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Thermodynamic versus kinetic approach to polarization-vorticity coupling
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We critically compare thermodynamic and kinetic approaches that have been recently used to study relations
between the spin polarization and fluid vorticity in systems consisting of spin-1/2 particles. The thermodynamic
approach refers to general properties of global thermal equilibrium with a rigidlike rotation and demonstrates
that the spin-polarization and thermal-vorticity tensors are equal. On the other hand, the kinetic approach uses
the concept of the Wigner function and its semiclassical expansion. In most of the works done so far, the
Wigner functions satisfy kinetic equations with a vanishing collision term. We show that this assumption restricts
significantly the applicability of such frameworks and, in contrast to many claims found in the literature, does
not allow for drawing any conclusions regarding the relation between the thermal-vorticity and spin-polarization
tensors, except for the fact that the two should be constant in global equilibrium. We further show how the
kinetic-theory equations including spin degrees of freedom can be used to formulate a hydrodynamic framework
for particles with spin. We define hydrodynamic equations starting separately from the formulation by de Groot,
van Leeuwen, and van Weert and from the canonical formalism. In the former case the energy-momentum
tensor is symmetric and the spin tensor is conserved, while in the latter case the energy-momentum tensor is not
symmetric and the spin tensor is not conserved. Nevertheless, in the two cases the total angular momentum is
always conserved. Interestingly, the two approaches are connected by the pseudo-gauge transformation, which
we explicitly define.
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I. INTRODUCTION

Recently, in connection with the first positive measure-
ments of the �-hyperon spin polarization [1,2], a lot of inter-
est has been triggered in theoretical studies analyzing the spin
polarization and vorticity formation in heavy-ion collisions.
One expects that the spin polarization can be related to the
global rotation of the strongly interacting matter created in
the noncentral collisions, in a way similar to the magne-
tomechanical Barnett effect [3] and Einstein–de Haas effect
[4]. Vorticity can also give rise to new phenomena such as
the chiral vortical effect [5,6]. Interestingly, the longitudinal
polarization of �̄ was discussed already in the 1980s by
Jacob and Rafelski in connection with quark-gluon plasma
formation [7]. However, the negative results were reported
by the first heavy-ion experiments that measured the � spin
polarization in Dubna [8], at CERN [9], and at BNL [10].

In the context of various effects associated with the spin
polarization and vorticity, many theoretical studies have been

*wojciech.florkowski@ifj.edu.pl
†avdhesh.kumar@ifj.edu.pl
‡radoslaw.ryblewski@ifj.edu.pl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

performed that refer to the spin-orbit coupling [11–14], statis-
tical properties of matter in equilibrium [15–21], and kinetic
models with spin [22–25]. Moreover, closely related works
on hydrodynamics with triangle anomalies [5,26] and on the
Lagrangian formulation of hydrodynamics [27–29] have been
reported.

A natural framework for dealing simultaneously with po-
larization and vorticity would be relativistic hydrodynamics
of polarized fluids. An example of such a framework was
recently proposed in Refs. [30,31]. It is based on the local
equilibrium distribution functions for particles and antiparti-
cles with spin 1/2, in the form introduced in Ref. [19]. This
framework can describe the full space-time evolution of the
spin polarization in systems created in high-energy nuclear
collisions. We note that the inclusion of the spin degrees
of freedom into a hydrodynamic approach represents one
of several novel developments in relativistic hydrodynamics
which forms the basis for our understanding of the space-
time evolution of matter created in heavy-ion collisions (for
recent reviews on progress in relativistic hydrodynamics see
Refs. [32,33]).

In this paper we perform a detailed comparison of the
thermodynamic and kinetic approaches which deal with the
phenomenon of polarization-vorticity coupling in heavy-ion
collisions. On the one hand, by the thermodynamic approach
we mean a series of papers by Becattini and his collabora-
tors [17–20,34–36], where the authors analyze predominantly
the properties of matter in global equilibrium with a rigid
rotation. On the other hand, by the kinetic approach we mean
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here Refs. [22–25], where collisionless kinetic equations for
the Wigner functions of spin-1/2 particles have been studied.

Similarly to Refs. [22–25] we perform herein a semiclas-
sical expansion of the Wigner function. This method was
successfully used in the past (see, for example, Refs. [37–41])
to construct a classical limit of quantum kinetic equations,
which yields dynamic equations for both the phase-space
distribution functions and the spin phase-space densities. The
novel feature of our present work is that we use the form of
the equilibrium functions for particles with spin 1/2, proposed
in Ref. [19], as an input for the semiclassical expansion. In
this way, we can check directly how the thermodynamic and
kinetic frameworks are complementary to each other and what
one approach implies for the other one.

In order to make our formalism as simple as possible,
and to concentrate primarily on the relation between the spin
polarization and vorticity, we neglect in this work the effects
of the electromagnetic and other mean fields. The inclusion of
such fields is left for a separate analysis.

One of our findings is that recent formulations of the
kinetic theory [22–25] do not imply the spin-polarization
induction by the vorticity. Although there exist solutions of
the kinetic equations where the two phenomena are intercon-
nected, they are in general independent. This is due to the fact
that the collision term is neglected in such frameworks and the
collisionless kinetic equation alone cannot imply the growth
of polarization due to vorticity.1

We further show that the kinetic-theory results demonstrat-
ing relations between polarization and vorticity correspond
to the exact solutions of the collisionless kinetic equation.
Thus, they can be interpreted as a description of global
thermodynamic equilibrium. Only in this case the thermody-
namic and kinetic results are fully consistent. To clarify this
point, besides the concept of global and local equilibrium, we
introduce also the ideas of extended global and extended local
equilibrium.

Finally, we analyze different possible ways leading from
the kinetic theory to the hydrodynamic equations with spin.
They are all based on the application of the conservation
laws for charge, energy, linear momentum, and angular mo-
mentum. Using the semiclassical expansion for the Wigner
function, we introduce hydrodynamic equations starting from
the kinetic-theory formulation by de Groot, van Leeuwen, and
van Weert (GLW) [45], and using directly the canonical for-
malism [46]. In the GLW case the energy-momentum tensor
is symmetric and the spin tensor is conserved, while in the
canonical case the energy-momentum tensor is asymmetric
and the spin tensor is not conserved (in both cases the total
angular momentum is always conserved). Interestingly, the
two approaches are connected by the pseudo-gauge transfor-
mation, which we have explicitly constructed.

Conventions and notation. Below we use the following
conventions and notation for the metric tensor, Levi-Civita’s
tensor, and the scalar product: gμν = diag(+1,−1,−1,−1),

1We do not discuss here the chiral kinetic theory [42–44] as its
relation to the thermodynamic approach of Refs. [17–19] is not
known at the moment and requires a separate analysis.

ε0123 = −ε0123 = 1, a · b = gμνa
μbν = a0b0 − a · b. Thro-

ughout the text we use c = h̄ = kB = 1; however, we explic-
itly display h̄ in the discussion of the semiclassical expansion
of the Wigner function. All calculations are done using the
Dirac representation for the γ matrices. The operator �μν

projecting on the space orthogonal to the flow vector uμ is
defined as �μν = gμν − uμuν .

The Lorentz invariant measure in the momentum space is
denoted as dP , namely,

dP = d3p

(2π )3Ep

, (1)

where Ep =
√

m2 + p2 is the on-mass-shell particle energy,
and pμ = (Ep, p). The particle momenta which are not nec-
essarily on the mass shell and appear as arguments of the
Wigner functions are denoted by the four-vector kμ = (k0, k).

The square brackets denote antisymmetrization, t [μν] =
(tμν − tνμ)/2. The tilde symbol is used to denote dual tensors,
which are obtained from the rank-2 antisymmetric tensors by
contraction with the Levi-Civita symbol and division by a fac-
tor of 2. For example, ω̃μν denotes the dual spin-polarization
tensor defined by the equation

ω̃μν = 1
2εμναβωαβ, (2)

where ωαβ is the original spin-polarization tensor. The inverse
transformation is

ωρσ = − 1
2ερσμνω̃μν. (3)

II. BASIC CONCEPTS AND METHODOLOGY

A. Spinless particles: Global and local equilibrium

Before we start our discussion of various effects connected
with spin, it is useful to recall basic features of the kinetic
theory for spinless particles: In this case, the relativistic
Boltzmann equation for the phase-space distribution function
f (x, p) contains two terms: the drift term and the collision
integral. This can be schematically written as

pμ∂μf (x, p) = C[f (x, p)]. (4)

The collision integral C[f ] vanishes in two special cases:
(i) for noninteracting, free-streaming particles and (ii) for
global or local thermodynamic equilibrium. In the first case
the distribution function satisfies exactly the drift equa-
tion (pμ∂μffs(x, p) = 0) describing, unrelated to the present
study, the free motion of particles. In the second case, which
is of main interest for us, we have to distinguish between the
global and local equilibrium.

In the global thermodynamic equilibrium, the equilibrium
distribution function feq(x, p) satisfies again the equation of
the form pμ∂μfeq(x, p) = 0, which leads in this case to the
constraints on the hydrodynamic parameters used to specify
the form of feq(x, p). In particular, the βμ(x) field, defined
traditionally as the ratio of the local fluid four-velocity uμ(x)
to the local temperature T (x), satisfies the Killing equation

∂μβν (x) + ∂νβμ(x) = 0. (5)
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Equation (5) has the solution of the form2

βμ(x) = β0
μ + � 0

μνx
ν, (6)

where the vector β0
μ and the antisymmetric tensor � 0

μν are
constant. For any form of the field βμ(x), we define thermal
vorticity as the rotation

�μν = − 1
2 (∂μβν − ∂νβμ). (7)

Hence, Eqs. (5) and (6) imply that the thermal vorticity in
global equilibrium is constant, �μν = � 0

μν . Additionally, in
global equilibrium the ratio of the chemical potential to the
local temperature should be constant, ξ (x) = μ(x)/T (x) =
ξ 0 = const.

In the case of local equilibrium, the right-hand side
of Eq. (4) vanishes, while its left-hand side, strictly speaking,
does not. In this case one should add a correction δf to the
equilibrium function feq, which describes dissipative phe-
nomena. Nevertheless, if the gradients of local hydrodynamic
variables are sufficiently small, the dissipative terms can be
neglected. In this case the hydrodynamic variables in feq

remain unconstrained. To determine them, one adds further
assumptions, most commonly that specific moments of Eq. (4)
in the momentum space (those that yield the conservation laws
for energy, momentum, or charge) vanish. This methodology
leads to the perfect-fluid description.

B. Particles with spin

The treatment of the collisionless kinetic equation for the
Wigner function W (x, k) that includes spin degrees of free-
dom has many features in common with the simple spinless
system discussed above. As the free-streaming case is not
interesting, we are left again with essentially two different
physics cases which represent global and local thermody-
namic equilibrium. Both of them can be analyzed with the
help of the equilibrium distribution functions f +(x, p) and
f −(x, p), for particles and antiparticles with spin 1/2, intro-
duced by Becattini and collaborators [19]. As the matter of
fact, these functions are 2 × 2 Hermitian matrices that can
be interpreted as spin-density matrices for each value of the
space-time position x and momentum p. In addition to typ-
ical dependence on the hydrodynamic variables βμ = uμ/T
and ξ = βμ = μ/T , they depend also on the antisymmetric
spin-polarization tensor ωμν (ωμν = −ωνμ). The equilibrium
Wigner function Weq(x, k), constructed from the functions
f +(x, p) and f −(x, p), also depends on βμ, ξ , and ωμν .
Consequently, it turns out that we can distinguish between
four rather than two different types of equilibrium. They can
be classified as follows:

(1) Global equilibrium. In this case the βμ field is a Killing
vector satisfying Eq. (5), �μν = − 1

2 (∂μβν − ∂νβμ) =
const, the spin-polarization tensor is constant and
agrees with thermal vorticity, ωμν = �μν , and in ad-
dition ξ = const.

2The method of solving the Killing equation is presented in
Appendix A.

(2) Extended global equilibrium. The βμ field is a
Killing vector, �μν = − 1

2 (∂μβν − ∂νβμ) = const, and
the spin-polarization tensor is constant, but ωμν �=
�μν, ξ = const.

(3) Local equilibrium. The βμ field is not a Killing vector
but we still have ωμν (x) = �μν (x); ξ is allowed to
depend on space-time coordinates, ξ = ξ (x).

(4) Extended local equilibrium. The βμ field is not a
Killing vector and ωμν (x) �= �μν (x); moreover, ξ =
ξ (x).

The global and extended global equilibrium states cor-
respond to the case where Weq(x, k) satisfies exactly the
collisionless kinetic equations. However, in the local and
extended local equilibrium states only certain moments of the
kinetic equation for Weq(x, k) can be set equal to zero. They
can be used to construct perfect-fluid hydrodynamic equations
including spin.

We stress that in this work we assume that the collision
term vanishes for each type of equilibrium listed above,
provided the equilibrium Wigner function Weq(x, k) has the
form derived from the functions f +(x, p) and f −(x, p). This
assumption should be verified in the future by detailed studies
of various collision terms for particles with spin. Such studies
may also shed new light on the form of the equilibrium
distributions. Before the results of such investigations are
known, we continue to assume that the collision term vanishes
for Weq(x, k).

Before we turn to discussion of the kinetic equation for the
Wigner function Weq(x, k) it is useful to characterize global
thermodynamic equilibrium in the framework of relativistic
quantum mechanics. This leads to a natural distinction be-
tween the global and extended global equilibrium.

III. GLOBAL THERMODYNAMIC EQUILIBRIUM IN
RELATIVISTIC QUANTUM MECHANICS

In this section we introduce general features of global
thermodynamic equilibrium constructed in the framework of
relativistic quantum mechanics. We follow here closely the
treatment of Zubarev [47] and Becattini [18]. The main object
of interest in this approach is a density operator ρ̂ defined by
the expression

ρ̂(t ) = exp

[
−

∫
d3�μ(x)

(
T̂ μν (x)bν (x)

− 1

2
Ĵ μ,αβ (x)ωαβ (x) − N̂μ(x)ξ (x)

)]
. (8)

Here d3�μ is an element of a spacelike, three-dimensional
hypersurface �μ. We may assume that it corresponds to
a fixed value of the time coordinate. In this case d3�μ =
(dV, 0, 0, 0) and ρ̂ becomes a function of t . The operators
T̂ μν (x), Ĵ μ,αβ (x), and N̂μ(x) are quantum versions of the
energy-momentum tensor, angular momentum tensor, and
charge current. They obey the following conservation laws:

∂μT̂ μν (x) = 0, (9)

∂μĴ μ,αβ (x) = 0, (10)

∂μN̂μ(x) = 0. (11)
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Note that Ĵ μ,αβ (x) is asymmetric in the last two indices,
Ĵ μ,αβ (x) = −Ĵ μ,βα (x), and can be, in general, represented as
a sum of the orbital and spin parts:

Ĵ μ,αβ (x) = L̂μ,αβ (x) + Ŝμ,αβ (x). (12)

The orbital part is expressed by the space-time coordinates
and the energy-momentum-tensor components

L̂μ,αβ (x) = xαT̂ μβ (x) − xβT̂ μα (x). (13)

Using Eqs. (9) and (10) we find

∂μŜμ,αβ (x) = T̂ βα (x) − T̂ αβ (x). (14)

Thus, the spin contribution to the angular momentum is
usually not conserved—it is conserved only if the energy-
momentum operator T̂ αβ (x) is symmetric. The functions
bν (x), ωαβ (x), and ξ (x) are Lagrange multipliers that should
be chosen to maximize the system’s entropy. Note that
ωαβ (x) = −ωβα (x) as any symmetric part of ωαβ (x) does not
give contribution to Eq. (8).

In global thermodynamic equilibrium we require that the
operator ρ̂(t ) is independent of time. This condition leads to
the constraint

∂μ

(
T̂ μν (x)bν (x) − 1

2 Ĵ μ,αβ (x)ωαβ (x) − N̂μ(x)ξ (x)
)

= T̂ μν (x)(∂μbν (x)) − 1
2 Ĵ μ,αβ (x)(∂μωαβ (x))

− N̂μ(x)∂μξ (x) = 0. (15)

From this equation we can conclude that the parameters ξ and
ωαβ are constants, ξ = ξ 0 and ωαβ = ω0

αβ .3 The form of bν

depends on the symmetry of the energy-momentum tensor
T̂ μν (x). For symmetric T̂ μν , we require that ∂μbν + ∂νbμ =
0; hence bν is a Killing vector,

bν = b0
ν + δω0

νρ xρ, (16)

where b0
ν and δω0

νρ = −δω0
ρν are constants. However, for a

not-symmetric (asymmetric) T̂ μν we require that ∂μbν = 0;
hence bν must be a constant vector, bν = b0

ν .
Using the decomposition of the angular momentum into

the orbital and spin parts [see Eq. (12)], one can show that the
two cases discussed above can be expressed by a single form
of the density operator:

ρ̂EQ = exp

[
−

∫
d3�μ(x)

(
T̂ μν (x)βν (x)

− 1

2
Ŝμ,αβ (x)ω0

αβ − N̂μ(x)ξ 0

)]
. (17)

For the asymmetric energy-momentum tensor βμ(x) = b0
μ +

ω0
μγ xγ (with constant b0

μ and ω0
μγ ). This implies that βμ(x)

is a Killing vector and thermal vorticity defined by Eq. (7)
agrees with the spin-polarization tensor ωμγ = ω0

μγ . How-
ever, for the symmetric energy-momentum tensor βμ(x) =

3We note that if the tensor Ĵ μ,αβ has additional symmetries, for
example, it is completely antisymmetric, more general solutions for
ωαβ (x ) may exist.

b0
μ + (δω0

μγ + ω0
μγ )xγ (with constant b0

μ, δω0
μγ , and ω0

μγ ). In
this case βμ(x) is again a Killing vector; however, thermal
vorticity defined by Eq. (7) does not necessarily agree with
the spin-polarization tensor.

Our discussion indicates that, depending on the symmetry
of the energy-momentum tensor, we may deal with global
or extended global equilibrium, as they have been defined at
the end of Sec. II. For completeness, we define the statistical
operator for local equilibrium by the same form as Eq. (17),

ρ̂eq = exp

[
−

∫
d3�μ(x)

(
T̂ μν (x)βν (x)

− 1

2
Ŝμ,αβ (x)ωαβ (x) − N̂μ(x)ξ (x)

)]
, (18)

allowing for an arbitrary form of βμ(x) and ξ (x), and for two
options for �μν (x): either �μν (x) = ωμν (x) (local equilib-
rium) or �μν (x) �= ωμν (x) (extended local equilibrium).

IV. EQUILIBRIUM WIGNER FUNCTIONS

A. Spin-dependent equilibrium distribution functions

To include the spin degrees of freedom, the scalar equi-
librium distribution functions are generalized to 2 × 2 spin-
density matrices for each value of the space-time position x
and momentum p [45]:

[f +(x, p)]rs ≡ f +
rs (x, p) = 1

2m
ūr (p)X+us (p), (19)

[f −(x, p)]rs ≡ f −
rs (x, p) = − 1

2m
v̄s (p)X−vr (p). (20)

Here m is the (anti)particle mass, while ur (p) and vr (p) are
Dirac bispinors (with the spin indices r and s running from
1 to 2), and the normalizations

ūr (p)us (p) = 2m δrs,

2∑
r=1

ur
α (p)ūr

β (p) = (/p + m)αβ,

(21)

v̄r (p)vs (p) = − 2m δrs,

2∑
r=1

vr
α (p)v̄r

β (p) = (/p − m)αβ.

(22)

Note the minus sign and different ordering of spin indices
in Eq. (20) compared to Eq. (19). The objects f ±(x, p) are
2 × 2 Hermitian matrices with the matrix elements defined by
Eqs. (19) and (20).

Following Ref. [19], we use the 4 × 4 matrices

X± = exp[±ξ (x) − βμ(x)pμ]M±, (23)

where

M± = exp
[ ± 1

2ωμν (x)�μν
]
. (24)

In Eqs. (23) and (24) we use the same notation as that intro-
duced in the previous sections, namely, βμ(x) = uμ(x)/T (x)
and ξ (x) = μ(x)/T (x), with μ(x) being the chemical po-
tential (connected with a charge that can be identified, for
example, with the baryon number or electric charge). The
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quantity ωμν (x) is the spin-polarization tensor, while �μν is
the spin operator expressed in terms of the Dirac γ matrices,
�μν = (i/4)[γ μ, γ ν].

For the sake of simplicity, we restrict ourselves to classical
Boltzmann statistics in this work. Following Ref. [30] we
further assume that the spin polarization tensor ωμν satisfies
the two conditions4

ωμνω
μν � 0, ωμνω̃

μν = 0. (25)

In this case we introduce the variables ζ and � defined by the
expression

ζ = �

T
= 1

2

√
1

2
ωμνωμν. (26)

It turns out (see Ref. [30]) that � plays the role of the chemical
potential related with spin. Using Eq. (25) one finds

M± = cosh(ζ ) ± sinh(ζ )

2ζ
ωμν�

μν. (27)

B. Equilibrium Wigner functions

The equilibrium phase-space distribution functions
f +(x, p) and f −(x, p) can be used to determine explicit
expressions for the corresponding equilibrium (particle and
antiparticle) Wigner functions. We construct them using the
expressions from Ref. [45],

W+
eq(x, k) = 1

2

2∑
r,s=1

∫
dP δ(4)(k − p)ur (p)ūs (p)f +

rs (x, p),

(28)

W−
eq(x, k) = −1

2

2∑
r,s=1

∫
dP δ(4)(k + p)vs (p)v̄r (p)f −

rs (x, p).

(29)

The total Wigner function is a simple sum of these two
contributions:

Weq(x, k) = W+
eq(x, k) + W−

eq(x, k). (30)

Using Eqs. (19)–(22) we find

W+
eq(x, k) = 1

4m

∫
dP δ(4)(k − p)(/p + m)X+(/p + m),

(31)

W−
eq(x, k) = 1

4m

∫
dP δ(4)(k + p)(/p − m)X−(/p − m).

(32)

4Conditions (25) are satisfied in a natural way if only space com-
ponents ωij are different from zero. This happens, for example, in
the case of global equilibrium with a rigid rotation. The nonzero ω0i

components appear, however, for global equilibrium with a constant
acceleration along the fluid stream lines (see Refs. [20,48–51]).

With the help of Eq. (27) we can further rewrite these equa-
tions in the following form:

W+
eq(x, k) = eξ

4m

∫
dP e−β·p δ(4)(k − p)

×
[

2m(m + /p) cosh(ζ ) + sinh(ζ )

2ζ
ωμν (/p + m)

×�μν (/p + m)

]
, (33)

W−
eq(x, k) = e−ξ

4m

∫
dP e−β·p δ(4)(k + p)

×
[

2m(m − /p) cosh(ζ ) − sinh(ζ )

2ζ
ωμν (/p − m)

×�μν (/p − m)

]
. (34)

V. SPINOR DECOMPOSITION OF THE EQUILIBRIUM
WIGNER FUNCTION

A. Clifford-algebra expansion

The equilibrium Wigner functions W±
eq(x, k), being 4 × 4

matrices satisfying the relations W±
eq(x, k) = γ0W±

eq(x, k)†γ0,
can be always expanded in terms of the 16 independent
generators of the Clifford algebra [38,46],

W±
eq(x, k) = 1

4 [F±
eq(x, k) + iγ5P±

eq(x, k) + γ μV±
eq,μ(x, k)

+ γ5γ
μA±

eq,μ(x, k) + �μνS±
eq,μν (x, k)]. (35)

The coefficient functions in the equilibrium Wigner function
expansion (35) can be obtained by the following traces:

F±
eq(x, k) = tr[W±

eq(x, k)], (36)

P±
eq(x, k) = −i tr[γ 5W±

eq(x, k)], (37)

V±
eq,μ(x, k) = tr[γμW±

eq(x, k)], (38)

A±
eq,μ(x, k) = tr[γμγ 5W±

eq(x, k)], (39)

S±
eq,μν (x, k) = 2 tr[�μνW±

eq(x, k)]. (40)

Using Eqs. (33) and (34) in expressions (36)–(40), and em-
ploying the identities for the Dirac matrices (B1)–(B5) (see
Appendix B), we find

F±
eq(x, k) = 2m cosh(ζ )

∫
dP e−β·p±ξ δ(4)(k ∓ p), (41)

P±
eq(x, k) = 0, (42)

V±
eq,μ(x, k) = ± 2 cosh(ζ )

∫
dP e−β·p±ξ δ(4)(k ∓ p) pμ,

(43)

A±
eq,μ(x, k) = − sinh(ζ )

ζ

∫
dP e−β·p±ξ δ(4)(k ∓ p) ω̃μν pν,

(44)

S±
eq,μν (x, k) = ± sinh(ζ )

mζ

∫
dP e−β·p±ξ δ(4)(k ∓ p)

× [(pμωνα − pνωμα )pα+m2ωμν]. (45)
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B. Relations between equilibrium coefficient functions

Using Eqs. (41)–(45) one can verify that the equilibrium
coefficient functions satisfy the following set of constraints:

kμ V±
eq,μ(x, k) = mF±

eq(x, k), (46)

kμ F±
eq(x, k) = mV±

eq,μ(x, k), (47)

P±
eq(x, k) = 0, (48)

kμ A±
eq, μ(x, k) = 0, (49)

kμ S±
eq, μν (x, k) = 0. (50)

kβ S̃±
eq,μβ (x, k) + mA±

eq, μ(x, k) = 0, (51)

εμναβ kα A±β
eq (x, k) + mS±

eq, μν (x, k) = 0. (52)

We note that such constraints are fulfilled also by the total
Wigner function given by the sum of the particle and antipar-
ticle contributions [see Eq. (30)]. We also note that Eqs. (46)–
(52) follow from the algebraic structure of the equilibrium
Wigner functions and are satisfied for any form of the fields:
βμ(x), ξ (x), and ωμν (x). Thus, they hold for four different
types of equilibrium specified at the end of Sec. II.

VI. SEMICLASSICAL EXPANSION

In the previous section we introduced the spinor decom-
position of the equilibrium Wigner functions and obtained
explicit expressions for the equilibrium coefficient functions.
Such a decomposition can be naturally used for any Wigner
function (describing particles with spin 1/2) and, in fact, it
was frequently used in the past to derive classical kinetic
equations from the underlying quantum field theory [37–41]).
In this section we follow closely this approach and write

W (x, k) = 1
4 [F (x, k) + iγ5P (x, k) + γ μVμ(x, k)

+ γ5γ
μAμ(x, k) + �μνSμν (x, k)]. (53)

In the case where the effects of both the mean fields and
collisions can be neglected, the Wigner function satisfies the
equation of the form

(γμKμ − m)W (x, k) = 0. (54)

Here Kμ is the operator defined by the expression

Kμ = kμ + ih̄

2
∂μ. (55)

Using Eqs. (53) and (55) in Eq. (54) and comparing the real
and imaginary parts of the coefficients in the Clifford-algebra
basis we obtain two sets of equations. The real parts give

kμVμ − mF = 0, (56)

h̄

2
∂μAμ + mP = 0, (57)

kμF − h̄

2
∂νSνμ − mVμ = 0, (58)

− h̄

2
∂μP + kβ S̃μβ + mAμ = 0, (59)

h̄

2
(∂μVν − ∂νVμ) − εμναβkαAβ − mSμν = 0, (60)

while the imaginary parts yield

h̄∂μVμ = 0, (61)

kμAμ = 0, (62)

h̄

2
∂μF + kνSνμ = 0, (63)

kμP + h̄

2
∂β S̃μβ = 0, (64)

(kμVν − kνVμ) + h̄

2
εμναβ∂αAβ = 0. (65)

The form of Eqs. (56)–(65) suggests that we can search for
solutions for the expansion coefficient functions in the form
of the series

F = F (0) + h̄F (1) + h̄2F (2) + · · · ,
(66)

P = P (0) + h̄P (1) + h̄2P (2) + · · · ,

Vμ = V (0)
μ + h̄V (1)

μ + h̄2V (2)
μ + · · · ,

(67)
Aμ = A(0)

μ + h̄A(1)
μ + h̄2A(2)

μ + · · · ,

Sμν = S (0)
μν + h̄S (1)

μν + h̄2S (2)
μν + · · · . (68)

A. Zeroth order

The leading order (the zeroth order in h̄) of the real parts gives

kμV (0)
μ − mF (0) = 0, (69)

P (0) = 0, (70)

kμF (0) − mV (0)
μ = 0, (71)

kβ S̃ (0)
μβ + mA(0)

μ = 0, (72)

εμναβkαAβ
(0) + mS (0)

μν = 0, (73)

while the leading order of the imaginary parts gives5

kμA(0)
μ = 0, (74)

kνS (0)
νμ = 0, (75)

kμV (0)
ν − kνV (0)

μ = 0. (76)

Equations (69)–(76) indicate the coefficients F(0) and Aμ
(0)

may be treated as the basic independent ones, provided Aμ
(0)

satisfies the orthogonality condition (74). The coefficient Vμ
(0)

is defined by Eq. (71), which gives

Vμ
(0) = kμ

m
F(0), (77)

and the coefficient S (0)
μν is obtained from Eq. (73),

S (0)
μν = − 1

m
εμναβkαAβ

(0). (78)

5The imaginary part of the scalar zeroth-order part of Eq. (54) van-
ishes [see Eq. (61)], whereas the imaginary part of the axial-vector
zeroth-order part of Eq. (54) gives Eq. (70) [see Eq. (64)]. Therefore,
we consider only three equations obtained from the imaginary parts.
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Equation (78) leads directly to the dual tensor S̃ (0)
μν of the form

S̃ (0)
μν = 1

m

(
kμA(0)

ν − kνA(0)
μ

)
. (79)

One can easily check that expressions (77)–(79) solve
Eqs. (69)–(73) and Eqs. (74)–(76) if the axial-vector coeffi-
cient Aμ

(0) fulfills Eq. (74).

B. First order

The next-to-leading order (the first order in h̄) of the real
parts gives

kμV (1)
μ − mF (1) = 0, (80)

1
2∂μA(0)

μ + mP (1) = 0, (81)

kμF (1) − 1
2∂νS (0)

νμ − mV (1)
μ = 0, (82)

− 1
2∂μP(0) + kβ S̃ (1)

μβ + mA(1)
μ = 0, (83)

1
2

(
∂μV (0)

ν − ∂νV (0)
μ

) − εμναβkαAβ
(1) − mS (1)

μν = 0. (84)

Equation (81) defines the first-order contribution to the pseu-
doscalar coefficient,

P (1) = − 1

2m
∂μA(0)

μ . (85)

Similarly, Eq. (82) can be interpreted as the definition of the
first-order vector coefficient,

V (1)
μ = 1

m

(
kμF (1) − 1

2∂νS (0)
νμ

)
, (86)

while Eq. (84) defines the first-order tensor coefficient,

S (1)
μν = 1

2m

(
∂μV (0)

ν − ∂νV (0)
μ

) − 1

m
εμναβkαAβ

(1). (87)

By contraction of Eq. (87) with the Levi-Civita tensor we find
the dual first-order tensor coefficient,

S̃ (1)
μν = 1

4m2
εμναβ (kα∂β − kβ∂α )F (0)+ 1

m

(
kμA(1)

ν − kνA(1)
μ

)
.

(88)

Using Eq. (88) in Eq. (83) we find that the first-order
axial coefficient should also be orthogonal to kμ, namely,
kμAμ

(1) = 0.
The first-order imaginary parts give

∂μV (0)
μ = 0, (89)

kμA(1)
μ = 0, (90)

1
2∂μF (0) + kνS (1)

νμ = 0, (91)

kμP (1) + 1
2∂β S̃ (0)

μβ = 0, (92)

kμV (1)
ν − kνV (1)

μ + 1
2εμναβ ∂αAβ

(0) = 0. (93)

Combining Eq. (89) with Eq. (77) we find the important
formula

kμ∂μF(0)(x, k) = 0. (94)

This is nothing else but the kinetic equation to be satisfied
by the scalar coefficient of the Wigner function. Equation
(90) confirms that the axial-vector coefficient is orthogonal
to k in both the zeroth and first orders. Doing straightforward
algebraic manipulations we can check that Eq. (91) is satisfied
provided Eq. (94) holds.

Equation (92) leads directly to the kinetic equation obeyed
by the axial-vector coefficient,

kμ∂μ Aν
(0)(x, k) = 0, kν Aν

(0)(x, k) = 0. (95)

Using Eq. (95) and the orthogonality condition (90) we can
check now that Eq. (93) is also satisfied.

C. Second order

By studying the zeroth and first orders of the semiclassical
expansion we have found that the basic coefficient functions
are the scalar and axial-vector components. Their leading-
order terms F(0)(x, k) and Aν

(0)(x, k) satisfy the kinetic equa-
tions (94) and (95). The axial-vector coefficient should be (in
the zeroth and first orders) orthogonal to the four-vector k. If
the functions F(0)(x, k) and Aν

(0)(x, k) are known, all other
coefficient functions in the zeroth order can be determined
through the algebraic relations (70), (77), and (78).

We emphasize that although the system of equations de-
rived above is consistent up to the first order in h̄ (the
property demonstrated in several previous studies), it is not
sufficient to determine the first-order coefficient functions.
We are missing dynamic equations that could be used to
determine the evolution of the coefficient functions F(1)(x, k)
and Aν

(1)(x, k). This is expected, since we have just seen that
the zeroth order is not sufficient to determine the evolution of
the functions F(0)(x, k) and Aν

(0)(x, k)—this requires going
to the first order. Thus, the functions F(1)(x, k) and Aν

(1)(x, k)
should be obtained from the analysis of the second order. Such
an analysis is completely analogous to that done in the first
order and, in fact, leads to the same form of equations:

kμ∂μF(1)(x, k) = 0, (96)

kμ∂μAν
(1)(x, k) = 0, kνAν

(1)(x, k) = 0. (97)

If F(1) and Aν
(1) are determined, the quantities P (1), V (1)

μ , and
S (1)

μν are obtained from Eqs. (85), (86), and (87), respectively.

VII. EXACT SOLUTIONS

It is very interesting to observe that the algebraic structure
of the equilibrium coefficient functions, defined by Eqs. (46)–
(52), is consistent with the zeroth-order equations obtained
from the semiclassical expansion of the Wigner function
discussed in Sec. VI A [see Eqs. (69)–(76)]. This suggests
that the global and extended global equilibrium distributions
can be indeed constructed from the functions (33) and (34),
provided they fulfill in addition the kinetic equations (94) and
(95).

We have to emphasize here, however, that the equilibrium
coefficient functions defined by Eqs. (41)–(45) specify only
the leading-order terms in h̄ of the “true” equilibrium function
that solves the kinetic equation.6 To summarize our findings

6Our approach is based on the form postulated in Ref. [19] that may
be missing some important quantum contributions. In particular, the
functions Weq(x, k) are always on the mass shell; hence, they neglect
off-shell quantum propagation of particles.
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we can write

F (0) = Feq, (98)

P (0) = 0, (99)

V (0)
μ = Veq,μ, (100)

A(0)
μ = Aeq,μ, (101)

S (0)
μν = Seq,μν, (102)

in the zeroth order, and similarly

P (1) = − 1

2m
∂μAeq,μ, (103)

V (1)
μ = 1

m

(
kμF (1) − 1

2
∂νSeq,νμ

)
, (104)

S (1)
μν = 1

2m
(∂μVeq,ν − ∂νVeq,μ) − 1

m
εμναβkαAβ

(1), (105)

in the first order.
Let us check now the constraints imposed on the equi-

librium coefficient functions by Eqs. (94) and (95). One can
easily find that they lead to the equations

kμ∂μFeq(x, k) = 0, (106)

kμ∂μ Aν
eq(x, k) = 0, kν Aν

eq(x, k) = 0. (107)

Using Eqs. (41) and (44) in Eqs. (106) and (107) we conclude
that the kinetic equations are exactly fulfilled if the βμ field
is the Killing vector defined by Eqs. (5) and (6), while the
parameter ξ and the spin-polarization tensor ωμν are constant
[this implies that the parameter ζ defined by Eq. (26) is also
constant]).

Consequently, the kinetic equations considered in this
work (and also in the previous works that used the same
mathematical setup) do not constrain the spin-polarization
tensor ωμν to be equal to the thermal vorticity �μν . In the
semiclassical approach discussed here, both tensors should be
constant but may be not related to each other. This situation
corresponds to extended global equilibrium rather than to
global equilibrium. Most likely, the equality of the tensors ωμν

and �μν (the fact expected on very general thermodynamic
grounds; see Sec. III) could follow from the proper entropy
maximization. The present approach, however, does not offer
any reliable method for such a calculation. We note that
the first-order equations (96) and (97) are decoupled in our
equilibrium scheme; thus, we assume below that F (1)(x, k) =
A(1)

μ (x, k) = 0.
It is also possible that the relation ωμν = �μν can be

necessary for the collision term to vanish. The form of the
latter is, however, not known. As we have mentioned above,
in this work we assume that any Wigner function of the form
(35), with the coefficient functions given by Eqs. (41)–(45),
yields a vanishing collision integral.

VIII. LOCAL CONSERVATION LAWS

Having explored consequences of the assumption that
the equilibrium Wigner function satisfies exactly the kinetic
equation (54), we turn now to a discussion of approximate

solutions. Usually, they are obtained by demanding that only
certain moments of the kinetic equation (54) yield zero. The
selection of such moments for particles with spin is, however,
not obvious and one of the aims of this work is to give
some insight into this problem. To set the stage, we discuss
in this section local conservation laws, which suggest which
moments of Eq. (54) may be relevant for construction of the
hydrodynamic framework.

A. Charge current

Expressing the charge current N α (x) in terms of the
Wigner function W (x, k) we obtain [45]

N α (x) = tr
∫

d4k γ α W (x, k) =
∫

d4k Vα (x, k). (108)

In the equilibrium case we use Eqs. (100) and (104) for
Vα (x, k). In this way we find

N α
eq(x) = Nα

eq(x) + δNα
eq(x), (109)

where

Nα
eq(x) = 1

m

∫
d4k kαFeq(x, k) (110)

and

δNα
eq(x) = − h̄

2m

∫
d4k ∂λSλα

eq (x, k). (111)

We have assumed here that F (1)(x, k) = 0, which is a trivial
solution of the kinetic equation (96).

The charge current should be conserved, which is ex-
pressed by the equation

∂αNα
eq(x) = 0. (112)

Here we used the property ∂α δNα
eq(x) = 0, which follows

from the antisymmetry of the tensor Sλα
eq (x, k). One can check

that Eq. (112) holds in (extended) global equilibrium, due
to Eq. (106). In the (extended) local equilibrium Eq. (112)
becomes a condition for the hydrodynamic fields: βμ(x), ξ (x),
and ωμν (x) that may vary in space and time. Substituting
Eq. (41) into Eq. (110) we obtain

Nα
eq = 4 cosh(ζ ) sinh(ξ )

∫
d3p

(2π )3Ep

pα e−β·p, (113)

which agrees with Eq. (12) from Ref. [30]. Doing the integral
over the momentum, one finds that the charge current is
proportional to the flow vector,

Nα
eq = nuα, (114)

where

n = 4 cosh(ζ ) sinh(ξ ) n(0)(T ) (115)

is the charge density.7 Here n(0)(T ) = 〈(u · p)〉0 is the number
density of spin-0, neutral Boltzmann particles, obtained using

7One should include also the contribution from Eq. (111) to
the charge current. We intend to analyze this issue in a separate
paper [52].
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the thermal average

〈· · · 〉0 ≡
∫

d3p

(2π )3Ep

(· · · ) e−β·p. (116)

B. Energy-momentum and spin tensors

1. GLW formulation

Adopting the kinetic-theory framework derived by de Groot,
van Leeuwen, and van Weert in Ref. [45], where the energy-
momentum tensor is expressed directly by the trace of the
Wigner function, we can use the following expression:

T
μν

GLW(x) = 1

m
tr

∫
d4k kμ kνW (x, k)

= 1

m

∫
d4k kμ kνF (x, k). (117)

In the equilibrium case, we consider Eq. (117) up to the first
order in h̄ using Eq. (98) and setting F (1)(x, k) = 0, similarly
as in the case of the charge current. Hence, with the help of
Eq. (41) we obtain

T
μν

GLW(x) = 4 cosh(ζ ) cosh(ξ )
∫

d3p

(2π )3Ep

pμpνe−β·p.

(118)

In this way we reproduce the perfect-fluid formula given
earlier in Ref. [30],

T
μν

GLW(x) = (ε + P )uμuν − Pgμν, (119)

where the energy density and pressure are given by the
expressions

ε = 4 cosh(ζ ) cosh(ξ ) ε(0)(T ) (120)

and

P = 4 cosh(ζ ) cosh(ξ ) P(0)(T ), (121)

respectively. In analogy to the density n(0)(T ), we define
the auxiliary quantities ε(0)(T ) = 〈(u · p)2〉0 and P(0)(T ) =
−(1/3)〈[p · p − (u · p)2]〉0. The energy-momentum tensor
should be conserved; hence, we demand

∂αT
αβ

GLW(x) = 0. (122)

Similarly to the case of the charge conservation, one can
check that Eq. (122) holds in (extended) global equilibrium,
provided Eq. (106) is satisfied. Again, in the (extended) local
equilibrium Eq. (122) becomes a condition (strictly speaking,
four equations) for the hydrodynamic fields: βμ(x), ξ (x), and
ωμν (x).

The GLW spin tensor has the following form [45]:

S
λ,μν
GLW = h̄

4

∫
d4k tr

[(
{σμν, γ λ} + 2i

m
(γ [μkν]γ λ

− γ λγ [μkν] )

)
W (x, k)

]
. (123)

For dimensional reasons, we have implemented here the
Planck constant. Its presence implies that in equilibrium we
may take the leading-order expression for the Wigner function

and assume W (x, k) = Weq(x, k). Using Eqs. (33) and (34)
in Eq. (123), performing the appropriate traces, and then
carrying out the integration over k we get

S
λ,μν
GLW = h̄ sinh(ζ )cosh(ξ )

m2ζ

∫
dP e−β·ppλ

× (m2ωμν + 2pαp[μων]
α )

= h̄w

4ζ
uλωμν + 2h̄ sinh(ζ )cosh(ξ )

m2ζ
s
λ,μν
GLW, (124)

where we have introduced the spin density w defined by the
expression [30]

w = 4 sinh(ζ ) cosh(ξ )n(0)(T ), (125)

the auxiliary tensor

s
λ,μν
GLW = Auλuαu[μων]

α + B(�λαu[μων]
α + uλ�α[μων]

α

+uα�λ[μων]
α ), (126)

and the thermodynamic coefficients

B = − 1

β
(ε(0) + P(0) ), A = 1

β

[
3ε(0) +

(
3 + m2

T 2

)
P(0)

]

= −3B + m2

T
P(0). (127)

Since the energy-momentum tensor derived in Ref. [45] is
symmetric, the spin tensor (124) should be also conserved
[see, for example, Eq. (14)]:

∂λS
λ,μν
GLW(x) = 0. (128)

This formula implies that the angular momentum conservation
holds separately for the orbital and spin parts.

At this point, it is important to stress that the coefficient
function Feq(x, k) involves all hydrodynamic variables, i.e.,
βμ, ξ , and the spin-polarization tensor ωμν—altogether 11
independent functions. This makes the system of Eqs. (112)
and (122) insufficient to determine their space-time depen-
dence unless some other information is taken into account.
One possibility is to assume a local equilibrium state as
defined at the end of Sec. II (the third point). In this case
the spin-polarization tensor is equal to the thermal vorticity
and the number of independent equations becomes equal
to the number of unknown functions. However, since the
spin-polarization tensor depends on the space-time gradients
of the field βμ in this case, the conservation laws become
second-order partial differential equations. Clearly, they do
not resemble standard hydrodynamic equations and it is not
obvious at the moment how one can treat and solve them.
Another possibility is to introduce extended local equilibrium
(the fourth point discussed at the end of Sec. II) and to treat
the spin-polarization tensor and thermal vorticity as indepen-
dent quantities. The evolution of the ωμν components should
follow from the angular momentum conservation, which for
the case discussed in this section is reduced to Eq. (128).
This approach was proposed originally in Ref. [30] with a
phenomenological version of the spin tensor that agrees with
the first term in the second line of Eq. (124).
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2. Canonical version

The canonical forms of the energy-momentum and spin
tensors, T μν

can (x) and Sλ,μν
can (x), can be obtained directly from

the Dirac Lagrangian by applying the Noether theorem [46]:

T μν
can (x) =

∫
d4k kνVμ(x, k) (129)

and

Sλ,μν
can (x) = h̄

4

∫
d4k tr[{σμν, γ λ}W (x, k)]

= h̄

2
εκλμν

∫
d4kAκ (x, k) ≡ h̄

2
εκλμν Aκ (x).

(130)

Here we have used the anticommutation relation {σμν, γ λ} =
−2εμνλκγκγ5 to express directly the canonical spin tensor by
the axial-vector coefficient function Aκ (x, k).

Including the components of Vμ(x, k) up to the first order
in the equilibrium case we obtain

T μν
can (x) = T

μν
GLW(x) + δT μν

can (x), (131)

where

δT μν
can (x) = − h̄

2m

∫
d4kkν∂λSλμ

eq (x, k) = −∂λS
ν,λμ
GLW(x).

(132)

The canonical energy-momentum tensor should be exactly
conserved; hence, in analogy to Eq. (122), we require

∂αT αβ
can (x) = 0. (133)

It is interesting to observe that the conservation laws (122)
and (133) are consistent, since ∂μ δT μν

can (x) = 0. The latter
property follows directly from the definition of δT μν

can (x) [see
Eq. (132)].

For the equilibrium spin tensor it is enough to consider
the axial-vector component in Eq. (130) in the zeroth order,
A(0)

κ (x, k) = Aeq,κ (x, k). Then, using Eq. (44) in Eq. (130)
and carrying out the integration over the four-momentum k
we get

Sλ,μν
can = h̄ sinh(ζ ) cosh(ξ )

ζ

∫
dP e−β·p

× (ωμνpλ + ωνλpμ + ωλμpν )

= h̄w

4ζ
(uλωμν + uμωνλ + uνωλμ)

= S
λ,μν
GLW + S

μ,νλ
GLW + S

ν,λμ
GLW. (134)

It is interesting to notice that the energy-momentum tensor
(131) is not symmetric. In such a case, the spin tensor is not
conserved and its divergence is equal to the difference of the
energy-momentum components. For the case discussed in this
section we obtain

∂λS
λ,μν
can (x) = T νμ

can − T μν
can = −∂λS

μ,λν
GLW(x) + ∂λS

ν,λμ
GLW(x).

(135)

One can immediately check, using the last line of Eq. (134),
that Eq. (135) is consistent with the conservation of the spin
tensor in the GLW approach.

3. Pseudo-gauge transformation

In the previous section, we discussed the energy-
momentum and spin tensors obtained from the canonical
formalism and related them to the expressions introduced by
de Groot, van Leeuven, and van Weert. In this section we
demonstrate that the two versions of tensors are connected by
a pseudo-gauge transformation. Indeed, if we introduce the
tensor �λ,μν defined by the relation

�λ,μν ≡ S
μ,λν
GLW − S

ν,λμ
GLW, (136)

we can write

Sλ,μν
can = S

λ,μν
GLW − �λ,μν (137)

and

T μν
can = T

μν
GLW + 1

2∂λ(�λ,μν + �μ,νλ + �ν,μλ). (138)

Here, we have used the property that both S
λ,μν
GLW and �λ,μν are

antisymmetric with respect to exchange of the last two indices.
Equations (137) and (138) are an example of the pseudo-
gauge transformation discussed widely in the literature [53].
The most common use of such a transformation is connected
with a change from the canonical formalism to the Belinfante
one [54]—it provides a symmetric energy-momentum tensor
and eliminates completely the spin tensor. In a very recent
work, it was argued that the use of tensors that differ by the
pseudo-gauge transformation leads to different predictions for
measurable quantities such as spectrum and polarization of
particles [55]. The results presented in this work can be useful
to study such effects in more detail within explicitly defined
hydrodynamic models.

4. Hydrodynamics from moments of the kinetic equations

In this section we analyze finally the issue connected with
the construction of the hydrodynamic framework from the
kinetic theory; namely, we try to answer the question of which
moments of the kinetic equations should be included to derive
hydrodynamic equations. As far as we concentrate on the
charge, energy, and momentum conservations, the answer is
known—we should consider the zeroth and first moments of
the kinetic equation

kμ∂μFeq(x, k) = 0. (139)

In this way we obtain Eq. (112) and Eq. (122).
In any case, the conservation laws for charge, energy, and

momentum are not sufficient to determine the dynamics of
spin and they should be supplemented by information coming
from the equation for the axial coefficient of the equilibrium
Wigner function. The latter can be rewritten in the following
form:

0 = kα∂α

∫
dP e−β·p sinh(ζ )

ζ
[δ(4)(k − p)eξ

+ δ(4)(k + p)e−ξ ] ω̃μν pν. (140)
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If we multiply the first line of Eq. (140) by the four-vector
kβ , contract it with the Levi-Civita tensor εμβγ δ , and then
integrate the resulting equation again over k, we obtain the
conservation of the spin tensor in the GLW version [see
Eq. (128)].8 This observation suggests that the form of the
spin tensor derived by de Groot, van Leeuwen, and van
Weert is, in fact, a very natural choice for the hydrodynamic
treatment of spin. This would also indicate that one should
make an attempt to derive hydrodynamic equations with spin
using the GLW expression for the spin tensor. This can be
done in a similar way as in Ref. [30]. However, it is not
obvious at the moment how Eq. (124) can be included in a
consistent construction of the hydrodynamic picture [52].

We close this section with a remark concerning the hy-
drodynamic equations used in Ref. [22]. Equations (13) and
(14) from this work imply that the flow vector uμ satis-
fies the Killing equation; hence, it is constant (see the end
of Appendix A). Consequently, the vorticity considered in
this work is zero and no conclusions about the vorticity-
polarization coupling can be drawn from the analysis pre-
sented in Ref. [22].

IX. SUMMARY AND CONCLUSIONS

In this work we compared thermodynamic and kinetic ap-
proaches used to study relations between the spin-polarization
tensor and fluid vorticity in systems consisting of spin-1/2
particles. We first discussed the thermodynamic approach that
refers to general properties of global thermal equilibrium with
a rigidlike rotation. Such a framework demonstrates directly
that the spin-polarization and thermal-vorticity tensors are
indeed equal in global equilibrium (for asymmetric energy-
momentum tensors). Then, we turned to the discussion of the
kinetic approach based on the concept of the semiclassical
expansion of the Wigner function. We analyzed in more detail
the case where the Wigner functions satisfy kinetic equations
with a vanishing collision term. We have found, in contrast to
many earlier claims found in the literature, that this approach
does not imply a direct relation between the thermal vorticity
and spin polarization, except for the fact that the two should
be constant in global equilibrium (we have dubbed this state
an extended global equilibrium).

Finally, we outlined procedures for obtaining hydrody-
namic equations from the kinetic equations with spin. In the
GLW case the energy-momentum tensor is symmetric and
the spin tensor is conserved, while in the canonical case the
energy-momentum tensor has an antisymmetric part and the
spin tensor is not conserved. Nevertheless, in these two cases
the total angular momentum is always conserved. We also
found that the two approaches are connected by the pseudo-
gauge transformation, which we explicitly constructed. This

8We recall that in the derivation of the hydrodynamic equations we
do not assume that the kinetic equations are fulfilled but expect that
their specific moments vanish. We also note that the choice of the
moments is not obvious. Some hints in this respect can be obtained,
for example, by comparing exact solutions of the kinetic equations
with the hydrodynamic equations (for example, see Ref. [56]).

observation opens up new perspectives for studies of hydro-
dynamics with spin. From a broader point of view we notice
that the classical part of the canonical energy-momentum
tensor is symmetric; hence, it is suitable for use in the con-
text of the general theory of relativity, which is a classical
theory.

Our results fill the gap between two apparently different
approaches to study polarization. They indicate the impor-
tance of inclusion of the collision term in the kinetic calcu-
lations involving the Wigner function. This may shed light on
the form of the equilibrium distribution (Wigner) functions
in connection with the entropy production processes. The
open question remains as to what extent the equilibrium
distribution functions used in this work remain a good ap-
proximation to more accurate, quantum equilibrium Wigner
functions (with particles being not necessarily on the mass
shell).
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APPENDIX A: KILLING EQUATION

In this section, for completeness of our presentation, we
demonstrate that all solutions of Eq. (5) have the form of
Eq. (6) with bμ and �μν being constant. We start by differ-
entiation of Eq. (5) with respect to coordinate xα . In this way
we obtain

βν,μα + βμ,να = 0, (A1)

where, μα denotes differentiation first with respect to the
coordinate xμ and then with respect to the coordinate
xα . Changing ν → α, μ → ν, and α → μ, we rewrite
Eq. (A1) as

βα,νμ + βν,αμ = 0. (A2)

Changing α → μ, ν → α, and μ → ν in Eq. (A2) we find

βμ,αν + βα,μν = 0. (A3)

Introducing the notation a = βν,μα , b = βμ,να , and c = βα,μν ,
and using the fact that mixed derivatives are equal, Eqs. (A1)–
(A3) can be rewritten as a simple system of algebraic equa-
tions: a + b = 0, c + a = 0, and b + c = 0, which has the
solution a = b = c = 0. This implies that the field βμ is a
linear function of the coordinates xν :

βμ = bμ + �μνx
ν. (A4)

Using the Killing equation (5) we finally find that �μν is
antisymmetric: �μν = −�νμ.

The βμ field is usually defined by the ratio uμ/T , where
T is a local temperature. Thus, in the case T = const,
Eq. (5) implies that the four-velocity uμ itself should be
a Killing vector. Writing the solution of this equation as
uμ = u0

μ + α0
μρx

ρ , where α0
μρ = −α0

ρμ is an antisymmetric
tensor with constant components, and using the normalization
condition for the four-velocity, we find that u0

μu
μ
0 = 1,
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u0
μα

μρ
0 = 0, and α0

ρμα
μτ
0 = 0. These equations imply that

α0
μν = 0, which can be easily checked first in the frame where

u0
μ = (1, 0, 0, 0). If the tensor α0

μν vanishes in this frame it
means that it is zero in all other frames. Consequently, the
flow is not vortical in this case.

APPENDIX B: TRACES OF γ MATRICES

In this section we collect useful results on the traces
of products of the Dirac matrices which appear in our
formalism. We use the Itzykson-Zuber conventions with
tr(γ5γ

αγ βγ γ γ δ ) = −4iεαβγ δ , where ε0123 = +1 [46]. The
identities used to obtain the spinor decomposition of the
equilibrium Wigner functions are

tr[(/p ± m)�μν (/p ± m)] = 0, (B1)

tr[γ5(/p ± m)�μν (/p ± m)] = 0, (B2)

tr[γ α (/p ± m)�μν (/p ± m)] = 0, (B3)

tr[γαγ5(/p ± m)�ρσ (/p ± m)] = ±4m pβ εβαρσ , (B4)

and
tr[2�αβ (/p ± m)�μν (/p ± m)]

= 4m2(gαμgβν − gανgβμ) + 4(gανpβpμ − gαμpβpν

+pαpνgβμ − pαpμgβν ). (B5)

To derive Eq. (B5) it is useful to use

tr(γ αγ β
/p γ μγ ν

/p)

= 2m2(gαβgμν − gαμgβν + gανgβμ)

+ 8 (gαμpβpν − gανpβpμ + pαpμgβν − pαpνgβμ)

(B6)

and

tr[�αβ�μν] = gαμgβν − gανgβμ. (B7)

[1] L. Adamczyk et al. (STAR Collaboration), Global � hyperon
polarization in nuclear collisions: Evidence for the most vortical
fluid, Nature (London) 548, 62 (2017).

[2] J. Adam et al. (STAR Collaboration), Global polarization of �

hyperons in Au+Au collisions at
√

s
NN

= 200 GeV, Phys. Rev.
C 98, 014910 (2018).

[3] S. J. Barnett, Gyromagnetic and electron-inertia effects,
Rev. Mod. Phys. 7, 129 (1935).

[4] A. Einstein and W. de Haas, Experimenteller Nachweis der
Ampereschen Molekularstroeme, Verh. Dtsch. Phys. Ges. 17,
152 (1915).

[5] D. E. Kharzeev and D. T. Son, Testing the Chiral Magnetic and
Chiral Vortical Effects in Heavy Ion Collisions, Phys. Rev. Lett.
106, 062301 (2011).

[6] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,
Chiral magnetic and vortical effects in high-energy nuclear
collisions—status report, Prog. Part. Nucl. Phys. 88, 1 (2016).

[7] M. Jacob and J. Rafelski, Longitudinal �̄ polarization, �̄ abun-
dance and quark gluon plasma formation, Phys. Lett. B 190,
173 (1987).

[8] M. K. Anikina et al., Characteristics of � and K0 particles
produced in central nucleus nucleus collisions at a 4.5-GeV/c
momentum per incident nucleon, Z. Phys. C 25, 1 (1984).

[9] J. Bartke et al. (NA35 Collaboration), Neutral strange particle
production in sulphur sulphur and proton sulphur collisions at
200-GeV/nucleon, Z. Phys. C 48, 191 (1990).

[10] B. I. Abelev et al. (STAR Collaboration), Global polarization
measurement in Au+Au collisions, Phys. Rev. C 76, 024915
(2007); 95, 039906(E) (2017).

[11] Z.-T. Liang and X.-N. Wang, Globally Polarized Quark-Gluon
Plasma in Noncentral A + A Collisions, Phys. Rev. Lett. 94,
102301 (2005); 96, 039901(E) (2006).

[12] Z.-T. Liang and X.-N. Wang, Spin alignment of vector
mesons in non-central A+A collisions, Phys. Lett. B 629, 20
(2005).

[13] J.-H. Gao, S.-W. Chen, W.-T. Deng, Z.-T. Liang, Q. Wang, and
X.-N. Wang, Global quark polarization in non-central A+A
collisions, Phys. Rev. C 77, 044902 (2008).

[14] S.-W. Chen, J. Deng, J.-H. Gao, and Q. Wang, A General
derivation of differential cross-section in quark-quark scatter-
ings at fixed impact parameter, Front. Phys. China 4, 509
(2009).

[15] C. van Weert, Maximum entropy principle and relativistic
hydrodynamics, Ann. Phys. 140, 133 (1982).

[16] D. Zubarev, A. Prozorkevich, and S. Smolyanskii, Derivation of
nonlinear generalized equations of quantum relativistic hydro-
dynamics, Teor. Mat. Fiz. 40, 821 (1979).

[17] F. Becattini and L. Tinti, The ideal relativistic rotating
gas as a perfect fluid with spin, Ann. Phys. 325, 1566
(2010).

[18] F. Becattini, Covariant Statistical Mechanics and the Stress-
Energy Tensor, Phys. Rev. Lett. 108, 244502 (2012).

[19] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi,
Relativistic distribution function for particles with spin at
local thermodynamical equilibrium, Ann. Phys. 338, 32
(2013).

[20] F. Becattini and E. Grossi, Quantum corrections to the stress-
energy tensor in thermodynamic equilibrium with acceleration,
Phys. Rev. D 92, 045037 (2015).

[21] T. Hayata, Y. Hidaka, T. Noumi, and M. Hongo, Relativistic
hydrodynamics from quantum field theory on the basis of the
generalized Gibbs ensemble method, Phys. Rev. D 92, 065008
(2015).

[22] J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang, and X.-N. Wang, Chiral
Anomaly and Local Polarization Effect from Quantum Kinetic
Approach, Phys. Rev. Lett. 109, 232301 (2012).

[23] J.-W. Chen, S. Pu, Q. Wang, and X.-N. Wang, Berry Cur-
vature and Four-Dimensional Monopoles in the Relativis-
tic Chiral Kinetic Equation, Phys. Rev. Lett. 110, 262301
(2013).

[24] R.-H. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang, Polarization
of massive fermions in a vortical fluid, Phys. Rev. C 94, 024904
(2016).

[25] R.-H. Fang, J.-Y. Pang, Q. Wang, and X.-N. Wang, Pseudoscalar
condensation induced by chiral anomaly and vorticity for mas-
sive fermions, Phys. Rev. D 95, 014032 (2017).

044906-12

https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1038/nature23004
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/PhysRevC.98.014910
https://doi.org/10.1103/RevModPhys.7.129
https://doi.org/10.1103/RevModPhys.7.129
https://doi.org/10.1103/RevModPhys.7.129
https://doi.org/10.1103/RevModPhys.7.129
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/0370-2693(87)90862-8
https://doi.org/10.1016/0370-2693(87)90862-8
https://doi.org/10.1016/0370-2693(87)90862-8
https://doi.org/10.1016/0370-2693(87)90862-8
https://doi.org/10.1007/BF01571951
https://doi.org/10.1007/BF01571951
https://doi.org/10.1007/BF01571951
https://doi.org/10.1007/BF01571951
https://doi.org/10.1007/BF01554465
https://doi.org/10.1007/BF01554465
https://doi.org/10.1007/BF01554465
https://doi.org/10.1007/BF01554465
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.95.039906
https://doi.org/10.1103/PhysRevC.95.039906
https://doi.org/10.1103/PhysRevC.95.039906
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.94.102301
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1103/PhysRevLett.96.039901
https://doi.org/10.1016/j.physletb.2005.09.060
https://doi.org/10.1016/j.physletb.2005.09.060
https://doi.org/10.1016/j.physletb.2005.09.060
https://doi.org/10.1016/j.physletb.2005.09.060
https://doi.org/10.1103/PhysRevC.77.044902
https://doi.org/10.1103/PhysRevC.77.044902
https://doi.org/10.1103/PhysRevC.77.044902
https://doi.org/10.1103/PhysRevC.77.044902
https://doi.org/10.1007/s11467-009-0064-0
https://doi.org/10.1007/s11467-009-0064-0
https://doi.org/10.1007/s11467-009-0064-0
https://doi.org/10.1007/s11467-009-0064-0
https://doi.org/10.1016/0003-4916(82)90338-4
https://doi.org/10.1016/0003-4916(82)90338-4
https://doi.org/10.1016/0003-4916(82)90338-4
https://doi.org/10.1016/0003-4916(82)90338-4
https://doi.org/10.1007/BF01032069
https://doi.org/10.1007/BF01032069
https://doi.org/10.1007/BF01032069
https://doi.org/10.1007/BF01032069
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1016/j.aop.2010.03.007
https://doi.org/10.1103/PhysRevLett.108.244502
https://doi.org/10.1103/PhysRevLett.108.244502
https://doi.org/10.1103/PhysRevLett.108.244502
https://doi.org/10.1103/PhysRevLett.108.244502
https://doi.org/10.1016/j.aop.2013.07.004
https://doi.org/10.1016/j.aop.2013.07.004
https://doi.org/10.1016/j.aop.2013.07.004
https://doi.org/10.1016/j.aop.2013.07.004
https://doi.org/10.1103/PhysRevD.92.045037
https://doi.org/10.1103/PhysRevD.92.045037
https://doi.org/10.1103/PhysRevD.92.045037
https://doi.org/10.1103/PhysRevD.92.045037
https://doi.org/10.1103/PhysRevD.92.065008
https://doi.org/10.1103/PhysRevD.92.065008
https://doi.org/10.1103/PhysRevD.92.065008
https://doi.org/10.1103/PhysRevD.92.065008
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevC.94.024904
https://doi.org/10.1103/PhysRevC.94.024904
https://doi.org/10.1103/PhysRevC.94.024904
https://doi.org/10.1103/PhysRevC.94.024904
https://doi.org/10.1103/PhysRevD.95.014032
https://doi.org/10.1103/PhysRevD.95.014032
https://doi.org/10.1103/PhysRevD.95.014032
https://doi.org/10.1103/PhysRevD.95.014032


THERMODYNAMIC VERSUS KINETIC APPROACH TO … PHYSICAL REVIEW C 98, 044906 (2018)

[26] D. T. Son and P. Surowka, Hydrodynamics with Triangle
Anomalies, Phys. Rev. Lett. 103, 191601 (2009).

[27] D. Montenegro, L. Tinti, and G. Torrieri, The ideal relativistic
fluid limit for a medium with polarization, Phys. Rev. D 96,
056012 (2017).

[28] D. Montenegro, L. Tinti, and G. Torrieri, Sound waves and
vortices in a polarized relativistic fluid, Phys. Rev. D 96, 076016
(2017).

[29] D. Montenegro and G. Torrieri, Causality and dissipation in
relativistic polarizeable fluids, arXiv:1807.02796.

[30] W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, Rel-
ativistic fluid dynamics with spin, Phys. Rev. C 97, 041901
(2018).

[31] W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E.
Speranza, Spin-dependent distribution functions for relativistic
hydrodynamics of spin-1/2 particles, Phys. Rev. D 97, 116017
(2018).

[32] W. Florkowski, M. P. Heller, and M. Spalinski, New theories of
relativistic hydrodynamics in the LHC era, Rep. Prog. Phys. 81,
046001 (2018).

[33] P. Romatschke and U. Romatschke, Relativistic fluid dynamics
in and out of equilibrium—ten years of progress in theory and
numerical simulations of nuclear collisions, arXiv:1712.05815.

[34] F. Becattini, L. P. Csernai, D. J. Wang, and Y. L. Xie, �

polarization in peripheral heavy ion collisions, Phys. Rev. C 88,
034905 (2013); 93, 069901(E) (2016).

[35] F. Becattini, I. Karpenko, M. A. Lisa, I. Upsal, and S. A.
Voloshin, Global hyperon polarization at local thermodynamic
equilibrium with vorticity, magnetic field and feed-down, Phys.
Rev. C 95, 054902 (2017).

[36] F. Becattini and I. Karpenko, Collective Longitudinal Polariza-
tion in Relativistic Heavy-Ion Collisions at Very High Energy,
Phys. Rev. Lett. 120, 012302 (2018).

[37] H. T. Elze, M. Gyulassy, and D. Vasak, Transport equations for
the qcd quark wigner operator, Nucl. Phys. B 276, 706 (1986).

[38] D. Vasak, M. Gyulassy, and H. T. Elze, Quantum trans-
port theory for abelian plasmas, Ann. Phys. 173, 462
(1987).

[39] H.-T. Elze and U. W. Heinz, Quark-gluon transport theory,
Phys. Rep. 183, 81 (1989).

[40] P. Zhuang and U. W. Heinz, Relativistic quantum transport
theory for electrodynamics, Ann. Phys. 245, 311 (1996).

[41] W. Florkowski, J. Hufner, S. P. Klevansky, and L. Neise, Chi-
rally invariant transport equations for quark matter, Ann. Phys.
245, 445 (1996).

[42] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev.
Lett. 109, 162001 (2012).

[43] J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, and Y. Yin,
Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett.
113, 182302 (2014).

[44] E. V. Gorbar, D. O. Rybalka, and I. A. Shovkovy, Second-order
dissipative hydrodynamics for plasma with chiral asymmetry
and vorticity, Phys. Rev. D 95, 096010 (2017).

[45] S. de Groot, W. van Leeuwen, and C. van Weert, Relativistic
Kinetic Theory: Principles and Applications (North-Holland,
Amsterdam, 1980).

[46] C. Itzykson and J. B. Zuber, Quantum Field Theory, Interna-
tional Series in Pure and Applied Physics (McGraw-Hill, New
York, 1980).

[47] D. Zubarev, Nonequilibrium Statistical Thermodynamics
(Springer, Berlin, 1974).

[48] F. Becattini, Thermodynamic equilibrium with acceleration and
the Unruh effect, Phys. Rev. D 97, 085013 (2018).

[49] W. Florkowski, E. Speranza, and F. Becattini, Perfect-fluid
hydrodynamics with constant acceleration along the stream
lines and spin polarization, Acta Phys. Pol. B 49, 1409
(2018).

[50] G. Prokhorov, O. Teryaev, and V. Zakharov, On the axial current
in the rotating and accelerating medium, arXiv:1805.12029.

[51] G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov, Effects of
rotation and acceleration in the axial current: Density operator
vs Wigner function, arXiv:1807.03584.

[52] W. Florkowski, A. Kumar, and R. Ryblewski (unpublished).
[53] F. W. Hehl, On the energy tensor of spinning massive matter in

classical field theory and general relativity, Rep. Math. Phys. 9,
55 (1976).

[54] F. J. Belinfante, On the current and the density of the electric
charge, the energy, the linear momentum and the angular mo-
mentum of arbitrary fields, Physica 7, 449 (1940).

[55] F. Becattini, W. Florkowski, and E. Speranza, Spin tensor and
its role in non-equilibrium thermodynamics, arXiv:1807.10994.

[56] L. Tinti, R. Ryblewski, W. Florkowski, and M. Strickland,
Testing different formulations of leading-order anisotropic hy-
drodynamics, Nucl. Phys. A 946, 29 (2016).

044906-13

https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.056012
https://doi.org/10.1103/PhysRevD.96.076016
https://doi.org/10.1103/PhysRevD.96.076016
https://doi.org/10.1103/PhysRevD.96.076016
https://doi.org/10.1103/PhysRevD.96.076016
http://arxiv.org/abs/arXiv:1807.02796
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1103/PhysRevC.97.041901
https://doi.org/10.1103/PhysRevD.97.116017
https://doi.org/10.1103/PhysRevD.97.116017
https://doi.org/10.1103/PhysRevD.97.116017
https://doi.org/10.1103/PhysRevD.97.116017
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
http://arxiv.org/abs/arXiv:1712.05815
https://doi.org/10.1103/PhysRevC.88.034905
https://doi.org/10.1103/PhysRevC.88.034905
https://doi.org/10.1103/PhysRevC.88.034905
https://doi.org/10.1103/PhysRevC.88.034905
https://doi.org/10.1103/PhysRevC.93.069901
https://doi.org/10.1103/PhysRevC.93.069901
https://doi.org/10.1103/PhysRevC.93.069901
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1103/PhysRevLett.120.012302
https://doi.org/10.1016/0550-3213(86)90072-6
https://doi.org/10.1016/0550-3213(86)90072-6
https://doi.org/10.1016/0550-3213(86)90072-6
https://doi.org/10.1016/0550-3213(86)90072-6
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1016/0003-4916(87)90169-2
https://doi.org/10.1016/0370-1573(89)90059-8
https://doi.org/10.1016/0370-1573(89)90059-8
https://doi.org/10.1016/0370-1573(89)90059-8
https://doi.org/10.1016/0370-1573(89)90059-8
https://doi.org/10.1006/aphy.1996.0011
https://doi.org/10.1006/aphy.1996.0011
https://doi.org/10.1006/aphy.1996.0011
https://doi.org/10.1006/aphy.1996.0011
https://doi.org/10.1006/aphy.1996.0016
https://doi.org/10.1006/aphy.1996.0016
https://doi.org/10.1006/aphy.1996.0016
https://doi.org/10.1006/aphy.1996.0016
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.113.182302
https://doi.org/10.1103/PhysRevLett.113.182302
https://doi.org/10.1103/PhysRevLett.113.182302
https://doi.org/10.1103/PhysRevLett.113.182302
https://doi.org/10.1103/PhysRevD.95.096010
https://doi.org/10.1103/PhysRevD.95.096010
https://doi.org/10.1103/PhysRevD.95.096010
https://doi.org/10.1103/PhysRevD.95.096010
https://doi.org/10.1103/PhysRevD.97.085013
https://doi.org/10.1103/PhysRevD.97.085013
https://doi.org/10.1103/PhysRevD.97.085013
https://doi.org/10.1103/PhysRevD.97.085013
https://doi.org/10.5506/APhysPolB.49.1409
https://doi.org/10.5506/APhysPolB.49.1409
https://doi.org/10.5506/APhysPolB.49.1409
https://doi.org/10.5506/APhysPolB.49.1409
http://arxiv.org/abs/arXiv:1805.12029
http://arxiv.org/abs/arXiv:1807.03584
https://doi.org/10.1016/0034-4877(76)90016-1
https://doi.org/10.1016/0034-4877(76)90016-1
https://doi.org/10.1016/0034-4877(76)90016-1
https://doi.org/10.1016/0034-4877(76)90016-1
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X
http://arxiv.org/abs/arXiv:1807.10994
https://doi.org/10.1016/j.nuclphysa.2015.11.006
https://doi.org/10.1016/j.nuclphysa.2015.11.006
https://doi.org/10.1016/j.nuclphysa.2015.11.006
https://doi.org/10.1016/j.nuclphysa.2015.11.006



