88013668

Final

Environmental Impact Statement of The
Island Park Geothermal Area Idaho - Montana•Wyoming

United States Department of Agriculture Forest Service

United States Department of the Interior Bureau of Land Management

ISLAND PARK GEOTHERMAL AREA

FREMONT CO. - GALLATIN CO. - TETON CO.
IDAHO - MONTANA - WYOMING
FOREST SERVICE \& BUREAU OF
LAND MANAGEMENT

NOTE: The format of this final environmental impact statement is consistent with the draft environmental impact statement released on March 21, 1979. Although new format guidelines were issued prior to completion of this final statement, we believe review and implementation will be accomplished best by consistent format for both documents.

RECORD OF DECISION
 ISLAND PARK GEOTHERMAL AREA
 IDAHO-MONTANA-WYOMING FINAL ENVIRONMENTAL IMPACT STATEMENT USDA, FOREST SERVICE

The Island Park Geothermal Area Environmental Impact Statement has been an interagency project since its inception in 1975. The data and evaluations contained in the final EIS reflect this interagency participation.

Based on the analysis and evaluation in the final EIS for the Island Park Geothermal Area, it is our decision to adopt Alternative 7 as the selected alternative subject, however, to the limitation that the Secretary of Agriculture's consent to the leasing of National Forest lands, which has been delegated to Regional Foresters, will not be given until the Secretary of the Interior in consultation with the Secretary of Agriculture determines the following:

- that a valuable geothermal resource exists within the IPGA based upon research or tests such as drilling, geophysical and geochemical data interpretation or other indicators
- development of the potential geothermal resource in the Island Park area will not adversely affect the unique thermal features of Yellowstone National Park
- development would not adversely affect habitat of threatened or endangered wildlife
- any potential air or water pollution from hydrogen sulphide or other noxious gases can be controlled so as not to adversely affect soil, water, vegetation, or air quality in areas of human habitation.

Upon receipt of favorable findings on these four areas of concern, the Secretary of Agriculture will prescribe lease terms and conditions needed to ensure adequate protection and utilization of the affected lands. The Secretary of Agriculture's consent, terms, and conditions will be consistent with the selected alternative (Alternative 7) of this final Environmental Impact Statement.

The selected alternative most fully addresses the major public concerns: the protection of the thermal features of Yellowstone National Park and protection of wildlife and fish and their habitats. The final EIS describes (Section IV) seven alternatives. These alternatives differ as to the acreages available for leasing, the time frames for leasing, and/or the acreages available for surface occupancy. Except for Alternative 1 (no leasing), the selected alternative is considered to be environmentally preferable.

This decision represents a proposal for geothermal leasing based on the management responsibilities of the USDA, Forest Service, and the USDI, Bureau of Land Management (surface management agencies). It is also responsive to the Geothermal Steam Act of 1970.

Implementation of this decision will not take place sooner than 45 days after the final EIS and this Record of Decision have been filed with the Environmental Protection Agency and made available to interested individuals, organizations, and agencies.

This decision is subject to administrative review (appeal) pursuant to 36 CFR 211.19. Any notice of appeal filed should be received within 45 days from the date of this decision.

Vern Hamre

VERN HAMRE, Regional Forester Intermountain Region USDA-Forest Service
324 25th Street
Ogden, Utah 84401

Tom Cosfon

[^0]

Date

Bureau of Land Management Library
 Bldg. 50, Denver Federal Center Denver, CO 80225

FINAL ENVIRONMENTAL IMPACT STATEMENT LEASING AND DEVELOPMENTAL ISLAND PARK GEOTHERMAL AREA

FREMONT CO. IDAHO, GALLATIN CO. MONTANA, TETON CO. WYOMING

LEAD AGENCY:

COOPERATING AGENCIES:

BLM Library
D-553A, Building 50
Denver Federal Center
P. O. Box 25047

Denver, CO 80225-0047

RESPONSIBLE OFFICIALS:

(FOR INTERMOUNTAIN REGION NATIONAL FOREST LANDSI
(FOR NORTHERN REGION NATIONAL FOREST LANDS)
(FOR BUREAU OF LAND
MANAGEMENT LANDS)

USDA - FOREST SERVICE
INTERMOUNTAIN REGION
324 - 25th STREET
OGDEN, UT 84401
USDA - FOREST SERVICE
NORTHERN REGION
FEDERAL BUILDING MISSOULA, MT 59807
USDI-BUREAU OF LAND MANAGEMENT
550 W. FORT STREET, BOX 042
BOISE, ID 83724
USDI-FISH AND WILDLIFE SERVICE
ECOLOGICAL SERVICES
4620 OVERLAND RD.
BOISE, ID 83705
USDI-U.S. GEOLOGICAL SURVEY
CONSERVATION DIVISION \& WATER RESOURCES DIVISION 345 MIDDLEFIELD ROAD MENLO PARK, CA 94025
USDI-NATIONAL PARK SERVICE YELLOWSTONE NATIONAL PARK YELLOWSTONE NATIONAL PARK, WY 82190

VERN HAMRE, REGIONAL FORESTER
324-25th STREET
OGDEN, UT 84401
CHARLES T. COSTON, REGIONAL FORESTER FEDERAL BUILDING
MISSOULA, MT 59807
ROBERT O. BUFFINGTON, IDAHO STATE DIRECTOR 550 W. FORT STREET BOISE, ID 83724
JOHN M. BELAND, RESOURCE COORDINATOR TARGHEE NATIONAL FOREST
420 N. BRIDGE STREET
ST. ANTHONY, ID 83445
(208-624-3151)

FOR FURTHER INFORMATION CONTACT:

Abstract

This final environmental impact statement describes seven alternatives for leasing 488,031 acres of Federal lands in Idaho, Montana, and Wyoming. The statement describes the estimated effects of a geothermal leasing program by the various alternatives. Alternative 7 is the selected alternative. It integrates many substantive public comments on three major concerns: Yellowstone National Park, wildlife, and fish.

TIMING AND RIGHT OF APPEAL: A notice of appeal must be filed within 45 days from the date of the Record of Decision (36 CFR 211.19)

LEASING AND DEVELOPMENT

ISLAND PARK GEOTHERMAL AREA
FREMONT CO. IDAHO, GALLATIN CO. MONTANA, TETON CO. WYOMING
I. Description

This environmental impact statement considers the effects of geothermal leasing and development on 488,031 acres of public land in Idaho, Montana and Wyoming administered by two Federal agencies: the USDA - Forest Service and the USDI-Bureau of Land Management. The lands considered are known collectively as the Island Park Geothermal Area (IPGA) and contain two areas classified as "Known Geothermal Resource Areas" (KGRA) by the U.S. Geological Survey.

Approximately 200 lease applications have been received for geothermal exploration and development within the Island Park Geothermal Area. These applications are outside the two designated Known Geothermal Resource areas and would be leased noncompetitively if leasing is approved.

Major considerations of a geothermal leasing program within the Island Park Geothermal Area include:

- Potential effects on surface and groundwater resources.
- Potential effects on threatened and/or endangered wildlife species.
- Proximity to Yellowstone National Park and its surface hydrothermal features.
-Economic and social effects.
II. Alternatives Considered

Alternative 1 - No leasing.
Alternative 2 -Leasing as proposed by participants of the public workshop.
Alternative 3-Lease a portion of the area. Defer leasing on a portion and refuse leasing on some of the lands.

Alternative 4-Lease most of the area, but much of the available lands would be restricted to no surface occupancy restrictions.

Alternative 5-Allow leasing on a large portion of the area, but restrict some of this to surface occupancy restrictions, i.e. use of existing roads, use of portable drilling rigs. Deny leasing on environmentally sensitive lands.

Alternative 6-Lease the entire area.
Alternative 7-Lease a portion of the area. Defer leasing on a portion including a two mile wide "buffer" strip next to Yellowstone National Park. Refuse leasing on some of the land.
III. Environmental effects
$\left.\begin{array}{ll}\text { Cause } & \begin{array}{l}\text { Potential Effects }\end{array} \\ \hline \text { Exploration and Development } & \begin{array}{l}\text { Increased employment relative } \\ \text { to the extent of discovery and development } \\ \text { Additional energy for electricity, } \\ \text { space heating and other industrial/ } \\ \text { agricultural uses }\end{array} \\ \text { Alteration of Yellowstone National Park } \\ \text { Thermal Features }\end{array}\right\}$

I V. Date of Transmission to EPA and the Public: Draft - March 21, 1979
Final-JAN 151980

INDIVIDUALS

Denzil and Betty Acklin, Boulder, CO
M.N. Moe Adelman, Denver, CO

Nancy Alden Bragg, Boulder, CO
Charles H. Cooper, Broomfield, CO
William DeBoer, Livingston, MT
Joel L. Frykman, Ogden, UT
John A. Hafterson, Elko, NV
Dorothy Harvey, Minitowoc, WI
G.T. Kein, M.D., Elko, NV

Joe Kirn, Denver, CO
Robert W. Lavington, Denver, CO

William W. Lyons, Naturita, CO
Ralph Maughan, Pocatello, ID
Michael R. McSorley, Pocatello, ID
Mark Newman, M.D., Sundance, WY
Henry C. Phibbs II, Jackson, WY
Ann Puddicombe, St. Anthony, ID
Vernon Pugh, Boulder, CO
Gary N. Rahm, Elko, NV
Betty N. Wilson, Boulder, CO
John J. Wilson, Denver, CO

ORGANIZATIONS

Anadarko Production Company, Houston, TX
Atlantic Richfield Company, Denver, CO
Boulder Land Company, Inc., Boulder, CO
Capital Ventures, Inc., Denver, CO
Edward Hines Lumber Co., St. Anthony, ID
Fall River Rural Electric Cooperative, Inc., Ashton, ID
Fremont Outdoor Education and Recreation, Inc.,
St. Anthony, ID
Idaho Chapter of the Wildlife Society, Boise, ID
Idaho Enviornmental Council, Idaho Falls, ID
Louisiana-Pacific Corporation, Rexburg, ID

Moore and Company, Littleton, CO Nuclear Dynamics, Phoenix, AZ
Phillips Petroleum Company, Salt Lake City, UT
Power Resources Corporation, Denver, CO
Sawtelle Chapter, Outdoors Unlimited, St. Anthony, ID
Stewart Capital Corporation, New York, NY
Trout Unlimited, Bozeman, MT
The Wilderness Society, Boise, ID
Wildlife Management Institute, Washington, DC
Wyoming Chapter Sierra Club, Wilson, WY

STATES

Idaho
Natural Resources Bureau, Boise
Department of Parks and Recreation, Boise
Department of Water Resources, Boise
University of Idaho - Cooperative Extension Service,
Pocatello
Clearinghouse, State of Idaho, Boise

Department of Agriculture, Boise
East Central Idaho Planning and Development Association, Rexburg Office of Energy, Boise
Department of Fish and Game, Idaho Falls
Department of Health and Welfare, Division of Environment, Boise
Department of Health and Welfare, Division of Environment, Pocatello

Department of Fish and Game, Helena

Department of Agriculture
(State Conservation Commission), Cheyenne
Department of Environmental Quality, Cheyenne Executive Department, Cheyenne Game and Fish Department, Cheyenne

Montana Historical Society, Helena

Wyoming

The Geological Survey of Wyoming, Laramie
Wyoming Recreation Commission, Cheyenne
Wyoming Recreation Commission-
Office of the State Archaeologist, Laramie
State Engineer's Office, Cheyenne

California

Senator Bob Wilson, Sacramento, CA

FEDERAL AGENCIES

Advisory Council on Historic Preservation, Denver, CO U.S. Environmental Protection Agency, Seattle, WA Department of Health, Education and WelfarePublic Health Service, Atlanta, GA
Department of Health, Education and Welfare, Denver, CO
U.S. Department of the Interior, Washington, DC USDA - Office of the Secretary, Washington, DC USDA - Science and Education Administration, Beltsville, MD
USDA - Soil Conservation Service, Boise, ID
IV. Written comments to the draft environmental impact statement were received from the following individuals, organizations, agencies and officials.

FEDERAL AGENCIES

Action
Advisory Council on Historic Preservation
Central Intelligence Agency
Department of Agriculture
Agricultural Research Service
Agricultural Stabilization and Conservation Service
Farmers Home Administration
Forest Service
Office of Equal Opportunity
Office of the General Counsel
Office of the Secretary
Rural Electrification Administration
Soil Conservation Service
Department of Commerce
Department of Defense
Department of Energy
Department of Health, Education and Welfare Department of Housing and Urban Development Department of the Interior

Environmental Protection Agency Federal Energy Regulatory Commission Federal Highway Administration General Services Administration Interstate Commerce Commission Missouri River Basins Commission
Nuclear Regulatory Commission Office of Economic Opportunity Pacific Northwest River Basins Commission Water Resources Council

STATE AND LOCAL AGENCIES

STATE OF IDAHO

Attorney General's Office
Bureau of Mines and Geology
Bureau of State Planning and Community Affairs
Department of Agriculture
Department of Education
Department of Employment
Department of Health and Welfare, Division of Environment
Department of Lands
Department of Parks and Recreation
Department of Water Resources
Division of Budget Policy Planning and Coordination

Division of Tourism and Industrial Development Fish and Game Department Harriman State Park Historic Preservation Officer Office of Energy Public Utilities Commission
Southeast Idaho Council of Governments State Archaeologist
State Coordinator of Federal Programs
State Historical Society
Transportation Department
Water Resources Board

LOCAL

Fremont County Board of Commissioners, St. Anthony

STATE OF MONTANA

Bureau of Mines and Geology
Department of Agriculture
Department of Community Affairs
Department of Health
Department of Intergovernmental Relations, Economic Development Division
Department of Lands

Department of Natural Resources and Conservation
Environmental Quality Council
Fish and Game Department
Governor's Office
Historic Preservation Officer

LOCAL

Gallatin County Board of Commissioners, Bozeman

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
Administration of Leasing Program 3
General Development Procedure 5
The Nature of a Geothermal Resource 5
Phases of Geothermal Energy Development 5
Known Geothermal Resource Area Definition 8
Uses of Geothermal Resources 8
II. AFFECTED ENVIRONMENT 10
Physiography 10
Landtypes and Soils 10
Climate 13
Air Quality 15
Geology 16
Geologic Hazards 20
Water Resources 22
Vegetation 33
Cultural Resources 36
Recreation 37
Grazing 40
Wildlife 42
Fisheries 57
Timber 61
Visuals 63
Wilderness 64
Yellowstone National Park 66
Sound 67
Transportation 69
Utilities 71
Socio-Economic 71
III. EVALUATION CRITERIA 78
IV. ALTERNATIVES CONSIDERED 79
V. EFFECTS OF IMPLEMENTATION 90
Soil 91
Water 91
Air 94
Vegetation 95
Archaeological/Historical 97
Recreation 97
Grazing 97
Non Threatened and Endangered Wildlife 98
Threatened and Endangered Wildlife 102
Fisheries 103
Timber 104
Visual 105
Wilderness 105
Transportation System 106
Socio-Economic 106
Minerals 111
Yellowstone National Park 111
Matrix analysis of effects by each alternative 113
Adverse impacts which cannot be avoided 122
VI. EVALUATION OF ALTERNATIVES AND DEVELOPMENTAL OF A PROPOSAL 123
VII. THE SELECTED ALTERNATIVE 123
VIII. MANAGEMENT REQUIREMENTS, CONSTRAINTS, AND MITIGATING MEASURES 124
Exploration 124
Test Drilling 125
Construction \& Development 128
Operation 129
Yellowstone National Park 130
IX. CONSULTATION WITH OTHERS 131
X. INDEX 142
APPENDIX A. Chemical Analyses of Thermal Springs 144
APPENDIX B Chemical Analyses of Selected Wells 145
APPENDIX C. Chemical Analyses of Hot Water in Yellowstone National Park. 146
APPENDIX D. Chemical Analyses of Henrys Fork Tributaries 147
APPENDIX E. Wildlife Species Orientation to Habitats 148
APPENDIX F.......... . Migrant and Accidentally Occurring Wildlife 153
APPENDIX G..........Effects of Power Plant Development on Population 154
APPENDIX H..........Employment Categories and Spending 158
APPENDIX I............ . Potential Social Impacts. 160
APPENDIX J. Space Heating Considerations for West Yellowstone 162
APPENDIX K. Lease Form 164
APPENDIX L. Geothermal Leases on Private and State Lands 166
APPENDIX M. Agencies, Organizations and Individuals Receiving Copies 168
APPENDIX N. Draft EIS Comments and Response 171
APPENDIX O........... Selected References 277
APPENDIX P............ Significant Contributions. 279
LIST OF MAPS
Map Title Page
1 Island Park Geothermal Area xi
2..................... Landtypes 11
3. General Geology. 18
4. Geologic Hazards. 21
5. Watersheds 28
6. Habitat Types 34
7. Recreation Use 38
8. Grazing Resource 41
9 Wildlife Migration Routes. 46
10 Sage Grouse, Trumpeter Swan, and Sandhill Crane Habitat 51
11.................... . Grizzly Bear Essential Habitat. 56
12 Timber Types. 62
13 Visual Quality Objectives 65
14 Transportation 70
15 Transmission Lines and Subdivisions 72
16 Alternative 2. 81
17 Alternative 3 83
18 Alternative 4 85
19 Alternative 5 87
20 Alternative 7 89
21 Socio-Economic Analysis Zones. 155
22 Geothermal Leases on State and Private Land (Appendix L) 167
23..................... Yellowstone National Park and IPGA
24 The Selected Alternative (Back Fold-Out)

LIST OF TABLES

Table Title Page
1 Landtype Associations and Soil Characteristics 12
Selected Snow Course Data 15
Rock Types 19
Hydrological Aspects of Rock Units 23
Characteristics of Selected Springs. 25
Discharge Data for Streams 29
Storage Capacity in Lakes and Reservoirs 29
Water Use and Quality Designations for Streams 31
Surface Water Chemistry 32
Characteristics of Vegetative Habitats 35
Summer Recreation Use 39
Winter Recreation Use. 40
Grazing Summary 42
Common Wildlife Species 43
Wildlife Habitat Associations Based on Reproduction and Feeding 44
Present and Future of Big Game 45
Upland Game Bird Statistics 50
Waterfowl Statistics 53
Significant Fisheries 58
Aquatic Macroinvertebrate Sampling 60
Annual Growth of Timber 61
Visual Character of Landtypes 63
Comparison of Visual Qualities of Two Locations 64
Sound Level Comparisons 68
Federal and State Noise Guidelines 69
Town Populations 73
Fremont County, Idaho, Population Projections 73
Fremont County, Idaho, Employment Forecast 74
Per Capita Personal Income, Southeast Idaho Counties 75
Per Capita Personal Income, Southeast Idaho Counties (1977 Dollars) 75
Positions Taken by Social Group Categories 77
Distribution of Acres by Alternative 79
Potential Impacts of Geothermal Leasing and Development 91
Matrix Used to Evaluate Effects 114
Summary of the Negative Environmental Effects by Alternatives 115
Evaluation of Alternative 2 116
Evaluation of Alternative 3 117
Evaluation of Alternative 4 118
Evaluation of Alternative 5 119
Evaluation of Alternative 6 120
Evaluation of Alternative 7 121
Unavoidable Adverse Impacts 122
Summary of Evaluation of Alternatives 123
Entity Providing Comments and Geographic Distribution 132
Alternative Favored by Entity 132
LIST OF FIGURES
Figure Title Page

1. Environmental Statement Process 4
2 Cross Section of a Geothermal System 6
3 Temperatures and Uses of Geothermal Fluids 9
2. Mean Monthly Temperatures 14
3. Mean Monthly Precipitation 14
6................... . Streamflow Characteristics 30
7.................... Percentage of Acres by Alternative 80
4. Matrix Composition 114

I. INTRODUCTION

This environmental impact statement considers the granting of leases for exploration and possible development of geothermal resources on Federal public lands, as authorized by the Geothermal Stream Act of 1970. These lands, collectively identified as the Island Park Geothermal Area (IPGA), are administered as follows:
-U.S. Department of Agriculture, Forest Service (Targhee and Gallatin National Forests) 477,346 acres
-U.S. Department of the Interior, Bureau of Land Management 10,685 acres
-Total-488,031 acres
Included within the acreage administered by the BLM are some private lands with mineral rights reserved to the Federal Government. More than seventy interested parties have filed approximately 200 lease applications for exploration and development of geothermal resources on these lands.

The Environmental Impact Statement considers:

- Environmental, social and economic effects of the different phases of geothermal development
- Yellowstone National Park values
- Leasing alternatives
- A proposal for leasing based on the management responsibilities of the USDA-Forest Service and USDI-Bureau of Land Management (surface managing agencies)
- Mitigation and monitoring

The Environmental Impact Statement does not consider:

- If and where leases will ultimately be issued - this is a decision of the Secretary of the Interior (See Section III, Evaluation Criteria)
- Other energy resources in or near the IPGA
- Distribution of energy developed within the IPGA
- Economic feasibility of geothermal electrical power production
- Benefit-Cost analysis of geothermal development on a regional or statewide basis
- Impacts of geothermal leasing/development on state and private lands within the IPGA.

Harmonizing geothermal development with environmental, social and economic values will be complex. The decision to prepare the environmental impact statement was based on:

- Existing geothermal operations indicate that potential adverse impacts to ground and surface water, landscape, wildlife and recreational values could be significant.
- At least two endangered and one threatened species of wildlife inhabit the area. The Endangered Species Act of 1973 provides that Federal Agencies will take no actions which may be adverse to any endangered or threatened species.
- The proximity of Yellowstone National Park and its geothermal features must be considered.
-Disturbances from construction and long-term site occupancy could have significant effects on several wildlife species.
- The social structure and economies of several communities could be affected.

The purpose of this environmental impact statement is to present a description of the existing or affected environment, show a range of alternatives for geothermal leasing, and consider the possible effects of implementing a leasing program. The alternatives were developed by an interdisciplinary team of resource specialists using existing and collected data and public involvement.

Land management plans provide specific direction for managing surface resources for all Targhee National Forest lands within the IPGA. These plans provide the basis of many special considerations common to several of the alternatives (section IV). These management plans (Island Park and West Slope of the Tetons) are on file in the Forest Supervisor's office in St. Anthony, Idaho.

Only information pertinent to geothermal resource leasing considerations is presented in this statement. The text (supported by an appendix) is brief to keep the effects of geothermal development clear to the reviewer. Considerable supporting data including source material, supporting calculations, and special reports are available for review at the Targhee National Forest Supervisor's Office in St. Anthony, Idaho. Figure 1. illustrates the environmental impact statement process.

The IPGA is located adjacent to Yellowstone National Park. The east boundary is 13.5 miles west of Old Faithful Geyser. The IPGA includes portions of Fremont County, Idaho; Gallatin County, Montana; and Teton County, Wyoming (Map 1).

The IPGA is astride the Continental Divide. West of the Divide are the headwaters of the Henrys Fork of the Snake River, a major tributary of the Columbia River, which flows into the Pacific Ocean. East of the Divide are the headwaters of the South Fork of the Madison River, a tributary of the Missouri River whose waters eventually reach the Gulf of Mexico.

ADMINISTRATION OF LEASING PROGRAM

As set forth in the Geothermal Steam Act of 1970, the Secretary of Agriculture is responsible for determining where and if lands under his jurisdiction are available for leasing (P.L. 91-581, Sec. 15(b)). This responsibility is further delegated to the Chief of the USDA - Forest Service and to Regional Foresters working under the Chief.

The Geothermal Steam Act authorizes the Secretary of the Interior to issue leases to develop and use geothermal resources on Federal lands. This includes conveyed to other owners by the United States subject to a mineral resource reserve.

The Bureau of Land Management within the Department of the Interior has jurisdiction over mineral and related subsurface resources on public lands. The Bureau role includes:
(1) Receiving and processing lease applications for non-competitive leases.
(2) Publishing lease sale notices for competitive bid lands.
(3) Awarding leases.
(4) Administering leases lexcept those functions assigned to the U.S. Geological Survey or Forest Service as outlined below).

The Conservation Division U.S. Geological Survey has expertise in geothermal geology and engineering, deep-well drilling and other technical aspects of geothermal development operations. Their role in the leasing program is:
(1) Supervising activity inside the area of operation on leased lands including enforcement of regulations covering all aspects of exploration, development and utilization.
(2) Preparing post-lease environmental studies on specific development proposals. The Forest Service or Bureau of Land Management provides input on surface management environmental considerations.
(3) Providing input on geothermal geology and geothermal operations for pre-lease environmental studies.
(4) Issuing Geothermal Resource Operational Orders.
(5) Concurring to special stipulations proposed (by the land managing agency) to mitigate or control situations peculiar to the lease area.
On National Forest land the Forest Service is responsible for:
(1) Preparing environmental assessments on suitability of National Forest lands for geothermal leasing purposes (Geological Survey provides input).
(2) Providing input to the Conservation Division, U.S. Geological Survey, on surface environmental considerations of post-lease environmental studies (Conservation Division has primary responsibility).
(3) Preparing lease stipulations covering special surface management problems.
(4) Issuing special use permits for occupancy of leased lands needed for development purposes.
(5) Supervising land uses on leased lands outside areas of operation.

FIGURE 1. ISLAND PARK GEOTHERMAL ENVIRONMENTAL IMPACT STATEMENT PROCESS

GENERAL DEVELOPMENT PROCEDURE

Lands determined leaseable by the Secretary of the Interior will probably be developed in the following manner. Following lease issuance and prior to deep-well drilling (generally over 500 feet), the lessee must submit a plan for test drilling. The Conservation Division U.S. Geological Survey then prepares an environmental study. If the test drilling establishes an economically developable resource, the lessee submits a plan for development. The Conservation Division, with Forest Service input, prepares an environmental study of the proposed plan. The U.S. Fish and Wildlife Service reviews acreage to be leased and determines specific requirements necessary to protect fish and wildlife values. Special stipulations to protect values peculiar to the area are made a part of the plan. Since development of a geothermal field is usually accomplished in stages, the initial development plan is normally expanded and amended many times during the life of the project. All such plans must be approved by both the Conservation Division and the surface managing agency. It if is found during test drilling or subsequent development or production phases that environmental standards cannot be met, the law and regulations enable the Geological Survey to suspend operations pending solution of the problems(s).

THE NATURE OF A GEOTHERMAL RESOURCE

Geothermal energy is derived from the natural heat of the earth. Observations in mines and wells indicate that temperatures increase with depth to between $390^{\circ} \mathrm{F}$ and $1,830^{\circ} \mathrm{F}$ at the base of the earth's crust. In some places on the earth's surface, the natural heat flow is much greater than other places. Areas with abnormally high heat flow are potentially valuable for geothermal resource development and are frequently marked by hot springs.

Natural earth heat originates from radioactive decay, from friction between rock strata, and perhaps from the molten origin of the earth. Under present technology most of this heat is too diffuse to serve as a resource. Locally, however, it has been concentrated in the crust by volcanic activity, forces that create mountains and move continents, and by water circulating above buried molten rock. This heat is stored in rocks, water, and steam. Water and steam transfer the heat through pores, fractures, and fissures.

Four types of geothermal systems are known to occur in nature: geopressured, hot water, vapor dominated and hot, dry rock. The hot water type is most probable in the IPGA. Hot water systems are thought to be thermally driven; that is, groundwater from rain and snow is heated by a local heat source and moves upward (figure 2). This upwelling of hot water ofterı reaches the surface as hot springs, geysers, and other surface phenomena. Temperatures of the water may range from about $195^{\circ} \mathrm{F}$ to more than $300^{\circ} \mathrm{F}$.

A well drilled into such a resource can serve as an escape route for the hot water which is likely to be under high pressure. This water and steam are transported by pipeline to a power plant where electricity is generated, or to an area where the heat in the steam and/or water is used for non-electrical application (e.g. space heating, drying, etc.).

Once cooled, the geothermal fluid is either discharged to the surface or reinjected. The duration of a geothermal operation depends on the rate heat is removed from the producing zone. It also depends on how the water bearing and water transmitting characteristics of the rock in the heated zone change through time.

The hot water and vapor dominated systems produce the hydrothermal phenomena in Yellowstone National Park. At least one hot spring system in the Park is vapor dominated. This type is rare. In such a system, a great supply of heat exists but very little water enters the heated rock. Consequently, the fractures and pores in the rock hold steam.

PHASES OF GEOTHERMAL ENERGY DEVELOPMENT

Four phases of geothermal development are:
(1) Exploration
(2) Test Drilling
(3) Construction and Development
(4)

Operation

Exploration

Exploration is done to locate and define the extent of geothermal reservoirs and determine the economical and financial feasibility of development. Exploratory operations may include aerial and surface surveys. Small fixed wing aircraft and helicopters make low level flights (one hundred to five hundred feet) for heat and magnetic sensing and initial reconnaisance of geological features. Flights above three thousand feet are made to conduct photograhic and magnetic sensing and geological visual reconnaisance surveys.

Surface exploration activities which use existing roads and trails are classified as either casual or intensive.

FIGURE 2. CROSS SECTION OF A GEOTHERMAL AREA

Source: Testimony for the Subcommittee on Water and Power Resources, Senate Committee on Interior and Insular Affairs, June 13, 1973.

Casual exploration requires little land disturbance and may include geochemical surveys of water and vegetation, stratigraphic, lithological and structural geologic mapping, and micro-gas surveys where air samples are taken from various points. Other casual exploration activities include reconnaisance of surface features and natural phenomena without land disturbance, geophysical exploration including resistivity, microseismic, magnetic and gravity surveys and ground noise studies.

Intensive activities require minor land disturbances. This includes shallow well drilling for temperature gradient and heat flow measurement. Road construction and clearing are seldom required for access to these sites.

Test Drilling

Test wells are drilled to provide subsurface geologic data, locate productive zones, help delineate limits and provide a means for determining the physical and chemical properties of reservoir fluids. Locations for test wells are determined from data acquired during exploration.

Test drilling equipment often consists of a truck mounted drilling rig and truck mounted air compressor or water tank, depending on whether water or air is used in the drilling. In some cases a drill rig with a conventional superstructure is used. Drilling areas or pads generally require clearing or leveling of one half to two acres. Drilling rigs, mud pumps, mud tanks, generators, drill pipe stockpiles, toolsheds, etc., are usually on the drill pad. Storage tanks may be either on the pad or on another nearby site. A reserve pit (sump) six to

In the test drilling and construction and development phases, large drill rigs are used. These rigs usually drill to depths greater than 5,000 feet.
eight feet deep covering a surface area of approximately 1,000 to 10,000 square feet is often excavated to hold waste fluids produced during drilling operations.

The investment in each well is considerable. Recent wells (1977) cost an average of $\$ 100$ per foot or $\$ 600,000$ for a 6,000 foot well.

If promising wells are developed during the test drilling phase, production testing is conducted to clean them and to determine the flow rate, composition and temperature of fluids and gases, recharge characteristics, pressures, compressibility and other physical properties of reservoir fluids. Hydrodynamic properties and/or boundary characteristics are also determined during production testing. If a steam resource exists, venting of wells to the atmosphere is included in this process. Venting is done through a system of mufflers to prevent noise exceeding ambient levels at a distance of about one-half mile. Noises may be muffled even more effectively by venting under water. Production testing seldom extends beyond two or three days.

Construction and Development

Favorable results in test drilling and production testing programs generally lead to drilling of additional wells to develop a field. Field development requires improvement of access roads to standards suitable for full-time use. Living quarters, with the necessary water and sewage facilities, must be added during this phase, or must be available within commuting distance.

Development of a large geothermal field involves clearing and grading for access roads, well drilling pads, and pipelines. Well pads are from one-half to two acres. Between 5 and 25 wells are usually required to supply one power plant, depending on geothermal reservoir characteristics and individual wells. Pipeline clearings need only be wide enough to accommodate equipment needed for their construction and fire safety. It is not necessary to clear corridors wide enough to prevent trees from falling across the pipeline.

If the resource is developed for power, construction of facilities for generation and transmission of power follows an examination of the environmental effects including an analysis of available information on the geothermal reservoir and fluids. Power generation and transmission facilities are constructed in stages consistent with the capacity of the geothermal reservoir.

Above ground insulated pipes with U-shaped expansion loops are sometimes used to pipe steam or hot water from wells to power plants. Underground pipelines are possible but under present technology, because of pipe expansion and high costs, are impractical. Installation of underground pipes would increase pipeline costs by about 25%.

Operation

During the operation phase, maintenance of industrial plants, power plants, related facilities and the drilling, redrilling and workover of geothermal wells to maintain production takes place. Construction during the operation phase is reduced and allows much of the land in the leased area to be returned to other uses.

Throughout the life of the geothermal field, wells must be improved and maintained and new wells must be drilled to keep an adequate supply of steam or hot water flowing. Information is obtained on site and from regional geohydrology and hydrodynamics studies. This includes data such as rate and path of recharge and natural discharge of the geothermal reservoir. Prediction of the effects of scaling, extraction of geothermal fluids and estimates of reserves, optimum rates of production and resource conservation are also obtained.s

Site reclamation begins with the completion of the first well and continues throughout the life of the field. Wells, power plants, and other installations are removed as the geothermal resource is exhausted. Thus, in the same field reclamation may be under way in one part while development is in progress in another.

Complete reclamation includes removing all installations such as pipe, buildings, generators, and power transmission towers and lines. Wells are sealed; roads, well pads, and other clearings are regraded and revegetated.

KNOWN GEOTHERMAL RESOURCE AREA DEFINITION
A Known Geothermal Resource Area (KGRA) is a region in which the geology, nearby discoveries, competitive interests, of other indications would, in the opinion of the Secretary of the Interior, lead experts to believe the prospects for extracting geothermal steam or associated geothermal resources are good enough to warrant spending money for the purpose (Geothermal Steam Act of 1970). Lands administered by the U.S. Forest Service within the IPGA contain two KGRA's: the Yellowstone KGRA containing 42,400 acres and the Island Park KGRA with 28,350 acres. The Island Park KGRA was created from lease applications filed for the same section of land during a one-month period. Geothermal leases for areas within a KGRA are issued on a competitive bid basis. Lands outside KGRA's are leased non-competitively.

USES OF GEOTHERMAL RESOURCES

Among the possible uses of geothermal resources are generation of electric power, space heating, industrial processing, and some applications in agriculture. Figure 3 shows possible uses and the approximate required temperature of geothermal fluids or steam for each use.

The life of geothermal fields fully developed for economical conditions is generally believed to be 25 to 100 years. The Larderello Field in Italy, which is not fully developed, has operated since 1913, a period of 65 years.

FIGURE 3. THE REQUIRED TEMPERATURE OF GEOTHERMAL FLUIDS (APPROXIMATE)

Temperature

Use

| | 392 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |

Source: Geothermal Development, final environmental statement for the Breitenbush Area of the Willamette and Mt. Hood National Forests, Oregon, Jan., 1978, p. 14.

II. AFFECTED ENVIRONMENT

PHYSIOGRAPHY

A major part of the IPGA is the Island Park caldera, a large volcanic feature located between the Eastern Snake River Plain and the Yellowstone volcanic plateau of Yellowstone National Park. Prominent topographic features include the western rim of the caldera, scattered volcanic buttes, and extensive volcanic flows that moved westward from Yellowstone National Park.

North and northeast of the caldera the Continental Divide separates Idaho and Montana and divides the headwaters of the Columbia and Missouri Rivers. Henrys Fork of the Snake River flows to the Columbia River which moves westward to the Pacific Ocean. The South Fork of the Madison River flows to the Missouri, a tributary of the Mississippi River, which empties into the Gulf of Mexico.

Elevations range from 8,386 feet on the Continental Divide to 5,160 feet near Ashton, Idaho. Extensive flat areas occur in Henrys Lake Flat, in the interior of the caldera, and at Antelope Flat on the west side of the IPGA (Map 1).

LANDTYPES AND SOILS

Influences of geologic history and processes on the various rock and earth materials in the IPGA have produced a variety of landtypes (map 2). The prominent topographic features are the result of the volcanic and pre-volcanic mountain building aspects of the region's history. Scarps, canyons, and elevated plateaus border the highlands. Erosion in the uplands brings materials down to the broad open area at lower elevations, especially around Henrys Lake. Winds blow materials into the caldera bottom; no surface water network is found in this area. Map 2 shows the landtype associations in the IPGA and Table 1 displays the characteristics of each landtype and its soils.

Within the IPGA, soils have been derived from the products of weathering of rock and from materials brought by wind, water and glaciers.

Depth of soil depends on steepness of slopes and varies from 10 inches to tens of feet deep. In most locations, fractured bedrock lies beneath the soil at a depth of more than 40 inches.

Soil textures vary due to differences in parent materials and climate. Coarse-loamy, fine loamy, and loamy skeletal are prevalent. Except for deep accumulations of loess (wind blown) soils, most soils contain cobble and gravel sized materials. Generally the soils have good porosity and permeability.

ISLAND PARK GEOTHERMAL AREA
IDAHO - MONTANA - WYOMING
u.s. FDREST SERVICE E BUREAU OF
LAND MANAGEMENT --
DNATIONAL FOREST LAND

- private land

AREA BOUNDARY

- NATIANAL FRAEST BOUNDARY
ADJCENT NATIONAL FOREST BOUNDARY
(ii) PAVED RDAD
(a) U.S. HIGHWAY

LAND TYPES ASSOCIATIONS

CANDS
MOUNTAIN
SLOPELANDS
oepositional
LEPOSIT
\square BASIN LANDS

> CANYON LANDS PLATEAU LANDS GLACIAL DRIFT LANDS RHYOLITE UPLANDS RISECTED MIDLANDS

$$
\Longrightarrow, ~ \text { LEGEND }
$$

TABLE 1. LANDTYPE ASSOCIATIONS AND SOIL CHARACTERISTICS

LANDTYPE ASSOCIATION	$\begin{aligned} & \text { GEOLOGY } \\ & \text { (PARENT MATERIAL) } \end{aligned}$	\% SLOPE GRADE	ASPECT	VEGETATION	$\begin{aligned} & \text { SOIL } \\ & \text { DRAINAGE } \end{aligned}$	EROSION POTENTIAL	SLOPE FAILURE POTENTIAL	LIMITATIONS FOR USES
Depositional Lands	Glacial outwash, alluvium	0 to 10	South	Sage, grasses, some drought resistant forbs	Well drained to excessively drained	Moderately low	Low to moderately low	High potential for pollution of groundwater from septic systems
Basin Lands	Glacial outwash (around Henrys Lake) basalt (in the caldera)	$\begin{aligned} & 0 \text { to } \\ & -\quad 15 \end{aligned}$	Nearly level to southerly	Lodgepole pine	Well drained $t 0$ excessively drained	Moderately low	Low	Much bedrock at or near surface (in caldera)
Mountain Slope Lands	Basalt, rhyolite flows and welded tuffs, sedimentary units	$\begin{aligned} & 0 \text { to } \\ & >65 \end{aligned}$	All	Lodgepole pine, aspen, Douglas fir, chokecherry, serviceberry, mountain ash, grasses and forbs	Well drained to excessively drained	Moderate	Moderately low to low	Slumping of soils due to increased pore water pressures (in sedimentary rocks); erosion on steep igneous slopes
Scarp Lands	Rhyolite flows	$\begin{aligned} & 45 \text { to } \\ & 65 \end{aligned}$	South to southwest	Grasses, forbs, low shrubs to conifers and stunted aspen where soil and moisture support these	Well drained	Moderately high	Moderately low	Erosion of soils where water is concentrated
Plateau Lands	Rhyolite flows	$\begin{aligned} & 25 \text { to } \\ & >65 \end{aligned}$	South to west	Subalpine fir, grouse whortleberry, lodgepole pine	Well drained to excessively drained	Moderate	Moderately low to low	Potential for pollution of distant or nearby springs; septic system
Canyon Lands	Volcanic rocks	$\begin{aligned} & 25 \text { to } \\ & >66 \end{aligned}$	All	Lodgepole pine, grouse whortleberry, pine grass	Excessively to well drained	Moderate	Moderately low	Steep slopes preclude various uses
Glacial Drift Lands	Glacial drift	$\begin{aligned} & 5 \text { to } \\ & 30 \end{aligned}$	All	Lodgepole pine, Douglas fir, aspen (below 7000 ft .) Engelmann spruce, white-bark pine, subalpine fir	Moderately to well drained	Low to moderately low	Low	Localized flooding and seasonal high water table
Rhyolite Uplands	Rhyolite flows and some glacial drift in drainage	$\begin{aligned} & 10 \text { to } \\ & 45 \end{aligned}$	All	Lodgepole pine, huckleberry and pine grass; Douglas fir and subalpine fir common on steeper slopes	Well drained	Moderate	Low	Soils erosive where unusual amounts of water are concentrated
Rhyolite Tablelands	Rhyolite with loess mantle; some glacial drift	$\begin{aligned} & 3 \text { to } \\ & 30 \end{aligned}$	West	Lodgepole pine, various ground cover	Moderately well to well drained	Moderate	Low	Ponding of water troublesome where road drainage is poor; slick when wet, ruts easily
Dissected Midiands	Rhyolite, glacial drift and silty eolian deposits on north facing slopes	North aspects: $>50 \%$ south aspects convex slopes, very steep to to gentle slopes	North and south for slopes; all for bottomlands	Complex pattern tied closely to slope aspect and landform: dense conifer stands on north canyon slopes; brush and open timber on south aspects; grass-forb-sub alpine fir parklands on faceted west aspects	Well drained to moderately well	Moderate to low	Low in bottomlands, high on slopes	Localized, seasonal flooding in bottomlands; slope stability problems

[^1]
CLIMATE

The IPGA has a climate that is wet in spring, fall and winter; summers are cool and short, and winters bring snow, the major portion of the annual precipitation. Westerly prevailing winds are governed by the opposing Aleutian low and Pacific high pressure systems. In winter, moisture laden southwesterly winds move into the region due to the controlling influence of the Aleutian low. The mountains and other high elevations in the IPGA cause moisture in the air masses to fall as snow. As summer approaches, the Pacific high becomes the primary controller of the weather, reducing the intensity of the winter process. In summer, increased occurrence of convective cell storms sometimes generates high intensity, short duration storms. Occasionally during summer and winter, a reversal of normal air flow can occur because of continental high pressure systems. At these times, cold dry winter air, or hot, dry summer air moves westward.

Various weather data are collected within the IPGA. Weather conditions studied include precipitation (snow depth, water content of snow, rain, and duration of rain), temperature, wind speed and direction, and relative humidity. Annual temperature and precipitation changes are shown in Figures 4 and 5; data collected at snow courses are shown in Table 2.

The freeze-free periods for Ashton and for Island Park Dam are 90 days (early June to early September) and 45 days (early July to mid August), respectively. At the higher elevations in the IPGA a frost can occur at any time.

The Forest Service measures wind speed and direction at the Buffalo Ranger Station from June to October. From July-September, 1974-1977, the prevailing winds came from the southwest. The second and third most common wind directions were south and southeast, respectively. Winds also have blown from the northwest, north, east and west. Since 1967, wind speeds from June to September have commonly been below 10 mph . The highest wind speed reported from 1967-1977, taken around 2:00 p.m., Mountain Time, was 29 mph . Winter wind speeds and directions have not been studied.

The topography of the region around the Idaho and Wyoming parts of the IPGA does not allow thermal inversions to form; inversions are common in the winter months in the W. Yellowstone vicinity.

FIGURE 4. MEAN MONTHLY TEMPERATURES FOR ISLAND PARK GEOTHERMAL AREA,
1941-1970

SOURCE:
US DEPARTMENT
OF COMMERCE, 1973

MEAN ANNUAL TEMPERATURE (${ }^{\circ} \mathrm{F}$)

LOCATION
W. YELLOWSTONE, MT ISLAND PARK, ID ASHTON, ID

ELEVATION (FEET)
6662
6300
5220
W. YELLOWSTONE, MT

ISLAND PARK DAM, ID
ASHTON, ID

TEMPERATURE
34.9
36.5
41.0

FIGURE 5. MEAN MONTHLY PRECIPITATION FOR ISLAND PARK GEOTHERMAL AREA 1941-1970

SOURCE:
US DEPARTMENT
OF COMMERCE, 1973

MEAN ANNUAL PRECIPITATION (INCHES)

LOCATION
W. YELLOWSTONE, MT

ISLAND PARK DAM, ID
ASHTON, ID

ELEVATION (FEET)
6662
6300
5220

AMOUNT

TABLE 2. SNOW COURSE DATA FROM THE ISLAND PARK GEOTHERMAL AREA (IPGA)
(INCHES)
(sd = snow depth, we $=$ water equivalent 1, por $=$ period of record)

${ }^{1}$ Water content varies with the density of the snow
${ }^{2}$ Near Continental Divide and border of Yellowstone National Park
${ }^{3}$ Near mouth of the Buffalo River; see map 5
${ }^{4}$ Slightly northeast of Buffalo Ranger Station and roughly $21 / 2$ miles west of Yellowstone Park border; see map 5
Source: Soil Conservation Service, U.S. Department of Agriculture

AIR QUALITY

The sparsely populated and non-industrialized IPGA has high air quality. Sources of air pollutants include:

Natural Pollutants

- Forest fires
- Pollen
- Wind blown dust

Man Caused Air Pollution

- Forest fires
- Wood burning stoves
- Auto emissions
- Burning of forest debris (slash)
- Road dust
- Dust from farming operations outside the IPGA

No natural venting of gases, often associated with hydrothermal phenomena, is known to occur anywhere in the IPGA. Human activities that cause air pollution do not occur simultaneously or continuously. Auto emissions are greatest when traffic from tourists and recreationists peaks in the summer; slash burning occurs in the fall, and wood is burned in fall, winter and spring for domestic heating. Because of this, pollutants vary in chemical and physical nature during the year.

Air quality in the IPGA was sampled in October 1977 and in late June and early July, 1978. The sampling and some of the analyses was done by the Conservation Division of the US Geological Survey. The results are:

1977 (Oct. 7-12; 4 stations)
$\mathrm{H}_{2} \mathrm{~S}$
SO_{2}
NO_{x}
NH_{3}
suspended
particulates

Not detected
Not detected
Not detected
Not detected to 0.028 ppm
4.74 to $63.0 \mathrm{ug} / \mathrm{m}^{3}$

1978 (June 30, July 1-5; 6 stations)

25 to $26.4 \mathrm{ug} / \mathrm{m}^{3}$ below detection limit to $108 \mathrm{ug} / \mathrm{m}^{3}$
7.9 to $135 \mathrm{ug} / \mathrm{m}^{3}$
21.7 to $685 \mathrm{ug} / \mathrm{m}^{3}$

Road dust accounts for the greatest percentage of the total suspended particulates (83 to 96%), followed by pollen (4 to 15%), and soot (0 to 7%).

Idaho and Federal air quality standards were not exceeded anywhere in the 1977 survey, although the same standards were exceeded in 1978 for particulates at a few stations affected by road dust.

The US Environmental Protection Agency has placed the IPGA and adjoining areas into the following clean air classes:

Area

Yellowstone National
Park
Upper Snake River
Valley and IPGA

Class

I

II

General Constraints

Only minor air quality deterioration tolerated*

Moderate air quality deterioration tolerated
*Air quality in certain locations may be below Class I standards. For example, excessive $\mathrm{H}_{2} \mathrm{~S}$ and possibly SO_{2} may be evident in the air near Mammoth and other geyser basins.

GEOLOGY

The geologic history of the IPGA is dominated by widespread volcanic activity, although sedimentary and metamorphic rocks are also found. Water, gravity, wind, and glaciers have acted on the geologic units and on the products of rock disintegration. While water and gravity reworked and redistributed materials already in the IPGA, wind and glaciers brought foreign earth materials into the IPGA.

Geologic History

According to a geologic history summarized by Whitehead (1978), the upper Henrys Fork basin is at the eastern end of the Snake River Plain, a downwarped feature extending in an arc across southern Idaho and into Wyoming. The plain cuts across preexisting Mesozoic and Cenozoic structures at nearly right angles. The pre-Cenozoic rocks underlying and bordering the plain are comprised of igneous, metamorphic, and sedimentary rocks. As the plain was being downwarped, volcanism and sedimentation filled it with basalt,
rhyolite, and sedimentary deposits.
A large shield volcano formed in the south central part of the IPGA and later collapsed to form the Island Park caldera. The elliptical collapse structure covers an area approximately 18 by 23 miles. The western and southern rims of this feature are clearly visible as a semicircular arc formed by Thurmon Ridge and Big Bend Ridge (Map 1).

Rhyolitic ash flows originating from the Yellowstone Plateau covered the eastern part of the IPGA before and after eruption of rhyolitic and basaltic flows from the pre-caldera shield volcano. The flows that occurred after the caldera formed covered the eastern rim and overlapped flows from the collapsed volcano. At about the same time, basalt flows occurred southeast of the caldera along the southern part of the study area.

Glaciers scoured the highlands in late Pleistocene time, providing outwash to the valleys and stream channels. Contemporaneously, basalt of the Snake River Group flowed from vents south and west of the caldera and covered some of the rhyolitic ash flows. Some basalt lapped up onto the caldera rim and may have spilled into the caldera itself. Additional rhyolitic lava and ash flows were coeval with the glacial deposits and basalt flows of the Snake River Group. These latest flows issued from vents north and east of the caldera and covered much of the eastern part of the study area.

Rock Types and Geologic Structures

Descriptions of the major rock types are found in Table 3. The general geology of the area is shown on Map 3. The geologic reports used in its compilation provide much more detail than the units shown on the map.
3. GENERAL GEOLOGY

TABLE 3. ROCK UNITS IN THE ISLAND PARK GEOTHERMAL AREA

ERA	PERIOD	EPOCH	ROCK UNIT	DESCRIPTION
Cenozoic	Quaternary	Holocene	Alluvium	Alluvium, colluvium, landslide and glacial materials; primarily unconsolidated silt, sand and gravel.
		Holocene and Pleistocene	Plateau Rhyolite	Rhyolitic ash-flow tuff, light gray, dense, lithoidal, fine grained to aphanitic; angular to round phenocrysts of quartz, sanidine, clinopyroxene, orthopyroxene, fayalite, and sphene make up about 25% of rock volume.
			Basalt	Composed of basalt of the Snake River Group, older basalt of Island Park caldera fill, and basalt south and southeast of Henrys Fork near Ashton. The flows consist chiefly of olivine basalt. Generally, the flows of the older basalt are of the pahoehoe type, whereas those of the Snake River Group consist of both aa and pahoehoe types.
			Yellowstone Group	Rhyolitic ash-flow tuff; consists of three formations similar in mineral content and chemical composition. Phenocrysts of quartz, sanidine, and oligoclase are common, some phenocrysts of clinopyroxene, fayalite, hornblende, chevkinite, allanite(?), apatite, and zircon. The formations are Lava Creek Tuff, Mesa Falls Tuff, and Huckleberry Ridge Tuff.
	Tertiary	Pliocene	Snake River Butte Rhyolite	Crystalline rhyolite, locally preserved glassy outer zone, somewhat hydrothermally altered; quartz, sanadine, plagioclase, and clinopyroxene present.
Cenozoic and PreCenozoic	Pre- Quaternary	Pre- Pleistocene	Undifferentiated Rocks	Undifferentiated igneous, sedimentary, and metomorphic rocks. Includes igneous volcanic rocks of Tertiary age comprising about two 15 -square mile areas, one roughly centered on Sawtell Peak, and the other from Mount Two Top south toward Reas Pass. Sedimentary and metamorphic rocks of pre-Tertiary age are exposed along the Continental Divide. The sedimentary and metamorphic rocks consist chiefly of limestone, dolomite, sandstone, siltstone, and quartzose sandstone.

Source: Whitehead, R.L., 1978; Pacific Northwest River Basins Commission, 1970; Christiansen, R., personal communication, 1978.

The subsurface distribution of geologic units is defined in a general way and only for parts of the IPGA because data are lacking. The thickness of the alluvium is better defined than that of other geologic units because drillers' logs are the chief source of subsurface information and most wells were drilled near stream channels in alluvial deposits.

A gravity survey by Peterson and Witkind (1975) indicates that the alluvial fill in the elongate valley of Henrys Lake is 3,600 feet or more thick. The fill is derived from volcanic and sedimentary rocks from adjacent highlands (map 3). It is thickest near the southern end of Henrys Lake and thins toward the edges of the valley. In the southern end of the valley near Big Springs, the alluvium is less than 100 feet thick, and at many places, only a few feet thick.

The eastern part of the basin and the Island Park caldera, which are partly covered by Plateau Rhyolite, were described in detail by Hamilton (1960 and 1965). In the Last Chance-Osborne Bridge area, the alluvial deposits are generally less than 100 feet thick and thin rapidly toward the south.

Normal faults found in the IPGA are shown on Map 3. The faults associated with the land collapse that created the caldera are superimposed on fault blocks which trend north to northwest. These blocks are bounded by normal and vertical faults. The Island Park area is flanked on the north and east by the very active intermountain seismic belt; however, Island Park itself is conspicuous by its lack of seismicity.

Economic Geology

The IPGA is not known for its mineral wealth or mineral production. Mineral commodities are limited to materials that are low in unit value. The absence of valuable ore deposits is a result of the recent volcanic activity.

Crushed rhyolite and basalt are used as road metal and aggregate; rhyolitic cinders are also used but are inferior to non-cinder basalt. Basalt is also used for building purposes (the facing of homes, chimneys, patio walks).

A deposit of pumicite is located in the Montana part of the IPGA. This light colored, finely divided volcanic ash or dust is most commonly added as an abrasive to hand soaps and household cleansers. Pumicite, in the past, was extracted from the Montana site and sold in small amounts as a polishing agent. The site is now inactive.

Some sand and gravel deposits are located on the Idaho and Wyoming parts of the IPGA, while the Montana section has limited quantities. These glacial and alluvial materials are used as aggregate for concrete and for subbase in road construction.

Variscite, a semiprecious mineral, occurs in sedimentary rocks near Mount Two Top at the north end of the Idaho part of the IPGA (see Map 1). This mineral slightly resembles turquoise and can be used in jewelry.

The IPGA is near the Willard overthrust belt, a geologic province with great oil and gas potential. Discoveries have been made in the overthrust belt in northern Utah and southwestern Wyoming. Oil and gas may be in Idaho as well, but the potential in and near the IPGA is unknown since no drilling has been undertaken.

The geothermal potential of the IPGA is unknown at present. Existing data are inadequate to predict areas of high geothermal potential. A hot geothermal system similar to that in Yellowstone National Park is not likely because no major silicic body now underlies the IPGA, as is the case for Yellowstone National Park. It is important to consider, however, that a lower temperature geothermal resource might exist at moderate depth. Thus, the exact nature of a geothermal system, if present, will probably not be known until a geothermal exploration and drilling program has been completed.

GEOLOGIC HAZARDS

Avalanches, Land and Earthslides

The potential for landslides, earthquakes and snow avalanches exists in the rugged mountains around Henrys Lake. The variety of sedimentary rocks, faults, the relative positions of rock units, and the erosion patterns could trigger some form of rock or earth failure. Abundant moisture from spring snowmelt can lessen stresses between soil and rock and between rock types resulting in an earth or rockslide. A major earthquake could have disastrous effects on loose and unstable slopes in these mountains. Map 4 indicates the area with the highest potential for these hazards. Elsewhere in the IPGA the possibility of these hazards is low to nonexistent.

Following the collapse of the land surface associated with the creation of the caldera, there has been no recognized land subsidence in the IPGA in historical times.

Floods
Serious flooding is rare in the IPGA, though overbank flows occur in some streams during spring runoff. These areas of high localized flows along lesser IPGA streams are shown in Map 4.

Seismicity

In most of the IPGA, earthquake caused devastation has not occurred. However, on August 17, 1959, an earthquake of magnitude 7.1 (Richter Scale) violently shook the area around Hebgen Lake, Montana, near W. Yellowstone, Montana. The shocks affected 600,000 square miles, including all of the IPGA. Extensive damage was reported from W. Yellowstone, where foundations, chimneys, structures, railroad tracks, and roads were damaged. In the Idaho part of the IPGA, damage was also widespread but milder than in West Yellowstone.

Information from seismometers has been used to locate epicenters and compute magnitudes of earthquakes believed to have originated under the IPGA (Map 4). Hebgen Lake, W. Yellowstone, and an area around the nuclear reactor testing facility near Arco, Idaho are monitored with seismometers. A recent seismic risk map included the IPGA in a zone where major damage can occur. This zone has the highest risk and high intensity disturbances can be expected.

A study of Henrys Lake examined ground breakage, rockfall and rockslide hazards that could be associated with earthquakes of varying magnitudes. An earthquake could cause a sloshing effect in Henrys Lake which could flood parts of the shoreline and inundate low-lying land.

WATER RESOURCES

Several studies of ground and surface water in the IPGA have been done. A recent investigation provides data for a large part of the Idaho section. The Montana and Wyoming sections have not been studied in as much detail. However, all three sections are meteorologically, geologically, and hydrologically similar.

Groundwater

Almost all of the geologic units contain some groundwater, as described by Whitehead. Much of the water occurs under water table conditions (i.e. unconfined), although artesian conditions (confined) may occur. Unconsolidated alluvial and glacial materials along stream channels and in valleys are the more productive aquifers. These usually provide adequate yields to wells. Basalt aquifers are highly variable, but large yields can be obtained if fracture zones are penetrated. The rhyolitic ash flows (Yellowstone Group and Plateau Rhyolite) yield quantities sufficient for domestic purposes, but large yields are limited to places where flows are highly permeable. The known and estimated hydraulic properties of the various rocks and unconsolidated materials are presented in table 4.

There are several hundred wells in the IPGA. Most are concentrated along streams in areas of summer home development. Only a few wells are used for irrigation. The residents of West Yellowstone use wells (in unconsolidated obsidian sands) primarily as a domestic water supply. Water levels are generally highest from June to September due to groundwater recharge from the melting snowpack. Lowest water levels occur in the early part of the year.

TABLE 4. HYDROLOGIC ASPECTS OF ROCK UNITS IN THE ISLAND PARK GEOTHERMAL AREA

$$
\text { (TDS = total dissolved solids; } T=\text { transmissibility) }
$$

Rock Unit ${ }^{\text {² }}$	Water-bearing Characteristics	Water Quality
Alluvium	Typical reliable source of water for domestic use; T ranges from 5,000 to $170,000 \mathrm{gal} / \mathrm{day} / \mathrm{ft}$	TDS rarely exceeds 1,000 and usually less than $500 \mathrm{mg} / \mathrm{I}$; water generally moderately hard to very hard
Plateau Rhyolite	Extensive fractures create high secondary permeability; no well developed surface water drainage system; melt water and rain easily seep downward into soil and rock in the permeable ash flows; T ranges from 3,000 to $90,000 \mathrm{gal} /$ day $/ \mathrm{ft}$	TDS generally less than $300 \mathrm{mg} / \mathrm{I}$; water soft to moderately hard; Na and K predominate over Ca and Mg
Basalt	Yields abundant water for most uses. An important aquifer in parts of the IPGA Low rock permeability, high formation permeability; water travels between flows and along rubble separating flows; T ranges from 1,500 to $65,000 \mathrm{gal} / \mathrm{day} / \mathrm{ft}$	TDS generally less than $300 \mathrm{mg} / \mathrm{l}$; Ca and Mg predominate over K and Na
Yellowstone Group	Generally yields adequate supplies of water for domestic and stock use. Highly permeable at places but in other places the unit is tightly welded and will not yield adequate supplies of water for irrigation use. Important to the basin's water yielding capability; T ranges from 400 to $12,000 \mathrm{gal} /$ day $/ \mathrm{ft}$	Similar to Plateau Rhyolite
Snake River Butte Rhyolite	Intensely fractured and jointed, probable moderate to high permeability; no wells drilled	Probably similar to Plateau Rhyolite
Undifferentiated Rocks	Probable water bearing units are limestone, dolomite and sandstone; others are very poor suppliers of water or are aquicludes	Variable, depends on rock type; quartzose sandstone and some metamorphic and igneous rocks would probably be soft to moderately hard, while limestone and dolomite would be hard to very hard.

1 The order of this column is the same as in table 3.
Source: Whitehead, R.L., 1978; Pacific Northwest River Basins Commission, 1970;
Christiansen, R., personal communication, 1978

Warm River Spring flows 90,000 gallons of water per minute from the base of the Moose Creek Plateau.

Numerous springs occur within the IPGA; some are perennial and others are ephemeral (flowing only when the local groundwater supply is sufficient). The two largest, Big Springs and Warm River Spring, each discharge about $90,000 \mathrm{gal} . / \mathrm{min}$. to Henrys Fork and Warm River, respectively. Several springs are thermal (greater than $12^{\circ} \mathrm{C}$ or $54^{\circ} \mathrm{F}$; map 5). Discharge values and chemical parameters from selected springs are shown in table 5. A more complete listing of chemical analyses of thermal and cold groundwater is in Appen$\operatorname{dix} A$ and B.

There are 13 thermal features in Yellowstone National Park less than 12 miles from the IPGA. These include small seeps, springs, fumaroles, mud pots, thermally and chemically altered areas, and one small geyser. Temperatures range from $18^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F}\right)$ to $94^{\circ} \mathrm{C}\left(201^{\circ} \mathrm{F}\right)$ and flows range from relatively insignificant seepage to large volumes of warm water.

Data are not available in detail to determine groundwater flow patterns over the entire IPGA. However, some information for Henrys Fork basin indicates that groundwater movement occurs locally within the basin between low subbasin drainages. But in general, around Henrys Lake it moves toward the lake. South of Henrys Lake, it moves south, paralleling the flow of Henrys Fork. Near Island Park Reservoir, it moves south and east towards the reservoir. Near Ashton, it flows north and west toward Henrys Fork. However, most of the water in the Henrys Fork drainage basin above Ashton is from precipitation in the basin. A small part of
the basin's natural drainage system is in Yellowstone National Park on the Yellowstone Plateau where a large part of the basin's precipitation occurs. Groundwater flow in the West Yellowstone area is assumed to be from the highlands toward the South Fork of the Madison River. Groundwater flow in the Wyoming part of the IPGA is assumed to be towards the major streams draining the area.

TABLE 5. CHARACTERISTICS OF SELECTED SPRINGS IN THE ISLAND PARK GEOTHERMAL AREA

Name	Flow gal/min	Water Temperature ${ }^{\circ} \mathrm{C}$ and date of Measurement	Geohydrologic unit	Specific Conductance in field umhos/cm at $25^{\circ} \mathrm{C}$	pH	Total Hardness mg/I
(Idaho)						
Big Springs	92,200	11.8 (9/8/77)	Rhyolitic flows \& tuffs	110	6.7	21
Warm River Spring	90,000	10.3 (9/21/77)	same	118	6.8	21
Pineview Campground Springs	4,300	5.0 (9/10/75)	Basalt	82	-	-
Osborne Springs	3,460	5.5 (6/08/74)	Basalt	81	7.3	-

(Montana)

| Black Sand
 Spring | - | $9.5(9 / 07 / 77)$ | Alluvial obsidian
 sand; rhyolitic
 tuff | 98 | 6.8 | 18 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| S. Fork Madison
 River Springs | - | $4.8(9 / 07 / 77)$ | Rhyolitic flows
 \& tuffs | 48 | 6.6 | 17 |

Source: Whitehead, R.L., 1978; U.S. Forest Service, 1977, unpublished records

The quality of IPGA groundwater is generally satisfactory for most uses and meets Federal and State drinking water standards. However, fluoride concentrations in some parts of the IPGA may exceed the recommended limit of $2.4 \mathrm{mg} / \mathrm{I}$.

Groundwater in sedimentary rocks in the northern part of the IPGA is the calcium magnesium bicarbonate type; in basalts, it contains calcium and magnesium and relatively little sodium and potassium, and is less mineralized than water moving through the sedimentary rocks. In the rhyolitic flows and tuffs, it has a predominance of sodium and potassium over calcium and magnesium, and has a low dissolved mineral content. Table 4 summarizes the water quality characteristics of the IPGA rock types.

Human influences on the surface water and shallow groundwater systems are likely in areas of the IPGA where septic tank systems are used for waste disposal, particularly along streams where summer homes are concentrated.

Little is known about a geothermal resource in the IPGA. Most of the information on thermal water in the area is from a few water samples from selected springs, shown in Appendix A. However, detailed water quality data from Yellowstone National Park thermal water are available. The hot springs in the Shoshone and Upper Geyser Basins are known to be generally neutral to alkaline and have high concentrations of silica, sodium, chloride, bicarbonate, fluoride and boron. Some Upper Geyser Basin springs have acidic sulfate water ($\mathrm{pH}=2$) and low chloride concentrations. Chemical analyses from hot springs and geysers on the west side of Yellowstone National Park appear in Appendix C.

Surface Water

The IPGA is an important headwaters area for the Snake River and Missouri River. Water from the Montana part of the IPGA drains into the Missouri River and water from Idaho and Wyoming drains into the Snake River. Three significant watersheds in the IPGA include the South Fork of the Madison River in Montana, Henrys Fork of the Snake River, primarily Idaho, and Falls River in Wyoming and Idaho (Map 5).

Henrys Fork of the Snake River winds through the center of the Island Park Geothermal Area.

Falls River originates in Yellowstone National Park and flows to Henrys Fork of the Snake River.

Data collection in the Upper Henrys Fork drainage began in 1890 when the US Geological Survey installed a gaging station on Henrys Fork near Ashton. Other stations were subsequently added and volumes of stored water in Henrys Lake and in Island Park Reservoir were also measured. Numerous miscellaneous streamflow measurements in the Upper Henrys Fork drainage have been made. A great deal of hydrological information is available for the Idaho part of the IPGA and some exists for the Montana and Wyoming parts.

The flow in Warm River, Buffalo River, and Big Springs Creek is maintained at a nearly constant rate by large contributions from groundwater. Minor streams are ephemeral, flowing only when the water table is high or when runoff is suitable. The mean annual discharge for two of the three main rivers draining the area is as follows: Henrys Fork near Ashton, $1,441 \mathrm{cfs}(1,044,000 \mathrm{ac}-\mathrm{ft}$./yr.; from 55 years of record), and Falls River, near the point where it leaves the IPGA, $777 \mathrm{cfs}(562,900 \mathrm{ac}-\mathrm{ft}$. /yr.; from 61 years of record). Annual discharge data for the South Fork of the Madison River are not adequate to determine annual flow (table 6). Mean annual and mean monthly hydrographs for Henrys Fork and selected tributaries are presented in figure 6.

The flow on Henrys Fork is regulated at three dams located at Henrys Lake, Island Park Reservoir, and Ashton Reservoir. These dams prevent natural variation in flows. Water diversions into irrigation canals near the west edge of the IPGA alter the flow of Falls River during late spring and summer. No major diversions are made from the South Fork of the Madison River in Montana.

Island Park Reservoir stores water from Henrys Fork of the Snake River for downstream water uses.

Storage capacity for Island Park Reservoir, Ashton Reservoir, Henrys Lake, and Hebgen Lake are in table 7.

Major flooding is not a problem along Henrys Fork at most places because reservoirs control flows and the channel is well defined. Streams where localized flooding occurs from spring runoff are shown in map 4. High water invades low-lying willow thickets and does little damage. However, one exceptional flood on Thirsty Creek (map 5) in 1960 damaged U.S. Forest Service roads and undermined a quarter mile stretch of Union Pacific Railroad track.

TABLE 6. DISCHARGE DATA FOR STREAMS IN THE ISLAND PARK GEOTHERMAL AREA

Stream	Average Discharge, cfs	Period of Record	Recorded Peak Flows: cfs and date	Drainage Area in Square Miels
Henrys Lake Outlet, below dam	$\begin{aligned} & 52.9(38,330 \\ & \mathrm{ac}-\mathrm{ft} / \mathrm{yr}) \end{aligned}$	46 yrs .	907 (6/1926)	99.3
Henrys Fork near Island Park, below Island Park Reservoir Dam	$\begin{aligned} & 594(430,400 \\ & \text { ac-ft/yr) } \end{aligned}$	$42 \mathrm{yrs}$.	2,770 (4/1946)	481
Henrys Fork near Ashton, downstream of Ashton Reservoir Dam	$\begin{aligned} & 1,441(1,044,000 \\ & \mathrm{ac}-\mathrm{ft} . / \mathrm{yr}) \end{aligned}$	$55 \mathrm{yrs}$.	6,220 (5/1925)	1,040
Falls River, 3 miles west of IPGA boundary	$\begin{aligned} & 777(562,900 \\ & \mathrm{ac}-\mathrm{ft} / \mathrm{yr}) \end{aligned}$	$61 \mathrm{yrs}$.	6,440 (6/1927)	326
Buffalo River, at Island Park	$\begin{aligned} & 180(130,090 \\ & \text { ac-ft/yr) } \end{aligned}$	9 yrs .	$638(4 / 30 / 38)$	59.1
Warm River, at Warm River	$\begin{aligned} & 210(151,770 \\ & \mathrm{ac}-\mathrm{ft} / \mathrm{yr}) \end{aligned}$	$22 \mathrm{yrs}$.	900 (6/2/12)	145
Robinson Creek, at Warm River	$\begin{aligned} & 120(86,720 \\ & \text { ac-ft/yr) } \end{aligned}$	20 yrs .	1,140 (5/28/12)	126

Stream
-IDAHO STREAMS-

> -MONTANA -

Discharge in the S . Fork of the Madison River; measured at the US 191-20 highway bridge (the north edge of the IPGA)

Date	Flow, cfs
22 June 1977	110.1
10 August 1977	105
13 Sept. 1977	105

Source: US Geological Survey, 1976; US Geological Survey, personal communication, 1978; unpublished records of the US Forest Service

TABLE 7. STORAGE CAPACITY IN LAKES AND RESERVOIRS IN OR NEAR THE ISLAND PARK GEOTHERMAL AREA

Idaho	Capacity (acre-feet)	Drainage Area (square miles)
Henrys Lake	$140-92,100$	99
Island Park Reservoir	$5,280-143,500$	481
Ashton Reservoir	$7,457^{1}$	1,040
Montana	$200,000-350,000$	905

${ }^{1}$ Maintained near this volume for power generation
Source: US Geological Survey, 1976; personal communication with US Bureau of Reclamation, and Montana Power Company

FIGURE 6. STREAMFLOW CHARACTERISTICS IN THE IDAHO PART OF THE ISLAND PARK GEOTHERMAL AREA (IPGA)
(MEAN ANNUAL AND MEAN MONTHLY DISCHARGE)

HENRYS FORK NEAR BIG SPRINGS

BUFFALO RIVER AT ISLAND PARK

FALLS RIVER NEAR IPGA BOUNDARY

Idaho, Montana and Wyoming have established a water quality classification system for State surface water networks. The surface waters in the IPGA flowing on Federal lands fall under the water quality classification schemes of these States. Table 8 presents each State's surface water classification system.

TABLE 8. WATER USE AND QUALITY DESIGNATIONS IN THE ISLAND PARK GEOTHERMAL AREA: STATE CLASSIFICATION SYSTEMS FOR SURFACE WATER

	State Classification Grading Level	Basis for Classification	Uses to be Protected	Number of Streams in the IPGA in this Class
Idaho	A (highest of 3 classes)	Primary contact recreational waters in which bodily submergence and accidental swallowing of water may occur	Domestic and industrial water supply, irrigation, livestock watering, salmonid fish spawning and rearing, other fishing and aquatic life, hunting and wildlife, water skiing and swimming, pleasure boating, aesthetics	All
Montana	B-O1 (3rd highest of 8 classes)	Maintenance of quality for drinking, culinary and food processing purposes (after adequate treatment)	Bathing, swimming and recreation, growth and propagation of salmonid fishes and associated aquatic life, waterfowl, furbearers, agricultural and industrial water supply	All
Wyoming	II (2nd highest of 4 classes)	Support game fish or have the hydrologic and natural water quality potential to do so	(the 4 classes are based on fisheries quality, or potential; Wyoming seeks to protect the best possible quality of waters commensurate with the uses in or for; agriculture, fish and wildlife, industry, public water supply, recreation, scenic value)	All

Source: State of Idaho Water Quality Standards and Wastewater Treatment Requirements (June, 1973), and Idaho Water Quality Status (May, 1975); State of Wyoming Water Quality Rules and Regulations, Chapter 1, Quality Standards for Wyoming Surface Waters (May, 1978); State of Montana Water Quality Standards
(undated, MAC 16-12.14 (10)-S 14480)

The chemical composition of surface water is dependent on the rocks with which it has come in contact. The general composition of surface water in the IPGA is as follows: calcium magnesium bicarbonate water drains from sedimentary rocks that include carbonates, calcium magnesium water drains from the basalts; and sodium potassium water drains from the rhyolite ash flows and lava. However, the surface water may have contacted more than one predominant rock type and thus represent a mixture of different waters (e.g. Henrys Fork near Ashton, table 9). Table 9 shows water chemistry for the three main drainages in the IPGA. Water quality for other drainages appears in Appendix D.

Turbidity and suspended solids have been studied in the surface water. While erosion is not a major problem in the IPGA, surface water quality is sometimes adversely influenced by logging activities, road construction near streams, grazing animals that trample streambanks, and dirt roads that channel surface runoff to streams. Turbidity is low in the Upper Henrys Fork drainage, averaging 1.4 Jackson turbidity units; suspended solids average about $7.5 \mathrm{mg} / \mathrm{I}$. Limited sampling in the South Fork of the Madison River at the U.S. 191/20 highway bridge showed turbidity of zero Jackson units, and suspended solids of 2.7 and $4.9 \mathrm{mg} / \mathrm{I}$ (2 samples).

TABLE 9. SURFACE WATER CHEMISTRY FOR THREE DRAINAGES IN THE ISLAND PARK GEOTHERMAL AREA (mg/l except where noted)

Source: unpublished records of the US Geological Survey

Much is known about surface water quality in the Upper Henrys Fork basin from Whitehead's 1974 and 1975 work. Nitrogen and phosphorous are generally low, but show some seasonal variation and are troublesome in places. During the warm months, when biological activity is high, the concentrations are at their lowest levels, suggesting consumption by plant and animal life.

In parts of Henrys Fork and its tributaries above Ashton, algal and plant growths are common for part of the summer, although not at nuisance levels. However, nuisance growths do occur in Henrys Fork from near Last Chance to Osborne Bridge (map 5). The river is unshaded, wide, and fairly shallow in this reach and is downstream from most of man's influences in the upper part of the basin. Water temperature, also important to a stream's biologic activity, can remain over $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ in this reach for several days at a time under certain weather conditions.

Phytoplankton data from Henrys Lake and Island Park Reservoir indicate that the water bodies undergo yearly changes in fertility. Generally, in the spring after winter stagnation under ice cover the dominant algae are diatoms. When circulation improves with warmer temperatures and sunlight, blue-green algae, which are indicators of eutrophication, are dominant. Nutrient concentrations for water from Henrys Lake and Island Park Reservoir indicate an increase during the cold months, when blue-green algae production slows down, and a decrease during the season of productivity.

Hebgen Lake, north of the Montana part of the IPGA, is relatively warm and high in nutrients, with relatively high concentrations of arsenic and fluoride. The Madison River enters the lake from Yellowstone National Park and contains water high in dissolved minerals from many hot springs and geysers. The abundant nutrients stimulate seasonal algae growths creating a eutrophic condition (highly enriched).

Microbiological sampling done by Whitehead revealed that human and animal wastes affect the surface water at some sites, particularly during the summer. In July 1975, Henrys Fork above Island Park Reservoir had a combination of bacteria that indicates a predominance of human waste in a mixed animal and human source pollution. Henrys Fork near Ashton during the same period had bacteria indicative of wastes wholly or predominantly from animal sources.

Pesticides and herbicides have been used in the IPGA. In 1977, surface water was sampled for these substances in Henrys Fork, Falls River, and the South Fork of the Madison River at the IPGA boundary. No residual pesticide or herbicide was detected in this sampling (Table 9).

Boron is often found in waters draining from volcanic lands. Cultivated crops have varying sensitivities to boron in irrigation water. According to a U.S. Department of Agriculture study which rates crop tolerance to boron, the commercial crops grown downstream of the IPGA are either semi-tolerant (oats, wheat, barley and potatoes), or tolerant (alfalfa and sugar beets) to boron in irrigation water. This study has also rated the quality of the irrigation water with respect to boron concentration. For the water to be considered in the excellent grade class, the boron concentration must not exceed $0.67 \mathrm{mg} / \mathrm{I}$ for semi-tolerant crops, and must be less than $1.00 \mathrm{mg} / \mathrm{I}$ for tolerant crops. In Falls River where it leaves the IPGA, the concentration is $0.3 \mathrm{mg} / \mathrm{I}$; in the South Fork of the Madison River and in Henrys Fork, where each river leaves the IPGA, the concentration is $0.05 \mathrm{mg} / \mathrm{I}$.

Water Rights

The three states (Idaho, Montana, Wyoming) in the IPGA adhere to the Appropriation Doctrine, also known as the Colorado Doctrine. This states that the user on a water source who first applies the water to a beneficial use is entitled to the first water right on that source; other uses follow in succeeding order through time. "First in time is first in right" often expresses the purpose of the doctrine. Whenever a new water user applies for a water right, the State must decide if prior water rights will continue to receive their respective amounts of water. If the proposed new use interferes with existing rights, the State may disapprove the proposed new use.

VEGETATION

Vegetation in the IPGA is within the Rocky Mountain Douglas-fir forest province. Vegetal habitat types are a result of complex interactions between elevation, temperature, moisture, aspect, and soils. Disturbances such as fire, logging, and grazing also affect the vegetation to varying degrees.

The major forest habitat types were identified and mapped (Map 6). A document describing the ecological relationships, species composition, coverage, etc. of each habitat type is on file with the Targhee National Forest. Table 10 is a summary of characteristics and percent of the total of each major habitat on the IPGA; rivers, streams, marshes, riparian, and unique habits (cliffs, caves, and talus) account for less than one percent of the area.

Riparian habitats are typified by sedges, rushes and grasses with a shrubby overstory of willows, dogwood, hawthorn and alder. Found along the edges of streams, ponds and poorly drained canyon and valley bottoms, riparian habitats are virtually flooded during spring runoff, but usually dry by mid-to late-summer. Riparian habitats, having a high capacity for filtering out sediment of overland flows from adjacent lands, are

also highly susceptible to overuse and easily disturbed. Studies have shown that because riparian habitats are extremely important to wildlife they receive more use per unit area than any other type. Of 253 species of wildlife known to occur on the IPGA, 193 (76 percent) are either directly dependent on riparian zones or use them proportionately more than any other site.

TABLE 10. CHARACTERISTICS OF VEGETATIVE HABITATS ON THE ISLAND PARK GEOTHERMAL AREA

Habitat (percent) of total IPGA)	General location on IPGA	Ecological characteristics	Characteristic plant species
Douglas-fir Series (42)	- Moderate elevations (5100-7200 feet) - Broad belt which merges with mountain brush and alpine fir series	- Warmest and driest Forest areas - Lodgepole pine presently dominates most sites - Alpine fir and spruce are accidental - Aspen sometimes dominates but on small areas - Lodgepole pine is under epidemic attack by mountain pine beetle	- Douglas-fir - Lodgepole pine - Quaking aspen - Snowberry - Spirea - Globe huckleberry - Meadowrue - Aster - Sticky geranium - Pinegrass - Elk sedge
Alpine fir Series (44)	- Borders Douglas-fir Series and extends to timberline or Continental Divide - Predominantly in eastern and southeastern portions next to Yellowstone National Park and the Teton range	- Cooler, damper sites - Lodgepole pine presently dominates and persists for longer time - Douglas-fir occurs in a seral role - Aspen, limber pine and spruce occur periodically - Lodgepole pine is under attack by pine beetle.	- Subalpine fir - Lodgepole pine - Quaking aspen - Douglas-fir - Limber pine - Engelmann spruce - Globe huckleberry - Grouse whortleberry - Snowberry - Spirea - Meadowrue - Lupine - Pinegrass - Elk sedge
Sagebrush-grass (6)	- Lower elevations, on dry, course-textured soil - Occurs largely on Bureau of Land Management lands in central and western portions - Also found scattered throughout the forested series on dry, rocky, windswept outcrops	- Sagebrush usually dominant - Scattered Douglas-fir along southern portion along ecotone with Douglas-fir series	- Big sagebrush - Threetip sagebrush - Snowberry - Woods rose - Knotweed - Sticky geranium - Bluebunch wheatgrass - Nevada bluegrass - Idaho fescue
Mountain brush (3)	- Found on lowest and driest sites - Borders the Douglas-fir series along southwestern border - Also found along river courses on dry, southwestfacing slopes	- Dominated by shrubs other than sagebrush although sagebrush is present	- Rocky Mountain maple - Chokecherry - Rabbitbrush - Big sagebrush - Serviceberry - Eriogonum - Aster - Bluebunch wheatgrass
Wet Meadow (3)	- Scattered throughoutpredominantly in northern, central and southeastern portions - Found on sites with high water table, or where runin or flooding is common	- Floristically and ecologically diverse - Highly susceptible to disturbance during growing season - Rate of recovery at higher elevations is slower than at lower sites	- Willow - Wyethia - Camass - Pondweed - Yampa - Bluegrass - Junegrass - Sedges - Rushes

Marshes occur on areas with very poor drainage, and usually are inundated during most of the growing season. The largest concentration is in the southeastern portion of the IPGA. This vegetation type can also be found in and along shallow potholes, meandering streams, and large water bodies. Typical plants include rushes, sedges, cattails, pondweed, mosses, and water lily.

Unique habitats (cliffs, caves, and talus) where little vegetation is found are widely distributed. Individually they occupy a small percentage of the total area and are restricted in location. Since unique habitats are a product of geologic processes, they cannot be artificially created or maintained.

Approximately 5 fires per year occur on the IPGA. About half are man-caused and half lightning-caused. Fires are usually less than $1 / 2$ acre and less than 10% reach 10 acres. Most man-caused fires occur near developed areas (Island Park) and heavily used recreation sites and travel routes (popular trails, campgrounds, etc.). Lightning fires occur throughout the IPGA.

In the past, fire played a significant part in the structure and function of vegetative communities. Prior to 1920, large, infrequent fires occurred throughout the IPGA. Large expanses of lodgepole pine presently occupying most of the area resulted from fires which occurred at approximately 100-200 year intervals. After 1920 effective suppression techniques reduced fires of significant size. However, with the change in Forest Service fire policy and increased fire management planning, fire's role in portions of the IPGA may be expected to take a more natural course.

With the extensive downfall of lodgepole pine resulting from the mountain pine beetle attack, fuel loads in the IPGA are increasing rapidly. It is estimated that they will reach $50-75$ tons per acre by 1982. This increase will be due to beetle-killed lodgepole pine which will fall and create "jackstraw" fuel and access hazards. The current salvage and fuel management program is alleviating this increased loading somewhat. Topographic and climatological conditions conducive to a large fire in lodgepole pine (steep terrain, high winds, high temperatures, and low fuel moisture) are infrequent, and the probabability of a large fire is low. Nevertheless, a large fire could threaten developments within the IPGA, necessitating fuel reduction around these improvements.

Threatened and Endangered Plants

The Endangered Species Act of 1973 authorized the Secretary of the Interior to designate threatened and endangered plants as well as animals. The Act also directed the Smithsonian Institute, in conjunction with other agencies, to prepare a list of plants considered endangered or threatened. This list was published by the Fish and Wildlife Service (Federal Register, Vol. 40, No. 127) in 1975.

In 1977 and 1978 a survey of the IPGA was conducted to determine the presence of any species on the Smithsonian list. The list in Endangered and Threatened Plants of Idaho by D.M. Henderson was also checked. No species on either list was found on the IPGA. The final report is on file with the Targhee National Forest.

CULTURAL RESOURCES

An overview of cultural resources was prepared for the Island Park Geothermal Area in October, 1977, to review existing information and to identify sites of historical or archaeological significance for future surveys. This report is filed in the Supervisor's Office, Targhee National Forest, St. Anthony, Idaho.

Prehistoric

Evidence from the IPGA and surrounding regions indicates that human occupation dates back at least 12,000 years. The consensus of archaeologists who have examined the region is that the IPGA was used seasonally or as a migration route. The exception to this was year-round occupation by the Tukudika or Sheepeaters, mountain Indians who were primarily hunters and did not travel as much as mounted tribes.

The eastern Shoshone (Snake) tribes were the most common summer migrants through the area. Other tribes which are thought to have spent some time in the area include Blackfeet, Crow, and Flathead.

Historic
During the summer of 1810, an expedition of trappers under the leadership of Andrew Henry became the first known white men to pass through the Island Park area. Until about 1840, trapping was an important activity in the area.

The first known white man to settle close to the IPGA was Gilman Sawtell who took up residence in about 1868 and developed a business taking fish from Henrys Lake and shipping them to markets in Montana and Utah.

In 1877 the Nez Perce Indians, led by Chief Joseph and retreating from U.S. Army pursuit, passed through Henrys Lake Flat and into Montana by way of Targhee Pass.

Many Indian campsites and most historic sites of early white settlers are located on private land.
Big Springs, the headwaters of Henrys Fork of the Snake River, was nominated for addition to the National Registry of Natural Landmarks, but has not yet been added to the register by the advisory committee.

RECREATION

The IPGA provides more than one million visitor days of yearlong recreation use annually, with an increase of about 5% per year. Recreational use occurs mainly along major roadways and water areas such as Island Park Reservoir and Henrys Fork of the Snake River.

The IPGA is one of the most popular snowmobile areas in the intermountain west.
The IPGA contains large acreages of private land, much of which is being subdivided for recreational residences. Most are adjacent to Henrys Fork and U.S. Highway 20/191, near West Yellowstone, Island Park Reservoir of Henrys Lake. One area of unsubdivided private land is the Railroad Ranch, designated Harriman State Park in April, 1977. Most dispersed (non-concentrated) recreational activities are centered around snowmobiling, cross country skiing, fishing, boating, and water skiing. (tables 11 \& 12)

More than 2,500 snowmobiles are registered in Fremont County, Idaho. This represents approximately 15% of the machines registered in the State and 33% of those registered in southeast Idaho. An estimated 70% of these registrations are by residents of other counties who register their machines in Fremont County to support the local trail grooming program. Winter weekend use in the IPGA often exceeds 2,000 snowmobiles per day. With the increased popularity of snowmobiling, recreational residences are being used year-round. A cooperative program between the Forest Service and Fremont County has established over 400 miles of groomed snowmobile trails.

Snowmobile use in the Gallatin National Forest portion of the IPGA near West Yellowstone, Montana, is extensive. A snowmobile racing oval located on National Forest lands southwest of West Yellowstone is used many times each winter for competitive events. A number of motels in West Yellowstone offer daily snowmobile tours which primarily use groomed trails on National Forest lands.
7. RECREATION USE

Volume of recreational use is primarily a product of access to points of interest. U.S. Highway 20/191 traverses the IPGA and enables high volume recreational use. This highway is a main artery for traffic through the West Yellowstone gate of Yellowstone National Park. The 1967 Yellowstone Park travel survey lassumed to also indicate present use) indicates that 25% of all visitors entered the Park through the West Yellowstone gate and 27% of all visitors exited there. Projections in the Greater Yellowstone Transportation Study indicate that by 1985 , the Park will annually receive three million visitors. If use of gates is the same then, more than 1.5 million visitors will either enter or exit through the West Yellowstone gate. A high percentage of these visitors will traverse the Island Park Geothermal Area.

Recreational use considerations are shown on Map 7.

TABLE 11. SUMMER RECREATION USE OF FEDERAL LANDS IN AND ADJACENT TO THE ISLAND PARK GEOTHERMAL AREA

	TARGHEE NATIONAL FOREST	GALLATIN NATIONAL FOREST	BUREAU OF LAND MANAGEMENT LANDS	YELLOWSTONE NATIONAL PARK*
Developed Sites	Close to Island Park Reservoir, Henrys Fork of Snake River, Fall River	None	None	None
Undeveloped Sites	Close to streams and riverswidely distributed	Close to S. Fork of Madison River	East of Island Park siding	Cave Falls Area, S.W. corner of Park
Activities a. Hiking (also backpacking)	a. Lionhead Mtn. Area, Two-Top Mtn. Area, Henrys Fork of Snake River	a. South fork of Madison River	a. None	a. Bechler Meadows Area, Boundary Creek (s.w. park)
b. Recreational Vehicle Riding	b. Woods roads throughout area	b. Adjacent To West Yellowstone and on woods roads	b. Primarily in S.W. portion of area $\&$ near Island Park siding	b. None
c. Fishing	c. Lakes Rivers \& Streams throughout	c. S. Fork of Madison River and Hebgen Lake	c. Ashton Reservoir, Henrys Lake Outlet	c. Fall River, Bechler River
d. Viewing	d. Along primary transportation routes	d. Along U.S. 20 \& S. Fork of Madison River	d. Henrys Lake Flat, Ashton Reservoir	d. Cave Falls Area of S.W. Park

[^2]TABLE 12. WINTER RECREATION USE OF FEDERAL LANDS IN AND ADJACENT TO THE ISLAND PARK GEOTHERMAL AREA

TARGHEE	GALLATIN	BUREAU	YELLOWSTONE
NATIONAL	NATIONAL	OF LAND	NATIONAL
FOREST	FOREST	MANAGEMENT	PARK*

Developed Sites	Bear Gulch Ski Area	Snowmobile Racing Oval S.W. of West Yellowstone	None	None
		Island	Just west of	Island Park
Concentrated Use	Sark	Hwy. through (Snowmobiles)	S. Yellow-	Siding, Mea-
	Siding, West Entrance			
	between	stone,	Indian Creek	Henry Lake

Dispersed
Activities

a. Cross Country Skiing b. Snowmobiling	a. Warm River Area, Bear Gulch, Buffalo River, adjacent to commercial development b. All groomed trails \& many ungroomed roads throughout entire area	a. S.W. of West Yellowstone on groomed trails b. Groomed trails south of West Yellowstone	a. Little Use b. Trails on west side of IPGA	a. Along Madison River East of West Yellowstone b. None

* Not in IPGA, but use immediately adjacent to area is important to leasing considerations.

GRAZING

Forage used by livestock contributes significantly to the economies of communities adjacent to the Island Park area. This forage, an important part of many livestock operations, provides summer grazing necessary to maintain viable year-long operations.

Water development structures (troughs, impoundments), and more than 120 miles of range fencing help control livestock distribution and forage utilization.

Approximately 4,300 head of cattle and 15,000 head of sheep use forage within the IPGA. The extent of grazing is shown on map 8 . Table 13 summarizes forage use.
8. GRAZING RESOURCE

TABLE 13. GRAZING SUMMARY FOR THE

 ISLAND PARK GEOTHERMAL AREA| CATTLE | Allotments | Permittees | Acres | Use Season | Animal Unit Months (AUMS)* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National Forest Lands | 8 | 20 | 145,353 | June-Sept. | 12,284 |
| BLM Lands | 6 | 8 | 6,437 | June-Oct. | 1,158 |
| SHEEP | | | | | |
| National Forest Lands | 17 | 11 | 204,558 | Late Mid June-Sept. | 29,103 |
| BLM Lands | 2 | 2 | 400 | June-Sept. | 300 |

*An AUM (Animal Unit Month) is the quantity of forage required by one mature cow ($1,000 \mathrm{lbs}$.) or the equivalent for one month. One month's forage for five mature ewes (sheep) equals one AUM.

The IPGA provides valuable summer grazing for cattle and sheep.

WILDLIFE

The terrestrial wildlife communities inhabiting the IPGA result from vegetative patterns and man's activities. Although the vegetative designs of the IPGA appear homogeneous and unchanging, they are in fact dynamic systems constantly undergoing change through time. Wildlife associated with these communities also change in number, distribution, and composition.

Although much information is available on some animal species, little is available on others. Most information deals with wildlife management units not conforming to the boundaries of the IPGA. When possible, information has been quantified. However, in most cases, dissimilar data had to be combined to arrive at a species final standing in the IPGA. To the extent possible, animals are discussed as individual species or groups of similar species.

A total of 5 amphibians, 8 reptiles, 179 birds, and 61 mammals were identified according to habitat affinity and seasonal use. Migrant and accidentally occurring species were included in the appendix. Species were oriented to a habitat if they used that type for reproduction and feeding. The complete matrix is on file with the Targhee National Forest. Table 14 is a partial listing of the number of habitats used by common species and those of special interest (Appendix E contains a summary of all species).

TABLE 14. SOME COMMON AND SPECIAL INTEREST (*) WILDLIFE SPECIES AND NUMBER OF HABITATS EACH USES. SEE TABLE 15 FOR DIFFERENT HABITATS.
Chorus frog 6
Leopard frog 19
*Rubber boa 21
Racer 20
Common garter snake 23
*Western grebe 13
Great blue heron 19
*Black-crowned night heron 5
*American bittern 4
*Trumpeter swan 19
Canada goose 12
Mallard 23
Gadwall 15
Pintail 16
Blue-winged tea 12
Baldpate 15
Northern shoveler 15
Redhead 16
*Canvasback 11
Turkey vulture 25
*Sharp-shinned hawk 23
*Cooper's hawk 24
Red-tailed hawk 27
*Swainson's hawk 21
*Ferruginous hawk 5
*Golden eagle 29
*Bald eagle 23
*Marsh hawk 10
*Osprey 17
*Prairie falcon 7
*Merlin 23
*American kestrel 25
Blue grouse 25
Ruffed grouse 20
*Sharp-tailed grouse 8
*Sage grouse 6
Sandhill crane 14
Common snipe 14
Spotted sandpiper 11
American avocet 12
California gull 11
Mourning dove 17
*Barn owl 17
Great horned owl 24
*Burrowing owl 4
*Short-eared owl 14
Common nighthawk 22
Calliope hummingbird 18
Belted kingfisher 17
Common flicker 21
*Lewis woodpecker 21
Yellow-bellied sapsucker 15
*Hairy woodpecker 19
Eastern kingbird 19
Western tanager 21
Hammond flycatcher 19
Western wood pee-wee 18
Olive-sided flycatcher 22
Horned lark 7
Tree swallow 24
Bank swallow 17
Gray jay 19
Black-billed magpie 21
Common raven 23
Clark's nutcracker 16
Black-capped chickadee 25
Red-breasted nuthatch 18
Brown creeper 14
Dipper 20
Canyon wren 15
American robin 26
Mountain bluebird 26
Golden-crowned kinglet 14
*Loggerhead shrike 10
Starling 10
*Warbling vireo 11
Yellow warbler 5
Yellow-rumped warbler 23
*Yellow-breasted chat 16
House sparrow 7
Western meadowlark 7
Yellow-headed blackbird 6
Red-winged blackbird 7
Northern oriole 14
Brewer's blackbird 15
Evening grosbeak 19
House finch 19
Pine siskin 22
Green-tailed towhee 11
Vesper sparrow 4
Dark-eyed junco 18
Brewer's sparrow 5
White-crowned sparrow 24
Vagrant shrew 24
Little brown myotis 23
Silver-haired bat 19
Big brown bat 25
Pika 5
Snowshoe hare 18
Least chipmunk 19
Yellow pine chipmunk 25
Yellow-bellied marmot 12
Richardson's ground squirrel 2
Red squirrel 18
Northern pocket gopher 24
Beaver 24
Deer mouse 31
Boreal red-back vole 12
Mountain vole 20
Muskrat 10
Western jumping mouse 17
Porcupine 25
Coyote 30
*Gray wolf (Northern Rky. Mtn. Wolf) 27
Black bear 31
Grizzly bear 27
Marten 14
*Fisher 21
Long-tailed weasel 30
Mink 26
*Wolverine 17
Badger 16
Striped skunk 18
*Canada lynx 19
*Bobcat 26
Elk (Wapiti) 24
Mule deer 23
Pronghorn 25
Moose 25

The number of habitats each species uses for feeding and reproduction is a measure of the adaptability of the species. The greater the number of habitats used the more adaptable the species and the less vulnerable it is to habitat manipulation or loss. The more species using the habitat for feeding and reproduction, the more important it is to wildlife. Table 15 gives a summary of the wildlife-habitat associations.

Analysis of wildlife in the preceding manner does not allow consideration of certain key components of important wildlife groups (winter range, migration routes, reproduction areas, legal considerations, etc.). The following discussion considers key points for species or groups of special interest on the IPGA.
The IPGA does not conform to State Fish and Game Department big game management units, herd units, or hunting districts. Approximately 85% of the IPGA is within portions of Idaho Management Units 60, 61, 62, and 62A, none of which lie entirely within the area. Data collected for these four units, when adjusted to include portions in Montana and Wyoming, reflect features of the big game populations that inhabit the IPGA as a whole. In most cases, available data on big game within the Montana and Wyoming units are identical or very similar to Idaho information.

TABLE 15. WILDLIFE-HABITAT ASSOCIATIONS BASED ON REPRODUCTION AND FEEDING. $A F=$ SUBALPINE FIR: $\mathrm{DF}=$ DOUGLAS-FIR; LPP = LODGEPOLE PINE.

Number of wildlife species using habitat for:

Habitat	Reproduction	Feeding	using habitat
AF/Snowberry	122	141	142
DF/Snowberry	130	160	162
AF/Spirea	121	142	143
AF/Huckleberry	99	106	108
AF/Whortleberry	90	95	96
AF/Pinegrass	94	105	106
DF/Huckleberry	137	162	163
DF/Pinegrass	133	168	168
DF/Spirea	90	116	143
DF/Mountain Maple	127	148	149
LPP/Bitterbrush	72	73	74
Forest Successional Stage			
Grass-Forb	57	164	165
Shrub-seedling	85	175	175
Seral pole	83	150	151
Full-size seral	128	142	152
Full-size climax	125	133	143
Old growth	113	127	136
Aspen Groves	77	123	126
Sagebrush	68	103	103
Mountain brush	71	103	104
Dry Meadows	41	122	122
Wet Meadows	48	128	128
Rivers \& Streams	132	192	193
Lakes \& Reservoirs	82	144	144
Riparian Deciduous	123	170	176
Marshes	109	148	152
Cliffs \& Rims	39	48	62
Talus	23	59	61
Caves	21	10	25
Snags	44	43	58
Down Material	45	73	84

Information on small game and waterfowl was collected by counties and an estimate was made of the proportion occurring on the IPGA. In all cases wildlife population projections and goals are presented and, when relevant, past trends are discussed.

Big Game
Elk (Wapiti) have long been an important game animal on the IPGA. Their occurrence on the area depends mainly upon the presence and condition of their food supply. Their numbers have varied, but the present population is increasing after a 10-15 year low (Table 16).

TABLE 16. PRESENT AND FUTURE STATUS OF BIG GAME ON THE ISLAND PARK GEOTHERMAL AREA

	Year	Population	Harvest	Demand (Hunter Days)	Success (Days/Animal)
Elk (Wapiti)	1975	1,700	275	12,712	40.6
	1980	1,920	375	15,750	38.1
Mule Deer	1975	2,700	525	6,220	13.3
	1980	2,300	295	6,000	12.5
Moose	1975	320	22	84	4.7
	1980	200	4	20	5.0
Black Bear	1975	430	25	845	30.8
	1980	465	35	1,630	48.0

Source: Idaho Department of Fish and Game

Most elk migrate by late November and congregate on a major staging area in the southwestern portion of the IPGA (Map 9). Much of this staging area is on adjoining lands administered by the Bureau of Land Management and the State of Idaho. Approximately 35% is on the IPGA. The specific function of this staging area is unknown; however, animals spend most of the time feeding, apparently preparing for winter. During mild winters they use the area for winter range.

In summer elk are distributed throughout the IPGA. Habitat use patterns vary with climate and various activities in the area (grazing, logging, recreation, etc.). The entire IPGA is fair summer range for elk. Elk wander back and forth across the Yellowstone National Park boundary throughout the summer.

Elk migrate along distinct routes through the IPGA (Map 9). Elk from Yellowstone National Park and surrounding portions of the Targhee and Gallatin National Forests also use these routes, but the exact numbers or proportions of these herds using the routes are unknown. In the northeastern portion of the IPGA east of the Continental Divide, elk from the Madison River herd in Yellowstone National Park migrate and' spend the fall and winter along the South Fork of the Madison River. Here, no distinct migration routes have been identified.

By mid-December elk have moved to the Juniper Mountains/Sand Dunes winter range approximately 30 miles southeast of the IPGA. This winter range is administered by the Bureau of Land Management and the Idaho Fish and Game Department in cooperation with the Department of Lands and private landowners. Most of the elk that summer on the IPGA spend the winter on this range. In the winter of 1977-78, the winter range held approximately 1,500 elk, 200 more than the previous winter. Herd productivity rates have ranged from 45 to 76 calves per 100 cows over the last three years. The Idaho Fish and Game Department has set a goal of achieving an optimum herd size of 2,000 by 1980.

Approximately 200 elk winter on the IPGA (Map 9). The winter ranges, located along Boone Creek and Conant Creek in the southeastern portion and along Willow Creek in the Southwest, are in fair to poor condition with much of the winter browse overused, old, and decadent. The Idaho Fish and Game Department fed 103 elk on an emergency basis along the southwestern border of the IPGA during the 1977-78 winter.

Since 1974 hunting in Idaho has been "bulls only" during general seasons, with fewer special permits, fewer general hunts, and shorter seasons. Some either sex permits issued during special hunts within the IPGA will continue to be issued in the future. In the Montana portion of the IPGA, hunting is also "bulls only", with some permits for antlerless elks. Wyoming allows late either sex hunts on its elk within the IPGA.

There are no discrete elk calving grounds on the IPGA. Calving occurs on the winter, spring, and summer range and is totally dependent upon climate. In years with heavy snowfall and a "late" spring, calving takes place off the IPGA or along the western and southwestern edges. In years with light snowfall, elk may calve anywhere on the IPGA in suitable habitat. However, key calving areas (those used every year of "normal" snowfall) are along Big Bend Ridge and Thurburn Ridge.

The mule deer is the most important big game species in Idaho, Wyoming, and Montana in terms of total animals harvested and hunter participation. The entire IPGA is summer range in fair to good condition with good summer range in short supply.

Present deer numbers are low (Table 16) due to several factors: mule deer populations have fluctuated over the past 100 years with variations in habitat, climatic conditions, reproductive success, and fawn/yearling survival. Low deer numbers are not limited to Idaho or the IPGA, as adjacent States have indicated that deer herds are below desired levels and have declined for the past several years.

Most of the mule deer that summer on the IPGA spend the winter off the area. The main winter range is the Juniper Mountains/Sand Dunes range described above. Approximately 1,200 deer used this range in the winter of 1977-78. Numbers have ranged from 700-1,100 in the past 5-10 years. Deer use the migration routes described earlier (Map 9), and fawning occurs along these routes. In 1977 a ground count by the Idaho Fish and Game Department estimated a production of 70 fawns per 100 does along Big Bend Ridge. Some deer winter on the IPGA along the southern boundary (Map 9). In the winter of 1977-78, approximately $70-80$ deer were emergency-fed by the Idaho Fish and Game Department along the Ashton Hill and Warm River in order to pull them through this particularly harsh winter. Some feeding occurs on private land each year.

Moose are distributed throughout the IPGA with variable patterns of habitat use. During the summer small groups ($2-5$) and single individuals are scattered through the various habitats. Moose prefer forest, mountain brush, and riparian habitat types. Willow areas within the riparian type receive considerable use.

Previous high density moose populations in the IPGA have declined severely in the past five years. Wintering numbers have decreased due to winter mortality, uncontrolled Indian harvest, and illegal kills. The Idaho Fish and Game Department no longer allows hunting of moose within the Idaho portion. The Wyoming Game and Fish Department has reduced the number of permits in the herd unit overlapping the IPGA. Moose are still hunted in the Montana portion, but current hunter success is declining.

The IPGA provides extensive winter range for moose (Map 9). The condition of ranges varies throughout the area, but in most portions is good. The main winter areas are: (1) Fall River-Warm River Butte, which receives heavy use during extreme winters and is rated fair to poor winter range. Moose in portions of this area reach densities of 10-20 animals per square mile. Most move into Yellowstone National Park and Wyoming during the summer. (2) Big Bend Ridge-this range is in good condition, but the population has been declining, possibly due to illegal harvest. The main concentration areas are Snake River Butte and drainages. (3) Island Park-Henrys Lake - the main areas of use are along Henrys Fork with scattered use in the Henrys Flat region. This range is also considered good. Approximately $30-40$ moose winter along the south shoreline of Island Park Reservoir utilizing willow-covered peninsulas. Some of these animals range into the IPGA and utilize forested habitats, but the degree of use has not been determined. (4) Hebgen Lake-this range, located along the South Fork of the Madison River and in riparian areas along the Henrys Lake Mountain, is considered good range.

Snow depth in the IPGA in extreme winters can be a problem to moose. They are able to get along in deep snow, but depths of six and seven feet can increase mortality of old and young animals. Food availability determines winter range selection and overall well-being of the herds. Important forage species include willow, bitterbrush, chokecherry, serviceberry, subalpine fir, sedges, and grasses.

Black bear reach highest numbers in the eastern half of the IPGA; however, they are present throughout the area. Despite a continual open season and indiscriminate killing, densities remain high in certain portions, especially the southeastern section. No information is available on reproductive rates, sex ratios, or other population parameters. Studies to be completed in 1979 by the Targhee National Forest are expected to fill some of these voids.

The mountain lion is present in the IPGA, but its status and numbers are unknown. Total numbers are undoubtedly low since the area is less than optimum habitat. They are currently protected in Idaho and hunted on a limited basis in Wyoming and Montana.

Pronghorns (antelope) use Henrys Lake Flat in the northwestern corner of the IPGA. This is predominantly private grassland used for livestock grazing, with small pockets of sagebrush throughout. The Idaho Fish and Game Department estimates that 180 pronghorn use the summer range in and around Henrys Lake Flat, approximately one-half of which is on the IPGA. The herd migrates through Raynolds Pass into Montana for the winter. Pronghorns are not presently hunted on the IPGA.

Upland Game

The importance of upland game birds is tabulated in table 17. Upland game hunting is a significant use of wildlife on the IPGA.

Sage grouse use sagebrush-grass and mountain brush habitats for summer feeding and brood rearing (map 10). Preferred habitats are associated with stream bottoms where water and meadows with succulent vegetation are available for brood rearing. The closest strutting grounds to the IPGA are approximately five miles southwest of the area. Preferred nesting habitat is usually within a two mile radius of the strutting grounds. No nests have been found on the IPGA. Despite annual fluctuations, sage grouse populations generally have increased since 1960. A peak was reached around 1970, and a decline was evident by 1975. It is projected that populations will gradually rebuild through 1990, with greater hunter demand and essentially the same hunter success rate (table 17).

Sharp-tailed grouse are rare on the IPGA with most sightings in mountain brush along the southwestern edge of Big Bend Ridge. They are associated largely with grasslands interspersed with brush. The sharptailed grouse is a species of special concern to the Idaho Fish and Game Department, which recommends that all possible measures be taken to protect, enhance, and expand existing habitat. In recent years, some increased since 1960. A peak was reached around 1970, and a decline was evident by 1975. It is projected that populations will gradually rebuild through 1990, with greater hunter demand and essentially the same hunter success rate (table 17).

Two species of forest grouse, blue and ruffed grouse, are common throughout the IPGA. Blue grouse use most habitats and move to higher elevations for wintering. They nest on grassy open slopes and sagebrushcovered ridges, usually at the base of a small tree or shrub. Nesting habitat is usually found at elevations below the mature coniferous forest used for wintering. They depend on conifer needles for winter food and have been known to gain weight on this diet.

Ruffed grouse are also found in most habitats on the IPGA. Although these birds eat a variety of food during much of the year, they feed largely on buds of aspen and various other deciduous species during the winter.

SAGE GROUSE AND SHARPTAILED GROUSE

Year	Pre-season Population	Total Harvest	Total Hunters	Total Hunting Days	$\begin{gathered} \text { Success } \\ \text { (Birds/Day) } \\ \hline \end{gathered}$
1975	5,500	600	330	790	0.8
1980	5,600	680	340	800	0.8
1985	5,760	860	360	800	1.0
1990	6,000	1,000	400	1,000	1.0
FOREST GROUSE					
1975	40,000	2,100	700	2,800	0.8
1980	45,000	2,600	1,000	4,000	0.7
1985	45,000	3,000	1,200	4,800	0.6
1990	45,000	3,800	1,500	6,000	0.6
MOURNING DOVE					
1975	2,000	345	35	117	2.9
1980	2,000	360	40	130	2.8
1985	2,000	380	48	160	2.4
1990	2,000	400	50	170	2.4

Source: Idaho Fish and Game Department

Populations of forest grouse typically fluctuate and may be cyclic. Allowing for these fluctuations, past populations have been relatively stable, and this trend is expected to continue through 1990 (table 17). Most forest grouse are harvested coincidental to big game hunting although bird hunting is increasing in popularity. Due to this growing demand, harvest levels have steadily increased. Demand and harvest are both projected to continue increasing through 1990, with a constant hunter success rate.

The mourning dove is common throughout the IPGA; migratory and nesting populations are present. It is associated mainly with sagebrush-grass, mountain brush, and riparian habitats, but also occurs in some forested habitat types. Mourning dove populations gradually increased from 1960 through 1975. Under current management levels and habitat trends, populations should remain at present levels through 1990 (Table 17).

Mourning doves fall under the jurisdiction of the Migratory Bird Treaty Act. Under this Act, harvest regulations and management are primarily the responsibility of the U.S. Fish and Wildlife Service. The earliest opening date allowed under this Act is September 1, which coincides with the peak of migration out-of-state and effectively limits hunting.

Mountain cottontails (rabbits) are associated primarily with nonforested habitat, aspen groves, and riparian habitats. Essentially stable populations of the last 10-15 years are projected to remain so through 1990. Less than 20 cottontails are harvested in any year on the IPGA. Cottontails are a main constituent in the diet of many raptorial birds.

Waterfowl

The IPGA is located in the Pacific waterfowl flyway. Over a million waterfowl migrate over the IPGA in spring and fall. Fall movements begin in mid-to-late-August and continue through December. Large numbers of ducks and geese concentrate on and around Island Park reservoir, Henrys Lake, Hebgen Lake, and Harriman State Park before moving south. These concentration areas are immediately adjacent to the IPGA and Red Rock Lakes Migratory Waterfowl Refuge in Montana, only 15 miles to the northwest. Migrating waterfowl also make extensive use of Henrys Fork and other watercourses, lakes, marshes, and potholes on the area. The northward migration begins in late March and continues through April and May.

SANDHIL CRANE HABITAT

Resting and feeding habitat on the IPGA for migrating waterfowl is currently adequate to support the numbers passing through or overwintering. These conditions are not expected to change through 1990. Numbers of migratory birds are dependent upon production in out-of-state areas, primarily Canada. Despite annual fluctuations, numbers have been generally stable. Populations of migratory ducks are expected to decrease as a result of current management and habitat trends. With growing hunting demands, harvests and success rates will decrease.

Though waterfowl do breed and produce young on the IPGA most are produced outside the area. The best production areas are bodies of water such as beaver ponds, large and small streams, and marshes. Key concentration areas include Harriman State Park, Island Park Reservoir and surrounding areas, and the southeastern corner of the IPGA.

Allowing for normal fluctuations, the number of ducks produced on the IPGA has remained relatively constant since 1960. Harvests vary with duck populations and hunter numbers; success rates are projected to persist through 1990 (Table 18).

Photo courtesy of Sam Winegardner
Canada geese breed in most of the non-forested and riparian habitats on the IPGA. Nesting occurs primarily along rivers and streams, small lakes, and potholes. Many migrating geese use the IPGA for nesting and feeding. Numbers have generally increased since 1960. Migratory goose populations and harvests are expected to increase through 1990 (Table 18). The Idaho Fish and Game Department has a major effort underway to create new and improved nesting and rearing habitat. As part of this effort nesting platforms have been installed on Island Park Reservoir.

Raptors

A survey of birds of prey on the IPGA was done by the U.S. Fish and Wildlife Service in 1977. Their report detailing nest locations, breeding territories, reproductive effort, and diversity of raptors is on file with the Targhee National Forest. It indicates that 31 species of raptors use the area during some portion of the calendar year. Appendix E has a list of these birds and their habitats.

TABLE 18. PRESENT AND FUTURE WATERFOWL STATISTICS FOR THE ISLAND PARK GEOTHERMAL AREA

Year	DUCKS				
	Pre-season Population	Total Harvest	Total Hunters	Total Hunting Days	Success (Birds/Day)
1975	13,500	1,000	165	660	1.5
1980	13,500	1,100	175	720	1.5
1985	14,500	1,200	180	800	1.5
1990	15,000	1,400	200	900	1.6
CANADA GEESE					
1975	1,500	450	360	1,080	0.4
1980	1,500	480	390	1,365	0.4
1985	1,500	525	420	1,640	0.3
1990	1,500	540	435	1,780	0.3

Source: Idaho Department of Fish and Game
Birds of prey subsist mainly on small rodents, fish, reptiles, amphibians, carrion, and an occasional hooved animal (ungulate). Shrubs, trees, and cliffs provide cover and nesting sites for most of the species. In open country around Henrys Lake Flat utility poles, fence posts, snags, and other isolated structures provide important perches for nesting and hunting. Many of these structures are also found around sagebrush flats, meadows, and riparian habitats on the IPGA. Raptors are important elements in predator-prey relationships in most ecosystems. They can help control small prey species such as rabbits, hares, and rodents.

The Fish and Wildlife Service raptor report emphasized the importance of Henrys Lake Flat, which extends onto the IPGA. This high elevation grassland is used by hundreds of fledged falcons and hawks as a staging area during migration in August and September. Nearby ridges funnel birds in from the north, south, and west to the Flats, where they use the surrounding forest for hunting, roosting, and perching.

Raptors are completely protected by the Federal Migratory Bird Treaty Act and state regulations.

Species of Special Concern

Of special concern to Idaho, Montana, and Wyoming are species whose restricted range, specific habitat requirements, and/or low numbers make them vulnerable if adverse impacts on populations or habitat occur. Of the 22 state-listed species, the following are found on the IPGA: grizzly bear, Northern Rocky Mountain wolf, Canada lynx, fisher, wolverine, trumpeter swan, sharp-tailed grouse, ferruginous hawk, prairie falcon, American peregrine falcon, and northern bald eagle. The sharp-tailed grouse, ferruginous hawk and prairie falcon were discussed in previous sections, and those on the federal Threatened and Endangered Species List (wolf, grizzly bear, peregrine falcon, and bald eagle) are discussed in a separate section. The others are briefly discussed below.

The bobcat, Canada lynx, fisher, and wolverine are common-to-rare mammalian predators whose numbers have declined in the past 10-15 years. Rising prices for bobcat and lynx pelts and uncontrolled harvest have reduced their numbers drastically. They have been removed from predator lists and placed under Idaho Fish and Game Department's control. The fisher, requiring forested, wilderness habitat, is also under state control. The wolverine, which also requires wilderness habitat, is extremely rare in the IPGA.

The IPGA is a very important wintering area for Trumpeter Swans.
The trumpeter swan is a common resident of the IPGA (Map 10). While the species is no longer endangered or threatened, in recent years trumpeter breeding populations have experienced extremely high mortality among cygnets $(60 \%-90 \%)$. Evidence points to a possible nutritional problem in the wintering areas. Breeding habitat requirements of these birds are:

1. Waters with a relatively static level, not marked by seasonal fluctuations.
2. Quiet waters of lakes, marshes, or sloughs, not subject to current or constant wave action.
3. Shallow waters of lakes or open marshes, not so deep as to preclude digging and foraging for lower aquatic plant parts, roots, tubers, etc.
4. Minimum human disturbance and relatively remote areas.

The open waters of the Henrys Fork drainage within the IPGA are the primary wintering areas for all of Canada's Trumpeter Swans. In addition to the migrants, approximately 50% of the year-round resident Trumpeters winter within the IPGA. The relative isolation, abundant submerged vegetation, and open waters of the Henrys Fork are critical to the welfare of the remaining Trumpeter population of Canada and the U.S. Hebgen Lake, approximately 4 miles north of the IPGA, also supports wintering Trumpeters.

Photo courtesy of Sam Winegardner
Several locations in the IPGA provide suitable Sandhill Crane habitat.
The sandhill crane, considered unique, is common on the IPGA. It is a summer resident which breeds and nests where there are abundant marsh and riparian habitat. Cranes congregate on a major staging area on the IPGA (Map 10) where they feed and prepare for the fall migration.

Threatened and Endangered species
The Endangered Species Act of 1973 (P.L. 93-205) officially recognizes two categories of animals, Endangered Species and Threatened Species. Section 7 requires all federal agencies to take necessary actions to insure critical habitat for endangered or threatened species is not adversely modified or destroyed.

Three endangered and one threatened species inhabit the IPGA. Although most wildlife species lists and maps show the range of the endangered spotted bat (Euderma maculata) extending into the IPGA, no authenticated records of spotted bats have been collected.

The Northern Rocky Mountain wolf (Canis lupus irremotus), one of 32 subspecies or geographic races of the gray wolf, was listed as endangered and became legally protected in 1974. The historical and current distribution of the wolf includes the IPGA. Unverified sightings have occurred on the area for several years, and verified sightings have been made adjacent to the IPGA. The area is at the edge of the wolf's present distribution, and thus is used occasionally (Dennis Flath, Team leader, Northern Rocky Mountain Wolf Recovery Team, 1978).

The American peregrine falcon (Falco peregrinus anatum). an endangered species, is known to use the IPGA, but no nesting was observed or reported in 1975 or 1977. Historic eyries on the area are not active. One peregrine sighted in 1977 in the northern section of the IPGA along the Continental Divide was probably migrating, since the sighting coincided with the migration period. No other sightings have been reported.

The bald eagle (Haliaeetus leucocephalus), recently listed as an endangered species, is an uncommon breeder on the IPGA. One nest was discovered within the IPGA in 1977, and another to the west along Henrys Lake. Five young fledged from the two nests. There are two productive nests north of the IPGA along Hebgen Lake. Bald eagles feed extensively on lakes and reservoirs in the IPGA in summer, and some birds winter on the area. Eagles are scattered throughout the area in summer. Targhee and Gallatin National Forests are presently identifying essential habitat for the bald eagle.

The grizzly bear (Ursus arctos horribilis), a threatened species, occurs throughout the IPGA, except the extreme western section. Bears on the area are part of the Yellowstone population, which has been studied since 1973 by an Interagency Grizzly Bear Study Team of research biologists from the National Park Service, Fish and Wildlife Service, Forest Service, and the States of Wyoming, Montana, and Idaho.

Approximately 94,000 acres (19%) of the IPGA have been designated as land where the grizzly bear will receive management priority (Map 11). Pending formal determination of critical habitat, this area will be treated as critical habitat and protected from adverse modification or destruction.

Delineation of grizzly bear habitat on the IPGA relied heavily upon past sightings; areas where bears have been regularly observed. All of the IPGA is historical grizzly habitat, but bears are usually seen in sections adjacent to Yellowstone National Park where human-bear conflicts are minimal.

On the IPGA some habitat appears more valuable to grizzlies than others, particularly those lands adjacent to Yellowstone National Park. The two designated portions (Reas Pass in the north, Winegar Hole in the south) were originally chosen because of the numerous sightings within them. The Interagency Grizzly Bear Study Team has confirmed that these areas contain habitat highly desired by bears. The plateau between these areas lacks many habitat features and is accordingly less desirable.

Research is being conducted on the Targhee National Forest to determine the quality of grizzly habitat. Results are not yet available, but on the IPGA some conclusions can be made.

The Reas Pass and Winegar Hole areas have highly productive forest understories, open wet meadows, bogs, swamps and potholes. Both contain extensive downed timber which supports heavily used food sources (fungi, rodents, insects). In wet areas, Potamogeton sp., an emergent aquatic plant, is used heaviIy. Yampa (Perideridia gairdneri) abundant throughout both areas, is an important food. Tall huckleberry habitat types (AF/Vagl, DF/Vagl) in Winegar Hole supports some of the most productive rodent populations on the Forest. Rodents, particularly pocket gophers (Thomomys talpoides), are an important grizzly food. Large numbers of rodents are present in both the Reas Pass and Winegar Hole areas with highest densities in wetter areas. Patterns of habitat use on the IPGA have yet to be identified, possibly due to changes in behavior and movement patterns from year to year. One den site has been located on the IPGA, on the Gallatin National Forest.
11. GRIZZLY BEAR HABITAT

As previously stated, the delineation of essential habitat was based primarily on recent sightings. However, additional data has been used to evaluate grizzly bear habitat. These data are from three primary sources:

1. Flight reports of the Interagency Team on radio-collared grizzlies:
\#14-A male collared in Winegar Hole in July 1976
\#23-A female collared in the Reas Pass region in September 1977
\#24-A female collared in the Reas Pass region in September 1977
\#25-A sow with two cubs collared in Gardiner, Montana which was shot at Island Park, Idaho in September 1977
\#30-A sow with two yearlings which ranged into Reas Pass in October 1977 (one yearling tagged near West Yellowstone)
\#37-A cub collared in Squirrel Meadows, August 1978
2. Data from an on-going monitoring program on livestock allotments in the Reas Pass and Winegar Hole regions.
3. Procedures in Criteria For Grizzly Bear Critical Habitat Identification, U.S. Forest Service, Region 1, December 1975. A state of the art compendium.

FISHERIES

The major drainage system within the IPGA is the Henrys Fork (North Fork) of the Snake River. Relatively uniform water flows and temperatures, combined with high natural fertility and physical characteristics, provide for an outstanding cold-water fishery.

The sport fishery in Henrys Fork on the IPGA attracts fishermen from throughout the nation. With an annual use of nearly 95,000 angler days (valued at approximately 1.4 million dollars annually), and a catch of 175,000 salmonids (mostly trout) in 1973, this reach of Henrys Fork is possibly the most important stream in the State of Idaho.

Two reservoirs are influenced by streams flowing from the IPGA. The south fork of the Madison River, in the northeastern portion of the IPGA, supplies fish to Hebgen Lake, a significant fishery in Montana. Island Park Reservoir, within and adjacent to the IPGA, receives over 20,000 angler days use each year. Fish from Island Park Reservoir and Hebgen Lake rely heavily upon streams within the IPGA for spawning and rearing.

	Recorded fish species												Fishery ${ }^{1}$ rating	Fish habitat ${ }^{2}$ suitability
River or Stream			$\begin{aligned} & \text { H } \\ & \text { O} \\ & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$			$\begin{aligned} & \text { 苞 } \\ & \text { D} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{0}{\omega} \\ & \stackrel{y}{\omega} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 드́ } \\ & \frac{a}{\bar{J}} \\ & \text { نٌ } \end{aligned}$		
Henrys Fork	X	X	X	X	X		X	X	X	X		X	4	very good
Fall River	X	X	X	X	X		X		X			X	3	good
Conant Creek	X	X	X		X		X		X	X	X	X	2	good
Squirrel Creek	X		X		X		X		X		X	X	2	fair
Boone Creek					X								2	*good
Sand Creek	X				X								unrated	undetermined
Rattlesnake Creek	X				X								1	poor
Willow Creek	X				X								1	*fair
Warm River	X		X	X	X		X		X			X	3	*good
Robinson Creek	X		X		X	X	X		X	X	X	X	3	*good
Rock Creek	X				X				X		X	X	2	good
Snow Creek			X		X								2	*good
Partridge Creek	X		X										2	poor
Thurburn Creek	X				X								unrated	very good
Split Creek					X								1	poor
Buffalo River	X	X			X							X	3	*very good
Moose Creek	X				X			X					4	*good
Big Springs	X		X	X									unrated	good
Henrys Lake Outlet	X		X	X	X		X	X		X	X	X	4	very good
Meadow Creek					X								1	fair
Jesse Creek					X								1	fair
Twin Creek			X		X							X	2	fair
Targhee Creek			X		X							X	2	fair
So. Fork Madison River	X					X							4	*good

${ }^{1}$ Fishery ratings were determined as follows:
$1=\quad$ The aquatic environment produces some fish but stream or fishery conditions do not attract fishermen; or there is opportunity for this stream to contribute a low number of fish to offsite streams.
$2=\quad$ The aquatic environment produces fair fish populations receiving some fishing pressure; or the stream contributes low numbers of fish to offsite streams used by fishermen.
$3=\quad$ The aquatic environment produces good fish populations which are sought after by anglers; or the stream contributes moderate numbers of fish to offsite streams receiving moderate recreation demand.
$4=\quad$ The aquatic environment produces excellent fish populations which are highly sought; or the stream may contribute high numbers of fish to offsite streams receiving high recreation use.
${ }^{2}$ Fish habitat suitability was assessed by evaluating the following parameters: pool habitat, streamside cover, food abundance, channel stability, and spawning habitat (* $=$ significant spawning habitat)

Only a few aquatic environments and their fisheries have been studied in detail, and a full evaluation of these habitats is not possible. However, available data permit a general evaluation of fisheries and significant streams within the IPGA.

In 1977, the Fish and Wildlife Service's Office of Ecological Services evaluated the streams on the IPGA in a qualitative manner. Their report, on file with the Targhee National Forest, contains:
(1) a description of each stream's general physical characteristics
(2) fishery data collected by the State Fish and Game Departments
(3) individual data for each distinct stream reach
(4) available water quality data from state and federal agencies
(5) maps displaying trout habitat suitabilities, channel stability ratings, and significant stream features.

Table 19 is a summary of significant fisheries within the IPGA.
In 1976, the composition of game fish harvested on the Henrys Fork was 53% wild rainbow, 19\% hatchery rainbow, 16% brook trout, 5% rainbow/cutthroat hybrids, less than 1% cutthroat trout, less than 0.1% kokanee salmon, and 7% mountain whitefish. Total angler hours have increased four percent in the last three to four years, while trout harvest has decreased 11 percent due to more restrictive regulations and fish population fluctuations.

Henrys Fork is stocked in a few locations with catchable-size rainbow trout which make up 11-20 percent of the fish harvest. However, most of Henrys Fork is currently managed as a "wild" trout stream.

Most of the tributary rivers and streams of Henrys Fork provide habitat for smaller resident fisheries. Many contain significant spawning and rearing habitat for native cutthroat trout. Kokanee salmon also depend on some of these streams (table 19). The Fall River, Warm River, and Robinson Creek are planted regularly by the Idaho Fish and Game Department. Many smaller streams with low fishery and habitat ratings are very important because they influence water quality of streams with higher ratings.

The South Fork of the Madison River in the northeastern part of the IPGA is one of two primary spawning grounds for fish from Hebgen Lake. The Montana Fish and Game Department plans to reestablish the wild trout fishery, and the tributaries are most important in achieving this goal. Any increase in nutrients or toxic substances could jeopardize this effort.

There are no significant lake fisheries within the IPGA other than Island Park Reservoir. Most of the lakes and potholes in the southeastern portion are small, shallow, and stagnant. Some do contain fish, but most are non-game species. Those that do have game fish receive very little use. However, there is potential to improve these aquatic habitats and increase the recreational opportunity. Two fish-holding reservoirs are in Harriman State Park: Golden and Silver lake. Golden Lake has an excellent population of brook and rainbow trout, while Silver Lake due to too many chubs is in need of rehabilitation. Ashton Reservoir, which extends onto the southwestern portion of the IPGA, receives flow from many streams in the Big Bend Ridge area, but production of invertebrate fauna and fish is poor.

Henrys Lake and Island Park Reservoir both receive heavy fishing pressure. The Island Park Dam is scheduled for repair in 1979 and the reservoir will be drawn down in mid-1979. The Idaho Fish and Game Department plans to chemically treat the reservoir during this drawdown.

There are no known federal or state listed threatened or endangered fish species, or any species of special concern on the IPGA.

In 1977 the Geothermal Environmental Statement Team decided that information on macroinvertebrates would make baseline data available for the geothermal environmental statement and also assist land managers on public lands.

Information on aquatic macroinvertebrates can be used to:

- Detect stress conditions and determine if they are due to natural causes or management practices
- Identify specific problems in a stream by determining the species present
- Help evaluate a stream's fishery potential.

Twelve major rivers and streams within IPGA were analyzed. When two stations were established on a stream, the upper one was located near the source or the point where the watercourse entered the IPGA, and the lower one was located where the stream exited the area. This provided data to make a control/treatment analysis of the streams.

The Geothermal Team established sampling stations and collected monthly samples during 1977. The samples were analyzed at the U.S. Forest Service's Aquatic Ecosystems Lab in Provo, Utah. Table 20 presents a summary of the results. The entire report is on file with the Targhee National Forest.

TABLE 20. SUMMARY OF AQUATIC MACROINVERTEBRATE SAMPLING
ON THE ISLAND PARK GEOTHERMAL AREA.

River or stream	Diversity ${ }^{1}{ }^{3}$	Biomass ${ }^{2}{ }^{3}$	Water quality ${ }^{3}$	Environmental Influences ${ }^{3}$	
				sedimentation	organic enrichment
Henrys Fork					
Upper	Good	Good	Fair		X
Lower	Good	Excellent	Good		
Fall River					
Upper	Good	Fair	Good		X
Lower	Fair to Good	Poor to Excellent	Good		X
Conant Creek	Good	Excellent	Good		X
Warm River					
Upper	Good	Excellent	Excellent		x
Lower	Fair to Good	Good to Excellent	Good		X
Robinson Creek					
Upper	Good	Good	Good		X
Lower	Good	Good to Excellent	Good		X
Rock Creek	Good	Good	Good		
Thurburn Creek (Middle Fork) Fair Excellent Good					
Split Creek	Good	Fair	Good	X	X
Buffalo River	Good	Good to Excellent	Fair	X	
Moose Creek					
Upper	Good	Fair to Good	Good	X	
Lower	Good	Poor	Good	X	
Big Springs	Fair to Good	Good to Excellent	Excellent	X	
Madison River (South Fork)					
Upper	Fair to Good	Good	Excellent		X
Lower	Good to Excellent	Good to Excellent	Good		X

[^3]
TIMBER

Timber resources are an important economic asset to the Upper Snake River Valley. The IPGA provides most of the timber for mills in Fremont County and some for other mills in Idaho, Montana and Wyoming.
Mountain pine beetle attacks have greatly impacted the timber management program within the lodgepole pine type. Many areas examined in 1976 contained nearly 70% dead trees, and some 80%. This dead material has resulted in development of other timber markets. An estimated 250-300 million board feet of lodgepole pine has been lost annually from 1976-1978 in the IPGA. Future sales of deadwood could be greater than 75 million board feet per year. Another $30-40$ million board feet per year is removed by people with free use firewood permits.

The Moose Creek Plateau timber sale in the IPGA, comprising 318 million board feet, is the largest timber sale outside Alaska. Mountain pine beetle mortality has considerably reduced the available sale volume. Additional reductions may occur before the end of the timber sale contract period. Presently, the final harvest volume is expected to be about 200 million board feet from the 100 square mile sale area. Insect mortality and highly defective trees (rot, crook, etc.) have caused timber in some areas to be classed as unsalable. The current estimate of the area to be harvested is about 25,000 acres.

Timber from the IPGA provides a diversity of forest products. Fence posts, corral poles, house logs, cellar timbers and mineprops, in addition to stud log material, account for a significant portion of the sale volume. Indications are that demand for these products will continue to increase. Timber productivity estimates are presented in Table 21. Timber types are shown on Map 12.

The IPGA supplies the majority of timber for mills in the adjacent area.
TABLE 21. AVERAGE GROWTH OF TIMBER IN THE ISLAND PARK GEOTHERMAL AREA
Timber Type
Lodgepole pine 40
Douglas-fir 60
Alpine fir/spruce 69
Aspen 23
Note: One 2×4 eight feet long contains approximately 0.4 cubic feet.
Cubic Feet Increase/Acre/Year
12. TIMBER TYPES

Grand view offers a picturesque view of Lower Mesa Falls and is in the heart of the IPGA.

VISUALS
The landscape character of the IPGA is varied. The quality and sensitivity depend on diversity of landforms, rock formations, vegetation, color, water features, number of viewers and distance from which the characteristics are viewed. Table 22 illustrates some of the visual characteristics.

Visual resource management goals have been established for the Island Park Geothermal Area. These were the result of a process which considers landscape variety and public concern for scenic quality (Sensitivity levels).

TABLE 22. VISUAL CHARACTER OF LANDTYPES IN THE ISLAND PARK GEOTHERMAL AREA

LANDTYPE	VISUAL CHARACTER	LOCATION	GENERAL QUALITY/SENSITIVITY
Mountainous	Much relief, rocky slopes sharp-exposed ridges, steep slopes, dominating landform rockform features	Continental DivideN.E. portion (Mt. Two Top)	High
		Bishop Mtn. - High Point West side of Big Bend Ridge (Rim of Island Park Caldera)	
Plateau	$0-30 \%$ slopes with little variety	East Side of Area (Moose Creek Plateau)	Low
Basin Lands-Flat	Little variety in vegetation patterns types, color or texture	Central Portion - within Island Park Caldera	Low
Open Park-Like	High degree of vegetation patterns and diversity	North portion E. of Henrys Lake and Central portion around Harriman State Park and widely scattered meadows	High
Mountain Slopelands (Forested)	Moderate slopes, common vegetation patterns some diversity	Widely distributed, dominant landscape in S.E. portion	Medium
Aquatic or Water Associated	Large size, unique features, great diversity of flow, meandering shoreline patterns, etc.	Central and Eastern portions, widely distributed. (Streams \& Lakes)	High
Canyons	Landform and rockform diversity, steep slopes	Primarily in the Southern portion	High

Five quality objectives describe different degrees of acceptable landscape change measured in terms of visual contrast with the surrounding natural landscape. These quality objectives are shown on map 13 . Included with each quality objective is a time frame for reduction of visual impacts resulting from man's use of the land for timber harvest, construction and other purposes. The five objectives are:

1. PRESERVATION - This allows only ecological or natural changes and very low visual impact recreation facilities (examples: trails, log bridge).
2. RETENTION - Provides for management activities not visually evident (noticeable to most viewers) within the characteristic landscape. The objective should be accomplished either during operations or immediately after.
3. PARTIAL RETENTION-Management activities remain subordinate to the characteristic landscape (never dominate the view). Visual impact must be reduced as soon as possible after project completion or at most within the first year.
4. MODIFICATION - Activities may dominate, but must borrow form, color, and texture from the landscape. This objective should be accomplished in the first year or at a minimum should meet existing regional guidelines if they allow a long period.
5. MAXIMUM MODIFICATION - Management activities may dominate the characteristic landscape, but should appear as natural occurrences when viewed as background. Reduction of contrast should be accomplished within five years.

Table 23 compares the visual qualities of two locations within the Island Park area. This brief analysis contrasts the variability of the visual resource.

TABLE 23. COMPARISON OF VISUAL QUALITITES OF TWO LOCATIONS WITHIN THE ISLAND PARK GEOTHERMAL AREA

	BIG SPRINGS	MOST ANY POINT ON MOOSE CREEK PLATEAU ALONG FISH CREEK ROAD
Esthetic Concern of Viewer	High	Low
Number of Viewers Several hundred per day Highly variable	Less than 50 per day	
Diversity of Landscape	Very low	Fairly uniform
Capacity to Absorb Alteration	Short (foreground)	Medium
Viewing Distance	Water, individual plants, fish	Slightly variable (foreground \& middleground)
Subject Focus of Viewer	Road, groups of trees, regeneration areas	
Visual Resource Management Goal (Quality objective)	Retention	Modification

WILDERNESS

The Final Environmental Statement for Roadless Area Review and Evaluation (RARE II) includes 70 acres proposed for wilderness in the IPGA. Other roadless areas were identified earlier in RARE I and the Draft Environmental Statement for RARE II. They were either allocated to non-wilderness through the land management planning process and removed from the RARE II inventory, or they have been recommended for nonwilderness in the Final Environmental Statement for RARE II. Portions of two areas are in the latter category and include:

- Dry Canyon 01-550, Gallatin National Forest, Montana
-West Slope of the Tetons (West) W4-610, Targhee National Forest, Wyoming
The 70 acres recommended for wilderness is in the West Slope of the Tetons (East) E4-610, Targhee National Forest, Wyoming.

Data and evaluations for each designated area are contained in the following documents on file with the Targhee National Forest:

- U.S. Department of Agriculture, Forest Service, 1978.

Draft Environmental Statement-Roadless Area Review and Evaluation (RARE II), 78-04. Final Environmental Statement-Roadless Area Review and Evaluation (RARE II), 78-04.

- Supplements to DES on RARE II for States of Idaho, Montana, and Wyoming.
- Land Management Plan, Targhee National Forest, Island Park Planning Unit, and accompanying Final Environmental Statement.
- Land Use Plan, Targhee National Forest, West Slope of the Tetons Planning Unit.

YELLOWSTONE NATIONAL PARK

Immediately east of the IPGA is Yellowstone, the world's first national park (see Map 22). Its 2.2 million acres, set aside by the U.S. Congress in 1872, was "dedicated and set apart as a public park or pleasuring ground for the benefit and enjoyment of the people...". The Secretary of the Interior was instructed to make rules and regulations for "...the preservation, from injury or spoilation of all timber, mineral deposits, natural curiosities or wonders of said park, and their retention in their natural condition." The intent of the Congress was to totally protect the park's geysers and hot springs, using the best knowledge available in 1872 . This intent was reaffirmed by the Congress in 1978 when the Secretary of the Interior was instructed to guard against actions which may compromise the values and purposes of the National Park System (Public Law 95-250).

Yellowstone National Park now has multiple significance. In addition to its geysers and scenic wonders, it is also a century-old wildlife preserve, including the habitats of endangered and threatened species. The United Nations (UNESCO) designated Yellowstone National Park as one of the first "World Heritage Sites" in 1978, and earlier, a part if the International Biosphere Reserve to recognize the global value of its natural ecosystems.

These three designations for Yellowstone (National Park, World Heritage Site, and International Biosphere Reserve) combine to give the highest possible recognition of its significance to the nation and the world. Over 2.5 million people visit Yellowstone and its surroundings each year.

The features that initially attracted interest and led to the reservation of Yellowstone as a national park were geological: the geothermal phenomena, the colorful Grand Canyon of the Yellowstone River, and the size and elevation of Yellowstone Lake.

The park's geological history includes formations from the most ancient to the most recent. Precambrian rocks; having an age of 2 to 3 billion years, are exposed in the northern section of the park. Most of the rocks of the Yellowstone plateau are volcanic. Quaternary rhyolites and basalts were erupted after an enormous explosion and collapse formed a caldera 30 by 45 miles in size in the central portion of the present park. Lava overflowed from the caldera to the west and southwest, forming the Madison Plateau which extends out of the park into the adjoining national forests. It is through the rhyolite plateau that groundwater is recharged from snow and rainfall, supplying many of the major hot springs and geysers inside the park, as well as warm and cold water springs in the IPGA.

A cold climate coniferous forest composed of species that reseeded from adjacent regions became established, which accounts for the park's limited number of tree species. One of these, the lodgepole pine, is abundant, comprising about 80 percent of the forest; however, at higher elevations, in stream valleys and in glacial kettles on the plateaus, Engelmann spruce and subalpine fir are present. The whitebark pine, often growing near the spruce and fir, also reproduces in many places under the lodgepole pine. Douglas-fir tends to grow only at lower elevations, as does the aspen, the one significant broad-leaved species. Limber pine and Rocky Mountain juniper occupy sites detached from the regular forest in the lower elevations.

Ungulates such as the bison, moose, elk, mule deer, pronghorn antelope, and bighorn sheep are among the park's greatest attractions. Both grizzly and black bear are present in normal numbers, though rarely seen from roadsides. Regulations against feeding bears are now strictly enforced, and other sources of human food removed, resulting in bears with almost no attraction to human developments in the park.

An assembly of predators exists ranging from insect-eating bats to large carnivores. Populations of mountain lions, and gray wolves have been seriously depleted through man's early efforts to protect ungulates. Others, such as the coyote, red fox, marten, and weasel, while exercising control on the rodent populations, can do little to fill the gap left by the elimination of these larger carnivores. They add, however, to the diversity of the park fauna, as do winged predators such as bald and golden eagles, and various species of hawks and owls.

Several mammals and birds depend upon the aquatic environment for their prey. The river otter, extirpated over much of its range, is still found in most of the major rivers and lakes in the park. An important avian predator, the white pelican, nests on the Molly Islands in Yellowstone Lake. During the summer, this hugh fish-eater fishes the lakes, sloughs, and quiet backwaters throughout the upper Yellowstone Valley. Another common fish-eating bird, is the osprey. Cormorants, sandhill cranes, great blue herons, and kingfishers also depend upon fish for a portion of their diet.
Conspicuous bird species include several ducks, the Canada goose, and the trumpeter swan. Once threatened with extinction, the trumpeter swan has been able to strengthen its numbers in Yellowstone. Although present in the park, the bald eagle is apparently severely affected by the accumulation of pesticides in the national environment, and as elsewhere, its population has diminished.

Yellowstone's fishery is comprised of both native and introduced fish and holds a high degree of interest for the visitor as a recreational resource - the catching of wild fish in a wilderness environment. Of greater importance, the fish are an essential part of the diet for several species of birds and mammals.
The human history of the park is diverse. It began with prehistoric use of the high plateaus by various Indian groups as much as 10,000 years ago, and continued with the area's rediscovery by trappers and adventurers in the early 1800's. Reports of the geologic wonders and concentrations of wildlife acted as a magnet for exploration parties, whose excitement over and recognition of the uniqueness of Yellowstone's natural phenomena led to its establishment as the world's first national park.

SOUND

Qualitative and quantitative evaluation of sound levels, sound quality, or sources of noise (unwanted sound) has not been made on the IPGA. Without a thorough study of background sound levels and noise problems, there can be no accurate assessment of the proposal's effects on the sound environment. However, a cursory description of sound levels and noise sources is in table 24. The Geothermal E.S. Team recorded sound levels on the IPGA using a hand-held sound meter on the A-weighted scale with slow response. Table 24 compares sound levels on the IPGA with levels from other sources and with the Geysers Geothermal Area. The IPGA has low overall ambient sound levels (less than 45 db (A)). Most of the sound was caused by wind, with higher levels associated with man's activities (highways, timber harvesting, recreation sites, etc.). Federal and state guidelines on noise exposure are presented in table 25.

TABLE 24. SOUND LEVEL COMPARISONS BETWEEN THE ISLAND PARK GEOTHERMAL AREA (IPGA), OTHER SOURCES OF NOISE, AND THE GEYSERS GEOTHERMAL AREA IN CALIFORNIA

	Source	Sound level (dB(A)) ${ }^{1}$	Distance from source (feet)
IPGA	Forested habitat	less than 40	-
	Riparian habitat	40-45	-
	Open meadow	40-45	-
	Upper Mesa Falls	79	50
	U.S. Highway 20-191	63-78	50
	Timber cutting operation - falling	65	200
	- yarding \& decking	50-55	200
	Chainsaw, snowmobile	75	50
	Campground	40-45	-
	Summer home area	less than 40	-
Other sources	Threshold of pain	120	-
	Jet aircraft takeoff	125	200
	Unmuffled diesel truck	100	50
	Street corner in Idaho Falls	70	-
	Residential area in St. Anthony at night	less than 40	-
	Conversation	60	3
	Loud motorcycle	95	50
Geysers Geothermal Area			
	Drilling operation (air)	126	25
	Drilling operation (air)	55	1500
	Muffled test well	100	25
	Muffled test well	65	1500
	Steam line vent	100	50
	Steam line vent	90	250

[^4]| Environmental Protection Agency | | | | | Montana and Wyoming permissible noise exposure levels ${ }^{2}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Effect | Level (dB) ${ }^{3}$ | | | Area | Duration per day (hours) | Sound level (dB(A)) |
| Hearing loss | Leq(24) | $=$ | 70 | All areas | 8 | 90 |
| Outdoor activity interference and annoyance | | | | Outdoors in residential areas, farms, and other areas where people spend widely varying amounts of time, and other places in which quiet is a basis for use. | 6 | 92 |
| | | | | | 4 | 95 |
| | | | | | 3 | 97 |
| | | | | | 2 | 100 |
| | | | | | $11 / 2$ | 102 |
| | Leq(24) | $=$ | 55 | Outdoor areas where people spend limited amounts of time, such as school yards, playgrounds, etc. | 1 $3 / 4$ | 105 107 |
| Indoor activity interference and annoyance | Ldn | | 45 | Indoor residential areas. | $1 / 2$ | 110 |
| | | | | | $1 / 4$ | 115 - ceiling
 value: no exposure |
| | Leq(24) | $=$ | 45 | Other outdoor areas with human activities such as schools, etc. | | $\begin{aligned} & \text { in excess of } 115 \\ & d B(A) . \end{aligned}$ |

' Sources: (a) Environmental Protection Agency, 1974. Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. EPA, Washington, D.C.. (b) State of Montana, Department of Health and Environmental Sciences, Helena, Montana. (c) State of Wyoming, Occupational Health and Safety, Cheyenne, Wyoming.
${ }^{2}$ The state of Idaho has no specific regulations, guidelines, or standards on noise exposure other than that motor vehicles be equipped with mufflers to prevent excessive or unusual noise.
${ }^{3} \mathrm{~dB}=$ decibles; Leq(24) represents sound energy averaged over a 24 -hour period expressed in decibles; Ldn represents the Leq with a 10 decible nighttime weighting.

TRANSPORTATION

The existing road system in the IPGA includes State highways, County roads and forest development roads. A study being made to classify the roads by use will identify roads needed for public access or for land management. Unnecessary roads will be eliminated. Map 14 shows the existing transportation system within the IPGA.

The need for a road system and its required level of maintenance change with demands upon resource uses. Presently, most road development relates to timber harvesting. Roads range from multipurpose graveled types to temporary roads obliterated following timber harvest. Current policy requires closure of unnecessary roads when their use will adversely affect resource protection, use or development, or when it is determined that the road is unsafe. A resource use often requires more roads than is desirable for resource protection. When re-entry is foreseen, the road is retained as a road closure, open on an intermittent basis.

Most road closures are an effort to lessen vehicle pressure on wildlife and their habitat, but some are needed for protection of watershed and roadway values, and others for construction, maintenance and safety.

On National Forest lands, road closure is posted at the Forest Supervisor and District Ranger offices and on the road. Vehicle passage through a closure can be gained by permit from the District Ranger for certain legitimate needs. When damage to the road is likely to occur a bond may be required.

No official designation of roads on BLM Public Lands has been done. Road closures, construction, etc. will be coordinated with National Forest management and made consistent with Regulations in 43 CFR part 6290 dealing with off-road-vehicles.

Several Forest Service trails established for resource protection are in the IPGA. Some are in poor condition due to lack of maintenance. Use of trails for hiking is an increasingly important part of the recreation program.
14. TRANSPORTATION

A 115 Kilovolt transmission line extends from the southern boundary to Mack's Inn.

UTILITIES

Two transmission lines transect the IPGA. Both are administered by Fall River Rural Electric Cooperative, Inc. of Ashton, Idaho. The 44 KV line constructed in 1949 runs from Ashton Reservoir north to West Yellowstone, Montana. The 115 KV line constructed in 1971 runs from Drummond, Idaho north to Mack's Inn, located on U.S. 191/20. Map 15 shows the transmission lines and the subdivisions they service within the Idaho portion of the IPGA.

Electricity from the two transmission lines is used primarily for residential service in Island Park and West Yellowstone. Commercial electrical uses are for resorts, shops, restaurants, service stations, and motels in and adjacent to the IPGA.

An extension of the 115 KV transmission line from Mack's Inn to West Yellowstone is being considered.
The Island Park Land Management Plan (1978) provides that utility corridors will be concentrated along existing use paths. These corridors are presently on a north-south axis through the area, but as regional demands increase and transmission grids become more complex, lines may be proposed to tie into services west of the IPGA.

SOCIO-ECONOMICS

A review of Fremont County, Idaho economic characteristics provides a good picture of the economy of the IPGA. As an estimate of the economy of the IPGA, Fremont County data somewhat overemphasizes agriculture and under-estimates the importance of the lumber industry.

Population

The 1975 Fremont County population of 9,616 is only 6% greater than in 1950, but 10% greater than the 1970 population, an annual growth rate of 2% for the years 1970-75. The county and Idaho are experiencing a population surge. The State's population grew more than 15.1% between 1970 and 1975. In 1970, Fremont County's population was:

23%	Rural farm
44%	Rural Non-farm
33%	Urban

The July 1976 population and employment forecast by the Idaho Department of Water Resources and Boise State University in Boise, Idaho, projects a 61% population increase in Fremont County by the year 2000 , a 2% annual growth rate. Most of the IPGA has a fluctuating population due to the seasonal nature of the recreation industry.

Tables 26 and 27 present town population estimates and projected county population respectively.
15. TRANSMISSION LINES AND SUBDIVISIONS

TABLE 26. TOWN POPULATIONS

	1970^{1}	1975
St. Anthony	2,877	$3,021^{2}$
Ashton	1,187	1,300
Island Park	136	168^{3}
West Yellowstone	756	823^{4}

${ }^{1}$ U.S. Census
${ }^{2}$ Town Clerk
${ }^{3} 1978$ Edition-County Profiles of Idaho
${ }^{4}$ Montana State Department of County Affairs

St. Anthony, the largest town in Fremont County, Idaho is approximately 18 miles from the IPGA.

TABLE 27. FREMONT COUNTY, IDAHO POPULATION PROJECTIONS

AGE GROUP	$\mathbf{1 9 7 0}$	$\mathbf{1 9 7 5}$	$\underline{1980}$	$\underline{1985}$	$\underline{1990}$	$\underline{1995}$	$\underline{\mathbf{2 0 0 0}}$
$0-4$	878	1056	1361	1549	1626	1694	1840
$5-9$	928	905	1048	1398	1599	1626	1625
$10-14$	1076	961	898	1094	1458	1601	1549
$15-19$	1080	1107	952	942	1153	1458	1522
$20-24$	466	1088	1097	966	963	1148	1417
$25-29$	475	478	1077	1110	987	959	1107
$30-34$	435	485	472	1088	1126	981	921
$35-39$	420	444	478	486	1101	1117	942
$40-44$	488	429	435	493	507	1087	1065
$45-49$	430	491	417	441	507	498	1031
$50-54$	432	429	471	422	454	491	450
$55-59$	472	425	403	468	428	433	432
$60-64$	386	448	389	388	455	396	372
$65-69$	268	344	402	350	350	412	362
$70-74$	202	226	288	340	297	298	353
$75-79$	146	154	174	221	264	230	232
$80-84$	88	94	100	114	144	173	152
$85+$	40	54	61	65	74	91	111
TOTAL	8710	9618	10523	11938	13493	14693	15483

SOURCE: Idaho Dept. of Water Resources and Boise State Univ.

Employment

Agriculture, a primary industry in Fremont County, employed 969 people in 1972, with 171,000 acres devoted to irrigated or dry crop land. The livestock industry is significant with 37,500 head of cattle in the county in 1974.

Table 28 summarizes employment in Fremont County. The unemployment rate in Fremont County (mid 1978) is about 6.4%. Since West Yellowstone, Montana is a resort community with a constantly fluctuating population and seasonal unemployment, it is difficult to estimate an unemployment rate in the West Yellowstone area.

TABLE 28. FREMONT COUNTY, IDAHO EMPLOYMENT FORECASE BY MAJOR INDUSTRY (EMPLOYEES)

MAJOR INDUSTRY	1972	1975	1980	1985	1990	1995	2000
AGRICULTURE	968	948	906	862	819	785	753
MANUFACTURING	273	274	312	346	383	418	457
CONSTRUCTION	120	150	191	212	231	259	291
TRANSPORTATION	106	134	157	174	192	212	235
TRADE	726	803	893	928	964	997	1032
FINANCE	64	66	84	95	106	119	133
FEDERAL GOVERNMENT	160	152	153	154	155	156	157
STATE AND LOCAL							
GOVERNMENT	530	615	656	722	789	846	908
SERVICES	463	528	645	719	802	895	998
TOTAL	3410	3670	3997	4212	4441	4687	4964

SOURCE: Idaho Department of Water Resources and Boise State University Population and Employment Forecast - State of Idaho Series 2-Projects 1975-2000, July, 1978, pp. 161-162.

Income

The relative prosperity in the county and the area seems to be improving. In 1970 county per capita income was only 63.7% of the national per capita income but by 1974 it had risen to 87.2%. In Idaho per capita personal income as a percentage of national average income increased from 82% in 1972 to 91% in 1974; in Wyoming from 94% in 1972 to 99% in 1974; and in Montana 90% in 1972 to 91% in 1974. Tables 29 and 30 review per capita personal income for the years 1966 to 1974 for counties in Southeast Idaho, adjacent to and including the IPGA.

Table 30 shows per capita income in constant 1977 dollars. This shows the reduction in purchasing power of the dollar from 1966 to 1977. For example the per capita income in Bonneville County in 1966 was $\$ 2,738$, but in terms of 1977 dollars, it was $\$ 5,113$.

COUNTY	$\mathbf{1 9 6 6}$	$\mathbf{1 9 6 8}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 7 2}$	$\underline{\mathbf{1 9 7 4}}$
BONNEVILLE	2738	3031	3408	4106	5214
BUTTE	1919	2558	3313	3588	4395
CLARK	1811	2979	5446	3527	4207
CUSTER	1892	2150	250	2882	3551
FREMONT	1988	2139	2525	3224	4752
JEFFERSON	1820	1765	2327	2785	3674
LEMHI	1832	2115	2578	3014	3428
MADISON	1904	1897	2008	2562	4031
TETON	1358	1639	2463	2606	4880

SOURCE: R.D. Payne, Recreation Home Development in Idaho: Five Case Studies, 1977.

TABLE 30. PER CAPITA PERSONAL INCOME OF SOUTHEAST IDAHO BY COUNTY (1977 DOLLARS)

COUNTY	$\underline{\mathbf{1 9 6 6}}$	$\mathbf{1 9 6 8}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 7 2}$	$\underline{\mathbf{1 9 7 4}}$
BONNEVILLE	5113	5280	5319	5948	6407
BUTTE	3583	4456	5170	5197	5401
CLARK	3382	5189	8499	5109	5170
CUSTER	3533	3745	3902	4175	4364
FREMONT	3712	3726	3941	4670	5839
JEFFERSON	3398	3074	3632	4034	4515
LEMHI	3421	3684	4023	4366	4212
MADISON	3555	3304	3133	3711	4953
TETON	2536	2855	3844	3775	5997

SOURCE: Consumer Price Index, Economic Report of the President, January 1978, (Indexed)

Housing

Ashton and St. Anthony have a very tight housing market. Public officials and Forest Service personnel indicate that even at the present slow rate of growth, it is difficult for newcomers to find housing. The following year by year building permits record from 1970 to 1975 illustrates this situation:

	$\underline{1970}$	$\underline{1971}$	$\underline{1972}$	$\underline{1973}$	$\underline{1974}$	$\underline{1975}$	$\frac{1976}{}$	$\frac{1977}{2}$
ASHTON	3	2	4	2	6	4	5	
ST. ANTHONY	5	12	33	10	24	19	13	22

*Includes 1976 and 1977.
The 33 building permits issued in St. Anthony in 1972 reflect the population influx from the Teton Dam construction. This seems to indicate that supply is responsive to changes in demand. Ashton approved one new subdivision during 1977. In St. Anthony two new subdivisions have been accepted in the last year with 60 single family lots and 24 apartment units. The destruction and reconstruction resulting from the collapse of the Teton Dam seem to have caused the latest housing pinch and also increased construction of housing.

These towns can accommodate increased housing demand if it happens at a slow rate. There is no provision for the temporary housing or trailer parks.

West Yellowstone has the capacity to house all workers the geothermal development is likely to bring. In 1976 there were 506 residential units divided evenly among single family homes, mobile homes and apartments. In addition, there were 55 motels with 1,951 beds for which workers would be competing with the tourists. Construction workers, especially those who come without families and can share a rented apartment or motel, will be able to outbid the tourists because they will arrive earlier in the year and stay longer. However, the result is likely to be high cost housing for worker and tourist alike. At present all of West Yellowstone is commercially zoned. New residential development has to leapfrog to private lands several miles from town. The Island Park area in the middle of the IPGA contains 600 or more seasonal homes. While some are certainly income producing properties, most are not in the short term housing market.

Schools

Two school districts which would have to absorb the student load created by geothermal development in the IPGA are located in West Yellowstone, Montana, and Fremont County, Idaho. For the 1977 to 1978 school year, West Yellowstone schools budgeted for an enrollment of 242 students. The Fremont County District budgeted for 2,533 students. School officials generally felt optimistic about their ability to cope with growth.

The construction of Teton Dam in the early 1970's put 70 children into the Fremont School District and stimulated a building program and improvements that have left the district with the capability to add new students to existing capacity and to finance additional facilities.

The West Yellowstone schools have 36 less students than in 1972 due to the closing of the nearby stud mill in the Gallatin National Forest. Bonded indebtedness is only 11% of capacity.

Public Issues and Attitudes

In-depth interviews were conducted with eleven people to assist in assessing social impacts and public attitudes towards geothermal development. Included were two school superintendents, one electric utilities executive, one mayor, two Forest Service District Rangers, one local merchant, one town clerk, one farmer, one magistrate and one timber industry forester. Three live in West Yellowstone, the remainder in and around St. Anthony, Ashton, and Island Park.

A panel of five members knowledgeable of the people and resources within the IPGA participated in a work session to analyze social group attitudes. Four issues were identified and panel members estimated a response for each social group delineated. Table 31 is a summary of this evaluation.

Considerable sociological and economic data specific to geothermal development in the IPGA are on file in the Supervisor's Office, Targhee National Forest. Most of these data were generated for the report, "Island Park Geothermal Energy Development - Social and Economic Assessment," EDAW Inc., Fort Collins, Colorado.

TABLE 31. POSITIONS ESTIMATED TO BE TAKEN BY SOCIAL GROUP CATEGORIES ON FOUR BASE ISSUES*

Conflict Issues											$\begin{aligned} & \text { D } \\ & \text { 듣 } \\ & \text { 로 } \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
Designation of Critical Grizzly Bear Habitat in the National Forest	-	-	-	-	-	0	-	0	+	-	-	0	+	-	0	-	-
Designation of Additional Roadless Areas in the National Forest	-	-	-	-	-	0	-	-	+	-	-	-	+	-	-	-	-
Residential and Commercial Development in Island Park Area	-	-	-	-	0	0	+	+	-	-	-	+	-	+	-	-	-
Increased Public Access to Harriman State Park	+	+	+	+	+	0	+	+	-	+	0	+	-	+	+	+	+

* $(+)=$ for; $(-)=$ against; $(0)=$ neutral

Values represent medians for the Delphi panel estimates.

III. EVALUATION CRITERIA

Criteria are standards on which a judgement or decision may be based. Our criteria deal with goals, objectives and tests of feasibility used to evaluate alternatives for geothermal leasing. Any alternative proposed must meet the legal requirements established by laws and regulations. No attempt will be made to name all of the laws and regulations pertaining to the management of National Forest and Bureau of Land Management lands. For the purpose of this process, the following partial list of laws is considered important reference:

```
Organic Administration Act of 1897
Multiple Use-Sustained Yield Act of 1960
The Wilderness Act of 1964
National Historic Preservation Act of 1966
National Environmental Policy Act of 1969
Geothermal Steam Act of 1970
Forest and Rangeland Resources Planning Act of 1974
National Forest Management Act of 1976
Federal Land Policy and Management Act of 1976
The Endangered and Threatened Species Act of 1976
The Clean Air Act as Amended, August 1977
```

Within the Forest and Rangeland Resources Planning Act (RPA), the Forest Service has proposed a program for the 1977-2020 period. The recommended program takes the form of National goals or objectives and focuses on each resource as follows:

Recreation. Increase supply of outdoor opportunities and services through Forest Service programs that emphasize dispersed recreation.

Wilderness. Provide for a moderate increase in wilderness on National Forest Land.
Wildlife and Fish. Provide for greater species diversity and wildlife and fish populations through large increases of habitat management.

Range. Provide forage at present levels without impairing land productivity, or provide forage to the extent benefits are commensurate with costs without impairing land productivity.

Timber. Increase timber supplies and quality to the point where benefits are commensurate with costs.

Land and Water. Meet minimum air and water quality standards. Selectively improve, commensurate with benefits produced, air quality, soil productivity, water quality and supply, and meet other land stewardship standards.

Minerals. Develop and demonstrate the use of technologies necessary to anticipate and ameliorate major adverse effects of fossil fuel and mineral development on the environment, surface resources, and people by 1985.

The Bureau of Land Management minerals objectives are developed in response to the Mining and Minerals Policy Act of 1970. The objective is to make energy minerals available for use on a managed and controlled basis, consistent with National energy and related demands.

The above laws, regulations, policy and direction items, form limitations that are imposed on the management options for an area. With these limitations as constants, the following criteria were developed. Each alternative will:

1. Protect surface and subsurface resources within Yellowstone National Park.
2. Provide habitat to sustain viable populations of all groups of wildlife and fish, and protect threatened and endangered species and their habitat.
3. Maintain water quality as defined by State and Federal standards, and ensure adequate downstream quantity for other uses.
4. Ensure that direction and policy within existing land management plans are followed.
5. Provide lands for geothermal leasing in relation to alternate energy development needs in the United States.

In section VI each alternative has been evaluated to determine how well they agree with the above criteria. This evaluation forms the basis for the selected alternative. This selected alternative, if adopted by the responsible officials, will become the Decision and so stated in the Record of Decision attached to the front of this document.

Subsequent to any decision made by the responsible officials, the Secretary of the Interior will decide where and if leases will be issued within the IPGA. In addition to this environmental impact statement, the Secretary of the Interior may also be guided by policy, legal, economic, and political goals. As stated in the Department of the Interior's letter of comment (consultation section of this EIS), any leasing activities will be predicated on a thorough technical evaluation as to possible risks to the Yellowstone National Park geothermal system.

IV. ALTERNATIVES CONSIDERED

Alternatives developed to compare the effects of geothermal leasing and development in the IPGA identify several options for leasing and are consistent with existing laws and federal land management policies. Obviously, many other alternatives could be developed, including a mixture or perhaps different considerations from those presented here. However, most concerns and viewpoints are incorporated in the range of alternatives presented.

Table 32 shows the distribution of acres in the IPGA for each alternative. Figure 7 graphically shows the allocation of land by percentages for each alternative.

TABLE 32. DISTRIBUTION OF ACRES IN THE ISLAND PARK geothermal area by alternative

	Alternative							
	1	2	3	4	5	6	7	
Leasing	0	268,418	233,420	233,420	233,420	448,031	178,620	
No Leasing	488,031	219,613	87,916	0	87,916	0	94,316	
Deferred	0	0	166,695	0	0	0	215,095	
Leasing with no surface occupancy	0	0	0	254,611	0	0	0	
Leasing with surface occupancy restrictions	0	0	0	0	166,695	0	0	
TOTALS	488,031	488,031	488,031	488,031	488,031	488,031	488,031	

ALTERNATIVE 1

No leasing. This alternative is required under the Council on Environmental Quality's guidelines and represents the status quo. It places emphasis on other resources at the expense of geothermal leasing and development.

While geothermal development is unlikely under this alternative, publicly owned geothermal reserves could be depleted by extraction on adjacent state and private lands. Leases have been issued on approximately 24,705 acres of state and private lands within the IPGA (Appendix L). Cumulative surface and subsurface effects from adjacent developments could significantly affect the IPGA. Such effects include subsidence, seismicity, air and noise pollution, wildlife habitat deterioration, and reduced visual quality. Also the development of these lands adjacent to non-developed public lands could result in a less efficient use of the geothermal resources of the general area.

The geothermal leases on Idaho state lands in the IPGA are authorized and administered by the State of Idaho Department of Lands. All drilling of geothermal wells on both private and state lands in Idaho is authorized and controlled by the Idaho Department of Water Resources.

FIGURE 7. PERCENTAGE OF LAND ALLOCATION BY ALTERNATIVE IN THE IPGA

ALTERNATIVE 2

Lease only those lands identified as suitable by participants of the Geothermal Workshop held in Rexburg, Idaho on March 18, 1978.

Under this alternative, lands within the IPGA are divided as follows:
Leasing. 268, 219,613 acres

The Geothermal Workshop was an all-day meeting allowing the public to indicate their concerns about geothermal leasing and development on the IPGA. Fifty-six people participated representing a variety of occupations.

The participants, divided into seven groups of five to seven people, were asked to collectively produce a map showing where leasing should or should not occur in the Island Park Geothermal Area. All but one group responded by either producing a map or making comments. Two groups made comments and five groups produced a map. Alternative 2 represents land more than half of the groups agreed should be available for leasing.

ALTERNATIVE 3

Lands adjacent to Island Park Reservoir have high visual sensitivity.

Leasing	233,420 acres
Deferred at present time	166,695 acres
No Leasing.	87,916 acres

Lands available for leasing include those where geothermal development would not likely cause significant adverse impacts to known surface resource values.

Lands deferred from leasing are those where geothermal resource development could have significant adverse impacts on surface resource values. These values include:

- highly visible timberland lands adjacent to Island Park Reservoir (Map 13)
-elk and deer migration routes (Map 9)
- moose winter range (Map 9)
- fish spawning steams (Table 19)
-sandhill crane and trumpeter swan feeding and nesting areas (Map 10)
-grizzly bear habitat (Map 11)
-areas of human development
The leasing decision on these lands will be made when more knowledge of the geothermal resource in the IPGA exists.

The no leasing category applies to all lands where geothermal development would create significant adverse modifications to high value surface resources.
ISLAND PARK GEOTHERMAL AREA IDAHO - MONTANA - WYOMING
u.s. forest service buine or
\qquad
LEGEND

- NATIONAL FDREST LAND
- Private land
AMES PRIVATELEANOS WITH FEDERAL MINERALS
ALESEEVED (THEL (PAIVATE OTATE)

- PAVED ROAAD HIGHWAY

ALTERNATIVE 3
- LEASING
3 NO LEASING
deferred
$\stackrel{\rightharpoonup}{\omega}$
\vec{N}
\vec{N}
$\underset{\sim}{2}$
$\stackrel{2}{\infty}$

ALTERNATIVE 4

A portion of the West Slope of the Tetons RARE II Area is in the IPGA.

$$
\begin{aligned}
& \text { Leasing. 2534,420 acres } \\
& \text { Leasing with No Surface Occupancy }
\end{aligned}
$$

Lands available for leasing include those where geothermal resource development would not likely cause significant adverse impacts to known surface resource values.
On lands with No Surface Occupancy, conditions unfavorable to geothermal resource development are known to exist. Well sites and building sites cannot be allowed where problems include terrain, unstable soils and slope hazards are known, or where human use activities will be impaired or disrupted. These problems relate to the same resource values listed in Alternative 3. However, a lessee could develop the geothermal resource beneath the lands by directional drilling from adjacent lands.

ALTERNATIVE 5

Robinson Creek originates in Yellowstone National Park and flows west through the IPGA to Warm River.
Leasing 233,420 acres
Leasing with surface occupancy restrictions 166,695 acres
No Leasing 87,916 acres

Lands available for leasing include those where geothermal resource development would not likely cause significant adverse impacts to known surface values.

Activities on lands with surface occupancy restrictions would be limited to non-disruptive surface exploration and drilling of gradient test holes. The resource values being protected here are the same as those listed under deferred in Alternative 3. Existing roads would be used and test holes drilled by truck mounted or readily portable rigs only. Any additional proposals to develop a known or suspected geothermal resource would require site specific analysis under the NEPA process.

The no leasing category applies to all lands where geothermal development would create significant adverse modifications to high value surface resources.

ALTERNATIVE 6

Lease all Federal lands. This alternative assumes that geothermal leasing and development is compatible with other uses in the IPGA. Surface occupancy restrictions are not imposed and lessees would be controlled by standard leasing procedures contained in:

1. The Geothermal Steam Act of 1970.

2. Code of Federal Regulations.
3. Geothermal Resource Operational Orders.
4. Geothermal Resources Lease Form (3200-21) (see Appendix K).
5. Plan of Operation.

ALTERNATIVE 7

Leasing	178,620 acres
Deferred at present time	215,095 acres
No leasing.	94,316 acres

Lands available for leasing are those where geothermal development would not likely cause significant adverse impacts to known surface resource values.

Lands deferred from leasing are those where geothermal resource development could have significant adverse impacts on surface resource values. These values include those listed in Alternative three and consideration for Yellowstone National Park. In deferred areas existing and future applications will be rejected until such time that adequate safeguards for protection of surface resources may exist as a result of developing technology.

The no leasing category applies to all lands where geothermal development would create significant adverse modifications to high value surface resources.

ISLAND PARK GEOTHERMAL AREA IDAHO - MONTANA - WYOMING u.s. fOREST SERVICE G BUREAU OF
LAND MANAGEMENT
\qquad
DNATIONAL FOREST LAND
STATE G PRIVATE
WMO PRIVATE LANDS WITH FEDERAL MINERALS
AESEAVED
ALL OTHEA LANOS (PAIVATE G STATE)

- NATIONAL FOAEST BOUNDARY
(ii) Paver intaid
(e) UTS. HIGHWAY

ALTERNATIVE
\square LEASING
NO LEASING
Deferred

V. EFFECTS OF IMPLEMENTATION

Construction of geothermal facilities in the IPGA would introduce an industrial atmosphere into a National Forest that has historically been used largely for timber production, recreation, and other purposes generally requiring part-time human occupancy. Some of these lands will be occupied by industrial type installations that will remain for 25 to 100 years.

The type of facilities and land required depends on the use of the resource. An area varying from 800 to 2,000 acres is required for a 100 megawatt power plant similar to those at The Geysers. Space heating and other uses involving pipeline transmission of hot water, rather than generation and transmission of electricity, involve smaller land commitments. Within this total area, a maximum of approximately 180 acres is cleared to build pipelines, access roads, wells, power plants. etc.

Environmental impacts are dependent upon variables, including biological, geographic, geologic, physical, climatological, and demographic characteristics of the area to be developed. Other considerations are the physical and chemical character of the steam and/or associated fluids, the relationship between the geothermal reservoirs and fresh water aquifers, the extent and energy content of the geothermal resource, and the type of utilization facilities.

Quantitative effects for geothermal development within the Island Park Geothermal Area are impossible to identify before a geothermal resource and magnitude of development is determined. This will require sitespecific considerations at the time development (test drilling, construction, operation, etc.) is contemplated. Environmental impact statements prepared for leasing in other areas have dealt with the general quantitative effects of leasing and development. Two notable statements for interested reviewers are:

1. Final Environmental Impact Statement for the Navy COSO Geothermal Developmental Program... 2 volumes, prepared by Naval Weapons Center, China Lake, California, March 1979.
2. Final Environmental Statement for the Geothermal Leasing Program, report in four volumes, U.S. Department of the Interior, 1973.

In the broad perspective, favorable effects involve social and economic benefits; adverse effects involve conflicts with resource uses and the environment. In some instances categorizing an effect as favorable or adverse may be arbitrary due to the varying perspective of individuals. There will be no adverse impact on minority persons.

During several of the phases of geothermal development, air quality may be affected. Changes in air quality may be detected during the test drilling, construction and development and the operation phases. The extent to which pollution occurs in a geothermal operation is determined by the type of system that uses the geothermal energy, the magnitude of the development and the nature of the geothermal system. In a binary geothermal system, the hot water moves through a closed loop that allows minimal release to the atmosphere of noncondensible gases. In contrast, a steam operation may release significant quantities of gases into the atmosphere.

The effects of gaseous emissions are primarily known from the steam type geothermal system which employs cooling towers and numerous vents that release water vapor and various noxious gases. Among these noncondensible gases are hydrogen sulfide ($\mathrm{H}_{2} \mathrm{~S}$), ammonia $\left(\mathrm{NH}_{3}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, argon (A), radon, and mercury vapor. Of these, hydrogen sulfide has been by far the most annoying and the one which may pose serious health hazards.

The hazards would be both the toxicity and nuisance odor of $\mathrm{H}_{2} \mathrm{~S}$ which is detectable in concentrations as small as .025 ppm by its odor of rotten eggs. Normally $\mathrm{H}_{2} \mathrm{~S}$ would mix with the atmosphere, and would not tend to accumulate locally even though it is slightly heavier than air. During stagnant air and air inversion conditions, $\mathrm{H}_{2} \mathrm{~S}$ could accumulate locally from a geothermal operation to a high nuisance level, and perhaps a mildly toxic level.

The areas within and adjacent to the IPGA which would probably be most affected by $\mathrm{H}_{2} \mathrm{~S}$ or other noxious gases are West Yellowstone and the residential/commercial developments in Island Park. Requirements and contingencies to protect people from the effects of the gases are in Section VII, of this environmental impact statement.

Table 33 identifies possible impacts associated with geothermal leasing which may or may not be mitigated with lease stipulations. For corrective measures, see Section VIII, Management Requirements, Constraints, and mitigating measures.

TABLE 33. POTENTIAL IMPACTS OF GEOTHERMAL LEASING AND DEVELOPMENT IN THE ISLAND PARK GEOTHERMAL AREA.

$\underline{\text { Resource }} \underline{\text { Phase }}$	$\underline{\text { Activity }}$	$\underline{\text { Change }}$	
Soil	Exploration	Drilling of shallow temp- erature gradient and observation holes	Clearing of access

Phase	Activity	Change	Impact
			-Groundwater: increased recharge and infiltration in borrow pits - Groundwater: loss of recharge in compacted areas
		- Possible discharge of drilling wastes, mud, geothermal fluids, etc.	-Streams: Direct entry into streams or leaching of noxious chemicals through soil to streams (increase in $\mathrm{pH}, \mathrm{Na}, \mathrm{TDS}$, alkalinity) - Groundwater: Contamination of shallow groundwater aquifers (same chemical changes)
	Equipment maintenance	- Discharge of detergents, compounds (oil, gas, etc.)	- Pollution of surfce and groundwater
	Drilling and production testing	- Release of gases, vapors and toxic liquids	Water pollution same as above: - Streams: direct entry... - Groundwater: contamination...
	Well blowout	- Uncontrolled effluent discharge	Water pollution same as above: -Streams: direct entry... - Groundwater: contamination... - Chemical changes in water from increased dissolving power of warm and hot effluents (increases TDS, and many chemical constituents)
Construction and development	Power plant and facilities	- Clearing and grading, cut and fill, excavation	Similar to test drilling but more intense: - Loss of groundwater recharge areas
		- Increased human presence	- Need for increased amounts of potable water (more wells, increased water treatment)
			- Reduction in the reserve of high quality groundwater
			- Increased sewage causing water quality degradation from septic systems
	Dewatering for deep excavation	- Lowered water table	- Reduces flow to small streams and springs (chemical and dilutional changes)
			- Causes nearby domestic and commercial wells to dry up
			-Disposal of pumped water into surface water causing channel and bank alteration, or onto dry land causing flooding
			-Reduces fisheries habitat
	Transmission lines and pipeline	- Clearing lanes	Similar to test drilling: - Loss of groundwater recharge areas
		- Increased human presence	Same as above: - Need for increased... -Reduction in the reserve... - Increased sewage...

Phase \quad\begin{tabular}{l}

Activity
Well drilling
for cooling or
make-up water

Surface water
impoundment
or diversion
for make-up
or cooling
water

\end{tabular}

Change

- Alteration of groundwater systems

Impact

- Creates a consumptive loss of water for other uses

Similar to dewatering:
-Reduces flows to streams...
-Causes nearby wells..

- Reduces instream fishery habitat
- Changes water chemistry (increased TDS, pH, temperature, hardness, alkalinity)
- Creates demand on groundwater as substitute source
- Reduces fishery habitat
- Reduces recreational values (floating, fishing, etc.)

Water pollution same as in test drilling

- Streams: direct entry...
-Groundwater: contamination..
Water pollution same as in test drilling
-Streams: direct entry...
-Groundwater: contamination..
- Chemical changes in water...
- Pollution to groundwater from leaching of chemical residues

Cooling tower operation and maintenance

Reinjection

Reduced flows to downstream and instream uses

- Release of gases, vapors, and toxic liquids

Uncontrolled effluent discharge

Powerplant oper- ation and main- tenance	- Fertilization of grounds around facility, and use of weed control toxins
	- Release of thermal water
	- Erosion
	presence

Similar to test drilling:
-Chemical changes in water...

- Increases stream turbidity

Similar to construction and development but long term:

- Need for increased..
- Reduction in the reserve of...
- Increased sewage...
- Pollutants to surface and groundwater (CI, TDS, other salts)
- Potential for activation of faults; upward leakage of reinjected water could cause slope failures (earthslide) and soil erosion
- Changes water chemistry (TDS, pH , hardness) through accidental losses
Operation
- Alteration of surface and groundwater quantity and quality

[^5]| Resource | Phase | Activity | Change | Impact |
| :---: | :---: | :---: | :---: | :---: |
| Air | Exploration | ORV travel, explosives and seismic exploration | - Increased dust | - Short term increase in particulates |
| | Test Drilling | Drilling and Production testing | - Release of gases, vapors and toxic liquids | - Air quality degradation $\left(\mathrm{H}_{2} \mathrm{~S}\right.$, NOx, $\mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{SO}_{2}$) |
| | | | | - Short term increased humidity (fog, icing) |
| | | Well blowout | - Uncontrolled effluent discharge | Same as above: |
| | | | | - Air quality degradation... |
| | | | | - Short term increased humidity (fog, icing) |
| | Construction and Development | Drilling production wells | - Release of gases, vapors | Similar to test drilling - Air quality degradation $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{NOx}, \mathrm{NH}_{3}, \mathrm{CH}_{4}, \mathrm{SO}_{2}\right.$) |
| | | | | -Short term increased humidity (fog, icing) |
| | | Well blowout | - Uncontrolled effluent discharge | Air pollution same as above; - Air quality degradation... |
| | | | | - Increased humidity (until well is closed)... |
| | | Power plant, facilities, roads, transmission lines, pipelines | - Increased dust | Similar to exploration
 -Short term increase... |
| | Operation | Power plant operation and maintenance | - Release of gases and vapors | Similar to test drilling but long term: |
| | | | | - Air pollution ($\mathrm{H}_{2} \mathrm{~S}, \mathrm{NOx}$, etc.)... |
| | | | | - Increased humidity (fog, icing)... |
| | | Cooling tower operation and maintenance | - Blowdown discharge | Similar to release of gases and vapors above: |
| | | | | - Air pollution ($\mathrm{H}_{2} \mathrm{~S}$, NOx , etc. $)$... |
| | | | | - Increased humidity (fog, icing)... |

Resource	Phase	Activity	Change	Impact
Vegetation	Exploration	ORV travel	- Vegetation crushing	- Slight if routes are not used permanently or frequently
		Explosives and seismic exploration	- Soil/vegetation destruction and/or modification	- Minimal if not repeated on same site (shallow crater) -Stream habitat alteration
			- Clearing access routes	- Limited vegetation disturbance if use is mainly along existing roads; no new roads built - Increases fire hazard
		Drilling of shallow gradient holes	- Clearing access routes - Preparation of drilling area	Same as above: - Limited vegetation... - Increased fire hazard (fuel) - Vegetation disturbance usually slight, less than one acre
		Camping and housing of personnel	- Discharge of drilling wastes, mud, geotermal fluids, chemicals, etc. - Refuse accumulation	- Kills terrestrial and aquatic vegetation - Alters nutrient cycles - Alteration of groundwater quality and quantity will affect the diversity, productivity, and abundance of vegetation dependent on water table (riparian, marshes, potholes, etc.) - Improper management of garbage will alter vegetation nutrient cycles and surface water quality
	Test Drilling	Road, drill pad, and sump construction	- Clearing, grading, cut and fill, excavation - Herbicidal control of unwanted vegetation	-Slash accumulation will increase hazard (fuel) of fires - Soil/vegetation destruction and/or modification - Toxic (kills) to non-target vegetation - Alters nutrient cycles
			- Possible discharge of drilling wastes, mud, geothermal fluids, chemicals, etc.	Same as under exploration although on a larger scale
		-	- Erosion	- Destruction and/or modification of surface and aquatic vegetation - Impaired plant growth -Stream channel alteration with deterioration of riparian and stream habitat
			- Increased human presence - Improper disposal of garbage and other waste	- Possible destruction of terrestrial and aquatic vegetation - Increases risk of man-caused fires - Modifies nutrient cycling in soil and vegetation
		Equipment maintenance	- Discharge of detergents, oil, gas, etc.	- Destroys terrestrial and aquatic vegetation
		Blooie (steam well vent) line operation	- Projection of foreign particles (rocks, dirt, etc.)	-Soil/vegetation destruction and/or modification
		Drilling and production testing	- Release of gases, vapors, and toxic liquids	- Alteration of terrestrial and aquatic ecosystems-direct mortality of vegetation, reduced productivity, impaired growth, etc.
		Well Blowout	- Uncontrolled effluent discharge	- Pollution of terrestrial and aquatic ecosystems-poisoning of plants, direct destruction, etc.

Phase	Activity	Change	Impact
	Abandonment of wells	- Dismantling and grading	- Minimal disturbance of adjacent habitat; most activity is on site
		- Erosion from wind and water	Same as above
		- Landscape rehabilitation and revegetation	- Will benefit vegetation species of early successional stages; increases diversity, abundance, etc.
	Increased human access	- Increased human presence	Same as above
Construction and development	Power plant and facilities	- Clearing, grading for permanent roads buildings, switch yard, etc.	- Direct vegetation destruction and/or modification of vegetation
		- Erosion - Increased human presence	- Destruction and/or modification of vegetation -Alteration of ecosystem structure and function (productivity. diversity, nutrient cycling, etc.) - Increases risk of man-caused fire
		- Improper disposal of garbage and other wastes	- Modifies nutrient cycling
	Transmission lines and pipelines	- Clearing lanes	- Direct destruction and/or modification of vegetation
			- Alteration of ecosystem structure and function (productivity, diversity, nutrient cycling, etc.)
		- Increased human presence	- Increases risk of man-caused fire
		- Erosion	Same as above
Operation	Power plant and facilities operation and maintenance	- Thermal discharges to streams and atmosphere	- Modification of terrestrial and aquatic ecosystems (productivity, diversity, etc.)
		- Increased human presence	-Increases risk of man-caused fires
		- Erosion	Same as under test drilling although on a larger, permanent scale
		- Condensate discharge	- Alteration of terrestrial and aquatic vegetation (structure) and function of ecosystems)
		- Discharge of acid washings of "scaled" machinery	- Direct destruction of vegetation - Accumulation of toxic substances in vegetation
		- Herbicidal control of unwanted vegetation	- Toxic to non-target vegetation - Alters nutrient cycling
	Cooling tower operation and maintenance	- Cooling water drift	- Lowered sunlight penetration will decrease photosynthesis - Toxic particles will fallout on vegetation and streams resulting in direct loss and/or reduced productivity, abundance, diversity etc. of vegetation
		- Blowdown discharge	- Contamination and/or alteration of terrestrial and aquatic flora - Could kill vegetation
		- Thermal discharges	Same as above

Resource	Phase	Activity	Change	Impact
		Reinjection	- Alteration of surface and groundwater quantity and quality	- Destruction and/or modification of terrestrial and aquatic vegetation dependent on surface and groundwater (bogs, marshes, riparian)
		Transmission line operation and maintenance	- Increased human access	- Increases risk of man-caused fires
			- Increased "edge" effect due to vegetation manipulation	- Edge associated flora will benefit (increased abundance, diversity, productivity, etc.)
Archaeological/ Historical	Test Drilling	Road building, pad and sump construction	- Cut and fill, grading	- Obliteration of archaeological and/or historical sites
	Construction and Development	Power plant, transmission and pipe lines	- Clearing and grading, clearing lanes, etc.	- Obliteration of archaeological and/or historical sites
Recreation	Exploration	Gradient test hole drilling	- Increased noise	- Distracting to some forms of recreation (hunting, hiking, fishing, etc.) - Disturbing to humans in campgrounds, summer homes, and wilderness environments
	Test Drilling	Road building, pad and sump construction	- Increased human presence	- More people in primitive or remote recreation areas
		Drilling and production testing Well blowout	- Increased noise - Air emissions - Increased noise	Same as above - Irritating to adjacent landowners and/or users Same as above
	Construction and Development	Power plant and facilities Transmission lines	- Increased noise - Increased human presence - Exclusive use of acreage - Increased human presence	Same as above Same as above - Effectively eliminates some forms of recreation Same as above
		Pipelines	- Increased noise	Same as above
	Operation	Power plant operation and maintenance Cooling tower operation and maintenance	- Increased noise - Increased human presence - Emission of non-condensable gases - Increased noise	Same as above Same as above - Unhealthy or offensive to adjacent property owners and/or recreationists Same as above
Grazing	Exploration	Aerial surveys	- Increased aircraft noise	- Possible disruption (scattering) of livestock
		Gradient test hole drilling	- Increased noise	- Disturbance of livestock
		Explosives and seismic exploration	- Increased risk of man-caused fires - Increased noise	- Alteration of grazing commodities - Disturbance of livestock
	Test Drilling	Road building, pad and sump construction	- Increased access to remote areas	- Improved access for grazing livestock (e.g. trucking, driveways, etc.)

Road, drill pad and sump construction

Change

- Clearing, grading, cut and fill, excavation, etc.
- Herbicidal control of unwanted vegetation
- Accidental discharge of drilling wastes, mud, geothermal fluids, etc.
- Wildlife dispersa to surrounding habitat
- Increased vehicular traffic
- Increased noise levels
- Erosion
- Increased human presence
- Improper disposal of food-related garbage and other waste
- Discharge of detergents, compounds (oil, gas, etc.)

Blooie line Drilling and Production testing

Equipment maintenance

- Increased nois
- Increased noise levels
- Release of gases, vapors, and toxic liquids

Impact
-Crushing of small wildlife
(small mammals, reptiles, amphibians, invertebrates)
-Sensitive wildlife species will avoid area thereby losing use of the habitat (birds of prey, wolverine, etc.)

- Reduction of cover and food for resident wildlife
- Disruption and/or elimination of wildlife breeding, nesting, brooding, resting, and rearing activities
- Interferes with migration of big game
- Alters predator/prey relationships
- Toxic to non-target vegetation and associated wildlife

Same as under exploration although on a larger scale

- Increases stress, predation, etc. on resident wildlife populations and habitat; alters species composition, diversity, abundance, etc.
- Increased collisions with wildlife and inevitable loss
- Increases stress on wildlife populations
- Interferes with predator/prey relationships, reproduction (courting, mating, nesting, rearing), resting and/or hibernation, feeding, migration, etc.
- Reduces breeding and nesting sites, cover, and/or other important wildlife habitat
- Reduces food and/or water availability

Same as under exploration although on a larger scale

- Alters feeding habits of some wildlife species, especially black bears
- Pollution of terrestrial ecosystems (poisoning of wildlife, sterility, etc.)

Same as above
Same as above

- Modification of atmosphere and dependent wildlife
- Alteration of terrestrial ecosystems (direct mortality of vegetation and animals, reduced productivity, decreased plant vigor, etc.)

Impact

- Unpleasant odors may impair certain wildlife functions: hunting by smell, individual recognition, etc.
- Pollution of terrestrial ecosystems; poisoning of insects, small mammals, birds, etc.
- Modification of atmosphere and disturbance of wildlife dependent on air space for travel, feeding, etc. (birds, bats, insects)

Same as above

- Minimum disturbance of adjacent habitat; most activity is on occupied site
- Temporary disturbance of wildlife

Same as under exploration:

Same as above

- Will benefit wildlife species associated with early successional stages: increases abundance, diversity, etc.

	Increased Human access
Construction and Development	Power plant and facilities

Same as under exploration presence

- Clearing and
for permanen
buildings, sw
etc.
- Increased air
pollution
- Wildlife dispersal to surrounding habitat
- Increased vehicular traffic
- Increased noise levels
- Erosion
- Increased human presence

Same as under test drilling although on a larger scale: - Crushing of the small wildlife... -Sensitive wildlife species avoidance...

- Reduction of cover and food...
- Disruption and/or elimination...
- Interferes with migration...
- Alters predator/prey relationships
- Direct loss of wildlife due to poisoning by toxic materials
- Damage to supportive habitat
- Interference with wildlife behavior, physiology, predator/prey relationships, etc.

Same as under test drilling although on a larger, permanent scale:

- Increases stress, predation...

Same as under test drilling although on a larger, permanent scale:

- Increases collisions with wildlife...
- Increased stress...

Same as under test drilling:

- Interferes with predator/prey...

Same as under test drilling although on a larger scale:
-Reduces breeding and nesting...
-Reduces food and/or water...
Same as under exploration although on a larger scale:

- Increased human-wildlife conflicts...
- Some wildlife will avoid...
- Limits the ability of some wildlife...

Activity

Impact

- Increases opportunity for game poaching...
- Increases demand on wildlife associated recreation (hunting)

	- Improper disposal of garbage and other wastes
Transmission lines and pipelines	- Clearing lanes
	- Increased noise presence
- Increased noise	

Same as under test drilling although on a larger scale:

- Alters feeding habits...
- Temporary dispersal of wildlife with associated stresses to the populations, and habitat loss for feeding, breeding sites, cover, etc.
- Early successional wildlife species will increase in abundance, diversity, etc.

Same as under exploration; usually temporary but on a larger scale

Same as under test drilling
Same as above

- Modification of atmosphere and disturbance of wildlife dependent on air space for travel, feeding, etc. (birds, bats, insects)

Same as under test drilling: - Interferes with predator/prey...

Same as under exploration although on a larger, permanent scale:

- Increased human-wildlife conflicts
-Some wildlife will avoid...
- Limits the ability of some wildlife...
- Increases hunting opportunities
- Increases opportunity for poaching

Cooling tower
operation and maintenance

- Erosion
- Condensate discharge
- Discharge of acid washings of "scaled" machinery
- Emission of noncondensable gases
- Herbicidal control of unwanted vegetation
- Cooling water drift

Same as under test drilling although on a larger, permanent scale:
-Reduces breeding and nesting...

- Reduces food and/or water...
- Toxic to terrestrial habitats and associated wildlife
- Toxic salts and chemicals will destroy and/or modify terrestrial ecosystems
- Accumulation of toxic substances in food chains causing death, sterility, etc.
- Unnatural odors will cause impairment of olfactory senses in some wildlife species

Same as under test drilling although on larger, permanent scale

- Fog and low clouds will alter temperature, precipitation, etc. patterns thereby modifying wildlife habitat
- Toxic particles will fallout on soil, vegetation, wildlife, resulting in direct loss and/or reduced productivity, abundance, diversity, etc. of wildlife
- Blowdown discharge
- Contamination and/or alteration of terrestrial flora and fauna

Activity	Change	Impact
	- Increased noise	Same as under test drilling: - Interferes with predator/prey...
	- Interference with bird movements	- Loss of bird life due to collisions - Alteration of flight patterns (waterfowl) - Alteration of local birds feeding, roosting, and reproductive flights
	- Thermal discharges	Same as above: - Modification of atmosphere... - Modification of aquatic...
Reinjection	- Alteration of surface and ground water quantity and quality	-Destruction and/or modification of terrestrial ecosystems dependent on surface and ground water (bogs, marshes, riparian, waterfowl, some furbearers, etc.) and associated wildlife
Transmission line operation and maintenance	- Increased human access (permanent)	- Increases human-wildlife conflicts - Increases opportunity for game poaching and harassment - Increases hunting opportunities
	- Interference with bird movements	Same as under cooling tower (above) although on a larger scale: - Loss of bird life... - Alteration of flight... - Electrocution of birds - Alteration of local birds...
	- Increases raptor perches	-Facilitates hunting and roosting by birds of prey
	- May facilitate animal movements	- Easier for animals to reach seasonal ranges (elk, deer, moose, bears, etc.), feeding, social interactions, etc.
	- Increases "edge effect" due to vegetation manipulation	-Edge associated vegetation and wildlife species will benefit (increased abundance, diversity, etc.)
Pipeline operation	- Increased thermal pollution	Same as under test drilling although on a smaller scale: -Modification of atmosphere...
	- Barrier to wildlife movement	- Interferes with the ability of big game to reach seasonal ranges

Threatened and The impacts to Non Threatened and Endangered Wildlife apply as well to Threatened and Endangered species. Endangered However, the severity of the impacts will be greater on Threatened and Endangered species because they are Wildlife restricted by scarcity of habitat, sensitivity to man, and/or low numbers. Below are five major ecological parameters that if impacted will adversely affect Threatened and Endangered wildlife. These are compared to the major changes which are common to phases and most activities. An x indicates the parameters primarily impacted by each change. Refer to the preceding section on Non Threatened and Endangered Wildlife to see where each change and impact occurs for any activity and/or phase. The bald eagle, peregrine falcon, and grey wolf do not have essential or critical habitat proposed at this time. Those lands where these species are likely to occur, based upon current data and information have been designated "no leasing" and/or "deferred" under the selected alternative. When essential habitat has been officially designated for these species, and exact proposals for exploration, development, etc., have been made, formal consultation may be initiated. At this time, based upon these designations and the known status of the species, a no affect determination is made.

	Food	Cover	Space	Behavior	Repro duction
- Increased noise				X	x
- Increased human presence			x	x	X
- Habitat destruction and/or alteration	x	x	X		x
- Refuse accumulation	x			x	
- Discharge of toxic materials	x				x
- Erosion	x	x	x		x
- Surface and groundwater effects	x	x			X
- Air pollution				X	X

Resource	Phase	Activity	Change	Impact
Fisheries	Exploration	Explosives and seismic exploration	- Soil/vegetation destruction and/or modification	- Alteration of stream habitat and/or direct destruction of fish, aquatic insects, etc.
		Drilling of shallow gradient holes	- Accidental discharge of drilling wastes, mud, geothermal fluids chemicals, etc.	- Poisoning of aquatic flora and fauna - Direct destruction of aquatic flora and fauna
			- Increased human presence	-Destruction of aquatic habitat and wildlife
		Camping and housing of personnel	- Soil/vegetation destruction and/or modification	Same as above
			- Refuse accumulation	- Alteration of surface water quality and aquatic wildlife
	Test Drilling	Road, drill pad, and sump construction	- Clearing, grading, cut and fill excavation, etc.	- Crushing of fish, insects, etc. -Destruction and/or alteration of fisheries habitat
			- Herbicidal control of unwanted vegetation	- Toxic to fish and other aquatic organisms - Contaminates aquatic food chains
			- Accidental discharge of drilling wastes, mud, geothermal fluids, etc.	- Poisoning of aquatic flora and fauna -Direct destruction of aquatic habitat
			- Erosion	- Leads to increased stream turbidity and siltation - reduced primary productivity, insect populations, abundance and/or growth of fish, spawning success, etc.
				- Interferes with fish migration patterns thereby reducing productivity, abundance, spawning, etc. -Stream channel alteration may deteriorate stream and riparian habitats - Reduces breeding and nesting sites, cover, etc.
			- Increased human presence	- Possible destruction of aquatic habitat and fish
		Equipment maintenance	- Discharge of detergents, oil, gas, etc.	- Pollution of aquatic habitat (poisoning of fish, sterility, etc.)
		Drilling and production testing	- Release of gases, vapors, and toxic liquids	- Alters aquatic ecosystems (direct mortality of vegetation, fish, insects, reduced production, etc.)
		Well Blowout	- Uncontrolled effluent discharge	- Pollution and alteration of aquatic ecosystems (poisoning of insects, flora, fish, etc.)
			- Thermal pollution	- Will kill fish, insects, plants, etc. Could severely alter aquatic habitat, fish migration patterns, etc.
		Abandonment of wells	- Erosion from wind and water	Same as above. Erosion should decrease with revegetation. Severest impact will be in the early stages of abandonment.
		Increased human access	- Increases human presence	-Increases fishing

Resource	Phase	Activity	Change	Impact
	Construction and Development	Power plant and facilities	- Clearing, grading, cut and fill, etc. for permanent roads, buildings, switch yard, etc.	- Crushing of fish, insects, etc. - Alteration and/or destruction of fisheries habitat
			- Erosion	Same as above
			- Increases human presence	-Increases fishing
			- Improper disposal of garbage and other wastes	- Alteration of surface water quality and associated aquatic wildlife
		Transmission and pipelines	- Clearing lanes	- Possible destruction of aquatic habitat and wildlife if streams are crossed or paralleled
			- Increased human presence	Same as above
			- Erosion	Same as above under test drilling
	Operation	Power plant operation and maintenance	- Thermal discharges to streams	- Modifies aquatic ecosystems as under Well Blowout. Will alter their structure and function.
			- Increase human presence (permanent)	Same as above
			- Erosion	Same as under test drilling
			- Condensate discharge	- Toxic to aquatic ecosystem (poisons insects, fish, plants, etc.)
			- Discharge of acid washings of "scaled" machinery	-Toxic salts and chemicals will destroy and/or modify aquatic ecosystems (kills fish and other aquatic organisms)
			- Emission of noncondensable gases	- Accumulation of toxic substance in aquatic food chains causing death, sterility, etc.
			- Herbicidal control of unwanted vegetation	- Toxic to non-target vegetation and aquatic wildlife
				- Contaminates aquatic food chains
		Cooling tower operation and maintenance	- Cooling water drift	- Toxic particles will fallout on streams, reservoirs, etc. resulting in direct loss and/or reduced productivity, abundance, diversity, etc. of fish, insects, flora, etc.
			- Blowdown discharge	-Contamination and/or alteration of aquatic flora and fauna -Will kill some fish, insects, plants, etc.
			- Thermal discharges	Same as above
		Reinjection	- Alteration of surface and ground water quantity and quality	-Destruction and/or modification of aquatic ecosystems dependent on surface and ground water (bogs, marshes, riparian) and associated wildlife
		Transmission and pipelines operation and maintenance	- Increased human access (permanent)	Same as under test drilling although permanent
Timber	Exploration	Explosives and seismic exploration	- Increases risk of. man-caused fires (equipment use)	- Fires could jeopardize timber commodity

Resource	Phase	Activity	Change	Impact
	Test Drilling	Road building, pad and sump construction	- Soil/vegetation disturbance	- Destruction of trees
	Construction and development	Power plant and facilities	- Exclusive use of acreage	- Effectively eliminates timber harvest
		Transmission lines	- Clearing and grading	- Destruction of trees
		Pipelines	- Clearing lanes	- Destruction of trees
	Operation	Power plant, transmission lines, and other facilities	- Exclusive use of acreage	- Effectively eliminates timber harvest
Visual	Exploration	Gradient test hole drilling	- Presence of drill rig - Drill cutting piles	- Temporary visual distraction. - Local visual scar
	Test drilling	Road building, pad and sump construction	- Man-made feature on landscape	-Distracting from natural setting (in most cases)
		Well Blowout	- Uncontrolled emissions	- Visually distracting
	Construction and development	Power plant and facilities	- Clearing and grading	- Visual disturbance
		Transmission and pipelines	- Clearing lanes	- Visual disturbance
	Operation	Power plant, cooling tower, transmission and pipeline	- Permanent industrial complex	- Permanent alteration of the visual character (e.g. from forested to industrial)
Wilderness and Yellowstone National Park	Exploration	Aerial surveys	- Increased noise (aircraft)	- Temporary intrusion on quiet and solitude of wilderness
		ORV travel	- Increased noise	Same as above
		Explosive and seismic exploration	- Increased noise	Same as above: -Temporary intrusion...
		Drilling of shallow gradient holes	- Increased noise	Same as above, although slightly more permanent
			- Air pollution from vehicles and construction equipment	- Air quality will be degraded
	Test Drilling	Road, drill pad, and sump construction	- Increased noise	Same as under exploration although on larger, permanent basis: - Intrusion on quiet...
		Blooie Line operation	- Increased noise	Same as above: - Intrusion on quiet...
		Drilling and production testing	- Increased noise	Same as above: - Intrusion on quiet...
			- Release of some $\mathrm{H}_{2} \mathrm{~S}$	- Unpleasant odor could slightly alter wilderness air quality
			- Presence of drilling facilities	- Modification of wilderness visual quality
		Well blowout	- Uncontrolled increase in noise	Same as above: - Intrusion on quiet...
			- Uncontrolled release of gases and vapors	Same as above: - Unpleasant odors will...
	Construction and development	Power plant and facilities	- Increased air pollution	Same as under exploration although on permanent, larger scale: - Air quality will be degraded
			- Increased noise	Same as under test drilling: - Intrusion on quiet...

Resource	Phase	Activity	Change	Impact
		Transmission line and pipeline	- Increased noise	Same as under exploration: -Temporary intrusion...
	Operation	Power plant operation and maintenance	- Thermal discharge to atmosphere - Utilization of geothermal fluids	- Modification of wilderness visual quality - Possible alteration of YNP geothermal features (see possible effects to Yellowstone N.P. in this section)
			- Increased noise	Same as under test drilling: - Intrusion on quiet...
			- Emission of noncondensable gases	- Unnatural odors will alter wilderness air quality
	*		- Presence of facilities	Same as under test drilling: - Modification of wilderness visual...
		Cooling tower operation and maintenance	- Thermal discharges and cooling water drift	- Modification of wilderness visual quality
			- Increased noise	Same as above: - Intrusion on quiet..
			- Presence of facilities	Same as above: - Modification of wilderness visual...
		Transmission lines and pipeline	- Presence of facilities	Same as above: - Modification of wilderness visual...
Transportation System	Exploration	Gradient test hole drilling	- Increases heavy equipment use	- Increased maintenance of transportation system
	Test Drilling	Road building, pad and sump construction	- Increased access	- More roads to maintain and/or close
	Construction and development	Road building	- Increased access	Same as above
	Operation	Equipment travel (trucks, cars)	- Increased use of existing roads	```- Increased maintenance of transportation systems```
Socio-Economic	Exploration	Aerial surveys	- Increase inmigration See Appendix G	--Slight population increase -Slight employment increase
			- Increased revenue to economy See Appendix H	- Slight increase in income - Slight increase in sales tax revenues - Continuing geothermal lease income to local government - Slight increase in land values
			- Change in community attitudes See Appendix -	- Community attitudes become positive or negative toward geothermal development depending on the perceived effect of geothermal development on the community
		Surface surveys	- Increased inmigration See Appendix G	-Slight population increase
.			- Increased revenue to economy See Appendix H	- Slight employment increase - Slight income increase - Slight increase in land values -Slight increase in sales tax revenues -Slight increase in state income tax revenues - Continuing geothermal lease income to local government

Thermal gradient hole drilling

Test Drilling Road Construction

- Increased inmigration See Appendix G
- Increased revenue to economy See Appendix H
- Increase in income
- Increase in sales tax revenues
- Increase in state income tax revenues
- Continuing geothermal lease income to local government
- Increase in land values
- Change in community attitudes See Appendix I

Same as exploration but to a greater extent:

Change

- Change in community attitudes See Appendix I
- Increased inmigration See Appendix G
- Increased revenue to economy See Appendix H
- Minor change in land usage
- Housing changes
- Change in community attitudes See Appendix I
- Increased demand on health and social services See Appendix I

Impact
Same as aerial surveys:

- Community attitudes become positive or negative...
-Slight population increase
-Slight employment increase

Same as aerial surveys:

- Slight increase in income
- Slight increase in sales tax revenues
- Slight increase in state income tax revenues
- Continuing geothermal lease income to local government
-Slight increase in land values
- Small parcels of land are used for drilling sites

Change in type and occupancy level

- Recreational homes may be leased to geothermal drilling crews

Same as aerial surveys:

- Community attitudes become positive or negative.
- Health manpower needs increase because of drilling crews and increased potential of industrial accidents
Law enforcement requirements increase
- Fire protection needs increase slightly
- Use of waste water treatment facilities increase slightly
- The need for solid waste collection increases slightly
- Increased demand on educational facilities See Appendix I
- Changes in demand on transportation systems
- Land use patterns change
- Elementary and secondary schools will have a slight increase in attendance
- Slightly increased use of roads, highways, and air transportation by drilling crews
- Grazing, timber harvest, and recreation no longer occur on those small tracts of land used for drilling
Same as exploration but to a greater extent:
- Population increase
- Employment increase

Same as exploration but to a greater extent:

- Community attitudes become more positive or negative...

Test well drilling, pad and sump construction, etc.

- Minor change in land usage
- Housing changes
- Increased demand for social and health service See Appendix I
- Increased demand on educational facilities See Appendix I
- Increased demand on transportation systems
- Land use patterns change
- Some increases in local sale of support goods and services See Appendix H
- Increased inmigration See Appendix G
- Increased revenue to economy See Appendix H
- Change in community attitudes See Appendix I
- Minor changes in land usage
- Housing changes

Impact

Same as exploration but to a greater extent:

- More land is used for geothermal development and support activities

Same as exploration but to a greater extent:

- Change in type and occupancy level...

Same as exploration but to a greater extent:
-Health manpower needs..

- Law enforcement...
- Fire protection...
- Use of waste water treatment facilities...
- The need for solid waste collection

Same as exploration but to a greater extent:

- Elementary and secondary schools

Same as exploration but to a greater extent:
.-Increased use of road and highways...
Same as exploration but to a greater extent:

- Grazing timber harvest and recreation...
- Created by local purchases of equipment, construction material, and support services

Same as exploration but to a greater extent:

- Population increase
- Employment increase

Same as exploration but to a greater extent:

- Increase in income
- Increase in sales tax revenues
- Increase in state income tax revenues
- Continuing geothermal lease income to local government
- Increase in land values

Same as exploration but to a greater extent:

- Community attitudes become more positive or negative

Same as exploration but to a greater extent:

- More land is used for geothermal developments and support activities

Same as exploration but to a greater extent:

Activity
 Change

Well Blowout

Construction and Development

Power plant
or heating plant facilities

- Change in demand for social and health services See Appendix I
- Change in demand
for social and
health services
See Appendix I
- Change in demand on education facilities See Appendix I
- Changes in demand on transportation systems
- Land use patterns change
- Some increase in local sales of support goods and services
See Appendix H
- Health and safety hazard
- Increased inmigration See Appendix G

Impact

- Change in type and occupancy level...

Same as exploration but to a greater extent:

- Health manpower needs..
- Law enforcement...
- Fire protection...
- Use of waste water treatment facilities..
- The need for solid waste collection...

Same as exploration but to a greater extent:

- Elementary and secondary schools

Same as exploration but to a greater extent:

- Increased use of roads and highways

Same as exploration but to a greater extent:

- Grazing, timber harvest, and recreation...

Created by local purchases of equipment, construction material, and support services

- Particles under pressure in hot water could injure people nearby Possibility of burns from steam or hot water
- Increased revenue to economy See Appendix H
- Change in community attitudes See Appendix I
- Minor change in land usage
- Housing changes

Same as exploration but to a greater extent:

- Population increase
- Employment increase

Same as exploration but to a greater extent:

- Increase in income
- Increase in sales tax revenue
- Increase in state income tax revenue
- Continuing geothermal lease income to local government
- Increase in land values

Same as exploration but to a greater extent:

- Community attitudes become more positive or negative...

Same as exploration but to a greater extent:

- More land is used for geothermal development and support activities

Same as exploration but to a greater extent:

- Change in type and occupancy level...

Activity

- Increased demand on educational facilities
See Appendix I

Increased demand on transportation systems

- Land use patterns change

Some increase in local sales of support goods and services See Appendix H

Operation	Power plant or heating plant operation and	- Increased
inmigration		

- Increased revenue to economy See Appendix H
- Change in community attitudes See Appendix I
- Minor change in land usage
- Housing changes

Impact

Same as exploration but to a greater extent:

- Health manpower needs...
- Law enforcement...
- Fire protection...
- Use of waste water treatment facilities...
- The need for solid waste collection...

Same as exploration but to a greater extent:

- Elementary and secondary schools..

Same as exploration but to a greater extent:

- Increased use of roads and highways...

Same as exploration but to a greater extent:

- Grazing timber harvest and recreation...
- Created by local purchases of equipment, construction material, and support services

Same as exploration but to a greater extent:

- Population increase
- Employment increase

Same as exploration but to a greater extent:

- Increase in income
- Increase in sales tax revenue
- Increase in state income tax revenue
Continuing geothermal lease income to local government
- Increase in land values

Same as exploration but to a greater extent:

- Community attitudes become positive or negative..

Same as exploration but to a greater extent:

- More land is used for geothermal development and support activities

Same as exploration but to a greater extent:
-Change in type and occupancy level...

Resource	Phase	Activity	Change	Impact
			- Increased demand for social and health services See Appendix I	Same as exploration but to a greater extent: - Health manpower needs... - Law enforcement... - Fire protection... - Use of waste water treatment facilities... - The need for solid waste collection...
			- Increased demand on educational facilities See Appendix I	Same as exploration but to a greater extent: - Elementary and secondary schools...
			- Increased demand on transportation systems	Same as exploration but to a greater extent: - Increased use of roads and highways...
			- Land use patterns change	- Some land uses that were stopped during the construction phase can be resumed near the geothermal development
			- Some increase in local sale of support goods and services See Appendix H	- Created by local purchases of equipment, construction material, and support services
			- Production of electricity	- Electricity produced will be competitive with alternative methods
			- Production of heat See Appendix J	- Heat may be produced for space heating, industrial, or agricultural use
			- Lease royalty	- Royalty income begins with commercial production
			- Educational facility	- Opportunity for public to learn about geothermal energy use
Minerals	Exploration	Aerial surveys	- Specific information gathering	- Increases knowledge of geological features -Possible collection of other management data
	Operation	Utilization of geothermal resource	- Extraction of geothermal fluids	-Gradual depletion of the resource

POSSIBLE EFFECTS OF GEOTHERMAL DEVELOPMENT ON YELLOWSTONE NATIONAL PARK

The geysers of Yellowstone National Park are the rarest of thermal features. There are 200 of these erupting hot springs inside the park, more than in the rest of the world combined. Of the ten major geyser areas in the world, Yellowstone ranks first. In the last three decades, seven of these ten areas have been destroyed or damaged by geothermal exploration or development.

Geysers depend on a dynamic, yet fragile system which can be easily disrupted. In the case of Yellowstone geysers, there is a source of heat relatively close to the surface which heats an abundant supply of groundwater. This water circulates easily and at great depth through fractured volcanic rock and glacial gravel cemented together by mineral deposits from the hot water. Periodic eruptions apparently take place because constrictions in the underground passageways cause water to become superheated, then flash into steam. Any alteration of heat or water that flow through these natural systems can cause the "plumbing" to dry out, disintegrate, and no longer produce geyser action.

Commercial geothermal development in other areas of the world has had profound effects on thermal basins. In New Zealand, for example, the Wairakei plant was installed during the early 1950's. By 1954, the Great Geyser in Geyser Thermal Valley which ranked fifth among the major geyser areas of the world, became inactive coincident with Wairakei's declining reservoir pressure. All other springs and geysers in the valley were also diminishing in their discharge of hot water and the last known natural geyser eruption occurred around 1965. Geyser Thermal Valley was closed as a tourist attraction in 1972, and the Karapiti Blowhole ceased activity in 1973. Further, production from Wairakei also affected another thermal area thought to be independent with no connection at depth. Recent drilling nine to twelve miles from Waiotopu, another New Zealand thermal area, may have induced a chemical change or "interference" within its reservoir.

Near cessation or total destruction of natural hot spring or geyser activity from adjacent geothermal development is not limited to New Zealand. Similar changes have been recorded in Iceland; Lardarello, Italy; Beowawe, Nevada; and Steamboat Springs, Nevada. The Beowawe Geysers of Nevada were second to Yellowstone on the North American continent in amount of activity before the period of 1945-1958 when geothermal exploration began. Wells were drilled and permitted to discharge while not converted to commercial use; by 1961, all springs and geysers had ceased flowing. Without the natural continuous supply of hot water levels dripping below the surface, the geyser hot spring formations rapidly disintegrated due to desiccation and frost expansion. A similar destruction of the small geysers of Steamboat Springs, Nevada occurred in response to geothermal exploitation between 1950 and the early 1960's. In the case of Yellowstone National Park, a number of its natural hot springs areas lie within 12 miles of the Island Park Geothermal Area.

It should be noted that in all of the above cases except Waiotopu, geothermal development took place in the immediate vicinity of the hydrothermal attractions. It should also be noted that in New Zealand, what was disturbing to Wilson, (1976) was...."There seems to have been no serious consideration beforehand of the threat to each attraction and no public interest in the loss".

The exact boundaries of the Yellowstone geothermal reservoir(s) are uncertain and no definite evidence is apparently available on what the permeability is at depth. Thus, it is difficult to say how much of a connec-tion-if any - there is between the possible geothermal resource of the IPGA and thermal areas inside the park, or if any adverse effects might result.
The thermal areas of Yellowstone National Park are important not only for the hot springs, geysers, mud pots, etc., which lie within its margins. The natural heat flow and hot water discharge is critical to the wildlife in the park. Bison, elk, trumpeter swan, Canada geese, and many other waterfowl congregate in the thermal areas or on the rivers during the winter months.

EVALUATION OF EFFECTS BY ALTERNATIVE

Each impact listed in Table 33 was evaluated by the Geothermal Evironmental Statement Team. The impact was assessed by alternative based upon formation gathered by the team. This judgement was based upon the team member's knowledge of the resource, the Island Park Geothermal Area, geothermal development, the quantity and quality of information available, and input from other members of the interagency team. Recognized authorities on each resource were consulted to arrive at a consensus of the impact. These assessments were then used in the matrix analysis.

Table 34 is a sample of the matrix used to evaluate each alternative. The rows and columns have been numbered for reference in the following discussion.

1. When each row (resource) intersects with columns 1-4 (phase) the box is divided into three parts (figure 8):

- The number (value in the " a " part represents the relative importance of the phaseto the resource. The values range from 0 to 1.0 and total $1.0\left(a_{1},+a_{2}+a_{3}+a_{4}=\right.$ 1.0). The larger the number, the more "important" that phase is to the resource (important infers that portion of the total impact on the resource expected to occur in that phase). These values were established by the Geothermal Team collectively.
-The numbers in the " b " part stand for the total impact a phase will have on the resource. These values were calculated during each member's assessment of the impacts. The values range from 0 to 1.0 and, in general, the larger the number the greater the impact of the phase. They were arrived at by individual team members and represent the opinions of experts.
-The figure (value) in the " c " part is the product of the " a " and " b " boxes ($a_{1} \times b_{1}$ $=c_{1}$). This represents the weighted effect of the phase on the resource.

2. After each box has been completed, the Weighted Effects (c parts) are summed across each row and establish the value in column $5\left(c_{1}+c_{2}+c_{3}+c_{4}=W_{1}\right)$. This figure (W_{1}) represents the total cumulative effect of all phases of geothermal development on the resource.
3. Column 6 contains the Weighted Resource Values. These numbers represent the relative value of each resource on the Island Park Geothermal Area when the sum of the numbers equals 100 . These values were determined by resource specialists, land managers and the Geothermal Team on the Targhee and Gallatin National Forests. Twenty-seven people contributed to the value assignments. When ranking the resources and assigning values, each person considered the following criteria:

- Condition of the resource and its productivity,
- quantity of the resource (its significance to the IPGA, the Forests, and the Region),
- accessibility of the resource,
- uniqueness and quality of the resource,
- dominance the resource has in relation to the other area resources.

4. In column 7 is the Total Environment Effects on the resource of all phases ($W_{1} \times$ $R_{1}=E_{1}$). It considers the Weighted Effects of each phase, and the resources' relative importance to the IPGA. These figures are summed vertically to establish an alternatives final "score".

The Total Environmental Effects value (E) and the alternative's total "score" are abstract and have no units. However, they may be used to obtain relative rankings of environmental impacts when compared to other resource values and total "scores". Each resource can be compared within and between alternatives, and alternatives can be compared to each other. The lower the total, the less negative effects of the alternative.

TABLE 34. MATRIX USED TO EVALUATE EFFECTS OF GEOTHERMAL LEASING ALTERNATIVES

RELATIVE IMPORTANCE OF THE PHASE (TEST DRILLING) TO THE RESOURCE (TIMBER)

TIMBER

TABLE 35．SUMMARY OF NEGATIVE ENVIRONMENTAL EFFECTS OF ALTERNATIVES

		$\begin{aligned} & \text { TOTAL ENVIRONMENTAL EFFECTS } \\ & \text { OF ALTERNATIVE \#2 } \end{aligned}$	$\begin{gathered} \text { TOTAL ENVIRONMENTAL EFFECTS } \\ \text { OF ALTERNATIVE } \# 3 \end{gathered}$	$\stackrel{\leftrightarrow}{\leftarrow}$㒴山 $\stackrel{\downarrow}{を}$ $\stackrel{\text { œ }}{ }$ $\sum_{\substack{4 \\ 0}}^{4}$ $\stackrel{\square}{6}$ $\stackrel{\circ}{\circ}$		$\begin{aligned} & \text { TOTAL ENVIRONMENTAL EFFECTS } \\ & \text { OF ALTERNATIVE } \# 6 \end{aligned}$	
SOIL	4	2.12	1.40	2.12	1.40	2.76	1.32
WATER	16	8.32	5.12	8.48	5.12	12.48	4.64
AIR	7	4.06	2.45	2.94	2.45	5.39	2.31
VEGETATION	5	2.15	1.40	1.90	1.40	3.40	1.30
FISHERIES	13	5.72	4.16	4.55	4.68	9.23	3.90
NON THREATENED \＆ENDANGERED WILDLIFE	9	4.59	3.24	3.78	3.87	7.11	2.88
THREATENED \＆ENDANGERED WILDLIFE	6	4.32	2.64	2.82	3.30	5.76	2.52
TIMBER	11	4.84	3.41	4.84	3.41	9.90	3.41
GRAZING	4	1.24	0.96	1.24	0.96	2.32	0.96
RECREATION	9	5.04	3.24	5.04	3.42	6.84	2.88
VISUAL	6	3.00	2.16	3.12	2.64	4.62	1.92
ARCHAEOLOGICAL／HISTORICAL	2	1.04	0.80	1.04	0.80	1.60	0.80
WILDERNESS \＆YELLOWSTONE NATIONAL PARK	3	2.40	1.83	1.95	1.98	2.73	1.53
SOCIO－ECONOMIC	3	1.62	1.11	1.11	1.11	1.68	1.11
MINERALS（GEOTHERMAL）	2	1.60	1.20	1.20	1.20	2.00	1.00
TOTAL	100	52.06	35.12	46.13	37.74	77.82	32.48

Table 35 is a summary of the evaluation of alternatives two through seven．The analysis was not applied to alternative one since that alternative proposes no leasing．Therefore，effects would equal zero as would the total score．Tables 36 through 41 are the matrices for alternatives two through seven．

TABLE 36. GEOTHERMAL LEASING ALTERNATIVE NUMBER 2

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE 37. GEOTHERMAL LEASING ALTERNATIVE NUMBER 3

		1	2	3	4	5	6

TABLE 38. GEOTHERMAL LEASING ALTERNATIVE NUMBER 4

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE 39. GEOTHERMAL LEASING ALTERNATIVE NUMBER 5

		1	2	3	4	5	6	7

TABLE 40. GEOTHERMAL LEASING ALTERNATIVE NUMBER 6

	1 	2 		4 OPERATION		6 	
(1) SOIL	$\frac{.01 .45}{.005}$	$\begin{array}{\|c\|} \hline .20 \quad .45 \\ \hline .09 \\ \hline \end{array}$	$\begin{gathered} .65 .80 \\ \hline .52 \\ \hline \end{gathered}$	$\begin{array}{\|cc\|} \hline .14 & .55 \\ \hline .077 \\ \hline \end{array}$. 69	4	2.76
(2) WATER	$\begin{gathered} .02 .80 \\ \hline .016 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline .18 .87 \\ \hline .156 \\ \hline \end{array}$	$\begin{array}{\|c} .45 \quad .74 \\ \hline .33 \\ \hline \end{array}$. 35.78	. 78	16	12.48
(3) AIR	$\begin{array}{\|c} .01 .60 \\ \hline .006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .09 .85 \\ \hline .077 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .30 \quad .68 \\ \hline .204 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .60 \quad .80 \\ \hline .48 \\ \hline \end{array}$. 77	7	5.39
(4) VEGETATION	$\frac{.05 .80}{.04}$	$\begin{array}{\|c\|} \hline .30 \quad .60 \\ \hline .18 \\ \hline \end{array}$	$\frac{.50 .67}{.335}$	$\begin{array}{\|c\|} \hline 15.82 \\ \hline .123 \\ \hline \end{array}$. 68	5	3.40
(5) FISHERIES	$\frac{.10 .80}{.08}$	$\begin{array}{\|cc\|} \hline .20 \quad .65 \\ \hline .13 \\ \hline \end{array}$	$\frac{.60 .70}{.42}$.10 .80 .08	. 71	13	9.23
(6) NON THREATENED \& ENDANGERED WILDLIFE	$\begin{gathered} .05 \quad .76 \\ \hline .038 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline .10 \quad .68 \\ \hline .068 \\ \hline \end{array}$	$\begin{gathered} .55 \quad .78 \\ \hline .429 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline .30 \quad .86 \\ \hline .258 \\ \hline \end{array}$. 79	9	7.11
(7) THREATENED \& ENDANGERED WILDLIFE	$\frac{.05 \quad .80}{.04}$	$\begin{gathered} .10 \quad .90 \\ \hline .09 \\ \hline \end{gathered}$	$\begin{array}{\|c} .45 \quad 1.0 \\ \hline .45 \\ \hline \end{array}$	$\begin{array}{\|cc} .40 \quad .95 \\ \hline .38 \\ \hline \end{array}$. 96	6	5.76
(8) TIMBER	$\frac{.01 .40}{.004}$	$\begin{array}{\|c\|} \hline .30 \quad .60 \\ \hline .18 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 59.70 \\ \hline .413 \\ \hline \end{array}$	$\frac{.10 \quad .30}{30}$. 90	11	9.90
(9) GRAZING	$\begin{gathered} .10 .40 \\ \hline .04 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 20.20 \\ \hline .04 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .40 \quad .60 \\ \hline .24 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .30 \quad .60 \\ \hline .18 \\ \hline \end{array}$. 58	4	2.32
(10) RECREATION	$\begin{gathered} .10 \quad .60 \\ \hline .06 \\ \hline \end{gathered}$	$\frac{.20 .80}{.16}$. 60.80	$\frac{.10 .60}{.06}$. 76	9	6.84
(11) VISUAL	$\begin{array}{\|c\|} \hline 10 \quad 1.0 \\ \hline .10 \\ \hline \end{array}$. 20.60	. $40 \quad 1.0$	$\begin{array}{\|c\|} \hline 30.50 \\ \hline \end{array}$. 77	6	4.62
(12) ARCHAEOLOGICAL/HISTORICAL		$\begin{array}{\|c\|} \hline 40.80 \\ \hline .32 \\ \hline \end{array}$.60 .80 .48	$\underline{-}$. 80	2	1.60
(13) WILDERNESS AND YELLOWSTONE nATIONAL PARK	$\begin{gathered} .05 \quad .60 \\ .03 \\ \hline \end{gathered}$	$\begin{array}{\|c} .10 \quad .70 \\ .07 \\ \hline \end{array}$	$.40 \quad 1.0$.40	$\begin{array}{\|c} \hline 45 \quad .90 \\ \hline .405 \end{array}$. 91	3	2.73
(14) SOCIO-ECONOMIC	$\begin{array}{\|c\|} \hline .05 \quad .25 \\ \hline .013 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.32 \\ \hline .032 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 65 \quad .64 \\ \hline .416 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20.48 \\ \hline .096 \\ \hline \end{array}$. 56	3	1.68
(15) MINERALS (GEOTHERMAL)				$\begin{array}{\|c\|} \hline 1.0 \quad 1.0 \\ \hline 1.0 \\ \hline \end{array}$	1.0	2	2.00
						dtal	77.82

TABLE 41. GEOTHERMAL LEASING ALTERNATIVE NUMBER 7

	$\begin{aligned} & 1 \\ & \\ & \text { z } \\ & \frac{0}{1} \\ & \frac{1}{\overleftarrow{4}} \\ & \frac{1}{\square} \\ & 0 \\ & \frac{1}{2} \\ & \times \end{aligned}$	2 		4 			
(1) SOIL	$\frac{.01 \quad .19}{.002}$	$\frac{.20 \quad .28}{.056}$	$\frac{.65 \quad .38}{.247}$	$\begin{array}{\|r} .14 .18 \\ \hline .025 \\ \hline \end{array}$. 33	4	1.32
(2) WATER	$\frac{.02 .20}{.004}$	$\begin{array}{\|c\|} \hline .18 .43 \\ \hline .077 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .45 .24 \\ \hline .108 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .35 \quad .30 \\ \hline .105 \\ \hline \end{array}$. 29	16	4.64
(3) AIR	$\frac{.01 .18}{.002}$	$\begin{array}{\|c\|} \hline .09 .38 \\ \hline .034 \end{array}$	$\begin{array}{\|c\|} \hline .30 .22 \\ \hline .066 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .60 .38 \\ \hline .228 \\ \hline \end{array}$. 33	7	2.31
(4) VEGETATION	$\frac{.05 .30}{.015}$	$\begin{array}{\|c\|} \hline .30 \quad .18 \\ \hline .054 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .50 .32 \\ \hline .16 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 15.18 \\ \hline .027 \\ \hline \end{array}$. 26	5	1.30
(5) FISHERIES	$\begin{array}{\|c} .10 .29 \\ \hline .029 \end{array}$	$\begin{array}{\|c\|} \hline .20 \quad .24 \\ \hline .048 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 60 \quad .33 \\ \hline .198 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .10 \quad .22 \\ \hline .022 \\ \hline \end{array}$. 30	13	3.90
(6) NON THREATENED \& ENDANGERED WILDLIFE	$\frac{.05 .28}{.014}$	$\begin{array}{\|c\|} \hline 10.28 \\ \hline .023 \end{array}$	$\frac{.55 \quad .36}{.198}$	$\frac{.30 \quad .27}{.081}$. 32	9	2.88
(7) THREATENED \& ENDANGERED WILDLIFE	$\frac{.05 .18}{.009}$	$\begin{array}{\|cc} \hline 10 \quad .28 \\ \hline .028 \end{array}$	$\begin{array}{\|c\|} \hline .45 \quad .43 \\ \hline .194 \end{array}$	$\begin{array}{\|c\|} \hline .40 \quad .48 \\ \hline .192 \end{array}$. 42	6	2.52
(8) TIMBER	$\begin{array}{\|c\|} \hline .01 .20 \\ \hline .002 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .30 .20 \\ \hline .06 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .59 .40 \\ \hline .236 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \quad .10 \\ \hline .01 \\ \hline \end{array}$. 31	11	3.41
(9) GRAZING	$\frac{.10 .20}{.02}$	$\begin{array}{\|c\|} \hline .20 .20 \\ \hline .04 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .40 .30 \\ \hline .12 \end{array}$	$\begin{array}{\|c\|} \hline .30 .20 \\ \hline .06 \end{array}$. 24	4	0.96
(10) RECREATION	$\begin{array}{\|c\|} \hline .10 .20 \\ \hline .02 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 20 \quad .35 \\ \hline .07 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 60.35 \\ \hline .21 \end{array}$	$\begin{array}{\|c\|} \hline 10 \quad .20 \\ \hline .02 \\ \hline \end{array}$. 32	9	2.88
(11) VISUAL	$\frac{.10 .20}{.02}$	$\frac{.20 .20}{.04}$	$\begin{array}{\|c\|} \hline .40 .50 \\ \hline .20 \end{array}$	$\begin{array}{\|c\|} \hline .30 .20 \\ \hline .06 \end{array}$. 32	6	1.92
(12) ARCHAEOLOGICAL/HISTORICAL	-	$\begin{array}{\|c\|} \hline 40.40 \\ \hline .16 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline .60 .40 \\ \hline .24 \\ \hline \end{array}$. 40	2	0.80
(13) WILDERNESS AND YELLOWSTONE NATIONAL PARK	$\frac{.05 \quad .30}{.015}$	$\begin{array}{\|cc} .10 \quad .50 \\ \hline .05 \end{array}$	$\begin{array}{\|c\|} \hline .40 \quad .50 \\ \hline .20 \end{array}$	$\frac{.45 \quad .55}{.248}$. 51	3	1.53
(14) SOCIO-ECONOMIC	$\begin{array}{\|c} .05 .16 \\ \hline .008 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.22 \\ \hline .022 \\ \hline \end{array}$	$\begin{gathered} .65 .42 \\ \hline .273 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline .20 .31 \\ \hline \end{array}$. 37	3	1.11
(15) MINERALS (GEOTHERMAL)	-	-		$\begin{array}{\|l\|} \hline 1.0 \quad .50 \\ \hline .50 \\ \hline \end{array}$. 50	2	1.00
						TOTAL	32.48

A few adverse impacts cannot be avoided if geothermal development takes place in the Island Park Geothermal Area. Table 42 summarizes these impacts.

TABLE 42. ADVERSE IMPACTS WHICH CANNOT BE AVOIDED

Soil	Some soil losses are expected, particularly during the first winter following con- struction operations.
Water Quality	Stream turbidity will occur when large areas are cleared and graded. Some chemical spills may accidently occur which will contaminate portions of streams due to the chemical toxicity.
Wildlife	The loss of habitat for animals requiring a forested environment and a parallel reduction in their numbers is unavoidable if geothermal energy development oc- curs. Unavoidable losses of elk, deer, bear, and other species sensitive to noise and human presence will be caused by geothermal development and production activities. Certain species may return as they become accustomed to the new conditions. Others unable to make the necessary adaptation will probably be ab- sent throughout the life of the activity.

Fisheries Chemical or hot water spills will adversely affect the aquatic environment. Toxic substances will kill many aquatic organisms and thermal plumes can block fish migration patterns. Increased stream sedimentation from disturbed areas will cause channel modification and increased turbidity.

Timber Production
Loss of timber yields is an unavoidable impact where clearing occurs for any purpose.

Visual Quality Geothermal facilities can, to some extent, be screened or blended into the background. Because of the extensive network of pipelines, transmission lines, roads, and buildings, however, it is unlikely that all such installations can be blended into the surroundings. Vapor plumes from cooling towers likewise cannot be hidden, particularly in winter.

Recreation Development of geothermal facilities in the IPGA will reduce the area available for recreation. It would also impose unavoidable impacts on the quality of both dispersed and developed site recreation. Although the proposed action is designed to minimize impacts on the recreation resource, it is not possible to introduce such activity into an area without affecting the qualities currently available to recreationists visiting the area.

Fire Risk The presence of men and equipment essential to geothermal exploration, development, and production will unavoidably increase fire risk. A small increase in the amount of fuel can be expected during construction.

Air Quality The escape of small quantities of noxious and ordorous gases must be regarded as an unavoidable consequence of geothermal development. Burning of debris produced in clearing for access roads and facility development will result in some smoke pollution. Dust control and watering can effectively control the dust raised along access roads and around earth-moving operations. However, there will be some dust in spite of the preventive measures.

Noise Higher than present noise levels must be regarded as unavoidable around geothermal operations. The adverse impacts to wildlife, recreation, grazing livestock and adjoining landowners are also considered unavoidable.

Vegetation
Loss and damage of vegetation are unavoidable during all phases of geothermal development. Various activities will either crush or remove vegetation and adversely affect grazing livestock and wildlife.

VI. EVALUATION OF ALTERNATIVES

Each alternative was rated on a scale (1 to 5) as to how well it satisfied the criteria. The larger the score the more agreeable the alternative. The criteria are listed in a relative order or importance based upon an evaluation by resource specialists and land managers from the Targhee National Forest, Bureau of Land Management, and the National Park Service. Table 43 summarizes the evaluation.

TABLE 43. SUMMARY OF EVALUATION OF ALTERNATIVES

	$\mathbf{y y y y y y}$	Alternative					
Evaluation Criteria	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Yellowstone National Park	5	2	3	2	3	1	4
Alternate Energy Development	1	3	3	3	3	5	3
Water Quality and Quantity	5	3	3	3	3	2	4
Wildlife and Fish	5	2	3	3	3	1	4
Land Management Plans	2	3	3	3	4	2	4
\quad Total	18	13	15	14	16	11	19

Abstract

The alternatives considered and the evaluation process used extensive public input and Federal interdisciplinary coordination. Recognized authorities on the existing resources and geothermal development were consulted. State agencies, private organizations, and individuals were solicited for input and all possible means including use of communications media, private meetings, workshops, etc., were used to involve as many publics as possible. These efforts effectively satisfy the requirements of sections 101 and 102(1) of the National Environmental Policy Act of 1969.

VII. THE SELECTED ALTERNATIVE

The selected alternative is ALTERNATIVE 7 and is based upon the evaluation of all alternatives in the preceding section (VI). This alternative has integrated many substantive comments received and reflects this input in the following allocation:

Approve leasing on 178,620 acres (37% of the IPGA).
Deny leasing on 94,316 acres (19% of the IPGA).
Defer leasing at this time on 215,095 acres (44% of the IPGA).
This alternative incorporates two areas of major concern expressed by reviewers of the Draft Environmental Impact Statement. These were (1) Yellowstone National Park-A two mile buffer strip was added along the western boundary of the Park and deferred from leasing. This area will allow initiation of the monitoring program (see letter of technical assistance, U.S. Geological Survey, Section IX). (2) Wildlife and Fish-additional protection was given to fisheries in Warm River and Moose Creek. A $1 / 4$ mile buffer was added around Henrys Lake Flat to protect birds of prey habitat. Following current grizzly bear habitat management guidelines, some area was shifted from deferred to leasing category.

Lands will be available for leasing only after the Secretary of Interior determines the following:

- that an exploitable geothermal resource exists within the IPGA based upon research or tests such as drilling, geophysical and geochemical data interpretation or other indicators.
- exploitation of the potential geothermal resource in the Island Park Area will not adversely affect the unique thermal features of Yellowstone National Park.
- development would not adversely affect habitat of threatened or endangered wildlife.
- any potential air pollution from hydrogen sulphide or other noxious gases can be controlled so as not to adversely affect soil, water, vegetation, or air quality in areas of human habitation.
Any geothermal leasing or development of the 178,620 acres recommended for leasing will be administered as explained in the Introduction and Management Requirements, Constraints and Mitigating Measures sections of this environmental impact statement (sections I and VIII).
The selected alternative incorporates the concerns and advise of the interagency participants (Yellowstone National Park, U.S. Geological Survey, U.S. Fish and Wildlife Service, Forest Service, Bureau of Land Management). The recommendation adequately protects the resources managed by the two surface managing agencies (USDA-Forest Service and USDI-Bureau of Land Management). Because there is utmost concern for the protection and preservation of hydrothermal features within Yellowstone National Park, geothermal leases within the IPGA will be issued only after those concerns are addressed to the satisfaction of the Secretary of the Interior.
VIII. MANAGEMENT REQUIREMENTS, CONSTRAINTS, AND MITIGATING MEASURES

These requirements, constraints, and mitigating measures apply to geothermal leasing considered anywhere within the IPGA. They will be used as guidelines for specific lease stipulations if and when geothermal leasing/development becomes a reality. Considerations like width of stream protective zones, distance of noise from human use, location of drilling/construction sites from existing roads or other developments, etc. must be determined on a case by case or site by site basis.

Geothermal exploration operations, including geophysical surveys and the drilling of shallow temperature gradient holes to depths of 2,000 feet, entail only minor surface disturbance. Operations are permitted by the Area Geothermal Supervisor (AGS), U.S. Geological Survey, after receiving archeological, biological and/or other surface clearances from the appropriate surface management agency (Forest Service or Bureau of Land Management).
Major surface disturbing operations, which include deep test or development well drilling and construction and operation of production and utilization facilities, require public review of a Plan of Operations. Interested parties are notified and encouraged to attend site inspections and to comment on the proposed operation. The AGS prepares an Environmental Assessment on the proposed action to identify the potential environmental impacts and recommend mitigating measures. Serious consideration is given to all public comments in the assessment. Recommended mitigating measures of the Environmental Assessment are adopted as special conditions of approval of the Plan of Operation. Following joint Plan of Operation approval by the AGS and appropriate surface management agency, a permit may be issued by the AGS authorizing commencement of activities.

Mitigation of environmental impacts stemming from geothermal exploration and development will be accomplished by enforcing federal, state, and local laws and regulations; geothermal exploration and leasing regulations; geothermal operating regulations; Geothermal Resources Operational Orders (GRO's); lease and land use stipulations (see Appendix K for example lease form); and by applying existing, developing, and still to be developed technologies. If applicable standards cannot be met, construction will be delayed pending solution of the problems.

Although the number of geothermal installations in the world is limited, considerable technical and operational information is known. Drilling methods and techniques for handling high pressure fluids have been transferred, with appropriate modification, from the petroleum industry to the geothermal industry. Knowledge of environmental causes, effects, and remedial or preventive measures specifically relating to geothermal development ranges from adequate to limited.

Some known environmental impacts can be prevented. Others can be anticipated and environmental protection planned. Certain impacts can only be hypothesized. Contingencies included under general regulations may provide a means for corrective action in the event hypothetical impacts become a reality. If unacceptable environmental impacts cannot be corrected, development will not be permitted.

If a significant geothermal resource is discovered in the area, development will probably occur slowly over several years, for technical, economic, and environmental reasons. A prolonged development period tends to be a mitigating measure because problems discovered in initial operations may be solved in succeeding operations. If problems develop which cannot be satisfactorily solved, regulations require shut-down of operations until corrective action is taken.

Monitoring is required for potential impacts of exploration, development, and production of geothermal resources. Short-term impacts such as those on noise and air quality will be monitored by the lessee under supervision of the U.S. Geological Survey. Monitoring changes that cannot be attributed to leases will be the responsibility of the surface managing agency. Monitoring activities must be initiated prior to development so that impacts can be analyzed before and after assessment.

EXPLORATION

Noise, dust and vegetation crushing due to off-road vehicle (ORV) travel-Travel will be restricted to existing roads as much as possible. Off-road travel will be coordinated with the surface land managing agency to avoid disturbing wildlife during important periods in their life cycles. ORV travel will be excluded from stream courses and areas of ephemeral surface flow.

Explosives and seismic exploration - No blasting will be allowed in marshes or near open bodies of water, springs, or known sensitive habitats. These activities will not take place in areas used by sensitive wildlife species during breeding or other important periods in the life cycle. To offset the increased risk of fire, the following will be incorporated into site selection and planning efforts: an increased level of detection (lookouts, aircraft, etc.); adequate communication; education of personnel involved; enforcement of all laws, regulations and guidelines; and close coordination with the surface managing agency to avoid periods of high fire danger.

Clearing access routes - Proper planning and site selection is effective mitigation. Use of natural breaks in vegetation (crests and ridges) is advantageous, while surface water and riparian habitat will be avoided. Minimum vegetation will be cleared. If clearing or brushing of vegetation is deemed necessary, the dozer blade will be set at a minimum of 6 inches above the ground. Temporary access routes, will be reclaimed to as near original condition as possible. This may require scarification, reseeding, fertilization, etc. Routes will be physically and administratively closed after drilling is completed. To reduce fire hazard, prevention coordination with the surface managing agency and an approved fire plan will be required.

Increased noise - Mufflers on the drill rig engine will reduce noise. However, special problems with unique wildlife may arise on a site-specific basis. Additional muffling or alternative site selection may be required. Insofar as possible, operations will be kept well back from residences, recreation sites, administrative sites, recreation roads, and wilderness access points.
Noise limitations must conform, as an initial minimum, to the regulations issued by the U.S. Geological Survey for geothermal operations on Federal lands: i.e. not to exceed $65 \mathrm{db}(\mathrm{A})$ at the lease boundary or onehalf mile form the source, whichever is greater.

Preparation of drilling area-Proper site selection will minimize most soil/vegetation disturbance and/or modification. Sites will be located away from surface water to prevent pollution from spills, soil erosion, etc.

Discharge of drilling wastes, mud, etc. - Drill cutting will be disposed of by either one of two methods: (1) complete removal to an approved disposal site, or (2) raked-out on the ground at the drill site to a depth not exceeding 6 inches. Geothermal fluids or toxic substances will be held in temporary holding ponds until proper disposal is arranged.

Increased human presence - Human presence will be temporary and localized in the vicinity of the drill site. Complete mitigation is impossible; however, proper education of crews will reduce human-wildlife conflicts and lessen impacts on wildlife populations.

Drilling of shallow holes-Interaquifer transfer of waters with different qualities through encased holes will not be allowed.

Camping and housing personne/-Chosen sites should minimize disturbance of soil/vegetation, surface waters, and wildlife. Bivouacs will not be allowed in important wildlife habitats during critical periods of important species life cycles: for example, waterfowl concentration areas during migration, near raptor nests during the nesting and fledgling periods, etc. Streamside and riparian habitat locations will be discouraged. Camp sanitation plans will not allow litter and garbage to be scattered. Bear-proof containers will be required and all litter and garbage will be removed daily. Self-contained chemical toilets will be discharged into appropriate facilities. Fire prevention plans and fuel treatment around camps will be coordinated with the surface land managing agency.

TEST DRILLING

General construction-Construction is not specific to any particular phase, although construction impacts commonly begin in the test drilling phase. These include roads, drill pads and sumps, foundations for buildings, parking lots, and storage areas. Impacts have been identified for each phase, however, mitigation measures apply to impacts associated with construction in all phases.

The most effective mitigation for direct impacts to soil/vegetation, water resources, fish and wildlife or resource management structures is proper planning and site selection. Important and/or sensitive habitats have been excluded or deferred from leasing (certain big game winter ranges, swan wintering areas, critical portions of migration routes, etc.) Excessive road building will be prevented. Timing to avoid conflicts with important parts of wildlife life cycles will be stressed. Adequate standards for road and pad construction will be observed: case-by-case modifications will be necessary for cut slopes, berm size, run-off channelizations, slopes, etc.

Flat terrain for roads will diminish cut and fill and visual scars. Slopes over 30 percent will be avoided if possible. Natural drainage patterns of surface and shallow subsurface water will not be altered.

Stream crossings and diversions of flowing water will be kept to a minimum. Unstable soils will be avoided, and topsoil will be retained for use in revegetation and maintenance operations.

Construction patterns will be designed to conserve the "edge effect" and avoid critical or sensitive patches of vegetation. Single routes of approach to sites will be encouraged to minimize soil/vegetation modification and decrease the area affected.

Snags and islands of vegetation important to wildlife will be retained. Close coordination with the surface management agency will be required to achieve this objective.

Site inspection to appraise construction techniques will be necessary. Excessive dust generation, as evidenced by dust plumes and dust coverage of vegetation, will be mitigated by oiling or watering.

Buffer strips will be left around nests of uncommon raptorial birds. To coordinate mitigating measures the surface management agency will be consulted whenever nests are discovered. Similar protection will be extended to other wildlife species if population trends indicate the need.

Measures to reduce fire hazards include building fuel breaks between slash and surrounding areas and piling slash immediately after it is created. In some cases it will be necessary to designate additional areas where slash can be piled. The amount of slash on the ground can be minimized by burning and extending the burning season (night burning, wetting down the area, using extra men and equipment, etc.). Finally, prompt removal of merchantable logs and available cull material will be required to decrease the amount of combustible material on the ground.

Revegetation programs will be instituted as soon as feasible to hasten natural soil stabilization. Revegetation will be coordinated with the surface management agency in order to choose the proper species composition, fertilizer, cultivation, etc.

Lease terms will require protection of both known archaeological sites and any sites that may be discovered during geothermal development. Federal agencies will consult with qualified archaeologists on methods of protecting high value sites for future use. All significant archaeological values will be protected by inclusion of stipulations in geothermal leases.

1. The Lessee will comply with all Federal laws pertaining to the protection of archaeological, paleontological and historical values, including but not limited to the Antiquities Act (16 U.S.C. 431-433) and the Historic Preservation Act of 1966. Prior to disturbance of the surface, or entry on the land for any purpose other than "casual use" (as that term is defined in 43 CFR 3209.0-5), the Lessee will be required to have a survey made of all archaeological, paleontological and historical values in those areas of the lease which the Lessee proposes for surface disturbance, occupancy, or development. The archaeologist making such survey must be acceptable to the Authorized Officer, and must furnish to the Authorized Officer and the Area Geothermal Supervisor a certified statement setting out the steps taken in the survey and the findings thereof as to the existence of any such values. If the statement indicates the existence of such values which might be disturbed, the Lessee shall take such steps to protect and preserve those values as may be required by the Authorized Officer and the Area Geothermal Supervisor, or by such other officer as may be designated by the Secretary of the Interior. These steps may include protective measures such as complete avoidance of the site, relocation of proposed facilities, or salvage of the objects in accordance with applicable laws and regulations. The Authorized Officer in this case is a designated representative of either surface managing agency.
2. Upon discovery of cultural sites or objects, development will be halted pending determination of the significance of the discovery.
3. Use of existing roads will be encouraged to prevent inadvertent damage to archaeological resources.
4. Movement of equipment over known subsurface archaeological sites will be minimized. Necessary crossings will require placement of planking, earth mounding, and use of rubbertipped equipment to minimize ground disturbance.
5. If archaeological areas of high use potential are discovered, planning will keep permanent scars and damage from nearby development out of view of visitors.

Road and drill pad construction - Planning should locate drill pads so that several will be close to or on one road. Since drill pads are large, general construction mitigations apply. Fire breaks should be incorporated into transportation routes.

Herbicidal control of unwanted vegetation - Herbicide use will be coordinated with the surface management agency. The choice of chemicals, application rates, restrictions, etc. will follow Federal, State, and local laws, regulations, and guidelines.

Possible discharge of drilling wastes, muds, geothermal fluids, etc. - Mitigation is best achieved by proper sump construction, maintenance, testing, and disposal. Unstable soils, landslides, surface water drainage pathways, steep topography, and other high hazard locations will be avoided. Sump walls must be strong enough to withstand minor earthquakes and moderate erosive forces of the weather. Sumps will have an impervious lining to prevent infiltration of the contents into adjacent surface, shallow and deep groundwater. Sumps will be of adequate capacity to accommodate drilling wastes, geothermal fluids and natural discharges or runoff resulting from rain or snow. Chemical agents must be kept on hand to neutralize the pH or alter the chemistry of the liquids in the event of leakage.

When a sump contains toxic mud, drilling wastes, or geothermal fluids, a strong fence will be built to prevent animals from reaching the sumps. During drilling and prior to disposal, detailed chemical analysis of all wastes, mud, and fluids will be made.

Contaminated water will only be discharged on the surface into holding ponds designed to safely contain such water. Contaminated water may be reinjected into the producing reservoir from which it was withdrawn or into other underground reservoirs to the extent such injection is consistent with applicable laws and regulations. In Idaho, geothermal fluids discharged into any underground waters have to be as high in quality as the receiving waters.
Toxic substances will be hauled to an appropriate dump site or left in the sump. Lessee will be required to comply with appropriate laws, USGS regulations and EPA guidelines in disposal of toxic substances or hazardous wastes.

Wildlife dispersals to surrounding habitat-Wildlife dispersal will be lessened by minimizing the area affected, reducing associated impacts, and adhering to other mitigating measures.

Increased vehicular traffic - Proper planning of road locations will minimize vehicular traffic.
Increased noise - Diesel engines for drilling rigs and producing wells will be muffled. Drilling and construction will be timed to avoid periods of breeding and nesting of important wildlife species. For example, drilling and testing will be shut down during the breeding cycle of trumpeter swans, bald eagles, big game calving and fawning, etc. This will follow a very intensive biological survey on a site-by-site basis and coordination with the surface management agency. Additional muffling or other alternatives may be developed on a case-by-case basis. Proper planning to incorporate topography and vegetation will also attenuate increased noise levels. Operations will be kept away from residences, administrative sites, recreation areas, and wilderness access points.

Erosion - See General construction above. In addition filter strips of natural vegetation will be left between disturbed soil and drainage bottoms to aid in preventing stream sedimentation. Strip widths will be determined by the surface managing agencies.
Improper disposal of food-related garbage and other waste - Strict sanitation guidelines will be followd to prevent modifying nutrient cycles and wildlife feeding habits. In areas occupied by grizzly bears, bear-proof containers will be provided and accumulation of refuse will not be allowed.

Equipment maintenance (discharge of detergents, compounds, oil and gas, etc.) - Proper maintenance procedures will effectively mitigate any potential pollution. Any spills or discharges should immediately be cleaned up and the area inspected for damage to terrestrial and aquatic habitats. Further rehabilitation will be coordinated with the surface managing agency.

Blooie line operation - Mitigation for noise requires adequate muffling discussed above. Separators will remove foreign particles from the discharge.

Production testing - Mitigation for noise is discussed above. Barring accidents, no uncontrolled discharge of geothermal effluents will be permitted. Analysis of the effluent will be conducted as specified by the GRO's. Surface discharge will be considered only after a period of testing under full flow conditions. After the quality has been assured, it may be possible to use geothermal waters for beneficial purposes. If a danger of toxicity exists, testing will cease during periods of local weather anomolies (temperature inversions, heavy rain or snowfall, etc.). Hot liquid will be stored in the sump reservoir for evaporative loss to the atmosphere. Proper planning and timing of testing will utilize periods of atmospheric ventilation and avoid critical events in animal life cycles. Steam and gas venting to the atmosphere will be analyzed for constituents and appropriate control methods applied. Normally this will be removal of $\mathrm{H}_{2} \mathrm{~S}$ by scrubbing to reduce odor impacts.

Well blowout-GRO order \#2 covers blowout prevention equipment and procedures. Blowouts can be prevented by proper site selection, use of adequately strong casing material, and appropriate drilling procedures (maintaining proper drill mud temperatures, mud densities, etc.). Advanced planning for equipment and trained personnel can provide rapid control of blowouts. Blowout risk will be minimized by well monitoring practices designed to assure early detection of casing leaks and/or cement failures. Thorough and timely cleanup of blowout spills will lessen impacts.

Abandonment of wells-Unsuccessful wells will be abandoned and the site reclaimed. GRO order \#3 covers the procedures required for well abandonment. In general, the hole must be filled with concrete and above-ground structures removed. Operations are of such limited nature that adherence to mitigation measures for increased noise, human presence, erosion, and general construction will minimize impacts. Landscape rehabilitation and revegetation plans will be closely coordinated with the surface management agency.

Increased human access-Public safety and security of geothermal facilities, as well as wildlife management considerations, may require closure or control of some roads and areas. Advanced planning on a site-by-site basis and coordination with Federal and State resource managing agencies are critical to effectively mitigate access impacts and to possibly derive benefits.

Man-made features - Facilities will be located and designed to blend into the forested background. Techniques for reducing contrast include designing buildings with low profiles and selecting paint colors that harmonize with trees, rocks, and other elements of the natural landscape. Use of existing roads and transmission lines wherever possible will help minimize impacts. New access roads will be less conspicuous if designed to follow the natural contour. The same principle will be applied to well and building sites. Irregularly shaped sites are less distracting to the eye and blend with their natural backdrops sooner upon abandonment. Clumps of vegetation will be left within cleared areas to break the contrast of geometrical structures with the irregular shapes of terrain and vegetation. Abandoned roads and the cleared area around wells and sumps will be scarified and replanted with native vegetation after completion of drilling and construction activities. Well pads may be reshaped to present a more natural appearance.

Visual quality standards described in Section II will be considered in any development of IPGA geothermal resources. Landscaping requirements necessary to protect visual resources will be formulated on a site-bysite basis as individual lease applications are reviewed. Geothermal development will be kept out of sight of all developed recreation sites.

CONSTRUCTION AND DEVELOPMENT

Construction of additional roads, drilling pads, sumps, buildings, etc. - See general construction and previous phases. Generally, complete mitigation is impossible for the modification of land, or for the physical occupation of the land by buildings. The measures available include: reducing noise, allaying dust, and choosing a time of construction to avoid interfering with the sensitive portion of animal life cycles, etc. Revegetation of all cleared areas and road cuts will begin at once, particularly on steep slopes. Runoff control structures will be designed and located so water can be directed onto energy-dissipating rocks or ground. In some cases it may be feasible to pond this water in an impermeable or slow draining basin so that local wildlife may obtain a water supply. Storage areas and parking lots will be consolidated and the number of roads minimized. A single large building will be preferred to a number of small buildings. A number of buildings will be clustered. Impediments to migration or critical social behavior of wildlife (elk migration corridors, breeding areas) will be particularly avoided.

Power plant and facilities - Mitigation measures discussed under general construction and previous phases apply here as well. Dewatering for excavation will not be allowed to adversely influence flows of nearby springs, streams, and/or wells. Disposal of pumped water will follow erosion mitigating measures, and flooding of land surfaces will not be allowed if damage to terrestrial and/or aquatic ecosystems is possible.

Transmission lines - Mitigation for general construction impacts and previous phases also apply here. Proper planning of corridors will reduce impacts to wildlife. Transmission lines will utilize existing corridors or follow existing roads or clearings. If lines pass through habitat critical to important wildlife species, the right of way should be closed to access by humans during critical events in the species life cycle. Coordination with the surface managing agency is essential to this planning.

Transmission line poles and towers should be no taller than necessary for support or for a minimum wire height. Power lines near waterfowl concentrations or local flyways will be avoided. Pole and insulator construction will be such that electrocution of raptors and other perching birds is prevented. Facilities such as transformers or switching stations should be situated in places where minimum erosion and wildlife disturbance will occur.

Pipelines - Mitigations for construction have already been discussed. Steam pipes will be located so that large animal migration or regular feeding is possible. Expansion loops may provide access if the loops are vertical. Pipe burial may be necessary in rare instances.

Increased demand for social, health, education services and housing-The geothermal leasing program presents a problem because no one is certain exactly what or how much to prepare for. The key will be to continually update information on the progress of exploration and test drilling and to launch community preparation programs when exploration and test drilling change to construction and development.

At lessee's expense, communities which are likely to receive population increases from geothermal leasing will be given detailed plans for development timing and changes in employment. These should be updated frequently and the actual number and residential location of employees monitored to verify predictions.

A massive boom in development should be avoided by slowing the employment increase when communities are in danger of being overwhelmed.

The general relationship between local government officials and lessees should be worked out before leases are granted. The lease should contain wording to reinforce this relationship. It is in the long range interest of both to be in a cooperative rather than adversary position.

OPERATION

Power plant-Generally, operation of a geothermal field increases continuous noise, discharge of geothermal fluids, operation of machinery, construction, human activity - all of the characteristics of an industrial complex. Mitigation has been discussed under previous phases. Improving technology, increasing efficiency of power plants, and using excess heat for non-electrical purposes (space heating, greenhouses, etc.) could further minimize impacts such as thermal pollution. Extraction of ground water for cooling and/or make-up water will not be allowed to irreparably alter flows to nearby springs, streams, and/or wells. Water impounded, diverted, or withdrawn by pumping will not be allowed to interfere with downstream uses.

Cooling towers, transmission lines and pipelines-Mitigation is discussed under previous sections. Human access will be strictly controlled to prevent human-wildlife conflicts. Coordination with the surface management agencies is critical.

Reinjection - Contamination and/or modification of surface and groundwater aquifers may be avoided by casing the injection well to a depth that will prevent penetration of an aquifer. Reinjection will not be conducted in zones where faults have been detected, and where upward leakage of injected fluids will cause movement of unstable soil and earth materials. To prevent formation fracture, fracture gradients will be determined prior to reinjection.

Release of gases and vapors - If discharged gases and/or vapors produce acid rain, monitoring of terrestrial and aquatic ecosystems will be required to determine changes and provide mitigating measures. Shutdown of operations will be required if satisfactory mitigation measures are not available.

Increased demand for social, health, educational services and housing-Facilities developed during the construction and development phase will be more than adequate to meet the needs of geothermal employees and families during operation.

PROTECTION OF AIR QUALITY

During each phase of development compliance with all Federal and state rules and regulations concerning the altering of ambient air quality standards will be required. Monitoring the air quality conditions will be required to ensure the integrity of air quality. The release of non-condensible gases $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{NOx}, \mathrm{SO}_{2}, \mathrm{CH}_{4}, \mathrm{NH}_{3}\right.$, among others) will be tolerated only as long as ambient air quality standards are not exceeded. Surpassing these standards will require prompt correction of the offending action or device. The immediate shutdown of the operation will result when a solution to the problem is not at once available. For toxic gases (e.g. $\mathrm{H}_{2} \mathrm{~S}$, SO_{2}, etc.) the appropriate safety devices (gas detecting meters, masks, resuscitators) will be on hand, and emergency evacuation plans will be made known to workers.

The lessee or operator shall provide a contingency plan to safeguard workers in the drilling area and all persons in areas of human habitation adjacent to the drilling areas. The contingency plan will include:
(a) control procedures for accidental spills and discharges
(b) safety equipment
(c) training of personnel
(d) evacuation plans

The contingency plan must be approved by the Area Geothermal Supervisor, U.S. Geological Survey.

Yellowstone National Park geothermal features must be considered.

YELLOWSTONE NATIONAL PARK

Because existing data do not provide definite evidence either for or against hydrologic communication between Yellowstone's thermal features and possible thermal waters outside the Park, external geothermal developments must provide a monitoring system that ensures early recognition of possible interference between them.

The following monitoring program will be required, and shall be initiated when deemed necessary by the Secretary of the Interior:

1. Gauging stations will be established on Boundary Creek, the Bechler River, and selected suitable individual hot springs to monitor discharge, chloride content, temperatures, and total convective thermal output; Little Firehole Meadows will be searched for thermal features suitable for monitoring, and, if deemed appropriate, observations will be initiated there.
2. One or more deep monitoring holes will be drilled within the deferred strip (the extended Yellowstone KGRA), prior to any large-scale production, to depths comparable to any newly discovered reservoir and preferably into the same rock strata that contain the reservoir. Tentative locations are: (1) about two miles south of West Yellowstone, in Sec. 10, T14S, R5E (if the discovered field is north of the Continental Divide), or (2) south of the Continental Divide, perhaps in Secs. 14 or 23, T13N, R45E, or even farther south (if a reservoir is discovered south of the Divide). "Slimhole" drilling and complete coring is perferred for initial holes, but deep drilling with heavy equipment may be necessary depending on conditions encountered.
3. The Geological Survey research drill holes $\mathrm{Y}-7$ and $\mathrm{Y}-8$ in the north part of Upper Geyser Basin will be monitored.

All geothermal fluids extracted and used in the IPGA will be reinjected into the reservoir from which they were extracted to minimize loss of reservoir pressure.

If extraction of geothermal fluids from the IPGA significantly influences pressures, chloride concentrations, or temperature of the monitored features, operations will be suspended either until the influences are eliminated or until they are clearly conterebalanced by a tier or reinjection wells in the area of deferred leasing approximately two miles west of the Park boundary. Sufficient injection in this area should provide a highpressure barrier, preventing eastward propagation of declining reservoir pressures.

IX. CONSULTATION WITH OTHERS

The need to prepare an environmental statement for geothermal leasing in the Island Park area was agreed upon at an interagency meeting held in Boise, Idaho on May 7, 1975. Representatives from the U.S. Geological Survey, Bureau of Land Management, U.S. Forest Service, U.S. Fish and Wildlife Service and National Park Service attended the meeting and discussed consequences of a geothermal leasing program in the Island Park area. It was agreed at this meeting that the Targhee National Forest would serve as the lead agency for this interagency effort.

Another interagency meeting was held in Idaho Falls in January 1977. This meeting established commitments and level of involvement for each of the participating agencies. The following agencies agreed to provide specific information and involvement into the environmental statement effort:

U.S. Forest Service
Gallatin National Forest
Targhee National Forest (lead agency)

Bureau of Land Management
 Idaho Falls District

National Park Service
Yellowstone National Park
U.S. Fish and Wildlife Service
Ecological Services
U.S. Geological Survey

Conservation Division
Geologic Division
Water Resources Division
Each participating agency has provided personnel to comprise the multi-disciplinary study team. These team members have served as key representatives for their agency.

Public involvement has been a continuous activity. It includes the giving and receiving of information relevant to geothermal development in the area of consideration. The following is the sequence of public involvement in the environmental statement process to date:

Activity	When
Announced intent to prepare an environmental statement and	
identified who was involved (News Media)	January 1977
Distributed information brochure (brief) with response form for comments or concerns. Approximately 800 copies distributed	May-August 1977
Mailed notification of public involvement workshop in Rexburg, Idaho, March 18, 1978. Approximately 700 copies distributed	February 1978
Island Park Geothermal Workshop held at Madison Junior High School, Rexburg, Idaho	March 18, 1978
Informal contacts with various public segments, state agency representatives, and congressional delegates	Concurrently

The draft environmental impact statement was released to interested parties on March 21, 1979. Eleven hundred copies were sent to individuals, lease applicants, environmental groups, energy developers, elected officials, state and federal offices, various news media, and to local forest resource users. The official deadline for the submission of comments on the draft was May 21, 1979, however, most comments received after that date are included in this final statement. Comments to the draft EIS are reproduced in this document (Appendix N.).

A computer program (two-way contingency table) was used to analyze the comments to the draft EIS. Several variables were identified about the comments and their possible significance to the goethermal leasing proposal. The following tables identify the geographic distribution and alternative favored from all the comments received.

TABLE 44. ENTITY PROVIDING COMMENTS AND GEOGRAPHIC DISTRIBUTION

Entity	Northeast	Southeast	Midwest	Northwest	Southwest	Totals
Energy Developer'	1	1	0	1	11	14
State or Local Government	0	0	0	17	1	18
Federal Government	0	2	0	5	2	9
Environmental Group	0	2	0	4	0	6
General Public	0	0	1	7	9	17
Other	0	0	0	5	2	7
Totals:	1	5	1	39	25	71

' Oil and gas company, nuclear power proponent, or company/individual involved in leasing for minerals/energy development
${ }^{2}$ Local business/organization
TABLE 45. ALTERNATIVE FAVORED BY ENTITY

	Energy Developer	State/Local Government	Federal Government	Environmental Group	General Public	Other	Total
Favor Alt. 1	0	2	0	2	4	0	9
2	1	0	0	0	0	0	1
3	0	3	1	3	2	1	10
4	0	0	1	0	0	0	1
5	0	1	0	0	1	0	2
6	9	0	0	0	5	1	15

From 22 different issues/concerns, the most numerous comments were for the following: a need for energy in the United States; wildlife (for both threatened and endangered and other species); Yellowstone National Park; quality of air and water; and socio-economic aspects of goethermal development. Other issues/concerns expressed in smaller numbers were:

- Energy conservation/alternative energy sources
- Cultural values
- Recreation
- Fishing
- Energy from IPGA not needed
- Unknown geothermal resource in IPGA
- Balanced concern for resources
- Resource conflicts
- Industrialization of national forests
- Withdrawal of federal lands from minerals/energy development
- Government institutional barriers to geothermal development
- Government leasing delays
- Geologic hazards

The comments received (Appendix N.) were used in three ways in preparation of the first EIS: (1) many comments suggested, directly or indirectly, important considerations for the proposal. These helped develop the Evaluation Criteria (section III). (2) Suggestions were used to develop Alternative 7 which is the selected alternative. (3) Specific points or weaknesses identified in the draft EIS have been clarified or amended (see responses to comments in Appendix N.)

Many Federal, State, and local agencies not already mentioned have provided consultation and/or contribution to the preparation of this statement. They include:

FEDERAL

Environmental Protection Agency Department of Energy
 National Oceanic and Atmospheric Administration
 Advisory Council on Historic Preservation
 Department of the Interior
 Bureau of Reclamation
 Bonneville Power Administration
 Bureau of Mines
 STATE AND LOCAL
 IDAHO

Fish and Game Department
Department of Health and Welfare, Division of Environment Department of Water Resources Department of Parks and Recreation Department of Lands State Archaeologist Public Utilities Commission Division of Budget, Policy Planning and Coordination Historic Preservation Officer Office of Energy Attorney General's Office

MONTANA
Energy Office Department of Health and Environmental Science Historical Society Department of Natural Resources and Conservation Bureau of Mines and Geology

WYOMING

Game and Fish Department
Geological Survey

> INFORMATION RECEIVED UNDER CONTRACT WITH CONSULTING FIRMS
> EDAW, Inc. Fort Collins, CO
> Western Environmental Research Associates . Pocatello, ID

Many interested groups and individuals have provided consultation. They include:

GROUPS

Fall R	Ashton, ID
Forsgren, Perkins \& Associates.	Rexburg, ID
Idaho Conservation League	Boise, ID
Idaho Environmental Council.	Idaho Falls, ID
Outdoors Unlimited, Inc. - Sawtelle Chap	St. Anthony, ID
The Montana Wilderness Association.	Helena, MT
Idaho Geothermal Corporation.	St. Anthony, ID
Occidental Geothermal, Inc.	Bakersfield, CA
Union Oil of California.	Santa Rosa, CA
Audubon Society-Snake River Chapter	. Idaho Falls, ID

Ralph Maughan Pocatello, ID
Ray Breuninger Helena, MT
Marian Boulter Rexburg, ID
Keith E. Brown Canyon Creek, MT
Craig Carver Denver, CO
Eddie Chew Idaho Falls, ID
Phil Choate Rexburg, ID
Vernon Christoffersen Tetonia, ID
Eugene V. Ciancanelli San Diego, CA
Gary L. Davidson Idaho Falls, ID
Mark Dublin Idaho Falls, ID
Sandy Enyeart Idaho Falls, ID
Beth Gorringe. St. Anthony, ID
Russell Hillman St. Anthony, ID
Roger D. Hoggan Rexburg, ID
Klem K. Kennedy Idaho Falls, ID
Steven Knapp Ashton, ID
Michael McSorely Pocatello, ID
William G. Miller St. Anthony, ID
C.F. Murer Denver, CO
Deborah Parrott. Victor, ID
Ralph V. Pehrson Boise, ID
Chris H. Peterson Idaho Falls, ID
Robert Ruud St. Anthony, ID
Fred Schmidt Butte, MT
Glan Sharp Squirrel, ID
Samuel E. Shepley Idaho Falls, ID
P.A. Smith. San Francisco, CA
Bob Stenner. Pocatello, ID
Jacquelyn Sullivan Idaho Falls, ID
Jack Thomas Island Park, ID
Mrs. Jack Thomas. Island Park, ID
Ryan Tibbitts Rexburg, ID
Gerald Vaughan Bakersfield, CA
Jennifer Whipple Arcata, CA
Calvin H. Wickham Ashton, ID
Ed Williams Rexburg, ID
Charlie Woodward Victor, ID
A.D. Zierold Boise, ID

LETTERS OF CONSULTATION

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
Office of Geochemistry and Geophysics
345 Middlefield Road, MS18
Menlo Park, California 94025

April 27, 1979

MEMORANDUM

To: Distribution
From: Robert L. Christiansen and Donald E. White
Subject: Response of U. S. Geological Survey Geothermal Research Program personnel to Draft Environmental Statement of the Island Park Geothermal Area (IPGA)

This memo is written in response to the request of David M. Jay, Forest Supervisor of Targhee National Forest, for comments or suggestions on the subject Draft Statement; it is intended as technical assistance and does not constitute the Geological Survey's formal review of the Draft Environmental Statement.

We wish to suggest that further measures be included in the Statement in order to assure that any geothermal production that might result from exploration in the IPGA would not affect the major hydrothermal features of Yellowstone National Park. Although it is our considered judgement that such effects would be unlikely, it is important that a cautious approach be included in eventual production strategies, both to monitor possible changes and to counteract them if they should be detected. We, therefore, propose that alternative 3 of the Draft Statement be changed to include a strip for deferred leasing along the western boundary of Yellowstone National Park and that a program be included to place deep wells for monitoring and possible injection within that strip.

Our proposed changes to the Draft Statement follow. First is a suggested modification to alternative 3 (p. 81). Next we present a statement to replace the section of the Draft Statement on page 123 concerning Yellowstone National Park. Finally, we give our rationale in support of specific aspects of the proposal.

On Fig. 17, p. 81. Transfer the strip on the east side of IPGA (shown on the Draft Statement maps as "Yellowstone KGRA") from a mixture of leasing and deferred leasing to totally deferred leasing; extend this two-section-wide strip of deferred leasing north and south to provide a complete buffer zone adjacent to the Park.

Regarding point 3 above, the alternate holes suggested are in better condition and probably are as satisfactory for monitoring as the reactivated Y-l in western Upper Basin, suggested in the Draft Statement; all of these research holes are too shallow and too subject to continuing changes of nearby springs and geysers to provide reliable monitoring data by themselves.

If commercial geothermal resources should be found to exist in the IPGA, the suggested strategy aims for early recognition of any declining reservoir pressure that might be propagated eastward, thereby diverting deep Yellowstone geyser water westward rather than upward and thus interrupting the natural geyser supply. We consider deep communication of fluid pressures between the Island Park area and the Yellowstone caldera to be unlikely, but it cannot be ruled out by any available evidence. If some pressure communication is demonstrated, the initial effects will become evident through our proposed monitoring system long before a wave of declining pressure can be transmitted to the geyser basins. It should be noted that a discovery well within the IPGA with only limited testing and discharge of fluids cannot possibly affect the geysers of Yellowstone National Park. A significant and more-than-local decline in reservoir pressure can occur only after at least 5 to 10 production wells are drilled and produced long enough to demonstrate productivity, which is necessary to justify construction of a power plant. Normally at least two to three years are required to drill the 5 to 10 required production wells and another five years to construct the power plant. The easier parts (items 1 and 3) of our proposed monitoring system should be initiated as soon as the first lease sales are approved, and one or more deep monitoring wells should be drilled adjacent to the Park boundary immediately after a new discovery becomes evident and before five or more production wells are drilled.

Limited testing of each newly completed well should be permitted in order to test initial productivity. All liquid effluent from sustained testing of production wells should be reinjected into the reservoir, thereby minimizing any wave of pressure decline that could be transmitted eastward. One or more of the early industry-drilled wells should be withheld from production testing to monitor immediate effects of this production and reinjection. Wells of low productivity are suitable for such monitoring.

On p. 123, "Yellowstone National Park", restate as follows:
Because existing data do not provide definitive evidence either for or against hydrologic communication between Yellowstone's thermal features and possible thermal waters outside the Park, external geothermal developments must provide a monitoring system that insures early recognition of possible interference between them. The following monitoring program will be required if a commercial geothermal resource is discovered within the IPGA:

1. Gauging stations will be established on Boundary Creek, the Bechler River, and selected suitable individual hot springs to monitor discharge, chloride content, temperatures, and total convective thermal output; Little Firehole Meadows will be searched for thermal features suitable for monitoring, and, if deemed appropriate, observations will be initiated there.
2. One or more deep monitoring holes will be drilled within the deferred strip (the extended Yellowstone KGRA), prior to any large-scale production, to depths comparable to any newly discovered reservoir and preferably into the same rock strata that contain the reservoir. Suggested locations are: (1) about two miles south of West Yellowstone, in Sec. 10, T14S, R5E (if the discovered field is north of the Continental Divide), or (2) south of the Continental Divide, perhaps in Secs. 14 or 23, T13N, R45E, or even farther south (if a reservoir is discovered south of the Divide). "Slim-hole" drilling and complete coring is urged for initial holes, but deep drilling with heavy equipment may be necessary depending on conditions encountered.
3. U.S.G.S. research drill holes $Y-7$ and $Y-8$ in the north part of Upper Geyser Basin will be monitored.
All geothermal fluids extracted and used in the IPGA will be reinjected into the reservoir from which they were extracted to minimize loss of reservoir pressure.

If extraction of geothermal fluids from the IPGA significantly influences pressures, chloride concentrations, or temperatures of the monitored features, operations should be suspended either until the influences are eliminated or until they are clearly counterbalanced by a tier of reinjection wells in the area of deferred leasing approximately 2 miles west of the Park boundary. Sufficient injection in this area should provide a high-pressure barrier, preventing eastward propagation of declining reservoir pressures.

Regarding point 1 above, little attention has been given to the Little Firehole Meadows area, which is located midway between Upper Geyser Basin and the IPGA and might contain thermal features especially sensitive for monitoring.

If it becomes necessary to drill a tier of injection wells in the deferred-leasing area west of the Yellowstone Park boundary, industry should probably have the option of injecting some cold water from local sources of shallow groundwater in addition to production effluent. The production wells and power plant may be considerably west of the Park boundary and at lower altitudes. Our interest is to prevent significant eastward propagation of declining pressure; the immediate source of any required injection water, whether hot or cold, is here of secondary concern.

Robert L. Christiansen Coordinator, Geothermal Research Program

Donald E. White Senior Advisor, Geothermal Research Program

Distribution:LDavid M. Jay, Forest Supervisor
Targhee National Forest
Roger Siglin, Chief Ranger Yellowstone National Park
Alan Mebane, Chief Naturalist Yellowstone National Park
Robert I. Tilling, Chief
Office of Geochemistry and Geophysics, USGS
Lawrence D. Bonham
Office of Land Information and Analysis, USGS

United States Department of the Interior

FISH AND WILDLIFE SERVICE

MAILING ADDRESS:
Post Office Box 2.5486
Denver Federal Center
Denver, Colorado 80225

STREET LOCATION:
10597 West Sixth Avenue Lakewood, Colorado Across From Federal Center

FA/SE/Coop.--Federal--FS
Island Park Geothermal Leasing Area

Mr. Vern Hamre
Regional Forester
U.S. Forest Service

324 25th Street
Ogden, UT 84401
Dear Mr. Hamre:
This is our official response to your request of June 6, 1978, for formal consultation on the effects of geothermal leasing within the Targhee and Gallatin National Forests on the threatened grizzly bear. We have conducted a threshold examination as prescribed in the Interagency Cooperation Regulations of January 4, 1978.

The impacts of geothermal leasing in the Island Park Geothermal Area (IPGA) will increase as the various phases of exploration progress towards full development of the geothermal resource, if one is found and determined to be commercially valuable for development. Accordingly, our biological opinion is based on the accumulative effects of the sequential phases of exploration and development.

It is our biological opinion that:
(1) Geothermal leasing in the IPGA outside the boundaries of the proposed critical habitat for the grizzly (Federal Register Vol. 41, No. 215), is not likely to jeopardize the continued existence of the grizzly bear or destroy or adversely modify its habitat.
(2) Geothermal leasing within the proposed critical habitat (Federal Register Vol. 4, No. 215) as it encompasses all associated activities of the casual use phase and exploratory phase up to but not including deep-well drilling is not likely to jeopardize the continued existence of the grizzly or destroy or adversely modify its habitat.
(3) Insufficient information exists to provide a biological opinion on the advanced phases of geothermal exploration (deep-well drilling
and subsequent field development) that may occur within proposed grizzly bear critical habitat, should a productive geothermal reservoir be located. Our opinion is based on the following considerations.

Although most of the IPGA is within the general distribution of the grizzly bear in the Yellowstone ecosystem, sightings of grizzlies in areas outside the proposed critical habitat are infrequent. The proposed U.S. Fish and Wildife Service critical habitat encompasses those areas considered by the Forest Service to be essential to the grizzly as well as areas which may be needed for recovery. Thus leasing and its associated activities outside the proposed critical habitat area should not adversely affect the grizzly bear.

Inside the proposed critical habitat area, impacts of geothermal leasing may increase with successive exploration phases until a threshold is reached beyond which adverse modification of the habitat may occur. Activities of the casual use phase and early stages of the exploration phase (activities up through the drilling of shallow temperature gradient holes) should not adversely affect the grizzly. Activities up to the point of deep-well drilling generally involve small crews with vehicular activity restricted to established roads and trails and are of short duration (one to two weeks). The environmental impact of drill temperature gradient holes (holes usually less than 500 feet) is only slightly greater than ground reconnaissance and generally requires no site preparation.

The impacts of deep-well drilling and subsequent geothermal development may have adverse effects on the grizzly. Wells are currently drilled to a depth of about 10,000 feet and involve large, highly-engineered drill sites. One to five wells may be expected for finding and testing geothermal fluids. Existing access roads may be improved to accommodate the heavy equipment. Since existing roads often approach chosen sites within one to two miles, and exploration wells are normally one quarter mile to one half mile apart, about three to five miles of new road may be necessary for one exploratory effort of deep-well drilling. Each of the drilling operations will require a level drill pad of about one to three acres and a mud sump (varying from less than one hundred to several thousand square meters on the surface down to a depth of from five to ten feet) for temporary storage of drilling mud and possibly storage of geothermal resource effluent. A crew of 20 to 24 is generally required for drilling operations. Should the exploratory wells prove productive and valuable for commercial development, the full impacts of plant facilities, feeder pipelines, power transmission lines, additional roads and human occupation would be realized.

Without a knowledge of where productive geothermal reservoirs lie, should any exist in the IPGA, and where deep-well drilling is anticipated, a biological opinion on deep-well drilling and full field
development within proposed critical habitat cannot be made. Should an operator, after evaluating the results from shallow temperature gradient holes, decide that deep well drilling is feasible he would submit a Plan of Operation and the appropriate Notice of Intent to conduct deep well exploration operations. At this point formal consultation should be reinitiated, a site specific analysis made, and a biological opinion given. While advanced geothermal exploration may or may not be detrimental to the grizzly, early phases of exploration within proposed critical habitat are recognized as being valuable in the assessment of the geothermal resource potential in the IPGA. It is also recognized that of all the leased land on which exploration may be initiated only those relatively few leases having the greatest potential are likely to undergo development, and exploration will leave no lasting environmental effects on the majority of those leases which do not reach the development stage.

Leasing alternatives as outlined in the draft Island Park Geothermal Environmental Impact Statement present varying degrees of impacts to the grizzly. Alternative 3 would have the least short-range impact (excluding Alternative 1-No Leasing). Essential grizzly habitat as defined and identified by the Forest Service is either removed from leasing or deferred as well as portions of the proposed critical habitat not included in the Forest Service designation.

Alternative 5 is similar to Alternative 3 with the exception that areas deferred from leasing in Alternative 3 would be leased with surface occupancy restrictions. Activities in areas with surface occupancy restrictions under this alternative are consistent with our opinion (allows exploration activities up to but not including deep well drilling).

Alternative 4 invokes a "true" non-surface occupancy restriction which includes all Forest Service delineated essential habitat. However, directional drilling from the outside perimeter of these areas would affect proposed critical habitat. Areas of particular concern would be south and southeast boundaries of the IPGA below Yellowstone National Park. Alternatives 2 and 6 are the least desirable. In all alternatives, deep-well drilling and subsequent development of the geothermal resource within proposed critical habitat would require reinitiation of formal consultation.

This completes the formal consultation process on geothermal leasing in the IPGA. We appreciate your cooperation and interest in meeting our joint consultation responsibilities.

Sincerely yours,
Motarunis? Nuncan
Regional Director

X. INDEX

Air 15
impacts of implementation 94
Alternatives, geothermal leasing 79
evaluation criteria 78
land allocations, by alternative 80
alternative 1 79
2 80
3 82
4 84
5 86
6 88
impacts, by alternative 115
Archaeology 36
impacts of implementation 97
Climate 13
Consultation 131
Cultural resources 36
Development, procedure 5
Drilling
test drilling phase 6
knowledge 124
wastes, mud, etc. 125
test drilling mitigation 124-128
Environmental statement
purpose 1
process 4
Elevations 10
Faults, geologic 20
Fisheries 57
statistics 58-60
evaluation of 58
impacts of implementation 103
Geothermal energy development, phases of, see phases of development
Geologic hazards (landslides, avalanches, subsidence, floods, seismicity) 20
Geology 16
geologic history 19
economic geology 20
Geothermal fields, useful producing lifetime 8
Geothermal resource
nature of 5
uses of 9
knowledge of in Island Park area 20
Geothermal systems
types of 5
Grazing 41
animals, numbers of 97
impacts of implementation 94
Grizzly bear, see wildlife essential habitat 55-7
Hebgen Lake (Montana) 22, 33, 50
Henrys Fork of the Snake River 3, 26drainage system28
game fish harvest 57
fisheries evaluation 58
Henrys Lake (Idaho) 20, 22, 24
29, 50
Impacts
on resources in the IPGA 90-121
unavoidable 122
Indians, see cultural resources
Island Park caldera 10, 22
IPGA (Island Park Geothermal Area) location 3
Island Park Reservoir 24, 27, 29, 3739, 40, 49, 5052, 59, 82
KGRA (known geothermal resourcearea)
definition 8
Landtypes 10-2
Leasing program
administration 1
lease form 124, 164-5
Livestock, see grazing
Macroinvertebrates, aquatic 60
Mineral wealth, see geology impacts of implementation 111
Mitigating measures 124-130
exploration 124
test drilling 125
construction and development 128
operation 128
Yellowstone National Park 129
Phases of development 5
exploration 5
test drilling 6
construction and development 7
operation 8
Physiography, see resources in the IPGA
Precipitation 13
Raptors, see wildlifeReclamation of site8, 126-7
Recreation
dispersed activities 39, 40
snowmobiling 37
impacts of implementation 97
Resources in the IPGA 10
physiography 10
landtypes and soils 10
air 15
geology 16
water 22
vegetation 33
cultural 36
recreation 37
grazing 40
wildlife 42
fisheries 57
timber 61
visuals 63
wilderness 64
socio-economics 71
Snow $13,15,48$
Socio-economics 71
population growth trends 73
employment 74
income 74
housing 75
schools 76
public issues and attitudes 76
impacts of implementation 106-111
Soils, see resources in the IPGA impacts of implementation 91
Sound and noise 68
Springs 24-5
Subsidence 22
Temperatures, air 13-4
Timber 61
mountain pine beetle 35-6, 61
Moose Creek Plateau sale 61
impacts of implementation 104
Transportation 69
roads, types of 70
impacts of implementation 106
Utilities 71
electricity transmission lines 72
Vegetation 33
forest habitat types 33-5
riparian habitat 33
unique habitats 33,36
marshes 33, 36
fires 36
mountain pine beetle 35-6
threatened and endangered plants 36
impacts of implementation 95
Visuals 63
acceptable landscape change categories 64
impacts of implementation 105
Water resources 22
groundwater 22
rock units, hydraulic properties 23
springs 24
thermal features 24
flow systems 24
quality 25
surface water 26
discharges of main rivers 26, 29, 30flooding21, 27
state classification systems 31
quality 31-3
water rights 33
impacts of implementation 92
Water rights, see water resources
Wilderness 64
roadless areas in the IPGA 64
impacts of implementation 105
Wildlife 42
adaptability and numbers of habitats used 43-4
elk 45-7
mule deer 46-7
moose 46, 48
black bear 48
mountain lion 49
pronghorn (antelope) 49, 50
upland game 49
sage grouse 49, 50-1
sharp tailed grouse 49, 50-1
forest grouse 49, 50-1
mourning dove 50
cottontail rabbits 50
waterfowl 50
Pacific Flyway 50
movements of 52
areas of concentration 52
numbers of 50
Canada goose 50, 52
raptors 52
Henrys Lake Flat, importance of 53
species of special concern 53
trumpeter swan 51,54
sandhill crane 51, 54
mammalian predators 53
threatened and endangered species 55
Northern Rocky Mountain wolf 55
American peregrine falcon 55
Northern bald eagle 55
grizzly bear 55-7
impacts of implementation 102
Yellowstone National Park
closeness to IPGA 1
thermal features 24
travel survey 39
recreation use 39, 40
effects of alternatives on 105
mitigating measures for 129

APPENDIX A. CHEMICAL ANALYSES OF THERMAL SPRINGS NEAR THE ISLAND PARK GEOTHERMAL AREA (mg/I unless noted)

Spring name and/or location (all in Idaho except one)

Parameter

9/6/77	9/20/77	9/8/77	9/21/77	9/21/77	9/21/77
2	1	92,200	90,000	2	8
39.5	17.0	11.8	10.3	16.3	13.5
13	0	-	1	8	1
87	92	73	48	120	150
40	10	60	120	40	4
1.4	22	7.3	6.0	20	38
3.3	1.2	3.2	6.9	5.2	1.8
2.4	2.0	3.6	2.2	1.4	1.4
4	66	21	21	65	120
40	20	-	30	60	20
50	30	-	60	80	20
0.1	2.8	0.7	1.4	3.7	7.1
10	0	-	0	0	0
0.26	0.14	0.03	0.21	0.85	0.15
7.9	8.2	6.7	6.8	6.8	6.6
0.04	0.01	0.00	0.11	0.03	0.01
1.6	1.1	3.0	1.4	1.2	1.5
116	123	117	91	163	177
22	37	46	32	39	43
37	9.3	15	14	24	7.4
3.9	1.2	2.2	1.9	4.9	1.9
10	0	-	20	0	0

Source: Unpublished records of the U.S. Geological Survey

APPENDIX B. CHEMICAL ANALYSES OF SELECTED WELLS AND SPRINGS (mg/I unless noted)

Well location, Spring name and/or location (locations by township, range section)		MONTANA			- IDAHO		
Date of Sampling	9/7/77	9/7/77	9/7/77	9/8/77	9/8/77	7/24/75	6/8/74
Water Temp ${ }^{\circ} \mathrm{C}$	4.8	9.5	8.3	12.3	8.5	7.5	5.5
Geohydrologic unit	rhyolitic flows and tuffs	obsidian sands and rhyolitic flows	obsidian sand	alluvial and glacial materials	rhyolitic flows and tuffs	basalt	basalt
pH (field)	6.6	6.8	7.3	6.9	6.7	6.9	7.3
HCO_{3}	18	36	44	220	53	46	59
B, ug/I	6	70	60	-	9	-	-
Ca	5.2	5.9	5.7	50	11	7.4	7.6
Cl	0.5	4.7	4.4	1.6	1.0	0.7	1.5
F	1.4	3.8	3.8	0.1	0.5	1.4	1.3
Hardness, total	17	18	18	190	39	40	-
Mg	1.0	0.8	1.0	15	2.7	5.2	3.0
NO_{2} and NO_{3} as N dissolved	0.01	0.01	0.01	0.00	0.02	0.63	0.05
K	1.5	2.0	1.9	1.0	1.6	1.2	2.1
TDS	46	85	88	200	81	86	-
SiO_{2}	24	37	33	14	30	37	-
Na	2.2	12	15	1.7	4.3	4.8	5.3
$\mathrm{SO}_{4}{ }^{2}$	0.9	0.9	0.9	4.4	3.0	5.0	2.9

Sources: 1974 and 1975 data from R.L. Whitehead, 1978; other data from unpublished records of the U.S. Geological Survey.

APPENDIX C. CHEMICAL ANALYSES OF HOT WATER FROM SELECTED GEYSER BASINS' IN YELLOWSTONE NATIONAL PARK
 (mg/I; Tr = Trace)

Temperature ${ }^{\circ} \mathrm{C}$	65-95	63-92	70boiling	92, 93
pH (lab)	6.8-9.23	7.5-8.45	3.45-9.78	-
SiO_{2} (lab)	175-412	221-303	128-456	280-305
$\mathrm{Al}^{\text {a }}$	0-2.1	<0.1-1.2	0-7.9	0.3-4
Fe	0-2	0-1.8	0-1.2	Tr-<0.1
Ca	Tr-18	<0.1-3	0-9	Tr-1.0
Mg	0-2.3	0-2.2	0-1.4	0.9 (one analysis)
Na	85-366	382-419	37-460	250-322
K	9.5-21	12-33	6.9-40	13-23.5
Li	0.5-3.8	2.0-2.8	0.16-7.0	0.9-1.2
NH_{4}	0.5	0.01	$0.01,0.21$	-
HCO_{3}	(one analysis) $136-310$	(one analysis) $527-562$	(2 analyses)	445 (one analysis)
CO_{3}	0-106	0-20	0-103	
SO_{4}	14-68	18-34	8-231	35-48
Cl	52-370	270-290	1-466	125-200
F	10-25	18-24	0-35	16, 23
B	0.6-5.1	2.5-5.0	0.02-7.6	1.8-4.6
As	0-3.6	2.0-2.3	0.45-2.5	0.53 (one analysis)

${ }^{1}$ Basins are in a north-south band roughly 12 miles from the east boundary of the IPGA.
Source: Rowe, J.J., R.O. Fournier, and G.W. Morey, 1973.

APPENDIX D. CHEMICAL ANALYSES OF

HENRYS FORK TRIBUTARIES

(mg / I unless noted)

Buffalo River Warm River Robinson Creek Conant Creek ${ }^{2}$

Date sampled	$9 / 9 / 77$	$9 / 19 / 77$	$9 / 19 / 77$	$9 / 29 / 77$
Water Temp ${ }^{\circ} \mathrm{C}$	8.3	11.8	11.3	8.0
DO	8.0	-	-	8.0
pH (field)	7.1	8.6	8.8	7.9
HCO_{3}	83	56	74	84
B, ug/l	60	110	160	-
Ca	6.4	10	12	20
Cl	3.0	6.0	8.2	0.9
F	2.7	2.3	2.2	0.5
Hardness, total	21	32	42	69
Mg	1.1	1.7	2.8	4.6
NO_{2} and NO_{3} as	0.07	0.08	0.08	0.06
N dissolved	0.00	0.01	0.00	0.03
P total as P	2.6	1.6	2.1	0.9
K	115	102	120	95
$\mathrm{TDS}^{\mathrm{SiO}}$	40	36	39	21
Na	16	15	15	3.4
SO_{4}	2.2	1.2	1.6	1.6

${ }^{1}$ These are in Wyoming and Idaho; (refer to map 5); samples taken at or near mouth of each stream
${ }^{2}$ Sampled where Conant Creek leaves the Targhee National Forest, roughly 14 miles from mouth
Source: Unpublished records of the U.S. Geological Survey

Species	Seasonal occurrence		Number of habitats $\mathcal{\&}$ successional stages used for:		Total number of habitats species uses
		Abundance 2	Reproduction	Feeding	
Downy Woodpecker	P	C	19	22	22
*Black-backed 3-toed Woodpecker	M	R	14	16	16
*Northern 3-toed Woodpecker	P	U	13	15	15
Eastern Kingbird	S	C	18	19	19
Western Kingbird	S	C	15	17	17
Say's Phoebe	S	C	6	6	8
Western Tanager	S	C	19	21	21
Hammond Flycatcher	S	C	14	19	19
Dusky Flycatcher	S	C	14	18	18
Western Wood Pee-wee	S	C	13	18	18
Olive-sided Flycatcher	P	C	11	22	22
Horned Lark	S	C	1	7	7
Violet-green Swallow	S	C	17	18	21
Tree Swallow	S	C	18	21	24
Bank Swallow	S	C	3	17	17
Rough-winged Swallow	S	C	4	16	17
Barn Swallow	S	C	13	16	16
Cliff Swallow	S	C	4	21	21
Gray Jay	P	C	14	19	19
Stellar's Jay	P	C	13	20	20
Black-billed Magpie	P	C	15	21	21
Common Raven	P	C	15	22	23
Common Crow	P	C	15	19	20
Clark's Nutcracker	P	C	11	16	16
Black-capped Chickadee	P	C	20	25	25
Mountain Chickadee	P	C	19	21	21
White-breasted Nuthatch	P	C	13	15	15
Red-breasted Nuthatch	P	C	16	18	18
Brown Creeper	P	C	12	14	14
Dipper	P	C	18	12	20
House Wren	S	C	15	15	18
Long-billed Marsh Wren	S	C	3	3	3
Canyon Wren	P	C	8	14	15
Rock Wren	S	C	8	10	11
Gray Catbird	S	U	15	16	16
American Robin	S	C	23	26	26
Hermitt Thrush	S	C	13	18	18
Mountain Bluebird	S	C	16	21	26
Townsend's Solitaire	P	C	15	19	20
Golden-crowned Kinglet	P	C	8	14	14
Ruby-crowned Kinglet	P	C	12	16	16
Cedar Waxwing	S	C	13	14	14
*Loggerhead Shrike	S	U	2	10	10
Starling	P	C	8	8	10
Solitary Vireo	S	C	16	20	20
*Warbling Vireo	S	R	10	11	11
Orange-crowned Warbler	S	R	12	14	14
* Yellow Warbler	S	C	5	5	5
Yellow-rumped Warbler	S	C	18	23	23
MacGillvary's Warbler	S	C	14	14	14
Common Yellowthroat	S	C	5	9	9
* Yellow-breasted Chat	S	U	5	16	16
Wilson's Warbler	S	C	7	7	7
House Sparrow	P	C	5	6	7

Species	Seasonal occurrence ${ }^{1}$		Number of habitats \& successional stages used for:		Total number of habitats species uses
		Abundance ${ }^{2}$	Reproduction	Feeding	
Western Meadowlark	S	C	6	7	7
Yellow-headed Blackbird	S	C	2	6	6
Red-winged Blackbird	S	C	5	7	7
Northern Oriole	S	C	13	14	14
Brewer's Blackbird	S	C	13	15	15
Brown-headed Cowbird	S	C	19	21	21
Lazuli Bunting	S	U	14	16	16
Evening Grosbeak	P	C	14	19	19
Cassin's Finch	S	C	11	19	19
House Finch	P	C	15	19	19
Pine Grosbeak	P	C	10	16	16
Black Rosy Finch	P	U	6	16	17
Pine Siskin	P	C	14	22	22
American Goldfinch	P	C	15	19	19
Red Crosbill	P	C	12	16	16
Green-tailed Towhee	M	C	5	11	11
Rufous-sided Towhee	S	U	18	19	19
Savannah Sparrow	S	C	1	1	1
*Vesper Sparrow	S	C	4	4	4
Sage Sparrow	S	U	1	6	6
Dark-eyed Junco	P	C	17	18	18
Chipping Sparrow	S	C	20	23	23
Brewer's Sparrow	S	C	2	5	5
White-crowned Sparrow	S	C	16	23	24
Fox Sparrow	S	C	12	17	17
Lincoln's Sparrow	S	C	5	11	11
Song Sparrow	P	C	15	18	18
MAMMALS					
Masked shrew	P	U	13	13	13
Vagrant shrew	P	C	24	24	24
Northern water shrew	P	U	18	19	19
Little brown myotis	S	C	14	22	23
Yuma myotis	S	U	4	6	6
Long-eared myotis	S	C	10	18	19
*Long-legged myotis	S	C	10	18	19
Small-footed myotis	S	C	5	8	9
*Fringed myotis	S	U	13	15	16
*California myotis	S	U	17	13	20
Silver-haired bat	S	C	10	18	19
Big brown bat	S	C	12	23	25
Hoary bat	S	C	15	23	26
*Western big-eared bat	S	C	4	5	6
Pika	P	C	3	5	5
Mountain Cottontail	P	C	8	9	10
Snowshoe hare	P	C	17	15	18
White-tailed jackrabbit	P	C	2	4	4
Least chipmunk	P	C	18	19	19
Yellowpine chipmunk	P	U	23	25	25
Yellow-bellied marmot	P	C	11	13	13
Richardson's ground squirrel	P	C	1	2	2
* Uinta ground squirrel	P	U	4	5	5
Columbian ground squirrel	P	U	16	17	17
Mantled ground squirrel	P	C	19	24	24
Red squirrel	P	C	16	18	18

APPENDIX E. WILDLIFE SPECIES ORIENTATION TO HABITATS

Species	Seasonal occurrence ${ }^{1}$		Number of habitats \& successional stages used for:		Total number of habitats species uses
		Abundance ${ }^{2}$	Reproduction	Feeding	
*Golden Eagle	P	R	14	29	29
*Bald Eagle	P	U	16	23	23
*Marsh Hawk	P	U	7	9	10
* Osprey	S	C	17	2	17
*Prairie Falcon	S	U	2	6	7
*Peregrine Falcon	M	R	0	17	17
*Merlin	S	U	14	23	23
*American Kestrel	P	C	19	22	25
Blue Grouse	P	C	17	25	25
Ruffed Grouse	P	C	17	20	20
*Sharp-tailed Grouse	P	R	7	8	8
*Sage Grouse	S	C	1	6	6
Sandhill Crane	S	C	3	14	14
Virginia Rail	S	U	3	11	11
Sora	S	C	3	10	10
American Coot	P	C	5	13	13
Killdeer	S	C	5	16	16
*Mountain Plover	M	R	2	2	2
Common Snipe	S	C	5	14	14
Long-billed Curlew	S	U	1	7	7
Spotted Sandpiper	S	C	5	11	11
Solitary Sandpiper	M	R	5	15	15
Greater Yellowlegs	M	U	0	7	7
Willet	S	C	3	12	12
American Avocet	S	C	5	12	12
Wilson's Phalarope	S	C	2	3	3
California Gull	S	C	3	11	11
Ring-billed Gull	S	C	3	16	16
Caspian Tern	M	R	0	1	1
Rock Dove	P	C	12	13	15
Mourning Dove	P	C	15	13	17
*Barn Owl	P	U	12	14	17
*Screech Owl	P	U	19	24	24
Flammulated Owl	P	R	14	13	16
Great Horned Owl	P	C	15	22	24
*Snowy Owl	W	R	0	8	8
*Pygmy Owl	P	R	16	24	24
*Burrowing Owl	S	U	2	4	4
*Barred Owl	M	U	15	19	19
*Long-eared Owl	S	U	18	23	23
*Short-eared Owl	P	U	9	13	14
*Saw-whet Owl	P	R	17	20	20
*Great Gray Owl	S	R	6	6	9
Gyrfalcon	W	R	0	7	7
Poor-will	S	C	2	7	7
Common Nighthawk	S	C	17	21	22
Calliope Hummingbird	S	C	11	17	18
Broad-tailed Hummingbird	M	R	10	12	12
Belted Kingfisher	P	C	14	16	17
Common Flicker	P	C	15	21	21
* Lewis Woodpecker	S	C	18	21	21
Yellow-bellied Sapsucker	S	C	15	15	15
*Williamson's Sapsucker	S	U	12	12	12
* Hairy Woodpecker	P	C	16	19	19

Species	Seasona occurren		Number of habitats $\&$ successional stages used for:		Total number of habitats species uses
		dance ${ }^{2}$	Reproduction	Feeding	
AMPHIBIANS					
Tiger Salamander	P	C	16	16	17
Western Toad	P	U	9	9	9
Chorus Frog	P	C	6	6	6
Spotted Frog	P	C	15	15	15
Leopard Frog	P	C	19	19	19
REPTILES					
Sagebrush Lizard	P	U	7	8	9
Western Skink	P	U	18	18	18
Northern Aligator Lizard	P	U	10	11	12
*Rubber Boa ${ }^{3}$	P	U	16	19	21
Racer	P	C	17	20	20
Gopher Snake	P	C	25	25	25
Common Garter Snake	P	C	22	23	23
Western Garter Snake	P	C	11	16	16
BIRDS					
Common Loon	M	R	9	13	13
Eared Grebe	S	C	4	4	4
*Western Grebe	M	C	9	13	13
Great Blue Heron	S	C	14	16	19
*Black-crowned Night Heron	S	U	5	5	5
*American Bittern	S	C	2	4	4
Whistling Swan	M	R	0	16	16
*Trumpeter Swan	P	C	16	19	19
Canada Goose	P	C	6	11	12
Snow Goose	M	R	0	8	8
Mallard	S	C	15	22	23
Gadwall	S	C	3	15	15
Pintail	S	C	5	16	16
Green-winged Teal	S	C	4	14	14
Blue-winged Teal	S	C	2	12	12
Cinnamon Teal	S	C	3	10	10
American Widgeon (Baldpate)	S	C	7	15	15
Northern Shoveler	S	C	3	15	15
Readhead	S	C	3	16	16
Ring-necked Duck	S	U	5	21	21
*Canvasback	M	C	1	11	11
Lesser Scaup	S	C	7	19	19
Common Goldeneye	M	U	17	17	18
Bufflehead	S	U	13	15	17
Ruddy Duck	S	U	10	18	18
Common Merganser	P	U	17	17	20
Turkey Vulture	S	C	16	25	25
* Goshawk	P	U	11	21	21
*Sharp-shinned Hawk	P	U	16	23	23
*Cooper's Hawk	S	U	15	24	24
Red-tailed Hawk	P	C	17	27	27
*Swainson's Hawk	S	U	16	21	21
Rough-legged Hawk	W	C	0	4	4
*Ferruginous Hawk	S	R	1	4	5

APPENDIX E. WILDLIFE SPECIES ORIENTATION TO HABITATS

Species	Seasonal occurrence ${ }^{1}$		Number of habitats $\&$ successional stages used for:		Total number of habitats species uses
		Abundance ${ }^{2}$	Reproduction	Feeding	
Northern flying squirrel	P	U	13	12	13
Northern pocket gopher	P	C	24	24	24
Beaver	P	C	5	23	24
Deer mouse	P	C	31	31	31
Busy-tailed woodrat	P	C	22	23	24
Boreal red-backed vole	P	C	12	12	12
Mountain vole	P	U	20	20	20
Meadow vole	P	C	7	7	7
Long-tailed vole	P	C	21	20	21
Sagebrush vole	P	U	2	2	2
Muskrat	P	C	7	10	10
Western jumping mouse	P	C	16	17	17
Porcupine	P	C	19	23	25
Coyote	P	C	25	30	30
Red fox	P	U	18	23	24
*Northern Rocky Mountain wolf	P	R	?	26	27
Black bear	P	C	17	31	31
*Grizzly bear	P	R	18	27	27
Raccoon	P	U	19	23	24
Marten	P	U	9	16	16
*Fisher	P	R	15	20	21
Short-tailed weasel	P	C	13	16	16
Long-tailed weasel	P	C	30	30	30
Mink	P	C	25	26	26
*Wolverine	P	R	9	17	17
Badger	P	C	13	16	16
Striped skunk	P	C	16	18	18
River otter	P	U	21	21	21
Cougar	P	R	17	25	26
*Canada lynx	P	R	12	19	19
*Bobcat	P	C	21	25	26
Elk (Wapiti)	P	C	16	24	24
Mule deer	P	C	15	23	23
Pronghorn	S	U	3	5	5
Moose	P	C	11	25	25

FOOTNOTES

${ }^{1} P=$ permanent resident; $S=$ summer resident; $M=$ migrant; $W=$ winter resident.
${ }^{2} \mathrm{C}=$ common-occurs in many localities in large numbers
$U=$ uncommon-occurs in several localities in small numbers
$R=$ rare-highly localized; restricted by scarcity of habitat and/or low numbers.
${ }^{3 *}=$ species of special interest and concern as listed by the U.S. Department of the Interior (1973), Wyoming Game and Fish Department (1978), Montana Department of Game and Fish (1978), Idaho Department of Fish and Game (1978), and the National Audubon Society (1977).

APPENDIX F. MIGRANT AND ACCIDENTALLY OCCURRING WILDLIFE SPECIES ON THE ISLAND PARK GEOTHERMAL AREA.

Arctic Loon
Red-necked Grebe
Pied-billed Grebe
White Pelican
Double-breasted Cormorant
Mute Swan
White-fronted Goose
Ross' Goose
Greater Scaup
Barrow's Goldeneye
Hooded Merganser
Red-breasted Merganser

Harlans Hawk
Broad-winged Hawk
Hawk Owl
Black-bellied Plover
Lesser Yellowlegs
Least Sandpiper
Western Sandpiper
Long-billed Dowitcher
Black-necked Stilt
Northern Phalarope
Herring Gull
Franklin's Gull

Bonaparte's Gull
Forester's Tern
Black Tern
Common Tern
Yellow-billed Cuckoo
White-throated Swift
Varied Thrush
Water Pipit
Bohemian Waxwing
Northern Shrike Townsend's Warbler Bison

APPENDIX G. EFFECT OF POWER PLANT DEVELOPMENT ON POPULATION

The following six tables give an example of the population increase that may be created by the construction and operation of two 50 megawatt geothermal power plants. The tables show population increases related to direct employment requirements at the plants over thirteen years, which includes the four development phases of exploration, test drilling, construction, and operation. Each table represents two power plants at a different location within the IPGA. The zones in the table headings designate the location of the plants and correspond to the zones shown in the socio-economic analysis zones map (map 20). Each table assumes that both plants would be constructed in one zone simultaneously. A computer program was prepared to generate the six tables.

The column headings of all tables are the same. The following is an explanation of each column heading from left to right:

YEAR - This is the years of development.
DIRECT EMPLOYMENT - The actual employment required in each year for the two power plants.
INMIGRANT FACTOR - The percentage, expressed as a decimal, of direct employment which will come from outside the IPGA.

INMIGRANT NUMBER - The number of employees which will come from outside the IPGA.
AVERAGE FAMILY SIZE MULTIPLIER - Measures the increase in population created by the families of the direct employees. Note that this factor increases during operation (years 5-13). More operation phase employees are expected to have their families in the area due to longer term employment.

INDIRECT MULTIPLIER - Measures the increase in population that would be created by the demand for supporting services required by plant employees. This multiplier effect is due to the needs of these workers and families for housing, food, and services. These needs stimulate further economic growth and population increase.

TOTAL POPULATION - The total population increase expected to be created by the two plants.
The right eight columns represent how the TOTAL POPULATION is expected to be distributed among the communities within and adjacent to the IPGA.

ST. ANTHONY FACTOR - The percentage of TOTAL POPULATION, expressed as a decimal, expected to move into the community of St. Anthony, Idaho.

ST. ANTHONY TOTAL - The number of people expected to move into St. Anthony, Idaho.
ASHTON FACTOR - The percentage of TOTAL POPULATION, expressed as a decimal, expected to move into the community of Ashton, Idaho.

ASHTON TOTAL - The number of people expected to move into Ashton, Idaho.
WEST YELLOWSTONE FACTOR - The percentage of TOTAL POPULATION, expressed as a decimal, expected to move into the community of West Yellowstone, Montana.

WEST YELLOWSTONE TOTAL - The number of people expected to move into West Yellowstone, Montana.

ISLAND PARK FACTOR - The percentage of TOTAL POPULATION, expressed as a decimal, expected to move into the community of Island Park, Idaho.

ISLAND PARK TOTAL - The number of people expected to move into Island Park, Idaho.
As an example, refer to the second row of the Zone A table. In year 2, direct employment is expected to be 48 people, 80 percent of whom are expected to come from outside the IPGA. Family size and indirect services are each expected to increase population about 50 percent over direct employment for a total population increase of 86 . $(38 \times 1.5 \times 1.5=86)$. This population increase will be distributed as follows:

0 to St. Anthony, Idaho
20 percent (17 people) to Ashton, Idaho
60 percent (52 people) to West Yellowstone, Montana
20 percent (17 people) to Island Park, Idaho

ISLAND PARK GEOTHERMAL STUDY

Year	Direct Employ Ment	InmigrantFactorNumber		Average Family Size Multiplier	Indirect Multiplier	Total Population	St. Anthony		Population Ashton		Distribution W. Yellowstone		Island Park		
				Factor			Total	Factor	Total	Factor	Total	Factor	Total		
1.	14.	. 90	13.		1.5	1.5	28.	. 00	0.	20	6.	. 60	17.	. 20	6.
2.	48.	. 80	38.	1.5	1.5	86.	. 00	0.	. 20	17.	. 60	52.	. 20	17.	
3.	248.	. 80	198.	1.5	1.5	446.	. 00	0.	. 20	89.	. 60	268.	. 20	89.	
4.	224.	. 80	179.	1.5	1.5	403.	. 00	0.	. 20	81.	. 60	242.	. 20	81.	
5.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
6.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
7.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
8.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
9.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
10.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
11.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
12.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	
13.	50.	. 95	47.	3.0	1.5	214.	. 00	0.	. 20	43.	. 60	128.	. 20	43.	

ZONE B

Year	Direct EmployMent	$\xrightarrow{\text { Inmigrant }}$		Average Family Size Multiplier	Indirect Multiplier	$\begin{gathered} \text { Total } \\ \text { Population } \end{gathered}$	St. Anthony		Population Ashton		Distribution W. Yellowstone		Island Park	
		Factor	Number				Factor	Total	Factor	Total	Factor	Total	Factor	Total
1.	14.	. 90	13.	1.5	1.5	28.	. 20	6.	. 30	9.	. 25	7.	. 25	7.
2.	48.	. 70	34.	1.5	1.5	76.	. 20	15.	. 30	23.	. 25	19.	. 25	19.
3.	248.	. 70	174.	1.5	1.5	391.	. 20	78.	. 30	117.	. 25	98.	. 25	98.
4.	224.	. 70	157.	1.5	1.5	353.	. 20	71.	. 30	106.	. 25	88.	. 25	88.
5.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
6.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
7.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
8.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
9.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
10.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
11.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
12.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.
13.	50.	. 95	47.	3.0	1.5	214.	. 20	43.	. 30	64.	. 25	53.	. 25	53.

ZONE C

Year	Direct EmployMent	Inmigrant Factor Number		Average Family Size Multiplier	Indirect Multiplier	TotalPopulation	St. Anthony		Population Ashton		Distribution W. Yellowstone		Island Park		
				Factor			Total	Factor	Total	Factor	Total	Factor	Total		
1.	14.	. 90	13.		1.5	1.5	28.	. 30	9.	. 40	11.	. 10	3.	. 20	6.
2.	48.	. 70	34.	1.5	1.5	76.	. 30	23.	. 40	30.	. 10	8.	. 20	15.	
3.	248.	. 70	174.	1.5	1.5	391.	. 30	117.	. 40	156.	. 10	39.	. 20	78.	
4.	224.	. 70	157.	1.5	1.5	353.	. 30	106.	. 40	141.	. 10	35.	. 20	71.	
5.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
6.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
7.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
8.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
9.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
10.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
11.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
12.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	
13.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 40	85.	. 10	21.	. 20	43.	

Year	Diract EmployMent	InmigrantFactorNumbar		Avaraga Family Siza Multipliar	Indiract Multipliar	Total Population	St. Anthony		Population Ashton		Distribution		Island Park		
				Factor			Total	Factor	Total	Factor	Total	Factor	Total		
1.	14.	. 90	13.		1.5	1.5	28.	. 35	10.	. 35	10.	. 15	4.	. 15	4.
2.	48.	. 70	34.	1.5	1.5	76.	. 35	26.	. 35	26.	. 15	11.	. 15	11.	
3.	248.	. 70	174.	1.5	1.5	391.	. 35	137.	. 35	137.	. 15	59.	. 15	59.	
4.	224.	. 70	157.	1.5	1.5	353.	. 35	123.	. 35	123.	. 15	53.	. 15	53.	
5.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
6.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
7.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
8.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
9.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
10.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
11.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
12.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	
13.	50.	. 95	47.	3.0	1.5	214.	. 35	75.	. 35	75.	. 15	32.	. 15	32.	

ZONE E

Year	$\begin{gathered} \text { Diract } \\ \text { Employ- } \\ \text { Ment } \end{gathered}$	InmigrantFactorNumbar		AverageFamily SizeMultipliar	$\begin{aligned} & \text { Indiract } \\ & \text { Multiplier } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Population } \end{gathered}$	St. Anthony		Population Ashton		Distribution		Island Park		
				Factor			Total	Factor	Total	Factor	Total	sator	Tot		
1.	14.	. 90	13.		1.5	1.5	28.	. 30	9.	. 55	16.	. 05	1.	. 10	3.
2.	48.	. 60	29.	1.5	1.5	65.	. 30	19.	. 55	36.	. 05	3.	. 10	6.	
3.	248.	. 60	149.	1.5	1.5	335.	. 30	100.	. 55	184.	. 05	17.	. 10	33.	
4.	224.	. 60	134.	1.5	1.5	302.	. 30	91.	. 55	166.	. 05	15.	. 10	30.	
5.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
6.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
7.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
8.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
9.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
10.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
11.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
12.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	
13.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 55	118.	. 05	11.	. 10	21.	

ZONE F

Year	Direct Employ- Mant	Inmigrant		Avarage Family Size Multiplier	Indiract Multipliar	TotalPopulation	St. Anthony		Population Ashton		Distribution W. Yallowstone		Island Park	
		Factor	Number				Factor	Total	Factor	Total	Factor	Total	Factor	Total
1.	14.	. 90	13.	1.5	1.5	28.	. 30	9.	. 60	17.	. 00	0.	. 10	3.
2.	48.	. 65	31.	1.5	1.5	70.	. 30	21.	. 60	42.	. 00	0.	. 10	7.
3.	248.	. 65	161.	1.5	1.5	363.	. 30	109.	. 60	218.	. 00	0.	. 10	36.
4.	224.	. 65	146.	1.5	1.5	328.	. 30	98.	. 60	197.	. 00	0.	. 10	33.
5.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
6.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
7.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
8.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
9.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
10.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
11.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
12.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.
13.	50.	. 95	47.	3.0	1.5	214.	. 30	64.	. 60	128.	. 00	0.	. 10	21.

APPENDIX H. EMPLOYMENT CATEGORIES AND SPENDING

The following four tables estimate the spending that would be created by personnel employed in two fifty megawatt geothermal power plants. Each table represents a phase of geothermal development from exploration to operation of the power plants. The last table reflects spending during the operation phase, which is representative of the long-term employment and spending per year created by operation of the two plants.

The column headings are the same for each table. At the left side of each table is a column labeled "Category". These are the categories of personnel required for the phase. The middle column lists the number of personnel required for each category of employment. The spending of all employees per year in the category is listed in the right column. Spending is estimated at 1977 wage levels.

EMPLOYMENT CATEGORIES AND SPENDING

FOR TWO FIFTY MEGAWATT GEOTHERMAL POWER PLANTS

dURING THE EXPLORATION PHASE

Category	Number of People Employed	Spending of Employees Per Year
Various Specialists	8	\$22,800
Drillers	6	26,450
Total for Phase	14	\$49,250
	TEST DRILLING	
Category	Number of People Employed	Spending of Employees Per Year
Geologist	6	\$ 34,000
Landman		16,600
Drillers	12	105,800
Truck Drivers	4	39,400
Administrative	4	31,600
Geophysicists	4	25,400
Drill Rig Foremen	4	46,600
Laborers	8	52,600
Geochemists	2	25,400
Total for Phase	48	\$377,400

Category	Number of People Employed	Spending of Employees Per Year
Engineers	10	18,600
Inspectors	6	17,800
Foremen	10	116,600
Pipefitters	18	210,000
Millwrights	8	81,600
Instrument Technicians	6	53,000
Truck Drivers	8	79
Timekeepers	2	13,200
Common Laborers	18	118,200
Surveyors	2	17,000
Superintendents	2	23,400
Electricians	10	116,600
Welders	10	111,800
Iron Workers	8	85,600
Concrete Workers	12	11,400
Carpenters	8	77,800
Insulation Installers	8	66,400
Sheetmetel Workers	8	70,600
Plumbers	8	93,332
Tilesetters	4	35,200
Painters	8	85,600
Machinists	4	40,800
Riggers	6	5,000
Crane Operators	4	40,800
Warehousemen	4	50,600
Administration	8	63,000
Total for Phase	200	$\$ 1,860,932$

OPERATION

Category

Number of People
Employed
$\begin{array}{lr}\text { Plant Supervisors } & 2 \\ \text { Plant Operators } & 22\end{array}$
Instrument Technicians 2
2
Spending of
Employees Per Year

Welders 2
4
\$ 25,400

Laborers 4
259,600

Shift Foremen 8
8
Mechanical Engineers 2
Machinists 2
Pipefitters 2
17,600

Electricians 2
22,400

Administrative 2
Total for Phase
50
26,200
93,400
25,400
20,400
23,400
3,400
15,800
\$553,000

APPENDIX I. POTENTIAL SOCIAL IMPACTS OF GEOTHERMAL DEVELOPMENT

Three principle questions are considered in regard to geothermal development:

1. Do local residents' attitudes change after development is begun?
2. Do local residents enjoy greater employment because of the development, and do they have the skills needed for the jobs available?
3. Will the local governments have the financial ability to provide extra services needed because of possible geothermal development?
In determining if local residents' attitudes change after development is begun, it is worthwhile to analyze the example of Colstrip, Montana.

In 1970 Colstrip, Montana was a community of about 200 persons. In 1972 construction of units 1 and 2 of Colstrip Electrical Generating Plant began. By 1975 the population of the town was estimated to be about 3,000 people. Colstrip had severe impact in terms of population growth.

Colstrip is an isolated community. It is 35 miles from Interstate 94 and 38 miles from Forsyth, a town of 3,000 population. Billings or Miles City, Montana, the area's trade and service centers, are over two hours driving time. Services in Colstrip, especially commercial and entertainment facilities, are severely limited. The town has had much to do just to keep basic services at an acceptable level.

In 1975 a study was completed on Colstrip by the Old West Regional Commission. The purpose of this study was to learn something of the effects which large scale construction projects have on small communities. A household survey from 148 households in Colstrip was conducted by the Old West Regional Commission's consultant, Mountain West Research, Inc. This represented a 14.8% sample of total households.

The longtime residents of Colstrip were asked a few questions about how they felt about the effects which the construction of Colstrip units 1 and 2 were having on the community and its residents. When asked whether the effects of the construction were the same, better or worse than they expected most (66.7%) answered the same; 13.9% felt the effects were better than expected and 19.4% felt they were worse than expected. The reason given most frequently for thinking the effects were better than expected was desirable people arriving; given by 40% of the respondents. The reasons given most frequently for thinking effects were worse than expected was inadequacy of community facilities, given by 28.6% of the respondents.

When asked whether they were glad or unhappy that the project was there at all, a great majority of respondents $(86.1 \%$) said that they were glad. The reason most frequently given for being glad the project was under way in Colstrip was, "job opportunities" (58% of the glad respondents). The reason most frequently given for being unhappy about the project was increased population (60% of the unhappy respondents). There was no apparent differences in opinion according to respondent households, education, income, occupation or length of residence.

With regard to geothermal development on the IPGA, the location, magnitude, and timing of the geothermal development are the major attributes that determine impact. The location of a geothermal development will be important to the distribution of social impacts among neighboring communities. The most important cause of social impacts will be the magnitude of the geothermal development.

As an example of the employment opportunities that may be created by geothermal development in the IPGA, refer to appendix H . These tables show the employment requirements for two 50 megawatt geothermal power plants. A brief review of these tables show that many positions available at the geothermal development can use local people with a brief amount of training.

The communities that receive the greatest fiscal impacts and most rapid percentage increases in population also experience the greatest difficulty finding the money to keep the quality of their public services in step with the population increase. This simple analysis does not apply to the IPGA because two of the potential impacted towns are not typical communities. Island Park and West Yellowstone are seasonal resort communities. The town of Island Park has no budget. West Yellowstone's overnight population grows from its off season low of about 800 to more than 6,000 in the peak of the summer, with over 12,000 people in town during a peak July day.

The present budget for each of the four towns is listed in the following table. The higher per capita expenditure rate in West Yellowstone reflects the seasonal tourist economy.

TOWN BUDGETS

	1977-78 Budget	Estimated Per Capita Budget
St. Anthony, Idaho	\$476,401	\$152
Ashton, Idaho	202,414	\$162
Island Park, Idaho	0	0
West Yellowstone, Montana	186,335	218

The public officials interviewed generally felt optimistic about their ability to cope with growth. St. Anthony received as many workers and their families during the construction of the Teton Dam in the early 70 's.

Because population has been increasing slowly in the recent past, each of the towns is in a generally sound fiscal situation. The tax burden in St. Anthony is carried primarily by the residents since there is no major industry in the town. In contrast, West Yellowstone's major burden is carried by the tourist related businesses.

The cost of geothermal development to the towns will be borne in part by the return of income from the leases. It is difficult to estimate the quantity or predict that it will be a significant amount. Most of the lease applications are noncompetitive, if granted they will only bring in $\$ 1.00$ per acre per year until a geothermal resource is found and developed. The distribution of this money once it returns to the state varies from state to state. In Idaho at least 5% of the original income is guaranteed to return to the county of origin. The actual amount to the affected communities will vary and depends to some extent on discretionary decisions at the state level. For noncompetitive leases the income to the communities in the IPGA will probably not be substantial until after the construction peak has been reached and passed.

The fiscal impacts on the communities can be summarized as follows:
Geothermai development may cause fiscal strain for St. Anthony and Ashton during the construction phase, but the long-term impact of operations of the development will be more manageable due to lower employment levels. Island Park is a more serious problem. Present controversy over a proposed sewage system and the lack of a town budget or service delivery capability are problems that will be accentuated by geothermal development.

West Yellowstone is best equipped by a tradition of fluctuating population to cope with short term construction period demands of geothermal development.

The greatest assistance other than monetary that can be given the communities to assist them with their fiscal policy is early and continuous information on what will happen, what is happening and what has happened with regard to each lease and geothermal development.

References:

EDAW Inc., Island Park Geothermal Energy Development-Social and Economic Assessment, Dec., 1977. Old West Regional Commission, Construction Worker Profile, Colstrip and Forsyth, Montana, Dec., 1975.

APPENDIX J. SPACE HEATING CONSIDERATIONS FOR WEST YELLOWSTONE, MONTANA

West Yellowstone appears to be the most promising community in or near the IPGA for geothermal space heating due to its location and relatively high population density. This appendix discusses some of the factors which are important when considering geothermal space heating. These are:

Cost of wells
Cost of pipes, pumps, meters, valves, storage tanks
Operation and maintenance expense
Temperature of the geothermal fluid
Flow conditions of the geothermal fluid
Distance of geothermal fluid transmission
Total population of the area to be heated
Population density
Heating system installation costs
Cost of heat from alternative energy sources
Institutional deterrents

The largest costs for geothermal energy production are the initial costs of the producing wells. Well costs are mainly a function of depth. Geothermal wells currently (1977) cost about $\$ 300,000$ per kilometer (about $\$ 100$ per foot). The depth to $90^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}-302^{\circ} \mathrm{F}\right)$ geothermal resources suitable for heating is estimated by the U.S. Geological Survey to be 1 to $1 \frac{1}{2}$ kilometers ($3280-4920$ feet) in most instances. Operating and maintenance expenses including well redrilling and pumping costs will usually be small in proportion to the initial cost of the wells.

The distance of geothermal fluid transmission will be a limiting factor for non-electric applications of geothermal energy. Transmission distances for existing geothermal applications are short, rarely exceeding 15 kilometers (9.32 miles). Although oil and gas can be economically piped over thousands of miles, the economic limitations for geothermal fluids will probably be less than 100 miles because of the low energy content of the fluid. Fuel oil contains about 100 times more energy per unit volume than hot water.

The total population of the area to be heated influences heating costs in two ways. First, with increasing population, economies of scale are realized in the piping for the distribution network. For example, pipe weight and costs increase near linearly with diameter while flow capacity increases with the square of the diameter. A minimum district size of 1,000 dwelling units or equivalent, will probably be required for economic feasibility. Second, increasing population reduces cost per dwelling unit heated associated with the investment in wells up to the point at which the maximum well flow is fully utilized.

Population density is one of the most important factors affecting heating costs. Increased population density reduces heating costs through reducing the average length of pipe run. With very high population densities such as large multi-story apartment buildings, economies of scale are realized in the distribution system through the use of large diameter pipe.

The cost of installing geothermal heating systems in established residential and commercial areas will generally be higher than in new developments. Trenching costs will be higher because existing streets and sidewalks must be dug up and replaced. Indirect routing of geothermal heating lines around existing sewer and water lines will also increase installation costs. Based on limited data from Iceland, construction costs for geothermal heating systems in established areas will be 10 to 30% higher than costs in new areas.

The retrofitting costs for replacing existing heating systems in residential and commercial buildings with hot water heating systems will be a deterrent to geothermal hot water heating. Retrofitting is estimated to cost $\$ 500$ to $\$ 2,000$ per dwelling unit. The lower part of the cost range would apply to the conversion of an existing forced air hot water system.

At the present time heat from geothermal sources would probably not be competitive with heat from electricity or coal in the West Yellowstone area. As costs of fuel from these energy sources continue to rise, geothermal space heating may become more competitive.

Institutional deterrents to widespread non-electric applications of geothermal energy will probably be significant. These include acquisition of rights-of-way for pipeline, the need to organize concentrated markets and price competition from the conventional fuels.

The greatest problem with geothermal heating in West Yellowstone is the small number of potential heating units. The large initial investment would require at least 1,000 homes or commercial buildings or a combination of the two for geothermal heat to be competitive with present fuels and to be economically feasible.

References:

Geothermal Energy Potential For District \& Process Heating in the U.S. - An Economic Analysis, Bloomster et al, Batelle Laboratories, August, 1977.
Island Park Geothermal Energy Development-Social and Economic Assessment, EDAW Inc., December 25, 1977.

Meridian

Conaining acres (hereinater called the "leased sea"" or "leased land"." together with:

second term as in (a) abowermines at any time after the pri.

 state that all qualified applicants will receive consideration
for empoymen without regerd to race, color, relligion, sex,
or national origin.

ab
曷
0

the minimum expenditures required to qualify the operations
renulatios.
regutiod tands os diligent exploration wider the Soc. ${ }^{14}$ PROTECTION OF THE ENVIRONMENT LLANO,

mineral materialis may buthied olficer
ditions imposed by he Authorize
Soc. 15. WASTE - The Lessee shall use all reasonable
Soc. 15: WASTE - The Lessee shail use all reasonable

qualit. 16. MEASUREMENTS - The Lessee shall gauge or

APPENDIX L. GEOTHERMAL LEASES ON PRIVATE AND STATE LANDS IN THE ISLAND PARK GEOTHERMAL AREA (IPGA)

Idaho
Township - Range - Section (acreage where known)

Private

```
14N-44E-8 (120 ac.)
    -9 (480 ac.)
    -16 (600 ac.)
    -17 (320 ac.)
```

13N-43E-23
-25 (280 ac.)
-26 (320 ac.)
$13 \mathrm{~N}-44 \mathrm{E}-31$ (240 ac.)
-32 (40 ac.)
12N-44E-5 (160 ac.)
-6 (3 leases) (160 ac.)
$-7 \quad$ (360 ac.)
-8 (480 ac.)
-9 (300 ac.)
-10 (280 ac.)
-17 (160 ac.)
-20 (40 ac.)
$11 \mathrm{~N}-41 \mathrm{E}-14$
-15
-17
-18 (2 leases)
-19 (2 leases) roughly
-20 2985 ac.
-29
-30
-31
-32
9N-42E-1 (280 ac.)
-6 (560 ac.)
$-7 \quad$ (360 ac.)
-10 (40 ac.)
-11 (120 ac.)
-14 (83.2 ac.)
-17 (240 ac.)
-18 (240 ac.)
-19 (40 ac .)

Township - Range - Section (acreage)
State Lands
13N-44E-4 (80 ac.) -9 (160 ac.) -10 (320 ac.) -16 (640 ac.) -19 (262 ac.)
-30 (320 ac.) -36 (640 ac.)

13N-43E-16 (640 ac.) -36 (640 ac .)
$13 \mathrm{~N}-42 \mathrm{E}-36$ (640 ac.)
12N-42E-16 (640 ac.) -36 (323 ac.)

12N-43E-16 (640 ac.) -36 (640 ac .)

12N-44E-16 (160 ac.)
11N-43E-16 (640 ac.)
-36 (640 ac .)
$11 \mathrm{~N}-42 \mathrm{E}-16$ (640 ac .) -36 (640 ac.)
$11 \mathrm{~N}-41 \mathrm{E}-16$ (640 ac.)
-36 (640 ac .)
10N-43E-16 (640 ac.)
-36 (640 ac .)
$10 \mathrm{~N}-44 \mathrm{E}-16$ (640 ac.)
$9 \mathrm{~N}-43 \mathrm{E}-16$ (400 ac.)

9N-43E-10 (310 ac.)
-11 (2 leases) (600 ac.)
-12 (2 leases) (200 ac.)
-14 (320 ac .)
-15 (2 leases) (620 ac.)
-16 (120 ac.)
-18 (120 ac.)
-19 (2 leases) (101.01 ac.)
-21 (40 ac.)
9N-44E-25 (nearly 80 ac.)

Denzil \& Betty Acklin
Boulder, CO
Action
Washington, D.C.
M.N. Moe Adelman

Denver, CO
Adminstrator
Agricultural Research Service, USDA
Washington, D.C.
Advisory Council on Historic
Preservation
Washington, D.C.
Agriculture Research Service
Dubois, ID
Agricultural Stabilization and
Conservation Service, USDA
Washington, D.C.
Steve Allred, Director
Idaho Department of Water Resources
Boise, ID
Mike Anderson
State Senator
Senate
Helena, MT
Atlantic Richfield Co.
Denver, CO
The Honorable Max S. Baucus
U.S. House of Representatives

Washington, D.C.
Larry Benfit
Mayor
West Yellowstone, MT
Raymond Berube
U.S. DOE

Washington, D.C.
Mr. Gregg Booth
Bonneville Power Admin.
Idaho Falls, ID
Boulder Land Co., Inc.
Boulder, CO
The Honorable Paul F. Boylan
Montana State Senator
Bozeman, MT
Nancy Alden Bragg
Boulder, CO
Ray Breuninger
Mt. Dept. of Natural Resources \& Cons.
Helena, MT
State Director
Bureau of Land Management
Boise, ID

Capital Ventures, Inc.
Denver, CO
Forest Supervisor
Caribou National Forest
Pocatello, ID
Central Intelligence Agency
Director of Logistics
Washington, D.C.
Robert N. Chappell, DOE
Idaho Falls, ID
U.S. Representative Dick Cheney

The House f Representatives
Washington, D.C.
Honorable Frank Church
United States Senate
Washington, D.C.
Charles H. Cooper
Broomfield, CO
Clearinghouse Coordinator
Div. of Budget, Policy Planning and Coordination
Office of the Governor
Boise, ID
The Honorable Dale H. Davis
Montana State Representative
Belgrade, MT
William DeBoer
Livingston, MT
Dept. of Agriculture
State of Idaho
Boise, Id
Dept. of Agriculture
State of Wyoming
Cheyene, WY
Dept. of Commerce
Assistant Secretary for Environmental Affairs
Washington, D.C.
Dept. of Environmental Quality
State of Wyoming
Cheyene, WY
Dept. of Health and Welfare
Div. of Environment

Pocatello and Boise, ID
Dept. of Fish and Game
State of Idaho
Idaho Falls, ID
Dept of Fish and Game
State of Montana
Helena, MT
Dept. of Parks and Recreation
State of Idaho Boise, ID

Director
Environmental Project Review
Dept. of the Interior
Washington, D.C.
Director
Idaho Transportation Dept.
Boise, ID
Acting Director, NEPA Affairs
Office of the Environment
U.S. Dept. of Energy

Washington, D.C.
Director
Office of Environmental Affairs
Dept. of Health, Education and Welfare
Washington, D.C.
East Central Idaho Planning and Development Assn.
Rexburg, ID
Environmental Protection Agency
Denver, CO
Environmental Protection Agency
Seattle, WA
Honorable John Evans
Governor of Idaho
Boise, ID
Executive Dept.
State of Wyoming
Cheyene, WY
Fall River Rural Electric Co-op
Ashton, ID
Federal Railroad Administration
Office of Policy and Plans
Washington, D.C.
Acting Assistant General Counsel for Litigation and Environmental
Protection Federal Trade Commission
Washington, D.C.
Fremont Outdoor Education and Recreation, Inc.
St. Anthony, ID
Joel L. Frykman
Ogden, UT
General Services Administration Environmental Affairs Div.
Washington, D.C.
Geological Survey of Wyoming
Laramie, WY
Thomas J. Green
State Archaeologist
Idaho State Historical Society
Boise, ID

Van K. Haderlie, State Conservationist
Soil Conservation Service
Bozeman, MT
John A. Hafterson
Elko, NV
Honorable Melvin Hammond
State Representative
Statehouse
Boise, ID
Honorable George V. Hansen
House of Representatives
Washington, D.C.
Honorable Jim Harrell
Mayor
Ashton, ID
Dorothy Harvey
Manitowoc, WS
Honorable Ed Hershler
Governor of Wyoming
Cheyenne, WY
Edward Hines Lumber Co.
St. Anthony, ID
Idaho Environmental Council
Idaho Falls, ID
Idaho Lands Dept.
Statehouse
Boise, ID
Idaho Office of Energy
Statehouse
Boise, ID
Honorable Thomas L. Judge
Governor of Montana
Helena, MT
Dr. G.T. Kien, M.D.
Elko, NV
Joe Kirn
Denver, CO
Robert Lavington
Denver, CO
The Honorable Everett R. Lensink
Montana State Senator
Bozeman, MT
Dave LeRoy
Attorney General's Office
Statehouse
Boise, ID
Louisiana-Pacific Corp.
Rexburg, ID
William W. Lyons
Naturita, CO
Honorable James A. McClure
U.S. Senate

Washington, D.C.

Glen McKay
Mayor of Island Park
Island Park, ID
Michael R. McSorley
Pocatello, ID
Ralph Maughan
Pocatello, ID
The Honorable John Melcher
United States Senate
Washington, D.C.
Montana Dept. of Health and Environmental Science
Helena, MT
Montana Dept. of Intergovernment Relations
Economic Development Division
Helena, MT
Montana Dept. of Natural Resources \& Conservation
Helena, MT
Montana Energy Research \& Conservation Office
Helena, MT
Montana Energy Research and Development Institute
Butte, MT
Attention: Ken Korte
Montana Historical Society
Helena, MT
Moore and Company
Littleton, CO
National Agricultural Library
U.S. Dept. of Agriculture

Bettsville, MD
Mark Newman
Sundance, WY
John Niland, Executive Director
Wyoming Dept. of Econ.
Plan \& Development
Cheyene, WY
Kenneth L. Nordtvedt
State Representative
Helena, MT
Nuclear Dynamics
Phoenix, AZ
Office of the Assistant Secretary of Defense
Department of Defense
Washington, D.C.
Office of Economic Opportunity
Washington, D.C.
Office of Equal Opportunity USDA
Washington, D.C.

Office of the General Counsel USDA
Washington, D.C.
Office of the Secretary
Environmental Quality Activities
USDA
Washington, D.C.
Henry C. Phibbs II
Jackson, WY
John Philbrook
Environmental Protection Agency
Denver, CO
Phillips Petroleum Co.
Salt Lake City, UT
Power Resources Corp.
Denver, CO
Ann Puddicombe
St. Anthony, ID
Vernon \& Beth A. Pugh
Boulder, CO
U.S. Dept. of HEW

Denver, CO
U.S. Dept. of HEW

Seattle, WA
Regional Forester
USFS
Missoula, MT
Regional Forester
USFS
Lakewood, CO
Sawtelle Chapter
Outdoors Unlimited
St. Anthony, ID
Dan W. Schausten
Asst. to the Administrator Intergovernmental Relations
Bonneville Power Administration
Portland, OR
Sierra Club
Wyoming Chapter
Wilson, WY
U.S. Senator Allan Simpson

The Senate
Washington, D.C.
P.A. Smith

ANADARKO Production Co.
Houston, TX
Soil Conservation Service USDA
St. Anthony, ID
Stewart Captial Corp.
New York City, NY
Superintendent
Grand Teton National Park Moose, WY

Superintendent

National Park Service
Yellowstone National Park
Mammoth HQ., WY
Honorable Steven Symms
House of Representatives
Washington, D.C.
Trout Unlimited
Bozeman, MT
U.S. Dept. of Agriculture

Office of the Secretary
Washington, D.C.
U.S. Dept. of Agriculture Science and Education Admin.
Beltsville, MD
U.S. Dept. of Agriculture

Soil Conservation Service
Boise, ID
U.S. Dept. of Health, Education and Welfare-Public Health Service Atlanta, GA
U.S. Dept. of Health, Education and Welfare
Denver, CO
U.S. Dept. of Interior

Washington, D.C.
U.S. Dept. of the Treasury Washington, D.C.
U.S. Senator Malcolm Wallop The Senate
Wshington, D.C.
Water Resources Council Washington, D.C.

WESTFORNET
Ogden, UT
The Wilderness Society
Boise, ID

Wildlife Management Institute Washington, D.C.

The Wildlife Society Idaho Chapter Boise, ID

Betty Wilson
Boulder, CO
Senator Bob Wilson
Sacramento, CA
John J. Wilson
Denver, CO.
Wyoming Recreation Commission Cheyenne, WY

Wyoming State Engineer's Office Cheyenne, WY
$6 \angle 6 \mathrm{I}$

Sincerely,

'6Z ITIdV
 by the "City of Seven Hills" " many lights, please think of Geysers, California
where most of metropolitan San Francisco's electricity is produced. Pacific where most of metropolitan San Francisco's electricity is produced. Pacific
Gas and Electric's plant there is our country's only, only one. Perhaps you
will help change that.

Two million acres for grizzlees is enough. Yellowstone will suffice.
Don't turn out the light in Idaho.
Let's lease 1974 to 1979 not 1984, Big Brother.
page 2
Leasing whatever area qua
present advantages unknown to
David M. Jay
Leasing whatever area qualified people wa
present advantages unknown to you at this time
advantages unknown to you at this time.

$$
4
$$

D

BETTY N. WILSON

The responsible officials listed on page i of the EIS are responsible for the decision of land available for leasing. The Secretary of the Interior is responsible for issuing and

[^6]N

At this time, no hearings are planned
At this time, no hearings are planned.
l
Association with wildife resources.
Being in such close proximity to Yellowstone National Park, underground interconnections of water and geother-
 be avoided. It is my belief that activities connected geothermal energy do not lend themselves to predictable consequences for neighboring resources. At this time,
the risk is too great.
 is only beginning. Total territorial requirements for Park area cannot be determined. For the Grizzly bear,

 Jo quəmィofuə These and other wildilfe species enrich the enjoyment of
the visitor in Yellowstone National Park.

 up of new drill sites when others are depleted. The only

 Yellowstone Park visitors. Changes in water quality from
ground water disturbances or from air pollution are an unwarranted risk.
B. Character and Value of the Island Park area.

 mu0us 工จา
 needs protection as well as the grizzly! So do all the 5

bile use of old Forest Service logging roads, tourist facturing, and headquarters for State and Federal employ. Recreation use of the area increases in summer
from local sources but also from spillover from broad-based recreation use of the western Montana, northwest Wyoming,
and Idaho outdoor resources. Joint highways 20 and 191 connect Idaho falls and southern Idaho to West Yellowstone eastern Idaho and it runs through Island Park. This is fishing - the Madison River (Montana) and all other outstanding National Forest and National Park outdoor resources
quality of its wildlands resources in this nation: forests, to determine means to protect these or to develop an economic by dredge mining for gold and rubies; spawning sources for logging; highly productive meandering meadow streams - unique in the country, valley basins, and forest lands all harbor-
ing valuable wildilfe and fish resources are being lost to phosphate ore mining developments*; oil exploration and

 development And, all this takes place at a time when the recreation, and management of these has been the second statistics Type of Recreation

Hunting • • . . .

 Hiking/Back packing SnowmobilingWhile forests are strip mined and canyoned at great pace,
millions of tons of the phosphate ore mined is stored millions of tons of the phosphate ore mined is
around the country pending a favorable market!

Relative to development of the IPGA, a

In view of the massive degree of ecological disruption In view of the massive degree of ecological disruption
taking place - area wide - today, in States like Idaho,
for mineral and energy developments, what is the cumulative
effect on wildlife and stream resources likely to be
In a perspective of loss of wildlife from:
a. phosphate ore strip/canyon mining in s. E. Idaho on
National Forest, BLM, State and private lands which
was a significant wildlife resource area. (terrestrial
water oriented and aquatic species)
b. oil and gas exploration and development in this same
region and around Grays Lake National Wildlife
Refuge, and along the Idaho/Wyoming border
c. excessive logging in the past in Idaho's National
Forests where the return of all wildlife species
will take up to loo years, some lost forever with
logging of old growth forest
d. modifications of rivers and streams and their riparian
ecosystems from dredge mining of hundredes of streams;
from destruction of spawning tributaries for Pacific
ocean Salmon and steelhead, such as the S. Fork
Salmon River, from uncontrolled logging and siltation
of the aquatic habitat; from dams and overappropria-
tion of water in the Snake River.
e. geothermal development at IPGA 2. Is the Island Park Geothermal Area ex

Is the Island Park Geothermal Area expendable for wildlife
and stream resources in this perspective as well as in
a perspective of alternative choice?
3. In an area (IPGA) where wildilfe survival conditions vary from status of Rare and Endangered, Threatened, disappearing,

salvage species?

- Only the Peregrine falcon, Northern Bald Eagle, Trumpeter swan, sharp-tailed grouse, ferruginous hawk,
 iโMOJ工əनem pue spafq auro puetd
 There is no "guaranteed" sarety for habitat even under
the Endangered Species Act today - let alone habitat pro-
tection for non-threatened species in their diversity. si sfsea qeym uo ipainsse uoffenizosəid feqfaey əjftpitm

6l species of mammals who find and utilize varieties of
habitat types in the Island Park area. According to
Appendix E. "Wildife Species Orientation to Habitats"
In the Draft EIS, Individual species use as many as 31
different types of habitat for their survival: completing
their life cycle, locating food, cover and water.
What this statement is saying is that in the
IPGA area, for each of the animal, bird, reptile and amphibian
species existing there, the land topography, vegetative species existing there, the land topography, vegetative ponds, wetlands, marshes, streams, rivers, What this is saying is that a Golden eagle,
using 29 habitat types, depends upon the prey species of
bird, rodent, reptile, small mammal for its survival which, in turn, is dependent upon the varying habitats being present many, and which ones of these 29 types is, expendable, or
which will tip the scale for survival of the Golden eagle in that area,is not yet available. What this is saying is, that in the past when wildilfe was forced out of habitat areas, it was possible
to locate elsewhere. Today, with our nation so developed,
existing habitat is already occupied to optimum carrying capacity and species moving in must occupy periphery and frequently less desireable areas where the variety of
types is missing. Hence, many species cannot survive. While we have management agencies responsible
for public resources on our public lands, their Multiple Use
mandates put constraints on protecting wildlife and its habimandates put constraints on protecting wildilfe and its habiService has neither staff or funds or expertise to follow $\frac{\text { through in protecting species when development occurs. This }}{\text { Agency cannot yet do this in logging operations; it cannot }}$ do this under condttions of varying land and water disturbances Wildlife specialists are only beginning to heritage survives and the magnitude of ecological disruption who values wildlife, to make choices in saying that the satisfaction of human needs can be met in w For the grizzly bear, the specialists have
stated that 136,000 acres, or 25% of the IPGA is critical habitat. The degree of protection of the 27 utilized habitat guaranteed.

 Agency Failure to Deal with Alternatives to Geothermal The Forest Service Draft EIS on Geothermal
 socio-economic presentation required for decision making by then stops short in incorporataing alternatives relating

 With both "products" of National Forest lands already proit would seem that the Agency should pursue different alternatives which take advantage of the avallability of
these resources. For example: production for use of dead
 portions for greater, matilization of the timber resource need to be considered.
 alternatives already existing or being developed for energy sources is taking place at many levels of supply throughout

 his information is ommitted, yet it is a relevant and necess
 Mountain "rift" on Forest lands, and is privy to information on other sources of energy potential in the region, the

n knowing what is coming down the pike. Fair trade-offs
cannot be made on the basis of incomplete information. If
the EIS process does not obligate the consideration of other
information pertinent to an issue, this should be stated.

> 7sajod teuotien noqtien.

DOROTHY HARVEY

 and importance of streams and their fish production and uses in the IPGA. "The Sport fishery in Henrys Fork on the IPGA use of nearly 95,000 angler days (valued at nearly 1.4 million dollars annually, and a catch of 175,00 salmonids (mostly trout)
in 1973, this reach of Henrys Fork is possibly the most 1mportant stream in the State of Idaho". Henrys Fork of the Snake River
1s the major drainage system with the IPGA and as a combination of high natural fertility and phsycial characteristics, it
provides for an outstanding cold water fishery. Twenty four other streams in IPGA were evaluated as fisheries. All offer opportunities
streams today.
 such as the S. Pork Madison River and others to fishery sport

Associations of these rivers with riparian
wildife use, in watershed, in wetlands perpetuation are not
dealt with directly but are implied in the ilsting and discussions of wildife species associated with water oriented habitat It is my opinion that the same criterea to be
applied to the issues on wildilfe protection, apply to stream and wetlands protection:

[^7]2. The increasing rarity of such resources in the perspective already in the State.

The existing inability of streams to meet the productivity demanded by a f1shing public today. We've come to a point
where fish caught have to be put back: the sport is in where fish caught have to be put back: the sport is in
the challenge! $\cdot \varepsilon$
N of stream degradation, attrition, and lost productivity
4. The incapability of the managing agencies to adequately
protect stream quality and quantity under conditions of 4 B

Abstract

Uncertainties; underground resource; location;

 type of geothermal resource avallable for develop unresolved issues of disposal of fluids; unknown impacts from pollution in air, on land surfaces, and in waterways; undeterminable impacts on wildil for development, and growth of development, orpermanentWe are also dalingwith
. We are also dealing with enormous uncertainties as on all natural resources in Yellowstone Park: surface,
C. Such disruptions, by the very magnitude of unknowns about the resource, itself, its development and its
impacts, appears to be beyond the scope of environmental protection of any or all managing agencies back in time - hundreds of thousands of years. The adaptability of vegetative cover over
areas of thermal activity close to the earth's

 or vegetation recovery or wildlife use, exist. Where possible chemically altered soil and water? What

 All alternatives for production of energy and for economic either by the Federal government or by the populace. Since
 public, the protection of resources highly valued by them energy needs - with geothermal energy what is at hand. The found through no geothermal development here.

0

1. The responsible officials listed on page i of the EIS are responsible for the decision of land available for leasing. The Secretary of the Interior is responsible for issuing and administering the leases.

VERNON PUGH

Mr. David M. Jay
Forest Supervisor
Forest Supervisor

Enclosed you will find what I feel are pertinent comments and questions to your environmental impact statement for leasing and development of Geothermal
resources in the Island Park Geothermal Area.

I feel it is necessary to develop to the maximum any possible source of energy gas situation in the Country.

I think it is time you people get the lead out and begin to be more rebears and minor surface disruptions.

As far as I can see there is*sufficient protection for ground surfaces built in under the normal Federal regulations for operation on Geothermal leases. veloped wherever possible in preference to coal or nuclear power. I know it can"t completely replace them but it can certainly be a valaable additional source of energy.

I think that if the conservationists have their way there won*t be a damn ing a stick or stone in some animals habitat.. I'm not an advocate of tearing up our environment but I also think that there can be a balance between

I think that leasing for Geothermal Energy should be allowed anywhere out-
side Yellowstone park. The Geology itself has to be the determinant factor side Yellowstone park. The Geology itself has to be the determinant factor
in development. The subsurface structures cannot be moved and you have to develop where they are found not at the pleasure of over zealous conser-
vationists who feel that surface features whould be the only consideration. Yellowstone Park has been set aside to protect the natural environment for the animals and people native to the Island Park Area. There will never be of space for bears and other wildife. If the conservationists have their way anywhere a bear might roam than that spot is inviolate and can't be
touched. I say this is Bull Hockey.

[^8]\[

$$
\begin{aligned}
& \text { 1. At this time, no public hearings are planned. } \\
& \text { 2. The responsible officials listed on page i of the EIS are } \\
& \text { responsible for the decision of land available for leasing. } \\
& \text { The Secretary of the Interior is responsible for issuing and } \\
& \text { administering the leases. } \\
& \text { 3. See other comments received. }
\end{aligned}
$$
\]

CHARLES H. COOPER

1. The responsible officials listed on page i of the EIS are
responsible for the decision of land available for leasing.
 administering the leases.

i
Charles H. Cooper
1060 Laurel
Broomfield, Co. 80
Broomfield, Co. 80020
U. S. Department of Agriculture
Forest Service
Targhee National Forest
420 Bridge St.
St. Anthony, Id. 83495
Attention: David M. Jay
Dear Sir:
In refernce to the Draft Environmental Impact Statement, Island Park
Leasing, Development Geothermal Resources, Comment Invitation.
With our nation in such an energy shortage, it is necessary that
everything possible be done to explore every means for energy. Island Park, Idaho area should be leased as soon as possible so that it maybe explored and evaluated for energy. What is the delay? The bears have Yellowstone National Park. I do not feel it necssary
that Island Park be set aside for them.
that Island Park be set asiae for them.

Charles H. Cooper
Broomfield, Colo.
May 8 , 1979
U.S. Department of Agriculture
Targhee National Forest
t. Anthony, Id. 83495
attention
Dear Sir:

$$
\begin{aligned}
& \text { Who makes the decision as the leasing of this land? } \\
& \text { will there be a public hearing? } \\
& \text { If so I'm interested in knowing when and where. }
\end{aligned}
$$

Yours truly
(-nt

Dor Sir:
I would like to offer the Followiry comment on the Drett
Ennronmentol Statement of the 1sloud Pork Geothermol Pree.
Alternative "6 is the only one that mokes sense from a geologic point of view. The subsurtace geolagy hos to be
developed where it occurs.

Indications also appear that existing geothermal sources would be on page 9
 nologies to the current fossil and mineral energy sources (page 766), I do not consider a geothermal plant in the IPGA, at this point in
time, as a feasible, critical or necessary option.
The NEPA of 1969 which precedes RPA also states that:
(b) In order to carry out the policy set forth
in this act, it is the continuing responsibility in this act, it is the continuing responsibility means, consistent with other essential considera-
tions of national policy, to improve and coordinate
Federal plans, functions, programs, and resources
to the end that the Nation may --
(2) assure for all Americans safe, healthful, productive and esthetically and culturally
pleasing surroundings;
(3) attain the widest range of beneficial
uses of the environment without degradation, uses of the environment without degradation,
risk to health or safety, or other unde-
sirable and unintended consequences;
I feel that a geothermal plant in Island Park violates the
intent of other laws. In my opinion, a geothermal plant

If a forest is to continue as a coordinating agency for multiple use
In summary, I do not support geothermal exploration (which also causes quite a few impacts) nor a geothermal plant in the Island Park area.
The idea of a factory installation (a small, polluting city) on forest lands is new and should be very carefully reviewed before any final
decisions are made.
Thank you for your consideration of my comments. imn Pwoshermbe
Mr. David Jay 115 East Main \#4
St. Anthony, ID 83445
April 20, 1979
Supervisor
 Dear Mr. Jay:
According to your evaluation criteria on page 76 of the IPGA DES, "a high degree of public acceptance of a proposal is desired." I
Of the alternatives provided, I choose alternative one requesting no
leasing for geothermal energy in the IPGA.
My first area of concern is about the concept of a potential factory being built on national forest lands. Unlike coal or gas installations
which are short lived and CAN (although not always accomplished) reclaim the land to a natural state, a geothermal plant will require permanent structures and a lease of $75-100$ years. Even federal structures (ad-
ministrative facilities) are not built with such permanence.
The idea of a factory (pl ant) on public forest lands is a question of
large dimensions.
These large dimensions are evidenced by the great impacts such a plant
will have on EVERY resource. This is made quite evident in the final tables at the end of the DES. Can a forest truly function as multiple use" with a factory that guarantees to conflict and impact every single
resource of a forest? The final impression of the report is that the total forest will function around a geothermal plant, not the plant
Secondly, I question the benefit of a geothermal plant in Island Park. The most practical benefit of a geothermal plant is "space heating."
Yet the entire IPGA is sparsely populated.

ก윽
Total in nearby towns
Total in county
Predicted total in county by
the year 2000
Is heat for 15,483 people worth a plant that will impact a forest for
100 years?
\square

Ceore fic:

$$
x / 5 / 100
$$

$$
\begin{aligned}
& \text { Eesre } \sqrt{\text { Lix: - }} \\
& \text { do, not beh wove it mound be }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The best intere ofs of the peophe } \\
& \text { lie environment, on the Hrest }
\end{aligned}
$$

itseh f to Allout arty explore ction
in qu brogid the Hellowstone
National horely, on forz ef go mike
Codius Fronrit I

$$
\begin{aligned}
& \begin{array}{l}
\text { bcbi's hbul } \\
10858 \text { bpronan roylz } \\
1 \text { sb xag O'd }
\end{array} \\
& \text { Pear Supervisor: }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { to go m record opposing such developments } \\
\text { o feel it is unnecexsary and just. }
\end{array} \\
& \text { unnecersary and just. } \\
& \text { bulso } \\
& \begin{array}{c}
2 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3
\end{array} \\
& \begin{array}{c}
4 \\
5 \\
5 \\
5 \\
5 \\
5 \\
5 \\
5
\end{array} \\
& \text { cunflicts } \alpha \\
& \text { yew dranpopen rios ni } \\
& \text { vorro fomoznests } \\
& b^{2} \\
& \text { - burzes } 7 \\
& \text { Gank you, }
\end{aligned}
$$

 \square
 It is difficult to comment on this issue as the potential magnitude
of the geothermal resourec present, if at all, is so uncertain. Inpacts

 al park was to protect the egeothermal features. Any activity that would
tend to damage then by nans of power eveelopment tould be th insult of
the worst kind -- insensitivity typical of 19 th Century America. Because private investment via leasing and exploration involves sub-
stantial capital, a private firm will undoubtedy fitith thving a project

 For these reasons, I suggest that the Dept. of Interior conduct all geothermal
dri111ing, testing, etc. in the Istand Park. Geothemal A rea to determine the

This proposal above (not included in the DES) represents ny suggestion
for the future of the TFCA.
 fication of subjective judgnents (even to decimal points), makes it no less sub-
jective. Until mone hard data is gathered, I subgest that all exploration and teesting be conducted by the pept. of Interior, not by private lease-holders.
All applications to lease should be denied.

 notice of any decisions to through the authority of the Forest Service or the SIM. - norparoul Yofor 'stazours Dr. Ralph Maugran, Box 8264, Focatello, ID

: Kef -xh tead

\section*{$6 \angle 61$
 ' τ

\section*{Kew

Kew
 *T8 Keh^{2}

 *T8 Keh^{2}}Michael R. McSorley
$\begin{aligned} & \text { 357 Franklin } \\ & \text { Pocatello, ID } \\ & \text { March 29, } \\ & \end{aligned}$
M3201

USDA Forest Service
W4x. David M. Jay
Targhee National Forest 420. N. Bridge Street
St. Anthony, ID
83445 Dear Mr. Jay:

 2) Whdle there 1 s a complete list of species avallable
for inldilfe thd biris, the species list for fish is sorely lacking, . The "game fish" are readily identified but the
others ore just IAsted by a general name, i.e., suckers, ohiners, duce, and sculpin. I would like to remind the aresystem end deatre recognition to the species level. There
amonomictikpye readily avallable to identify all species
(190

 development within the constraints of the Yellowstone National

I appreciate the opportunity to comment on this
important dES and request that you include me on your mailing
list for all further releases regarding this matter.

This alternative was evaluated by the Interagency Team. It

 the Interior subsequent to this EIS.

The EIS was concise to conform with current CEQ guidelines. Extensive data and information was used in the
 management requirements, constraints, and mitigating
 Supervisor's Office, Targhee National Forest.

HENRY C. PHIBBS II

-

Forest Supervisor David M. Jay
II Sagilld o 入anヨu
TORNEY AT LLW
MUAIE CABIN
BOX 1082
JACKSON. WYOMING 83001
$307 / 733 / 5004$
420 North Bridge Street
Saint Anthony, Idaho 83445
Dear Mr. Jay:
I am writing to you regarding the draft Environmental
Statement for the Island Park Geothermal Area Leasing which
has been prepared by your office. My comments are personal.
First, I endorse the comments submitted to you by
Phil Hocker, on behalf of the Sierra Club.
Of the alternatives set forth in your dES, I support
alternative \#1, no leasing.
alternative \#1, no leasing.
The immediate proximity of Yellowstone National Park
to the proposed leasing area is a fact which should mandate
a considered program of testing without any leasing, so that permanent damage to the world famous and irreplacable geothermal resources of Yellowstone is significant. The dES recognizes that geothermal developments have adversely affected other is presently available regarding the harm that could be done to the geyser basins in Yellowstone. Given the known damageeasing. The technical deficiencies of the des have been addressed
 ben addressed are of major national importance Alternative \#l, all nine lines of it, does not constitute a scientific and analytic basis for

[^9]
$6<$ xdy 82
2
hazard to flowers or flower-people.
Snowmobilers destructively vie with native game snd real estate development as
water wells, power lines, forest roads, highways sre built and maintsined. Once they built a railroad there. Still a twelve month open season on black I have found regulations governing federal leases, for no matter what, to be highly protective and effectively so. Now let's move on:
 stampeding buffalo just una
fuels in power generation.
Moot describes your questioning whether Geothermal is a best use for Island Park-
Caldera areas. Commercial power can be obtained and snowmobilers so destructive Caldera areas. Commercial power can be obtained and snowmobilers so destructive
of environmental balance can find other areas to deafen and destroy wilderness
denizens. denizens.
Possible open leasing or modified open leasing would be best, for then engineers
and entrepreneurs could be able to make comprehensive area evaluations. Your
alternatives, other than number six, are unrealistic and ignore the economics

double J W ENERGY company
 Denver, CO 80202
3038932528 aress will be leased? Please provide names and affiliations together with
addresses and telephone numbers. With most of the Idaho local people in favor of or simply unconcerned about
Geothermal Development, why has there been such an unconscionably long delay in getting these applications processed into leases so that reasonable action can be had? Soon to be 6 years and no results: Do you plan proper public
hearings before the final Environmental Statement is published? If so, where
I know of no animals who are taxed to feed, warm, house, and clothe humans and with a clean power source available, let us not confuse priorities and shackle
the ENERGY PRoviders of this country. Yellowstone Park is refuge enough for
sanctuary seeking grizaly bears. No development is planned in the Park. I with a clean power source available, let us not confuse priorities and shackle
the ENERGY PRoviders of this country. Yellowstone Park is refuge enough for
sanctuary seeking grizzly bears. No development is planned in the Park. I know of no Geothermal Power Plant that operates because of your actions, but
several proposed that are sidetracked because of your ivory-tower agency's actions. There is nothing more repugnant to a taxed investor than an impregnable bureaucracy's delaying an event long overdue, namely lease issuing in Island Park.
Yellowstone has become a rich man's playhouse because there are so few roads.
Why make it more of the same? $\mathrm{H}_{2} \mathrm{~S}$ has been known in that area since Coulter's Hell evolved volcanically and
bears, moose, wolves, plants, etc., seem to have endured. bears, moose, wolves, plants, etc., seem to have endured. Greater use and preference for clean Geothermal Power to replace Nuclear and
Fossil fueled power makes more sense than locking industry out of a job-starved Fossil fueled power makes more sense than locking industry out of a job-starved
state. Idaho state has already leased adjacent acreages creating a crazy quilt state. Idaho state has already leased adjacent acreages creating a crazy quilt in the Denver area?

[^10]administering the leases.
The responsible officials listed on page i of the EIS are responsible for the decision of land available for leasing.

May 11, 1979

The Island Park Caldera, from a Geologic standpoint, represents one
of the nost attractive areas for Ceothernal exploration and development in the U. S., located adjacent to an active coothernil area and easily accessible topographioally. These facts should be the
mor consideration in any land use deternination.
Exploration and development of a geothermal source has the least Exploration and dovelopment of a goothermal source has it is clean, non-polluting,
 public that geothermal energy sources be exploited.
There 18 no reason, based on the faets in the DEIS, and present leasing and/or exploration. In fact, Geopthermal expleration would be much more acceptable than some of the present uses, and most
eertainly compatible with all of then.
Since the ooothermal Leasing let beeane effective, Janaary 1, 1974,
delay after delay by varions groups have obstructed exploration. delay arter delay by varions groups have obstructed exploration.
The continual talk of developing alternate energy sourees 18 gust
that - it is time to cease talring and cowence the action. Islasd

NUCLEAR DYNAMICS
OE F. WALTON VICE CHAIRMAN OF THE BOARO
David M. Jay, Forest Supervisor

St. Anthony, Idaho 83445
It has come to my attention that the Forest Service has invited
comments as to the proposed environmental statement regarding Island
Park Geothermal Area.
The last twelve years of my life have been dedicated to the
proposition that the predominance of any nation is in direct proportion to the availability of energy sources and the production and
utilization of energy.
 exploration and coal production, 1 feel that the development of
 It is my firm belief that except for the reservation of the
Yellowstone National Park, priority consideration looking to the moting geothermal development in all public lands which disclose
I sincerely hope that the government position will promote
the development of geothermal energy sources by giving a priority subject to leasehold exploration for their development of geothermal

$\mathrm{JFW} / \mathrm{mda}$
Joe Kirn
CONSULTING GEOLOGIST 1645 COURT PLACE, SUITE 201
 driling rigs,
veery trulytupurs.
$\mathrm{JK} / \mathrm{mkc}$.
Zos \mathcal{L}. Irykman
 March 29, 1979
Dear Mr. Jay
The criteria for leasing for geothermal resources should be that 100 percent of may be necessary for human habitation, developed recreation sites that canno be replaced, highways or other important roads that cannot be conveniently
replaced in a different location, limited areas for the sandhill crane and trumpeter swan feeding and nesting areas, Big Springs, and within 100 feet
Island Park reservoir and 500 feet of the falls. The objective should be Island Park reservoir and 500 feet of the falls. The objective should
As far as industrial development that could result from this use of energy
resources, there are numerous natural openings and clearings as shown by your resources, there are numerous natural openings and clearings as shown by your such industrial development as might occur.
The cover photo, an excellent one, reveals what appears to be serious bark beetle
damage. From a scenic standpoint this is more damaging than anything else you might do. It is also very damaging to a valuable resource and indicates a failure it is responsible to the American people. However, this could be an old photograph and you have done better.

Sincerely yours,
JOEL L. FRYKMAN
Consulting Fores
Consulting Forester
©
May 17, 1979
 total acres and percentages of the total area to be disturbed or developed und each alternative. We suspect the percentage of land area actually disturbed
would be extremely small, even with the unlimited exploration alternative. We ask that as you choose a final alternative you seriously consider the true $\frac{\text { needs }}{\text { fication of } \# \text { our }}$ \# toward $\# 5$ would be our recommended direction. Thank you for this opportunity to make comment.

 about the resource make realistic projections of this type impossible at this time.
2. This has been clarified in Map 1.
 throughout the process.

Since no precise proposal has been made, it is impossible

 to adequately assess this impact.IDAHO STUD MILL
EDWARD HINES LUMBER CO. St. ANTHONY, IDAHO 83445 AREA CODE 208-624-3445 6L6I ' $\angle \mathrm{L}$ Kek

[^11] Dear Mr. Jay:
 Environmental Statement for leasing and development of the Island Park Geothermal Area.

A great deal of time, effort, and finances has obviously been invested in the
compilation of this document. The results are indeed impressive. The maps are clear and concise, the pictures are beautiful, and the charts are informative. There are several areas which we would like to address. There is throughout
the major portion of the E.S. the general intonation that development of IPGA would lead to impacts that are mosily undesirable. This is true only to those
with tunnel vision who are unwilling to assess the total resource situation. In view of our present energy situation and the projections that it will get much worse before it gets better, our nation must reassess our values. We must endeavors since the mid-60's. Development in a proper and prudent manner is
compatible with most all other resource uses and activities. Wildlife, aesthetics, and recreation are most definitely areas to be considered and protected within reason. However, necessities must receive first priority local or national needs over the next several years. This is a major shortcomin Map \#1 of the IPGA shows "private" land within the area. It fails to distinguish indication that appropriate state officials were contacted relative to Idaho's geo-thermal or mineral development plans for state ownership. However, eight
employees of the Idaho Fish and Game were listed in Appendix M as having made contribution to the E.S. Is there an imbalance of consideration here? RRA ARROW P PRECISION KD 12\%
(n)

1. This area is visible from portions of the IPGA.
Θ
4 Louisiana-Pacific Corporation
April 12, 1979
Dear Mr. Jay:
Re: Draft Environmental Statement of the Island Park Geothermal Area. St. Anthony, ID 83445
P.O. Box 185 Rexburg. Idaho 83440

-

Specific points I wish to comment on concerning information presented
in your report are:
Specific points I wish to comment on concerning information presented
in your report are:
At this time it appears there is no evidence that a commercial geo-
themal resource is present in the IPGA. To determine this will require
some form of systematic exploratory drilling.
Although your proposed alternatives addresses the issue from no
leasing to full leasing, I believe that a logical alternative would be an
initial exploratory phase followed by review and evaluation then implimentation of a final program based on knowledge gained through the initial phase and management goals. Your alternative three most closely resembles
this. However, it would appear the area is too restrictive to permit this. However, it would appear the area is too restrictive to permit
systematic exploration.
No specific alternative was recommended. I feel a report of
this nature should make a recommendation.
2. The general tone of the report is oriented toward the protection
expense of other uses. There should be an economic balance or
justification between all uses.
Two pictures of geothermal activity are shown on pages 7 and 8 .
An aerial photo of a complete geothermal complex would have been
helpful to a reviewer to be able to grasp the magnitude of such
an operation
4. The picture of the West Slopes of the Tetons on page 82 should
have been omitted from the report. It is outside the IPGA and who is unfamiliar with the area.
species uses for feeding and reproduction. In many
cases, the same habitat is used for both purposes. The dif-
ferent habitats available are in Table 15, page 44 of the draft statement.

 3. Specific, quantified impacts such as these cannot be
 thoroughly evaluated.
 i $\dot{~}$

4. Appendix E indicates the number of different habitats

This has been clarified on Map 1.
in-
PHILLIPS PETROLEUM COMPANY

1. This has been corrected in the final EIS
2. This has been corrected in the final EIS

,

(66) PHILLIPS PETROLEUM COMPANY

-
Forest Supervisor
Targhee National Forest 420 N . Bridge Street
St. Anthony, Id. 83445

Attention: Mr. D.J. Jay
Gentlemen:
We have received and reviewed the Draft Environmental Statement of the Island Park Geothermal Area, and submit for your consideration the following comments and questions:

1. Page 8. "Installation of underground pipes would increase
pipeline costs by about 25%." This is an extreme understatement. It will realistically cost at least 100% more to bury steam pipelines. Trenches must be dug, pipe and insulation must be cathodically protected, removed earth must be replaced and recompacted to prevent erosion, markers and signs labeling the route must be installed. The incremental above items will be at least $75-200 \%$.
2. Page 22. "Several hundred wells are in the IPGA. Except
those in the Ashton Area, most are concentrated along streams in areas of summer home development."" The Ashton Area is not within the boundary
of the IPGA (See Map 4). Table 26 (p. 71) indicates 1,300 people living in Ashton, in 1975. It would appear that most of the severa the IPGA. How many of these wells are within the boundary of the IPGA? Why is Ashton discussed here? Is the subsurface location of their wells
within the IPGA boundary? Or, do their wells provide water and s within the IPGA boundary? Or, do their wells provide water and surv de
to establishments within the IPGA? Is there available tracer study data which would indicate the direction and magnitude of ground water flow
from the IPGA toward Ashton?
(N)

$$
\begin{aligned}
& \text { This data } \\
& \text { inverse squ }
\end{aligned}
$$

appears to be in error. Sound levels generally follow an inverse square
law. Thus, sound level measurements at 25 feet and 1,500 feet from
ahese three types of operations should exhibit some form of mathematical these three types of operations should exhibit some form of mathematical the data show that muffled test wells and steam line vents have the same
 test well is 35% less, and the sound level of the steam line vent is only
10% less.
PHILLIPS PETROLEUM COMPANY

This has been deleted in the final EIS
6. This change and impact could occur in areas with
7. The land managing agency is responsible for regulating
activities that may cause these types of impact.
12. See introductory paragraph to Potential Impacts table in
final EIS.

Sulfur dioxide gas is a combustion product.
only combustion source would be a drilling rig's
Change:
$\substack{\text { Forest Supervisor } \\ \text { Mr. D.J. JJy } \\ \text { May } \\ \text { Page two } \\ \text { Parg }}$
4. Page 88.

Phase: Exploration

Activity: "Explosives..." Explosives would not be
used for seismic exploration in an area空
()
PHILLIPS PETROLEUM COMPANY
12. See introductory paragraph to Potential Impacts table in
final EIS.
8. This has been deleted from final EIS.
9. See introductory paragraph to Potential Impacts table in
final EIS.

12. See introductory paragraph to Potential Impacts table in
10. When a timber site is allocated to development of geothermal energy, it loses its capability to produce wood fiber.

timber removed from production.
PHILLIPS PETROLEUM COMPANY final EIS

©

앙
©
 large areas are cleared and graded...." Large areas
will not be cleared and graded into streams. Laws
prohibit such operations.
"Fisheries" - Well pads are not located so close to
streams that "chemical or hot water spills" would streams that chemical or hot water spils" would
"adversely affect the aquatic environment." This
potential impact is also regulated by law.
"Timber Production" - "Loss of timber fields..." On page 87 you state that a maximum of " 180 acres
is cleared ..." for a geothermal plant of 100 mW size
On page 1 you state that 488,031 acres are in the

IPGA. Thus, maximum timber production loss will significant environmental impact. And on page 61 you state "Many areas examined in 1976 contained
nearly 70% dead trees, and some 80%." Any adverse

 should be deleted.

Forest Supervisor
15. Page 109.
16. Page 109.
17. Page 109.
PHILLIPS PETROLEUM COMPANY
12. See introductory paragraph to Potential Impacts table in
11. Since no precise proposal has been made, it is impossible
 pacts.

(9)

Θ

CAPITAL VENTURES, INC.

The responsible officials listed on page i of the EIS are

[^12]$\therefore \quad$ 산

April 30, 1979
$\Theta \odot$

[^13]Mr.
Targhee National Forest St. Anthony, Idaho 83445 Dear Mr. Jay: Your recent DES for the Island Park Geothermal Area (IPGA), solicited
 environmental consultant for the Stewart Capital Corporation of New York,
\$ lease applicantsin the IPGA. First let me complement you and
First let me complement you and your staff for a job well done. I
believe that the IPGA document is a model for the BLM and Forest Service;俍
you have produced the best DES I have seen. It is beautifully illustrated,
clear and concise is its style and foremat, and above all writted in a knowledgable and literate manner. The scenarios developed, the statements and conclusions are well founded and documented. Your objective evaluations indicate you are not exclusively directed by timber or
ing interests but are clearly responsive to the desires of the people and the management objectives of the Forest.
Unfortunately, all important documents seem to have a malice of their
own; editorial errors and "typos" seem to persist no matter how carefully
Θ edited. One really glaring error has occurred in the Page 117, the second resource, Water ho. 2 (Water) as $2.48!$ This must
column 7 shows a total for Resource No. be a "typo" because the total for all resources equals 77.82 and that
is correct if Resource 2 is 12.48 . Similar numeric errors exist on page 114, Resources 5 and 6 , but the magnitudes of error are of little
 ment of geothermal power. Geothermal energy cannot generally be stored

STEWART CAPITAL CORPORATION
The corrections have been made in the final EIS.
STEWART CAPITAL CORPORATION

In discussing the consequences of geothermal exploration and ultimate
development of viable steam for electrical generation, one might point out that there are several secondary consequences of the final production of 100 megawatts of electricity. This means energy for 100,000 people; economic, reliable electric power that does not consume oil or coall.
Alternatively, that same 100 megawatts can fuel one or more energy intensive industries which would add to our Gross National Product as
well as the local economy. The 100 megawatts envisioned for IPGA would replace two or more mid-sized
nuclear power plants and even the most unknowledgable person would grant
distinct environmental advantages to geothermal versus nuclear power. Certainly geothermal power appears to have economic and environmental
advantages over hi- sulfur coal, expensive and undependable foreign oil and the attractive but as yet unrealized solar power. Thus it might be realistic to compare geothermal power and other ava ilable power sources
on a theoretical basis, and having enumerated the economic or environmental advantages of geothermal power, one must simply accept the conclu-
sion that our geothermal resources should be developed promptly regardless of their location.

Having once accepted the premise that geothermal energy does provide some relief from the U.S. energy crunch, and that geothermal energy is economi-
cally advantageous and environmentally preferable (to certain other energy sources) we must then proceed to develope that energy in a timely and conscientious manner.

A geothermal power plarit cannot be sited in an "ideal location." The Equally unfortunate is the fact that geothermal steam can't be found energy is to be utilized, it must be developed at the source. Regardless cope with the problems of development in the area. Geothermal developers, like most of our nation, are environmentally conand the aesthetic. We are anxious to preserve plant and animal species that are threatened by the more insidious encroachments of man. And we
are dedicated to the preservation of air and water quality.

We are equally dedicated to the development of economic, reliable energy environmental protection needed to satisfy the public. The geothermal
DEAR NR JAY
THIS LETTER IS INREGARD TO THE
ISLAND PARK GEOTHGRMAL AREA OUTSIDE yellouistcine fark.
DEVELOPMENT MAY BE A GOOD ALTERNATIVE ENERGY RESOURSE IN SOFAR AS IT A CLEAN SOURGE
I AL SO BELICVE THAT INTHN DAY AND.
AGE WE NEED TO EXPLORE EVERY POSSIBCE ENERGY RESOURSE WE HAVE EVEN I F ST MEANS TAKING A LONG HARD LOOK AT THE EOOLOGY OF AN ARCA LOOK $4 T$ MY QUESTIONS AT THIS POINT ARE HOW LAN
SUBHIT INPUT TO TAC GEOTHCKHIL DCVIE I SUBAIT INPUT TO THC GEOTHCRARC DEVEL OPMENT QUESTION BEFORE A FINAL ENVIROU, NENTAL IMPACT STATIEMENT IS DUSLISHED N1. EXACTLY'WHO WILL BC MAKING RCEISIONS OT WHAT AREAS ARE LEASED FOR GCOTHERDK (G)VEX
DEVELOPMENT DEVKCOPRENT NCCRLY
PAUK O.

estimated.

 the 800 -mile Trans-Alaska pipeline have been built win ment disturbance of the wildlife. The IPGA could and would be developed with the same
 positive attitude toward the development of geo energy. As stated on Page 74 of the DES, The would boost the economy and provide a possible way to keep electric rates from rising." Further, along existing use paths, thereby limiting the
impact of the area of transporting power.
Atlantic Richfield Company endorses the concept of
multiple use of public lands. The public interest multiple use of public lands. The public interest prudent exploration and production activities are
allowed to coesixt with other land uses. Exploration for and development of energy resources will expand our domestic energy supply, improve local
and national economies, increase employment, and

 Congress to search out and develop new domestic
 recognize the need for the development of this
 ing communities.
 the Draft Environmental Statement for the Island Park Geothermal Area. If any additional information is required, please contact us.

Re: Island Park Geothermal Area Dear Mr. Jay: Atlantic Richfield Company appreciates the oppor-
tunity to present comments to the Forest Service and the Bureau of Land Management (BLM) on the Park Geothermal Area (IPGA) in the Targhee National Forest.
We are becoming increasingly concerned about the escalation in the rate in which federal lands are potential energy and mineral exploration and development. Besides protecting the wilderness, the
Federal Government should consider the development of energy and mineral resources and reconcile
these and other public lands use needs in a manner in which ultimately serves the best interests of the nation. Although there may be a few adverse impacts, as exploration and development of the geothermar and the Nation by not developing this potential resource could be even greater. Continued federal land quences on the availability of energy resources in resource potential is on federal land. Improved technology and a greater sense of responsibility
for the land has lessened the impacts resulting 83445 Forest Supervisor 555 17th Street
Denver, Colorado 80202 Telephone 3035757577
J. R. Mitchell
Public Lands C May 21, 1979

Mr. David M. Jay St. Anthony, ID 83445
OUTDOORS UNLIMITED

1. The Yellowstone KGRA $(42,400$ acres) is correctly located on the maps. The Island Park KGRA $(28,350$ acres) is a quilt-work design of overlapping lease ap plications distributed throughout the IPGA.

 2. This has been clarified in the final EIS.
3. The State of Idaho's input has been integrated into the
DES and final EIS. @

$$
6 L 6 \tau \cdot 0 Z \text { Tfxdv }
$$

SAWTELLE CHAPTER OUTDOORS UNLIMITED
environmental impacts, thus nullifying largely all the previous adverse detailed
scare impacts that were stressed. The result then is not a neutral balanced position, off by geothermal activities and if we believe in God, mother, and apple pie, we should register a protest.
What the report fails to state adequately is:
2. Geothermal water, heat, electricity will be beneficial to farm, factory, city,
Sin the
potential
That probable development potential is low. World geothermal development is
minimum, but the report infers IPGA development and impact could be extensive and all encompassing.
There is no practical comparison of conventional versus geothermal developments
or impacts. (Colstrip versus two, 50 megawatt geothermal plants is no comparison.
That professional agency management can control geothermal development in terms
or magnitude and lmpact adequately.
That resources on the IPGA (particulariy wildife) are far more manageable and
That an informed and aware public can and will tolerate prudent management of The No Surface Occupancy Restrictions descriptions are confusing The No Surface Occupancy Restrictions descriptions are confusing and stated differentl
between Alternatives 4 and 5. This could stand clarification. Was the State of Idaho consulted for geothermal data and opinion? Because of their
extensive inholdings in the IPGA, their posture and management intentions are fmportan The wildlife aspects of the report seem to be dominant and overstated in regards to the
probable geothermal potential on the IPGA. One gets the feeling the wheel of balance
is weighted heavily in favor of wildlife. When compared to the inferred intensive is weighted heavily in favor of wildife. When compared to the inferred intensive
development possibilities, a negative exploration/development opinion is the likely result for most lay observers. We're sure this was not the intention of the writers.
It should be better explained.
In summary, Sawtelle Chapter feels the geothermal resource must be defined through more of a known factor, prudent construction, development, and operation should take place if feasible. The exploration and development must be done in a manner that offers
reasonable protection to the environment. There will be impact, of course, but it can be minimized and managed. Some credibility must be given to the good judgment of the energy industry. They are not going to cover the IPGA with test wells and development
if there is no potential for rational development. We recommend a combination alternative (alternative
lease areas can be maximized. The no lease and lease with surface occupancy restricand unstable soils.

WYOMING CHAPTER SIERRA CLUB

> Dear Mr. Jay:
re: ISLAND PARK GEOTHERMAL AREA LEASING D.E.S.:
The following comments are submitted on behalf of
the Sierra C.lub. They are also endorsed by the Friends of the Earth.

ALTERNATIVES:

Of the alternatives listed, Sierra Club et al. support
the adoption of Alternative \#1: No Leasing.
We suggest that an additional important Alternative
has been omitted from the draft E.S.: the conduct
of further testing and research in the IPGA
without leasing.
RESEARCH NEEDS:
It is probable that any geothermal energy sources in the
IPGA are interrelated with those of Yellowstone National Park. Both flows of heat and of subterranean water may IPGA may well have adverse effects on the world-renowned features of Yellowstone. According to YNP personnel, "Geothermal developments have
adversely affected other major geyser basins in the world."
Discussion of possible effects on the Park in the dES is brief, vague, and generally admits ignorance. This ignorance issuance of leases is permitted.
Other volcanically-affected areas of Idaho contain major subsurface water flows of up to seventy-five miles. Yet the dES proposes that effects on Yellowstone Park will
be monitored only if a resource is developed within five miles of the Park boundary. Other developments would not
 the dES.
"Not blind opposition to progress, but opposition to blind progress."

1. This alternative was evaluated by the Interagency 1. This alternative was evaluated by the Interagency
Team. It was decided that it was not a viable alter-
native at this time because it was out of the scope of
this EIS. However, it could become a definite con-
sideration of the Secretary of the Interior subsequent
to the EIS. 1. This alternative was evaluated by the Interagency
Team. It was decided that it was not a viable alter-
native at this time because it was out of the scope of
this EIS. However, it could become a definite con-
sideration of the Secretary of the Interior subsequent
to the EIS. 1. This alternative was evaluated by the Interagency
Team. It was decided that it was not a viable alter-
native at this time because it was out of the scope of
this EIS. However, it could become a definite con-
sideration of the Secretary of the Interior subsequent
to the EIS. 1. This alternative was evaluated by the Interagency
Team. It was decided that it was not a viable alter-
native at this time because it was out of the scope of
this EIS. However, it could become a definite con-
sideration of the Secretary of the Interior subsequent
to the EIS. 1. This alternative was evaluated by the Interagency
Team. It was decided that it was not a viable alter-
native at this time because it was out of the scope of
this EIS. However, it could become a definite con-
sideration of the Secretary of the Interior subsequent
to the EIS.
WYOMING CHAPTER SIERRA CLUB
Θ

LEASING AS METHOD:
This is an unwise approach. The issuance of leases and the encuragement of private investment in exploration investor's interest and the public's concern over the protection of Yellowstone National Park and other values.
It does not guarantee that the specific information most
needed for a sound public decision will, in fact, be
forthcoming. The dES proposal that expioration and
development proceed until an effect on Yellowstone
is actually observed, creates the likelihood of upwards
of $\$ 50,00,000$ being invested in a production facility

shutdown.

Fairness to private industry and investors requires that the Government not sell a resource which it may not be
in a position to provide. The Government should cond including carefully-controlled test drilling, a resource which is independent of the treasured features of Yellowstone National Park. Only if such an independent
resource is found, and it is concluded that the Park will not suffer in any way from development, should leasing
on the IPGA be considered.

AdDITIONAL LEASING CONSTRAINTS:
No leases should be issued for areas designated as essential
grizzly bear habitat. Leasing with surface occupancy grizzly bear habitat. Leasing with surface occupancy lengthy experience with surface occupancy restrictions in oil/gas leasing has shown that they create a logical problems during the duration of the lease.

[^14]WYOMING CHAPTER SIERRA CLUB
2. The EIS was concise to conform with the current CEQ
guidelines. Extensive data and information was used in the evaluation of alternatives, effects of implementa-

 perusal at the Supervisor's Office, Targhee National Forest.

m
 potential effects of spills and condensate. Effects on fisheries and waterfowl were discussed on pages 95, 100 , and 101. When a lessee plans to drill, construct a road, or do additional work on his lease, he must prepare a detailed plan of operation. This plan will review and evaluate in depth the potential adverse ef-

 United States Forest Service will approve, modify, or

eeo adequately estimate this concern.
4.
o estimates of the total energy yield expected as a result
f leasing the IPGA are given. This is the central datum of leasing the IPGA are given. This is the central datum
in weighing the benefits of development versus the hazards,
yet it is absent.

lion

©

$$
\begin{aligned}
& \text { Discussion of surface water effects omits thorough consider } \\
& \text { of problems of spillage of drilling mods, geothermal brings, } \\
& \text { and steam condensate. This has been a recurrent problem at } \\
& \text { The Geysers field in California and is typical of geothermal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fields. Effects on fishery and waterfowl could be expected } \\
& \text { to be severe. }
\end{aligned}
$$

$$
5
$$

$$
0
$$

ADEQUACY OF THE DRAFT ENVIRONMENTAL STATEMENT: Although this is the most lavish and expensively-printed inadequate for intelligent decision -making.

NEPA regulations, $43 C F R 1502.16$, demand a "scientific
and analytic basis for the comparisons..." of alternatives. That basis is not presented. The colorful matrices with two-decimal-place weightings (Tables $36-41$) merely supported by scientific data.
The entire evaluation process only serves to compare different courses of action; no absolute data are given on the benefits versus costs, both social and environmental,
of any of the leasing programs discussed. The no-leasing of any of the leasing programs discussed. The no-leasing
alternative is not even included in the matrices, since
the absolute values of leasing are never addressed.

$$
\begin{aligned}
& \text { The two-paragraph description of Alternative \#1 (} p .77 \text {) } \\
& \text { is biased against consideration of this path. The discussion } \\
& \text { of possible development of private resources is calculated } \\
& \text { to further that bias, and is irrelevant since it is not } \\
& \text { demonstrated that private development is related to the } \\
& \text { courses of action covered in the dEG. Overall, this } \\
& \text { presentation of Alternative \#l is aggressively deficient } \\
& \text { and violates the spirit and letter of NEPA. }
\end{aligned}
$$

WYOMING CHAPTER SIERRA CLUB

Geothermal:Jay, 18May79 p4:
n fact, it is highly unlikely that the IPGA could yield as much energy as The Geysers, and the risk CONCLUSION:

This dES is an impressive example of the accumulation tables, all printed nicely on glossy paper, but lacking in the basic data needed to address the
concerns raised by the proposed actions.

Sierra Club recommends that a new Alternative, of further research without leasing, be studied in a new E.S
which omits the pretty pictures and includes the needed factual data.

Thank you for the opportunity to comment. Please send
me a copy of the new version of the E.S., and notice
of any decision planned by the USFS/BLM on this
issue. is sue.

Sincerelv.
ther
Philip M. Hocker, Chairman, Wyoming Chapter
for: The Sierra Club
for. The Sierra Club
and, for: Mr. Howie Wolke, Wyoming Representative
Friends of the Earth.
cc. National Parks \& Conservation Association
Review of Draft Environmental Statement for
Island Park Geothermal Area Targhee National Forest,
General Corments
The geothermal resources and potentials for development in the IPGA are essentially unknown at the present. For that reason, partially, the
draft EIS lacks the detail required for an in-depth and comprehensive evaluation of potential impacts adverse to present fish, wildlife, and habitat values. The section concerning potential impacts to the various complete narrative description of impacts. Presently, it is difficult
 tion of impacts is too general and sometimes too vague.
Formal consulation for threatened or endangered species should be reinitiated as testing and development become site specific, beciause the
present biologicial opinion addresses only the early phases or general effects of resource development.
Specific Comments
Summary, page iiii, item III. Environmental effects - Under the heading, classify as effects or impacts on the natural environment. The list
Increased employment relative to the extent of discovery and
development; development;
Additional energy for electricity, space heating and other industrial/ agricultural uses;
Royalty payments and rent to Federal Government;
Increased tax base for effected counties; and
Social and economic stress from increased population.

430184
THE WILDLIFE SOCIETY
May 18, 1979

$$
\begin{aligned}
& \text { Mr. David M. Jay } \\
& \text { Forest Supervisor } \\
& \text { Targhee National Forest } \\
& 420 \text { N. Bridge Street } \\
& \text { St. Anthony, Idaho } 83445
\end{aligned}
$$

Jay,

> NATIONAL HEADQUARTERS SUITE SI76. S900 WIICCOSSIN AVE. N.W. WASHINGTON. .C.C. 20016
Mr.
Dean
Dear Dean Carrier, President of the Idaho Chapter, The Wildlife Society asked the committee listed below to review the Draft Environmental Statement of the Island Park Geothermal Area. Comments on this Draft are enclosed.
I trust our comments will be helpful and fully considered as you prepare the final E.I.S. Thank you for the opportunity to review this document.
 Review Committee:
Joe Rose
Roy Heber
Roy Heberger
Joyce Gebhardt James Gore
Enclosure
THE WILDLIFE SOCIETY
The maps in the map pack show all the major flowing waters in the IPGA. All Class I streams were given "no lease" protection, and site-specific impacts to all streams will be evaluated in depth when the lessee submits a plan of operation.
2. No. snowmelt, there is no well defined network of surface waters.
4. Changes were made in the text.
Θ
 discussion of site-specific impacts and general courses is germane to a discussion of site-specific impacts and general areas which should be
classified as "no lease" areas. Several of the streams listed are
Class I Streams (Ref: 1978 Stream Evaluation Map. State of Idaho).

Page 6, Paragraph 4, 1 ine 2 and picture caption page 7 . An apparent
contradiction exists between the text and the picture caption: "In some cases a drill rig...." vs "... large drill rigs are used...." Are larger drill rigs used frequently or infrequently? Page 10, Landtypes and soils, Paragraph 1, 1 ines 5-6. "... no surface water network is found in this area.."
(3) To where, specifically in the IPGA does this statement The last two sentences on this page are the same. $\frac{\text { Pictures throughout the dEESS }}{\text { Consistency is lacking. }}$ - some have captions, others do not.
$\frac{\text { Page 22, Paragraph } 4 \text {, last } 1 \text { ine, and Map } 4 \text { - If a substantial geothermal }}{\text { resource is located near an area }}$ resource, is lecated near an area where se sismic disturbances are highly
probable, evental development whould include careful evaluation of
constren construction with seismicity in mind.
$\frac{\text { Page } 31, \text { last paragraph }}{\text { appears small. The sample size for measurement of turbidity }}$

\odot

 nutrient to plant life. If nitrogen becomes limiting before phosphorous,then nitrogen fixing blue-green may appear. Certain blue-green algae
are unique to oilgotrophic waters and are not indicators of enrichment.
Page 33 , Paragraph 5 , last line. Although pesticide or herbicide residues
were not detected in select streams in the IPGA, residues would very
likely be detectible in aquatic organisms known for their ability to
concentrate toxic substances. $\dot{\sim}$
5. Suggestion incorporated.
5. Suggestion incorporated

Suggestion incorporated.

 ω
 N

Page 42 , Paragraph 1, lines $1-2$ - Wildife communities do not "...result
from ${ }^{\prime \prime}$ vegetation patterns. They may be distributed relative to
vegetative patterns and other factors.
Vegetative patterns (not "designs") in IPGA do not appear homogeneous. They are very likely heterogeneous as are most patterns of floral and
faunal distribution.

$\frac{\text { Page 44, Paragraph 1, line } 1}{\text { "adaptability." }}$ - Insert "behavioral" before the word

$\frac{\text { Page } 45 \text {, Table } 16}{\text { word "harvest." }}$ - We suggest the work "known" be inserted above the
Page 55, Paragraph 4, line 2 - The phrase "...but none nested..." re: 5 nesting was observed or reported..." The IPGA is a vast area, and falcon distribution is very likely super-dispersed.
\odot

Page 55 , Paragraph 5 - The southern and northern races of bald eagles
are no longer separated on the federal list of threatened and endangered
species. The word "Northern" should be omitted from the reference to
bald eagle.
Page 59, Paragraph 2, line 1 - Insert the word "major" before the word
streams." Page 55 , Paragraph 5 - The southern and northern races of bald eagles
are no longer separated on the federal list of threatened and endangered
species. The word "Northern" should be omitted from the reference to
bald eagle.
Page 59 , Paragraph 2, line 1 - Insert the word "major" before the word
"streams." Page 55 , Paragraph 5 - The southern and northern races of bald eagles
are no longer separated on the federal list of threatened and endangered
species. The word "Northern" should be omitted from the reference to
bald eagle.
Page 59 , Paragraph 2, line 1 - Insert the word "major" before the word
"streams."
$\frac{\text { Page } 60 \text { text and Table } 20 \text { - The methodology for sampling benthic macro- }}{\text { invertebrates in select flowing waters of }}$ invertebrates in select flowing waters of the IPGA is not clearly
stated. Methodology, sampling, design, and degree of macroinvertebrate identification are important when diversity indices or a treatment/
control approach are used. Examples follow:

1. A treatment/control sampling design requires that upstream and A treatment/control sampling design requires that upstream and
downstream stations are similar with respect to substrate, flow, temperature, morphometry, enrichment, and percent shading.
2. Sample size should be adequate to detect change or difference and
the
The kind of diversity index calcaluted should be so named in the
text, and actual diversity index values should be included in
Computations of aiversity indices are strongly inflenced by the
Computations of diversity indices are strongly influenced by the
degree of effort that goes into the identification of benthic macroinvertebrates. Some indication of taxonomic levels to which
organisms were identified should be included in the text, and tabular data on their estimated densities should be included in

$$
\text { Table } 20 \text { or another table. }
$$ should be indicated in the text. text, and

Table 20.
4.
THE WILDLIFE SOCIETY
8. Specific details in methodology, sampling, identification,
and actual values are in the report from the USFS Aquatic
Ecosystems lab on file with the Targhee National Forest.
9. Suggestion incorporated.
10. This information is within the report referenced at the end
of page 74 of the draft EIS.

0

5. The subjective criteria used to determine the abritrary classi-
fications of excellent, good, and fair, with respect to evaluating
calculated diversity indices, should be clearly stated in the text.
6. Actual values of diversity indices should be used in Table 20 .
7. Actual biomass determinations should be used in Table 20 .
Page 67 -Transportation - Posted road closures will require enforcement
in order to be effective.
Page 72 , Table 28 - Units (i.e. number of persons) should be inserted at
the top of the table or in the table caption (eg. See Table 29).
Page 74 - Public Issues and Attitudes - The sample size of interviewees
needs to be more clearly stated. Presently it is unclear as to whether
the 11 people were the interviewers or interviewees. The value of an
"estimated response" is unclear because information about the panel of
"5 knowledgeable people" who estimated theoretical responses is lacking.
The type of information needed about the panel members should include
the interest groups represented (public, private, professional, lay,
etc.) and personal profiles.
Pages 77 to p6 - Alternatives While alternative l would be least Pages 77 to 86 - Alternatives - While alternative 1 would be least
damaging to habitat and the biota of the IPGA, we concur that implemen-
tation of exploration and development on private lands would likely
occur, resulting in less efficient resource use than if development
were to occur on public lands. Alternative 6 is as unrealistic as
alternative 1.

While alternative 2 provides a buffer strip along both side of Henrys' Fork of the Snake River, portions of other high quality streams are not
so protected. Examples include Buffalo River, Moose Creek, Madison River, Warm River, Robinson Creek, and Snow Creek. Under this alternative the areas where leasing for geothermal exploration and develop-
ment would be allowed, overlap with habitat of the grizzly bear (Moose

With these riparian and wildlife habitat overlaps in mind, we reviewed proposed alternative 3 . This alternative took into consideration
THE WILDLIFE SOCIETY
11. Suggestions were incorporated into alternative 7.

[^15]11. Suggestions were incorporated into alternative 7.

E

However, we suggest another alternative which combines attributes of
proposed alternatives 2 and 3 with fish, wild life, habitat, and visual proposed alternatives 2 and 3 with fish, wildlife, habitat, and vis resource values referred to earlier in the text of the DEIS. Our
suggested alternative listed below, would accomplish the following

1. Retention of the wide buffer strip along Henrys' Fork;
2. Deferred activity along the Madison River, and portions of Snow Creek and the Robinson River.
3. Protection of additional grizzly habitat in northeastern and
4. Protection or deferment of activity in habitat used by elk, moose, trumpeter swan, sandhill crane, and sage grouse;
5. Deferred activity on deer and elk migration routes in western and
southeastern portions of the IPGA;
6. Retention of areas of high visual quality; and

Prevention or determent of activity on several areas with high
probability for geologic hazards.
(c)

$$
\begin{aligned}
& \text { grizzly bear are known to occur in the IPGA. However, the Forest Service } \\
& \text { has consulted only on the grizzly bear under Section } 7 \text { of the Endangered } \\
& \text { Species Act of } 1973 \text {. Section } 402.04 \text { (a) (1) of the Interagency Cooperation } \\
& \text { Regulations (} 50 \text { CFR } 402 / 43 \text { FR } 870 \text {) states that "it is the responsibility } \\
& \text { of each Federal agency to review its activities or programs and to identify } \\
& \text { any such activity or program that may affect listed species or their } \\
& \text { habitat." If a "may affect" determination is made, formal consultation } \\
& \text { should be initiated. If a "nc affect" determination is made, no consul- } \\
& \text { tation is required unless requested by the Fish and Wildlife Service. } \\
& \text { The DEIS does not make a statement indicating that a may affect or no } \\
& \text { effect determination has been made by the Forest Service for the listed } \\
& \text { species. The Forest Service determination should be documented in the } \\
& \text { DEIS with a presentation of the data and rationale used to support the } \\
& \text { may affect or no effect decision. It is our understanding that the } \\
& \text { Forest Service has determined that the bald eagle, peregrine falcon, and } \\
& \text { gray wolf will not be affected based on the Forest Service's decision not } \\
& \text { to lease lands in the IPGA that would lead to impacts on these species. }
\end{aligned}
$$

THE WILDLIFE SOCIETY
13. In all alternatives except number six, no lands vital to the existence of these species will be leased. In essence, a "no effect" determination has been made. In addition, during the review of plans of operation, full consideration will be given to threatened and endangered species and their
 or will occur, formal consultation will be initiated.
14. Those threats are summarized on pages 97 and 99 , of the draft EIS.

(๗)

If this statement or a similar one cannot be made in the DEIS or infor-
mation exists which indicates that additional endangered or threatened mation exists which indicates that additional endangered or threatened
species may be affected, formal consultation should be initiated.

The bald eagle and peregrine falcon may be adversely impacted by toxic effluents if a blow-out affected the feeding areas. The geothermal
resource is of the "hot water" nature, which has the potential to chemically or thermally pollute the watershed in the event of a blow-
 sitive species
this section.

The above adverse effects may also apply to the trumpeter swan, a sensitive resident of the IPGA. Potential impacts to this species
should be identified clearly.

Page 112, Table 36 - "Endangered" is twice misspelled. This should be
WILDLIFE MANAGEMENT INSTITUTE

(N) A concise explanation of the environmental numbers presented from Table 36
on is needed. It takes some time for a reviewer to determine that the lowest
numerical value is the least damaging to the environment.
On page 119 , Test Drilling, 6th paragraph, the term "Wherever feasible"
is used in snag coordination. We suggest that this language be eliminated from
the report, because it is an escape clause to allow people to avoid doing what
should be done in land management.
These remarks have been coordinated with William B. Morse, the Institute's
Western Representative.
DAP:lbb
P.O. Box 1708

Idaho Falls, Idaho 83401
 Island Park Geothermal DEIS

Idaho Environmental Council

Javid :i. Jay, "upervisor 'Targhee National Forest

420 i. .iridge ct.
t. Antiony, Idaho
In Dear :ir. Jay;

I apologize for being a couple days late with these conments, but hope that
you vill still consider them. The Island Park Geothernal Area (IPCA) includes same highly valuable wildlife habitat. Of the vertebrates, the DEII indicates the presence of 179 birds,
61 marrals, 8 reptiles, and 5 amphibians (p li2). Among these are 3 Endangered species (wolf, peregrine falcon, and bald eagle) and 1 Threatened species

Come areas of the IPGA are particularly valuable for wildilife; eg., "The seas
Fass and "inegar Hole areas have tighly productive forest understories, open Pass and "inegar Hole areas have highly productive forest understories, open
wet meadows, bogs, swamps and potholes." (p 55).
is indicated on page 109 under "Adyerse Inpacts which Cannot be Avoided", the inpacts of coethernal energy development on wildilife, fisheries, and water
quality are not trivial.
intermative 3 considered in the DEIS would prohibit leasing on some of the arens, and would defer some of the areas, where geothernal development would
be likely to damage surface resources, especially wild ife. The rest of the IPGA, some 207,000 acres, woulc be open for leasing.
 "deferred" category and instead just sinply adopt "no leasing" in those areas.
"Thile we do not lnow a great deal about the geothermal resource's potential

cc: iennis Bairci, IN "resi itent
$\underset{\text { PAODUCTION }}{\text { And }}$ COMPANY

Dear Mr. Jay:

420. N. Bridge St. 8345
Mr. David M. Jay
Forest Supervisor
Targhee National Forest
In reference to your letter of March 21, 1979, I feel the following
should be considered in reference to items one and two:

1. Special consideration should be given to specific areas which mal development. This would be a more practical approach as it would eliminate acreage that would not require any consideration
2. Many of the potential impacts referenced in the report (pages
$88-108$) can be reduced or completely mitigated with reponsible state-of-the-art applications of exploration and development decisions are to be made.
I had the pleasure of participating in the drafting of the Island
Park Geothermal Area Environmental Statement as a member of the Chevron Resources Company. I am now employed by the Anadarko Production Company
and would appreciate being informed of any developments or decisions made concerning the Island Park Area.

Mr. David Jay
$\stackrel{1}{1}$
drilling to establish the nature and extent of this resource with the
results of these tests as public information.
At the same time we have advocated non-competitive leasing and controlled
development to reduce speculation and monopolization. development to reduce speculation and monopolization. In summary, we believe the Draft Statement to be an excellent document
but reflecting a reluctance to change even in the face of an energy crisis. We believe a list of the lease applicants with a comparison of different
options on leasing, test drilling, and development would be more beneficial options on leasing, test drilling, and development would be more beneficial ments of impacts that will not be known until the resource is explored. Sincerely,
fall river rural electric Calvin H. Wickham
General Manager
$\mathrm{CHW} / \mathrm{rs}$
cc: Senator Frank Church
Senator James McClure
Representative George Hansen
Representative Steve Symms Representative Steve Symms

$$
\begin{aligned}
& \begin{array}{l}
\text { David M. Jay } \\
\text { Forest Supervisor } \\
\text { Targhee National Forest }
\end{array}
\end{aligned}
$$

> Dear Mr. Jay;
> $\begin{aligned} & \text { Thank you for sending us a copy of the Draft Environmental Statement } \\ & \text { for leasing and developaent of geothermal resources within the Island } \\ & \text { Park Geothermal Area. Your proposal is of great interest to us and we } \\ & \text { have made a careful study of the material in this draft. } \\ & \text { We have deaided on three of the alternatives and will list them in order } \\ & \text { of preference. Our choices are as follows: }\end{aligned}$ lst choice is AYternative \# 3 2nd choice is Alternative \# 5
> 3rd choice is Alternative \#2
> $\begin{aligned} & \text { With the apparent threat of energy suppli in our country we think it } \\ & \text { ise to do some exploration as suggested in } \# 3 \text { but hold off on nore }\end{aligned}$ wise to do some exploration as suggested in \# 3 but hold off on more
> happen'with some part of the whole thing.
> $\begin{aligned} & \text { If we teally do have an energy source and it can be utilized to the } \\ & \text { benefit of the public - fine - but proceed with some caution. We believe }\end{aligned}$ in multi-use of all our public lands with caution and precaution being
> We will be interested in follawing your dectsions in this materp
> sincerely, Blaine Flumber-
> P. Blaine Hawkes

 1. Herbicides will most likely be used on and around
roads, drill pads, sump, buildings, etc. Existing vegeta-
tion in most cases will be cleared by means other than
chemicals. On these disturbed lands, unwanted
vegetation (high brush, noxious weeds, etc.) will most
likely be controlled with Federal and State approved
herbicides. The County Extension Agent will be con-
sulted in the coordination process.

COOPERATIVE EXTENSION SERVICE
3ne University of ldaho College of Agriculture
in Cooperation with the U.S. Department of Agriculture
P. O. Box 40444
Pocatello, 1083201 April 11, 1979

1. Geothermometer studies have been conducted at only
one thermal spring near the IPGA. The US Geological
Survey's opinion is that the calculated geother-
mometers for this area are probably unreliable (USGS
Circular 790, 1978, page 73.)
2. No discrepancy was intended in the draft EIS. The Island
Park caldera area, excluding the West Yellowstone, Mon-
tana area, is, when compared with areas in Yellowstone
National Park and near Hebgen Lake, Montana, relatively
aseismic. The West Yellowstone, Montana area,
however, is recognized as a seismically active area.

©

$6 \angle 6 L$ 'GL GEW

P. 52-53 The duck harvest predictions do not seem consistent.

100-101 Many of these impacts are speculative at best. Geochemical contaminants that would impact on the fisheries

흔
0

The width of strips along stream courses is based upon geology, vegetation, landtypes, fisheries, and other resource considerations.

These concerns will be dealt with in depth when reviewing plans of operation on a site-specific basis. See Section VIII.
The width of strips along stream courses is based upon
\rightarrow

Dale R.Christiansen, Director
R. P. Peterson. Deputy Director John V. Evans, Governor

Apri1 16, 1979
Dear Mr. Jay:
Upon preliminary review of the proposed Environmental Statement for
a geothermal area in Island Park, the following comments are offered.
 We would suggest that the alternatives show a no leasing opportunity
for geothermal drilling along the stretch of the Henry's Fork River
from its outlet at Henry's Lake downstream to Warm River. We would from its outlet at Henry's Lake downstream to Warm River. We would
to two miles wide. We would suggest that the Big Springs corridor,
For Alternative \#4, we would recommend a lease with no service occupancy restrictions shown for all segments that are of high visual quality as above, al so.

Of particular interest to us is the possibility of thermal pollution into these quality trout streams. Because of this concern, we recommend
that if there is any possibility at all of a thermal heated ground that if there is any possibility at all of a thermal heated ground
water seepage into the springs that feed the Henry's Fork, Fall River and Warm River, that these areas, for an appropriate distance
from the river, not be available for leasing.

We thank you for the opportunity to review this draft copy.
©
E.C.I.P.D.A.
east-Central idaho planning and development association, inc. CENTER • REXBURG, IDAHO 83440
P.O. BOX $330 \bullet 356-4524$
This is a staff review of the Draft Enviromental Statment on the Executive Committee. They have decided to make an official preface to our specific comments and questions on the Draft some clarification may be useful. Within its ability East-Central Idaho Planning and Development Association promotes that economic
activity which it consideres beneficial to residents of the counties it serves. The association supports development of the existing economy and lifestyles of this area. The Association existing economy and the management program you propose in your draft ES. sincerely,

DARRELLL L. BREMNER
Economic Planner

Member Counties

1. No level of development was indicated in the draft. The
unknown quantity or quality of the resource prohibits this evaluation.
"Significant" is deleted from the final geothermal EIS.
 not within the scope of the EIS. The lack of knowledge of the geothermal resource prevents assessment of the magnitude of development. Page 8 and 9 of the draft EIS discussed the uses of geothermal resources. Non-electrical application of a geothermal resource is considered impractical in the IPGA.

This review of the Island Park Geothermal Area (IPGA) Draft EIS covers five
major concerns and several minor questions.
The Draft included the most significant alternatives. The evaluation criteria
There was too little quantification of impacts. The Draft states at length With quantified or qualified impacts the Oraft and its reviewers could have concentrated on the major issues and impacts as suggested by the recently revised Council on Environmental Quality regulations. If you are operating
from too little data and another EIS will be done after gradient test wells The tone of the first 117 pages is that all land in the IPGA will be developed, Yet your Appendixes on Employment and Social impacts look at development of
about 200 acres from the total 144,000 in the Island Park Geothermal Area (IPGA). Page 7 states, "Development of a large geothermal field involves clearing and grading for access roads, well drilling pads and pipelines.
Well pads are from one-half to two acres. Between five and 25 wells are usually required... Pipeline clearings need only be wide enough to accomodate equipment needed for their construction and fire safety." 25 two acre well possible, 100 acres for a power plant seems reasonable. Appendixes G and H (pages 144 and 150) use two plants to predict development impact. Thus the
total federal land use from geothermal development is about 200 acres. If all land in the two known Geothermal Resource Areas were developed that would be 15% of the total IPGA area. Is this more likely than development of only two plants? Map number 1 (at least) should show the location of
the Island Park Known Geothermal Resource Area.

There is a geological structure map but no indication that any structures There is a geological structure map but no indication that any structures
are more likely to have geothermal potential than are others. Such indication
if possible would be useful in evaluating alternatives or quantifying impacts.

(N)

It is stated on page 1 of the Draft that, "the social structure and economies
of several communities could be significantly effected." In table 36 page 112 socio-economic effects receive one of the lowest ratings of any resouce Appendixes G, H, I, show minor impacts. What justifies the page 1 statement?

The EIS is a predictive decision making tool. In this era of rising energy
costs it seems that this EIS should weigh the state of geothermal technology, market factors, and energy costs to predict how much and how rapidly the IPGA been included, as would be indicated by the language of the National Environ- heat? Page 9 lists the uses of such heat. Page 152 states that heat is head develops, most will occur within the IPGA. If such industry could be developed it would add more economic benefits than electrical generation
alone.

There are some socio-economic benefits of geothermal development. These are listed in the Effects of Implementation section.
 -lod \forall uollejndod uo łuәudojəләр łuejd ıәмоd paseyd to
 pendix. The total output, which includes phasing, is on file at the Targhee National Forest Supervisor's Office, St. Anthony, Idaho.
-eןndod moı padoןəләр әдәм suo!̣әә!oגd uo!̣еןndod әчц tion and Employment Forecast - State of Idaho, July,
 creases due to geothermal development.
8. Since the magnitude of development is not known change in per capita income created by geothermal development cannot be determined. A comparison to existing per capita incomes is presented in the Affected Environment section.
9. This may be a deficiency. These figures were quoted directly from Population and Employment Forecast State of Idaho, July, 1976, p.p. 254-260. More recent data

 Employment Forecast - State of Idaho - Series 2 -
 forecast from the July 1978 refinement has replaced table 28 inthe final EIS (Affected Environment section).
10. Criteria for no leasing is explained in the discussion of each alternative.

The evaluators considered a combination of the three.
 the evaluation.

\qquad \qquad \qquad Does the population projection (page 71) include the impact of geothermal development? If not, the geothermal related population should be, shown in the same table rather than in a separate appendix. The draft shows past incomes on page 73 . I feel it should also project incomes with the impact of geothermal development included. Both existing and projected incomes should be compared to a benchmark preferably national per capita income in the same periods. Alternatives Considered Chapter Evaluation Chapter VI (9)

E.C.I.P.D.A.
13. Table 34 in the draft lists the probable unavoidable adverse impacts. They are no longer in their own chapter.
14. The carrying capacity on lands within and outside the IPGA cannot be qualified at this time. It can be reasonably uo suo!t!

 situations, etc.

 proposed action and the exact habitat affected.
 occupancy or deferred leasing.
16. This is corrected in the final EIS.

18.

Why weren't unavoidable adverse impacts more prominently displayed? 13 Why weren t unavoidable adverse impacts more prominently displayed?

If it is unavoidable that some animals will leave the IPGA during evelopment, is ther adequate carrying capacity for them outs ide the
PGA? Would the animals be less likely to be driven out of the IPGA f specified areas were explored or developed in a designed pattern? Revegetation of drilling sites is discussed on page 150 under General Construction which applies to all phases. It says revegetation will fet page 109 lists an unavoidable adverse impact on timber as "(retard growth) unless fertilizer is applied." Since fertilizer will be

In appendix I, development of Colstrip and the IPGA was compared.
In appendix I, development of Colstrip and the IPGA was compared. resented by many environmentalists as having severe adverse environmental effects. (2) It was not demonstrated that the magnitude of impacts
will be comparable. For instance, Colstrip's population increased rom 200 to 3000 in three years or 1500%. The IPGA population will go population will decline

Mitigation Chapter XI

Θ

 Would provisions for no surface occupancy protect habitat and other surface resource values as defined on page 80? The Draft suggests they be protected by deferred development. We would like to see more discussion of reinjection of geothermal water
as a mitigation tool, primarily its potential in the different development
phases. The term general construction is referenced several times in
Chapter VII. It should be made easier to find in the text. Chapter VII. It should be made easier to find in the text.
State Of Idaho
DIVISION OF BUDGET, POLICY PLANNING AND COORDINATION EXECUTIVE OFFICE OF THE GOVERNOR
(6)

In THE REVIEW COMMENTS ATTACHED, ALTERNATIIES 3 \& 5 ARE MOST FREQUENTLY CITED AS OFFERING THE MOST COMPREHENSIVE \& IMMEDIATE PROPOSED MEASURES FOR DEALING ENERGY, AND THE DEPARTMENTS OF FISH \& GAME, WATER RESOURCES, HEALTH \& WELFAREDIVISION OF ENVIRONMENT AND AGRICULTURE HAVE FURTHER DETAIL
CERN IN THE BRAFT, AS HAS THE BUREAU OF NATURAL RESOURCES.

[^16]CC:PCUNNINGHAM;NATRESBUR

Encls. Idaho Water Quality Standards and

Table 33, p. 88 and following. This table of impacts of geo-
thermal leasing should include an additional column listing
the preventive or mitigative practices which should be
applied to minimize or abate the impact of each activity.
This should include reference to specific laws or rules
which govern the activity.
Chapter VII, p. 118 and following. This Chapter should be
revised to identify specific laws which apply to the parti-
cular activity. Mitigative measures should be incorporated
into Table 33 as indicated above. This information will
assist local managers in providing adequate protection of
resources in the Island Park KGRA.
\[

$$
\begin{aligned}
& \text { Sincergly, } \\
& \text { Aree W. Stokes, Ph. D } \\
& \text { Administrator }
\end{aligned}
$$
\] $\stackrel{\infty}{\stackrel{0}{n}} \frac{n}{3}$

DEPARTMENT OF HEALTH \quad DIVISION OF ENVIRONMENT SFatenouse AND WELFARE Boise, Idaho 83720
 May 11, 1979

Mr. David M. Jay
Forest Supervisor
Targhee National Forest
St. Anthony, Idaho 83445
Dear Mr. Jay:
The Division of Environment, Department of Health and Welfare Geothermal Area.
To comply with your request for standards which apply in
deciding which alternative to select we wish to call your atten-
tion to the following:
tion to the following:

1. Rules and Regulations For The Control of Air Pollution
in Idaho. Permits to operate issued under authority
Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ emissions to -
15 or 20 ppm (parts per million).
(b) Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ emission limitation of 500 .
ppm (on the basis of report - probably not necessary)
The quantity of emissions appears to be insignificant and
a PSD (Prevention of Significant Deterioration) review
will probably not be necessary. However, should the
emission of particulates or 50_{2} increase, such a review may be required.

$$
\begin{aligned}
& \text { There are being considered regulations on fugitive dust, } \\
& \text { which may be in effect by the time development is begun. } \\
& \text { This regulation would require measuring dust upwind and } \\
& \text { downwind of the source with an allowable limit specified. } \\
& \text { Parties interested in developing the area should inquire } \\
& \text { as to the status of the new fugitive dust regulation. } \\
& \text { A National Pollutant Discharge Elimination System (NPDES) } \\
& \text { permit administered by the Environmental Protection Agency } \\
& \text { (E.P.A.) would be required for each discharge. These } \\
& \text { discharges must be in compliance with Idaho's Water Quality } \\
& \text { Standards \&, Wastewater Treatment Requirements. }
\end{aligned}
$$

during each phase of development.

$$
\text { May } 11,1979
$$

We also wish to submit the following specific comments.
Alternative 3 appears to be the most reasonablealternative for the Island Park KGRA. The selection of the alternative is made since we are dealing with a relatively new resource whose environmental impacts are not fully known. I would encourage that any development within the guidelines of Alternative 3 make use of existing transportation networks and thereby minimizing adverse environmental impacts. Finally, I believe that any development of geothermal resources should not be allowed in the area adjoining Harriman State Park or in the more sensitive fisheries and wildife habitats such as Buffalo River, Moose Creek or the Henrys Fork.
Mate of dathe
IMISION 0

DATE: APRIL 5, 1979

appopriate box(es) return this memb with your comments
to the State Clearinghouse No LATER Thin_5/15/73 no Comment

David M. Jay
Apri1 5, 1979
Page 2
In general, by allowing exploration drilling occupancy in areas which exploration results can be achieved without conflict.
of the five leasing scenarios proposed in the Draft EIS, option five is the most realistic leasing procedure. By expanding the definition of surface reas, leasing option five will be a very acceptable alternative. Sincerely,
David McClain
Geothermal Resource Coordinator DMc: da
KIRK HALL
Director

OFFICE OF ENERGY

April 5, 1979
Forest Supervisor
St. Anthony, Idaho 83445
Dear Mr. Jay:
After reviewing the Draft Environmental Impact Statement for Geothermal Leasing and Development in Island Park, I would like to make the following suggestions and recommendations:
1) The classification of areas for lease with no surface occupancy is
exploration. Directional drilling is not realistic. These areas

2) Leasing lands with surface occupancy restrictions is a practical, exploration, and gradient test holes from existing roads is too restrictive. Exploration drilling should be allowed from existing
if present logning areas are used. Such exploration areas disturbance be rehabilitated as part of the reforestation process. Clear cut areas and logging spur roads provide excellent sites for locating exploration
3) Any further exploration beyond the initial well or production drilling
4) Surface occupancy restrictions should not deter exploration activities
5) Surface occupancy restrictions should not deter exploration activities
unless said activities conflict with higher value uses.

STATE OF WYOMING DEPARTMENT OF ENVIRONMENTAL
QUALITY, AIR QUALITY DIVISION
(MEMO FROM WOODY RUSSELL)
1. Details of the 1977 and 1978 sampling work are on file in the Supervisor's Office of the Targhee National Forest, St. Anthony, Idaho.
Existing laws require air quality monitoring during early phases of development including exploration and testing. ~
Θ
©
1FMOKヘNDUN
obert E. Sundin, Director, Mepartment of Finvirunatatal Quality THROUCH: Rathdoliph Wood, Aelministritor, Air Quality Division W FROM: Whody Russell, District lingineer, Nir (Gality Division SUbiEGT: Review of Draft EIS of the Island lark ceothermal Area DATE: Nay 9, 1979
Coments regarding this draft EIS will concern two areas: (1) existing, ambient
air quality and (2) petential impact on the abont quality resulting, from leasing, exploration, testing, and production.
In regards to the existinn air quality and as stated in the FIS, the U.S.
Geological Survey conducted air quality surveys in the fall of 1977 and the
sumaer of 1978 . A discussion of the air quality and a table sumatry of the data collected is presented on pages 15-16 of said statement. However, this section on air quality is lacking in coiail. One is unable to ascertain the people, etc.) monitored. The concentrations of the pollutants monito:ed are
sumnarized for the two survey periods but clata specific to eac! site is not sumnarized for the two survey periods but clata specific to eact site is not
available. The variation in pollutant concentrations between survey aziods was not explained. The potential effects of leasing, exploration, testing, and development of
geothemal sites on the ambient air quality are listed on page 9 l of the
statement. In sunmary it statea that short term and/or long term degiadation statement. In sumazy it statea that short term and/ur long term descadation
of the air quality vill occur depending on the activity at the tine. No The Division of Air Quality believes that a detailed description of tise existing air quality be ircluded in the IIS and that mans to monitor the either by the leasee or leasor.

Oavid M. Jay
Fnrest Superviso

file search was conducted by the Office of the Wyoming State Arch-
ologist for the Wyoming portion of the prooosed Island Park Geothermal Area. Our records show no comprenensive cultural resource survey 48TF905, 48TE906, 48TE907, and 48TE908. These sites are located in state, we therefore recormend a complete cultural inventory of the tate, we therefore recormend a complete cultural inventory of the
sland Park Geothermal Area in Wyoming by a qualified archeologist.

$$
\begin{aligned}
& \sum_{2}^{2} \\
& \begin{array}{l}
\text { Thomas K. Larson } \\
\text { Associate State Archeologist }
\end{array}
\end{aligned}
$$

14/7X1

$2 \cup 19$
$2 y^{2}$

Thank you for the omortunity to comment on this document.
ser
 a buffer around the Falls River and defers leasing in Wyoming, would be accepta-
ble from the standpoint of effects on aquatic wildife, but needs modification
 bear habitat. Leasing in Wyoming in areas shown in Alternative
adversely impact elk, moose, ruffed grouse, and blue grouse.

 as a mitigation method.

Thank you for the opportunity to review this DES in the interest of the
wildife resource. If we may be of further assistance, do not hesitate to con-
tact us. tact us.

WDD/HBM/mlr
cc: Game Div.

INJWLIGYdag hSIa div awvo 9niwoxM.

WYOMING GAME AND FISH DEPARTMENT

 group of hunted animals because the source document
 demand (hunter days) are recreational benefits and can be included under recreation.

Game and Fish Department CHEYENNE. WYOMING 82002
EARLM. THOMAS

May 15, 1979 Mr. David M. Jay, Forest Supervisor

Dear Mr. Jay:
A review of the DES for Island Park Geothermal Area development indicates
that comments we offered on the preliminary draft document were considered in drafting this document. The subject DES is considerably better than most we of the alternatives considered, foregoing selection of a preferred alternative is easy to read and understand. The wildlife matrix format allowed presentation of a large amount of data in a small space and helped cut down on the volume thorough, concise, and easily understood.

Geotherwal Area

Street
daho 83445
I

We question the weighting of environmental effects if only the Wyoming
portion of the Targhee National Forest were considered, but for the entire
geothermal area they are probably correct. on Forest Service lands unless the areas used are completely cleaned up and
replanted after use. Page 95 . There should be no camping or housing of exploration personnel

For the Wyoming portion of the DES region, Alternative 1 , "no leasing"
would be least detrimental to wildife. Alternatives 2 , 3 , and 5 , in that order
are next best for wildlife. Considering the distribution of grizzly bear shown
For the Wyoming portion of the DES region Alternative 1 "no leasing"

> Specific Comments:

> (1)
> Page 37. Why is hunting not included with recreation? Page
Page 94.

> Page 94. Use of explosives in exploration may cause adverse impacts to
recreation by causing elk to move from open hunting areas to Yellowstone Park, if exploration occurs too near hunting season. portion of the Targhee National Forest were considered, but for the entire
geothermal area they are probably correct. 18
 Dear Mr. Jay:
 Targhee National 420 N. Bridge Street
St. Anthony, Idaho 83445
The draft environmental statement of the Island Park
Geothermal Area has been reviewed by our interested state agencies. Copies of agency comments are enclosed for your
consideration. The close proximity of the Island park Area
consideration. The close proximity of the Island Park Area to
Yellowstone and Grand Teton National parks and adjacent
wilderness areas makes the potential development of geothermal
wilderness areas makes the potential development of geothermal
resources in the area an extremely sensitive issue. We encourage
full consideration of the known surface resource values, and
reach
full consideration of the known surface resource values, and
recomend complete inventories on a case-by-case basis for each
leasing decision. Such inventories would insure that resource
values which are currently unknown or ill-defined would be
documented and potential impacts could then be assessed in a
documented and potential impacts could then be assessed in a
timely manner.
Thank you for the opportunity to review and comment on

DH/pct
attachments

wroming
State Engineer's Office
bargett building April 12, 1979 cheyenne. wyoming 82002

wL/11w

[^17]
Dear Mr. Jay:

We have reviewed the draft environmental statement (DES) for Island Park Geothermal Area (IPGA), Targhee National Forest,
Idaho, sent to us on March 2l, 1979. We note that this is
issued as a lead agency statement to cover geothermal leasing
actions of both the Forest Service and this Department and
that staff from several of our bureaus participated in its
preparation. In this regard we have the following principal
discussion of potential impacts on Yellowstone
National Park (YNP) should be amplified,
additional alternatives available to this
Department should be added,
the level of activities expected and the
impacts that would result should be quantified,
and
future National Environmental Policy Act (NEPA)
review points should be clearly identified.
Some of these shortcomings were evidently a failure on our part rather than yours, and of these in preparation of the final statement.

The world's first national park, Yellowstone, was designated Nations Educational, Scientific and Cultural Organization International Biosphere Reserve which recognizes the global value of its natural ecosystems and gene pool. These three
designations for Yellowstone - National Park, World Heritage the area the highest possible recognition of its significance to the world. Any man-caused threat to the integrity of its thermal resources is totally unacceptable, both nationally and outside YNP must recognize its unique value on a world-wide

Although commercial geothermal development in other areas of the world have had profound effects on geyser basins, the New Zealand was totally destroyed as a natural discharge area when the Wairakei geothermal area was developed. Before this of the world. In addition, production from Wairakei also affected another thermal area thought to be independent with no pressure of both systems. As a result, both areas have been destroyed as a national resource and reference line for under-
standing hydrothermal systems. The Beowawa Geysers area of standing hydrothermal systems. The Beowawa Geysers area of Continent in the 1940^{\prime} s and $1950^{\prime} \mathrm{s}$ when geothermal exploration was begun. Wells were drilled and permitted to discharge, but sers had ceased flowing. Similar destruction of the geyser area at Steamboat Springs, Nevada, occurred after geothermal ranked geyser areas, only three including Yellowstone, are
affected by man's activities; and at least three of these major areas and several minor ones have seen the total destruction of their geysers. Thus, the statement must clearly point out that planned, monitored, and controlled, irreversible damage to the The alternatives included in the draft statement appear to be
guided entirely by surface resources and Forest Service man-
agement concerns. Consideration of the mineral or geothermal
resource, the proximity of YNP, and uncertainties as to the
geothermal system in this area lead to other viable alternatives
which we would like discussed. These include leasing only in
the area of the Island Park Caldera, adding a north-south buf-
fer strip at least two miles wide outside the west boundary of
YNP, and deferral of leasing in the IPGA until we have more
information as to the extent of the geothermal resource and
possible relationships to the geothermal regime at YNP.
DEPT. OF THE INTERIOR
2. These concerns have been incorporated into Alternative 7.

This has been corrected in Section V of the FEIS

4. This information has been added to Section V . Additional information as to the geothermal resource could be acquired through reliance on industry tests on private
lands in the area or through Federal research and tests in the area. Finally, a combination of Alternatives 2 and 3 habitat, and visual resource values; this is discussed in more detail in the attached specific comments. These alter-
natives and their environmental impacts should be added to natives and statement.

(0)

[^18][^19]7. This information has been added to Sections III, IV, V, and VII of the FEIS.
©
The statement should include a more complete discussion of
future plans for identification, evaluation, and protection of properties in the area that may be eligible for inclusion in
the National Register, under 36 CFR 800 , as amended (Federal Register, January 30,1979) : There should be further consult36 CFR 800.4 to specify the types of surveys to be done and 36 CFR 800.4 , to specify the types of surveys to be done and
the survey methods to be employed. It would be useful for the Forest Service to have regional predictive surveys conducted prior to leasing, in order to identify the potential for archability for leasing purposes.

In view of the uncertainties and risk to the geothermal system at YNP, this Department will take an extremely cautious pproach on any activities toward geothermal development in proposed and have several additional measures to be included. ment A) for inclusion in the FES. These would be applicable to research or test drilling as well as exploration and development. We obviously will not authorize any geothermal safeguards and evidence that the activities will not jeopardize
the geothermal regime at YNP.
DEPT. OF THE INTERIOR
8. This information has been added.
©
is
referenced as a source of background information as to regula-
tions, procedures, development, and cumulative impacts. The
recent DES for the Navy Coso Geothermal Development Program
(U.S. Navy, l979) provides an excellent summary of geothermal
development methods, impacts, and possible problems.

[^20]The Geological Survey research drill holes Y-7
and Y-8 in the north part of Upper Geyser Basin
will be monitored to point l above, little attention has been given to e Firehole Meadows area, which is located midwa and the IVGA and might contaitor monitoring.
egarding point 3 above, the alternate holes suggested are in ing as the reactivated Y-l in western Upper Basin, suggested in the draft statement; all of these research holes are too springs and geysers to provide reliable monitoring data by themselves.
If commercial geothermal resources should be found to exist in
the IPGA, the suggested strategy aims for early recognition of any declining reservoir pressure that might be propagated eastrather than upward and thus interrupting the natural geyser
 If some pressure communication is demonstrated, the initial system long before a wave of declining pressure can be trans-

 uotionutsuoo Kythsnt of Kuessaoau St yotum 'Kłtntionpoud afeuts

> Additional Stipulations

Monitoring Program

All geothermal fluids extracted and used in the IPGA will be to minimize loss of reservoir pressure.

If extraction of geothermal fluids from the IPGA significantly influences pressures, chloride concentrations, or suspended either until the influences are eliminated or until wells in the area of deferred leasing approximately two miles west of the Park boundary. Sufficient injection in this area propagation of declining reservoir pressures. Because existing data do not provide definitive evidence stone's thermal features and possible thermal waters outside monitoring system that ensures early recognition of possible

> Gauging stations will be established on Boundary Creek, the Bechler River, and selected suitable individual hot springs to monitor discharge, chloride content, temperatures, and total convective thermal output; Little Firehole Meadows will be searched for thermal features suitable for monitoring, and, if deemed appropriate, observations will be initiated there. One or more deep monitoring holes will be drilled stone KGRA), prior to any large-scale production, to depths comparable to any newly discovered reser
voir and preferably into the same rock strata that contain the reservoir. Tentative locations are: Sec. 10, Tl 4 S, R5E (if the discovered field is

OF THE INTERIOR

Limited testing of each newly completed well should be permitted in order to test initial productivity. All liquid effluent from sustained testing of production wells should be pressure decline that could be transmitted eastward. One or more of the early industry-drilled wells. should be withheld from production testing to monitor immediate effects of this
production and reinjection. Wells of low productivity are suitable for such monitoring
f it becomes necessary to drill a tier of injection wells in the deferred-leasing area west of the Yellowstone Park boundary, water from local sources of shallow ground water in addition to be mat of the Park boundary and at lower altitudes Our interest would be to prevent significant eastward propagation of declining pressure; the immediate source of any requi
9. Item III deals with the "Social" as well as the Natural En-
10. The maps in the separate map pack show all the major flowing waters in the IPGA. All Class I streams were given no lease protection and site-specific impacts to all streams will be evaluated in depth if and when a lessee submits a plan of operation.
11. This has been clarified.
12. The discussion of subsidence has been modified.

๑
©
tein
ca-
site-
fied
lass SSETう are Clas
daho). (OчepI
aue
-sวounosวy đว

Θ

 The reference to the Island Park $K G R A$ should be clarified; itdoes not appear on any of the maps. Apparently, it consists
of area(s) where multiple lease applications indicate
competitive interest. Page 22 , paragraph 1 .

The extraction of large quantities of fluid from the subsurtype. Interestingly, The Geysers, which is underlain by a variety of relatively competent lithologic units, has undergone
subsidence due to steam production.
13. No site-specific proposal has been made. These data are and when plans of operation are reviewed.

14. Suggestion incorporated.

(m) If a substantial geothermal resource is located near an area where sion with seismicity in mind.

$$
\text { Page } 25 .
$$

It is stated that the recommended limit for fluoride is $2.4 \mathrm{mg} / 1$
this assertion should be accompanied by the annual average of the maximum daily air temperatures for the project location inasmuch as the maximum contaminant levels for fluoride are Page 31, last paragraph.

©

The sample size for measurement of turbidity appears small.
words should three worm- Animals ane not prim-
The last three words should be deleted. Animals are not primary producers and, as such, do not consume nutrients such as
nitrogen and phosphorous directly. Nitrogen and phosphorous

limiting nutrient to plant life. If nitrogen becomes limiting before phosphorous, then nitrogen fixing blue-green may appear.
Certain blue-green algae are unique to oilgotrophic waters and are not indicators of enrichment.

Page 33 , paragraph 5, last line.

Although pesticide or herbicide residues were not detected in select streams in the IPGA, residues would very likely be centrate toxic substances.

Page 42 , paragraph 1 , lines $1-2$.

Wildife communities do not ". . result from" . . . vegetation patterns. They may be distributed relative to
terns and other factors.

[^21]DEPT. OF THE INTERIOR
15. Suggestion incorporated.
16. Suggestion incorporated.
17. Suggestion incorporated.
Page 44 , paragraph 1 , line 1.
Insert "behavioral" before the word "adaptability."
Page 45, Table 16.
We suggest the word "known" be inserted above the word "harvest."
Page 55, paragraph 4, line 2.
The southern and northern races of bald eagles are no longer
separated on the Federal list of threatened and endangered
species. The word "Northern" should be omitted from the refer-
ence to bald eagle.
Page 59 , paragraph 2, line 1.
Insert the words "major or select" before the word "streams."
Page 60 text and Table 20.
Page 60 .
(2) The phrase somewhat over confident. We suggest ". ". . but no nesting
was observed or reported. The IPGA is a vast area, and
falcon distribution is very likely super-dispersed or binomial.
Page 55 , paragraph 5 .
The southern and northern races of bald eagles are no longer
The methodology for sampling benthic macroinvertebrates in
Methodology, sampling, design, and degree of macroinvertebrate
identification are important when diversity indices or a treat-
ment/control approach are used. Examples follow:

1. A treatment/control sampling design requires that
upstream and downstream stations are similar
morphometry, enrichment, and percent shading.
2. Sample size should be adequate to detect change
or difference and should be indicated in the text
3. The kind of diversity index calculated should be
so named in the text, and actual diversity index so named in the text, and actual diversity index
values should be included in Table 20 .
4. Computations of diversity indices are strongly influenced by the degree of effort that goes into the identification of benthic
DEPT. OF THE INTERIOR
5. Details on methodology, sampling, identification and actual values are in the report from the Aquatic Ecosystem Lab and is on file with the Targhee National Forest.
6. This information is within the report referenced at teh end of the discussion.
vice representative to the EIS.
DEPT. OF THE INTERIOR
have been coordinated with the U.S. Fish and Wildifife Ser-
DEPT. OF THE INTERIOR
7. We recognize this, but were requested by several lease ap-
plicants to let them decide where and where not to accept
leases under this alternative.
8. This EIS is broad in Scope. Specific roads, drill sites, etc. will be reviewed if and when a lessee submits a plan of the effects on threatened and endangered species on a sitespecific basis.

25. Corrected.

-рə!!!pou uәәq seч uo!ssnos!p s!ч1 '9Z
29. Additional reference has been added.
(n) distance that can be economically covered by directional drill-
ing is about one-quarter of a mile. Therefore, the majority of
the no-surface-occupancy leases could not be produced. Page 84 Altennative 5 .

The surface-occupancy restrictions need to be clearly defined. Proposed geothermal operations are environmentally evaluated by the USGS under NEPA.

Page 86 , Alternative 6.

©

The definition of impacts to threatened and endangered species The definition of impacts to threatened and endangered species effects to these species should be presented here.
(2)
(ㅇ) 상
®
(a)
DEPT. OF THE INTERIOR
30. We believe such considerations should be made to protect
and help local communities plan for timely adjustments of facilities, goods and services.
31. Suggestion incorporated.
(2)
©

Page 122.
Under "increased demand for social. . .", responsibilities
are not clear. Except for the lessee providing detailed plans
for development timing and changes in employment, this section is suggestive of other than enforceable mitigation.

Page 123 , paragraph 1.
estriction of injection pressures to safe maximums to prevent
fluids.
As a taxpayer, I resent the very finished, slick paper - color picture,

 don't know how to manage timber to prevent brown forests.

Sincerely, John A. Hafterson Humboldt National Forest 976 Mountain City Highway Elko, Nevada 89801

USDA - OEO
Statement has been added to the final EIS.

1. St
UNITED STATES DEPARTMENT OF AGRICULTURE OFFICE OF THE SECRETARY OFFICE OF EQUAL OPPORTUNITY MAY 2-i979 MAY 2 -
Draft Environmental Impact Statement, Island Park Geothermal Area, Targhee National Forest, Idaho
David M. Jay
Forest Supervisor
THRU: William D. Williams, Associate
Thank you for the opportunity of reviewing this Draft Statement. It appears as if you have identified adequately the major socioeconomic effects of aeternative
actions (pp.69-75, 103-108, 113-117 and Appendix I, Social Impacts).
We note that the population and impact analyses do not
directly identify minority group populations potentiall

Θthat approximately 2.6 percent of the population of
Freemont County is min iority. We recommend that in Freemont County is miniority. We recommend that in potentially adverse impacts upon minority persons and assure itself that any such impacts would not be experienced disproportionately as compared to the

DEPARTMENT OF HEALTH, EDUCATION. AND WELFARE region Vili EOERAL STHOUT STREETS
DENVER COLORADO 80294 April 25, 1979 Mr. David M. Jay
Forest Supervisor
Targhee National Forest
420 N. Bridge Street
St. Anthony, Idaho 83445
Dear Mr. Jay:
This will acknowledge receipt of your draft EIS for
the leasing and development of geothermal resources
within the Island Park Geothermal Area.
We have reviewed the report and believe you have
adequately addressed the impacts expected to result.
We have no other comments at this time.
Sincerely yours,
Thoman
Ther Moore, P.E.
This restriction for deferment would cover most of the
 protect present and future drinking water supplies.

ENVIRONMENTAL PROTECTION AGENCY (ALEXANDRA SMITH)
U.S. ENVIRONMENTAL PROTECTION AGENCY

MAY 211079

M/S 443
REPYY YO
ATTN Of:
David M. Jay, Forest Supervisor
Targhee National Forest
420 N . Bridge Street
St. Anthony, Idaho 83445

Dear Mr. Jay

$$
\begin{aligned}
& \text { We have completed our review of the draft environmental impact statement } \\
& \text { for Island Park Geothermal Leasing and Development. The EIS is clear, }
\end{aligned}
$$ concise, and well written. The excellent use of the photographs and ment and the alternatives. The matrices used for impacts and alternatives are also helpful as aids to understanding. Since there is very EIS is of limited usefulness for quantifying impacts of the alternatives.

Of the alternatives presented, we support the approach of Alternative leasing, and other sensitive areas have been deferred pending the development of more information. We do not believe other alternatives offer
adequate assurance that important environmental values can be protected.
We believe, however, that even Alternative 3 may be too ambitious a program considering the limited data on the quality of the geothermal waters surface water. It would appear that a more limited leasing program would be advisable. This would provide an improved data base to better
 leasing as the wisest present course for the seismically active area in the north of the unit in the Madison River drainage, for areas with sursupplies, and for a buffer area for the airshed of Yellowstone National Park.
Since data needed to more clearly predict environmental impacts of devel-
opment will not be available till after test drilling, we suggest that
No discrepancy was intended in the DEIS. The Island Park caldera area, excluding the West Yellowstone, Montana area, is, when compared with areas in Yellowstone National Park and near Hebgen Lake, Montana, relatively aseismic. The West Yellowstone, Montana area, however, is recognized as a sesmically active area. For seismicity considerations associated with geothermal fluid
 from the Geological Survey of Wyoming (Rodney DeBruin) [response drawn from EPA document EPA-600/7-78-101, page 89, paragraph 4].
 ferent in quality from the IPGA. Compliance with state and Federal rules and regulations concerning the reinjection of geothermal water will be required to safeguard groundwater and surface sources of drinking water.
This suggestion has been incorporated into Section VIII of the final EIS.

Specific Comments

bility of induced seismicity due to withdrawal or reinjection of geo-
thermal fluids. page 22, the Is and Park area is said to be in a mapped zone where This inconsistency should be resolved. The EIS should also discuss the pos
\pm 2. Groundwater. Limited information is presented on the quality of geo-
thermal and other groundwaters in the Island Park area. However, Appendix C shows that geothermal waters from western Yellowstone National Park elements including arsenic, chloride, flouride, cH , and iron. In addition, comparison with Appendices B and D shows that geothermal water waters for $\mathrm{HCO}_{3}, \mathrm{~K}, \mathrm{SiO}_{2}$, Na, and SO_{4}. There appears to be potential for contamination of aquifers or surface waters important as sources of
drinking water, especially as a result of seismic activity. This potential should be more fully evaluated in the EIS.
3. Mitigation. There should be more information on what types of constraints will be placed on the exploration, testing, and production phases. There should be a minimum level of groundwater monitoring
specified. There should also be minimum requirements for pond lining to prevent migration of drilling muds and produced water. Minimum data should be obtained to determine if produced water could be considered
4. Additional Permits. If development proceeds, it may be necessary
 the Clean Air Act.
5. Air Quality. Degradation of air quality would occur in the Island be short term increases in particulates from construction and problems from the release of n oxious and odorous gases such as hydrogen sulfide.
The quantity of energy that may be produced from the IPGA is presently unknown. Therefore, these questions are impossible to answer.

$\dot{\square}$

© The impacts on Yellowstone Park should be substantiated from an air mitigating non-leasing buffer zone be established to protect the Park by testing. Any proposed leasing that could potentially impact Yellow-
 and necessary mitigations should be adopted.
6. Economic and Technological Feasibility. Page 76 of the DEIS points natives for geothermal leasing stated that alternatives should: be economically and technologically feasible." Yet, page 1 states the DEIS "does power production" nor the "benefit-cost analysis of geothermal development
on a regional or statewide basis." These two statements appear to be
 of the economic viability and technological feasibility of its uses, and
no benefit-cost analysis has been completed on the development of the resource?

The only discussion on the uses of the energy in the DEIS is in generic terms. Without a more complete understanding of the uses of the energy, alternative. The secondary impacts on air and water quality, wildife and visual resources from the associated uses of the power may overshadow the primary impacts from developing the resource. Therefore, it is necimpacts.

Will the development of the Island Park Geothermal resources make a signicould cause significant environmental degradation to a largely pristine area adjacent to a national park. What are the tradeoffs? If a power plant were to be built, what area would it likely service? Would the existing fossil fuel sources in fulfilling present energy demand? or will it merely create new demands to develop the local area rather than
E.P.A
The revised section, Evaluation Criteria, included the ma-
 or proposal.

servicing existing demand areas? These questions and tradeoffs need to relative to the economic, environmental and social costs.

It would also be useful to know whether revenues from leasing are ear-
. Occision Criteria The crision criteria on pacifically address the need for substantial guarantees that air and water potential for significant adverse impacts on these resources, we believe additional decision criteria should be included to ensure a decision responsive to environmental values.
9. Range of Alternatives. With the exception of the "public workshop" alternative, about which very little information is presented, al the
viable alternatives propose the same basic acreage available for leasing without special restrictions. This acreage appears to have been preiously decided on, and alternative acreages are not seriously considered
in the EIS. We believe an alternative with more limited acreage available for leasing is necessary to provide an adequate degree of environmental leasing decisions at a later date. The deferred or restricted areas in Alternatives 3,4 , and 5 appear to be based primarily on wildlife and fisheries habitat consideration. " We believe additional consideration quality in Yellowstone National Park.

Based on our concerns for potential pollution of groundwater and other significant adverse environmental impacts, as discussed above, and imited information presented in the EIS on the quality of geothermal waters and
on potential secondary impacts of development, the Environmental Protection Agency has rated this draft EIS ER-2. ER (Environmental Reservations) indicates that EPA has reservations concerning the environmental effects of certain aspects of the proposed action. EPA believes that further study
of suggested alternatives or modifications is required. Category 2 (Insufficient Information) indicates that the draft EIS does not, in EPA's opinion, contain sufficient information to fully assess the environmental
impact of the proposed action.

EPA's rating will be published in the Federal Register in accordance with our responsibility to inform the public of our views on proposed Federal Thank you for the opportunity to review this environmental statement. If you have questions or would like to discuss these comments, please feel free to contact me or Craig Partridge of my staff at. (206) 442
1285 or (FTS) 399-1285.

[^22]south of it, sloshing of water would probably take place in Island Park Reservoir.
(USDA - SCS, DATED MAY 15, 1979)

1. This has been corrected.
2. Yes, if a large disturbance occurred near Henrys Lake or
south of it, sloshing of water would probably take place in
Island Park Reservoir.
Θ ©

UNITED STATES DEPARTMENT OF AGRICULTURE

Room 345, 304 North 8th Street, Boise, Idaho 83702
May 15, 1979
May 15, 1979

Targhee National Forest
St. Anthony, Idaho 83445
Dear Mr. Jay:
My staff has reviewed the Uraft Environmental Impact Statement for leasing and development of geothermal resources within the Island Park Geo-
thermal Area and have the following comments:
The last sentence on page 10 is a duplication of the previous
sentence.
2. Areas with known avalanche slide paths should be shown on the Geologic Hazard Map since human activity will exist in the
IPGA throughout the winter season.
It seems logical that the "sloshing effect", referred to on
page 22 under Seismicity, Should also apply to the Island
 able to note difficulty experienced by the City of Ashton in drilling a successful well to augment their municipal water
supply.
This document is exceptionally well prepared and we compliment you on a
Thank you for the opportunity to review and comment on this Draft Environmental Impact Statement
incerely
Amos 1 . Garrison, Jr.
State Conservationist
DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
PUBLIC HEALTH SERVICE
Mr. David M. Jay
Targhee National Forest
St. Anthony, Idaho 83445
Dear Mr. Jay:
We have revicwed the draft environmental statement of the Island Park
Geothermal Area, Idaho, Montana, and Wyoming. We are responding on behalf
of the Public Health Service.
While we recognize the need for pursuing alternative energy sources, we
While we recognize the need for pursuing alternative energy sources, we ed in this EIS. In all likelihood, construction of large geothermal facilities
will be forthcoming, and this will introduce an industrial atmosphere into a national forest with national parks in close proximity.
Even though new energy production in the U.S. is warranted, careful considera-
This draft statement does not address the amount of geothermal energy sp lated as compared to the feasibility of equivalent energy production from
alternative sources. This may be impossible; however, the adverse impacts listed which cannot be avoided, in addition to the potential impacts described in an area such as Island Park Geothermal Area and Yellow Stone National Park,
are critical trade-offs. It would be devastating to alter or contaminate is not feasible. Furthermore, since knowledge of environmental causes, effects, and remedial or preventive measures specifically relating to geothermal development "ranges from adequate to limited, it would be prudent to choose as establish necessary data by which to assess the feasibility of geothermal are acceptable for the price of energy, and appropriate mitigation measures
are planned, then further development could be seriously considered.
Evaluating the alternatives as proposed, alternatives 3 and 5 would have

[^23]DEPT. OF HEW

1. This is addressed under the Test Drilling subsection of the Management Requirements, Constraints, and Mitigating Measures section.
2. Addressed under General Construction and Erosion in the
3. The programmatic nature of this EIS and unknown quantity or quality of a geothermal resource makes this consideration unrealistic.
Reasons for no preferred alternative in the draft EIS were explained in the Introduction and in Evaluation of the Alternatives sections.
${ }^{\circ}$

Change made in text under Evaluation Criteria.
$\dot{~}$

Page 2 - Mr. David M. Jay
from leasing where geothermal resource development could have significant adverse impacts on surface resource values. No leasing areas should includ
those lands that provide groundwater recharge for any sole source aquifers. Any testing or leased production drilling should include safeguards to protect the potability of aquifers being used in the region for drinking cals and toxic liquids used in drilling and maintenance operations that have the potential for surface water and groundwater contamination should
It is important that erosion control measures such as setting basins or holding ponds be provided at each drilling area. These basins could be possible chemical spills that could adversely impact receiving waters. Any discharge from holding ponds, power plant facilities, etc. must not affect the maintenance and attainment of applicable water quality standards of the receiving stream or water body. In addition to meeting local and EPA regulations regarding toxic sübstances (p. 119-120), the applicability of the Corps of Engineers permitting require
ment under Section 404 , P.L. 95-200, regarding the discharge of fill into navigable waters or adjacent wetlands, should be noted in the final EIS. The final statement also should state if the proposed plan has been prepared in accordance with Executive Order 11990, Protection of Wetlands. The statement projects that by $1985,1.5$ million visitors will enter the park
and a high percentage of these visitors will traverse the Island Park Geothermal Area. It is known that noncondensable gases are formed in the vapor malfunctioning parts could cause serious consequences to workers or visitors in or around the site. We feel this DEIS should discuss the type and potentia and the type of preventive measures to be employed. Also absent from this document is the discussion of potential presence or release of radioactive
The recommended format for a DEIS, as described in the Federal Register of June 9, 1978, "National Environmental Policy Act - Implementation of Proced-
ural Provisions; Final Regulations" provides for an assessment of alternatives including the proposed action. Since it will be difficult for some reviewers to make a comparative analysis without the benefit of a proposed alternative developed after receiving comments, we suggest that the final statement be prepared as a draft and reviewers be given ample opportunity to critique the selected alternative.
Thank you for the opportunity of reviewing this document. We would appre-
ciate receiving two copies of the final statement.
Sincerely yours,
Frank S. Lisella, Ph.D.
Chief, Environmental Affairs Group
Environmental Health Services Division
Bureau of State Services
ADVISORY COUNCIL ON HISTORIC PRESERVATION

1. To our knowledge the proposed action does not include
leasing in any areas eligible or co, sidered for inclusion in
the National Register of Historic Places.
2. Section VIII of the Final EIS is much more specific as to
the requirements of a potential lessee for the protection of
historic and cultural properties.

The following two letters were received after the formal commenting period. They were a result of a meeting between US Forest Service Chief Max Peterson and a group of citizens in West Yellowstone, Montana on September 10, 1979. Chief Peterson personally requested written comments from the group and indicated that their concerns would be responded to in the final EIS.

1. See page 94. Although the release of noxious gases is

is suspected by Dr. Donald White (personal communica-
tion; US Geological Survey, Menlo Park, CA) that the more common hot water system would occur in the IPGA. If this is so, then releases of water vapor and gases would be minimized because of the type of technology necessary to extract the energy from the hot water. Gases and water vapor escaping during any phase of development must comply with the acceptable levels for emissions set by the state and Federal governments. (see Section VIII, page 129)
See page 94. Climatic alteration will not be tolerated. The phase of geothermal development that will have the least influence on climate is the exploration phase; the degree
 known at this time. The nature of the resource (steam or hot water) will determine this.
See page 127 and page 129. The integrity of aquifers that supply drinking water is protected by law and will be ensured by proper drilling practices and state of the art design in deep well installation and completion. Exchanges of the geothermal fluids will occur many thousands of feet below the near surface aquifer that would supply water to West Yellowstone and proper well design will keep mineralized water from mixing with potable supplies. Reinjection near earthquake areas would be done far
 plants and associated structures will protect aquifers.

 near West Yellowstone, MT. It is for this reason that the Secretary of the Interior will carefully evaluate any pro-
 'eәлe әuoıd әуеnbчдеә ue u! рәґеэоן әләм s॥әм pue słueןd
 during an earthquake of large magnitude.

PETER W. GRAY

> 1. See page 94, Section V (Effects of Implementation)
> high, and consequently the chances for localized adverse
effects would be high. If the resource is a hot water type,
releases to the atmosphere would be minimal and effects
few or negligible.
> 2. The Draft EIS does not state that "no data is available re-
> garding winter weather". For the West Yellowstone area,
temperature, precipitation and snow depth (and water
> equvalent) are shown in Figures 4 and 5 (page 14) and in Table 2 (page 15-see Black Bear, MT in this table).
> 3. The wind speeds given on page 13 apply to the Buffalo

> Ranger Station of the Targhee National Forest, located
> across from Pond's Lodge, Idaho. The Draft does not inlowstone.
 Mr. R. Uax Peterson
United States Forest Service
Department of Agriculture Department of Agricul ture
Washington, D. C. 20250

I enjoyed meeting you on your recent visit to West Yellowstone during the be able to sit down and exchange fdeas with those people who will make decisions and help solve the problems which affect our area.

In line with what was discussed when we visited, this letter is to amplify my specific areas of concern regarding the environmental impact statement pertaining
to proposed geothermal development in the Island Park Ceothermal Area.

It is my feeling that the Draft EIS fails to address properly the followinn
specific areas of concern:

> CLIIATE
A. The Jraft EIS fails to address any of the probable changes in the
(N)
(ल)
I.
See Section V, page 94 of the FEIS. Climate changes are
indicated. The specific quantity of possible climate
changes is unknown to all participants and collaborators.
Protection of West Yellowstone and other areas is dis- cussed on page 129.
See page 90 and page 129. Gases heavier than air would not escape during an inversion. This applies most importantly to $\mathrm{H}_{2} \mathrm{~S}$. However, during any type of geothermal operation, monitoring of emissions and discharges would be required by State and Federal law. Through such monitoring adverse conditions would be made known to the proper authorities who could impose a suspension of operations during times when hazards are presented to nearby residents.
Increased precipitation would result in a probable increase in stream flow. How great this might be is not known, if there would be any increase in precitation. If the effect is a small increase, fishing and tourism would not be influenced. There would be no expected change in vegetation.

See page 127 and page 129. The integrity of aquifers that supply drinking water is protected by law and will be ensured by proper drilling practices and state of the art design in deep well installation and completion. Exchanges of the geothermal fluids will occur many thousands of feet below the near surfact aquifer that would supply water to West Yellowstone and proper well design will keep mineralized water from mixing with potable supplies.

See pages 124,125 , and 127 . A monitoring system will be established on the surface water system to provide adequate protection to the fisheries in the IPGA. Corrective measures will be enforced by authorities if it is found that fish populations are threatened.
9. See page 103 for possible effects to fisheries. Section VIII, page 124 discusses general mitigation, constraints, etc. to protect this resource.

S! әuots seismically active. If geothermal development occurs any-
 fluids should be done far from any active faults. Such a re-

 tivities should be combined with micro-seismic monitoring. These studies establish the levels of natural background seismicity, locate areas unsuitable for reinjection,
 seismic hazards that may pertain to geothermal development.
11. This is not correct.

Mr. R. Max Peterson
September 26, 1979
II. WATER RESOURCES
A. There is no doubt that the City of West Yellowstone in the future
will construct a city water system. If geothermal development becomes
a reality, what are the effects on subterranean water supplies? Will
the mineral and chemical content increase to levels that are
unacceptable for utilization as municipal drinking water?
B. Fully 30% of the visitors to the IPGA are attracted by the high
caliber of fishing that can be found now. Water quality is important
to the fish that live in the lakes, streams and rivers around the
IPGA. Adverse effect to the fish population will have a detrimental
effect on the quality of the fisining in the area. Any decline in the
fishing must make the IPGA less attractive as a destination resort.
The Draft EIS does not address this problem.
III. FISHERIES
A. If there is an increase in water temperature or turbidity, howi,ill
this affect the insect life in the area upon which the fish depend
for food? Will it affect either the amount of production of insect
life or when they are produced? This is important to the area as
certain insect hatcies are an attraction to fishermen from all over
the world, e.g. the Green Drake Hatch on Henry's Fork or the Salmon
Fly Hatch on the Lower Madison River.
(0)

This caused numerous earth tremors of varying magnitudes in the Denver
area. Can we expect a similar occurrence in the IPGA?
NON-COMPLIANCE WITH ENVIRONMENTAL IMPACT STATEMENT REGULATIOHS
A. Most importantly, no input was solicited from the West Yellowstone
area during any part of the research prior to the writing of the Draft EIS. This is in clear violation of the performance mandated by
the National Environmental Policy Act. The only input offered the the National Environmental Policy Act. The only input offered the
citizens of West Yellowstone during any part of the environmental statement process was an input period from March 21 through May 21,

12. Fremont County, not St. Anthony statistics are most
(9)

APPENDIX O. SELECTED REFERENCES

Allison, J.L., and D.H. Green, 1974, Idaho's gateway to Yellowstone - the Island Park story: Island Park Gateway Publishing Co.
Arbib, R., 1977, The blue list for 1978: American Birds, vol. 31, \#6, pgs. 1087-1096.
Canter, L.W., 1977, Environmental impact assessment, McGraw Hill Book Co.
EDAW, Inc., 1977, Island Park geothermal energy development-social and economic assessment: EDAW, Inc., Ft. Collins, Colorado.

Flath, D.L., 1978, Nongame species of special interest or concern: mammals, bids, reptiles, amphibians, fishes: Wildlife Division, Montana Dept. of Fish and Game.

Hamilton, W., 1960, Late Cenozoic tectonics and volcanism of the Yellowstone region, Wyoming, Montana and Idaho, in Billings Geological Society, 11th Annual Field Conference, 7-10 Sept. 1960, West Yellowstone earthquake area, p. 92-105.

1965, Geology and petrogenesis of the Island Park Caldera of rhyolite and basalt, eastern Idaho: US Geological Survey Professional Paper 504-C.
Keefer, W.R., 1971, The geologic story of Yellowstone National Park: US Geological Survey Bulletin 1347.
Kruger, P and C. Otte, 1973, Geothermal energy-resources, production, stimulation: Stanford Univ. Press.
Love, J.D., 1956, Geologic map of Teton County, Wyoming in Wyoming Geological Association, Jackson Hole Field Conference Guidebook.

Pacific Northwest River Basins Commission, 1970, Columbia-North Pacific Region framework study of water and related lands, Appendix V -Water Resources

Peterson, D.L., and I.J. Witkind, 1975, Preliminary results of a gravity survey of the Henrys Lake quadrangle, Idaho and Montana: US Geological Survey Journal of Research, vol. 3, \#2, p. 223-228.

Phillips, K.J., and J.A. De Filippi, 1976, A matrix approach for determining wastewater management impacts: Journal of Water Pollution Control Federation, vol. 48 \#7, pgs. 1759-1765.
Rocky Mountain Mineral Law Foundation, 1977, Proceedings, Geothermal resources development institute.
Rowe, J.J., R.O., Fournier, G.W. Morey, 1973, Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960-1965: US Geological Survey Bulletin 1303.
State of Idaho Fish and Game Dept., 1978, A plan for the future management of Idaho's fish and wildlife resources, volume 1: goals, objectives and policies, 1975-1999.

State of Wyoming Game and Fish Dept., 1977, Current status and inventory of wildlife in Wyoming.
Trewartha, Glenn T, 1965, An introduction to climate: McGraw Hill Book Co., NY.
US Dept. of Agriculture, Rural Electrification Administration, 1975, Suggested practices for reducing raptor losses on powerlines: Bulletin.

1975, Powerline contacts by eagles and other large birds: Bulletin 61-10.
US Dept. of Commerce, 1973, Monthly normals of temperature, precipitation, and heating and cooling degree days, 1941-1970, for Idaho and Montana.
US Environmental Protection Agency, 1977, Approval and promulgation of state implementation plans, subchapter C, air programs: Federal Register, vol. 42, \#212, Nov. 3, 1977, p. 57459-57461.
US Forest Service, 1976, Final environmental statement and land management plan, west slope of the Tetons planning unit, Targhee National Forest
US Forest Service, 1978, Final environmental statement and land management plan, Island Park planning unit, Targhee National Forest

1978, Draft environmental statement, geothermal leasing and development on part of the Gifford Pinchot National Forest.

1978, Final environmental statement, geothermal development Breitenbush area, Willamette and Mt. Hood National Forests.

US Dept. of the Interior, Bureau of Sports Fisheries and Wildlife, 1973, Threatened wildlife of the US (Red Book)

US Dept. of Transportation, 1974, Standard specifications for construction of roads and bridges on federal highway projects, FP-74.

US Geological Survey, 1964, The Hebgen Lake, Montana earthquake of August 17, 1959; US Geological Survey Professional Paper 435.
US Geological Survey, 1976, Water Resources Data for Idaho, Water Year 1975.
Whitehead, R.L., 1978, Water resources of the upper Henrys Fork basin in eastern Idaho: Water Information Bulletin No. 46, State of Idaho Dept. of Water Resources.
Witkind I.J., P.A. Hoskins, V.L. Lindsey, and E.L. MItchell, 1972, Folio of the Henrys Lake Quadrangle, Idaho, Montana: US Geological Survey map I-781-A, C, D, E, and I.

Witkind, Irving J., 1975, A proposed glacial history of the Henrys Lake Basin, Idaho: Journal of Research of the US Geological Survey, vol. 3, \#1, p. 67-76.

Wilson, S.H., 1976, Possible conflict between the Interests of Tourism and Geothermal Power Development, Proceedings of the 2nd UN Symposium on the Development and Utilization of Geothermal Resources; San Francisco, May 20-29, 1975, p. 2463.

APPENDIX P. SIGNIFICANT CONTRIBUTIONS TO THE ENVIRONMENTAL IMPACT STATEMENT PROCESS WERE RECEIVED FROM THE FOLLOWING PEOPLE:

NameQualification
U.S. Forest Service
Boise National Forest Ted Mullin. Geologist
Gallatin National Forest
Claude Coffin .
Phil Cowan Energy Coordinator
Carl Davis Soil Scientist
Steve Glasser Hydrologist
Jerry Light.Wildlife Biologist
Ralph MeyerDistrict Ranger
John SandmeyerLong Range Planner
National Forests in Texas Dale Bounds Visual Information Specialist
Sawtooth National Recreation Area
Harry Young. Geologist
Shoshone National Forest
Steve Mealey Wildlife Biologist
Targhee National Forest Bart Andreasen Landscape ArchitectMickey Beland.Resource Coordinator
Craig CortwrightRobert L. DavisHydrologist
Marie Douglass Typist
John Ferebauer. Economist
Larry Gorringe Engineer
Dave Griffel Wildlife Biologist
Eva Hedge Office Services Supervisor
Richard Heninger Forest (minerals)
David M. JayForest Supervisor
Wayne Jenkins
Forestry Technician
Wildlife BiologistRange ConservationistSara J. Johnson, Ph.D
Mark KaryKenneth R. Keck
John Maupin.Fuels Management Specialist
John M. McGee, Ph.D. Wildlife Biologist
Emma Lou Moss.Timothy Murphy . Archaeologist
Paul Oakes Soil Scientist
George Olson Forest Supervisor
Ned Pence.Gary RahmDistrict Resource Assistant
Robert RileyStephen M. Rushton
Branch Chief, Recreation and Lands
Stan Szczepanowski
HydrologistRobert Williams
Dave Winn, Ph.D. Wildlife Biologist
Marvin Wolfe Silviculturist
U.S. Geological Survey
Robert L. Christiansen, Ph.D. Geologist
David Fach. Physical Scientist
Robert Kent Environmental Scientist
Robert Lewis Hydrologist
Donald E. White, Ph.D. Geologist
Richard L. Whitehead. Hydrologist
Robert Whitham Geologist
Bureau of Land Management
Doug CauseyGeologist
John Davis Chief of Planning and Environmental Coordination
Forest Gale Green Forester
Hal Isaacson Assistant District Manager
Dave KisselLandscape Architect
Marc Whiser Range Conservationist
National Park Service (Yellowstone National Park)
Edmund J. Bucknall Resource Management Specialist
Roderick Hutchison. Geologist
Richard Knight, Ph.D. Project Leader, InteragencyGrizzly Bear Study Team
Mary Meagher, Ph.D. Chief Research Biologist
Alan Mebane Chief Park Naturalist
U.S. Fish and Wildlife Service
Roy Heberger Wildlife Biologist
Richard Howard Wildlife Biologist
Robert Rainville Fisheries Biologist
Department of Energy
Robert Chappel Project Engineer
John Griffith Chief of Research and Engineering
Susan Spencer Environmental Engineer
State Agencies:
Wyoming
Game and FishJohn Erickson. Fisheries BiologistHarry Harju, Ph.D.. Staff Biologist for Environmental Affairs
Garvice Roby. Wildlife Biologist
Michael Stone Staff Fisheries Biologist
MontanaFish and GameDennis Flath, Ph.D. Head, Northern Rocky Mountain WolfRecovery Team
Arnold Foss Regional Game Manager
Dick Vincent. Fisheries Biologist
Bureau of Mines and Geology
John Sonderegger Hydrogeologist
IdahoFish and Game
Joe Curry Senior Conservation Officer
Frank DeShon Assistant Regional Game Manager
Paul Jeppson Regional Fisheries Biologist
Bruce Penske Conservation Officer
Tom Reinecker Regional Supervisor
Brent Ritchie Big Game Biologist
Robert Sherwood Regional Game Manager
Greg Tourtlotte Conservation Officer
Department of Parks and Recreation
Bill Hagdorn Chief, Planning Division
Individuals
Remington Kohrt Forester (Industrial)
Monte Later Merchant
Jerry Reynolds Magistrate, Fremont County, Idaho
Robert Smith, Ph.D Geophysicist, Univ. of Utah

Bureau of Land Management
Doug Causey Geologist
John Davis Chief of Planning and Environmental Coordination
Hal Isaacson Assistant District Manager
Dave Kissel . Landscape Architect
Marc Whiser Range Conservationist
National Park Service (Yellowstone National Park)
Edmund J. Bucknall Resource Management Specialist
Roderick Hutchison. Geologist
Richard Knight, Ph.D. Project Leader, Interagency Grizzly Bear Study Team
Mary Meagher, Ph.D Chief Research Biologist
Alan Mebane Chief Park Naturalist
U.S. Fish and Wildlife Service
Roy Heberger. Wildlife Biologist
Richard Howard Wildlife Biologist
Robert Rainville Fisheries Biologist
Department of Energy
Robert Chappel. Project Engineer
John Griffith. Chief of Research and Engineering
Susan SpencerState Agencies:Wyoming
Game and Fish
John Erickson Fisheries Biologist
Harry Harju, Ph.D Staff Biologist for Environmental Affairs
Garvice Roby Wildlife Biologist
Michael Stone Staff Fisheries Biologist
Montana
Fish and Game
Dennis Flath, Ph.D. Head, Northern Rocky Mountain WolfRecovery Team
Arnold Foss Regional Game Manager
Dick Vincent Fisheries Biologist
Bureau of Mines and Geology
John Sonderegger Hydrogeologist
Idaho
Fish and GameJoe Curry.Senior Conservation Officer
Frank DeShon Assistant Regional Game Manager
Paul Jeppson Regional Fisheries Biologist
Bruce Penske Conservation Officer
Tom Reinecker Regional Supervisor
Brent Ritchie Big Game Biologist
Robert Sherwood Regional Game ManagerGreg TourtlotteConservation Officer
Department of Parks and Recreation
Bill Hagdorn Chief, Planning Division
Individuals
Remington Kohrt Forester (Industrial)
Monte Later Merchant
Jerry Reynolds Magistrate, Fremont County, Idaho
Robert Smith, Ph.D Geophysicist, Univ. of Utah

ISLAND PARK GEOTHERMIAL AREA
IDAHO - MONTANA - WYOMING
U.S. FOREST SERRICE G BUREAU OF
LANO MANAGEMENT
legend

- NATIJNAL FOREST BOUNDARY
- ADJACENT NATIONAL FOREST BOUNDARY
- PALED ROAD
- ALL WEATHER ROAO
- DILT ROAD
PRIMTVE ROAD
(※i) NTERSTATEAGAGWA
(3) STATE HIGHWAY

SELECTED ALTERNATIVE
ALTERNATIVE 7
LEASING
DEFERRED

[^0]: CHARLES T. COSTON, Regional Forester
 Northern Region
 USDA-Forest Service
 Federal Building
 Missoula, Montana 49807

[^1]: Source: Island Park Land Management Plan, July 1978; West Slope of the Tetons Land Use Plan, unpublished U.S. Forest Service docurnents

[^2]: * Not in IPGA, but use immediately adjacent to area is important to leasing considerations.

[^3]: ' Diversity-An index which combines the number of different organisms and their relative abundance.
 Excellent = The community is well balanced and in excellent condition relative to physical and chemical conditions.
 Good = Habitat or water quality is short of excellent.
 Fair = Macroinvertebrates are waving a red flag indicating degeneration of the ecosystem.
 ${ }^{2}$ Biomass - The dry weight of the macroinvertebrates.
 ${ }^{3}$ The scales rate each study stream with a stream having ideal habitat and water chemistry for optimal productivity. An X under environmental influences indicates sedimentation and/or organic enrichment is above what is expected in the ideal stream.

[^4]: ${ }^{1}$ Sound levels were measured using the universal standard called the decibel, dB . The term $\mathrm{dB}(\mathrm{A})$ is the decibel value measured using the A weighting network of a standard sound level meter with slow response.

[^5]: - Water losses from well into aquifer can cause raised water table, increased seepage into streams and springs, appearance of new springs

[^6]: administering the leases.
 administering the leases.

[^7]: The value of these resources to a nation, to Idaho, and

[^8]: No one has shown me proof that, other areas where geothermal energy has been
 developed properly, has had an adverse effect of wildlife.

[^9]:

 SuTsea
 to insure that the resources of Yellowstone will not be damaged.

[^10]: Having traveled in 1975 backcountry roads to investigate this Idaho area on foot fish, and other wild-life getting such blind protection. Have you ever seen a Geothermal power plant at close range? If not, visit the area of Geysers, California of metro San Francisco's needs existed in such pristine surroundings. Ranching and farming co-exist with flora, fauna and hippies in that area with no known and by motor car, it seems strange to see sheep, cattle, horses, bear, deer, elk When I did it was almost impossible to realize a megawatt power plant providi

[^11]: Re: Island Park Geothermal Area - Draft Environmental Sṭatement

[^12]:

[^13]: CAPITAL VENTURES
 end resulted primarily from considerations for trumpeter swan, grizzly bear, major streams, and big game winter ranges.

[^14]: No lands on the Targhee National Forest within Wyoming should be leased. These lands should be retained in the expansion of Grand Teton National Park.

[^15]: other improvements will be reviewed when the lessee prepares a plan of operation. This review will allow an explicit evaluation of the effects on threatened and endangered species on a site-specific basis.

 ## 12.

[^16]: AS IS EVIDENT FROM THE RESPONSE TO THE INITIAL EIS, REVIEWING AGENCIES INDI-
 CATED INTEREST \& CONCRN IN THE DEVELOPMENT OO GETHERMAL RESOURCES. YOU
 INUE
 COOPERATION \& ASSISTANCE IN THE
 EFFORTS MEANINGFUL.

[^17]: (3y 21 138,

 Mr. Richard Hartman
 State Planning Coordinator
 Fif
 Dear Mr. Hank you for the opportunity to review this draft
 environmental statement of the Island Park Geothermal area.
 In order to properly evaluate this draft ES, I will need
 to see the "overview" cultural survey filed in the Supervisor's
 edited version of this report is both inadequate and inaccurate.
 John Jacob Astor, not Andrew Henry, financed the earliest overland
 excursion in 1811 and not in 1810 as stated on page 36. Moreover,
 John Colter on his solitary excursion of observing spectacular thermal activity
 The map coordinates, contained within the ES, also appear in error. According to those provided, namely
 the study area is outside Wyoming borders.

 A review by Associate State Archeologist Thomas K. Larson
 indicated that archeological site density is high in the northwestern indicated that archeological site density is high in the k . inventory of the Island Park Geothermal Area in Wyoning by a Cordially,

 Jesources Division qualified archeologist.

[^18]: The statement should specifically describe probable impacts, special scenic, recreation, and cultural value. Examples are Big Springs, a potential National Landmark, and high-quality fishing streams and lakes. Impacts and mitigation measures relative to $Y N P$ should be described in more detail.

 > We note that the DES emphasizes salvage as a mitigation measure to reduce adverse impacts on historic and archeological
 resources. Avoidance or protection of archeological resources is far preferable to salvage, and often less costly and timeconsuming. Salvage as a form of mitigation should only be

[^19]: than

[^20]: We would like to work closely with your staff to ensure that
 geothermal leasing in this area. We believe that a field
 $([202] 343-2118)$ of my staff, and he will arrange for appropri-
 ate Bureau representation. C 合

 Atststani SECRETARY

 Enclosures

[^21]: Vegetative patterns (not "designs") in IPGA do not appear patterns of floral and faunal distribution; hence the need for metameter transformations.

[^22]: Alexander is suinth
 Environmental Evaluation Branch

[^23]: be very desirable to designate no leasing areas or to defer certain lands

