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We examine a static, spherically symmetric solution of the
empty space field equations of general relativity with a non-
orthogonal line element which gives rise to an opportunity that
does not occur in the standard derivations of the Schwarzschild
solution. In these derivations, convenient coordinate
transformations and dynamical assumptions inevitably lead
to the Schwarzschild solution. By relaxing these conditions,
a new solution possibility arises and the resulting formalism
embraces the Schwarzschild solution as a special case. The
new solution avoids the coordinate singularity associated with
the Schwarzschild solution and is achieved by obtaining a
more suitable coordinate chart. The solution embodies two
arbitrary constants, one of which can be identified as the
Newtonian gravitational potential using the weak field limit.
The additional arbitrary constant gives rise to a situation
that allows for generalizations of the Eddington–Finkelstein
transformation and the Kruskal–Szekeres coordinates.

1. Introduction
The first exact solution to the empty space field equations of
general relativity is due to Karl Schwarzschild [1]. The derivation
is now commonplace and can be readily found in the literature
(e.g. [2–7]). It describes the space–time outside a spherically
symmetric, static and asymptotically flat body of mass M.

The line element in Schwarzschild geometry in spherical
coordinates xμ = (ct, r, θ ,ϕ) is given by

ds2 =
(

1 + r0

r

)
dt2 −

(
1 + r0

r

)−1
dr2 − r2 dΩ2, (1.1)
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where dΩ2 = dθ2 + sin2 θ dϕ2, r0 = −2GM/c2, and the speed of light in vacuum and Newton’s
gravitational constant are given by c and G, respectively, and here we adopt a time scale in which c = 1.

The standard approach in deriving the Schwarzschild solution is to consider one of the following
spherically symmetric line elements of the form:

ds2 = a(r) dt2 − c(r) dr2 − r2 dΩ2, (1.2)

ds2 = a(r, t) dt2 − c(r, t) dr2 − r2 dΩ2 (1.3)

and ds2 = a(r, t) dt2 + 2b(r, t) dr dt − c(r, t) dr2 − r2 dΩ2, (1.4)

where a, b and c denote unknown functions of either space or both space and time which are to
be determined. Throughout the literature, convenient coordinate transformations [8,9] involving the
introduction of a new time coordinate, allow for the removal of the non-orthogonal component in
equation (1.4) and physical arguments such as a static space–time [7] inevitably lead to the Schwarzschild
solution.

The aforementioned assumptions then guarantee that the only solution to the empty space
field equations (see §2) is given by equation (1.1) giving rise to the so-called Birkhoff’s theorem
[10–12]. The key point of this paper is that if these simplifying coordinate transformations are not
made, another solution opportunity presents itself which suggests an improved coordinate chart
to that of Schwarzschild which contains only one global singularity at the origin r = 0 and not a
coordinate singularity which is often studied in Schwarzschild geometry. Furthermore, the alternative
solution allows for the generalization of the Eddington–Finkelstein and Kruskal–Szekeres coordinate
transformations. By making the usual simplifying assumptions and coordinate transformations at the
outset, the solution presented below is excluded.

In §2, a description of the governing equations which leads to both solutions is presented. In §3, we
present a novel derivation of the Schwarzschild solution using the governing equations presented in the
prior section. In §4, we derive a new solution to the empty space field equations of general relativity and
corresponding generalizations of the Eddington–Finkelstein transformation and the Kruskal–Szekeres
coordinates. Finally, the non-zero, independent Christoffel symbols and mixed and covariant Einstein
tensor components associated with equation (1.4) are presented in appendices A–D.

2. Governing equations
Throughout the remainder of the present paper, attention is restricted to the space–time metric given by
equation (1.4). The metric tensor gab and the inverse metric tensor (gab)−1 are given by

gab =

⎡
⎢⎢⎢⎣

a b 0 0
b −c 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎤
⎥⎥⎥⎦ and (gab)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c
ω

b
ω

0 0

b
ω

− a
ω

0 0

0 0 −r−2 0
0 0 0 −(r2 sin2 θ )−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.1)

where a, b and c are functions of both space and time and ω(r, t) ≡ ac + b2.
We determine the unknown functions a, b and c when applied to the empty space field equations of

general relativity [7]

Gab = 0 and Gab ≡ Rab − 1
2 gabR, (2.2)

where Rab and R are the Ricci tensor and Ricci scalar, respectively (cf. [3,7]). The first two equations under
consideration are equations (B 2) and (B 3) which are given by

G00 = (a(a2cr − arb2 + 2abbr)r + ω2 − aω)
(ωr)2 − b(a2ct + 2abbt − atb2)

ω2r
= 0

and G01 = a(ωct + abcr + arbc + 2b2br)
ω2r

− (b(abct + (aar + bat − 2abt)c + b2ar)r − ω2 + aω)
(ωr)2 = 0,

respectively. After some simplification and introducing u(r, t) = ra/ω, we may rewrite equations (B 2)
and (B 3) as a system of linear partial differential equations

a(r, t) = aur − but and b(r, t) = bur + cut, (2.3)
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where we have introduced the subscript notation to indicate partial derivatives with respect to the
respective coordinate. The above system of equations can be immediately solved to give ur = 1 and ut = 0.
We obtain an expression for a(r, t) by integrating ur = 1, thus

a(r, t) =ω(r, t)
(

1 + r0

r

)
, (2.4)

where r0 is introduced as a constant of integration. Next, consider equation (A 4)

G0
1 = (ωct + b(acr + arc + 2bbr))

ω2r
= 0,

which, upon simplification yields

ωct + bωr = 0. (2.5)

The remaining equations of interest arise from manipulations of equations (B 4) and (B 5).
First, consider equation (B 4)

G11 = c((abct + (aar + bat − 2abt)c + arb2)r − ω2 + aω)
(ωr)2 + b(ωct + b(acr + car + 2bbr))

ω2r
= 0,

which, after some rearranging can be expressed as

ur

c
− r

c

(
b
ω

)
t
− r
ω

(
b
c

)
t
= 1

c
,

by introducing expressions v = rb/ω and w = rc/ω and making use of ur = 1, the above now reads

2vt

v
= wt

w
. (2.6)

Finally, upon integration, an expression for the unknown function b(r, t) is obtained, given by

b(r, t) =
[
ω(r, t)

r
f (r)c(r, t)

]1/2
, (2.7)

where f (r) is obtained after integrating equation (2.6) with respect to time. By substituting equations (2.4)
and (2.7) into ω(r, t) = ac + b2, we determine the unknown function c(r, t) in terms of f (r), which is given
by

c(r, t) = r
r + r0 + f (r)

. (2.8)

It is clear from this equation that c(r, t) is at most a function of r only, so that c(r, t) = c(r). From
equation (2.5), assuming that b(r, t) is non-zero and using the fact that ct = 0, we can deduce that ω(r, t) is
at most a function of time, so that ω(r, t) =ω(t). By substituting equation (2.8) into equation (2.7), we find

b(r, t) =
[

ω(t)f (r)
r + r0 + f (r)

]1/2
. (2.9)

Finally, by multiplying equation (B 5) by −4ω(t)2/r, the remaining equation of interest is given by

−4ω2G22

r
= (2ωctt − ac2

t − (atc + arb + 2bbt)ct

+ (aar + atb − 2abt)cr + (a2
r − 2aarr + 4abrt − 2atbr)c

− 2b(arbr − arrb + 2brbt + 2bbrt))r − 2a(acr + bct)

+ 2(2abt − atb − aar)c + 4b(abr − arb) = 0,

where, after some simplification and using ω=ω(t) and ct = 0 the above equation becomes

4ω(rb)rt − 2ωt(rb)r − 2abt(rc)r − 2ω(t)(ra)rr − bωt − 2ωbt = 0.

Dividing the above equation by 2ω(t)3/2, we deduce

2
(

(rb)r

ω(t)1/2

)
t
−
(

(ra)r

ω(t)1/2

)
r
+
(

b
ω(t)1/2

)
t
− abt

(
(rc)r

ω(t)1/2

)
= 0.

To simplify the above expressions further, consider the expression for b(r, t) which is given by
equation (2.9). It is immediately obvious that the only time-dependent component will cancel with the
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denominator in both the first and third terms. Also, the second term in the above expression is a second
derivative of a linear function, hence, the only non-zero term in the above equation becomes

(
1 + r0

r

) ωt(t)
2

[
f (r)

r + r0 + f (r)

]1/2
(rc)r = 0. (2.10)

Evidently, this can be satisfied in three different ways:

(i) f (r) ≡ 0, (ii) ωt(t) ≡ 0 and (iii) (rc)r ≡ 0.

In the first two cases, Schwarzschild-like solutions are obtained which, under certain conditions, give
precisely the Schwarzschild solution. More importantly, case (iii) gives rise to a new solution opportunity
which leads to generalizations of the Eddington–Finkelstein transformation and the Kruskal–Szekeres
coordinates.

3. Schwarzschild solution
The three situations in which equation (2.10) is satisfied are as follows:

Case (i): f (r) = 0.
By examining equations (2.4), (2.9) and (2.8) under the condition f (r) = 0, it is obvious that b(r, t) = 0

and
a(r, t) =ω(t)

(
1 + r0

r

)
and c(r, t) = r

(r + r0)
, (3.1)

with ω(t) = 1 producing precisely the Schwarzschild solution.
Case (ii): ωt(t) = 0.
The second case arises when ωt(t) = 0, or, equivalently ω(t) is given by a constant. By setting ω(t) = α2,

we can write the solution in the form ac + b2 = α2, where
√

ac = α cosψ0 and b = α sinψ0, (3.2)

for some constant angle ψ0. Using the expressions derived for the functions a, b and c given by
equations (2.4), (2.9) and (2.8), respectively, in conjunction with equation (3.2), we obtain an expression
for f (r), namely

f (r) = (r + r0) tan2 ψ0. (3.3)

Finally, by substituting the above into equations (2.8) and (2.9), we can show

a(r, t) = α2
(

1 + r0

r

)
, b(r, t) = α sinψ0 and c(r, t) = r

r + r0
cos2 ψ0. (3.4)

The precise Schwarzschild solution is realized by imposing the conditions α= 1 and ψ0 = 0.

4. Derivation of new solution and generalized transformations
and coordinates

The third and final case to be considered is of particular interest as it produces an alternative solution to
the empty space field equations of general relativity.

Case (iii): (rc)r = 0.
The remaining condition satisfying equation (2.10) is given by (rc)r = 0, which, upon integration yields

c(r) = β/r, where β is a constant of integration. Comparing this with equation (2.8) an expression for f (r)
is obtained

f (r) = r2

β
− r − r0. (4.1)

By substituting the above into equation (2.7), it can be shown that

b(r, t) =
[
ω(t)

(
1 − β(r + r0)

r2

)]1/2
. (4.2)

The new derived expressions for the functions a, b and c constitute an alternative exact solution of the
field equations of general relativity where the line element is

(ds)2 =ω(t)
(

1 + r0

r

)
dt2 + 2

[
ω(t)

(
1 − β(r + r0)

r2

)]1/2
dr dt − β

r
dr2 − r2 dΩ2. (4.3)
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Evidently, we may now introduce τ , such that dτ =ω(t)1/2 dt, in which case, the above equation now
reads

(ds)2 =
(

1 + r0

r

)
dτ 2 + 2

[
1 − β(r + r0)

r2

]1/2
dr dτ − β

r
dr2 − r2 dΩ2. (4.4)

For β = 0, the line element becomes

(ds)2 =
(

1 + r0

r

)
dτ 2 + 2 dr dτ − r2 dΩ2. (4.5)

Using the computer algebra system (CAS) Maxima [13], the three line elements given by equations (4.3)–
(4.5) can all be independently verified as bona fide solutions of the field equations, where α and β

denote arbitrary constants and ω(t) denotes an arbitrary function of time. We observe that equation (4.5)
corresponds to the outgoing Eddington–Finkelstein coordinates and since we have arbitrarily assigned
the positive root for b in equation (4.2), we might similarly retrieve the ingoing Eddington–Finkelstein
coordinates by adopting the negative sign. We further observe that both the Schwarzschild solution and
equation (3.4) with α = 1 have the common structure that can be written as

(ds)2 =
(

1 + r0

r

)
dτ 2 + 2 sinψ dr dτ − cos2 ψ

1 + r0/r
dr2 − r2 dΩ2, (4.6)

where ψ has the constant value ψ0 for the Schwarzschild solution given by equation (3.4) and a variable
value sin−1([1 − β(r + r0)/r2]1/2) for the solution derived here involving the new constant β. As inferred
by the so-called Birkhoff’s theorem, the important question arises as to whether equation (4.4) is locally
isometric to the Schwarzschild solution. The answer is in the affirmative and the specific details are given
in §5. Although the new solution is locally isometric to the Schwarzschild solution, the authors note the
new coordinate chart given by equation (4.4) avoids the coordinate singularity at r = r0 and allows for
radially ingoing/outgoing particles to pass freely between this region which is normally associated with
Eddington–Finkelstein coordinates.

The line element given by equation (4.6) can be shown to become

(ds)2 =
(

1 + r0

r

)
(dτ 2 + 2 sinψ dr
 dτ − cos2 ψ(dr
)2) − r2 dΩ2, (4.7)

where dr
 and sinψ are given by

dr
 = dr
1 + r0/r

, sinψ =
[

1 − β(r + r0)
r2

]1/2
(4.8)

and ψ = π/2 in the case of equation (4.5). By performing the transformation τ = τ
 + ρ(r
), it is clear that
equation (4.7) becomes

(ds)2 =
(

1 + r0

r

)
((dτ
)2 + 2(sinψ + ρ′(r
)) dτ 
 dr
 + [(sinψ + ρ′(r
))2 − 1](dr
)2) − r2 dΩ2, (4.9)

where the prime denotes differentiation with respect to r
. From the structure of equation (4.9), it is
apparent that ρ(r
) can be chosen to produce any desired equation of the form of equation (4.7). Thus, as
an example we may obtain the Schwarzschild line element by making

dρ
dr


+ sinψ = sinψ0, (4.10)

from which we may deduce that the function ρ(r
) is determined by performing the integration

dρ = (r sinψ0 − [r2 − β(r + r0)]1/2)
dr

r + r0
, (4.11)

which clearly admits a range of analytical expressions depending upon the value of β, noting the greatly
simplified form arising from the special case β = −4r0.

As an illustration of the above, we derive the unknown function ρ(r
) which allows for the coordinate
transformation from Schwarzschild to Eddington–Finkelstein coordinates. In Schwarzschild geometry
ψ0 = β = 0 and hence, equation (4.11) becomes

ρ(r) = ±
∫

r
r + r0

dr = ±(r − r0 ln(r + r0) + C), (4.12)

where C is a constant of integration. Substituting equation (4.12) into τ = τ
 + ρ(r) and applying to the
Schwarzschild line element gives precisely the outgoing and ingoing Eddington–Finkelstein coordinates
depending on the choice of sign. We note that τ = τ
 + ρ(r) together with equation (4.11) provides a
generalization of the Eddington–Finkelstein transformation.
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To extend the Kruskal–Szekeres coordinate transformation, we define the variables ξ and η through

the differential relations

dξ = dr
 + dτ + sinψ dr
 and dη= dr
 − dτ − sinψ dr
, (4.13)

where r
, τ and sinψ are all as given above. Explicitly, ξ and η are given by (derivation given in
appendix D)

ξ = τ +
∫

r
r + r0

(
1 +

[
1 − β(r + r0)

r2

]1/2
)

dr,

= τ + r + [r2 − β(r + r0)]1/2 −
(

r0 + β

2

)
ln
(

[r2 − β(r + r0)]1/2 + r − β

2

)

− r0 ln
(

[r2 − β(r + r0)]1/2 − r − β(r + r0)
2r0

)
+ ξ0

and η= −τ +
∫

r
r + r0

(
1 −

[
1 − β(r + r0)

r2

]1/2
)

dr,

= −τ + r − 2r0 ln(r + r0) − [r2 − β(r + r0)]1/2

+
(

r0 + β

2

)
ln
(

[r2 − β(r + r0)]1/2 + r − β

2

)

+ r0 ln
(

[r2 − β(r + r0)]1/2 − r − β(r + r0)
2r0

)
+ η0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

where ξ0 and η0 are introduced as arbitrary constants of integration, noting that ξ and η are essentially
r
 + τ
 and r
 − τ
, respectively, where τ
 is precisely as defined in the previous section. In the above
integral evaluations, it is assumed that the arguments of all logarithms are positive; in other cases,
slightly modified formulae may apply. On evaluating the product dξ dη, we see that equation (4.7)
becomes

(ds)2 = −
(

1 + r0

r

)
dξ dη − r2 dΩ2, (4.15)

where we can identify the product dξ dη as the generalized ingoing/outgoing Eddington–Finkelstein
coordinates. Let us propose generalized coordinates R and T such that

R + T = e−ξ/2r0 and R − T = e−η/2r0 , (4.16)

as the new extended Kruskal–Szekeres coordinates for β �= 0, where ξ and η are defined as in
equation (4.13) since when ψ = 0 we have

ξ = τ + r − r0 ln(r + r0) + ξ0, η= −τ + r − r0 ln(r + r0) + η0 (4.17)

and on adopting the values ξ0 = η0 = r0 ln(r0), we may deduce the relations for the standard Kruskal–
Szekeres coordinates

R + T =
(

1 + r0

r

)1/2
e−r/2r0 e−τ/2r0 ,

R − T =
(

1 + r0

r

)1/2
e−r/2r0 eτ/2r0

⎫⎪⎪⎬
⎪⎪⎭ (4.18)

and, therefore,

R =
(

1 + r0

r

)1/2
e−r/2r0 cosh

(
τ

2r0

)

and T = −
(

1 + r0

r

)1/2
e−r/2r0 sinh

(
τ

2r0

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.19)

where R and T denote standard Kruskal–Szekeres coordinates. Finally, the line element given by
equation (4.15) in generalized Kruskal–Szekeres coordinates is given by

(ds)2 = 4
r3

0
r

er/r0 (dT 2 − dR2) − r2 dΩ2. (4.20)

We note that, in general, the line element given by equation (4.20) applies for all β and is obvious from
the relation

ξ + η= 2r − 2r0 ln
(

1 + r
r0

)
. (4.21)
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Thus, for all β, we have with the above definition

R2 − T 2 =
(

1 + r0

r

)
e−r/r0 , (4.22)

assuming we adopt the same values for the arbitrary constants ξ0 and η0.

5. Conclusion
We have derived a spherically symmetric, static solution of the empty space field equations of general
relativity, where the line element given by equation (4.4) involves two arbitrary constants. By consulting
the weak field limit [3], we can immediately identify r0 = −2GM/c2 as the Schwarzschild radius.
The second arbitrary constant allows for the generalizations of the well-known Eddington–Finkelstein
transformation and the Kruskal–Szekeres coordinates. Furthermore, a variety of analytical forms for
the extended Eddington–Finkelstein transformation and the Kruskal–Szekeres coordinates are derivable
depending on the value of β, and one derivation is provided in appendix D. The key point is that this
solution does not arise if the usual assumptions leading to the Schwarzschild solution are made at the
outset. We note the Schwarzschild solution is formally obtained by introducing a new time variable u in
equation (4.4) through the differential relation given by

du = dτ + [1 − β(r + r0)/r2]1/2

1 + r0/r
dr. (5.1)

Finally, the authors note that this approach can be easily generalized to the Reissner–Nordstrom solution
in GR [3].
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Appendix A. Non-zero mixed Einstein tensor
The components of the mixed Einstein tensor are obtained using

Ga
b = Ra

b − 1
2 δ

a
bR, (A 1)

where δa
b , Ra

b and R denote the Kronecker delta, the Ricci tensor and the Ricci scalar, respectively. On
application to equation (1.4), the non-zero, independent components become

G0
0 = ((a2cr − arb2 + 2abbr)r + ω2 − aω)

(ωr)2 , (A 2)

G1
0 = − (a2ct + 2abbt − atb2)

ω2r
, (A 3)

G0
1 = (ωct + (acr + arc)b + 2b2br)

ω2r
, (A 4)

G1
1 = − ((abct + (atb + aar − 2abt)c + arb2)r − ω2 + aω)

(ωr)2 (A 5)

and G2
2 =

((2ωctt − ac2
t − (atc + arb + 2bbt)ct

+(aar + atb − 2abt)cr + (a2
r − 2aarr + 4abrt − 2atbr)c

−2b(arbr − arrb + 2brbt + 2bbrt))r − 2a(acr + bct)
+2(2abt − atb − aar)c + 4b(abr − arb))

4ω2r
. (A 6)
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Appendix B. Non-zero covariant Einstein tensor
The components of the covariant Einstein tensor are determined from

Gab = Rab − 1
2 gabR (B 1)

and when applied to equation (1.4), the non-zero, independent components are given by

G00 = (a(a2cr − arb2 + 2abbr)r + ω2 − aω)
(ωr)2 − b(a2ct + 2abbt − atb2)

ω2r
, (B 2)

G01 = a(ωct + abcr + arbc + 2b2br)
ω2r

− (b(abct + (aar + bat − 2abt)c + b2ar)r − ω2 + aω)
(ωr)2 , (B 3)

G11 = c((abct + (aar + bat − 2abt)c + arb2)r − ω2 + aω)
(ωr)2 + b(ωct + abcr + bcar + 2b2bar)

ω2r
(B 4)

and G22 = −

r((2ωctt − ac2
t − (atc + arb + 2bbt)ct

+(aar + atb − 2abt)cr + (a2
r − 2aarr + 4abrt − 2atbr)c

−2b(arbr − arrb + 2brbt + 2bbrt))r − 2a(acr + bct)
+2(2abt − atb − aar)c + 4b(abr − arb))

4ω2 . (B 5)

Appendix C. Non-zero Christoffel symbols of the second kind
The Christoffel symbols of the second kind are given by

Γ a
bc = gad(∂cgbd + ∂bgcd − ∂dgbc)

2
, (C 1)

where ∂c denotes ∂/∂xc and when applied to the metric given by equation (1.4) the non-zero, independent
Christoffel symbols become

Γ 0
00 = (atc − arb + 2bbt)

2ω
, Γ 0

01 = (arc − bct)
2ω

,

Γ 0
11 = (cct − bcr + 2brc)

2ω
, Γ 0

22 = br
ω

,

Γ 0
33 = (br sin2 θ )

ω
, Γ 1

00 = atb + aar − 2abt

2ω
,

Γ 1
01 = (act + arc)

2ω
, Γ 1

11 = bct + acr + 2bbr

2ω
,

Γ 1
22 = − ar

ω
, Γ 1

33 = − (ar sin2 θ )
ω

,

Γ 2
12 = 1

r
, Γ 2

33 = − cos θ sin θ

and Γ 3
13 = 1

r
, Γ 3

23 = cot θ . (C 2)

Appendix D. Integration formulae
To explicitly determine the expression for ξ from equation (4.14) consider the expanded expression
given by

ξ = τ +
∫

r
r + r0

dr +
∫

[r2 − β(r + r0)]1/2

r + r0
dr, (D 1)

where attention will be restricted to the second integral. We begin by making the substitution
x = (r + r0)−1, where dr = −dx/x2 so that the second integral in equation (D 1) becomes

−
∫

[(xr0)2 − x(2r0 + β) + 1]1/2 dx
x2 . (D 2)

The integral given by equation (D 2) becomes
√

R
x

+
(

r0 + β

2

) ∫
dx

x
√

R
− r2

0

∫
dx√

R
, (D 3)
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................................................
where R = (r0x)2 − (2r0 + β)x + 1 and to evaluate we consult [14, pp. 81, 84] from which we may deduce

∫
dx

x
√

R
= − ln

[
2 − (2r0 + β)x + 2

√
R

x

]

and
∫

dx√
R

= 1
r0

ln[2r0
√

R + 2r2
0x − (2r0 + β)],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(D 4)

respectively. Furthermore, using the relation

√
R = [r2 − β(r + r0)]1/2

r + r0
, (D 5)

with equation (D 4), we may evaluate equation (D 3) completely given by

ξ = τ + r + [r2 − β(r + r0)]1/2 −
(

r0 + β

2

)
ln
(

[r2 − β(r + r0)]1/2 + r − β

2

)

− r0 ln
(

[r2 − β(r + r0)]1/2 − r − β(r + r0)
2r0

)
+ ξ0 (D 6)

and the expression for η may be similarly obtained.
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