Lineare Algebra und analytische Geometrie II

Arbeitsblatt 46

Übungsaufgaben

AUFGABE 46.1. Sei p eine Primzahl und sei G eine Gruppe der Ordnung p. Zeige, dass G eine zyklische Gruppe ist.

AUFGABE 46.2. Sei G eine endliche Gruppe. Zeige, dass jedes Element $g \in G$ eine endliche Ordnung besitzt, und dass die Potenzen

$$g^0 = e_G, g^1 = g, g^2, \dots, g^{\operatorname{ord}(g)-1}$$

alle verschieden sind.

AUFGABE 46.3.*

Es sei R ein kommutativer Ring mit p Elementen, wobei p eine Primzahl sei. Zeige, dass R ein Körper ist.

AUFGABE 46.4. Bestimme die Untergruppen von $\mathbb{Z}/(15)$.

AUFGABE 46.5. Bestimme die Nebenklassen zu den folgenden Untergruppen von kommutativen Gruppen.

- (1) $(\mathbb{Z}, 0, +) \subseteq (\mathbb{R}, 0, +)$.
- (2) $(\mathbb{Q}, 0, +) \subseteq (\mathbb{R}, 0, +)$.
- $(3) (\mathbb{R}, 0, +) \subseteq (\mathbb{C}, 0, +).$
- $(4) (\mathbb{Z}n, 0, +) \subseteq (\mathbb{Z}, 0, +) (n \in \mathbb{N}).$
- (5) $(\{z \in \mathbb{C} | |z| = 1\}, 1, \cdot) \subseteq (\mathbb{C} \setminus \{0\}, 1, \cdot).$
- (6) $(\{z \in \mathbb{C} | z^n = 1\}, 1, \cdot) \subseteq (\{z \in \mathbb{C} | |z| = 1\}, 1, \cdot) (n \in \mathbb{N}).$

Wann bestehen die Nebenklassen aus endlich vielen Elementen, wann ist der Index endlich?

AUFGABE 46.6. Es sei $G=S_3$ die Permutationsgruppe zu einer dreielementigen Menge. Welche Zahlen treten als Ordnungen von Untergruppen und welche als Ordnungen von Elementen auf?

AUFGABE 46.7. Es sei K ein Körper, $n \in \mathbb{N}_+$, $\mathrm{GL}_n(K)$ die allgemeine lineare Gruppe der invertierbaren Matrizen und

$$SL_n(K) \subseteq GL_n(K)$$

die Untergruppe der Matrizen mit Determinante 1. Zeige, dass die Linksnebenklasse (und auch die Rechtsnebenklasse) zu $M \in GL_n(K)$ gleich der Menge aller Matrizen ist, deren Determinante mit det M übereinstimmt.

Zeige auf möglichst viele Weisen, dass $SL_n(K)$ ein Normalteiler in $GL_n(K)$ ist.

Aufgabe 46.8.*

Seien G und H Gruppen und sei

$$\varphi \colon G \longrightarrow H$$

ein Gruppenhomomorphismus. Zeige, dass das Urbild $\varphi^{-1}(N)$ eines Normalteilers $N \subseteq H$ ein Normalteiler in G ist.

AUFGABE 46.9. Zeige, dass der Durchschnitt von Normalteilern N_i , $i \in I$, in einer Gruppe G ein Normalteiler ist.

Aufgabe 46.10. Seien G und H Gruppen und sei

$$\varphi \colon G \longrightarrow H$$

ein Gruppenhomomorphismus. Ist das Bild von φ ein Normalteiler in H?

Die nächste Aufgabe verwendet das Konzept einer exakten Sequenz.

Seien G_0, \ldots, G_n Gruppen und $f_i: G_{i-1} \to G_i$ Gruppenhomomorphismen derart, dass kern $f_{i+1} = \text{bild } f_i$ für $i = 1, \ldots, n$ gilt. Dann heißt

$$G_0 \to G_1 \to \ldots \to G_{n-1} \to G_n$$

eine exakte Sequenz von Gruppen.

Aufgabe 46.11. Sei

$$G_0 \to G_1 \to \ldots \to G_{n-1} \to G_n$$

eine exakte Sequenz von Gruppen, wobei alle beteiligten Gruppen endlich seien und $G_0 = G_n$ die triviale Gruppe sei. Zeige, dass dann

$$\prod_{i=0}^{n} \#(G_i)^{(-1)^i} = 1$$

gilt.

Aufgaben zum Abgeben

Aufgabe 46.12. (2 Punkte)

Bestimme die Untergruppen von $\mathbb{Z}/(20)$.

Aufgabe 46.13. (3 Punkte)

Sei M eine endliche Menge und sei σ eine Permutation auf M und $x \in M$. Zeige, dass $\{n \in \mathbb{Z} | \sigma^n(x) = x\}$ eine Untergruppe von \mathbb{Z} ist. Den eindeutig bestimmten nichtnegativen Erzeuger dieser Untergruppe bezeichnen wir mit ord_x σ . Zeige die Beziehung

$$\operatorname{ord}(\sigma) = \operatorname{kgV} \{ \operatorname{ord}_x \sigma | x \in M \}$$
.

Aufgabe 46.14. (2 Punkte)

Seien G und H Gruppen und sei

$$\varphi \colon G \longrightarrow H$$

ein surjektiver Gruppenhomomorphismus. Zeige, dass das Bild $\varphi(N)$ eines Normalteilers $N\subseteq G$ ein Normalteiler in H ist.

Aufgabe 46.15. (2 Punkte)

Zeige, dass jede Untergruppe vom Index zwei in einer Gruppe G ein Normalteiler in G ist.

Aufgabe 46.16. (2 Punkte)

Sei G eine Gruppe und sei M eine Menge mit einer Verknüpfung. Es sei

$$\varphi \colon G \longrightarrow M$$

eine surjektive Abbildung mit $\varphi(gh)=\varphi(g)\varphi(h)$ für alle $g,h\in G$. Zeige, dass M eine Gruppe und φ ein Gruppenhomomorphismus ist.

Aufgabe 46.17. (5 Punkte)

Man gebe ein Beispiel von drei Untergruppen $F\subseteq G\subseteq H$ an derart, dass F ein Normalteiler in G und G ein Normalteiler in H, aber F kein Normalteiler in H ist.