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ABSTR^^CT

This thesis is a study of a computer controlled hydraulically actuated piston. The

system uses a Hewlett Packard HP85B microcomputer as a controller. Included in this

research is a detailed computer simulation of the system with laboratory' validation.

This effort supports the overall goal of complete study of microcomputer control of

electrohydraulic power systems by the establishment and simulation modeling of a

baseline system. Special emphasis is placed on modeling the effects of the computer on

overall system performance. It was found that sample period is one of the most

important factors influencing the ability to control a hydrauUc power element using a

microcomputer. Proper selection of the sampling period alone is not always sufficient

to insure the ability to control the plant. Other factors such as non-linearities in the

plant may influence the ability to use a digital controller.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every efTort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk, of the user.
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I. INTRODLCTIOiN

A. BACKGROUND
Hydraulic systems in one form or another have been around for a long time.

These systems have historically relied upon humans in the open loop case or analog

electrical circuits in the closed loop case for system control. In recent years hov^ever a

quiet revolution has been taking place in the hydrauhc systems industry. With the

current rapid advances in digital technology hydraulic systems are fast becoming fertile

ground for the application of digital control. Not only are digital circuits being

designed for standard control functions but with the advent of microprocessors these

circuits are becoming "thinking" controllers. It is this trend which motivates the

detailed study of microprocessor controlled hydraulic systems.

The Department of Mechanical Engineering has begun a continuing program of

study on the subject of microprocessor control of electrohydraulic servomechanisms.

The overall objective of the work is to provide some of the insights necessai7 for the

establishment of a comprehensive and systematic framework embodying the design of

microprocessor-controlled electrohydraulic servomechanisms. This thesis study follows

the initial work done by Finch [1] in an effort to achieve this objective.

1. Advantages/Disadvantages of Hydraulic Systems

Hydrauhc systems offer several unique advantages over other power devices.

These systems are well suited for applications where low component weight, high

accuracy, and heavy load movement is required. Merritt [2] states the following

specific advantages of hydraulic systems:

1. Smaller, lighter more compact components.

2. Hydraulic fluid acts as a lubricant which extends component life.

3. There is no phenomenon in hydraulic components comparable to the saturation

and losses m magnetic materials of electrical machines.

4. Hydraulic actuators have a higher speed of response with fast starts, stops, and

speed reversals possible.

5. Hydraulic actuators may be operated under continuous, intermittent, reversing,

and stalled conditions without damage.

6. Hydraulic actuators have a higher stiffness so there is little drop in speed as

loads are apphed.



7. Open and closed loop control of hydraulic actuators is relatively simple using

valves and pumps.

There are some disadvantages to the use of hydraulic systems and no

discussion would be complete without at least mentioning them. Merritt [2] lists these

shortcomings as follows:

1. HydrauUc power is not as conveniently available as electrical power.

2. Small allowable tolerances result in high costs for the manufacture of hydrauUc

components.

3. The hydraulic fluid imposes an upper temperature limit.

4. Hydraulic fluid may present a fire hazard.

5. Hydraulic systems are messy.

6. Hydraulic systems are susceptible to failure due to dirt or contamination of the

fluid.

Although these disadvantages may preclude the use of a hydraulic system in

some specific appUcations, their widespread use attests to their versatility and

usefulness. Hydraulic systems are of the most use in appUcations where relatively high

power levels are required especially within confined spaces. This explains their

widespread use in aircraft control surface positioning, fin stabilizer positioning on

ships, and even as a means of propulsion in special applications such as on some

SWATH vessels.

2. Advantages of Digital Microprocessor Control

Until recently hydraulic systems have relied upon analog circuitry for control.

More and more these systems are being manufactured with digital control. One would

logically ask what advantages this offers over the proven analog controller. Aside from

the increase in reliability and decrease in signal voltages necessary, the major advantage

to digital control is the ability to incorporate a microprocessor in the circuit. This

improvement broadens the range of functions that may be included in the control loop.

Henke [3] lists the following new functions for the controller:

1. Closing the loop, replacing the analog summing point and conditioning the

error signal.

2. Pre-loop processing

3. Peripheral Processing

4. Adaptive Control

5. Smart Redundancy

6. Time Optimal Control

10



Along with increasing ihe range of applications there are other major

advantages to the use of digital microprocessor control circuits for hydraulic systems.

No doubt a leading advantage is cost. As the complexity of the control system rises

analog control circuitr\' costs rise dramatically. Although this trend is seen with digital

systems the rise in cost is less dramatic. In addition, the cost of changing an analog

control circuit once in place is much greater than a digital circuit which incorporates a

microprocessor [4].

Another major advantage of digital microprocessor control is flexibility.

While analog circuits may require component changes and rewiring, digital

microprocessor circuits may require only reprogramming. This may be accomplished

by either keyboard entr\' or by simply reprogramming a memory chip. This reduces

the time and cost of making changes to the control system. It may also enable the

overall system to be used for several functions rather then one specialized task.

3. Previous Thesis Work

In Ref 1, Finch reports the results of his study of a microcomputer controlled

hydraulic motor. He used a 512K Macintosh computer and a product of GW
Instruments called MacADIOS as as interface to control a hydraulic system consisting

of a hydraulic power source, servovalve and hydraulic motor. In this work the

computer was used for both open and closed loop signal processing and conditioning.

Finch was successful in implementing the computer as a system controller and

establishing a baseline system for follow-on work. He used Dynamic Simulation

Language (DSL) programs to predict system performance but his analysis did not

include any digital microprocessor dynamics in these simulations.

B. OBJECTIVES

Finch made several recommendations for follow on work. One of these was that

piston actuator systems be studied in further detail since "a large variety of hydraulic

systems involve the positioning of loads using a piston-type arrangement." One of the

main objectives of this thesis effort has been to study the hydraulically controlled

piston response in detail. A Hewlett Packard HP85B microcomputer has been used as

the system controller. An additional objective was to model the computer dynamics

for a more accurate simulation of the overall system.

11



C. APPROACH

To begin the study a thorough understanding of the analog system was sought.

This began with a disection of the system into individual components so that a linear

mathematical model could be developed for each. The component equations were then

combined and coded in a simulation using DSL. Step input performance predicted by

the simulation was verified by lab testing. Once the analog system was fully

understood and confidence was gained with the simulation a microcomputer control

system was added. Adding this system required the construction of a digital or discrete

time model to represent it. This was then combined with the analog model to develop

the overall didtal system simulation.



II. AiNALOG SYSTEM

A. DESCRIPTION OF THE SYSTEM

The test bench set up used for experimentation includes: a hydraulic power

source (TO gpm @ 1000 psi), a Vickers SM4-15 flapper nozzle piloted servovalve, a

Sheffer double-acting hydraulic piston (with 6 inches of travel), and a Vickers

servoampiifier with a built in regulated power supply. Figure (2T) shows a simplified

system drawing which represents the analog configuration.

Servo
Valve

Input

(volts)

,011

Oil

Servo
Amp

Oil

Oil

Feedback

^volt:5=!

T3

o

^-1

o

c
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dL.

u
Q)

o

0)

o o
•H U
rH D
P O
03 CQ
U

Figure 2.1 Analog System.

Figure (2.2) is a schematic representation of the servoampiifier. While the

amplifier has many capabilities, only the power stage preamp and power stage output

sections are used in this research. Reference and feedback voltages var\'ing between

+ 12 and -12 volts are applied to the power stage preamp input (terminals 4 and 5).

These voltages are summed internally and the resulting error signal passes through the

amplifier to the ser/ovalve. The servovalve pilot-stage is driven by two 20 ohm coils in

parallel which give it an equivalent resistance of 10 ohms. The current supplied to the

servovalve is limited in the power stage preamip to 200 mA to prevent damage to the

13



coils. The power amplifier gain may be varied fi-om 110 to 1520 mA/volt. Figure (2.3)

shows the relationship between current output and voltage input of the servoamplifier

at the two extremes of the amplifier gain.

B. COMPONENT EQUATIONS

1. ServoValve Dynamics

The serv'ovalve used was found through experimentation to be slightly open

centered but will be considered critically centered for the purposes of modeling. {The

degree of open centered behavior is so slight that the more complicated model is not

warranted.) The general equation describing the operation of a critically centered

spool valve is:

Ql = =d"'^v<P'"'^''^s-^L'''^' (2-1)

Qj^
= fiow through the load

C^ = discharge coefficient

w = area gradient

Xy = valve spool displacement

P = mass density of the hydraulic fluid

Pj = supply pressure

Pj^ = load pressure drop

Modification to Eq. (2.1) is necessary due to the difficulty in directly

measuring valve spool movement. To reflect this, the following parameter which

relates valve spool movement to current applied to the valve torque-motor coils, is

defined:

V
(p)

/^ \ I /

With this substitution, Eq. (2.1) becomes:

%
o.=V(P3-.'"

''-''

14
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Ky = valve current transfer coefTicient

(3.52xlO"^in^'sec-ma-psi^/^)

I = current supplied to the valve

Note that the use of the modified valve current transfer coefficient presumes a linear

relationship between the current supplied to the valve coils and valve spool position.

Experiments have proven this to be a valid assumption.

Equation (2.3) must now be linearized to facilitate modeling and studies of

system response. The no-load null valve spool position is chosen as the center point

for the linearization. Reasons for this choice are "system operation usually occurs near

this region, the valve flow gain is largest, giving high system gain, and the flow-

pressure coefficient is smallest, giving a low damping ratio. Hence this operating point

is the most critical from a stability viewpoint, and a system stable at this point is

usually stable at all operation points. "[2] The linearized form of Eq. (2.3) is:

QL=^ai^^"^ci^^L (2.4)

where

K .=K (P^-P^) '

qi V s L

K„: = modified null flow gain

0.5 K^AI

K^- = modified null flow pressure coefficient

Subscript refers to conditions at the operating point and a ^ denotes departures from

this point. Since we are linearizing about the null position, i.e. Q|^q ^ *^' ^0 ^ *^' '^'^'^

^LO ~^' ^'^' ^'^'^^ ^^y ^^ written:

(2.5)
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2. Piston Dynamics

For the piston actuator the model suggested by Merritt [2] is adopted as

V P

L p p tp L (2.6)4 6^

where the (*) notation indicates rate of change and

A- = piston area

C^p = total leakage coefficient of piston

V^ = total volume of piston chamber and supply hose
q
e = elTective fluid bulk modulus

The total leakase coefficient is dven bv:

C =C. +0.5C_^^
tp ip ep

where

Cj-, = internal leakage coefficient

Cp_ = external leakage coeffiicientcp

For the system under investigation in this study, the external leakage has been

determined to be negligible and C^_ = Cj . With this simplification, and after Laplace

transformation (with zero initial conditions), Eq. (2.6) becomes:

Ql ^^^ =\^^p ^^)
-"^tp^L

^^^ '^cp^^L ^^^
(2.7)

where the fluid capacitance is

cp 4 6

3. Load Dynamics

The load is modeled as a simple spring, mass, damper system. In the general

form:

F =M X +B ic +Kx +F. /o nxgtppp pi- ^-^.'

17



where

Fg = • force developed by piston

M^ = total mass accelerated

B_ = viscous load damping coefficient

K = spring load constant

F^ = arbitrary load force on piston

The force generated by the piston is determined by the piston area, the load

pressure drop, and an efficiency to account for losses in the actuator. In this specific

application there were no spring forces so K = 0. The equation is now transformed into

the Laplace domain with the the following result:

n^ApP^ (s) =M^s^Xp (s) +BpSXp (s) +Fl (2-9)

C. ANALOG SYSTEM MODEL
Now that the linear mathematical model for each component of the system has

been developed, these equations can be combined to formulate the model for the

hydraulic power element with servovalve current as an input. First Eq. (2.5) is equated

to Eq. (2.7) to eliininate Qj^. This combined equation is then rearranged to express Pj^

as a function of the input current and the piston velocity. The result is:

„ , ,
^ ^ ^ Cl IP

P^(s) —

Cl ip

After rearrangement, Eq. (2.9) may be written:

(n.A P (s)-F ) (h^)

SX (S =X (S = r-.

P P ^4-
(gi s + 1)

Equations (2.10) and (2.11) suggest the definition of two time constants, as follows:

IS



cp
T^=

K

T =
2

M

B
ce

where K^g=K^j + C-_ (efTective leakage coefficient). The resulting block diagram is

shown in Figure (2.4).

^L
(s)

X (s)I(s K . Uv^ 1

T s + 1
'^f^m^

1

T^S+l
x^(s 1 1

s

r^y
G

A
p

Figure 2.4 Analog System Block Diagram.

D. ANALYSIS OF THE SYSTEM

From preliminary lab observations the closed-loop analog system exhibits first

order response behavior at low frequencies. It is clear from Fig. (2.4) that the

hydraulic power element is third order. In an effort to understand this apparent

contradiction further analytic analysis of the system is necessary. The results will serve

as a benchmark for the computer simulation and system experimentation. Of prime

interest are the system time constants and break frequencies.

First some block diagram reduction is useful. Under no-load (Fj^ = 0), the piston

velocity may be represented by the following transfer function:

Gp(s) =

sx (s)
p

£ P
B K
p ce

K
qi I (T,s+1) (T^s+l) +

B K
p ce

(2.12)
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With some further simplification Eq. (2.12) may be rewritten:

G (s)= ^ (2-13)

s + £b. s + 1
OJ 2 0),

h h

where: n ^A
f D

K =
B K
p ce

1 + - ^
^

B K
p ce

1 + -^-^
B K

2 _ P ce
h T.T^

^1 + ^2

^^ W
p ce

Recall K^g incorporates the piston internal leakage (C--) and the modified null

flow pressure coefficient (K^j). It is known from experimentation and observation of

the system that C- is on the order of 10 in /sec-psi. What is necessary' is to

estimate the range of values over which K^- will var^^ Referring to Eq. (2.4), the

maximum value of K^.- will occur when 1 is 200 mA and the valve is fully open.

Putting in the values for this application (Pg=800 psi,
^i^q^^^)

we obtain a value of

0.012 in /sec-psi. A lower bound must now be found. According to the servovalve

manufacturer the maximum quiescent flow at the null valve position is 0.35 gpm at

3000 psi. The system used for experimentation was run at 800 psi so one would expect

that using the 3000 psi quiescent flow figure would give a conservative estimate o[ the

lower bound. Using this figure for the lower bound the overall range of values for K^^

20



is from 5.0x10"^ in-^/lb-psi to 1.2xl0''^ in^'lb-psi. In response to step inputs, the valve

is fully open for a majority of the time so that a value of 1.4x10"-^ in-^/lb-psi has been

selected for K^g under these conditions.

Noting that K^g and B are ver\' small so that division by their product is a

number which is very much greater than 1, the following simplifications to the

constants of Eq. (2.13) are made:

00, =

2J;

OJ

^= A
P

^f^P

2 Vce
h -

^1^2

h
Ti + ^2

h ^f^;
B K
p ce

The final block diagram of the closed-loop system is shown in Fig. (2.5), with G^

denoting the power amplifier transfer function (assumed to be a simple gain in this

analysis).

^e|s)
=A

I

K .

G -^
P s ^p' s)

I

>

ep(s)

V

Figure 2.5 Closed Loop Analog System Block Diagram.

From this block diagram the overall transfer function is given as:

:i



K .

X (s) G^(s)G (s)-^i
P = ^ P s (2.14)

eTTiT 1 + H(s)G. (s)G^(s)K .

r A p qi

When doing laboratory experiments the output (x ) is compared to the input (e^.)

in its feedback form e . Noting that e (s)= H(s)Xp(s) and making the substitution for

the plant transfer function the closed-loop transfer function becomes:

K

s(-^ +^''h s + 1) + K
(2.15)

where

^h

K= G (s)K H(s)K .

A p qi

In order to make an estimate of the break frequencies of the closed loop system

some work with the characteristic equation is required. The characteristic function of

Eq. (2.15) may be approximated as:

(s+K) [s +(2?, oj, -K)s+u^]n h h

under the condition that

This condition is satisfied in the present case and Eq. (2.15) may therefore be

approximated as:

e (s) K(o,, (2.16)^
e TiT (s+K) (s^+ojj^)

The values for K and oj, are 30 sec'^ and 261 sec respectively (see Appendix A for

constant values used to obtain these results). This yields a break frequency and

hydraulic natural frequency of about 4.8 Hz and 41.6 Hz, respectively.



The conclusion to be drawn from this analysis is that the analog closed loop

system acts like a first order system for low frequencies and a third order system with

minimal damping at the higher frequencies. The hydraulic power element has ver\- low

damping which would make it unstable were it not for the integrating eflccts of the

(s+ K) term in the characteristic equation.

E. FREQUENCY RESPONSE TEST

To verify the analytic results of the previous section, frequency response tests

were conducted. The results are shown in Fig. (2.6a and 2.6b). From these figures two

break frequencies are observed within the range of measurable system output, one at

2.7 Hz and one at 13.8 Hz. The second break frequency lies near the value estimated

for the servovalve, which heretofore has been modeled as a simple gain.

Although the first break frequency of 2.7 Hz. is less than the predicted value of

4.8. this can be explained, at-least partially, by the uncertainty in the values leading to

this estimate. In addition, the amplitude of the input sine wave in these tests caused

the valve to be actuated over 43 °o of its range of motion to either side of null. Such

large excursions may be outside of the region where the valve flow linearization is

valid, with the result that the amplitude plot is attenuated below the predicted linear

response. In any case, the predicted dominance of the first break frequency is verified

by the tests.

F. MODEL VALIDATION

Once a thorough theoretical understanding o[ the analog system was achieved a

DSL simulation was written using Fig. (2.4) and Fig. (2.5) as guides. The simulation

code is given in Appendix A. Figure (2.7) shows a comparison of experimentally

obtained data and the model for a 0.195 in. step input. Agreement between predicted

and actual performance is good at low step inputs however as the size of the step

increases the model prediction becomes less accurate. Figure (2.8) shows a 1.785 in.

step input response. Step response comparisons for steps between these values are

given in Appendix B.

The most likely explanation for the degradation of model performance as the step

size increases has to do v^ith the valve linearization. Since this linearization was done

around the null valve position one would expect more model prediction error with

increasing step size. This is because as the step size is increased large excursions of the

valve are required. Eventually the step size becomes so large that the valve goes to the
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fully open position. Once this occurs increasing the step size further causes the valve

to remain in. this fully open position longer.

Stiil another explanation lies in the values of some of the constants used. The

model is sensitive to changes in the load damping constant (B_) which was obtained

empirically. The model also shows sensitivity to the value of the modified null flow

coefTicient (K^-). Both of these constants were refined from initial estimates to obtain

the model performance shown in Fig. (2.7) and Fig. (2.8). Similar performance may

possibly be obtained by the vanation of the actuator efficiency (n ^) and the value for

the effective bulk modulus (S J which are also empirically based.
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III. DIGITAL SYSTEM

A. DESCRIPTION OF THE SYSTEM

The digital system includes all the components of the analog system plus the

following Hewlett-Packard computer and interface equipment which together comprise

the microcomputer control system.

HP 85B computer

HP 82901M twin flexible disc drive

HP 7470A plotter

HP 6942A mukiprogrammer with:

2 A,'D converter cards

1 DA converter card

1 high speed memory card

1 memory expansion card

1 timer/pacer card

Figure (3.1) shows the complete digital system. Where previously the reference

signal was fed to the power stage input (terminal 4) on the servoamplifier the error

signal from the digital controller is now applied. The feedback signal is fed to the

digital controller so that the differencing operation is shifted from the servoamplifier to

the microcomputer controller.

The operation of the system under study begins with the operator entering a

desired position in inches at the microcomputer keyboard. At this point the computer

algorithm (see Appendix C) samples the feedback signal to determine the load position.

This information is passed through the controller portion of the algorithm and an error

signal is generated and sent to the servoamplifier. The generation of the error signal

continues until the load reaches the desired position. The algorithm includes a position

checking routine which maintains the commanded position until a new value is entered

at the keyboard.
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B. DIGITAL COMPONENT EQUATIONS
1. Application of the Analog Component Equations

The analog component equations developed in chapter two are applicable to

the digital system with digital control. They collectively will comprise the plant model

which the microcomputer controls.

2. Computer System Dynamics

To model the computer dynamics a digital or discrete time model is necessary.

Areas important for consideration in the construction of this model are: understanding

the meaning of sampling rate, modeling the effects of sampling, and modeling the type
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of plant control used. The sampling rate is not merely the time the analog-to-digital

(A;D) and digital-to-analog (D/A) converters take to process signals. It must also

include the time taken for the controller algorithm to process the input signals and

generate an output signal. Thus the sampling period "T" is the total time which

elapses between sampling of the feedback signal and transmittal of the error signal.

The effects of sampling are more clearly understood if first an example of how

the system operates is presented. Let us say the load is at the center (null) position.

At time t = a 1-in. position is requested at the keyboard. This causes the position

feedback input to be sampled, inverted and summed with the requested position. Next

the summed signal is passed through the controller algorithm and the resulting error

signal transmitted to the servoamplifier. The error signal remains at this level until one

sampling period (IT) has elapsed and it is updated. For example, if the sampling

period were 100 ms and the inital error signal 10 volts, 10 volts would be continuously

sent to the servoamplifier for a period of 100 ms. Then presumably the error signal

would be updated to say 5 volts and 5 volts would be continuously sent to the

servoamplifier for the next 100 ms etc.

In the analog system a smooth continuous error signal resulted from the

summation of the reference and position feedback signals. In the microcomputer

control system the error signal produced is a continuous series of steps. A signal of

this form is said to be "quantized." The steps have a duration of one sample period. If

the sample period is too long then the error signal is not changing fast enough to

control the s^'stem. This \^ill cause the system to be unstable. To prevent this, a rule

of thumb adapted from Shannon's Sampling Theorem is used. The rule suggests that

the sampling frequency be ten times as large as the highest break frequency of the

system.

One of the ways to model the behavior of the microcomputer control system

is shown in Fig. (3.2). While there are several types ot holding devices the zero-order

hold is best suited for this application. The zero-order hold takes in a digital value and

outputs that value continuously until one time period has passed and it receives an
*

updated digital value. The input to the zero-order hold is e^(t) {where the (*) denotes a

digital or discrete time signal} which is the error signal generated by passing the

summed signal e^(t) through the controller G^,. The output from the zero-order hold

is ejkT) the quantized error signal. The combination of the switch and the zero-order

hold represent the D/A converter.
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Figure 3.2 Microcomputer Controller.

The plant controller G^ represents that part of the algorithm which contains

the controller logic. This logic can take the form of a simple gain or be more

complicated such as a proportional-integral-derivative controller. To model this a

discrete time representation of G^ must obtained. To help illustrate the process an

example is presented. The approach begins by obtaining the Laplace domain

representation of the controller transfer function {G^(s)}. Say the controller uses

integral control action. This is represented in the Laplace domain as:

G^(s) =
e (s) K.
e _ 1

(3.1)

* I

Next G^(s) must be transformed to the Z or discrete time domain by obtaining the Z-

transform. This may be done by one of three methods: by transforming first to the

time domain and then to the Z-domain (the rigorous approach), by an approximation

method such as Euler's or backward difference, or by using tables. For this example a

table was used to obtain the following:

e*(z)
G(z) = -l-i

e (z)
e

K. z
= 1

z-1
(3.2)

Dividing the top and bottom of Eq. (3.2) by z the following results:
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* K.

e (z) 1-z
e

With some rearrangement Eq. (3.3) can be w-Titten:

e*(z) = K.e*'(z) + e*(z)z"-^ ^^-"^^

e 1 e e

The inverse Z-transform is now taken for each term of Eq. (3.4) to obtain the discrete

time model.

(t) = K.e*' (t) + e*(t-T)
^^'^'^

* *
The ee.(t-T) term represents the value of e^(t) one time period backwards and is known

* * n
as the first past value of e^(t). Had the e^(z) been multiplied by z in Eq. (3.5) then

* *
this would have mversely transformed to et(t-nT) which represents the value of e^(t) n

time periods in the past.

Had Eq. (3.3) been more complex a more rigorous approach would have been

employed. The equation would have been arranged in such a manner as to permit its

representation as a geometric series or a combination of several geometric series. Then

the remainder of the procedure would be followed as in the previous example with the

complication that rather than a finite number of terms the number of terms (in Eq.

(3.5) for example} would be infinite. A decision would have to be made as to how

many terms to use to approximate the series. Usually only the first few terms are

needed to yield sufficient accuracy for modeling. [5, 6]

For this specific application a proportional controller is used so that

G^=K . In this case it is not necessan.' to go through the various transformations

since K-„ is merely a constant and remains so in the discrete time domain.

C. DIGITAL SYSTEM MODEL
The digital system model is a combination of the continuous time plant model

developed in chapter two and the discrete time microcomputer controller model
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explained in this chapter. The block diagram of the system model is shown in Fig.

(3.3).

e* (£)

=c
T

ZOH
=A

K . Xp(s)

P s

H

Figure 3.3 Digital System Model.

D. MODEL VALIDATION

Once confidence was gained in the validated analog simulation, coding was added

to model the microcomputer control system. The biggest problem in obtaining an

accurate simulation was predicting the value for T. A value of 0.35 sec was chosen

based on timing the execution of the controller segment of the computer algorithm.

Using this value and K = 1.0 the simulation predicted a stable limit cycle response to

any size step input. With K_^ = 0.05 the simulation predicted stable responses to

various step inputs similar to those obtained from the analog system. At this point lab

validation of these results was attempted.

The prediction of performance with K__=1.0 was qualitatively correct. Stable
pc

limit cycle performance was observed regardless of the size of the step input. Next

K^ = 0.05 was attempted. At first it appeared that again the simulation had predicted

the performance accurately. As time wore on however step responses became more

and more oscillatory until once again, stable limit cycle response to any size step was

observed. After some thought it became clear that what had varied over the time of

the testing was the temperature of the oil. At the beginning of the tests the oil

temperature was between 65 F and 75 F and stable step response behavior was
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observed. As the oil heated, more and more oscillatory response was observed.

Finally, around 85 °F limit cycle response resulted. With these findings an operating

temperature range of 100°F to 1I0"F was chosen for the remainder of lab testing. This

is not to say that the failure of the microcomputer to control the plant is solely a result

of variations in the oil temperature. In fact the analog system was stable regardless of

the temperature and one would expect similar performance from the digital system.

The system performance with regard to oil temperature is interesting to note. By

way of explanation of this behavior as the temperature goes up the oil viscosity

decreases by a factor of about 10 in the range 65°F to lOO'^F. This in turn decreases

the viscous damping on the already highly underdamped plant. This is true for both

the analog and digital systems, however, and still does not explain the failure of the

digital simulation to accurately predict system performance, given an adequate

sampling frequency.

One of the critical parameters for stable digital control is the sample period.

Using the rule of thumb suggested by Shannon's sampling theorem a sampling period

of no more than 2.0xlO''' sec should be used. This value is obtained using the value of

the hydraulic natural frequency as the highest plant break frequency. This insures an

adequate sampling period but does not account for effects of changing the controller

gain. Reducing the controller gain slows the response time of the entire system and

thus a longer sampling period may be tolerated. To reflect this a slight variation of the

rule of thumb is used. Rather than using ten times the highest break, frequency, ten

times the open loop bandwidth of the system frequency response is employed. The

bandwidth is approximately K, the open loop gain. With K „= 1.0 a sample period of

25x10 sec was obtained. This means our controller is sampling too slowly to control

the plant. With K^ = 0.05 a sample period of 0.5 sec is obtained. This indicates that

the digital controller using this gain should be able to control the plant. This serves to

substantiate the predictions made by the simulation but does not help explain why the

system exhibits limit cycle performance even with the lower controller gain.

Next investigated was the digital logic. It was felt that perhaps the DSL

functions were not performing as expected. The response to a 3 in. step was requested

and the values for the position {x_), the current supplied to the servovalve (I), and the

error signal values were observed. A portion of the data run is included in Appendix

E. The data indicates that the digital logic included in the simulation is working

correctly and is not the source of prediction error.
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The reason for the failure of the digital simulation to predict the system

performance remains unfound. It is felt by the researcher that the logic used in the

model is correct. Time constraints prevented the investigation of other possibilities.

For instance, the system with digital control may be more sensitive to the non-

linearities inherent in the plant. This would explain why the analog model gave

accurate predictions while the digital simulation did not. Accurate simulation of these

non-linearities may be required to improve the digital simulation prediction

performance. Finally, as already discussed, several of the constants used were

empirically obtained and may be effecting the performance of the digital model more

adversely than the analog. It is only after confidence in these constants is obtained

that this possibility can be ruled out. Therefore any future work should begin here.
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IV. CONCLUSIONS AND RECOMMENDATIONS FOR FOLLOW ON
WORK

A. CONCLUSIONS

Microcomputer control of hydraulically actuated systems is possible and ofTers

many advantages over conventional analog control. Of extreme importance in digital

control IS the sample period. Selection of control hardware/ software should not be

undertaken without first understanding the plant. An estimate of the highest break

frequency must be obtained to determine the necessary sampling period. Only after

this is determined can one properly select hardware/software for the plant controller.

But proper selection of the sampling period is not enough. Non-linearities in the plant

may cause instabilities in the digitally controlled system. It is theorized by the

researcher that further reductions in the sample period will overcome this problem for

the system studied. It was not possible to verify this, but the fact that the analog

system was stable certainly indicates that somewhere between a sample period of 0.35

sec and 0.0 sec stability is achieved.

B. RECOMMENDATIONS FOR FOLLOW ON WORK
1. Valve Linearization

One of the greatest weaknesses of the analog and digital models lie with the

linearization of the valve flow equation. Much of the time the valve is operating at the

fully open position rather than null position. Because a choice of one position had to

be made for this thesis research the null position was most logical for reasons already

mentioned. Certainly using a number of linearizations over the full range of valve

spool miovement would yield more accurate simulation results. As the valve transitions

through its range of positions different (more accurate) linearization constants would

be applied. It is theorized that this approach will improve the performance of both

models.

2. Plant Characterization

For the purposes of this initial research a sine wave generator was used to

generate a low amplitude sine wave at several different frequencies to characterize the

plant. While this was adequate for this work more accuracy and the ability to filter

out noise at higher frequencies are necessary to fully characterize the plant. Doing this
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will help to further confirm the analytical theory presented and more accurately fix the

empirically obtained constants. This work can be done with a spectrum analyzer.

3. Model Supply and Return Pressure Dynamics

In the existing model supply pressure was assumed to be constant and return

pressure was assumed to be zero. Since there was no accumulator in the supply line of

the system under study the supply pressure varied slightly with demand. Return

pressure although low was not zero. Inclusion in the model of these effects may

improve simulation accuracy.

4. State Space Modeling

In order to obtain a linear model o[ the system under study some simplifmg

assumptions were made. One of these assumptions was that the arbitrary load force

on the piston (F^) was zero. This may have been an oversimplification and may be

the reason the digital simulation does not accurately predict system performance. Fj^

represents friction forces which are non-linear and vary with piston velocity and

direction. A state space representation, where Ft is included as one of the state

variables, may eliminate this problem and improve the digital model performance.

5. Influence of Temperature on System Performance

StabiUty dependence on temperature was observed during testing of the digital

system. Although it is known that higher fluid temperatures decrease viscous damping

and thus have an overall destabilizing effect on the system, other less-obvious

temperature efiects may also be important. The relative insensitivity to temperature

under analog control is an important issue yet to be resolved.

6. Data Acquisition System

The present FIP microcomputer system has the capacity to be used as a

controller and data acquisition system. All hardware required is in place, but time did

not permit the development of software to implement the data acquisition capabilities

of the system. This would be useful for further studies of the hydraulic power element

and for lab work performed to support graduate classes in advanced controls.
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APPENDIX A

ANALOG SIMULATION CODE (DSL)

SIMULATION OF THE VALVE CONTROLLED PISTON

(VCP) SERVOMECHANISM

(LINEAR ANALOG CLOSED LOOP MODEL)

(BLOCK DIAGRAM CODING)

AAA******3ic*3ic*AA******3>c**7tAQLOSSARY******************'^******'^**********

A AP
* BETAE
k BP
•k CCP
A CIG
k CIP
k EMAX
k ERR
k ETAF
k FL
k G
* GA
k K
k I

k ID
k IMAX
k IREQ
k KCE
k KCI
k KQI
k KV
k MT
k PL
k PLO
k PLl
k PLMAX
k PS
k

Q
k QL

= ACTUATOR EFFECTIVE AREA, IN**2
= EFFECTIVE BULK MODULUS, PSI

= LOAD DAMPING CONSTANT, LB -SEC/ IN.

= EFFECTIVE CAPACITANCE OF TRAPPED FLUID, IN**3/PSI
= INPUT GAIN, VOLTS/ (INPUT IN IN)

= ACTUATOR INTEPJ^AL LEAKAGE COEFFICIENT, IN**3/SEC-PSI
= MAXIMUM VOLTAGE FOR FEEDBACK TRANSDUCER
= ERROR SIGNAL JUST AFTER SUMMER, VOLTS
= ACTUATOR FORCE EFFICIENCY
= EXTERNAL APPLIED LOAD FORCE, LB

= LOAD SPRING CONSTANT, LB/ IN.

= SERVOAMPLIFIER OUTPUT GAIN, MA/VOLT
= FEEDBACK GAIN, VOLTS/ IN
= LIMITED CURRENT SUPPLIED TO SERVOVALVE , MA
= LINEARIZATION MIDPOINT FOR VALVE CURRENT, MA
= SERVO VALVE MAXIMUM CURRENT, MA
= LIMITED CURRENT REQUIRED, MA
= EFFECTIVE LEAKAGE COEFFICIENT, IN**3/SEC/PSI
= VALVE FLOW PRESSURE COEFFICIENT, IN'^^S/SEC PSI

= LINEARIZATION CONSTANT FOR VALVE FLOW GAIN, IN**3/SEC MA
= MODIFIED VALVE FLOW GAIN, IN**3/SEC-MA-SQRT(PSI

)

= TOTAL ACCELARATED MASS, LBS'^SEC**2/IN

= LIMITED LOAD PRESSURE DROP, PSI

= LINEARIZATION MIDPOINT FOR LOAD PRESSURE DROP, PSI

= UNLIMITED LOAD PRESSURE DROP, PSI

= MAXIMUM PERMISSIBLE LOAD PRESSURE DROP FOR MODEL, PSI

= SUPPLY PRESSURE, PSI

= FLOW FOLLOWING SUMMER, IN**3/SEC
= LIMITED VALVE FLOW, IN**3/SEC

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
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* QLl

* QLMAX
k VT
* XP
* XPD
* XR
A

INITIAL

CONST

= UNLIMITED VALVE FLOW, IN**3/SEC
= MAXIMUM PERMISSIBLE VALVE FLOW FOR MODEL, 1N^*3/SEC
= TOTAL VOLUME UNDER PRESSURE, IN^^3

= PISTON/LOAD POSITION, IN

= PISTON/LOAD SPEED, IN/SEC

= INPUT OR COMMANDED PISTON/LOAD POSITION, IN

i^i^i^:ki<-k-k-k9^iK7^i':i^-ki^i^i^-ki^i<7<-fr-k-k9<'^-ki<'k-k-k9<*:k-ki<'k-ki^-k*i<i^-k*'ki(-^i<i<-k-ki(-^

1 = 0.0

XP = 0.0

XPD = 0.0

AP

BP

CIG

CIP

FL

G

H

1.46,

103.6,

4.0,

8.1E-03

0.0,

0.0,

4.0,

10

KV

MT

PS

PLO

VT

BETAE

0.0,

0.00352,

8.517E-02,

800.0,

0.0,

44.0,

3.0E04,

GA

EMAX

ETAF

IMAX

QLMAX

PLMAX

KCI

110.0,

12.0,

1.0,

200.0,

9.95606

400.0,

6.0E-03

PARAM XR = 1,785
•k

* THIS PART OF THE CODE DEFINES SOME OF THE CONSTANTS

KCE = KCI+CIP

KQI = KV*(PS-PL0)**0.5

CCP = VT/(4.0*BETAE)

Tl = CCP/KCE

T2 = (MT/BP)

DERIVATIVE
•k

* THIS PART OF THE CODE IS THE PLANT FROM THE ANALOG BLOCK DIAGRAM

Q = I*KQI-XPD*AP

Q2= Q/KCE

PL= REALPL(0.0,T1,Q2)

F = PL*ETAF*AP-FL

Fl= F/BP

XPD = REALPL(0.0,T2,F1)

XP1= INTGRL(0.0,XPD)
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XP =LIMIT(-3.0,3.0,XP1)

DYNAMIC

^ THIS PART OF THE CODE REPRESENTS THE SUMMER AND THE AMPLIFIER GAIN

ERR = ((XR*CIG)-(XP*H))

IF (ERR. GT. 1.8. OR. ERR. LT. -1.8) THEN

1=200. O^ABS (ERR) /ERR

ELSE

END IF

I=ERR*GA

CONTRL FINTIM =0.50
SAVE 0.010, XP

PRINT 0.010, XP

END

GRAPH (DE=TEK618) TIME ( UN= ' SEC ') , XP(UN='IN')

LABEL LINEAR CLOSED LOOP ANALOG MODEL

END

STOP
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APPENDIX B

ANALOG MODEL VALIDATION DATA

=13^ --Q. --Q-- --(^---

LEGEND
EXPERIMENTAL DATA

o MODEL DATA

0.000.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

TIME (SECONDS)

Figure B.l Analog System Step Response (0.4088 in.).

LEGEND
n EXPERIMENTAL DATA
o MODEL DATA

0.000.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

TIME (SECONDS)

Figure B.2 Analog System Step Response (0.635 in.).
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LEGEND
EXPERIMENTAL DATA

o MODEL DATA

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

TIME (SECONDS)

Figure B.3 Analog System Step Response (0.8625 in.).
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Figure B.4 Analog System Step Response (1.11 in.).
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APPENDIX C

MICROCOMPUTER CONTROL SYSTEM ALGORITHM (BASIC)

10 REM CLOSLOOP

20 REM

30 REM THIS PROGRAM IS FOR

40 REM CLOSED LOOP POSITION

50 REM CONTROL OF A

60 REM HYDRAULICALLY ACTUATED

70 REM PISTON

80 REM K=KPC

90 REM

100 K=.05

110 SETTIME 0,0

120 ON KEY# 1,"INTERUPT" GOTO 130

130 DISP "WHAT IS DESIRED POSITION ?"

140 DISP

150 DISP "INPUT -3.0 TO 3.0 INCHES"

160 INPUT P

170 CLEAR

180 KEY LABEL

190 R=P*3.3333

200 OUTPUT 723 ;"IP 8T"

210 SEND 7 ; UNL MLA TALK 23 SCG 1

220 ENTER 7 ; F

230 E=(R-F)*K

240 S=SGN(E)

250 IF ABS(E)>10 THEN E=S*10

260 OUTPUT 723 ; "OP 3" ,E,"T"

270 IF ABS(E)>.125 THEN GOTO 200

280 OUTPUT 723 ;"IP 8T"

290 SEND 7 ; UNL MLA TALK 23 SCG 1

300 ENTER 7 ; F

310 IF ABS(R-F)>.125 THEN GOTO 230

320 IF TIME>120 THEN GOTO 340

330 GOTO 280

340 DISP

350 DISP "PROGRAM END"

360 END
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APPENDIX D
DIGITAL SYSTEiM SIMULATION CODE (DSL)

SIMULATION OF THE VALVE CONTROLLED PISTON

(VCP) SERVOMECHANISM

(LINEAR DIGITAL CLOSED LOOP MODEL)

(BLOCK DIAGRAM CODING)

k-k-k-kir7r-ki^-kr:ir-k-k*:i^-ki^-ki<i^-ki^-ki^i^-kQi^Q^Q^ji^^Y'^'^'^*'^'^'^'^'^'^'^'^'^*'^'^'^*'^'^

k AP
k BETAE
•k BP
k CCP
k CIG
k CIP
k EHAX
k ERR
k ETAF
k FL
k G
k GA
k H
k I

k ID
k IMAX
k IREQ
k KCE
k KCI
k KPC
k KQI
k KV
k MT
k PL
k PLO
k PLl
k PLMAX
k PS

IN^'^S/PSI

IN**3/SEC-PSI

= ACTUATOR EFFECTIVE AREA, IN**2
= EFFECTIVE BULK MODULUS, PSI

= LOAD DAMPING CONSTANT, LB-SEC/IN.
= EFFECTIVE CAPACITANCE OF TRAPPED FLUID,

= INPUT GAIN, VOLTS/ (INPUT IN IN)

= ACTUATOR INTERNAL LEAKAGE COEFFICIENT,
= MAXIMUM VOLTAGE FOR FEEDBACK TRANSDUCER
= ERROR SIGNAL JUST AFTER SUMMER, VOLTS
= ACTUATOR FORCE EFFICIENCY
= EXTERNAL APPLIED LOAD FORCE, LB

= LOAD SPRING CONSTANT, LB/ IN.

= SERVOAMPLIFIER OUTPUT GAIN, MA/VOLT
= FEEDBACK GAIN, VOLTS/IN
= LIMITED CURRENT SUPPLIED TO SERVOVALVE , MA
= LINEARIZATION MIDPOINT FOR VALVE CURRENT, MA
= SERVO VALVE MAXIMUM CURRENT, MA
= LIMITED CURRENT REQUIRED, MA
= EFFECTIVE LEAKAGE COEFFICIENT, IN*'*^3/SEC/PSI

= VALVE FLOW PRESSURE COEFFICIENT, IN*'^3/SEC PSI

= CONTROLLER GAIN, (DIMENSIONLESS)
= LINEARIZATION CONSTANT FOR VALVE FLOW GAIN, IN**3/SEC MA
= MODIFIED VALVE FLOW GAIN, IN'^*3/SEC-MA-SQRT(PSI

)

= TOTAL ACCELARATED MASS, LBS*SEC**2/IN
= LIMITED LOAD PRESSURE DROP, PSI

= LINEARIZATION MIDPOINT FOR LOAD PRESSURE DROP, PSI

= UNLIMITED LOAD PRESSURE DROP, PSI

= MAXIMUM PERMISSIBLE LOAD PRESSURE DROP FOR MODEL, PSI

= SUPPLY PRESSURE, PSI
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*
Q

* QL
* QLl
^ QLMAX
* VT
* XP
* XPD
* XR

= FLOW FOLLOWING SUMMER, IN'^*3/SEC

= LIMITED VALVE FLOW, IM*^3/SEC
= UNLIMITED VALVE FLOW, IN**3/SEC
= MAXIMUM PERMISSIBLE VALVE FLOW FOR MODEL, IN*'*^3/SEC

= TOTAL VOLUME UNDER PRESSURE, IN'*^*3

= PISTON/LOAD POSITION, IN

= PISTON/LOAD SPEED, IN/SEC
= INPUT OR COMMANDED PISTON/LOAD POSITION, IN

*

*

*

INITIAL

I = 0.0

XP = 0.0

XPD =0.0
*

CONST AP =1.46, 10 = 0.0, GA = 110.0,

BP = 103.6, KV = 0.00352, EMAX = 12.0,

CIG = 3.3333, MT = 8.517E-02 ETAF = 1.0,

CIP = 8.1E-03, PS = 800.0, IMAX = 200.0,

FL =0.0, PLO =0.0, QLMAX = 9.95606,

G = 0.0, VT =44.0, PLMAX = 400.0,

H = 3.3333, SETAE = 3.0E04, KCI = 6.0E-03,

k

KPC =0.05

PARAM XR
7t

= 3.00

* THIS PART OF THE CODE DEFINES SOME OF THE CONSTANTS
*

KCE = KCI+CIP

KQI = KV'*^(PS-PL0)**0.5

CCP = VT/(4.0*BETAE)

Tl = CCP/KCE

T2 = (MT/BP)

DERIVATIVE

^ THIS PART OF THE CODE IS THE PLANT FROM THE ANALOG BLOCK DIAGRAM

Q = I*KQI-XPD*AP

Q2= Q/KCE

PL= REALPL(0.0,T1,Q2)

F = PL*ETAF*AP-FL
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Fl= F/BP

XPD = REALPL{0.0,T2,F1)

XP1= INTGRL(0.0,XPD)

XP =LIMIT(0.0,6.00,XP1)

DYNAMIC
k

* THIS PART OF THE CODE REPRESENTS THE MICROCOMPUTER CONTROLLER AND
* AMPLIFIER GAIN

ERR = ((XR*CIG)-(XP*H))*KPC

IF (ERR. GT. 1.8. OR. ERR. LT. -1.8) THEN

IREQ=200 . 0*ABS (ERR) /ERR

ELSE

IREQ=ERR*GA

ENDIF

Y= DELAY(0350,0.350,IREQ)

X= IMPULS(0.0,0.350)

IREQQ= ZHOLD(X,Y)

I = LIMIT(-IMAX,IMAX,IREQQ)

k

CONTRL FINTIM =02.00, DELT=0.001

METHOD RKSFX

SAVE 0.010, XP,I,ERR

PRINT 0.010, X?,I,ERR

END

GRAPH (DE=TEK618) TIME (UN= ' SEC ') , XP(UN='IN'), XPEX(UN= ' IN
'

)

LABEL LINEAR CLOSED LOOP DIGITAL MODEL

END

STOP
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APPENDIX E

DIGITAL LOGIC TEST DATA

k-k-k-k ^^'^ RKSFX INTEGRATION METHOD USED kkkkkk

k-kk DS L OUTPUT LISTING, GROUP 1

TIME XP I ERR

0,,00000E+00 0,.OOOOOE-i-00 0,, OOOOOE+OO 0,,49999

1,.OOOOOE--02 0,.OOOOOE-i-00 0,.OOOOCE+00 0,,49999

2,-OOOOOE--02 0,,00000E+00 0,,00000E+00 0,,49999

3..OOOOOE--02 0,.OOOOOE-t-OO 0,.OOOOOE+00 0.,49999

4,.OOOOOE--02 0,.OOOOOE+00 0,,0COO0E+O0 0,,49999

5..OOOOOE--02 0,,OOOGOE+00 0,.OOOOOE+OO 0,,49999

6,.OOOOOE--02 0,.OOOOOE^OO 0,.OOOOOE+00 0,,49999

7..OOOOOE--02 0..OOOOOE-fOO 0,, OOOOOE+OO 0,,49999

8..OOOOOE--02 0,.OOOOOE-HOO 0,,00000E+00 0,,49999

9..OOCOOE--02 0,.OOOOOE-i-OO 0,.OOOOOE+00 0,.49999

1,.OOOOOE--01 0,.OOOOOE-t-00 0,.OOOOOE+00 0,.49999

0,.11000 0,.OOOOOE-f-00 0,.OOOOOE+OO 0,.49999

0,,12000 0,,00000E+00 0,.OOOOOE+OO 0,.49999

0..13000 0,,00000E+00 0,.OOOOOE+00 0,.49999

0,.14000 0,.OOOOOE+00 0,.OOOOOE+00 0,.49999

0,.15000 0,.OOOOOE-i-00 0,.OOOOOE+OO 0,.49999

0,.16000 0,.OOOOOE+00 0,.OOOOOE+00 0,.49999

0,.17000 0,.OOOOOE-I-00 0,.OOOOOE+00 0,.49999

0,.18000 0,.OOOOOE-I-00 0,.OOOOOE+OO 0,.49999

0,.19000 0,.OOOOOE-hOO 0..OOOOOE+00 0,.49999

0,.20000 0,.OOOOOE-f-00 0..OOOOOE+OO 0,.49999

0,.21000 0,.OOOOOE+00 0..OOOOOE+00 0,.49999

0,.22000 0,.OOOOOE-I-00 0,.OOOOOE+00 0-.49999

0,.23000 0,.OOOOOE-i-CO 0,.OOOOOE+00 0,.49999

0,.24000 0,.OOOOOE+00 .OOOOOE+OO .49999

0,.25000 0,.OOOOOE+00 .OOOOOE+00 .49999

0,.26000 0,.OOOOOE+00 .OOOOOE+OO .49999

.27000 .OOOOOE+00 .OOOOOE+OO .49999

0,.28000 .OOOOOE+00 .OOOOOE+00 .49999

.29000 .OOOOOE+00 .OOOOOE+00 .49999

.30000 .OOOOOE+00 .OOOOOE+00 .49999

.31000 .OOOOOE+00 .OOOOOE+00 .49999

.32000 •OOOOOE+OO .OOOOOE+OO .49999

.33000 .OOOOOE+00 .OOOOOE+00 .49999

.34000 .OOOOOE+OO .OOOOOE+OO .49999

.35000 .OOOOOE+00 154.999 .49999

.36000 7 .01428E-03 154.999 .49883
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0.37000 2.35711E-02 54.999 0.49607

0.38000 .
4.37206E-02 54.999 0.49271

0.39000 6.51974E-02 54.999 0.48913

0.40000 8.71646E-02 54.999 0.48547

0.41000 0.10931 54.999 0.48178

0.42000 0.13153 54.999 0.47807

0.43000 0.15377 54.999 0.47437

0.44000 0.17602 54.999 0.47066

0.45000 0.19827 54.999 0.46695

0.46000 0.22052 54.999 0.46324

0.47000 0.24278 54.999 0.45953

0.43000 0.26503 54.999 0.45532

0.49000 0.28729 54.999 0.45211

0.50000 0.30954 54.999 0.44841

0.51000 0.33180 54.999 0.44470

0.52000 0.35405 54.999 0.44099

0.53000 0.37631 54.999 0.43728

0.54000 0.39856 54.999 0.43357

0.55000 0.42081 54.999 0.42986

0.56000 0.44307 54.999 0.42615

0.57000 0.46532 54.999 0.42244

0.58000 0.43758 54.999 0.41873

0.59000 0.50983 54.999 0.41502

0.60000 0.53209 54.999 0.41131

0.61000 0.55434 54.999 0.40761

0.62000 0.57660 54.999 0.40390

0.63000 0.59885 54.999 0.40019

0.64000 0.62111 54.999 0.39648

0.65000 0.64336 54.999 0.39277

0.66000 0.66561 54.999 0.38906

0.67000 0.63787 54.999 0.38535

0.68000 0.71012 54.999 0.38164

0.69000 0.73238 54.999 0.37793

0.70000 0.75463 54.999 0.37422

0.71000 0.77689 54.999 0.37052

0.72000 0.79914 54.999 0.36681

0.73000 0.82140 54.999 0.36310

0.74000 0.84365 54.999 0.35939

0.75000 0.86591 54.999 0.35568

0.75000 0.88816 54.999 0.35197

0.77000 0.91041 54.999 0.34826

0.78000 0.93267 54.999 0.34455

0.79000 0.95492 54.999 0.34084

0.80000 0.97718 54.999 0.33713

0.31000 0.99943 54.999 0.33342

0.32000 1.0217 54.999 0.32972

0.83000 1.0439 54.999 0.32601
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0.84000 1.0662 54.999 0.32230

0.85000 1.0885 54.999 0.31859

0.86000 1.1107 54.999 0.31488

0.87000 1.1330 54.999 0.31117

0.88000 1.1552 54.999 0.30746

0.89000 1.1775 54.999 0.30375

0.90000 1.1997 54.999 0.30004

0.91000 1.2220 54.999 0.29633

0.92000 1.2442 54.999 0.29262

0.93000 1.2665 54.999 0.28892

0.94000 1.2887 54.999 0.28521

0.95000 1.3110 54.999 0.28150

0.96000 1.3333 54.999 0.27779

0.97000 1.3555 54.999 0.27408

0.98000 1.3778 54.999 0.27037

0,99000 1.4000 54.999 0.26666

1.0000 1.4223 54.999 0.26295

1.0100 1.4445 54.999 0.25924

1.0200 1.4668 54.999 0.25553

1.0300 1.4890 54.999 0.25183

1.0400 1.5113 54.999 0.24812

1.0500 1.5335 41.165 0.24441

1.0600 1.5540 41.165 0.24099

1.0700 1.5721 41.165 0.23798

1.0800 1.5893 41.165 0.23511

1.0900 1.6062 41.165 0.23230

1.1000 1.6229 41.165 0.22952

1.1100 1.6396 41.165 0.22674

1.1200 1.6562 41.165 0.22396

1.1300 1.6729 41.165 0.22118

1.1400 1.6896 41.165 0.21840

1.1500 1.7062 41.165 0.21563

1.1600 1.7229 41.165 0.21285

1.1700 1.7395 41.165 0.21008

1.1800 1.7562 41.165 0.20730

1.1900 1.7728 41.165 0.20452

1.2000 1.7895 41.165 0.20175

1.2100 1.8062 41.165 0.19897

1.2200 1.8228 41.165 0.19620

1.2300 1.8395 41.165 0.19342

1.2400 1.8561 41.165 0.19064

1.2500 1.3728 41.165 0.18787

1.2600 1.8894 41.165 0.18509

1.2700 1.9061 41.165 0.18232

1.2800 1.9227 41.165 0.17954

1.2900 1.9394 41.165 0.17676

1.3000 1.9561 41.165 0.17399
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3100

3200

3300

3400

3500

3600

1.3700

1.3800

1.3900

1.4000

1.4100

1.4200

1.4300

1.4400

1.4500

1.4600

1.4700

1.4800

1.4900

1.5000

1.5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

6100

1.6200

1.6300

1.6400

6500

6600

6700

6800

6900

7000

7100

1.7200

1.7300

1.7400

1.7500

1.7600

1.7700

1.9727

1.9894

2.0060

2.0227

2.0393

2.0560

2.0727

2.0893

2.1060

1226

1375

1498

1612

1723

1833

1942

2051

2.2160

2.2268

2.2377

2.2486

2.2595

2.2704

2.2812

2.2921

2.3030

2.3139

3247

3356

3465

3574

2.3683

2.3791

2.3900

2.4009

2.4118

2.4226

2.4335

2.4444

2.4553

2.4662

2.4770

2.4879

2.4988

2.5097

2.5192

2.5263

41.165

41.165

41.165

41,165

41.165

41.165

41.165

41.165

41.165

26.885

26.835

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.385

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

26.885

16.085

16.085

16.085

17121

16844

16566

16288

16011

15733

15456

15178

14900

14623

14375

14169

,13979

,13794

13612

,13430

0.13249

0.13067

12886

12705

12523

12342

12161

0.11979

0.11798

11617

11435

11254

11073

10892

10710

10529

10348

10166

98502E-02

,80371E-02

,62241E-02

9.44110E-02

9.25979E-02

9.07849E-02

8.89718E-02

8.71588E-02

8.53457E-02

8.35327E-02

8.17196E-02

8.01361E-02

7.88649E-02
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1.7800 2.5337 16.085 7.77112E-02

1.7900 2.5404 16.085 7.66011E-02

1.8000 2.5470 16.085 7.55069E-02

1.8100 2.5535 16.085 7.44187E-02

1.8200 2.5600 16.035 7.33327E-02

1.8300 2.5665 16.085 7.22475E-02

1.S400 2.5730 16.085 7.11625E-02

1.3500 2.5795 16.035 7.00777E-02

1.3600 2.5860 16.085 6.89930E-02

1.8700 2.5925 16.085 6.79082E-02

1.8800 2.5991 16.085 6.68235E-02

1.8900 2.6056 16.085 6.57387E-02

1.9000 2.6121 16.085 6.46540E-02

1.9100 2.6186 16.085 6.35693E-02

1.9200 2.6251 16.085 6.24845E-02

1.9300 2.6316 16.085 6.13998E-02

1.9400 2.6381 16.085 6.03150E-02

1.9500 2.6446 16.085 5.92303E-02

1.9600 2.6511 16.085 5.81456E-02

1.9700 2.6576 16.085 5.70608E-02

1.9300 2.6641 16.085 5.59761E-02

1.9900 2.6706 16.085 5.48913E-02

2.0000 2.6772 16.085 5.38C66E-02
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