2
3 2

R

R

h h h h h
e

A b f y f y L dy A= ∫

  (224) ( )
3 3

22
3

R

R

h h h
e

A b f y L =  ∫
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 ( ) ( )
3 0

3
3 0

1
2R

R

h
e

A b f y F y L a Lα α h dy  = −  +   ∫  (225) 

 ( ) ( )
3 1

3
3 1

1
2R

R

h
e

A b f y F y L a Lα α h dy  = − +    ∫  (226) 

 ( ) ( ) ( )
2

3 0
1

3
3 0

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (227) 

 ( ) ( ) ( )
2

3 1
1

3
3 1

r

h
r

A b f y G y L c e Lβ β z dy = − − ∫  (228) 

 ( ) ( )
0 0

3
0 0

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (229) 

 ( ) ( )
0 1

3
0 1

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (230) 

 ( ) ( )
0 2

3
0 2

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (231) 

 ( ) ( )
0 3

3
0 3

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (232) 

 ( ) ( )
0 0

2
24

0
1 1
2 2R

R

h
e

A b F y M a L M a Lα α α α h dy
     = − + + + +           

∫  (233) 

 ( ) ( ) ( )
0 1

2
4

0 1
1 1
2 2R

R

h
e

A b F y F y M a L M a Lα α α α h dy
    = − + + + +    

     
∫  (234) 

 ( ) ( ) ( ) ( )
2

0 0
1

4
0 0

1 1
2 2

r

z z
r

A b F y G y M a L c e M c e a Lα β β β

    = − + − − + −        ∫ dy+  (235) 

 ( ) ( ) ( ) ( )
2

0 1
1

4
0 1

1 1
2 2

r

z z
r

A b F y G y M a L c e M c e a Lα β β β

    = − + − − + −        ∫ dy+  (236) 

 ( ) ( )
1 0

3
1 0

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (237) 
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 ( ) ( )
1 1

3
1 1

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (238) 

 ( ) ( )
1 2

3
1 2

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (239) 

 ( ) ( )
1 3

3
1 3

1
2R

R

h h
e

A b F y f y M a Lα h dy  = −  +   ∫  (240) 

( ) ( ) ( )
1 0 0 1

2
4

1 0
1 1
2 2R

R

h h
e

A b F y F y M a L M a L dy Aα α α α α α

    = − + + + +    
     

∫ =  (241) 

 ( ) ( )
1 1

2
24

1
1 1
2 2R

R

h
e

A b F y M a L M a Lα α α α h dy
     = − + + + +           

∫  (242) 

 ( ) ( ) ( ) ( )
2

1 0
1

4
1 0

1 1
2 2

r

z z
r

A b F y G y M a L c e M c e a Lα β β β

    = − + − − + −        ∫ dy+  (243) 

 ( ) ( ) ( ) ( )
2

1 1
1

4
1 1

1 1
2 2

r

z z
r

A b F y G y M a L c e M c e a Lα β β β

    = − + − − + −        ∫ dy+

h dy

 (244) 

 ( ) ( ) ( )
2

0 0
1

3
0 0

r

h h
r

A b G y f y T c e Pβ  = − − ∫  (245) 

 ( ) ( ) ( )
2

0 1
1

3
0 1

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (246) 

 ( ) ( ) ( )
2

0 2
1

3
0 2

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (247) 

 ( ) ( ) ( )
2

0 3
1

3
0 3

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (248) 

( ) ( ) ( ) ( )
2

0 0
1

4
0 0

1 1
2 2

r

h h
r

A b G y F y T c e P a T a c e P dyβ α α α

    = − − + + + +    −     ∫  (249) 

 ( ) ( ) ( ) ( )
2

0 1
1

4
0 1

1 1
2 2

r

h h
r

A b G y F y T c e P a T a c e P dyβ α α α

    = − − + + + +    −     ∫  (250) 
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 ( ) ( )( ) ( )
2

0 0
1

2 24
0

r

z
r

A b G y T c e P T c e Pβ β β β z dy  = − − + + −   ∫  (251) 

 ( ) ( ) ( )( ) ( )
2

0 1
1

24
0 1

r

z
r

A b G y G y T c e P T c e Pβ β β β z dy = − − + + − ∫  (252) 

 ( ) ( ) ( )
2

1 0
1

3
1 0

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (253) 

 ( ) ( ) ( )
2

1 1
1

3
1 1

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (254) 

 ( ) ( ) ( )
2

1 2
1

3
1 2

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (255) 

 ( ) ( ) ( )
2

1 3
1

3
1 3

r

h h
r

A b G y f y T c e Pβ h dy = − − ∫  (256) 

( ) ( ) ( ) ( )
2

1 0
1

4
1 0

1 1
2 2

r

h h
r

A b G y F y T c e P a T a c e P dyβ α α α

    = − − + + + +    −     ∫  (257) 

 ( ) ( ) ( ) ( )
2

1 1
1

4
1 1

1 1
2 2

r

h h
r

A b G y F y T c e P a T a c e P dyβ α α α

    = − − + + + +        ∫ −

A=

z dy

 (258) 

  (259) ( ) ( ) ( )( ) ( )
2

1 0 0 1
1

24
1 0

r

z z
r

A b G y G y T c e P T c e P dyβ β β β β β
 = − − + + − ∫

 ( ) ( )( ) ( )
2

1 1
1

2 24
1

r

z
r

A b G y T c e P T c e Pβ β β β
  = − − + + −   ∫  (260) 

6. Lagrange’s Equations of Motion 
Now that all the terms in Lagrange’s equation have been developed, it will first be 

noted that the kinetic energy equation is only a function of the derivative of the 

generalized displacement ( h h0 1 2 3 1 0 1, , , , , ,  or oh h α α β β ), or the velocity.  Thus, Lagrange’s 

equation reduces to 

 n
n n n

d T U D Q
dt q q q
 ∂ ∂ ∂

+ + = ∂ ∂ ∂ 
. (261) 
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Applying equation (261) to the 8DOF yields the following equations 

 0 0

00 01 00 01 0 0

2
02

0 0 0 1 0 1 0 0 0
h h

h h

M g
M h S S S S M h h Qα α β β

ω
+ α + α + β + β + ω + =

ω
 (262) 

 1 1

10 11 10 11 1 1

2
12

1 1 0 1 0 1 1 1 1
h h

h h

M g
M h S S S S M h h Qα α β β

ω
+ α + α + β + β + ω + =

ω
 (263) 

 2 2

20 21 20 21 2 2

2
22

2 2 0 1 0 1 2 2 2
h h

h h

M g
M h S S S S M h h Qα α β β

ω
+ α + α + β + β + ω + =

ω
 (264) 

 3 3

30 31 30 31 3 3

2
32

3 3 0 1 0 1 3 3 3
h h

h h

M g
M h S S S S M h h Qα α β β

ω
+ α + α + β + β + ω + =

ω
 (265) 
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0 0 0 1 0 0 0
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2
2

0 1 0 0

I S h S h S h S h

I g
P P I

α α α α α

α α α
α β α β α α α

α + + + +

ω
+ β + β + ω α + α = Q

ω

 (266) 

 
1 01 11 21 31

1 1 1

1 0 1 1 1 1 1

1 0 1 2 3

2
2

0 1 1 1

I S h S h S h S h

I g
P P I

α α α α α

α α α
α β α β α α α

α + + + +

ω
+ β + β + ω α + α = Q

ω

 (267) 

 
0 00 10 20 30

0 0 0

0 0 1 0 0 0 0

0 0 1 2 3

2
2

0 1 0 0

I S h S h S h S h

I g
P P I

β β β β β

β β β
α β α β β β β

β + + + +

ω
+ α + α + ω β + β = Q

ω

 (268) 

 
1 01 11 21 31

1 1 1

0 1 1 1 1 1 1

1 0 1 2 3

2
2

0 1 1 1

I S h S h S h S h

I g
P P I

β β β β β

β β β
α β α β β β β

β + + + +

ω
+ α + α + ω β + β = Q

ω

 (269) 

If simple harmonic motion is assumed, that is:  2 ,n nh h= −ω ,n nh i h= ω   

  and  and the expressions for Q

2 ,n nα = −ω α

,n niα = ωα 2 ,n nβ = −ω β ,n iβ = ωβn hn, Qαn, and Qβn given 

in equations (189) through (196) are substituted into equations (262) through (269), the 

results are: 
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( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0

0 0 0 0 1 0 2

0 3 0 0 00 0 1 01

0 0 00 0 1 01

2

0 0 0 1 2

3 0

0 1

1

0

h
h h h h h h h

h h h h

h h

A M M ig h A h A h

A h A S A S

A S A S

α α α α

β β β β

 ω 
 πρ + − + + πρ + πρ ω   

+ πρ + πρ + α + πρ + α1

+ πρ + β + πρ + β =

 (270) 
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( ) ( ) (
( ) ( )

1
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2
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h h h h h h h

h h h h

h h
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α α α α

β β β β

 ω 
 πρ + πρ + − + + πρ ω   
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2

1

+ πρ + β + πρ + β =

 (271) 

 

( ) ( ) ( )
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β β β β

 ω 
 πρ + πρ + πρ + − +  ω   
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2

1
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 ω 
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+ πρ + α + πρ + β + πρ + β =1

 (273) 
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 (274) 
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1
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β β β β β β
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πρ + + πρ + + πρ +

+ πρ + + πρ + α + πρ + α

 ω 
 + πρ β + πρ + − + β = ω   

1  (277) 

These eight equations to the flutter problem given in equations (270) through (277) can 

be written in matrix form as 
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B. SOLVING THE EIGENVALUE PROBLEM 
It can be seen that equation (278) is a set of complex homogenous equations 

where the primary variable is the flutter frequency (ω).  Unfortunately, the blade 

structural damping coefficients in equation (278) are not easily obtained.  To overcome 

this problem, Smilg and Wasserman [Ref. 45] suggest a method that effectively equates 

the damping coefficients, .  By examining 

equation (278) it can be seen that the flutter frequency and the structural damping always 

appear together.   Therefore, arbitrarily defining a combined variable of frequency and 

damping as 

0 1 2 3 0 1 0 1h h h hg g g g g g g gα α β β= = = = = = = = g

 (1

2

1 )Z igαω 
=  ω 

+ , (279) 

then for a given value of the reduced frequency, k, equation (278) can be written in the 

form ( ) 0A IZ X− = .  The choice of the definition of the variable Z is somewhat 

arbitrary, but it is a complex quantity that has a ratio of a reference frequency to the 

flutter frequency in its real part and a product of the flutter frequency and the damping 

coefficient in the imaginary part.  Since the first torsional frequency is used as the 

reference frequency for determining whether or not to include a mode, it becomes the 

most logical choice as the reference frequency for Z.  Equation (278) can now be 

rewritten as 

 

0 0 0 1 0 2 0 3 0 0 0 1 0 0 0 1

1 0 1 1 1 2 1 3 1 0 1 1 1 0 1 1

2 0 2 1 2 2 2 3 2 0 2 1 2 0 2 1

3 0 3 1 3 2 3 3 3 0 3 1 3 0 3 1

0 0 0 1 0 2 0 3 0 0 0 1

h h h h h h h h h h h h

h h h h h h h h h h h h

h h h h h h h h h h h h

h h h h h h h h h h h h

h h h h

A Z A A A A A A A

A A Z A A A A A A

A A A Z A A A A A

A A A A Z A A A A

A A A A A Z A

α α β β

α α β β

α α β β

α α β β

α α α α α α α α

−

−

−

−

−
0 0 0 1

1 0 1 1 1 2 1 3 1 0 1 1 1 0 1 1

0 0 0 1 0 2 0 3 0 0 0 1 0 0 0 1

1 0 1 1 1 2 1 3 1 0 1 1 1 0 1 1

0

h h h h

h h h h

h h h h

A A

A A A A A A Z A A

A A A A A A A Z A

A A A A A A A A Z

α β α β

α α α α α α α α α β α β

β β β β β α β α β β β β

β β β β β α β α β β β β

=

−

−

−

 

  (280) 

 

 75



 

where the determinant elements of equation (280) are defined as: 
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and the  through  terms are defined by equations (197) through (260). 
0 0h hA

1 1
Aβ β

It should be noted that the coefficients of the characteristic equation ( A  terms) of 

the (A IZ− )  matrix (an 8th order polynomial in Z) are complex, due to the lift deficiency 
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function which is imbedded in the aerodynamic coefficients listed in equations (63) 

through (78).  Therefore, the eigenvalues will be complex, and not necessarily complex 

conjugate pairs.  Since the first torsional natural frequency is already known, the coupled 

frequency of oscillation (ωi) for each eigenvalue can be found from the real part of Z 

given, or 

 
( )
1

Re
i

Z
αωω =  (345) 

The natural frequency must be positive and real, and therefore an eigenvalue with a 

negative real part is not permissible, otherwise there would be no physical significance to 

equation (345).  For the example rotor blade it will be shown that all the eigenvalues have 

a positive real part. 

Once the natural frequency is obtained for each eigenvalue (ωi), the damping 

coefficient required for flutter to exist (gi) for each eigenvalue can be found from the 

imaginary part of Z in equation (279), or 

 ( )
1

2

Im i
ig Z

α

 ω
=   ω 

 (346) 

If g is negative for the reduced frequency chosen, then damping must be decreased in 

order to obtain neutral stability.  Negative values of g represent the stable, or non-flutter, 

condition.  Thus, eigenvalues with a negative imaginary part are stable solutions.  If g is 

positive, then damping must be increased to obtain neutral stability.  Positive values of g 

represent the unstable, or flutter condition, and eigenvalues with a positive imaginary part 

are unstable solutions.  When a plot of g is made against 1/k (k being reduce frequency), 

there will be curves corresponding to the variation of each eigenvalue as the reduced 

frequency varies.  Some of these curves will have only values of g that are negative.  

These are the non-critical curves that represent stable coupled modes and do not 

influence the flutter solution.  However in most cases, at least one curve will start with a 

negative value of g and then at some point cross the abscissa (1/k) to a positive value of 
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g.  This curve is called the critical curve, and the value of 1/k where this curve crosses the 

abscissa represents the critical flutter speed, or flutter point.  The critical flutter speed is 

found from the relationship: 

 crit
FL

crit

bv
k
ω

=  (347) 

where ωcrit is found from equation (345) for the critical curve evaluated at the reduced 

frequency that corresponds to the crossover point (kcrit).  Results are commonly plotted as 

g vs. v instead of g vs. 1/k with the critical and noncritical curves identified in the same 

manner described above. 

For fixed-wing aircraft, the velocity seen by the wing is constant along the span of 

the wing, and a g-v plot makes sense because the reduced frequency is also constant 

along the wing.  However, for a rotor blade, the velocity is a function of the rotor span 

( ), and the reduced frequency, defined by equation (87), is also a function of rotor 

span.  Therefore, to eliminate the rotor span dependency of the g-v plots, the rotational 

velocity (

v = Ωr

v rΩ = ) will be used, and plots of g vs. Ω will be made. 

C. STRIP THEORY AND LUMPED PARAMETER SYSTEM 
Since the true structural properties of typical rotor blades often contain 

discontinuities, the integrals in the  through 
0 0h hA

1 1
Aβ β  terms defined in equations (197) 

through (260) and used in equations (281) through (344) may not have closed-form 

solutions.  To overcome this problem, strip theory and a lumped-mass, transfer matrix 

method similar to that applied for the Holzer and Myklestad methods can be used by 

replacing the integrals in equations (197) through (260) with summations.  The rotor 

blade can be divided into a convenient number of segments with the mass of each 

segment divided by two and concentrated at each end of the segment.  A massless, 

flexible connection is made between the concentrated masses with structural elastic 

properties that are averaged over the segment length.  The integrals from eR to R in 

equations (197) through (260) have summations along all segments while the integrals 

from r1 to r2 are summed only along the segments that have the trailing-edge flap 
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incorporated.  If it is assumed that there are N segments with the trailing-edge flap 

located from segments n1 to n2, equations (197) through (260) can be written as: 
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The bending (fi), blade torsional (Fi), and flap torsional (Gi) deflections are 

defined by equations (115), (116) and (117) and found by recursive application of 

equation (26) for the torsional modes and equation (50) for the bending modes. 
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IV. EXAMPLE ROTOR BLADE CHARACTERISTICS 
 

Now that the coupled aeroelastic equations of motion have been developed to 

perform a flutter analysis for rotor blades with trailing-edge flaps in the frequency 

domain, application of this theory will be made to demonstrate its usefulness.  Due to the 

proprietary rights of many of the current rotor blades under development, it became 

necessary to develop an example rotor blade that could be used in the analysis to 

demonstrate the robustness and applicability of the theory.  The example rotor blade 

chosen is a hingeless design that is similar to the rotor blade described in Table B-17 of 

TRECOM Technical Report 64-15 [Ref. 56], which is modeled after the blade designed 

for the Sikorsky H-3 (S-61).  This rotor blade has a length of 31 feet (R = 31 ft.) and is 

part of a five-bladed helicopter (Nb = 5) with a gross weight of 16,800 lbs.  The primary 

differences between the TRECOM blade and the example blade is that a 25% chord, 

trailing-edge flap has been incorporated from station 279 to 334 on the rotor blade, the 

root end restraint has been modified from an articulated design to a hingeless design, and 

the mass of the blade has been redistributed to account for added weight of the flap but 

designed in such a manner that the overall mass of the blade remains the same.  

Additionally, the c.g. of the rotor blade where the flap has been incorporated has been 

shifted from 25% chord to 40% chord to show effects of c.g. displacement on the flutter 

speed.  A summary of properties of this example rotor blade is given in Table 2. 

Due to the hingeless design assumed for the modified H-3 (S-61) example rotor 

blade, the full 8DOF system is not needed.  The hingeless design eliminates the h0 and α0 

rigid body motions, and since the 1st torsional frequency of the flap is much greater than 

1.2 times the 1st torsional frequency of the blade, the β1 motion can be neglected. Thus, a 

5DOF system will be used for the analyses (h1, h2, h3, α1 and β0), and equation (280) can 

be reduced to 
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 (412) 

where the determinant elements are defined the same as before in equations (281) 

through (344).  All subsequent g-Ω plots will be based on the 5DOF determinant of 

equation (412). 

Table 2.  Example Rotor Blade Sectional Properties 

Radius 
(rn) (in) 

Weight 
(Wn) (lbm) 

Chord 
(2b) (in) 

Flapwise 
Moment of 

Inertia     (Izz) 
(in4) 

Flapwise 
Static 

Unbalance 
(Szz) (in3) 

Chordwise 
Moment of 

Inertia 
(Ixx) (in4) 

12.63 20.46 8.1 5.0 5.0 26.0 
18.6 84.17 8.1 5.0 5.0 26.0 
37.2 55.21 8.1 5.0 5.0 26.0 
55.8 10.51 8.1 4.4 3.6 35.0 
74.4 8.53 8.1 3.04 2.7 30.5 
93.0 9.06 18.25 2.91 2.6 29.8 

111.6 8.78 18.25 2.8 2.5 29.3 
130.2 9.73 18.25 2.71 2.4 28.5 
148.8 10.01 18.25 2.6 2.36 28.0 
167.4 9.94 18.25 2.51 2.3 27.3 
186.0 9.91 18.25 2.45 2.25 27.0 
204.6 9.37 18.25 2.35 2.2 24.8 
223.2 9.45 18.25 2.29 2.1 24.3 
241.8 9.14 18.25 2.19 2.0 24.0 
260.4 9.03 18.25 2.1 1.95 23.7 
279.0 9.93 18.25 2.04 1.9 20.9 
297.6 9.94 18.25 2.0 1.9 20.8 
316.2 9.95 18.25 1.99 1.84 20.6 
334.8 9.96 18.25 1.95 1.82 20.5 
353.4 9.96 18.25 1.93 1.8 20.3 
372.0 2.56 18.25 0.97 0.9 10.1 
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Table 2. (Cont’d) 

Radius 
(rn) (in) 

Chordwise 
Static 

Unbalance 
(Sxx) (in3) 

Polar 
Moment of 

Inertia 
(J) (in4) 

Blade Mass 
Moment of 
Inertia (Iα) 
about e.a. 
(slug-ft) 

Flap Mass 
Moment of 
Inertia (Iβ) 
about flap 

hinge 
(slug-ft) 

Nondimensional 
c.g. position 

12.63 6.0 100.0 0.6 − -0.5 
18.6 6.0 100.0 0.6 − -0.5 
37.2 6.0 50.0 0.3 − -0.5 
55.8 7.95 30.0 0.08 − -0.5 
74.4 6.92 14.0 0.075 − -0.5 
93.0 6.7 9.9 0.074 − -0.5 
111.6 6.58 9.0 0.073 − -0.5 
130.2 6.4 8.5 0.072 − -0.5 
148.8 6.27 8.2 0.07 − -0.5 
167.4 6.2 7.9 0.068 − -0.5 
186.0 6.13 7.6 0.065 − -0.5 
204.6 5.8 7.3 0.062 − -0.5 
223.2 5.5 7.0 0.059 − -0.5 
241.8 5.6 6.8 0.058 − -0.5 
260.4 5.5 6.6 0.055 − -0.5 
279.0 5.12 6.3 0.054 0.00044 -0.2 
297.6 5.1 6.0 0.052 0.00042 -0.2 
316.2 5.03 5.9 0.051 0.00041 -0.2 
334.8 5.0 5.7 0.05 0.00040 -0.2 
353.4 5.0 5.5 0.048 − -0.5 
372.0 2.5 2.8 0.025 − -0.5 

 
  While the theory is capable of handling different materials along the span of the blade, 

for simplicity, the example blade is assumed to be made of aluminum, and both the 

modulus of elasticity (E) and the shear modulus (G) are constant over the span of the 

blade, where E = 10 x 106 psi and G = 3.76 x 106 psi.   
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V. VALIDATION OF 3-D ROTARY WING FLUTTER THEORY 
 

A. COMPARISON WITH CLASSIC FLUTTER THEORIES 
Equation (278) represents the 8DOF flutter equation for a rotor blade with a 

trailing-edge flap.  In order to determine if this equation has validity, several limiting 

cases should be considered and compared with the classic flutter equations.  The first 

case will be single degree of freedom (1DOF) flutter associated with pure pitching of the 

airfoil.  The second case will be two degree of freedom (2DOF) flutter associated with 

coupled pitch-plunge motion.  The third case will be the three degree of freedom (3DOF) 

flutter associated with coupled motion of bending, torsion, and aileron (trailing-edge 

flap).  In each case, the 8DOF system will be reduced to the corresponding classic flutter 

case giving some validity to this current theory. 

1. Single Degree of Freedom Flutter 
The 1DOF case can be developed by setting the bending motions, trailing-edge 

flap motions, and the rigid body blade torsional motion to zero.  Using equation (275), 

the equation of motion for a single pitch degree of freedom becomes 

 ( ) 1

1 1 1 1 1

2

1A I I ig α
α α α α α

ω 
πρ + − + = ω 

0  (413) 

where  is defined by equation (393).  In the development of equation (393) it was 

assumed that there were spanwise variations of the properties (3D effects).  Classic flutter 

equations are normally written in 2D form with no spanwise variations included.  To 

convert equation (393) to a 2D equivalent, the dependence on mode shape (and variations 

in blade section properties) is eliminated by setting 

1 1
Aα α

( )1 1F y = .  If only one section is 

assumed, equation (393) becomes 

 ( )
1 1

2
4 1 1

2 2 hA b M a L M a Lα α α α α

    = − + + + +    
     

. (414) 

Equation (414) has both a real and imaginary part, and when equations (63), (64), (67), 

and (68) are substituted into equation (414), the result is 
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( )

1 1

2
4

2

2

3 1 2 2 1 21 1
8 2 2

1 2 11 1 2 2
2 2

G F GA b a a
k k k

i Ga F a F
k k

α α

        = − + + − + + +        
        

     + − + + + + − +     
      

, (415) 

where  is the real part of the chosen lift deficiency function (Theodorsen for the classic 

case), and  is the imaginary part.  Substituting equation (415) into equation (413) 

yields 

F

G

 ( )

( ) 1

1 1 1

2
4

2

2

2

3 1 2 2 1 21 1
8 2 2

1 2 11 1 2 2
2 2

1 0

G F Gb a a
k k k

i Ga F a F
k k

I I ig α
α α α

        πρ − + + − + + +        
        

     + − + + + + − +     
      

ω 
.+ − + = ω 

 (416) 

In order to solve equation (416), both the real and imaginary parts must go to zero 

simultaneously.  The imaginary part can be written as 

 ( ) 1

1 1

224 1 2 11 1 2 2
2 2

b Ga F a F I g
k k

α
α α

  ω πρ     − + + + + − + − =        ω        
0 , (417) 

and the real part can be written as 

 1

1

22
4

2

3 1 2 2 1 21 1 1
8 2 2

G F Gb a a I
k k k

α
α

   ω         πρ − + + − + + + + − =          ω              
0.  (418) 

Equation (417) cannot be solved explicitly for k  because  and G  are functions of . 

However, the method of Smilg and Wasserman [Ref. 45] can be used whereby the 

damping coefficient ( ) is plotted against (1/k), and the value of 1/k where  is a 

solution to equation (417) and can be used to find the flutter frequency from equation 

(418).  A solution in this manner is identical to using equations (345) and (346).  With a 

little algebra, it can be shown that equations (417) and (418) can be written as  

F k

1
gα 1

0gα =
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 ( ) 1 1 1

2
2

4

1 1 2 1 12 0
2 4 2

I gGa a F a
k k b

α α αω        − + − − + − + =         πρ ω         
 (419) 

 and 

 1 1

2
2 2

2 4

1 1 2 1 2 1
8 4 2

IG Fa a a
k k b

α α
 ω         + + − − + + − =         πρ ω           

0  (420) 

which are the damping and frequency equations given by equations (3) and (4) in 

Runyan’s report on single degree of freedom flutter [Ref. 57].  Therefore, it has been 

shown that the 8DOF theory can be reduced to the classic 1DOF case of torsional flutter. 

2. Two Degree of Freedom Flutter 
The classic 2DOF flutter case with coupled pitch-plunge motion can be obtained 

by setting the rigid body motions, and the higher modes of the bending and trailing-edge 

flap motion to zero.  For the 2DOF case, equations (271) and (275) can be written as 

 ( ) ( )1

1 1 1 1 1 11

2

1 1 1 11 0h
h h h hA M M ig h A Sα α

 ω 
 πρ + − + + πρ + α = ω   

 (421) 

and 

 ( ) ( ) 1

1 1 11 1 1 1 1 1

2

1 11hA S h A I I ig α
α α α α α α α

 ω 
 πρ + + πρ + − + α = ω   

0 . (422) 

The expressions for , , 
1 1h hA

1 1hA α 1 1hAα , and 
1 1

Aα α  can be written in 2D form as 

  (423) 
1 1

2
h h hA b L=

 
1 1

3 1
2hA b L a Lα α h

  = − +    
 (424) 

 
1 1

3 1
2h hA b M a Lα h

  = − +    
 (425) 

and ( )
1 1

2
4 1 1

2 2hA b M a L M a Lα α α α

    = − + + + +    
     

h . (426) 
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Substituting equations (423) through (426) into equations (421) and (422) and writing the 

result in matrix format yields 

 

( )

( )

( )

1 11

1

11

1 1 1

1

2

1 1
2 2 3

2
1

1

23

4 4

11
2

1 1 0.
2 21

2
1

h
h h h

h h

h h

SM ML ig L a L
b b b

h
M a L M a L

S
M a L

b I I
ig

b b

α
α

α α
α

α α α
α

 ω    + − + − + +   πρ πρ ω πρ   
 

        =− + + + +        α        − + +    πρ ω     + − +   πρ πρ ω    

  

  (427) 

If structural damping is assumed to be zero (
1 1

0hg gα= = ) and the following parameters 

are used that were defined by Theodorsen [Ref. 46]: 

 
2

1

mass ratiob
M
πρ

κ = =  

 12
2

1

radius of gyration divided by 
I

r b
M b

α
α = =  

 11

1

static unbalance divided by ,
S

x b
M b
α

α = =  

then equation (427) becomes 

 ( )

1

1

2

1

1

22 2

1 11
2

1 0
21

2 1 1
2

h
h h

h

h h

h

xL L a L

h
M a L M

xM a L
ra L

α
α

α α

α

αα

  ω     − + − + +    κ ω κ     
     − + +      α      − + +     ω κ      + + + −      κ ω      

=  (428) 

Since equation (428) is an homogenous equation and h1 and α1 are not both zero, the 

flutter solution is an eigenvalue problem, and it is found by setting the determinant equal 

to zero, or 
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 ( )

1

1

2

22 2

1 11
2

1 0
21

2 1 1
2

h
h h

h

h h

h

xL L a L

M a L M
xM a L

ra L

α
α

α α

α

αα

 ω    − + − + +    κ ω κ   
  ∆ = − + + =     − + +     ω κ     + + + −     κ ω     

 (429) 

Equation (429) is the same 2DOF flutter equation shown in equation 9-20 of 

Bisplinghoff, et al [Ref. 1].  To further illustrate that this 8DOF flutter theory has validity 

when reduced to the 2DOF case, a comparison of equation (429) will be made to classic 

2DOF flutter work done by Theodorsen and Garrick [Ref. 58].  Defining the flutter 

parameter as 

 1

22

,rX αα
ω 

=  κ ω 
 (430) 

equation (429) can be written as 

 

( )

1 1

1 1

2 2

2 2

2 2

1 1
2

0.
1 1 1
2 2 2

h h
h h

h h h h

xr L X r L a L

x rM a L M a L M a L X

α α α
α α α

α α
α α

   ω ω     + − − + +          ω κ ω κ       ∆ = =
     − + + − + + + + + −     κ κ     

  

  (431) 

Since the parameters ,  and hL Lα Mα  are complex quantities and functions of reduced 

frequency (k), the characteristic equation of the determinant will also be complex and a 

function of reduced frequency.  The method that Theodorsen and Garrick used to find the 

flutter solution was to separate the real and imaginary parts of the characteristic equation 

from the flutter determinant, and plot both parts as X  against 1/k.   The value of 1/k 

where the real and imaginary curves intersect would be the reduced frequency for flutter, 

and the parameter X  can be used to find the flutter frequency using equation (430).  

Using the same parameters for the numerical example in Ref. 58, equation (431) can be 

used to generate an equivalent plot of Figure 1 of Ref. 58, which is case 1, or the flexure-
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torsion case considered by Theodorsen and Garrick.  The equivalent plot is shown in 

Figure 25 below, and Appendix D contains the MATLAB® program used to generate the 

curves in Figure 25.  It can be seen that the point of intersection between the real and 

imaginary curves occurs at 1 2.46k = , which is the same value determined by 

Theodorsen and Garrick.  Therefore, it has been shown that the 8DOF theory can be 

reduced to the classic 2DOF case of torsional flutter. 

 
Figure 25.  Real and imaginary roots of flutter determinant (Case 1) using data 
from Ref. 58. 
 

3. Three Degree of Freedom Flutter 
The development of the classic 3DOF, three-dimensional flutter theory, which is 

based on the 3DOF, two-dimensional flutter theory developed by Theodorsen [Ref. 46], 

can be found in Bisplinghoff, et al [Ref. 1] and Scanlan and Rosenbaum [Ref. 3].  It is 

normally assumed that the aileron (or trailing-edge flap) is very stiff structurally 

compared to the control system, and therefore the deflection of the aileron can be 

considered as a rigid body motion only.  It is also assumed that the aileron has a slight 

twist proportional to the wing twist along its span.  The 8DOF flutter theory presented 
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here can be reduced to the 3DOF theory by setting 0 2 3 0 1 0.h h h= = = α = β =   The matrix 

equation (278) becomes   

 

( )

( )

( )

1 1

1 1 11 1 0 101

1

1 1 1

1 1 11 1 0 1 01

1 1

0 0 0

0 1 10 0 1 1 0 0

0 0

1

2

1

2

2

1

1

1

h h

h hh
h

h

h

A M

A S A S
M ig

A I

A S A P
I ig

A I

A S A P
I ig

α α β β

α α α

α α α β α βα
α α

β β β

β β β α α β β
β β

 πρ + 
 

πρ + πρ +ω  
− +  ω  

πρ + 
 

πρ + πρ +ω  
− +  ω  

πρ + 
 

πρ + πρ + ω  
− +  ω  

1

1

0

0.
h


 
 
 
 
 

  
   α =  
 β   

 
 
 
 
 
 

 

  (432) 

Equation (432) is exactly the same as equation 9.22 in Scanlan and Rosenbaum [Ref. 3], 

and if Theodorsen’s lift deficiency function is used in the aerodynamic terms ( ), the 

results will be identical.  The primary difference for rotary wing flutter is that Loewy’s or 

the finite wake lift deficiency functions may be used, and the values of the aerodynamic 

coefficients, and hence the aerodynamic terms, will change.  Therefore, the rotary wing 

8DOF flutter equation (278) can be reduced to the classic 3DOF, three-dimensional 

flutter equation when Theodorsen’s lift deficiency function is used. 

ijA

B. AERODYNAMIC COEFFICIENTS 
It is sometimes more convenient to write the equations of motion in the form that 

Theodorsen  first presented them [Ref. 46].  Equations (60), (61), and (62) can be written 

as 

 
{ }

( )

2
4 1

10 11
1 1 12
2 2

L b v h ba vT T b

vbC k v h b a T v bT

′ = ρ πα + π − π α − β− β

  − πρ α + + + α + β+ β   π π  

 (433) 
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( )

( ) ( )

( )

2 2 2 2
4 10

2
1 8 4 11 7 1

2
10 11

1 1
2 8

1
2

1 1 1 12
2 2 2

M b a vb b a T T v

T T c a T T vb T c a T b a bh

vb C k a v h b a T v bT

    ′ = −ρ π + α + π + α + + β    
   

 + − − − + β− + − β− π      
    + πρ + α + + − α + β+ β     π π    

 (434) 

and 

 ( )

( )

2 2
9 1 4 13

2 2
5 4 10 4 11 3 1

2
12 10 11

12 2
2

1 1 1
2

1 1 1 ,
2 2

T b T T T a vb T b

T T T v T T vb T b T bh

vb T C k v h b a T v bT

  ′ = −ρ − − + − α + α     
+ − β− β− β− π π π 

  −ρ α + + − α + β+ β   π π  

 (435) 

where the assumption of simple harmonic motion has not been introduced yet.  The first 

sets of terms in braces in equations (433) through (435) are a result of the flow 

acceleration effects and are typically called non-circulatory, or apparent mass terms [Ref. 

1 and 59].  The second sets of terms in braces (all preceded by C(k)) are a result of the 

circulation created about the airfoil and are called circulatory terms. 

From equations (433) through (435) it can be seen that two main parameters that 

affect the rotary-wing flutter solution are the freestream velocity ( v r= Ω ) and the choice 

of lift deficiency function, C(k).  (The T-functions and φ-functions depend only on the 

geometry of the airfoil, and thus once the airfoil’s physical parameters are set, those 

functions become constant.)  The freestream velocity seen by the rotor blade is a function 

of its radial position and rotational velocity, or v .r= Ω   The reduced frequency for rotary 

wing in a hover is defined by equation (87), and because of the change in velocity along 

the span of the blade, there is a different value of reduced frequency for each section of 

the blade.  Thus, the value of k used in the aerodynamic terms given in equations (63) 

through (78) and the lift deficiency function change for each blade station, therefore 

causing the aerodynamic terms and the lift deficiency function to be functions of the 

radial position along the rotor blade. 
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Since aerodynamic terms will vary as reduced frequency and lift deficiency 

function varies, Table 3 shows a comparison of the value of the aerodynamic coefficients 

calculated by the flutter program listed in Appendix A, to the generally accepted values 

calculated by Smilg and Wasserman and listed in Appendix V of Ref. 45 for e = c = 0.5,  

and k = 0.8.  For the Loewy and single wake lift deficiency functions, a wake spacing for 

the example helicopter hovering out of ground effect is used, where  =  = 1.14.  Note 

that in Table 3 with the exception of some rounding errors, the values of the aerodynamic 

coefficients using Theodorsen’s lift deficiency function calculated with MATLAB

ĥ 0̂h

® agree 

well with those reported by Smilg and Wasserman.  Since MATLAB® can generate 

aerodynamic coefficients for any combination of e, c, k, , and m, it is unnecessary to  

generate tables of coefficients similar to those of Smilg and Wasserman.  Appendix E 

contains a MATLAB

ĥ

® program that calculates just the aerodynamic coefficients. 

It can also be seen that layers of shed vorticity beneath the rotor have a significant 

effect on aerodynamic coefficients.  When comparing Loewy’s lift deficiency function 

with an infinite number of previously shed wakes to the finite wake lift deficiency 

function with just a single previously shed wake, it can be seen that the number of wakes 

has a lesser effect than frequency ratio, which effectively is the phase relationship 

between the shed layers of vorticity.  In other words, it is just as important (and maybe 

more so) to know the phase relationship between layers of shed vorticity as it is to know 

wake spacing and the number of wakes.  Thus, it is expected that frequency ratio will 

have a significant effect on the flutter solution due to the larger changes to aerodynamic 

coefficients caused by changes in frequency ratio. 

Table 3.  Comparison of Aerodynamic Coefficients (e = c = 0.5, k = 0.8 and  = 1.14) ĥ
Loewy 

Coefficient 
Smilg and 

Wasserman Theodorsen m = 0 m = 0.25 m = 0.5 m = 0.75 
Lh 0.70880 

-1.38530i 
0.70874 
-1.38537i 

0.52031 
-0.95194i 

1.20891 
-1.23500i 

0.80296 
-1.83605i 

0.30485 
-1.51864i 

Lα 1.52280 
-2.27119i 

-1.52296 
-2.27130i 

-1.16961 
-1.60233i 

-0.83484 
-2.74613i 

-1.99210 
-2.83975i 

-2.09345 
-1.89971i 

Lβ -1.07467 
-0.30907i 

-1.07474 
-0.30908i 

-0.78375 
-0.07603i 

-0.85687 
-0.65874i 

-1.39834 
-0.47398i 

-1.25970 
-0.02917i 

Lz 0.01816 
-0.84362i 

0.01813 
-0.84369i 

-0.09663 
-0.57973i 

0.32272 
-0.75211i 

0.07550 
-1.11815i 

-0.22784 
-0.92485i 
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Mh 0.5 
+0i 

0.5 
+0i 

0.5 
+0i 

0.5 
+0i 

0.5  
+0i 

0.5 
+0i 

Mα 0.375 
-1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

Mβ -0.61022 
-0.41665i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

Mz 0.16666 
-0.51688i 

0.16667 
-0.51687i 

0.16667 
-0.51687i 

0.16667 
-0.51687i 

0.16667 
-0.51687i 

0.16667 
-0.51687i 

Th 0.03680 
-0.01558i 

0.03681 
-0.01558i 

0.03469 
-0.01071i 

0.04243 
-0.01389i 

0.03787 
-0.02065i 

0.03226 
-0.01708i 

Tα 0.01311 
-0.09764i 

0.013111 
-0.09763i 

0.017085 
-0.09011i 

0.02085 
-0.10297i 

0.00783 
-0.10403i 

0.00669 
-0.09345i 

Tβ -0.04440 
-0.05125i 

-0.04441 
-0.05125i 

-0.04113 
-0.04863i 

-0.04196 
-0.05518i 

-0.04805 
-0.05311i 

-0.04649 
-0.04810i 

Tz 0.01932 
-0.03929i 

0.01931 
-0.03930i 

0.01802 
-0.03633i 

0.02274 
-0.03827i 

0.01996 
-0.04238i 

0.01655 
-0.04021i 

Ph 0.17871 
-0.07989i 

0.17870 
-0.07989i 

0.16784 
-0.05490i 

0.20755 
-0.07122i 

0.18414 
-0.10588i 

0.15541 
-0.08758i 

Pα 0.05002 
-0.47556i 

0.05000 
-0.47556i 

0.07038 
-0.43699i 

0.08969 
-0.50295i 

0.02295 
-0.50835i 

0.01711 
-0.45413i 

Pβ -0.28045 
-0.22767i 

-0.28045 
-0.22767i 

-0.26367 
-0.21423i 

-0.26789 
-0.24784i 

-0.29911 
-0.23718i 

-0.29112 
-0.21153i 

Pz 0.08499 
-0.23863i 

0.08498 
-0.23863i 

0.07837 
-0.22341i 

0.10255 
-0.23335i 

0.08829 
-0.25446i 

0.07080 
-0.24331i 
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Table 3. (Cont’d) 
Single Wake 

Coefficient Theodorsen m = 0 m = 0.25 m = 0.5 m = 0.75 
L  0.70874 0.58372 1.07068 0.81497 0.30778 h

-1.38537i -1.07264i -1.07103i -2.13400i -1.37253i 
-1.52296 -1.25708 -0.76811 -2.35254 -1.90788 L  α
-2.27130i -1.80229i -2.40939i -3.15271i -1.75725i 
-1.07474 -0.86253 -0.76063 -1.62268 -1.14787 L  β
-0.30908i -0.14925i -0.51962i -0.54472i -0.00119i 

L 0.01813 -0.05801 0.23855 0.08282 -0.22606 z 
-0.84369i -0.65324i -0.65226i -1.29960i -0.83587i 

M  h 0.5 
+0i 

0.5 
+0i 

0.5 0.5 0.5 
+0i +0i +0i 

0.375 0.375 M  α
-1.25i -1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

0.375 
-1.25i 

Mβ -0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

-0.61022 
-0.41667i 

Mz 0.16667 
-0.51687i 

0.16667 
-0.51687i 

0.16667 
-0.51687i 

0.16667 
-0.51687i -0.51687i 

Th 0.03681 
-0.01558i 

0.03540 
-0.01206i 

0.04088 
-0.01205i 

0.03800 
-0.02400i 

0.03230 
-0.01544i 

Tα 0.013111 
-0.09763i 

0.01610 
-0.09236i 

0.02160 
-0.09919i 

0.00378 
-0.10755i 

0.00878 
-0.09185i 

Tβ -0.04441 
-0.05125i 

-0.04202 
-0.04945i 

-0.04087 
-0.05362i 

-0.05057 
-0.05390i 

-0.04523 
-0.04779i 

Tz 0.01931 
-0.03930i 

0.01846 
-0.03715i 

0.02179 
-0.03714i 

0.02004 
-0.04442i 

0.01657 
-0.03921i 

Ph 0.17870 
-0.07989i 

0.17149 
-0.06186i 

0.19958 
-0.06177i 

0.18483 
-0.12307i 

0.15558 
-0.07915i 

Pα 0.05000 
-0.47556i 

0.06534 
-0.44852i 

0.09354 
-0.48353i 

0.00216 
-0.52639i 

0.02781 
-0.44592i 

Pβ -0.28045 
-0.22767i 

-0.26821 
-0.21846i 

-0.26234 
-0.23981i 

-0.31205 
-0.24126i 

-0.28467 
-0.20992i 

Pz 0.08498 
-0.23863i 

0.08059 
-0.22765i 

0.09770 
-0.22759i 

0.08872 
-0.26492i 

0.07090 
-0.23818i 

0.16667 

 

C. STRUCTURAL NATURAL FREQUENCIES 

1. Uncoupled Natural Frequencies 
In solving the eigenvalue problem for the flutter determinant given in equation 

(280), the A  terms have uncoupled natural frequencies as one of the parameters.  The 

uncoupled natural frequencies are calculated using the Holzer method described in 

section II.A.A. for torsional natural frequencies and the Myklestad method described in 

section II.A.B. for bending natural frequencies.  Both these methods use the transfer 
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matrix method to find natural frequencies.  While both methods take into account the 

centrifugal force associated with a rotating blade, the modes found are not coupled 

because the bending, blade torsional and trailing-edge flap torsional modes are calculated 

independently of other modes, and coupling effects such as those due to pitch and flap are 

not included.  The coupling effects are introduced separately through the static unbalance 

and mechanical coupling terms.  To illustrate this point, Figure 26 shows the effect of 

increased rpm (and thus increase centrifugal force) on the first three bending modes.  It 

can be seen that the primary effect of increased centrifugal force is to gradually shift the 

nodes and antinodes of the mode shapes and to decrease amplitude of deflection for the 

antinodes.  In other words, centrifugal force acts to stiffen the rotor blade. 

 
Figure 26.  Vertical bending mode shapes at different rotational speeds 

Table 4 shows the natural frequencies of the  1st, 2nd and 3rd bending modes  and 

1st and 2nd torsional modes for different rotational speeds for the example rotor blade.  It 

is easily seen that the other effect of increased centrifugal force is to increase the natural 

frequency of each mode, with a greater effect seen on bending modes than on torsional 

modes.  Accounting for the effect of centrifugal forces on the uncoupled bending natural 

frequencies has some practical limitations when the Myklestad method is used.  Equation 
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(39) is the governing equation for the bending deflection and is a 4th order ordinary 

differential equation.  Using the lumped-mass parameter method equation (39) becomes 

equation (48) when written in transfer matrix format.  In order to solve equation (48), the 

[ ]nK  matrix must be inverted as shown in equation (50).  Since the centrifugal force 

term only appears in two off-diagonal terms, there is a possibility that the [ ]nK  matrix 

may become singular if the number of significant figures carried through the calculations 

is inadequate.  In fact, this does happen to the example rotor blade in the calculations 

carried out when the rpm exceeds 375, or about 1.85 times the normal operating rpm.  

Mathematically, the second term of equation (39) is becoming so large compared to the 

first term that in essence, the 4th order differential equation is reduced to a 2nd order 

differential equation thus reducing the rank of the [ ]nK  matrix and yielding a singularity 

in the solution above 375 rpm. 

Table 4.  Uncoupled Natural Frequencies (rad/s) at Different Rotational Speeds 
Mode 100 RPM 203 RPM (normal) 300 RPM 
1st Bending 12.77 23.95 34.50 
2nd Bending 38.52 62.99 88.12 
3rd Bending 84.27 115.84 151.68 
1st Blade Torsion 138.59 139.81 141.70 
2nd Blade Torsion 369.03 369.54 370.35 
 

2. Coupled Natural Frequencies 
While the uncoupled natural frequencies are used as inputs to equation (280), it is 

the coupled natural frequencies that result from the calculation that truly influence the 

flutter problem.  The coupled natural frequencies are coupled in the sense that motion by 

more than one degree of freedom couples into another degree of freedom.  The coupled 

natural frequencies are found by applying Lagrange’s equation in the form shown in 

equation (261) with internal generalized forces set to zero, or 

 0
n n n

d T U D
dt q q q
 ∂ ∂ ∂

+ + = ∂ ∂ ∂ 
 (436) 

 

Applying equation (436) to the 5DOF yields the following equations: 
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 (441) 

If simple harmonic motion is assumed, equations (437) through (441) can be written in 

matrix format as: 
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  (442) 
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It can be seen that equation (442) is identical to equation (278) if all the terms that have 

density (ρ) are eliminated.  Since ρ is never in the denominator of any term, those terms 

can be eliminated by simply by setting ρ = 0.  A physical analogy would be that of 

running the rotor in a vacuum chamber.  By eliminating the density terms, the effects of 

the air stream are no longer present, and flutter cannot exist.  Thus, the solution to 

equation (442) will contain only the inertial and elastic forces, which is represented by 

the mechanical vibrations or structural dynamics problem shown in Figure 2.  Applying 

the method of Smilg and Wasserman of effectively equating the damping coefficients and 

defining a new variable Z given in equation (279), the coupled natural frequencies can be 

obtained using equation (280) by setting ρ = 0.  It should be noted that when equation 

(442) or equation (280) or (412) (with ρ = 0) is used, the eigenvalues will all become real 

and positive, and the damping coefficients (g) will be zero.  This result is expected wince 

setting ρ = 0 effectively makes the blade motion occur in a vacuum, and hence no 

dissipation of the motion is present. 

Figure 27 is a Southwell, or fan plot for the example rotor blade with the flap 

frequency set to zero (ωβ = 0).  At the normal operating rpm of 203, the coupled natural 

frequencies are 23.91, 62.92, 115.45, and 150.49 rad/s.  A good structural design for rotor 

blades is to ensure that there are no natural frequencies at Nb and Nb ± 1 times the 

rotational frequency at normal rpm.  Additionally, natural frequencies at other integer 

multiples of the normal rotational frequency should be avoided to maximum extent 

practical.  It can be seen from Figure 27 that the natural frequencies at normal operating 

rpm do not coincide with the 4P, 5P and 6P frequencies.  The proximity of the 2nd 

bending frequency with the 3P frequency and the 1st blade torsion frequency with the 7P 

frequency would normally not present any problems.  Figure 28 is a Southwell plot for 

the H-3 rotor blade [Ref. 60].  By comparing Figure 27 to Figure 28, it can be seen that 

the structural dynamics of the example rotor blade (with a trailing-edge flap) is 

reasonable when compare to the H-3 rotor blade (without the trailing-edge flap).  The 

main differences between the two plots can be attributed to the c.g. shift from 25% chord 

to 40% chord due to inclusion of the trailing-edge flap. 
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Figure 27.  Southwell plot for example rotor blade (ωβ = 0P). 

 
Figure 28.  Southwell plot for H-3 rotor blade (from Ref. 60) 
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With the trailing-edge flap incorporated on the example rotor blade, the 

uncoupled natural frequency of the flap has the ability to influence the coupled natural 

frequencies, and hence structural dynamics of the rotor blade.  Figure 29 through Figure 

35 are the Southwell plots for flap frequencies of 1P through 7P.  it can be seen from 

Figure 29 though Figure 32 that flap frequencies from 1P to 4P do not significantly affect 

the structural dynamics of the rotor blade.  However, Figure 33 through Figure 35 show 

some interaction between the flap frequency and the 3rd bending and 1st blade torsional 

frequencies.  Fortunately, the interaction between the modes occurs at a rotational 

frequency of 1.2 – 1.4 times the rotational frequency, which is well above the normal 

operating limits.  Thus, from the viewpoint of structural dynamics alone, it may be 

concluded that the example rotor blade meets the criteria for a good structural design with 

the trailing-edge flap incorporated that includes a c.g. offset. 

 
Figure 29.  Southwell plot for example rotor blade (ωβ = 1P). 
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Figure 30.  Southwell plot for example rotor blade (ωβ = 2P). 

 

 
Figure 31.  Southwell plot for example rotor blade (ωβ = 3P). 
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Figure 32.  Southwell plot for example rotor blade (ωβ = 4P). 

 

 
Figure 33.  Southwell plot for example rotor blade (ωβ = 5P). 
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Figure 34.  Southwell plot for example rotor blade (ωβ = 6P). 

 

 
Figure 35.  Southwell plot for example rotor blade (ωβ = 7P). 
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VI. FLUTTER ANALYSIS FOR EXAMPLE ROTOR BLADE 
 
To this point, both the structural dynamics and the unsteady aerodynamics have 

been examined independently to determine their individual contributions to the issue of 

rotor blade aeroelastic stability.  In the previous section, it was shown that the example 

rotor blade has a good structural design even with the center of gravity moved aft in the 

portion with the trailing-edge flap incorporated, and that layers of shed vorticity beneath 

the reference blade can have a significant effect on the aerodynamic coefficients with the 

most notable parameter being the frequency ratio, or wake phasing relationship.  Since 

flutter is a self-exited aeroelastic phenomenon, an analysis of the combined effects of 

structural dynamics and aerodynamics will provide a solution to the flutter problem. 

Since there are several parameters that influence the flutter problem, the following 

parameters will be examined to determine how the variation of each parameter affects the 

flutter solution: 

1. Flap frequencies of 0P, 4P, 5P and 6P 

2. Choice of lift deficiency function 

3. Frequency ratio for shed wakes 

4. Center of gravity offset 

While a trailing-edge flap can have any input frequency desired, the reason for limiting 

the scope of this study to the four inputs listed above are that 0P represents the condition 

of IBC turned off and 4P, 5P and 6P represent the Nb – 1, Nb (blade passage), and Nb + 1 

vibration frequencies that are transmitted from rotating system to the fixed system.  

Therefore if it can be determined that flutter does not exist for these frequencies, it would 

be likely that flutter would not exist for other conditions. 

A. 0P FLAP FREQUENCY 
Since the 0P flap frequency corresponds to the condition of IBC turned off, it is 

the most critical case to be analyzed.  If flutter exists for the 0P input frequency, then it 

will most likely exist with other flap frequencies.  The first set of parameter to be 

analyzed will be the choice of lift deficiency function.  Figure 36 is the g-Ω plot using the 

Theodorsen lift deficiency function for 0P flap frequency.  The flutter speed is found by 
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noting the rotational velocity when the critical damping curve crosses the axis of the 

abscissa going from a negative to a positive value.  The flutter speed of the example rotor 

blade using the Theodorsen lift deficiency function is 1.345Ω0 (273 rpm).  The overspeed 

limit for typical rotor systems ranges from 1.05Ω0 to 1.2Ω0 due to fatigue and reliability 

concerns [Ref. 12 and 25].  Thus, calculated flutter speeds above 1.2Ω0 (or the maximum 

overspeed limit) would indicate via analysis that the rotor blade could be considered free 

from flutter in the normal operating environment and in compliance with FAA 

requirements [Ref. 4 and 5]. 

Figure 37 is the g-Ω plot for the example rotor blade with 0P flap frequency using 

Loewy’s lift deficiency function with m = 0.  The wake spacing has been set to the 

normal wake spacing in an out-of-ground-effect hover, or   It can be seen 

that the effect of having the shed layers of vorticity exactly in phase with the layers above 

and below it is to raise the flutter speed to greater than 1.8Ω

0
ˆ ˆ 1.14.h h= =

0.  Thus, the m = 0 case 

makes the rotor blade less susceptible to flutter.  The effects of changes in frequency ratio 

using Loewy’s lift deficiency function are shown in Figure 38 through Figure 40 for the 

cases of m = 0.25, m = 0.5, and m = 0.75, respectively.  The case of m = 0.25 is 

interesting in that the flutter speed is 1.108Ω0, which may be in the normal operating 

range of some rotor systems. 

The large changes in flutter speed seen when frequency ratio is varied can be 

explained using Figure 41 in which Loewy [Ref. 49] plotted the pitch damping 

coefficient, defined by 

 21 1 1 2 1 2
2 2 4pitch damping

GC a a
k k−

′
a F       ′= − − + − −            

, 

against the frequency ratio for various wake spacings (inflow parameter).  It can be seen 

that the pitch damping coefficient becomes negative (unstable) in the region where 

  Recall that the wake weighting function is periodic in m, and the  

case shown in Figure 38 could correspond to any integer plus 0.25 case. Thus, this 

decreased pitch damping has a destabilizing effect on the flutter speed of the rotor blade.   

1.25.m = 0.25m =
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Figure 36.  g-Ω plot for example rotor blade using Theodorsen’s lift deficiency 
function (ωβ = 0P). 
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Figure 37.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0 (ωβ = 0P). 
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Figure 38.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.25 (ωβ = 0P). 
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Figure 39.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.5 (ωβ = 0P). 
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Figure 40.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.75 (ωβ = 0P). 
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Figure 41.  Pitch damping coefficient versus frequency ratio (a = 0) (from Ref. 49). 

This destabilizing effect was also noted by Jones and Platzer [Ref. 61] and Turner 

[Ref. 62].  Jones and Platzer used a panel code to plot the time rate change of the pitch 

amplitude against frequency ratio for the case of a single wake beneath an airfoil that was 

oscillating in pure pitch about the leading edge (a = -1.0).  Their results showed an 

instability for 1.52 ≤ m ≤ 1.84, which is consistent with Figure 16 (a = -1.0) from Loewy 

[Ref. 49].  Since the example rotor blade had an aft c.g. offset in the sections with 

trailing-edge flaps, the effect on pitch damping would be similar to moving the elastic 

axis aft towards the midchord.  Figure 41 above, which is a copy of Figure 18 (a = 0) 

from Loewy, shows the instability to be in the region of 1.0 < m < 1.25 corresponding to 

the results seen for the example rotor blade. 

Turner used a panel code to plot the imaginary part of the moment coefficient 

against the horizontal shift (Xshift, expressed in terms of chord lengths) of the lead airfoil 

in a two airfoil system where both airfoils were oscillating in pure pitch at the same 

frequency and amplitude.  He noted that a positive value for the imaginary part of the 

moment coefficient corresponded to a negative pitch damping producing an instability.  
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This horizontal shift can be related to the noninteger portion of the frequency ratio by 

noting the phase shift between the two layers of vorticity.  Since the two airfoils are 

oscillating at the same frequency and amplitude, the phase shift can be found by taking 

the ratio of the Xshift coordinate to the wavelength of the oscillating layers of vorticity.  

The wavelength of the layers of vorticity can be found by noting that the oscillating 

frequency is a circular frequency of oscillation with units of rad/s.  This circular 

frequency can be converted into a frequency in Hz by dividing by 2π, or 

 
2

f ω
=

π
. (443) 

The wavelength of the layers of vorticity can now be written as the ratio of the velocity to 

the frequency, f, or using equation (443) 

 2
v

vπ
λ =

ω
 (444) 

Therefore using equation (444), the noninteger portion of the frequency ratio can be 

written as 
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= =
k

π π
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using the definition of reduced frequency given in equation (80). 

Loewy’s lift deficiency function assumes that the strength of the previously shed 

vortices does not change over time or distance.  In essence, the effects of viscosity have 

been neglected in order to obtain a solution via thin airfoil theory, which assumes an 

incompressible, inviscid fluid.  Since the strength of the previously shed vortices would 

have most likely decayed to zero at a large distance, Peters and He [Ref. 63] developed a 

lift deficiency function that incorporated a decay function that allows the user to set the 

rate of decay of the vortices so that those vortices closest to the reference blade will have 

the greatest effect.  While the method of Peters and He is very robust (working in both 

the frequency and time domain), the finite wake lift deficiency function may provide a 

simpler method to account for the large effects on the downwash of vortices near the 

blade while neglecting the diminished effects of vortices at a large distance.  Based on 

wake spacing and the induced velocity of the rotor, the user may select the appropriate 
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number of wakes to include in the analysis, and in essence introduce some of the effects 

of viscosity into the thin airfoil theory by limiting the number of wakes that are 

considered.   

Additionally, the finite wake method may be easier to use when making 

comparisons to computation fluid dynamics (CFD) codes.  An example of this type of 

comparison is shown in Figure 42, in which an Euler code was modified to calculate the 

propulsive force coefficient, defined by in Ref. 64 as 
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with a single wake beneath the reference airfoil and the results were compared to the 

propulsive force coefficient calculated by the finite wake lift deficiency function. This 

type of comparison would not be possible using Loewy’s lift deficiency function since it 

would be impossible to model an infinite number of wakes in a CFD code.  For this 

reason, g-Ω plots for the example rotor blade using the finite-wake lift deficiency 

function with a single wake are shown in Figure 43 through Figure 46 for 0P flap 

frequency.  The results are very similar to the Loewy lift deficiency function, but the 

flutter speed tends not to deviate as much from that calculated using the Theodorsen lift 

deficiency function.  A summary of all the flutter results for the example rotor blade with 

0P flap frequency is given in Table 5. 
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Table 5.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 0P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 100.7 1.345 
0.0 1.0 ~110.8 >1.8 

0.25 1.0 107.2 1.108 
0.50 1.0 98.8 1.278 Loewy 

0.75 1.0 94.7 1.348 
0.0 1.0 102.8 1.447 

0.25 1.0 111.6 1.117 
0.50 1.0 96.4 1.213 

0P 

Single Wake 

0.75 1.0 93.5 1.410 
 

 

 
Figure 42.  Comparison of single-wake propulsive force coefficient in plunge only to 
Euler code (from Ref. 14 and 15).  
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Figure 43.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0 (ωβ = 0P). 
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Figure 44.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.25 (ωβ = 0P). 
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Figure 45.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.5 (ωβ = 0P). 
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Figure 46.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.75 (ωβ = 0P). 
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Since it would be difficult in practice to maintain an exact frequency ratio as the 

shed layers of vorticity will move with the mass of air due to wind and begin to dissipate 

as the vortices interact with one another, it is worthwhile to have another look at the 

structural characteristics of example rotor blade because of the large changes in flutter 

speed as the frequency ratio is varied.  Recall the quote from the 1960 Sikorsky Report 

No. 50131 for the Advanced Tactical Helicopter (A.T.H.) [Ref. 6] that to be free of 

flutter, the “main and tail rotor blades of the A.T.H. have been designed so that center of 

gravity, elastic axis, and aerodynamic center are coincident.”  In the example rotor blade, 

the center of gravity in the sections with the trailing-edge flap was moved aft from the 

25% chord to the 40% chord.  The purpose of this feature was to see if the c.g./e.a./a.c. 

design constraints used on the A.T.H., and currently used on many helicopters, are 

necessary given this new flutter analysis method.  Figure 47 through Figure 55 are g-Ω 

plots of the example rotor blade, in which the c.g. in the sections with the trailing-edge 

flap was made to remain at the 25% chord (no c.g. offset cases).  It can be seen from the 

figures that the rotor blade is aeroelastically stable for all lift deficiency functions and 

frequency ratios therefore giving additional credibility to the statement about the A.T.H. 

main and tail rotor blades being free from flutter.  Therefore, while some amount of c.g. 

offset may be permissible, it still has a large effect on the stability of the rotor blade and 

care must be used when moving the c.g. off the 25% chord position, even if it is only 

along a small section of the rotor blade where the trailing-edge flap is incorporated. 
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Figure 47.  g-Ω plot for example rotor blade with no c.g. offset using Theodorsen’s 
lift deficiency function (ωβ = 0P). 
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Figure 48.  g-Ω plot for example rotor blade with no c.g. offset using Loewy’s lift 
deficiency function, m = 0 (ωβ = 0P). 
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Figure 49.  g-Ω plot for example rotor blade with no c.g. offset using Loewy’s lift 
deficiency function, m = 0.25 (ωβ = 0P). 
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Figure 50.  g-Ω plot for example rotor blade with no c.g. offset using Loewy’s lift 
deficiency function, m = 0.5 (ωβ = 0P). 
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Figure 51.  g-Ω plot for example rotor blade with no c.g. offset using Loewy’s lift 
deficiency function, m = 0.75 (ωβ = 0P). 
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Figure 52.  g-Ω plot for example rotor blade with no c.g. offset using finite wake lift 
deficiency function with a single wake, m = 0 (ωβ = 0P). 
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Figure 53.  g-Ω plot for example rotor blade with no c.g. offset using finite wake lift 
deficiency function with a single wake, m = 0.25 (ωβ = 0P). 
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Figure 54.  g-Ω plot for example rotor blade with no c.g. offset using finite wake lift 
deficiency function with a single wake, m = 0.5 (ωβ = 0P). 
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Figure 55.  g-Ω plot for example rotor blade with no c.g. offset using finite wake lift 
deficiency function with a single wake, m = 0.75 (ωβ = 0P). 

B. 4P FLAP FREQUENCY 
In comparing the Southwell plot for the 4P flap frequency in Figure 32 to that of 

the 0P plot in Figure 27, the interaction between the various coupled modes is about the 

same with the noted exception of the flap frequency.  Figure 56 through Figure 64 are the 

g-Ω plots for the example rotor blade with c.g. offset, and these plots look very similar to 
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the 0P plots with c.g. offset.  Arguments similar to those for the 0P flap frequency can be 

made for the 4P frequency for the changes seen as the frequency ratio is varied.  A 

summary of the flutter frequencies and speeds for the 4P flap frequency is contained in 

Table 6.  When the c.g. offset is removed, the blade becomes stable with all lift 

deficiency functions and all frequency ratios.  Plots of the 4P flap frequency without c.g. 

offset have not been included since they are similar to the 0P plots. 

 
Figure 56.  g-Ω plot for example rotor blade using Theodorsen’s lift deficiency 
function (ωβ = 4P). 
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Figure 57.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0 (ωβ = 4P). 
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Figure 58.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.25 (ωβ = 4P). 
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Figure 59.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.5 (ωβ = 4P). 
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Figure 60.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.75 (ωβ = 4P). 
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Figure 61.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0 (ωβ = 4P). 
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Figure 62.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.25 (ωβ = 4P). 
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Figure 63.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0. 5 (ωβ = 4P). 
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Figure 64.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.75 (ωβ = 4P). 
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Table 6.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 4P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 95.4 1.350 
0.0 1.0 103.2 1.706 

0.25 1.0 101.6 1.173 
0.50 1.0 94.4 1.299 Loewy 

0.75 1.0 91.3 1.354 
0.0 1.0 98.9 1.429 

0.25 1.0 105.6 1.169 
0.50 1.0 93.0 1.249 

4P 

Single Wake 

0.75 1.0 93.4 1.404 
 

C. 5P FLAP FREQUENCY AND EFFECTS OF WAKE SPACING 
For the example rotor blade, the 5P frequency is the blade passage frequency.  

Inputs at the blade passage frequency are significant because these inputs will be 

transferred from the rotating system to the fixed system as either 5P vibrations for 

collective inputs, or 4P and 6P vibrations for cyclic inputs.  A g-Ω plot using 

Theodorsen’s lift deficiency function for the 5P flap frequency is shown in Figure 65.  

The flutter speed is 1.304Ω0 (265 rpm), which is above the normal operating range, but 

lower than the flutter speeds calculated using 0P and 4P flap frequencies.  Figure 66 

through Figure 69 are g-Ω plots using Loewy’s lift deficiency function for the 5P flap 

frequency.  The flutter speed for the case of m = 0 is still above that using Theodorsen, 

but for the cases of m = 0.25, m = 0.5, and m = 0.75, the flutter speeds are below the 

Theodorsen case.  It can be noted that the large variation in flutter speeds between the 

Loewy cases and the Theodorsen cases seen in the 0P and 4P flap frequencies is 

becoming smaller for the 5P flap frequency.  Figure 70 through Figure 73 are g-Ω plots 

using the finite wake lift deficiency with a single wake.  Again, the variations in flutter 

speeds for the 5P flap frequency are smaller than the 0P and 4P input frequencies.  A 

possible reason for this apparent decrease in the variation is that there is more interaction 

between the coupled modes with a 5P flap frequency as can be seen in Figure 33.  

Primarily, it is the flap input, 1st blade torsion, and 3rd bending modes that are interacting 

more causing two natural frequencies to coincide at the blade passage  frequency when 
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the rotational frequency is 1.2Ω0 – 1.3Ω0.  Recall from the previous discussion on the 

Southwell plot for the 5P input frequency that from structural dynamics alone, the 

example blade was a good blade design because the modes were interacting well above 

the normal operating range.  While this is still the case, it can be seen that the structural 

dynamics is the driving force on the flutter solution.  When natural frequencies begin to 

coincide, the choice of lift deficiency functions becomes less of an issue. 

For the Loewy and finite wake lift deficiency functions, wake spacing is also a 

parameter that can be varied.  Because the 5P flap frequency corresponded to the blade 

passage frequency, it was decided to investigate the effect of wake spacing on the flutter 

speed.  Table 7 contains a summary of the flutter frequencies and speeds for a 5P flap 

frequency for different frequency ratios and wake spacings.  The wake spacings that are 

less than 1.0  represent the partial power cases and correspond to the rotor in a descent 

or on the ground with partial power applied, while the wake spacings that is greater than 

1.0.  correspond to the rotor in a climb.  The primary effect of an increase in wake 

spacing is that the flutter speed moves closer to the Theodorsen case.  This can be 

explained mathematically by noting that as h ,  and 

, and the flutter speed would converge to the Theodorsen solution.  

Except for large changes in the wake spacing, Table 7 shows small changes in the flutter 

frequencies and speeds. 

0̂h

→

0̂h

C k

ˆ →∞ ( ˆ, ,C k h m′ )
( ) ( )ˆ, ,N h m C k′
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Figure 65.  g-Ω plot for example rotor blade using Theodorsen’s lift deficiency 
function (ωβ = 5P). 
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Figure 66.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0 (ωβ = 5P). 
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Figure 67.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.25 (ωβ = 5P). 

 155



 

 
Figure 68.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.5 (ωβ = 5P). 
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Figure 69.  g-Ω plot for example rotor blade using Loewy’s lift deficiency function, 
m = 0.75 (ωβ = 5P). 
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Figure 70.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0 (ωβ = 5P). 
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Figure 71.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.25 (ωβ = 5P). 

 159



 

 
Figure 72.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.5 (ωβ = 5P). 
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Figure 73.  g-Ω plot for example rotor blade using finite wake lift deficiency 
function with a single wake, m = 0.75 (ωβ = 5P). 
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Table 7.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 5P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 94.4 1.304 
0.25 102.0 1.784 
0.50 98.1 1.634 
0.75 97.5 1.579 
1.0 97.2 1.541 

0.0 

2.0 96.3 1.454 
0.25 100.6 1.150 
0.50 100.6 1.154 
0.75 100.5 1.159 
1.0 100.4 1.164 

0.25 

2.0 100.0 1.184 
0.25 93.2 1.271 
0.50 93.2 1.271 
0.75 93.3 1.271 
1.0 93.3 1.272 

0.50 

2.0 93.5 1.274 
0.25 90.2 1.314 
0.50 90.3 1.315 
0.75 90.4 1.315 
1.0 90.4 1.315 

Loewy 

0.75 

2.0 90.7 1.317 
0.25 95.6 1.362 
0.50 95.5 1.360 
0.75 95.5 1.358 
1.0 95.5 1.357 

0.0 

2.0 95.3 1.351 
0.25 105.8 1.130 
0.50 105.3 1.138 
0.75 104.9 1.146 
1.0 104.5 1.154 

0.25 

2.0 102.9 1.184 
0.25 91.2 1.243 
0.50 91.5 1.243 
0.75 91.7 1.243 
1.0 91.9 1.244 

0.50 

2.0 92.5 1.250 
0.25 90.3 1.351 
0.50 90.4 1.350 
0.75 90.4 1.349 
1.0 90.5 1.348 

5P 

Single Wake 

0.75 

2.0 90.7 1.344 
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Removing the effect of c.g. offset for the 5P flap frequency does not show the 

same aeroelastic stability as it did with the 0P and 4P input frequencies.  Even with no 

c.g. offset, Figure 74 indicates a flutter speed at 1.59Ω0 when using Theodorsen’s lift 

deficiency function, which is an apparent contradiction to the classic design criteria 

stating that the rotor blade would be free from flutter when the c.g., e.a., and a.c. are 

coincident at the 25% chord.  There are two reasons why this is not a contradiction but 

rather a case where the design criteria is no longer valid.  The first is that coinciding the 

c.g., e.a., and a.c. at the 25% chord to be free from flutter is only valid for 1P inputs.  For 

most conventional rotor blades (those without flaps), the pilot, or automatic flight control 

system, can only input a 1P frequency because of the design of the swashplate.  The 

swashplate is typically designed with a rotating section and a stationary section connected 

by means of a race of bearing assembly.  Inputs are always made to the stationary section 

which is then tilted to provide input to the rotating section.  Because the rotating section 

is tilted as a whole, the input frequency would always be 1P, and the design criteria 

would be valid.  With the development of HHC and IBC devices that can provide inputs 

at frequencies besides 1P, the design criteria should be reconsidered.  The second reason 

is that the design criteria were based on conventional rotor blades without trailing-edge 

flaps.  The inclusion of the moment coefficients about the flap hinge (Tα, Tβ, Th, and Tz) 

and the force coefficients on the flap (Pα, Pβ, Ph, and Pz) for rotor blades with trailing-

edge flaps make the design criteria invalid since the location of the flap hinge must be 

taken into consideration.  Thus, flutter can now exist for rotor blades with trailing-edge 

flaps even if the c.g., e.a., and a.c. are coincident at the 25% chord, and the choice of lift 

deficiency function only changes the flutter speed slightly as the instability is being 

driven primarily by the structural dynamics. 
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Figure 74.  g-Ω plot for example rotor blade with no c.g. offset using Theodorsen’s 
lift deficiency function (ωβ = 5P). 
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D. 6P FLAP FREQUENCY 
Figure 34 is the Southwell plot for the 6P flap frequency.  It can be seen that the 

rigid body flap mode and the 1st blade torsional modes interact along the 6P fan line near 

1.2Ω0.  Figure 75 is a g-Ω plot for the example rotor blade with a 6P flap frequency using 

Theodorsen’s lift deficiency function, and it can be seen that when the aerodynamic 

forces and moments are included, the interaction is between the 3rd bending and rigid 

body flap modes with the flutter speed occurring at 1.106Ω0.  Since 6P is the frequency 

that is (Nb + 1) times the rotational frequency, the fact that the flutter speed may be below 

the overspeed limit of the rotor is of great concern.  Large, divergent motions caused by 

flutter induced by a 6P flap frequency will be transmitted from the rotating system to the 

fixed system, possibly yielding large vibrations and motion in the fixed system.  

Removing the c.g. offset does little to change the flutter speed as shown in Figure 76.  

The primary cause of this aeroelastic instability is the coupling of the rigid body flap  

mode with the 1st blade torsional mode and the 3rd bending mode.  When the structural 

dynamics of the rotor blade is such that two or three coupled natural frequencies 

coincide, the aerodynamic damping forces are insufficient to prevent flutter.  Table 8 

contains a summary of the flutter frequencies and speeds for different choices of the lift 

deficiency function  and frequency ratio, all of which yield about the same result. 
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Figure 75.  g-Ω plot for example rotor blade using Theodorsen’s lift deficiency 
function (ωβ = 6P). 
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Figure 76.  g-Ω plot for example rotor blade with no c.g. offset using Theodorsen’s 
lift deficiency function (ωβ = 6P). 
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Table 8.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 6P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 100.5 1.106 
0.0 1.0 109.7 1.193 

0.25 1.0 100.4 1.065 
0.50 1.0 98.8 1.104 Loewy 

0.75 1.0 99.4 1.143 
0.0 1.0 102.6 1.122 

0.25 1.0 103.5 1.059 
0.50 1.0 98.0 1.120 

6P 

Single Wake 

0.75 1.0 100.7 1.153 
 

E. OTHER FLAP FREQUENCIES 
With the freedom to apply any input frequency to the trailing-edge flap, including 

non-integer multiples of the rotational frequency, the breadth of possible flutter analyses 

may seem to be limitless.  However, the rotor acts as a filter and allows primarily integer 

multiples of the rotational frequency to pass from the rotating system to the fixed system.  

The predominant frequencies that are transmitted from the rotating to fixed systems are 

the blade passage frequency (Nb or 5P) and the Nb ± 1, or the 4P and 6P frequencies for 

the example rotor system.  Flap inputs at these frequencies were studied in the previous 

sections because of their capability to be transmitted directly from the rotating system to 

the fixed system.  In other words, if the rotor system would experience flutter at one of 

these input frequencies, there is a possibility that the divergent motion of the rotor blades 

could be transmitted into large vibrations and/or motion in the fixed system.  
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Other frequencies typically studied as the sources of vibrations are the low 

frequency vibrations.  Table 9 through Table 11 show the results of the flutter analyses 

for 1P, 2P and 3P flap frequencies.  It can be seen that these flap frequencies show 

similar results when compared to the 0P and 4P flap frequencies.  These similarities 

might be expected when looking at the Southwell plots of Figure 29 through Figure 31, 

where there is little interaction between the coupled modes, especially near the blade 

passage frequency.  Therefore is can be concluded that flap frequencies at low integer 

values of the rotational speed will yield flutter speeds at approximately the same values 

as if there were no flap at all. 



Table 9.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 1P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 96.4 1.361 
0.0 1.0 107.4 1.753 

0.25 1.0 104.2 1.173 
0.50 1.0 97.0 1.304 Loewy 

0.75 1.0 93.9 1.362 
0.0 1.0 100.3 1.447 

0.25 1.0 108.4 1.174 
0.50 1.0 93.5 1.248 

1P 

Single Wake 

0.75 1.0 94.3 1.416 
 

Table 10.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 2P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 98.4 1.360 
0.0 1.0 107.0 1.748 

0.25 1.0 104.0 1.173 
0.50 1.0 95.1 1.303 Loewy 

0.75 1.0 93.9 1.361 
0.0 1.0 100.1 1.446 

0.25 1.0 108.2 1.173 
0.50 1.0 93.5 1.248 

2P 

Single Wake 

0.75 1.0 94.2 1.415 
 

Table 11.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 3P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 98.1 1.357 
0.0 1.0 102.7 1.736 

0.25 1.0 103.7 1.173 
0.50 1.0 94.8 1.302 Loewy 

0.75 1.0 93.7 1.359 
0.0 1.0 99.7 1.441 

0.25 1.0 107.9 1.172 
0.50 1.0 93.3 1.249 

3P 

Single Wake 

0.75 1.0 94.0 1.412 

The 7P flap frequency is interesting in that the flutter speed in below normal 

operating rpm as shown in Table 12.  Even if the c.g. offset is removed, the flutter speed 
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is still below Ω0.  The reason for the aeroelastic instability at such low rpm can be seen 

by looking at the Southwell plot for the 7P flap frequency shown in Figure 35.  The rigid 

body flap mode and the 1st blade torsional modes interact along the 7P fan line near Ω0.  

This interaction can be seen better by looking at the g-Ω plot using Theodorsen’s lift 

deficiency function for the 7P flap frequency shown in Figure 77, and noting that the 

interaction is actually between the rigid body flap, 3rd bending and 1st blade torsional 

modes when the aerodynamic forces are included.  Using the Loewy and finite wake lift 

deficiency functions give similar results to Figure 77, and the flutter speeds are listed in 

Table 12. 

Normally, the integer multiple frequencies that are not  or of rotor speed 

are less of a concern since they are not the primary frequencies that are filtered through 

the rotor system.  However, when the rigid body flap frequency is set at these other 

frequencies, modes which typically might be ignored may become more troublesome, 

especially if the amplitude of deflection of the flap is significant.  Therefore, it can be 

concluded that care must be used when setting the flap frequency to integer multiples 

other than  or . 

bN 1bN ±

bN 1bN ±

Table 12.  Flutter Frequencies and Speeds for Example Rotor Blade (ωβ = 7P). 

ωβ 
Lift Deficiency 

Function m h/h0 

Flutter 
Frequency 

ωFL 

Flutter Speed 
Ω/Ω0 

Theodorsen - - 105.0 0.938 
0.0 1.0 107.0 0.924 
0.25 1.0 101.9 0.903 
0.50 1.0 105.7 0.957 Loewy 

0.75 1.0 108.2 0.990 
0.0 1.0 105.6 0.928 
0.25 1.0 103.1 0.887 
0.50 1.0 104.4 1.024 

7P 

Single Wake 

0.75 1.0 108.7 0.976 
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Figure 77.  g-Ω plot for example rotor blade using Theodorsen’s lift deficiency 
function (ωβ = 7P). 
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VII. CONCLUSIONS AND RECOMMENDATIONS 
 
The solution to the flutter problem for rotary-wing aircraft is inherently more 

complicated than the fixed-wing counterpart, especially for rotor blades with trailing-

edge flaps.  The frequency-domain approach is used here to develop the flutter equations 

of motion that could be used quickly and easily without the need to learn all the ins and 

outs of one of the rotor dynamics computational codes.  The method may be easily 

programmed in any language that has access to an eigenvalue subroutine that can handle 

complex coefficients.  In this dissertation, the equations of motion were programmed in 

MATLAB®, and copies of the codes are contained in Appendices A through D. 

Using the method of lumped-mass parameters, the rotor blade can be divided into 

a sufficient number of segments to approximate the continuous system.  This method has 

been used very successfully in the past to find the uncoupled natural frequencies for blade 

torsion and bending via the Holzer and Myklestad-Prohl methods.  An extension of this 

method was made that determined the reduced frequency for each segment of the blade 

so that each segment’s contribution to the unsteady aerodynamic forces and moments can 

be calculated.  Lagrange’s equation was then applied to develop the flutter equations of 

motion and to set up the flutter determinant.  The solution to the flutter determinant is a 

complex eigenvalue problem that yields the coupled natural frequencies from the real part 

of the eigenvalues and the damping from the imaginary part.  Plots were made of the 

coupled natural frequencies and the damping versus the rotational velocity (or the 

reciprocal of the reduced frequency), and the point where the damping crosses the 

velocity axis is the flutter speed.  The point on the frequency curve that corresponds to 

the crossing point of the unstable damping curve is the flutter frequency. 

Flutter analyses were performed on an example rotor blade with a trailing-edge 

flap in order to see the effects of the variation of parameters and demonstrate the 

robustness of the methodology.  The primary parameter that was varied was the rigid 

body flap frequency.  It was shown that flap frequencies at low integer multiples of the 

rotational speed were stable as long as the rotor blade was stable without any flap 

incorporated (ωβ = 0).  Flap frequencies at higher integer multiples of the rotational 

frequency must be used with caution since there may be some interaction between the 
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higher order coupled modes and the input frequency that could produce a lower flutter 

speed.  Additionally, it was shown that current design practice of collocating the c.g. and 

e.a. at the 25% chord to remove the possibilities of flutter is not valid when a trailing-

edge flap is incorporated.  The reason is that additional forces and moments created by 

movement of the trailing-edge flap can couple with the higher order bending and 

torsional modes of the blade to create flutter. 

Another parameter that was varied was the choice of lift deficiency function.  

Theodorsen’s lift deficiency function, while applicable to the fixed-wing case, may not be 

as valid for rotary-wing aircraft where the effects of previously shed layers of vorticity 

should be considered.  Theodorsen’s lift deficiency function was used primarily to set a 

baseline for the flutter calculations so that comparisons with the other lift deficiency 

functions can be made.  The other lift deficiency functions chosen were Loewy’s lift 

deficiency function and the finite wake lift deficiency function.  It was seen that the 

frequency ratio (m), which effectively measures the phase relationship between shed 

layers of vorticity, was the parameter in these other lift deficiency functions that affected 

the results the most.  The case of m = 0 (wakes completely in phase) always yielded a the 

highest flutter speed, and the case of m = 0.25 yielded the lowest flutter speed.  The 

reason for this phenomenon can be seen from the plot of the pitch damping coefficient 

versus frequency ratio found in Loewy [Ref. 49].  The finite wake lift deficiency function 

was used to show the effects of just a single layer of vorticity beneath the rotor.  The 

results were similar to the Loewy lift deficiency function, but the single wake function 

would be a more likely candidate for future comparison to Euler computational fluid 

dynamics codes. 

The methodology to perform a flutter analysis presented in this dissertation is 

very robust and capable of handling variations in many different parameters.  However, it 

was never intended to be all encompassing, and there are several recommendations for 

future work. 

1. Apply this methodology to current research on the new rotor blade with 

the trailing-edge flap on the MD-900 [Ref. 2] to predict the flutter speeds 

prior to wind tunnel testing. 
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2. Conduct wind tunnel tests of rotor blades with trailing edge flaps to 

validate this methodology for predicting the flutter speed. 

3. Explore the issue of c.g. offset to determine how much latitude there is in 

the design constraint of collocating the c.g., e.a., and a.c. at the 25% chord. 

4. Compare this methodology to panel codes and other rotor dynamics codes 

such as UPOT, CAMRAD, 2GCHAS, and UMARC. 

5. Expand the choice of lift deficiency functions to include those capable of 

being used in forward flight.  Choices should include those of Peters and 

He [Ref. 63] and Shipman and Wood [Ref. 65]. 

6. Add compressibility effects via the method described by Hammond [Ref. 

66]. 

7. Redevelop the equations of motion so that the actual deflections of the flap 

could be provided as an input and a forced response calculated similar to 

the method of Gerstenberger and Wood [Ref. 34]. 

8. Develop a new lift deficiency function that includes the effects of 

viscosity and perform a  flutter analysis. 

9. Use a finite element model of the rotor blade to obtain better estimates of 

the uncoupled natural frequencies. 
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APPENDIX A.  ROTOR BLADE FLUTTER PROGRAM 
 
The MATLAB® program for calculating the flutter frequency and velocity is 

listed below. 

% This program runs a flutter analysis for rotor blades with a flap 
% incorporated.  The output will be a g-v plot that determines the flutter 
% frequency and flutter speed. 
clear 
%clf 
%clc 
global Kappa k_root R 
type=menu('Type of rotor system','Articulated', 'Hingeless (infinite stiffness at root)','Hingeless 
(finite stiffness at root)'); 
switch type 
    case 1        % Articulated Boundary Conditions 
        disp('Articulated rotor chosen.') 
    case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
        disp('Hingeless rotor with infinite stiffness at root chosen.') 
    case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
        disp('Hingeless rotor with flexible restraint at root chosen.') 
end 
 
% 
% Calculate density 
%altitude=input('What is the altitude of the rotorcraft (in feet)? ') 
altitude=1000           % 1000 ft altitude chosen for all test cases. 
if altitude>36100 
    disp('Please select an altitude below 36,100 feet.') 
    altitude=input('What is the altitude of the rotorcraft (in feet)? ') 
end 
std_lapse_rate=0.003565;      % (deg R/ft) 
T_ref=518.67;                      % (deg R) 
rho_ref=0.0023769;                % (slug/ft^3) 
g_o=32.1740485;                  % (ft/s^2) 
g_c=32.1740485;                  % (ft-lbm/lbf-s^2) 
R_gas=1545/28.97;               % (ft-lbf/lbm-deg R) 
p_ref=2116.22;                     % (lbf/ft^2) 
Temp=T_ref-std_lapse_rate*altitude;      %Atmospheric temperature (deg R) using standard 
adiabatic lapse rate 
press=p_ref*(1-std_lapse_rate*altitude/T_ref)^(g_o/(R_gas*std_lapse_rate*g_c));     % 
Atmospheric pressure (lb/ft^2) 
rho=press/(R_gas*g_c*Temp);                  % Atmospheric density (slug/ft^3) 
 
% Blade section properites for H-1R Blade 
R=372/12;            % H-3 blade 
r1=279/12;           % distance from root of blade to beginning of trailing edge flap (in) 
r2=334.8/12;           % distance from root of blade to end of trailing edge flap (in) 
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twist=-10;       % built-in linear blade twist from root to tip (deg) **NOTE:  flap has same twist as 
blade** 
Omega_rpm=203;     % numerical instabilities in taking inverse of matrix occur if Omega_rpm > 
375 
Omega=Omega_rpm*2*pi/60;    % rotor speed (rad/s) 
N_b=5;           % Number of rotor blades 
GW=16800; 
A=pi*R^2; 
v_i=sqrt(GW/(2*rho*A)); 
 
% Find the vertical bending mode shapes 
 
% Radial stations (in) from root to tip 
rn=[12.63; 18.6; 37.2; 55.8; 74.4; 93.0; 111.6; 130.2; 148.8; 167.4; 186.0;  
    204.6; 223.2; 241.8; 260.4; 279.0; 297.6; 316.2; 334.8; 353.4; 372.0]; 
rn=rn/12;         % convert radial station from in to ft 
 
% Flapwise Area Moment of Inertia (in^4) from root to tip 
Izzn=[5.0; 5.0; 5.0; 4.4; 3.04; 2.91; 2.8; 2.71; 2.6; 2.51; 2.45;  
    2.35; 2.29; 2.19; 2.1; 2.04; 2.0; 1.99; 1.95; 1.93; 0.97]; 
Izzn=Izzn/12^4;         % Converting area moment of inertia from in^4 to ft^4 
 
% Edgewise Area Moment of Inertia (in^4) from root to tip 
Ixxn=[26.0; 26.0; 26.0; 35.0; 30.5; 29.8; 29.3; 28.5; 28.0; 27.3; 
    27.0; 24.8; 24.3; 24.0; 23.7; 20.9; 20.8; 20.6; 20.5; 20.3; 10.1]; 
Ixxn=Ixxn/12^4;         % Converting area moment of inertia from in^4 to ft^4 
 
% Flapwise static unbalance (in^3) from root to tip 
Szzn=[5.0; 5.0; 5.0; 3.6; 2.7; 2.6; 2.5; 2.4; 2.36; 2.3; 2.25;  
    2.2; 2.1; 2.0; 1.95; 1.9; 1.9; 1.84; 1.82; 1.8; 0.9]; 
Szzn=Szzn/12^3;        % Converting static unbalance from in^3 to ft^3 
 
% Edgewise static unbalance (in^3) from root to tip 
Sxxn=[6.0; 6.0; 6.0; 7.95; 6.92; 6.70; 6.58; 6.4; 6.27; 6.2; 6.13; 
    5.8; 5.5; 5.6; 5.5; 5.12; 5.10; 5.03; 5.0; 5.0; 2.5]; 
Sxxn=Sxxn/12^3; 
 
% Torsional polar moment of inertia, J (in^4) from root to tip 
Jn=[100.0; 100.0; 50.0; 30.0; 14.0; 9.9; 9.0; 8.5; 8.2; 7.9;  
    7.6; 7.3; 7.0; 6.8; 6.6; 6.3; 6.0; 5.9; 5.7; 5.5; 2.8]; 
Jn=Jn/12^4;               % Converting polar moment of inertia from in^4 to ft^4 
 
% Area of midline of each section (in^2) from root to tip 
Arean=[100.0; 100.0; 50.0; 14.1; 13.68; 13.58; 13.52; 13.47; 13.4; 13.38;  
    13.35; 13.25; 13.2; 13.13; 13.1; 13.0; 12.98; 12.96; 12.94; 12.92; 6.46]; 
Arean=Arean/12^2;     % Converting area from in^2 to ft^2 
 
% Mass moment of inertia per unit span of rotor blade about the elastic axis (slug-ft) 
Ialpha=[0.5; 0.5; 0.5; 0.07; 0.065; 0.064; 0.063; 0.062; 0.06; 0.058; 
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    0.055; 0.052; 0.049; 0.048; 0.045; 0.044; 0.042; 0.041; 0.040; 0.038; 0.015]; 



 
% Weight (lb_m) of each radial station from root to tip 
Wn=[20.46; 84.17; 55.21; 10.51; 8.53; 9.06; 8.78; 9.73; 10.01; 9.94;  
    9.91; 9.37; 9.45; 9.14; 9.03; 9.93; 9.94; 9.95; 9.96; 9.96; 2.56]; 
 
mn=Wn/(32.1740485564);     % mass of each radial station (slugs) 
 
% semichord at each section from root to tip 
b_sect=[8.1; 8.1; 8.1; 8.1; 8.1; 18.25; 18.25; 18.25; 18.25; 18.25; 18.25;  
    18.25; 18.25; 18.25; 18.25; 18.25; 18.25; 18.25; 18.25; 18.25; 18.25]/2; 
b_sect=b_sect/12;               % convert semichord from in to ft 
 
En=10e6;              % blade made of aluminum (lb_f/in^2, or psi) 
En=En*12^2;         % Converting modulus of elasticity from psi to psf 
Kappa=9e6;           % Root end bearing stiffness for bending (in-lb_f/rad) 
Kappa=Kappa/12;   % convert from in-lb_f/rad to ft-lb_f/rad 
k_root=1e6;           % Pitch bearing stiffness (ft-lb_f/rad) 
bendmodeshp=4; 
 
% Find the blade torsional mode shapes via Holzer function 
torsmodeshp=3; 
Al_rho=5.4;                % slug/ft^3 
%k_root=1;                   % root stiffness in pitch 
%e_pitch=12.63/R;             % effective pitch offset 
nu=0.33; 
G_n=En/(2*(1+nu));               % psf 
 
% Everything below this line goes into the flutter function 
i=sqrt(-1); 
e=0.3; 
c=0.5; 
a=-0.5; 
p=-1/3*(sqrt(1-c^2))^3; 
 
% find mass moment of inertial about c.g. 
lsn=diff(rn);          % determine length of each segment 
N=length(lsn);       % number of radial stations 
for n=1:length(rn), 
    if rn(n)>=r1 & rn(n)<=r2 
        Ibeta(n)=0.01*Ialpha(n); 
        G0(n)=1; 
        cg(n)=-0.2; 
    else 
        Ibeta(n)=0; 
        G0(n)=0; 
        cg(n)=-0.5; 
    end 
end 
Ibeta=Ibeta';                         % slug-ft 
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Sbeta=zeros(size(Ibeta));       % c.g. of flap is at the hinge 



G0=G0'; 
cg=cg'; 
xbar=Szzn./Arean; 
zbar=Sxxn./Arean; 
nP=6                     % Flap frequency x Omega  
if nP==-1 
    % Adjust cgea to account for lack of trailing edge flap 
    cgea=sqrt(xbar.^2+zbar.^2);     % Reference axis is blade centerline for z and 1/4-chord for x 
    Salpha=mn.*cgea;                   % c.g. is aft of e.a. 
else 
    %Adjust cgea to account for trailing edge flap 
    xbar=xbar+(cg-a).*b_sect; 
    cgea=sqrt(xbar.^2+zbar.^2);     % Reference axis is blade centerline for z and 1/4-chord for x 
    Salpha=mn.*cgea;                   % c.g. is aft of e.a. 
end 
 
% Make choice of lift deficiency function 
liftdef=menu('Choice of Lift Deficiency Function', 'Theodorsen', 'Loewy', 'Single-Wake'); 
switch liftdef 
    case 1        % Theodorsen lift deficiency function 
        disp('Theodorsen lift deficiency function chosen.') 
    case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
        disp('Loewy lift deficiency function chosen.') 
    case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
        disp('Single Wake lift deficiency function chosen.') 
end 
 
h=2*pi*v_i/(18.25/12*N_b*Omega)     %Wake spacing 
%h=2*h              % Adjust the wake spacing for partial collective loading 
m=0.0;                  % Set the frequency ratio 
 
% Define the T and phi functions 
T1=-1/3*sqrt(1-c.^2)*(2+c.^2)+c.*acos(c); 
T3=-(1/8+c.^2).*(acos(c)).^2+1/4*c.*sqrt(1-c.^2).*acos(c)*(7+2*c.^2) 

-1/8*(1-c.^2).*(5*c.^2+4); 
T4=-acos(c)+c.*sqrt(1-c.^2); 
T5=-(1-c.^2)-(acos(c)).^2+2*c.*sqrt(1-c.^2).*acos(c); 
T7=-(1/8+c.^2).*acos(c)+1/8*c.*sqrt(1-c.^2).*(7+2*c.^2); 
T10=sqrt(1-c.^2)+acos(c); 
T11=acos(c).*(1-2*c)+sqrt(1-c.^2).*(2-c); 
T12=sqrt(1-c.^2).*(2+c)-acos(c).*(2*c+1); 
phi1=T10; 
phi2=T11; 
phi3=-T4; 
phi31=acos(c)-sqrt(1-c.^2); 
phi32=acos(c)+sqrt(1-c.^2).*(1-2*c); 
phi35=2*(1-c.^2); 
phi36=phi32*phi3+2*(1-c.^2).^2; 
phi37=phi3*(phi2-phi3); 
phi5=T4+T10; 
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phi6=2*acos(c)+2/3*sqrt(1-c.^2).*(2+c).*(1-2*c); 
phi8=T12; 
phi10=phi31*phi5; 
phi17=phi3.^2+(1-c.^2).^2; 
for loop=2:2 
    if loop==1 
        rho=0             % Use rho=0 to check structural dynamics only.  (Zeros out the areodynamics) 
    else 
        rho=press/(R_gas*g_c*Temp);                  % Atmospheric density (slug/ft^3) 
    end 
    fknt=1; 
    for Omega1=0.05*Omega:Omega/100:1.8*Omega, 
        OMEGA(fknt)=Omega1; 
        Omega_fan(fknt,:)=[1,2,3,4,5,6,7,8,9,10]*Omega1; 
        disp('The rotational frequency is') 
        disp(Omega1) 
        omega_b(fknt)=nP*Omega1;                 % Flap frequency 
         
        % Find bending mode shapes for given Omega1 
        [deflection,omega_bend]=myklestad(rn, Izzn, En, mn, Omega1, bendmodeshp,type); 
        f0=rn/R; 
        f1(:,fknt)=deflection(1,:)'; 
        f2(:,fknt)=deflection(2,:)'; 
        f3(:,fknt)=deflection(3,:)'; 
        f4(:,fknt)=deflection(4,:)'; 
        omega_h(fknt,:)=omega_bend; 
         
        % Find torsional mode shapes for given Omega1 
        [alpha_rotation,omega_tor]=holzer_blade(rn, Jn, Arean, Ialpha, G_n, Al_rho, mn,  
       Omega1, twist, torsmodeshp,type); 
        F0=rn/R'; 
        F1(:,fknt)=alpha_rotation(1,:)'; 
        F2(:,fknt)=alpha_rotation(2,:)'; 
        F3(:,fknt)=alpha_rotation(3,:)'; 
        omega_a(fknt,:)=omega_tor; 
         
        if fknt==1 
            omega_start=[omega_h(1,1), omega_h(1,2), omega_h(1,3), omega_a(1,1), omega_b(1)]; 
        end 
         
        k=b_sect*omega_a(fknt,1)./(Omega1*rn); 
        k_07(fknt)=k(15);       % The reduced frequency at 0.7R is index 15 on the blade 
        j0=besselj(0,k); 
        y0=bessely(0,k); 
        j1=besselj(1,k); 
        y1=bessely(1,k); 
        H2_0=besselh(0,2,k); 
        H2_1=besselh(1,2,k); 
        switch liftdef 
            case 1 
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                % Theodorsen lift deficiency function 
                Ck=H2_1./(H2_1+i*H2_0); 
 
            case 2 
                % Loewy lift deficiency function 
                %W_Loewy=1 ./ (exp(k .* h) * exp(i*2*pi*m) -1); 
                %alfhat_L=real(W_Loewy); 
                %bethat_L=imag(W_Loewy); 
                %A_L=(j1 .* (1+2*alfhat_L)) + y0 - (2*j0 .*bethat_L); 
                %B_L=-y1 + (2*j1 .* bethat_L) + (j0 .* (1+2*alfhat_L)); 
                %den_L=A_L .^2 + B_L.^ 2; 
                %F_L=((j1.*(1+2*alfhat_L).*A_L)-((y1 - 2*j1.*bethat_L).*B_L))./den_L; 
                %G_L=-(((y1- 2*j1.* bethat_L).* A_L)+(j1 .*(1+2*alfhat_L).* B_L))./den_L; 
                %Ck=F_L+i.*G_L;            % Loewy lift defiency function 
 
    % Estimate to Loewy lift defiency function 
                W1=exp(-( i*2*pi*m+k .* h)); 
                W_Loewy2=W1; 
                for n=2:100 
                    W_Loewy2=W_Loewy2 + exp(-( i*2*pi*m*n+n*k .* h));    %finite wakes 
                end 
                alfhat=real(W_Loewy2); 
                bethat=imag(W_Loewy2); 
                A=(j1 .* (1+2*alfhat)) + y0 - (2*j0 .*bethat); 
                B=-y1 + (2*j1 .* bethat) + (j0 .* (1+2*alfhat)); 
                den=A .^2 + B.^ 2; 
                F_Loewy2=((j1.*(1+2*alfhat).*A)-((y1 - 2*j1.*bethat).*B))./den; 
                G_Loewy2=-(((y1- 2*j1.* bethat).* A)+(j1 .*(1+2*alfhat).* B))./den; 
                Ck=F_Loewy2+i.*G_Loewy2;  % Estimate to Loewy lift deficiency function 
                 
            case 3 
                % Single wake lift deficiency function 
                W_Single=exp(-i*2*pi*m) .* exp(-k.*h); 
                alfhat_S=real(W_Single); 
                bethat_S=imag(W_Single); 
                A_S=(j1 .* (1+2*alfhat_S)) + y0 - (2*j0 .*bethat_S); 
                B_S=-y1 + (2*j1 .* bethat_S) + (j0 .* (1+2*alfhat_S)); 
                den_S=A_S .^2 + B_S.^ 2; 
                F_S=((j1.*(1+2*alfhat_S).*A_S)-((y1 - 2*j1.*bethat_S).*B_S))./den_S; 
                G_S=-(((y1- 2*j1.* bethat_S).* A_S)+(j1 .*(1+2*alfhat_S).* B_S))./den_S; 
                Ck=F_S+i.*G_S;            % Single wake lift deficiency function 
        end 
        % L, M, T and P terms using chosen lift deficiency function 
        Lh=1-2*(i./k).*Ck; 
        La=1/2-(i./k).*(1+2*Ck)-2.*Ck./(k.^2); 
        Lb=-T1/pi+i./(pi*k).*(T4-T11.*Ck)-2.*(T10/pi).*Ck./(k.^2); 
        Lz=-2*(i./k).*(phi1/pi).*Ck+phi3/pi; 
        Mh=1/2; 
        Ma=3/8-(i./k); 
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        Mb=-T7/pi-(e+1/2).*T1/pi+(i./k).*(2*p+T4)/pi-(1./k.^2).*((T4+T10)/pi); 



        Mz=-(i./k).*phi5/pi+1/4*phi6/pi; 
        Th=-T1/pi-(i./k).*(T12/pi).*Ck; 
        Ta=-(1/pi)*(T7+(e+1/2).*T1)-(i./k).*((2*p-2*T1-T4)/(2*pi)+T12/pi.*Ck) 

-(1./k.^2).*(T12/pi).*Ck; 
        Tb=-T3/(pi^2)+(i./k).*(T4.*T11-T11.*T12.*Ck)./(2*(pi^2)) 

-(1./k.^2).*(T5-T4.*T10+T10.*T12.*Ck)/(pi^2); 
        Tz=-(i./k).*(phi1.*phi8.*Ck+phi10)/(pi^2)+1/2*phi37/(pi^2); 
        Ph=-2*(i./k).*phi31.*Ck/pi+phi3/pi; 
        Pa=-2*(1./(k.^2)+(i./k)).*phi31.*Ck/pi-(i./k).*phi32/pi+phi6/(4*pi); 
        Pb=-(2/pi)*(phi1./(k.^2)+i*phi2./(2*k)).*phi31.*Ck/pi-phi35./((k.^2)*(pi^2)) 

-(i./k).*phi36/(pi^2)+phi37/(2*pi^2); 
        Pz=-2*(i./k).*phi1.*phi31/(pi^2).*Ck-(i./k).*phi35/(pi^2)+phi17/(pi^2); 
         
        % Calculating the generalized masses  
        M1=sum(mn.*f1(:,fknt).^2); 
        M2=sum(mn.*f2(:,fknt).^2); 
        M3=sum(mn.*f3(:,fknt).^2); 
        Ia1=sum(Ialpha.*F1(:,fknt).^2); 
        Ib0=sum(Ibeta.*G0.^2); 
        Sa11=sum(Salpha.*f1(:,fknt).*F1(:,fknt)); 
        Sa21=sum(Salpha.*f2(:,fknt).*F1(:,fknt)); 
        Sa31=sum(Salpha.*f3(:,fknt).*F1(:,fknt)); 
        Sb10=sum(Sbeta.*f1(:,fknt).*G0); 
        Sb20=sum(Sbeta.*f2(:,fknt).*G0); 
        Sb30=sum(Sbeta.*f3(:,fknt).*G0); 
        Pa1b0=sum((Sbeta.*(c-a).*b_sect + Ibeta).*F1(:,fknt).*G0); 
         
        % Aerodynamics terms (A) using Theodorsen's lift deficiency function 
        Ah1h1=sum(b_sect.^2.*f1(:,fknt).^2.*Lh); 
        Ah1h2=sum(b_sect.^2.*f1(:,fknt).*f2(:,fknt).*Lh); 
        Ah1h3=sum(b_sect.^2.*f1(:,fknt).*f3(:,fknt).*Lh); 
        Ah1a1=sum(b_sect.^3.*f1(:,fknt).*F1(:,fknt).*(La-(1/2+a).*Lh)); 
        Ah1b0=sum(b_sect.^3.*f1(:,fknt).*G0.*(Lb-(c-e).*Lz)); 
        Ah2h1=sum(b_sect.^2.*f2(:,fknt).*f1(:,fknt).*Lh); 
        Ah2h2=sum(b_sect.^2.*f2(:,fknt).^2.*Lh); 
        Ah2h3=sum(b_sect.^2.*f2(:,fknt).*f3(:,fknt).*Lh); 
        Ah2a1=sum(b_sect.^3.*f2(:,fknt).*F1(:,fknt).*(La-(1/2+a).*Lh)); 
        Ah2b0=sum(b_sect.^3.*f2(:,fknt).*G0.*(Lb-(c-e).*Lz)); 
        Ah3h1=sum(b_sect.^2.*f3(:,fknt).*f1(:,fknt).*Lh); 
        Ah3h2=sum(b_sect.^2.*f3(:,fknt).*f2(:,fknt).*Lh); 
        Ah3h3=sum(b_sect.^2.*f3(:,fknt).^2.*Lh); 
        Ah3a1=sum(b_sect.^3.*f3(:,fknt).*F1(:,fknt).*(La-(1/2+a).*Lh)); 
        Ah3b0=sum(b_sect.^3.*f3(:,fknt).*G0.*(Lb-(c-e).*Lz)); 
        Aa1h1=sum(b_sect.^3.*F1(:,fknt).*f1(:,fknt).*(Mh-(1/2+a).*Lh)); 
        Aa1h2=sum(b_sect.^3.*F1(:,fknt).*f2(:,fknt).*(Mh-(1/2+a).*Lh)); 
        Aa1h3=sum(b_sect.^3.*F1(:,fknt).*f3(:,fknt).*(Mh-(1/2+a).*Lh)); 
        Aa1a1=sum(b_sect.^4.*F1(:,fknt).^2.*(Ma-(1/2+a).*(La+Mh)+(1/2+a).^2.*Lh)); 
        Aa1b0=sum(b_sect.^4.*F1(:,fknt).*G0.*(Mb-(1/2+a).*Lb-(c-e).*Mz+(c-e).*(1/2+a).*Lz)); 
        Ab0h1=sum(b_sect.^3.*G0.*f1(:,fknt).*(Th-(c-e).*Ph)); 
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        Ab0h2=sum(b_sect.^3.*G0.*f2(:,fknt).*(Th-(c-e).*Ph)); 



        Ab0h3=sum(b_sect.^3.*G0.*f3(:,fknt).*(Th-(c-e).*Ph)); 
        Ab0a1=sum(b_sect.^4.*G0.*F1(:,fknt).*(Ta-(c-e).*Pa+(1/2+a).*Th+(1/2+a).*(c-e).*Ph)); 
        Ab0b0=sum(b_sect.^4.*G0.^2.*(Tb-(c-e).*(Pb+Tz)+(c-e).^2.*Pz)); 
         
        % Solving the flutter determinant 
        %Check to see if the flap frequency is zero 
        if omega_b(fknt)==0 
            dim=4; 
            % Developing the Abar terms for flutter determinant 
            Abarh1h1=(pi*rho*Ah1h1/M1+1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1h2=(pi*rho*Ah1h2/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1h3=(pi*rho*Ah1h3/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1a1=((pi*rho*Ah1a1+Sa11)/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh2h1=(pi*rho*Ah2h1/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2h2=(pi*rho*Ah2h2/M2+1)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2h3=(pi*rho*Ah2h3/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2a1=((pi*rho*Ah2a1+Sa21)/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh3h1=(pi*rho*Ah3h1/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3h2=(pi*rho*Ah3h2/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3h3=(pi*rho*Ah3h3/M3+1)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3a1=((pi*rho*Ah3a1+Sa31)/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abara1h1=(pi*rho*Aa1h1+Sa11)/Ia1; 
            Abara1h2=(pi*rho*Aa1h2+Sa21)/Ia1; 
            Abara1h3=(pi*rho*Aa1h3+Sa31)/Ia1; 
            Abara1a1=(pi*rho*Aa1a1/Ia1)+1; 
            FlutMat(:,:,fknt)=[Abarh1h1, Abarh1h2, Abarh1h3, Abarh1a1; 
                Abarh2h1, Abarh2h2, Abarh2h3, Abarh2a1; 
                Abarh3h1, Abarh2h3, Abarh3h3, Abarh3a1; 
                Abara1h1, Abara1h2, Abara1h3, Abara1a1]; 
        else 
            dim=5; 
            Abarh1h1=(pi*rho*Ah1h1/M1+1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1h2=(pi*rho*Ah1h2/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1h3=(pi*rho*Ah1h3/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1a1=((pi*rho*Ah1a1+Sa11)/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh1b0=((pi*rho*Ah1b0+Sb10)/M1)*(omega_a(fknt,1)/omega_h(fknt,1))^2; 
            Abarh2h1=(pi*rho*Ah2h1/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2h2=(pi*rho*Ah2h2/M2+1)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2h3=(pi*rho*Ah2h3/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2a1=((pi*rho*Ah2a1+Sa21)/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh2b0=((pi*rho*Ah2b0+Sb20)/M2)*(omega_a(fknt,1)/omega_h(fknt,2))^2; 
            Abarh3h1=(pi*rho*Ah3h1/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3h2=(pi*rho*Ah3h2/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3h3=(pi*rho*Ah3h3/M3+1)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3a1=((pi*rho*Ah3a1+Sa31)/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abarh3b0=((pi*rho*Ah3b0+Sb30)/M3)*(omega_a(fknt,1)/omega_h(fknt,3))^2; 
            Abara1h1=(pi*rho*Aa1h1+Sa11)/Ia1; 
            Abara1h2=(pi*rho*Aa1h2+Sa21)/Ia1; 
            Abara1h3=(pi*rho*Aa1h3+Sa31)/Ia1; 
            Abara1a1=(pi*rho*Aa1a1/Ia1)+1; 
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            Abara1b0=(pi*rho*Aa1b0+Pa1b0)/Ia1; 
            Abarb0h1=((pi*rho*Ab0h1+Sb10)/Ib0)*(omega_a(fknt,1)/omega_b(fknt))^2; 
            Abarb0h2=((pi*rho*Ab0h2+Sb20)/Ib0)*(omega_a(fknt,1)/omega_b(fknt))^2; 
            Abarb0h3=((pi*rho*Ab0h3+Sb30)/Ib0)*(omega_a(fknt,1)/omega_b(fknt))^2; 
            Abarb0a1=((pi*rho*Ab0a1+Pa1b0)/Ib0)*(omega_a(fknt,1)/omega_b(fknt))^2; 
            Abarb0b0=((pi*rho*Ab0b0/Ib0)+1)*(omega_a(fknt,1)/omega_b(fknt))^2; 
            FlutMat(:,:,fknt)=[Abarh1h1, Abarh1h2, Abarh1h3, Abarh1a1, Abarh1b0; 
                Abarh2h1, Abarh2h2, Abarh2h3, Abarh2a1, Abarh2b0; 
                Abarh3h1, Abarh3h2, Abarh3h3, Abarh3a1, Abarh3b0; 
                Abara1h1, Abara1h2, Abara1h3, Abara1a1, Abara1b0; 
                Abarb0h1, Abarb0h2, Abarb0h3, Abarb0a1, Abarb0b0]; 
        end 
         
        disp('Calculating the rotor blade flutter frequency and speed') 
        disp(' ') 
         
        Joe(:,fknt)=eig(FlutMat(:,:,fknt)); 
        %[Joe_sort(:,fknt),ind]=sort(abs(Joe(:,fknt))); 
        Joe=joesort2(Joe,dim,fknt,omega_a,omega_start,rho); 
        %Joe(:,fknt)=Joe(ind,fknt); 
        FlutFreq(:,fknt)=omega_a(fknt,1)./sqrt(real(Joe(:,fknt))); 
        V_Flut(fknt)=Omega1*R; 
        FlutDamp(:,fknt)=imag(Joe(:,fknt)).*(FlutFreq(:,fknt)/omega_a(fknt,1)).^2; 
        fknt=fknt+1; 
    end 
    OMEGA=OMEGA'; 
    Joe=Joe.'; 
    FlutFreq=FlutFreq.'; 
    V_Flut=V_Flut.'; 
    FlutDamp=FlutDamp.'; 
    if loop==1 
        Joe_1=Joe; 
        FlutFreq_1=FlutFreq; 
        figure(1) 
        plot(V_Flut/(Omega*R),FlutFreq_1,V_Flut/(Omega*R),Omega_fan,'k--') 
        %title('Coupled Natural Frequencies (Without Aerodynamic Terms)') 
        xlabel('Nondimensional Rotational Velocity, {\Omega}/{\Omega}_0') 
        ylabel('{\omega}_n (rad/s)') 
        grid 
        axis([0,1.8,0,250]) 
        %legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency',2) 
        legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency','Rigid Body Flap Frequency',2) 
 
        figure(2) 
        plot(V_Flut/(Omega*R),FlutFreq_1*30/pi,V_Flut/(Omega*R),Omega_fan*30/pi,'k--') 
        %title('Coupled Natural Frequencies (Without Aerodynamic Terms)') 
        xlabel('Nondimensional Rotational Velocity, {\Omega}/{\Omega}_0') 
        ylabel('{\omega}_n (cpm)') 
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        grid 
        axis([0,1.8,0,2500]) 
        %legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency',2) 
        legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency','Rigid Body Flap Frequency',2) 
        
        clear Joe FlutFreq FlutDamp 
    else 
        Joe_2=Joe; 
        figure(3) 
        subplot(2,1,1) 
        plot(V_Flut/(Omega*R),FlutFreq); 
        title('{\omega}-v Plot') 
        xlabel('Nondimensional Rotational Velocity, {\Omega}/{\Omega}_0') 
        ylabel('{\omega}_{FL} (rad/s)') 
        grid 
        subplot(2,1,2) 
        plot(V_Flut/(Omega*R), FlutDamp); 
        title('g-v Plot') 
        xlabel('Nondimensional Rotational Velocity, {\Omega}/{\Omega}_0') 
        ylabel('g') 
        grid 
        axis([0,1.8,-0.5,0.2000001]) 
        %legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency',3) 
        legend('1^{st} Bending Frequency','2^{nd} Bending Frequency','3^{rd} Bending  
   Frequency','1^{st} Torsional Frequency','Rigid Body Flap Frequency',3) 
    end 
end 
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APPENDIX B.  THE HOLZER FUNCTION 
 
The MATLAB® function for calculating the torsional natural frequencies and 

mode shapes is listed below. 

function [rotation,omega_n]=holzer_blade(rn, Jn, Arean, Ialpha, G_n, Al_rho, mn, OpRv, twist, 
 modeshp, type) 

% This function runs a Holzer analysis for rotating beams to calculate 
% the torsional mode shapes and frequencies for the rotor blade.   
% The purpose of this program is to provide input to the flutter program. 
% disp('Calculating the torsional mode shapes for the rotor blade.') 
% disp(' ') 
% 
global k_root R 
lsn=diff(rn);          % determine length of each segment 
N=length(lsn);       % number of radial stations 
GJ=G_n*Jn;          % find torsional stiffness (lb_f-ft^2) 
% Determine the centrifugal force (lb_f) 
Gn(N+1)=mn(N+1) * rn(N+1) * OpRv^2;           % lb_f 
for n=N:-1:1, 
    Gn(n)=Gn(n+1) + mn(n) * rn(n) * OpRv^2;     % lb_f 
end; 
Gn=Gn'; 
% find mass moment of inertial about c.g. 
theta_o=14.6*(pi/180);            % collective pitch (rad) 
twist=twist*(pi/180);            % convert twist from degrees to radians 
theta=theta_o+twist*(rn/R);   % determine theta for each segment 
ka=sqrt(Jn./Arean);               % ft 
Gnka2=Gn.*ka.^2;                % lb_f-ft^2 
% Determining the natural frequencies 
knt1=1;         % knt1 is the counting variable for omega1 (frequency) 
for omega1=0:2:800, 
    omega(knt1)=omega1;  
    X1_n=[1;0]; 
    for n=N:-1:1, 
        Kn=[1,                                                                       0; 
            -Ialpha(n+1)*lsn(n)*(omega1^2-OpRv^2*cos(2*theta(n+1))),     1]; 
         
        An=[1,      -lsn(n)/(GJ(n+1)+Gnka2(n+1)); 
            0,                          1]; 
         
        Fn=inv(Kn)*An; 
        X1_n=Fn*X1_n; 
    end; 
    switch type 
        case 1        % Articulated Boundary Conditions (free-free B.C.) 
            Bc(knt1)=X1_n(2); 
        case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
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            Bc(knt1)=X1_n(1); 
        case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
            Bc(knt1)=k_root*X1_n(1)-X1_n(2); 
    end 
    knt1=knt1+1; 
end; 
Bc=Bc';omega=omega'; 
 
% Find the zeros of the determinant 
slp=sign(Bc(1)); 
tol=1e-10; 
knt2=2; 
for mode=1:modeshp, 
    while sign(Bc(knt2))==slp & knt2<length(Bc) 
        knt2=knt2+1; 
    end 
    omega_low=omega(knt2-1); 
    Bc_low=Bc(knt2-1); 
    omega_high=omega(knt2); 
    Bc_high=Bc(knt2); 
    k=0; 
    while abs(omega_high-omega_low)>tol & k<500 
        omega_mid=(omega_low+omega_high)/2; 
        X1=[1;0]; 
        for n=N:-1:1, 
            Kn=[1,                                                                       0; 
                -Ialpha(n+1)*lsn(n)*(omega_mid^2-OpRv^2*cos(2*theta(n+1))),     1]; 
             
            An=[1,      -lsn(n)/(GJ(n+1)+Gnka2(n+1)); 
                0,                          1]; 
             
            Fn=inv(Kn)*An; 
            X1=Fn*X1; 
        end; 
        switch type 
            case 1        % Articulated Boundary Conditions 
                Bc_mid=X1(2); 
            case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
                Bc_mid=X1(1); 
            case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
                Bc_mid=k_root*X1(1)-X1(2); 
        end 
        if sign(Bc_low*Bc_mid)==-1 
            omega_high=omega_mid; 
            Bc_high=Bc_mid; 
        else 
            omega_low=omega_mid; 
            Bc_low=Bc_mid; 
        end 
        k=k+1; 
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    end 
    slp=sign(Bc(knt2)); 
    Bc_n(mode)=Bc_mid; 
    omega_n(mode)=omega_mid;               % convert from rad/sec to cpm 
end 
 
for mode=1:modeshp, 
    % Arbitrarily setting phi_N = 1, beta_n is found by 
    phi_N=1; 
    % set boundary condition at tip 
    X_N=[phi_N;0]; 
    F1=eye(2); 
    X_n(:,N+1,mode)=F1*X_N; 
    for n=N:-1:1, 
        Kn=[1,                                                                       0; 
            -Ialpha(n+1)*lsn(n)*(omega_n(mode)^2-OpRv^2*cos(2*theta(n+1))),     1]; 
         
        An=[1,      -lsn(n)/(GJ(n+1)+Gnka2(n+1)); 
            0,                          1]; 
         
        Fn=inv(Kn)*An; 
        F1=Fn*F1; 
        X_n(:,n,mode)=F1*X_N; 
    end 
    % determine deflections 
    rotation(mode,:)=X_n(1,:,mode); 
end 
% Display the natural frequencies in cpm for the given operational rpm 
omega_cpm=omega_n*30/pi;               % convert from rad/sec to cpm 
disp('The torsional natural frequencies in rad/sec are: ') 
disp(omega_n) 
%disp('The torsional natural frequencies in cpm are: ') 
%disp(omega_cpm) 
%disp('The ratios of torsional natural frequencies to the rotational frequency are: ') 
%disp(omega_n/OpRv) 
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APPENDIX C.  THE MYKELSTAD FUNCTION 
 
The MATLAB® function for calculating the bending natural frequencies and 

mode shapes is listed below. 

function [deflection,omega_n]=myklestad(rn, Izzn, En, mn, OpRv, modeshp, type) 
% This function runs a Myklestad analysis for rotating beams to calculate 
% the flapwise bending mode shapes and frequencies  The purpose of this  
% program is to provide input to the flutter program. 
disp('Calculating the flapwise bending mode shapes for the rotor blade.') 
disp(' ') 
% 
global Kappa R 
EI=En*Izzn;           % determine stiffness of blade (lb_f-ft^2) 
lsn=diff(rn);          % determine length of each segment 
N=length(lsn);       % number of radial stations 
 
% Determine the centrifugal force (lb_f) 
Gn(N+1)=mn(N+1) * rn(N+1) * OpRv^2; 
for n=N:-1:1, 
    Gn(n)=Gn(n+1) + mn(n) * rn(n) * OpRv^2; 
end; 
 
% Determining the natural frequencies 
knt1=1;         % knt1 is the counting variable for omega1 (frequency) 
for omega1=0:2:300, 
    omega(knt1)=omega1;  
    F(:,:,knt1)=eye(4); 
    for n=1:N, 
        Kn=[1,       0,          0,     -mn(n)*omega1^2; 
            0,       1,             0,          -Gn(n+1); 
            0,       0,             1,              0; 
            0,       0,           lsn(n),         1]; 
         
        An=[1,                                             0,                                           0,                              0; 
            lsn(n),                                          1,                                           0,                        -Gn(n+1); 
            -(lsn(n)^2)/(2*EI(n+1)),  -lsn(n)/EI(n+1),      1+lsn(n)^2*Gn(n+1)/(2*EI(n+1)),        0; 
            -(lsn(n)^3)/(3*EI(n+1)), -(lsn(n)^2)/(2*EI(n+1)),   lsn(n)^3*Gn(n+1)/(3*EI(n+1)),    1]; 
         
        Fn=inv(Kn)*An; 
        F(:,:,knt1)=F(:,:,knt1)*Fn; 
    end; 
    switch type 
        case 1        % Articulated Boundary Conditions 
            Bc(:,:,knt1)=[F(2,3,knt1), F(2,4,knt1); F(4,3,knt1), F(4,4,knt1)]; 
        case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
            Bc(:,:,knt1)=[F(3,3,knt1), F(3,4,knt1);F(4,3,knt1),F(4,4,knt1)]; 
        case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
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            Bc(:,:,knt1)=[F(2,3,knt1)+Kappa*F(3,3,knt1),F(2,4,knt1)+Kappa*F(3,4,knt1); 
F(4,3,knt1),F(4,4,knt1)]; 

    end 
    detbc(knt1)=det(Bc(:,:,knt1)); 
    knt1=knt1+1; 
end; 
detbc=detbc';omega=omega'; 
 
% Find the zeros of the determinant 
slp=sign(detbc(1)); 
tol=1e-10; 
knt2=2; 
for mode=1:modeshp, 
    while sign(detbc(knt2))==slp & knt2<length(detbc) 
        knt2=knt2+1; 
    end 
    omega_low=omega(knt2-1); 
    detbc_low=detbc(knt2-1); 
    omega_high=omega(knt2); 
    detbc_high=detbc(knt2); 
    k=0; 
    while abs(omega_high-omega_low)>tol & k<500 
        omega_mid=(omega_low+omega_high)/2; 
        F1=eye(4); 
        for n=1:N, 
            Kn=[1,       0,          0,     -mn(n)*omega_mid^2; 
                0,       1,             0,          -Gn(n+1); 
                0,       0,             1,              0; 
                0,       0,           lsn(n),         1]; 
             
            An=[1,                                             0,                                      0,                              0; 
                lsn(n),                                          1,                                      0,                        -Gn(n+1); 
                -(lsn(n)^2)/(2*EI(n+1)),    -lsn(n)/EI(n+1),   1+lsn(n)^2*Gn(n+1)/(2*EI(n+1)),     0; 
                -(lsn(n)^3)/(3*EI(n+1)), -(lsn(n)^2)/(2*EI(n+1)), lsn(n)^3*Gn(n+1)/(3*EI(n+1)),  1]; 
             
            Fn=inv(Kn)*An; 
            F1=F1*Fn; 
        end; 
        switch type 
            case 1        % Articulated Boundary Conditions 
                Bc_mid=[F1(2,3), F1(2,4); F1(4,3), F1(4,4)]; 
            case 2        % Hingeless (infinite stiffness at root) Boundary Conditions 
                Bc_mid=[F1(3,3), F1(3,4);F1(4,3),F1(4,4)]; 
            case 3        % Hingeless (finite stiffness at root) Boundary Conditions 
                Bc_mid=[F1(2,3)+Kappa*F1(3,3),F1(2,4)+Kappa*F1(3,4);F1(4,3),F1(4,4)]; 
        end 
        detbc_mid=det(Bc_mid); 
        if sign(detbc_low*detbc_mid)==-1 
            omega_high=omega_mid; 
            detbc_high=detbc_mid; 
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        else 
            omega_low=omega_mid; 
            detbc_low=detbc_mid; 
        end 
        k=k+1; 
    end 
    slp=sign(detbc(knt2)); 
    Bc_n(:,:,mode)=Bc_mid; 
    omega_n(mode)=omega_mid;               % convert from rad/sec to cpm 
end 
for mode=1:modeshp, 
    % Arbitrarily setting Z_N = 1, beta_n is found by 
    Z_N=1; 
    beta_n(mode)=-Bc_n(2,2,mode)/Bc_n(2,1,mode); 
    X_N(:,mode)=[0;0;beta_n(mode);Z_N]; 
    F1=eye(4); 
    X_n(:,N+1,mode)=F1*X_N(:,mode); 
    for n=N:-1:1, 
        Kn=[1,       0,          0,     -mn(n)*omega_n(mode)^2; 
            0,       1,             0,          -Gn(n+1); 
            0,       0,             1,              0; 
            0,       0,           lsn(n),         1]; 
         
        An=[1,                                             0,                                           0,                              0; 
            lsn(n),                                          1,                                           0,                        -Gn(n+1); 
            -(lsn(n)^2)/(2*EI(n+1)),    -lsn(n)/EI(n+1),    1+lsn(n)^2*Gn(n+1)/(2*EI(n+1)),        0; 
            -(lsn(n)^3)/(3*EI(n+1)), -(lsn(n)^2)/(2*EI(n+1)),  lsn(n)^3*Gn(n+1)/(3*EI(n+1)),    1]; 
         
        Fn=inv(Kn)*An; 
        F1=Fn*F1; 
        X_n(:,n,mode)=F1*X_N(:,mode); 
    end 
    % determine deflections 
    deflection(mode,:)=X_n(4,:,mode); 
end 
% Display the natural frequencies in cpm for the given operational rpm 
omega_cpm=omega_n*30/pi;               % convert from rad/sec to cpm 
%disp('The bending natural frequencies in rad/sec are: ') 
%disp(omega_n) 
%disp('The bending natural frequencies in cpm are: ') 
%disp(omega_cpm) 
%disp('The ratios of bending natural frequencies to the rotational frequency are: ') 
%disp(omega_n/OpRv)
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APPENDIX D.  PROGRAM FOR CALCULATING REAL AND 
IMAGINARY CURVES FOR FLUTTER DETERMINANT 

 

The MATLAB® program for calculating the aerodynamic coefficients is listed 

below. 

% This program calculates the terms for the 2DOF flutter determinant with 
% no structural damping and makes a plot of the real and imaginary curves 
% (Ref. NACA TR 685) 
clear 
ra2=0.25; 
wa2wh2=16; 
kappa=0.25; 
a=-0.4; 
xa=0.2; 
c=0.6 
n=1; 
for kinv=0.01:0.01:3.9, 
    k=1./kinv; 
    H2_0=besselh(0,2,k); 
    H2_1=besselh(1,2,k); 
    Ck=H2_1./(H2_1+i*H2_0); 
    Lh=1-2*(i./k).*Ck; 
    La=1/2-(i./k).*(1+2*Ck)-2.*Ck./(k.^2); 
    Mh=1/2; 
    Ma=3/8-(i./k); 
    term11=ra2*wa2wh2*(1/kappa+Lh); 
    term12=ra2*wa2wh2*(La-(0.5+a)*Lh+xa/kappa); 
    term21=Mh-(0.5+a)*Lh+xa/kappa; 
    term22=Ma-(0.5+a)*(La+Mh)+(0.5+a)^2*Lh+ra2/kappa; 
    A=[term11,term12;term21,term22]; 
    coeffs(n,:)=poly(A); 
    realroots(:,n)=sqrt(roots(real(coeffs(n,:)))); 
    imagroots(:,n)=sqrt(roots(imag(coeffs(n,:)))); 
    n=n+1; 
end 
kinv=0.01:0.01:3.9; 
plot(kinv,realroots,'k',kinv,imagroots,'b') 
grid 
axis([0,4,0,5]) 
xlabel('1/k') 
ylabel('sqrt(X)') 
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APPENDIX E.  PROGRAM FOR CALCULATING 
AERODYNAMIC COEFFICIENTS 

 
The MATLAB® program for calculating the aerodynamic coefficients is listed 

below. 

% This program calculates the aerodynamic coefficients for a given reduced 
% frequency, wake spacing and frequency ratio.  User can choose the lift 
% deficiency function 
liftdef=menu('Choice of Lift Deficiency Function', 'Theodorsen', 'Loewy', 'Single-Wake'); 
altitude=1000 
std_lapse_rate=0.003565;      % (deg R/ft) 
T_ref=518.67;                      % (deg R) 
rho_ref=0.0023769;                % (slug/ft^3) 
g_o=32.1740485;                  % (ft/s^2) 
g_c=32.1740485;                  % (ft-lbm/lbf-s^2) 
R_gas=1545/28.97;               % (ft-lbf/lbm-deg R) 
p_ref=2116.22;                     % (lbf/ft^2) 
Temp=T_ref-std_lapse_rate*altitude;      %Atmospheric temperature (deg R) using standard 
adiabatic lapse rate 
press=p_ref*(1-std_lapse_rate*altitude/T_ref)^(g_o/(R_gas*std_lapse_rate*g_c));      

       % Atmospheric pressure (lb/ft^2) 
rho=press/(R_gas*g_c*Temp);                  % Atmospheric density (slug/ft^3) 
 
R=372/12;            % H-3 blade 
N_b=5;           % Number of rotor blades 
GW=12000; 
A=pi*R^2; 
v_i=sqrt(GW/(2*rho*A)); 
Omega_rpm=203;     % numerical instabilities in taking inverse of matrix occur if  

        % Omega_rpm > 375 
Omega=Omega_rpm*2*pi/60;    % rotor speed (rad/s) 
h=2*pi*v_i/(18.25/12*N_b*Omega) 
kinv=1.25 
k=1/kinv 
e=0.5; 
c=0.5; 
a=-0.5; 
p=-1/3*(sqrt(1-c^2))^3; 
 
% Define the T and phi functions 
T1=-1/3*sqrt(1-c.^2)*(2+c.^2)+c.*acos(c); 
T3=-(1/8+c.^2).*(acos(c)).^2+1/4*c.*sqrt(1-c.^2).*acos(c)*(7+2*c.^2) 

-1/8*(1-c.^2).*(5*c.^2+4); 
T4=-acos(c)+c.*sqrt(1-c.^2); 
T5=-(1-c.^2)-(acos(c)).^2+2*c.*sqrt(1-c.^2).*acos(c); 
T7=-(1/8+c.^2).*acos(c)+1/8*c.*sqrt(1-c.^2).*(7+2*c.^2); 
T10=sqrt(1-c.^2)+acos(c); 
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T11=acos(c).*(1-2*c)+sqrt(1-c.^2).*(2-c); 
T12=sqrt(1-c.^2).*(2+c)-acos(c).*(2*c+1); 
phi1=T10; 
phi2=T11; 
phi3=-T4; 
phi31=acos(c)-sqrt(1-c.^2); 
phi32=acos(c)+sqrt(1-c.^2).*(1-2*c); 
phi35=2*(1-c.^2); 
phi36=phi32*phi3+2*(1-c.^2).^2; 
phi37=phi3*(phi2-phi3); 
phi5=T4+T10; 
phi6=2*acos(c)+2/3*sqrt(1-c.^2).*(2+c).*(1-2*c); 
phi8=T12; 
phi10=phi31*phi5; 
phi17=phi3.^2+(1-c.^2).^2; 
 
m=0:0.25:0.75; 
j0=besselj(0,k); 
y0=bessely(0,k); 
j1=besselj(1,k); 
y1=bessely(1,k); 
H2_0=besselh(0,2,k); 
H2_1=besselh(1,2,k); 
switch liftdef 
    case 1 
        % Theodorsen lift deficiency function 
        Ck=H2_1./(H2_1+i*H2_0); 
        Mh=1/2; 
        Ma=3/8-(i./k); 
        Mb=-T7/pi-(e+1/2).*T1/pi+(i./k).*(2*p+T4)/pi-(1./k.^2).*((T4+T10)/pi); 
        Mz=-(i./k).*phi5/pi+1/4*phi6/pi; 
    case 2 
        % Loewy lift deficiency function 
        W_Loewy=1 ./ (exp(k .* h) * exp(i*2*pi*m) -1); 
        alfhat_L=real(W_Loewy); 
        bethat_L=imag(W_Loewy); 
        A_L=(j1 .* (1+2*alfhat_L)) + y0 - (2*j0 .*bethat_L); 
        B_L=-y1 + (2*j1 .* bethat_L) + (j0 .* (1+2*alfhat_L)); 
        den_L=A_L .^2 + B_L.^ 2; 
        F_L=((j1.*(1+2*alfhat_L).*A_L)-((y1 - 2*j1.*bethat_L).*B_L))./den_L; 
        G_L=-(((y1- 2*j1.* bethat_L).* A_L)+(j1 .*(1+2*alfhat_L).* B_L))./den_L; 
        Ck=F_L+i.*G_L;            % Loewy lift defiency function 
        Mh=(1/2)*ones(1,4); 
        Ma=(3/8-(i./k))*ones(1,4); 
        Mb=(-T7/pi-(e+1/2).*T1/pi+(i./k).*(2*p+T4)/pi-(1./k.^2).*((T4+T10)/pi))*ones(1,4); 
        Mz=(-(i./k).*phi5/pi+1/4*phi6/pi)*ones(1,4); 
    case 3 
        % Single wake lift deficiency function 
        W_Single=exp(-i*2*pi*m) .* exp(-k.*h); 
        alfhat_S=real(W_Single); 
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        bethat_S=imag(W_Single); 
        A_S=(j1 .* (1+2*alfhat_S)) + y0 - (2*j0 .*bethat_S); 
        B_S=-y1 + (2*j1 .* bethat_S) + (j0 .* (1+2*alfhat_S)); 
        den_S=A_S .^2 + B_S.^ 2; 
        F_S=((j1.*(1+2*alfhat_S).*A_S)-((y1 - 2*j1.*bethat_S).*B_S))./den_S; 
        G_S=-(((y1- 2*j1.* bethat_S).* A_S)+(j1 .*(1+2*alfhat_S).* B_S))./den_S; 
        Ck=F_S+i.*G_S;            % Single wake lift deficiency function 
        Mh=(1/2)*ones(1,4); 
        Ma=(3/8-(i./k))*ones(1,4); 
        Mb=(-T7/pi-(e+1/2).*T1/pi+(i./k).*(2*p+T4)/pi-(1./k.^2).*((T4+T10)/pi))*ones(1,4); 
        Mz=(-(i./k).*phi5/pi+1/4*phi6/pi)*ones(1,4); 
end 
% L, M, T and P terms using chosen lift deficiency function 
Lh=1-2*(i./k).*Ck; 
La=1/2-(i./k).*(1+2*Ck)-2.*Ck./(k.^2); 
Lb=-T1/pi+i./(pi*k).*(T4-T11.*Ck)-2.*(T10/pi).*Ck./(k.^2); 
Lz=-2*(i./k).*(phi1/pi).*Ck+phi3/pi; 
Th=-T1/pi-(i./k).*(T12/pi).*Ck; 
Ta=-(1/pi)*(T7+(e+1/2).*T1)-(i./k).*((2*p-2*T1-T4)/(2*pi)+T12/pi.*Ck) 

-(1./k.^2).*(T12/pi).*Ck; 
Tb=-T3/(pi^2)+(i./k).*(T4.*T11-T11.*T12.*Ck)./(2*(pi^2)) 

-(1./k.^2).*(T5-T4.*T10+T10.*T12.*Ck)/(pi^2); 
Tz=-(i./k).*(phi1.*phi8.*Ck+phi10)/(pi^2)+1/2*phi37/(pi^2); 
Ph=-2*(i./k).*phi31.*Ck/pi+phi3/pi; 
Pa=-2*(1./(k.^2)+(i./k)).*phi31.*Ck/pi-(i./k).*phi32/pi+phi6/(4*pi); 
Pb=-(2/pi)*(phi1./(k.^2)+i*phi2./(2*k)).*phi31.*Ck/pi-phi35./((k.^2)*(pi^2)) 

-(i./k).*phi36/(pi^2)+phi37/(2*pi^2); 
Pz=-2*(i./k).*phi1.*phi31/(pi^2).*Ck-(i./k).*phi35/(pi^2)+phi17/(pi^2); 
aerocoeff=[Lh;La;Lb;Lz;Mh;Ma;Mb;Mz;Th;Ta;Tb;Tz;Ph;Pa;Pb;Pz]; 
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APPENDIX F.  THEODORSEN AND KÜSSNER 
FUNCTIONS 

 
Theodorsen’s T-functions are defined in Ref. 46 and are reproduced here for the 

convenience of the reader. The variable c is the non-dimensional distance from the mid-

chord to the flap hinge (positive measured aft).  The T-functions are functions of 

geometry only. 

( )2 2
1

1 1 2 cos
3

T c c c −= − − + + 1 c  

( ) ( )( ) ( )22 2 2 1
2 1 1 1 cos cosT c c c c c c c− −= − − − + + 1  

( ) ( )( ) ( )(22 1 2 1 2 2 2
3

1 1 1cos 1 cos 7 2 1 5 4
8 4 8

T c c c c c c c c− − = − + + − + − − + 
 

)  

1 2
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( ) ( ) ( )22 1 2
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6 2T T=  
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2
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21 1

3
p c= − −  

2 1
10 1 cosT c −= − + c  

( )( ) ( )1 2
11 cos 1 2 1 2T c c c−= − + − c−  

( ) ( )( )2 1
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( )13 7 1
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14
1 1

16 2
T a= + c  

Küssner’s φ-functions are defined in Ref. 47 and are reproduced here for the convenience 

of the reader.  The φ-functions are functions of geometry only.  The functions φ1 to φ12 

were developed by Küssner [Ref. 67], and the functions φ13 to φ21 were added by Dietze.  

The functions φ31 to φ37 were developed by Küssner and Schwartz [Ref. 47]. 
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( )2 4
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Noting that the flap hinge position, c, is mapped to the unit circle as −  [Ref. 47], the 

relations    and  can be 

applied to the φ-functions yielding: 
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