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Abstract

The computer language Logo facilitates the teaching of analytic geometry and calculus from the notion of

curvature, through its "turtle geometry" facility [2]. We provide some theoretical basis for finding turtle

geometry equivalents of familiar curves in analytic geometry, and vice versa, by some simple methods

apparently previously unnoticed. In particular, we study turtle geomcu'y programs where the curvature of a

line is a trigonometric function of its orientation.

1

.

Introduction

Recently the computer language Logo has become available for the first time on a wide variety of personal

computers [1, 6, 3]. A distinctive feature of Logo is an emphasis in the graphics package on "turtle geometry",

a geometry emphasizing discrete changes to local curvature of curves rather than coordinate systems. Despite

its simplicity, turtle geometry is quite powerful, and provides an alternative viewpoint that makes certain

mathematical concepts clearer, as discussed in [2].

But an issue not well addressed in [2] is relationship of curves created by turtle geometry to the familiar

ones of analytic geometry. In this paper, thus, we present methods for finding small-step turtle-geometry

equivalents (mostly previously unnoticed) for some well-known analytic-geometry curves, and vice versa.

This material provides a good exercise for calculus students, while also demonstrating some numerical

analysis concepts.

2. Turtle geometry

Turtle geometry draws planar curves using two commands, FORWARD and RIGHT. A cursor called a

turtle represents a point and orientation on a graphics screen. FORWARD causes the turtle to move forward

in a straight line a distance (approximately in millimeter units) specified as its argument, in die direction the

turtle is pointing. RIGHT causes the turtle to turn in place a number of degrees specified by its argument.

Turtles thus have a state consisting of a screen position and an orientation (or heading). The Cartesian

coordinates arc referred to as XCOR and YCOR, and the heading as IIFADING (though we will use the

abbreviation H for it in this paper). We assume the turtle starts with XCOR = 0, YCOR = (the center of the

screen), and HFAI)lNG = (pointing straight up). And a IIFADING of 90 is straight to the right, 180

straight down, and 270 straight to the left. Note that HEADING can be thought of as the total amount a

turtle has turned right since it started.

logo programs arc written in terms of procedures. A procedure consists of a sequence of commands, on

successive lines. The first line contains the word TO followed by die name of the procedure, and then



arguments if any. The last line of a procedure is signalled by END.

3. Curvature

We start from the classical definition of curvature in a Cartesian coordinate system, as given in most

advanced calculus treatments (e.g. [4], p. 305), assuming that clockwise is positive curvature:

K(x,y) = -(d
2
y/dx

2
)/[l + (dy/dx)

2

]

15

Wc can put tliis in a form closer to turtle geometry by noting that dy/dx = cot(H), H the heading of the turtle

[5]:

K(x,y,H) = -(d
2
y/dx

2
) / [1 + cot

2
H]

15 = -(d
2
y/dx

2
)
* sin

3H

We call this the "hybrid" curvature formula because it includes both Cartesian and heading variables.

Curvature is the rate at which a curve turns clockwise, and thus can be approximated in Logo by the ratio

of the amount a turtle turns RIGHT to the amount it goes FORWARD -- provided the turtle takes small

enough steps so as to make its path look sufficiently smooth. (Practically speaking, this means something like

steps of 1 millimeter and turtle turns of five degrees on most graphics terminals that use Logo.) So if we

define the curvature function we want a curve to follow by the procedure K of no arguments, either of these

recursive Logo procedures will probably draw what wc want:

TO CURVE
FORWARD 1

RIGHT K
CURVE
END

TO CURVE
FORWARD (QUOTIENT 1 K)

RIGHT 1

CURVE
END

We shall call them the "angle-control" and "step-control" variants, respectively. Which should wc use?

Unfortunately, sometimes they do not work the same, and only one gives to the correct result. This is because

these arc discrete approximations of smooth curves, and anytime the absolute value of K becomes large in the

first version, or the absolute value of K approaches in the second, the approximation breaks down. So wc

will have to watch for that.

In what follows wc shall only concern ourselves with the shape of a curve, and not its si/e or orientation.

Thus we shall ignore constant multipliers in front of a curvature formula, except sometimes the sign, and we

shall throw away any constant multipliers generated in analysis routinely. We also will not concern ourselves

with at what screen location wc start drawing the shape (except in section 4.3), since turtle geometry docs not



3

use a coordinate system, though the usual convention in Logo is to start at the center of a graphics screen. But

it will make a difference what heading we start with in the procedures we discuss -- different pieces of the

curve will appear for different starting headings, and for some headings not defined for the curve (e.g.

asymptotes), pathological curves like straight lines will be generated.

Special note: in this paper we assume that headings of greater than 360 degrees or less than are

meaningful and significant as indications of "how far the turtle has turned". Most Logo implementations,

however, take "heading" as this modulo 360. As a result, some of the Logo procedures discussed below will

not execute properly in those implementations (in particular, those where heading (H) appears other than as

an argument to a trigonometric function). But it is easy to define a counter variable to use instead of

HEADING.

4. Some examples: from y = f(x) to K = g(H)

We give now some examples of curves initially described as y = f(x) in new terms of their curvature as

function of heading, K = g(H). The method is (1) find dy/dx and d y/dx in terms of x; (2) express d
2
y/dx

2

in terms of dy/dx only, no x's; and (3) then substitute cot(H) for dy/dx, and multiply by -sin (H) to get the

curvature K in terms of H. This method is not guaranteed to work because step (2) is not possible for some

f(x), but it will work for some interesting functions.

4.1 . Conic sections

Let us apply the hybrid formula to some familiar curves. First, the general parabola y = ax + bx +

c. Since d y/dx = 2a, a constant, following our policy of ignoring constants we just turn right sin (H) at each

turn in the "angle-control" procedure, as follows:

TO PARABOLA
FORWARD 1

RIGHT (PRODUCT (SIN HEADING) (SIN HEADING) (SIN HEADING))
PARABOLA
END

If the turtle is started with a heading between and 180, it will draw a downward-tending parabola; else, an

upwards-tending one.

One of the first things people learn to do with Logo is to draw a circle by repeating many times a

forward-right pair ofcommands with constant arguments:

TO CIRCLE
FORWARD 1

RIGHT 1

CIRCLE



END

(This is a special case of the well-known Logo procedure, POLY.) We can prove that in fact y = -/(1 -x ) is

drawn with this procedure, dy/dx = -x/7(r
2
-x

2
), and d

2
y/dx

2 = r/(r-x )
15

. Hence 1 + (dy/dx)
2 =

r
2
/(r

2
-x

2
), and(l + (dy/dx)

2
)

1

5

/r = d
2
y/dx

2
. Substituting cot(H) = dy/dx, d

2
y/dx

2 = (1 + cot
2
(H))

15 =

csc
3
(H). Hence the curvature is -sin

3
(H) * csc

3
(H) = -1, a constant.

We can generalize this to ellipses and hyperbolas. First, consider the general ellipse y = c 7(a -x ), where c

is the ratio of the height to the the width. Then dy/dx = -ex/ -/(a -x ) and d y/dx = ca
2
/(a

2
-x

2
)

15
. Hence

1 + (dy/dx)
2
/c

2 = a
2
/(a

2
-x

2
), andc(l + (dy/dx)

2
/c

2

)

15 = d
2
y/dx

2 = c(l + (l/c
2
)cot

2
(H))

L5 = (l/c
2
)(c

2

+ cot
2
(H))

15
. Multiplying by -sin (H), and ignoring the multiplicative constant, this then leads to a total

curvature of -(c
2
sin

2
(H) + cos

2
(H))

15 = -[(c
2
-l)sin

2
(H) + l]

1

5

. Since sin
2(H)>0 and c

2
-l>-l forc*0, the

curvature is always negative for c^O, but the degree of curve varies periodically with the heading. Here is the

Logo procedure for diis general ellipse:

TO ELLIPSE :C

FORWARD I

RIGHT THRFEHALVES DIFFERENCE (PRODUCT (DIFFERENCE SQUARE :C 1)

SQUARE SIN HEADING) 1

ELLIPSE :C

END

TO THREEHALVES :X

SQRT (PRODUCT :X :X :X)

END

By similar analysis we can get the curvature of a general hyperbola, y = c7(a +x ). It turns out dy/dx =

cx/v/
(a

2 + x
2
) and d

2
y/dx

2 = ca
2
/(a

2 + x
2

)

15
, so c(l - (l/c

2
)cot

2
(H))'

5 = d
2
y/dx

2
, and the curvature is

proportional to -(c sin
2
(H) - cos

2
(H))

15 = -[(c
2
+l)sin

2
(H) - l]

1

5

. This has maximum curvature at H = 90

degrees, and then gradually turns left more and more slowly, reaching an asymptote when the curvature

becomes zero, or (c-f-l)sin (H) = 1, orH = arcsin[ 7(1/(1 + c)] = arccot(c).

Note both the ellipse and hyperbola become a parabola when c = 0, since (l-sin
2
(H))

15 = cos
3
(H). And

when c approaches oo, both approach (c sin (H)) = c sin (H), which is also a parabola.

4.2. Inverses

Take f(x) = e
x

; dy/dx = d y/dx = e
x

, so d y/dx = cot(H), and the curvature needed to draw it is

-sin
3
(H) * cot(H) = -sin

2
(H)cos(H) = -.5 sin(H) sin(2H).

Since the inverse function of f(x) looks just like it but "turned over" and oriented in a different direction,



we should expect their curvature formulas to be related. We can verify this for the inverse function of e\

ln(x); dy/dx =

cos(H)sin(2H).

ln(x); dy/dx = 1/x and d
2
y/dx

2 = -1/x
2

, so d
2
y/dx

2 = -cot
2
(H), and the curvature is sin(H)cos

2
(H) = .5

In general, we can obtain the curvature of the inverse of a function by interchanging all sin(H) and cos(H)

terms and then reversing the sign of the total expression so that it curves in the opposite direction. This is

because

dx/dy = 1 / (dy/dx) = tan(H)

So tan(H) should be substituted for cot(H) in all occurrences of it, and vice versa. But since

1 + (dy/dx)
2 = 1 + cot

2
(H) = l/sin

2
(H)

1 + (dx/dy)
2 = 1 + tan

2
(H) = l/cos

2
(H)

sin(H) and cos(H) must necessarily interchange too.

4.3. Problems with inflection points

Unfortunately, we usually cannot use an expression for the curvature in terms of only the heading when the

curvature changes sign somewhere. Often these conditions arise with square roots which can be either

positive or negative. An example is y = x ; dy/dx = 3x , and d y/dx = 6x. So trying to express d y/dx
2
in

terms of dy/dx, we get ± V[U(dy/d\)] = ± V[12cot(H)]. and a curvature of +sin
3
(H)V[12cot(H)].

But we cannot choose only one sign to cover the whole range -- the sign' must change at the inflection point,

the point where 6x = 0, x = 0, or the place where arccot[3(0) ]
= H = 90. We must therefore add a

conditional branch, something like this (assuming we start with a heading which is a small positive number):

TOCUB1-;

FORWARD 1

RIGHT PRODUCT (SQUARE SIN HEADING) (SQRT COT HF.AD1NG)

IF HEADING = 90[CUBERIGHTSIDF] FFSE[CUBE]

END

TOCUBFRIGHTSIDE
FORWARD 1

RIGHT MINUS PRODUCT (SQUARE SIN HEADING) (SQRT COT HEADING)
CUBERIGHTS1DE
END

where SQRT is the square root function (see the Logo manuals cited for the exact interpretation of this

syntax). But since the curve is really composed of small straight lines, with some roundoff error in calculating

the heading over a period of time, we may never actually reach a heading of zero. Instead we had better say

for procedure CUBE:

TO CUBE
FORWARD 1



IUGHTPRODUCT(SQUARESIN HEADING) (SQRT COT HEADING)
IF HEADING < 89 [CUBE] ELSE [CUBERIGHTSIDE]

END

with CUBERIGHTSIDE remaining as above.

5. Parametric equations: from x = f^t), y = f
2
(t) to K = g(H)

Some curves are easier to express in terms of parametric equations for x and y than in terms of a equation

including both x and y. To find curvature in terms of heading for them there are two steps: (1) express the

parametric equations in terms of H entirely (use dy/dx = cot(H)), and (2) compute derivatives with respect to

this expression to obtain the curvature. We can rewrite the basic curvature formula in terms of derivatives of

H:

K(H) = -sin
3(H)*d 2

y/dx
2

But d
2
y/dx

2 = d/dx (dy/dx) = d/dx (cot(H)) = csc
2
(H) * dH/dx

Hence K(H) = -sin(H)/ dx/dH

But also

dH/dx = dH/dy * dy/dx = dH/dy * cot(H)

so also K(H) = -cos(H) / dy/dH

As an example, take the cycloid described by

x = a(t - sin(t)), y = a(l - cos(t))

cot(H) = dy/dx = (dy/dH)/(dx/dH) = sin(t) / (1 - cos(t)) = cot(t/2)

and hence t/2 = H, t = 2H, and

x = a(2H - sin(2H)), y = a(l - cos(2H))

dx/dH = 2a(l -cos(2H)), dy/dH = 2asin(2H)

So the curvature is, using the simpler expression dy/dH:

-sin(H) / 2a sin(2H) = -1 / 4a cos(H)

and hence the figure can be drawn by the Logo procedure

TO CYCLOID
FORWARD SIN HEADING
RIGHT 1

CYCLOID
END

Note we use the "step-control" procedure format because scc(H) becomes infinite at ± 180 degrees.

6. Polar coordinates to K = g(H)

We can also draw curves given in polar coordinates, r = {(6):

x = r cos(0), y = rsin(#)

dx/d# = (drA10)cos(0)-rsin(0),dy/d0 = (dr/d0)sin(0) + rcos(0)



cot(H) = dy/dx = (dy/dd)/(dx/dO) =

[(dr/d0)sin(0) + r cos(0)j / [(dr/d0)cos(0) - r sin(0)]

= cos[0 - Arctan[(dr/d0)/r]] / -sinffl - Arctan[(dr/d0)/r]]

= -cot[0 - Arccot[r/(dr/d0)]]

Hence

H = -8 + Arccot[r/(dr/d0)],orcot(H + 0) = r/(dr/d0)

The curvature of a curve expressed in polar coordinates can be found by manipulation of the x-y curvature

formula, and is given in many books (e.g. [4], p. 306):

K(0) = [r
2 + 2(dr/d0)

2
- r(d

2
r/d0

2
)] / [r

2 + (dr/dtf)
2
]

1 5

We substitute into it die rcladonship just derived, i.e. (dr/d#)/r = tan(H + 8):

K(0,H) = [1 + 2tan
2
(H + 0) - (d

2
r/d0

2
)/r] / r[l + tan

2
(H + 0)]

15

= [2cos(H + 8) - cos
3(H + 8) - [cos

3(H + 8) * (d
2
r/d0

2
)/r]] / r

= [2cos(H + 0)]/r - [cos
3(H + 0) * [1 + (d

2
r/d0

2
)/r

2
]]

For particular situations we may be able to express the above only in terms of H. For example, take the

logarithmic spiral r = e
c0

. for which tan(H + 0) = (dr/d#)/r = ce
c6
/e

c0 = c. Hence:

dr/d0 = ce
c<?

, d
2
r/d0

2 = c
2
e
c<?

K(H,r) = 2cos(arctan(c))/r - cos
3
(arctan(c)) * [1 + c

2
]/r

Which just factors into a constant term divided by r = e
ce = e^^o^HD^

j-fencc ^c curvature is just a

constant times e = b , b = c
c

. So it can be drawn by this procedure:

TO LOGSPIRAL
FORWARD EXPONENT 1.01 H
RIGHT 1

LOGSPIRAL
END

where EXPONENT represent die first argument taken to the power represented by the second argument.

7. Changing-argument recursive-procedure forms

There's a simpler way we can express LOGSPIRAL (given in chapter 2 of [2]), by giving it an argument:

TO LOGSPIRAL :SIDE

FORWARD :SIDE

RIGHT 1

LOGSPIRAL (:SIDE* 1.01)

END

where :SIDE is a parameter to the procedure.

Many procedures tiiat draw smooth curves can be written in this form. Letting the curvature on two

successive recursive calls be K
i
and K

2
, we try to find a simple expression relating K, to K., preferably



independent of heading. In the above, K
2
=K./1.01 which is independent of heading. Note if the curve is

smooth enough, we can approximate K
2
by a Taylor series about K^ that is

K
2
(H) = K^H) + (8K(H)/6H)AH

so there is always an "additive" approximation for any Logo step-control procedure:

TO CURVE :CURVATURE
FORWARD 1

RIGHT :CURVATURE
CURVE SUM :CURVATURE(DERIVK HEADING)
END

where DERIVK is a procedure Uiat computes the derivative of the curvature function. Rut since this is only

an approximation it will (usually) gradually diverge from the true curve, though slower for some functions

than others.

8. From K = g(H) to y = f(x)

Now we address the inverse problem, which is to determine the Cartesian description of a function given

its curvature as a function of heading. Two approaches are possible.

8.1. From g(H) to y = f(x)

Let z = dy/dx. Then if the curvature is a function of heading g(H):

g(H) = -sin
3
(H) * dz/dx

-esc (arccot(z)) * g(arccot(/.)) = dz/dx

dx = dz / [-esc (arccol(z)) * g(arccot(z))]

x = -Jdz/[g(arccot(z))(l + z
2
)
15

]

In particular cases we may be able to solve this, then invert it and integrate with respect to x to get an f(x).

For instance, consider the curve drawn by the procedure

TOMYSTERY1
FORWARD 1

RIGHT SIN HEADING
MYSTERY 1

END

which draws a kind of "squashed parabola". Us curvature is K(II) = sin(H). Hence the equation is

x = -/dz/(l +/?) = C-arctan(z)

So z - tan(C-x) = dy/dx.

Hence y = / tan(C-x)dx = ln|cos(C-x)|

which is thus the mystery curve as a function of x.

As another example, consider the similar procedure

TO MYSTERY2



FORWARD 1

RIGHT PRODUCT SIN HEADING SIN HEADING
MYSTERY2
END

which draws a less-squashed parabola. Its curvature is K(H) = sin (H), and:

x = -/dz/V([l + z
2
] = C - arcsinh(z)

So z = sinh(C-x) = dy/dx.

Hence y = / sinh(C-x)dx = cosh(C-x)

which is a catenary.

This method depends however on three steps, two integrals and a function inversion. If any of these are

not possible, the method will not work. But anytime the first integral is possible, one docs derive a differential

equation in terms of dy/dx and x, and it may be possible to solve this with other methods, or perhaps

approximate a solution by infinite series. For instance, die procedure

TO MYSTERY3
FORWARD 1

RIGHT EXPONENT (SIN HEADING) 5

MYSTERY3
END

leads to the differential equation

(dy/dx)
3
/3 + (dy/dx) =

which has no easy solution.

8.2. From g(H) to x = f(H) and y = h(H)

If, however, it is acceptable to determine the curve in terms of the parameter H, then we can often solve

other situations too. Recall the formulas from section 5 for curvature in terms of the heading parameter

exclusively:

K(H) = -sin(H) / (dx/dH) , or K(H) = -cos(H) / (dy/dH)

We can rearrange these expressions for K(H) and integrate them:

dx = -sin(H)dH / K(H). dy = -cos(H)dH / K(H)

x = -/ [sin(H)dH / K(H)]

y = -/ [cos(H)dH / K(H)]

Sometimes we can then find a substitution to eliminate H and get an equation in terms of only x and y, but

not always.

As an example, consider curves drawn by the "step-control" form

TOAMPOLY:C
FORWARD SIN PRODUCT :C HEADING
RIGHT 1
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AMPOLY :C

END

where :C denotes a parameter. (AMPOLY stands for "amplitude modulation POLY", since the curvature of

a circle is being "modulated" at some frequency.) Here the curvature is IVsin(cH), and hence

x = /sin(H)sin(cH)dH = .5/[cos((l-c)H)-cos((l+c)H)]dH

= (1/2(1 -c))sin((l-c)H)- (1/2(1 +c))sin((l+c)H)

y = Jcos(H)sin(cH)dH = .5/[sin((l+c)H)-sin((l-c)H)]dH

= (l/2(l-c))cos((l-c)H)- (1/2(1 +c))cos((l+c)H)

These are parametric equations for general hypocycloids and epicycloids
( [4], p. 312-314), with the

substitutions t/2 = H and (l-c)/2 = b/a). When c>l, it is a hypocycloid; when c<l, an epicycloid; and when

c = l, a cycloid, as we showed in section 5. We can ignore the constants of integration -- they just affect the

location of the shape.

As another example, take the Logo procedure ( [2], ch. 1)

TO POLYSPI :SIDE

FORWARD :SIDE

RIGHT 1

POLYSPI SUM :SIDE 1

END

which can also be written, following the discussion of section 7, and assuming a starting heading of 0, as

TO POLYSPI
FORWARD HEADING
RIGHT 1

POLYSPI

END

Hence K(H) = -1/H. Then from integration by parts:

x = / Hsin(H)dH = sin(H) - Hcos(H)

y = / Hcos(H)dH = cos(H) - Hsin(H)

We cannot find an easy nonparamctric form in general, but note as H approaches infinity the second terms

predominate, so

x S -Hcos(H), y 25 -Hsin(H)

r = V[x
2 + y

2
]
= H, 6 = arctan[tan(H)] = H

and \-0 is a polar expression for the curve. Thus as H becomes large the curve approaches the spiral of

Archimedes ( [4], p. 317). We can show in general that

TO SPIRAL :N

FORWARD EXPONENT HEADING :N

RIGHT 1

SPIRAL :N

END

approaches v=0 as H bccoincs large, for N>0.
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8.3. Connections to Fourier analysis

The inverse of the curvature K is often called the "radius of curvature" R. Our equations for parameterized

x and y can be written as

x =••/ R(H)sin(H)dH

y = -J R(H)cos(H)dH

and one can see these are just the formulas for the coefficients of sin(H) and cos(H) in a Fourier series

expansion of R(H).

There is another connection to Fourier analysis, however. Note if R(H) = R,(H) + R
2
(H), then

x = -/ R
1
(H)sin(H)dH - / R

2
(H)sin(H)dH

y = -/ R
1
(H)cos(H)dH - / R

2
(H)cos(H)dH

and the resulting curve is the "vector addition" of the two original curves, as in DUOPOLY of ch. 3 of [2J.

Now since we can approximate any curve sufficiently accurately with a sufficient number of terms from its

Fourier series, we can approximate an arbitrary R(H) as the sum of weighted sines and cosines:

R(H) = 2.[ajC0s(iH/c) + b.sin(iH/c)]

where c is a constant representing how fine accuracy we desire in the approximation. Hence wc can express x

and y as

x = -2
i

/[a.cos(iH/c) + b
j

sin(iH/c)]sin(H)dH

y = -ZJ/[ajcos(iH/c) + b!sin(iH/c)]cos(H)dH

and the result is a weighted vector sum of hypocycloids and epicycloids, in the same way that MULTIPOLY

in ch. 3 of [2] is the sum of circles of different sizes and curvatures.

9. Conclusion

Wc have shown a variety of methods for obtaining small-step turtle geometry programs from equations for

analytic-geometry curves, and vice versa. Unfortunately, each method only works part of the time, and no

guarantees can be given. Sec [5] for further student problems related to this material.
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