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ABSTRACT 

Previous research in statistical post-processing has found systematic deficiencies 

in deterministic forecast guidance. As a result, ensemble forecasts of sensible weather 

variables often manifest biased central tendencies and anomalous dispersion. In this way, 

the numerical weather prediction community has largely focused on upgrades to 

upstream model components to improve forecast performance—that is, innovations in 

data assimilation, governing dynamics, numerical techniques, and various 

parameterizations of subgrid-scale processes. However, this dissertation explores the 

efficacy of statistical post-processing methods downstream of these dynamical model 

components with a hierarchical multivariate Bayesian approach to ensemble model 

output statistics. This technique directly parameterizes meteorological phenomena with 

probability distributions that describe the intrinsic structure of observable data. Bayesian 

posterior beliefs in model parameter were conditioned on previous observations and 

dynamical predictors available outside of the parent ensemble. An adaptive variant of the 

random-walk Metropolis algorithm was used to complete the inference scheme with 

block-wise multiparameter updates. This produced calibrated multivariate posterior 

predictive distributions (PPD) for 24-hour forecasts of diurnal extrema in surface 

temperature and wind speed. These Bayesian PPDs reliably characterized forecast 

uncertainty and outperformed the parent ensemble and a classical least-squares approach 

to multivariate multiple linear regression using both measures-oriented and distributions-

oriented scoring rules. 
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I. INTRODUCTION 

A. RELEVANCE 

The Art of War emphasizes the value of information in warfare, especially in the 

context of operational planning, and identifies the “seasons”—or, more broadly, the 

spatial and temporal variability of the environment—as one of five fundamental factors 

that affect military engagements (Sun-tzu and Griffith 1964). While intuition might 

suggest that routine forecasts of sensible weather variables are too prosaic for earnest 

operational consideration, military history provides an extensive record of events—

including Napoleon’s invasion of Russian in 1812, or, more recently, the Normandy 

landings in 1944—in which the environment, climatology, or weather was crucial to the 

outcome (e.g., Winters et al. 1998). As a result, forecasts of the ocean, atmosphere, and 

space domains are routinely consumed by contemporary decision-makers to optimize the 

distribution of military resources and, indeed, the lethality of weapons systems over short 

and long timescales. In this way, environmental prediction affects decision superiority at 

the tactical, operational, and strategic levels of warfare. As described in the U.S. Navy 

Information Dominance Roadmap: 2013–2028, it directly contributes to battlespace 

awareness—”know the enemy, know the environment” (Leigher 2013). 

To this end, numerical weather prediction (NWP) has served as the foundation of 

operational forecasting since the pioneering work of Rear Admiral Grace Hopper, Jules 

Charney, and Edward Lorenz in the mid-twentieth century. While the sophistication of 

various NWP schemes has grown considerably since the field’s inception, especially with 

the emergence of ensemble prediction systems (EPS), the perennial search for better 

forecast methodologies is as compelling today as when the first operational forecast was 

produced by the National Centers for Environmental Prediction (NCEP) in 1950 (Kalnay 

2003). To this end, this dissertation explores and develops a specific class of machine-

learning techniques in modern data science—that is, Bayesian parameter estimation with 

Markov chain Monte Carlo (MCMC) sampling methods—as a compelling new approach 

to statistical post-processing in atmospheric prediction.  
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B. BACKGROUND 

Prediction lies at the heart of the scientific method. Often relying on detailed 

mathematical descriptions of nature, it provides a conceptual bridge between hypotheses 

and the empirical evidence that manifests the physical structure of the universe. To this 

end, determinism has served as an intuitive approach to prediction that has shaped the 

analytical topography of mathematical physics, and the specialized disciplines that 

compose its progeny, since Laplace first rigorously engaged the philosophical qualities of 

probability theory in 1814 (Hawking 1999). In his view, the stochastic margins between 

observations and predictions are created by a lack of understanding; that is, the natural 

world may be precisely known, both past and future, with perfect information (Pearl 

2000). Ignorance of various components of a dynamical system—including the initial 

configuration, relevant boundary conditions, or, indeed, the equations that govern its 

evolution—will obscure its phase space evolution and preclude the accurate identification 

of future states. Eponymously described as Laplace’s demon, this intuitive distillation of 

natural laws promises arbitrary prognostic skill if sufficient information is obtained. 

We ought then to regard the present state of the universe as the effect of its 

anterior state and as the cause of the one which is to follow. Given for one 

instant an intelligence which could comprehend all the forces by which 

nature is animated and the respective situation of the beings who compose 

it—an intelligence sufficiently vast to submit these data to analysis— 

it would embrace in the same formula the movements of the greatest 

bodies of the universe and those of the lightest atom; for it, nothing would 

be uncertain and the future, as the past, would be present to its eyes. 

(Laplace 1814) 

In this way, scientific determinism ostensibly produces meaningful statements 

about physical processes for which precise, repeatable predictions are sought. Examples 

include the periodic motion of astronomical objects orbiting a parent mass or the 

adiabatic ascent of an idealized parcel of dry air lifted in the atmospheric boundary layer. 

At time and length scales that are intuitive for human observation, these principles are 

essentially self-apparent. If one presumes a sufficient understanding of the physical laws 

that relate observable variables, and indeed their initial values, then counterfactual 

statements—that is, mathematical descriptions of outcomes or events that have not 
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occurred—are available from first principles (Pearl 2000). Until quantum mechanical 

notions of uncertainty were formalized in 1926, wherein a precise knowledge of a 

particle’s position and momentum is reinterpreted within the stochastic framework of the 

wave function and Schrödinger equation, determinism served as the implicit basis for 

orthodox scientific thinking—especially in classical mechanics (Hawking 1999). 

Einstein’s infamous claim “God does not play dice with the universe” is appropriately 

interpreted in this context; he preferred a traditional view of causality (i.e., deterministic 

versus stochastic generative processes) in which the perceived stochastic elements of any 

variable were the products of ignorance—vis-à-vis Laplace’s canonical view of physical 

systems—and not, as quantum mechanics suggests, an intrinsic facet of nature (Natarajan 

2008). 

With a similar faith in deterministic principles, and nearly two decades before the 

disruptive insights of quantum mechanics, Abbe (1901) and Bjerknes (1904) recognized 

the fundamental utility of scientific determinism and pursued its rigorous application in 

meteorology (Lynch 2007). They considered fluid dynamics and thermodynamics to be 

ideal analytical tools by which the real atmosphere, and its complex superposition of 

physical processes, might be mathematically decomposed and numerically rendered. 

Bjerknes’ template for weather prediction would become particularly influential; it 

established a diagnostic step to estimate the initial state of the atmosphere and, perhaps 

more importantly, a prognostic step to engage the time-dependence of the governing 

dynamics through the integration of appropriate differential equations (Kalnay 2003). To 

facilitate the prognostic component of his forecast algorithm, Bjerknes combined the 

ideal gas law with material conservation statements for density, water vapor, momentum, 

and internal energy to codify the primitive equations—a set of ubiquitous physical 

relationships that describe the covariation of fundamental atmospheric scalars. 

While theoretically viable, Bjerknes’ diagnostic-prognostic approach was 

constrained in two primary respects. As described by Kalnay (2003), Charney (1951) 

correctly recognized that the spatial and temporal distribution of meteorological 

observations was poorly suited to initial value problems—that is, ordinary differential 

equations supplied with the appropriate initial conditions. Even if the inadequacy of the 
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contemporary observing network was neglected, however, the analytical difficulties of 

solving a coupled set of non-linear differential equations were unresolved at that time. 

Richardson (1922) would address the latter with an application of finite differences to 

approximate Bjerknes’ primitive equations, but his initial trials were nevertheless 

corrupted by observational deficiencies that produced physically implausible forecasts 

(Lynch 2007). Meaningful efforts to advance the dynamical approach introduced by 

Bjerknes and Richardson were eventually successful, perhaps most notably with the 

numerical integration of the barotropic vorticity equation by Charney et al. (1950) on the 

Electronic Numerical Integrator and Computer (ENIAC) (Lynch 2007). 

Nevertheless, the implicit role of causality in the simulation of physical systems 

became increasingly relevant to the NWP community. While Charney and his ENIAC 

collaborators had indeed demonstrated the numerical feasibility of a filtered dynamical 

predictive scheme, Lorenz (1962) explored the comparative efficacy of contemporary 

statistical (i.e., linear regression) and dynamical forecast methodologies for sensible 

weather variables. Lorenz (1963) would go on to reveal a fundamental paradox regarding 

the sensitivity of unstable dynamical systems, which includes the real atmosphere, to 

perturbations in their initial state: given enough time, even the most trivial of residuals 

was capable of producing divergent phase space trajectories that were mathematically 

indistinguishable from a stochastic process (e.g., Figure 1). Similar to the insights of 

quantum mechanics, and disrupting intuitive notions of causality consistent with 

Laplace’s demon, Lorenz had established a fundamental basis for chaos theory in 

meteorology—findings that explicitly invoked randomness as a fundamental component 

of meteorological prediction. 

The implications of the butterfly effect in NWP are difficult to overstate. Kalnay 

(2003) observes that “even with perfect models and perfect observations the chaotic 

nature of the atmosphere would impose a finite limit of about two weeks to the 

predictability of the weather.” Lorenz himself would later posit the following definition: 

“chaos—when the present determines the future, but the approximate present does not 

approximately determine the future” (Danforth 2013). In this way, chaos theory created a 

powerful motivation for additional research in computational and statistical 
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methodologies that could better characterize latent stochastic modes of atmospheric 

dynamics. To this end, Epstein (1969) introduced a statistical approach with stochastic 

modifications to the governing dynamical equations, which he described as stochastic-

dynamic equations, to incorporate the analysis uncertainty via probability distributions 

(Kalnay 2003). Moreover, he recognized the value of quantitative estimates of forecast 

uncertainty and noted that if “the probabilistic nature of the initialization is unavoidable, 

then so also is the probabilistic nature of the prediction” (Epstein 1969). 

 

Figure 1.  Time evolution of an unstable dynamical system via ensemble 

modeling. Source: Kalnay (2003). Uncertainty in the estimation of 

the initial state is represented by small-amplitude perturbations 

inside the grey circle (left). The sensitivity of the forecast to 

ensemble model deficiencies is indicated by the divergence of the 

black forecast curves in the stochastic region (right). The prognostic 

uncertainty at an arbitrary forecast time is represented by the 

dispersion of the discrete forecast estimates (black curves). 
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The computational intractability of Epstein’s complete stochastic-dynamic 

forecast algorithm was later considered by Leith (1974)—especially for models that 

contained a large number of degrees of freedom. Consequently, he suggested a more 

efficient application of available computational methods, wherein a sufficiently large set 

of deterministic solutions—each initialized from small-amplitude perturbations in the 

initial state—could be numerically sampled and statistically compared. While only a 

modest extension of Epstein (1969), his intuitive Monte Carlo forecasting approach 

would nevertheless become the foundation for modern ensemble forecasting (Kalnay 

2003). Leith (1974) was also notable for exploring various optimal regression correction 

techniques to minimize mean-squared error (MSE) in finite ensemble schemes—an early 

precursor of modern statistical post-processing. In particular, he observed: 

The averaging together of individual numerical forecasts in a Monte Carlo 

forecasting procedure has the effect of filtering out small scale structure at 

forecast times for which there is little accuracy left. A further linear 

regression step has been shown to provide an optimal estimate of the 

forecast state of the atmosphere which, of course, tends to preserve the 

more predictable large-scale anomalies. At late times all skill is lost, 

forecast anomalies tend to zero, and the forecast consists of the 

climatological mean field. (Leith 1974) 

From this perspective, the noisy details of individual NWP model flows become 

less relevant than a time series of descriptive statistics summarizing their central tendency 

and spread—especially at long forecast times. Irrespective of the likelihood of their 

origins, as indicated by probability distributions evaluated over the perturbed initial 

conditions, the ensemble members compose a filtered signal of prognostic consensus—

the ensemble mean—that demonstrates enhanced time-averaged forecast skill when 

compared with a control solution (Figure 2a; Kalnay 2003). The dispersion of the 

ensemble members at a specified time similarly provides a prima facia estimate of the 

forecast uncertainty (Figures 1 and 2) that ostensibly marginalizes out deficiencies in the 

observations, model dynamics, and finite-difference approximations (Richter 2012). 

Moreover, the time-evolution of the ensemble’s dispersion may communicate the 

intrinsic variability of forecast uncertainty. Figure 2 demonstrates this point: the 

uncertainty (i.e., dispersion) suggested by the ensemble on the left (Figure 2a) increases 
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monotonically with time, while the uncertainty communicated by the ensemble on the 

right (Figure 2b) is smaller and essentially steady state—despite poorer accuracy from the 

ensemble mean. 

 

Figure 2.  Examples of ensemble forecasts with standard model components. 

Source: Kalnay (2003). Components include positive perturbation(s) 

P+, negative perturbation(s) P-, a dynamical control C, an ensemble 

mean A, and the observed truth T. The distribution on the left (right) 

is considered desirable (undesirable) because truth was observed 

close to (far from) the ensemble mean solution and inside (outside) 

of the range of ensemble members during the forecast period. 

In this way, the conceptual foundation of the ensemble approach is appropriately 

viewed as a Monte Carlo simulation—a form numerical integration over perturbations in 

the initial conditions, governing dynamics, and numerics—that heuristically samples 

probable atmospheric states to extract uncertainty information from deterministic models. 

The resulting ensemble members are themselves discrete deterministic estimates, but they 

compose a sparsely-populated predictive distribution—the ensemble—that measures the 

sensitivity of the forecast to various stochastic modeling elements vis-à-vis chaos theory. 

As a result, it is frequently assumed that the probabilistic forecasts produced by an EPS 

are credible estimates of sensible weather variables; at the very least, they provide some 
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quantitative measure of forecast uncertainty—information unavailable from single-

valued, deterministic NWP schemes. 

 

Figure 3.  Historical comparison of operational NCEP model performance. 

Source: Kalnay (2003). S1 scores correspond to 36-hour and 72-hour 

forecasts of area-averaged 500 hPa horizontal pressure gradient. 

Advances in NWP methodologies provide predictive performance at 

72 hours that is equivalent to 36-hour performance two decades 

earlier. 

Initial investigations into optimal methods of perturbing ensemble model 

components—especially the initial conditions—eventually produced the first operational 

EPS in December 1992 at NCEP and the European Centre for Medium-Range Weather 

Forecasts (ECMWF) (Kalnay 2003). Combined with reliable advances in computational 

power consistent with Moore’s law (Moore 1965), the computational sophistication and 

analytical complexity of modern numerical approaches to atmospheric prediction notably 

increased. As a result, quasi-monotonic improvements in model skill have been observed 

since the early contributions of Charney et al. in 1950 (e.g., Figure 3; Kalnay 2003). 
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Nevertheless, Lorenz’s predictability barrier remains a fundamental limitation in 

meteorology—even with the benefits of contemporary ensemble forecasting. The NWP 

community has largely focused on upgrades to upstream model components—that is, 

improvements in data assimilation, the governing dynamics, numerical techniques, and 

various parameterizations of subgrid-scale processes—to extract additional predictive 

performance from contemporary objective guidance. While these efforts have proven 

effective, as described by Kalnay (2003) in the 36-hour to 72-hour skill conversion 

described for NCEP operational S1 scores (Figure 3), the search for latent model skill 

remains an active area of research. This is especially true at long forecast times, where 

Leith (1974) observes that dynamical predictions—even within an EPS—compare 

unfavorably to estimates derived from suitable climatology. 

However, comparatively little attention has been given to rigorous statistical 

analyses of forecast data downstream of the aforementioned model components. This last 

point is ironic considering the state of NWP in mid-twentieth century; Kalnay (2003) 

describes it as a period of “dark years” defined by a bifurcation in modeling 

approaches—that is, between statistical and dynamical forecasting methodologies—from 

which the statistical approach nearly emerged as the victor (Kalnay 2003). While 

Gneiting et al. (2005) acknowledges the efficacy of dynamical models and the ensemble 

approach to forecasting, both in the research literature and operational forecasting, it is 

somewhat curious that the benefits of enhanced computational power, which partially 

fueled the success of modern dynamical NWP, were not applied with greater enthusiasm 

to contemporary statistical approaches as well. The fundamental stochastic features of 

atmospheric prediction articulated by Lorenz’s butterfly effect, and the ensemble 

approach developed by Epstein and Leith in response, have an intuitive connection with 

the language and tools of statistical inference. 

In particular, Robert and Casella (2011) observe that a MCMC “revolution,” 

which itself was nurtured by improvements in computational power during the 1980s, led 

to an important resurgence of complex Bayesian models within the statistical community 

(e.g., Geman and Geman 1984, Gelfand and Smith 1990). In the decades that preceded 

this technological revolution, classical notions of statistical inference—that is, the 
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canonical method of least squares, or ordinary least squares (OLS), pioneered by Gauss, 

Legendre, and Laplace and, later, the technique of maximum likelihood estimation 

(MLE) introduced by Fisher (1922)—dominated Bayesian approaches to parameter 

estimation (Feigelson 2015). However, MCMC sampling methods have revitalized 

Bayesian estimation and made important contributions in machine learning, deep 

learning, and artificial intelligence—all exceptionally active areas of contemporary 

research. In this sense, this dissertation reunites the dynamical and statistical approaches 

to NWP—not to replace the former, but to help reanimate the latter with some of the 

latest tools in contemporary data science and statistics.  

C. MOTIVATION 

Gneiting et al. (2005) observes that earlier studies—including Eckel and Walters 

(1998), Stensrud and Yussouf (2003), and Scherrer et al. (2004)—reveal that “ensemble 

variance and related measures of ensemble spread are skillful indicators of the accuracy 

of the ensemble mean forecast.” While this validates the basic elements of an intuitive 

EPS spread-skill relationship, the body of contemporary statistical post-processing 

research, which includes the seminal work of Gneiting et al. (2005) and Raftery et al. 

(2005), in addition to Möller et al. (2013), Richter (2012), Veenhuis (2013), Williams et 

al. (2014), Hodyss et al. (2016), and Baran and Möller (2017), suggests that ensemble 

central tendency and spread are also frequently biased and overconfident. The 

underdispersive tendencies of ensemble output are especially noteworthy, as much of the 

research pursued heretofore has focused on the statistical bias correction of single-valued 

forecasts—especially the influential regression method of model output statistics (MOS) 

introduced by Glahn and Lowry (1972) (Thorarinsdottir and Gneiting 2010). 

Unfortunately, MOS produces a point estimate of truth that cannot directly calibrate 

anomalous EPS dispersion. 

In this way, a fundamental motivation for the ensemble approach can be 

diminished. The discrete forecast estimates produced by an EPS, which ostensibly 

provide an accurate characterization of the dynamical system as it evolves in phase space, 

are frequently unrepresentative of the sensitivity of the forecast to deficient information 
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encoded in the dynamical model. To illustrate this point, let the ensemble model flows in 

Figure 2 represent surface temperatures at an arbitrary model grid point. If the scenario 

depicted in Figure 2b is common, with the true state notably displaced from the central 

tendency of the ensemble members, then the EPS likely contains a warm or cold bias. If 

the dispersion of the ensemble members is similarly insufficient for the climatological 

variability of the predicted variable, so that a set of observations could not be considered 

independent and identically distributed (IID) samples from a set of corresponding 

ensemble distributions, then the EPS could be classified as uncalibrated. As described by 

Gneiting (2014), Gneiting et al. (2007) developed the relevant definition from Murphy 

and Winkler (1987):  

We propose a diagnostic approach to the evaluation of predictive 

performance that is based on the paradigm of maximizing the sharpness of 

the predictive distributions subject to calibration. Calibration refers to the 

statistical consistency between the distributional forecasts and the 

observations and is a joint property of the predictions and the observed 

values. Sharpness refers to the concentration of the predictive distributions 

and is a property of the forecasts only. The more concentrated the 

predictive distributions are, the sharper the forecasts, and the sharper the 

better, subject to calibration. (Gneiting et al. 2007) 

A well-calibrated EPS will therefore engage both elements of ensemble post-

processing—that is, correcting biased central tendency and dispersion—since it is not 

possible for “the observations [to] be reasonably interpreted as drawn from the predictive 

distributions” if their mean is biased or their spread is anomalous (Gneiting 2014). To 

verify this claim, consider the predictive distributions depicted in Figure 4 for maximum 

diurnal surface wind speed at an arbitrary model grid point. The raw ensemble forecasts, 

which are assembled according to Gneiting et al. (2005) by fitting a Gaussian distribution 

to the underlying ensemble mean and variance, are sharper and have smaller means than 

the Bayesian posterior predictive distribution (PPD) and climatological reference 

distribution. If one were to consider the dashed red vertical line as truth for this 

pedagogical example, then it would be difficult to consider this observation as randomly 

drawn from either of the raw ensemble distributions—the probability density is simply 

too low. Climatology and the Bayesian PPD assign non-trivial probability densities to 



 12 

truth, but the dispersion of each could prove to be inappropriate for a set of observations 

if, for example, they were tightly clustered (i.e., small variance) around the current value. 

 

Figure 4.  Predictive distributions for 24-hour forecasts of diurnal maximum 

surface wind speed. The raw ensemble output (yellow and blue) is 

sharper (i.e., more concentrated) than Bayesian (histogram) and 

climatological (green) estimates. A highest density interval (HDI; 

solid red) describes the narrowest portion of the PPD containing a 

specified probabilistic mass fraction (e.g., 95% as shown). 

As this comparison is repeated over many forecast trials, one can properly assess 

the calibration of the predictive distributions via rank histograms and probability integral 

transforms (PIT) vis-à-vis Dawid (1984), Diebold et al. (1998), and Hamill (2001) 

(Gneiting et al. 2007). In particular, it would be possible for a predictive distribution to 

have sufficient dispersion to describe the variability of future observations but have a 

central tendency that is systematically high or low. Conversely, the predictive distribution 

may demonstrate no meaningful bias in the mean yet present a spread that is over- or 
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underdispersive relative to observed surface wind speeds. In this way, a predictive 

distribution must have a relatively unbiased central tendency and dispersion for one to 

reasonably classify the observations as IID samples from the corresponding probabilistic 

forecasts. Statistical post-processing should therefore seek calibrated distributional 

estimates that are more accurate, vis-à-vis the central tendency, and sufficiently 

dispersive to represent the fundamental uncertainty of the underlying prediction. 

Various statistical post-processing methodologies have been introduced to 

identify and correct systematic patterns of error in previous forecasts. Hodyss et al. 

(2016) provides a thorough summary of methods commonly encountered in the research 

literature today, including forecast analogues (e.g., Hamill et al. 2015) and various forms 

of kernel density estimation (KDE); the latter includes ensemble dressing (e.g., Wang and 

Bishop 2005), ensemble regression (Unger et al. 2009), and Bayesian model averaging 

(BMA; e.g., Raftery et al. 2005 and Vrugt et al. 2008). In this way, KDE forms the basis 

for a broader class of post-processing techniques and provides an intuitive scheme for 

transforming a sample of discrete predictions (i.e., kernels) into a continuous forecast 

distribution (e.g., Figure 5). The latter point is critical for techniques that cannot directly 

produce probabilistic forecasts for continuous variables; it also provides an explanation 

for the popularity of KDE—especially for sparsely-populated predictive distributions 

(e.g., most ensembles). As a non-parametric approach to density estimation, KDE makes 

no explicit assumptions about the data or the physical processes that influence their 

generation—save for the shape of the selected kernel function and the size of the 

bandwidth (i.e., smoothing) parameter. Juban et al. (2007) note the following:  

There are two main categories of density estimation methods: parametric 

and non-parametric. In the parametric framework, a distribution family is 

chosen, e.g., the Gaussian distribution. Then, the parameters of the 

distribution are estimated from the available data. In the non-parametric 

framework the distribution is directly estimated from the data based on a 

weaker hypothesis on the underlying distribution. The main drawback of 

the non-parametric approach is that it requires larger data sets than the 

parametric one to attain equivalent estimations. The main advantage is that 

it limits estimation errors due to incorrect hypotheses on the underlying 

distribution family. (Juban et al. 2007) 
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Although various weighting techniques may be employed to manage the influence 

of the smoothed data (e.g., the BMA approach introduced by Raftery et al. 2005), KDE 

methods nevertheless lack a framework for estimating more complex model structures 

(e.g., covariance among predicted variables, correlated predictor variables, or multi-level 

clustering patterns in the data). By design, they also obviate the need for parameter 

estimation and the distributional hypotheses described by Juban et al. 2007. By 

comparison, a parametric modeler is able to choose which continuous probability 

distribution(s) might provide a good fit to the underlying shape of the data (e.g., the log-

normal distribution fit to positively-skewed wind speeds in Figure 4). Using the 

terminology of Krzysztofowicz and Evans (2008), knowledge of the physical 

relationships between atmospheric variables (e.g., Bjerknes’ primitive equations) may 

also inform the modeler’s selection of independent predictor variables, based on their 

assumed covariation with the desired predicted quantities (i.e., the predictands), and, 

indeed, the analytical structure between these latent variables (e.g., multiple linear vs. 

non-linear regression models). 

 

Figure 5.  Meteorological application for KDE. Raw forecast estimates (a) are 

compared with post-processed estimates (b and c) derived from 

linear regression analyses. Bias corrections derived from mean error 

statistics are applied as an offset (b) or coefficient (c) to raw forecast 

guidance. Solid curves represent Gaussian distributions fit to the 

indicated forecasts based on the sample mean and variance. Dotted 

(dashed) curves represent unweighted (skill-weighted) KDE 

schemes. 
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Hodyss et al. (2016) examines the KDE/BMA technique introduced by Raftery et 

al. (2005) in greater detail and notes several deficiencies; these include under-dispersive 

forecasts at long lead times (Wilks 2006), overfitting (Hamill 2007), and extreme 

forecasts (Bishop and Shanley 2008). Hodyss et al. (2016) also identifies an issue with 

weighted, regression-corrected forecasts in BMA: if the order of these adjustments is 

applied incorrectly, an over-weighting of climatology is produced. To this end, a direct 

application of Bayesian methods is suggested as an optimal alternative that minimizes 

error variances in post-processed forecasts (Hodyss et al. 2016). The latter point serves as 

a primary motivation for the research in this dissertation, for which additional theoretical 

development is reserved for Chapter II. In this way, previous studies have demonstrated 

the diversity of KDE and BMA techniques and, indeed, some of the disadvantages of the 

non-parametric approaches to statistical post-processing. 

The advanced method of ensemble model output statistics (EMOS), which is also 

sometimes described as non-homogenous regression (NR), is a parametric approach to 

statistical post-processing that fits a single continuous distribution to a set of training data 

(Gneiting 2014). Introduced by Gneiting et al. (2005) to offer an “easy-to-implement 

post-processing technique that addresses both forecast bias and underdispersion and takes 

into account the spread-skill relationship,” it further parameterizes the location and scale 

of a continuous distribution—often Gaussian—with a linear combination of ensemble 

predictors (Gneiting et al. 2005). Once the regression parameters have been estimated by 

the method of minimum Continuous Ranked Probability Score (CRPS), contemporary 

predictors are inserted into the multiple linear regression framework to estimate new 

distributional parameters (e.g., the location and scale of a Gaussian distribution) 

appropriate for current forecast conditions. In this way, a linear combination of raw 

ensemble predictions and regression parameters is transformed into a probabilistic 

forecast over the desired sensible weather variable (e.g., Figure 6). Forecast distributions 

produced in this manner will have the same parametric form as the original distribution 

fit to the data. Gneiting et al. (2005) notably found that NR/EMOS predictive 

distributions were sharp and well-calibrated relative to raw ensemble output (e.g., Figure 
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7) and bias-corrected peers. The analytical details of this approach will be developed in 

Chapter II. 

 

Figure 6.  Example of a probabilistic forecast for maximum surface wind 

speeds produced by the NR/EMOS approach. Source: 

Thorarinsdottir and Gneiting (2010). Raw ensemble output is 

indicated by the dashed vertical lines; the median of the post-

processed forecast distribution is indicated by the center-most solid 

red line; the boundaries of the 77.8% central prediction interval are 

outboard in solid red; truth is indicated in blue. The forecast is for 

The Dalles, Oregon, valid 14 JUN 2003, with a 48-hour lead time. 
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Figure 7.  Time series of probabilistic forecasts. Source: Thorarinsdottir and 

Gneiting (2010). Observed maximum surface wind speeds (blue) are 

shown relative to 77.8% central prediction intervals derived from the 

NR/EMOS post-processing method. Black dots indicate the raw 

output of the parent ensemble. The statistical coverage of the 

predictive intervals suggests that the generative model is well-

calibrated so that the observations can be reasonably considered IID 

samples from the corresponding forecast distributions vis-à-vis 

Gneiting et al. (2007). The forecasts are for The Dalles, Oregon, 

valid 14 JUN 2003 through 31 JUL 2003, with 48-hour lead times. 

Schuhen et al. (2012) later extended the NR/EMOS work of Thorarinsdottir and 

Johnson (2011) to two-dimensional wind vector predictions and found that a bivariate 

EMOS model produced calibrated predictive distributions with favorable performance 

margins relative to raw ensemble output and other forms of statistical post-processing. 

Baran and Möller (2017) extended the approach to predictions of wind speed and 

temperature and found performance comparable to bivariate BMA; however, their 

bivariate EMOS model was more computationally efficient. Inspired by the hierarchical 

approach to BMA suggested by Narzo and Cocchi (2010), Richter (2012) introduced the 

first Bayesian extension of EMOS—which the author describes as Bayesian ensemble 

model output statistics (BEMOS)—to consider the benefits of an alternate parameter 

estimation scheme. Bayesian inference inverts the canonical probability statement to treat 

the data as fixed and the model parameters as random variables (Casella 2008). This 

results in a “direct quantification of uncertainty” in parameter estimation that seeks full 
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posterior probability distributions for model parameters conditioned on a priori model 

beliefs and available training data (Gelman et al. 2013). 

Benefiting from the MCMC revolution described by Robert and Casella (2011), 

elements of the broader statistical community observed that Bayesian estimation had 

several fundamental advantages over comparable classical statistical methods. In his 

development of multiple linear regression techniques for Bayesian data analysis, which 

have vital relevance to this dissertation, Kruschke (2014) notes that 

one of the benefits of Bayesian analysis is that correlations of credible 

parameter values are explicit in the posterior distribution. Traditional 

statistical methods provide only a single “best” (e.g., MLE) parameter 

value, without indicating the trade-offs among parameter values. The 

Bayesian posterior, however, naturally reveals trade-offs and redundancies 

among parameters. It is up to the user to actually look for and interpret the 

correlations of parameters, of course. Another benefit of Bayesian analysis 

is that the model doesn’t “explode” when predictors are correlated. If 

predictors are correlated, the joint uncertainty in the regression 

coefficients is evident in the posterior, but the model happily generates a 

posterior regardless of correlations in the predictors. The classical, one-

best-solution method is much less robust in the presence of strongly 

correlated predictors. (Kruschke 2014) 

The classical methods of OLS regression and MLE produce single-valued 

parameter estimates that optimize their associated cost functions—regression residuals 

and the likelihood function, respectively—without explicit regard for the uncertainty of 

the underlying inference. To be sure, both methods can be paired with traditional 

confidence intervals (e.g., the ubiquitous 95% confidence intervals commonly found in 

hypothesis testing for statistical significance); however, the uncertainty information 

communicated by Bayesian and non-Bayesian inferences is not equivalent. Casella 

(2008) posits that classical methods of parameter estimation assume the “data are 

repeatable random samples [but] the underlying parameters remain constant during this 

repeatable process;” the Bayesian approach proceeds as if “the data are fixed [and] 

parameters are unknown and described probabilistically.” In this way, classical 

confidence intervals make uncertainty statements regarding the frequency with which 

future confidence intervals will include the fixed, true value of the unknown parameter—

not the probability that the single, indicated interval contains this true value. By 
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comparison, Bayesian intervals for posterior parameter belief, which are often described 

as credible intervals, characterize the probability that the true parameter value lies in the 

indicated interval given the fixed data sample. Gelman et al. (2013) describes the impact 

of this distinction: 

A primary motivation for Bayesian thinking is that it facilitates a 

common-sense interpretation of statistical conclusions. For instance, a 

Bayesian (probability) interval for an unknown quantity of interest can be 

directly regarding as having a high probability of containing the unknown 

quantity, in contrast to a frequentist (confidence) interval, which may 

strictly be interpreted only in relation to a sequence of similar inferences 

that might be made in repeated practice. Recently in applied statistics, 

increased emphasis has been placed on interval estimation rather than 

hypothesis testing, and this provides a strong impetus to the Bayesian 

viewpoint, since it seems likely that most users of standard confidence 

intervals give them a common-sense Bayesian interpretation. (Gelman et 

al. 2013) 

As a result, Bayesian estimation provides intuitive uncertainty information that is 

consistent with the practical interpretations of common, lay users (e.g., most 

meteorologists). Gelman et al. (2013) adds that “the essential characteristic of Bayesian 

methods is their explicit use of probability for quantifying uncertainty in inferences based 

on statistical data analysis.” Casella (2008) provides a relevant pedagogical comparison 

in Figure 8 for Aminoglycoside-Associated Nephrotoxicity (AAN) incidence rates related 

to various methods of drug action in a meta-analysis of pharmacological studies by Kim 

et al. (2004). While similar, the Bayesian and frequentist intervals have non-trivial 

distinctions in central tendencies and spread; they also contain disparate uncertainty 

information. Bayesian (blue) intervals indicate a 90% probability of finding the true rate 

of AAN inside of the indicated interval given current studies; frequentist (black) intervals 

suggest that 90% of similar intervals constructed from other studies will contain the true 

AAN rate. It should be noted that the frequentist intervals lack probability statements 

about true AAN incidence rates—that is, the quantity that motivated the statistical 

analysis. 

In this way, the character of the uncertainty information communicated by an EPS 

becomes relevant to the Bayesian extension of NR/EMOS by Richter (2012). 
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Meteorologists interpret the spread of an ensemble as generalized forecast uncertainty; 

that is, greater (less) spread indicates more (less) model sensitivity to defects in the initial 

conditions, governing dynamics, physics parameterizations, or numerics. Kalnay (2003) 

observes that this spread communicates the “reliability of the forecast: if the ensemble 

forecasts are quite different from each other, it is clear that at least some of them are 

wrong, whereas if there is good agreement among the forecasts, there is more reason to 

be confident about the forecast.” Perhaps more importantly, the ensemble method 

“provide[s] a quantitative basis for probabilistic forecasting” that is consistent with the 

Monte Carlo methods invoked by Leith (1974) (Kalnay 2003). Finally, Kalnay (2003) 

notes that “[t]he quantitative relationship between the ensemble spread and the forecast 

error (or conversely, between the forecast agreement and the forecast skill) has yet to be 

firmly established, but is now routinely taken into consideration by human forecasters.” 

In simple terms, meteorologists frequently interpret ensemble dispersion as forecast 

uncertainty and use the distribution of ensemble members to assemble ad hoc 

probabilistic forecasts estimates. 
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Figure 8.  Statistical inferences associated with a meta-analysis of 

pharmacological studies by Kim et al. (2004). Source: Casella 2008. 

The relative frequency of Aminoglycoside-Associated 

Nephrotoxicity (AAN) incidence is examined relative to extended-

interval dosing (EID), individualized pharmacokinetic monitoring 

(IPM), and multiple-daily dosing (MDD). Interval estimates for 

AAN rates are indicated for classical frequentist (black) and 

Bayesian (blue) methods (from). 

When these insights are combined with the understanding that ensemble forecasts 

are often biased and underdispersive, it becomes apparent that the probabilistic forecast 

conclusions meteorologists derive are often unreliable and inconsistent with their 

assumptions. The NR/EMOS approach introduced by Gneiting et al. (2005) is notable for 

engaging both aspects of ensemble post-processing and for providing a simple method of 

sampling from calibrated, parametric forecast distributions. However, it lacks the utility 

of Bayesian parameter estimation which provides the statistical modeler with tremendous 

flexibility to choose sophisticated joint probability models that explicitly communicate 

the uncertainty of the underlying inference (Gelman et al. 2013). Moreover, non-
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Bayesian methods of post-processing invoke frequentist uncertainty estimates that do not 

communicate common-sense probability statements consistent with the Bayesian 

descriptions of Casella (2008), Gelman et al. (2013), and Kruschke (2014). Bayesian 

uncertainty estimates are delivered in parallel with the primary parameter estimation; 

there is no need for additional computation. They also make intuitive probability 

statements that explicitly propagate coupled regression parameter uncertainty forward to 

the final predictive distributions vis-à-vis Kruschke (2014). 

 

Table 1.   Performance comparison of competing approaches to NR/EMOS. 

Source: Richter (2012). Lower values of mean absolute error (MAE) 

and CRPS indicate better forecast performance; both metrics have 

units that match the predictand. Width describes the size of the 

indicated central prediction interval that includes the specified 

probabilistic mass; coverage describes the statistical consistency 

between the indicated forecast probabilities and the frequency with 

which truth was observed within these intervals. The tuning parameter 

controls the dispersion of the Bayesian prior distributions considered 

by Richter (2012); small values of the tuning parameter indicate a 

flatter, more uninformative prior while larger values would signal 

more confidence in specific values of model parameters. 

In this way, the BEMOS approach introduced by Richter (2012) is consistent with 

the recommendations of Hodyss et al. (2016) and forms the fundamental basis for this 



 23 

dissertation. It also found “significantly better calibration” than the original EMOS 

approach when both were applied to the 8-member University of Washington Mesoscale 

Ensemble in 48-hour surface temperature forecasts for locations in the Pacific Northwest 

(Richter 2012; Table 1). However, the present work extends the BEMOS technique of 

Richter (2012) in five important ways: it permits full multivariate predictions consistent 

with Schuhen et al. (2012) and Baran and Möller (2015); it uses hierarchical parameter 

structure, which treats the hyperparameters of Bayesian prior distributions as random 

variables with their own hyperprior distributions, to permit hyperparameter inference 

from the data; it uses an adaptive multivariate form of the Metropolis algorithm, with 

block-wise component updates, to permit more sophisticated, non-conjugate probability 

models (e.g., the aforementioned hierarchical structure); it can fit the t location-scale 

distribution (i.e., a non-standard form of the classic Student’s t-distribution) to data; and, 

finally, it uses logarithmic data transformations to produce asymmetric predictive 

distributions for sensible weather variables with intrinsic skew (e.g., surface wind 

speeds). These items are consistent the recommendations of Gneiting (2014) for “cutting 

edge areas that are in critical need of research and development;” this includes “more 

sophisticated methods for the statistical post-processing of combined events and, closely 

related, for the development of theoretically principled techniques for the evaluation of 

probabilistic forecasts of multivariate quantities and events” (Gneiting 2014). 

For comparison, both Gneiting et al. (2005) and Richter (2012) were limited to 

univariate predictions with Gaussian likelihood functions and symmetric predictive 

distributions. Moreover, Richter (2012) relied on a more restrictive form of MCMC 

sampling—that is, Gibbs sampling—that requires analytical knowledge of Bayesian 

conditional posterior distribution; the random-walk Metropolis sampler adapted for the 

present work requires no a priori knowledge of the analytical structure of the Bayesian 

posterior distribution. Richter (2012) also introduced a manual tuning parameter (i.e., on  

in Table 1) to control the confidence of Bayesian prior information over model 

parameters; their conclusions recommended an “automatic way of determining [this 

tuning] parameter,” and the hierarchical structure of the model developed for this 

dissertation addresses this point directly. While Gneiting et al. (2005) is also notable for 
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including ensemble variance as a model parameter vis-à-vis the spread-skill relationship, 

research exploring the intuitive relationship between EPS skill and spread (e.g., Hopson 

2014) suggests that limitations may exist. Similar to Richter (2012), the present work 

does not express model (co)variance as a linear combination of EPS dispersion statistics 

and, therefore, does not parameterize the ensemble spread-skill relationship.  

Finally, it is helpful to consider the motivations for this research in the context of 

the fundamental challenges facing any modern forecaster—that is, the attractive 

perspective of Laplace’s Demon and the difficulty of estimating sensible weather 

variables with incomplete and imperfect data vis-à-vis the Butterfly Effect. Every forecast 

contains uncertainty. Since multiple estimates of a sensible weather variable are 

frequently available, the forecast process is essentially, and quite appropriately, an 

application of statistical inference. Even when human forecasters leverage their 

professional experience, which is often gained through long periods of academic study 

and careful comparisons of skilled objective guidance with the corresponding 

observations, their contributions represent an ad hoc “nudge” toward outcomes they 

believe to be more likely. From this perspective, virtually all subjective guidance can be 

viewed as a form of statistical post-processing; in one form or another, data are evaluated 

(e.g., the ensemble mean), patterns are recognized, and raw objective guidance is 

adjusted to create the official forecast. No contemporary human forecaster is able to 

discretize the governing equations and mentally integrate them forward in time to 

produce discrete, numerical estimates for the maximum temperature in Monterey, CA 

tomorrow. Moreover, meteorologists are unlikely to consider identical sets of predictors 

and, even if they do, they often arrive at distinct—and sometimes incompatible—forecast 

conclusions. In this way, they are intrinsically contaminated with human error and any 

number of biases (e.g., sampling, confirmation, etc.). As a result, human forecasters are 

better positioned to monitor model performance, add prognostic detail in the mesoscale 

domain, and communicate forecast uncertainty. They also embed dynamical knowledge 

in the models themselves, and this is arguably their most important contribution. 

However, statistical post-processing techniques enable us to formalize these human, ad 
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hoc “nudges” on larger sets of data and within a more rigorous analytical framework—

that is, to “automate” the subjective qualities of forecasting with more objective methods. 

D. OBJECTIVES 

As an extension of the NR/EMOS methods that comprise Gneiting et al. (2005), 

Schuhen et al. (2012), Baran and Möller (2015), and Richter (2012), in addition to more 

generalized Bayesian approaches considered by Raftery et al. (2005), Rajagopalan et al. 

(2002), Luo et al. (2007), Krzysztofowicz and Evans (2008), and Veenhuis (2013), this 

dissertation evaluates a specific class of machine learning algorithms in modern data 

science—that is, Bayesian parameter estimation with MCMC sampling methods—as a 

compelling approach to statistical post-processing in operational forecasting. In this way, 

the present work extends the direct Bayesian schemes advocated by Richter (2012) and 

Hodyss et al. (2016) and, indeed, the MCMC methods explored by Vrugt et al. (2008) 

and Richter (2012); Hodyss et al. (2016) itself represents a development of the Bayesian 

processor of forecasts method (BPF) introduced by Krzysztofowicz and Evans (2008). In 

particular, this research evaluated a hierarchical multivariate Bayesian approach to 

multiple linear regression as a desirable technique for producing sharp, calibrated 

predictive distributions vis-à-vis Gneiting et al. (2007). These probabilistic forecasts 

should accurately characterize the forecast uncertainty of the desired sensible weather 

variables. The performance the of the resulting Bayesian PPDs are evaluated by 

measures-oriented and distributions-oriented scoring rules when the training period, 

ensemble predictor variables, and parametric form of the joint probability model (JPM) 

are adjusted. Bayesian PPD performance has been compared with traditional regression 

estimates produced by OLS and MLE. While the analytical and computational details of 

this scheme will be reserved for subsequent chapters, this Bayesian estimation/MCMC 

model framework has been selected to address the issues identified in the previous 

section. These include 

1. Calibrating ensemble guidance to simultaneously correct forecast 

deficiencies associated with biased central tendencies and anomalous 

dispersion 



 26 

2. Mitigating deficiencies observed with non-parametric density 

estimation (e.g., KDE/BMA) 

3. Using Bayesian interval estimation to report forecast uncertainty with 

explicit probability statements that are consistent with the common-

sense interpretations of most consumers 

The present work exploits the robust sampling capabilities of MCMC methods, 

including a special case of the ubiquitous Metropolis-Hastings (MH) algorithm 

(Metropolis et al. 1953 and Hastings 1970), to diagnose the forecast “habits” of parent 

models within a Bayesian framework. The Bayesian approach stores posterior beliefs in 

probability distributions over unobservable, latent model parameters. This results in a 

“direct quantification of uncertainty” from a priori model assumptions conditioned on 

available training data (Gelman et al. 2013). However, additional manipulations are 

required to transform posterior distributions over unobservable model parameters into 

forecast distributions over unobserved observable random variables. To this end, 

Bayesian PPDs extend the inference framework to synthetic samples of observable 

predictands conditioned on current guidance, past model performance, and subjective 

model assumptions. Interval estimates of the predictands are similarly delivered by 

credible intervals (regions) that describe the probability mass contained within a specified 

interval (region) under the marginal (joint) PPD. Unlike the frequentist confidence 

intervals that they replace, Bayesian credible intervals make intuitive probability 

statements about the true value of estimands (Gelman et al. 2013). In this way, Bayesian 

PPDs constructed from MCMC sampling represent the core of the present work; they 

compose a quantitative probability statement that has been heuristically calibrated to 

match the intrinsic uncertainty of the forecast problem. 

To properly facilitate the direct Bayesian approach to parameter estimation and 

ensemble calibration, this research breaks from Einstein’s view of causality and, in a 

figurative sense, plays dice with the atmosphere. Similar to the theoretical framework of 

Gneiting et al. (2007) and the NR/EMOS approach of Gneiting et al. (2005), a stochastic 

conceptual model will be assumed for relevant meteorological processes in which nature 

may be thought to draw observations (i.e., realizations of truth vis-à-vis Krzysztofowicz 

and Evans (2008) from hypothetical populations of credible atmospheric states. In this 



 27 

context, the forecast problem is no longer focused on dynamical relationships between 

observable weather variables, as it is assumed that the practical limitations of chaos 

theory prevent their precise specification through purely deterministic means. The 

emphasis now lies with a Bayesian estimation of unobservable model parameters that 

define an optimal fit of parametric, distributional beliefs to training data. In this way, the 

present work uses a combination of statistical, computational, and dynamical methods to 

calibrate ensemble guidance. Most notably, 

1. Bayesian estimation inverts the canonical probability statement to seek 

inferences about model parameters from observed data instead of 

inferences about unobserved data from latent model parameters (G13). 

While the latter is recovered through the use of Bayesian PPDs, this 

research will nevertheless focus on distributional assumptions that 

parameterize relevant physical processes (e.g., a Gaussian likelihood 

function for diurnal maximum surface temperatures) and a priori beliefs 

(e.g., hierarchical Gaussian priors for the mean and log-variance of the 

model parameters) that characterize our assumed knowledge of the model 

parameters, and the intrinsic shape of the data, before the inference is 

completed. 

2. Markov chain Monte Carlo (MCMC) sampling methods are frequently 

required to complete statistical inferences for real modeling problems 

(e.g., the atmosphere)—especially when higher-dimensional, multi-level, 

multiparameter Bayesian models are invoked. Although Bayesian 

inference provides a flexible template for statistical modeling that scales 

well with complicated systems, the posterior densities are often 

analytically intractable (G13). To this end, MCMC methods provide a 

robust numerical recipe for retrieving samples from so-called “target” 

distributions that are otherwise unobtainable. 

3. Dynamical meteorology, which generally describes the deterministic 

reasoning of the physics of the atmosphere, is essential to inform 

appropriate modeling choices for the statistical relationships that describe 

the expected location and intrinsic spread of the training data and structure 

among the model parameters. While Bayesian statisticians are generally 

better-equipped to build predictive models with exceptional complexity, a 

subject matter expert (i.e., a meteorologist) can use their specialized 

knowledge of the data and the physical processes to shape important 

elements of the full Bayesian probability model. 
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II. THEORY 

The following sections describe fundamental concepts relevant to the hierarchical 

multivariate Bayesian multiple linear regression model developed for this dissertation. In 

particular, these ideas will permit an appropriate evaluation of the research questions and 

methods detailed in Chapter III. 

A. KERNEL DENSITY ESTIMATION 

Inspired by the utility of spectral decomposition in time series analysis, 

Rosenblatt (1956) and Parzen (1962) introduced the KDE technique to facilitate the non-

parametric estimation of probability distributions. A bandwidth parameter and kernel 

(i.e., weighting) function are analytically combined to produce a linear combination of 

probability density functions (PDFs)—each centered on a discrete member of the sample 

(Figure 9a)—that smooth data to form a continuous probability distribution over the 

random variable of interest (Figure 9b). More specifically, the PDF fn is analytically 

described by 
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where subscript j identifies the independent and identically distributed (IID) random 

variables X1, X2, …, Xn, h denotes a positive bandwidth parameter, K signifies a kernel (or 

weighting) function, and Fn represents the cumulative distribution function with dummy 

variable y (Parzen 1962). 

While the present work has explicitly pursued a parametric framework for 

Bayesian inference and probabilistic forecasting, KDE will still be required to evaluate 

some of the proper scoring rules described in Chapter III. In particular, the logarithmic 

score of Gneiting and Raftery (2007) requires the a posteriori probability density of 

observations. Since each predictive distribution is a collection of discrete forecast 

samples, KDE is needed to estimate the value of the corresponding PDF at the indicated 

observation. Additionally, KDE is used as a visualization aid for joint and marginal 



 30 

probability distributions sampled from MCMC methods in Bayesian posterior parameter 

beliefs and PPDs. 

 

Figure 9.  Example plots depicting the KDE technique. Source: Waskom 2015. 

Graphical representation of Gaussian kernel functions fit to an 

arbitrary set of discrete data in (a). In combination with the 

bandwidth parameter, the parameters of the Gaussian kernel function 

contribute to the structure of the resulting non-parametric continuous 

probability distribution. 

B. ENSEMBLE MODEL OUTPUT STATISTICS 

The method of ensemble model output statistics was introduced by Gneiting et al. 

(2005) to fit a single parametric distribution to training data in a simple statistical model 

(e.g., Equation 2). If one assumes that sensible weather variables are realized 

stochastically according to a Gaussian statistical relationship, then the NR/EMOS 

technique may be described as 

 2( , ),y N    (2) 

where   and 2  are the location (i.e., mean) and scale (i.e., variance) parameters of a 

Gaussian (i.e., normal) distribution; predictand y , the sensible weather variable for 

which a prediction is sought, is an IID random sample drawn from this PDF. EMOS 

models also use multiple linear regression to characterize the sensitivity of a univariate 

weather quantity—that is, the predictand—to a linear combination of independent 
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predictor variables gathered from an EPS. In this way, it is similar to the regression 

framework of MOS; however, the latter assumes independent predictors have a 

deterministic relationship with the dependent predictand. The linear MOS concept can be 

described generically for multiple predictors as 

 
0 1 1 2 2 ... ,K Ky x x x          (3) 

where 
1 2, ,..., Kx x x  are a set of ensemble predictors, 

1 2, ,..., K    are their associated 

regression coefficients (i.e., parameters), 
0 is the intercept term, and y  is a sensible 

weather variable for which a prediction is sought. The scatter plot of forecasts and their 

corresponding observations in Figure 10 illustrates the basic elements of this predictor-

response relationship when only a single predictor (i.e., 
0 1 1y x   ) is considered. 

Each order pair represents a two-dimensional evaluation of Equation 3 for maximum 

diurnal surface wind speeds over 228 forecast trials. The vertical deviation between the 

dashed red and solid black lines represents the state-dependent forecast bias. 
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Figure 10.  Forecast verification plot showing bias in ensemble mean forecasts 

of maximum diurnal surface wind speeds. The solid black line 

represents a perfect forecast-observation relationship; the dashed red 

line indicates a linear OLS regression fit to the data. The colorbar at 

right indicates the normalized age and weighting of the training data. 

In this way, the MOS technique characterized by Equation 3 seeks a linear 

transformation that maps raw model output 
1 2, ,..., Kx x x  to forecast estimates  

1 2( , ,..., )n Kf x x x  while optimizing an associated cost function. In simple terms, we seek a 

set of mathematical instructions that, on average, would have nudged raw model output, 

which is indicated by the abscissa of the independent predictor variable, toward the 

ordinate of the corresponding observation. To this end, the dashed red line in Figure 10 

identifies the OLS solution to this regression, and it also represents the desired bias 

correction for the aforementioned two-dimensional MOS framework (i.e., 0 1 1y x   ). 

In regression analysis, the intercept and regression parameters—that is, the 

“betas” in Equation 3—must be estimated from the data. We seek estimates for these 

betas that best fit the assumed mathematical relationship against the noisy superposition 

of random effects and errors contained in the set of independent and dependent variables. 

This is demonstrated by the variability of observed data around the OLS regression line 
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in Figure 10. The randomness encoded in the data are expressed over repeated forecast 

instances, each with its own complicated interactions between measurement errors and 

EPS defects, where multiple combinations of predictors and predictands produce an 

overdetermined linear system of equations (Ron 2010). This linear system may be 

visualized as 
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where each forecast trial adds an additional constraint to the linear model. This system 

can be described in matrix notation as 0

Ty Xb  , where 
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and  1 Kb   . The NxK  matrix of predictor variables in Equation 5 is known as the 

design matrix. An alternative formulation of Equation 5 includes the intercept parameter 

in the beta vector and adds a column of ones (i.e., an identity column) to matrix X to 

permit a concise description of the linear system with 1K   predictors as  

 ,Ty Xb   (6) 

where  0 1Kb     and the NxK  design matrix is now written as 
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The classic OLS methods described in Chapter I engage this problem directly by 

minimizing the sum of squared residuals (SSR) between the true predictands and 

estimates derived from a linear combination of regression parameters and predictor 

variables (i.e., Equation 3). A heuristic representation of the fitting process is depicted in 
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Figure 11a with multiple combinations of betas producing distinct regression lines. The 

combination of parameter values that minimizes the SSR is considered the best point 

estimate for the unknown parameters (Feigelson 2015). In particular, this OLS cost 

function may be written as 

  
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i

SSR y x b


    (8) 

where 
, 11i i Kx x 

     and  0 1Kb    . It should be noted that linear transformations 

of this nature are frequently selected for analytical convenience and computational 

efficiency (e.g., Lorenz 1962 and Leith 1974); unless the modeler has a compelling 

motivation to consider nonlinear regression, the former is generally sufficient for most 

applications (Neter et al. 1996). Moreover, an arbitrary number of predictor variables 

may be considered from desperate sources (e.g., multi-model ensembles) according to the 

multiple linear regression framework in Kruschke (2014). While any number of physical 

processes may be involved in the dynamical realization of an arbitrary set of predictands, 

statistical regression provides a basis for the estimation of model parameters that 

appropriately characterize their stochastic (e.g., Equation 2) or deterministic (e.g., 

Equation 3) realization. 
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Figure 11.  Examples of two-dimensional parameter estimation in regression 

analysis. Source: Kruschke (2014). Panel (a) depicts various 

regression lines when different values of the regression parameters 

are heuristically sampled; panel (b) shows a Gaussian PDF fit to a 

scatter of training data to illustrate the conceptual foundation of the 

NR/EMOS technique. 

These OLS methods provide a simple template for adjusting contemporary 

ensemble guidance toward an outcome with greater statistical likelihood—a bias 

correction for meteorologists. It is also adaptive in the sense that the details of the 

mapping depend on the state of the independent predictor variables. In this way, Figure 

10 demonstrates that a bias correction that is appropriate for a raw wind speed prediction 

less than 4 [ m 1s ] may not be ideal for a raw prediction exceeding 10 [ m 1s ]; while the 

slope of the linear model is fixed by assumption, it is the vertical separation between the 

perfect forecast line (solid black) and regression solution (dashed red) that must be 

induced. This feature is commonly described as a state-dependent bias correction in the 

statistical post-processing literature (e.g., Hodyss et al. 2016), and it should be noted that 

the model used in this dissertation follows the standard convention of mapping ensemble 

output to observations (i.e., observed predictands)—not the inverse scheme explored by 

Hodyss et al. (2016). 
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The key innovation of NR/EMOS over traditional MOS, which produces single-

valued forecast estimates consistent with Equation 3 and Figure 10, is the additional 

parameterization of this multiple linear regression framework inside of the parametric 

distribution in Equation 2. In this way, the statistical modeler is playing dice with the 

atmosphere; they are making an assumption about the manner by which data are 

generated—that is, meteorological truth realized stochastically by nature. More 

specifically, this creates a basis for mapping ensemble components to distributional 

parameters as 

 0 1 1 2 2 1 1... K Kx x x             (9) 

 
2 2

0 1 ,s       (10) 

where   and 2  are the location (i.e., mean) and scale (i.e., variance) parameters of the 

Gaussian PDF, as before, and 1  and 2  are regression parameters on the variance (i.e., 

2s ) of the ensemble predictors 1 2 1, ,..., Kx x x  . A pedagogical visualization of this 

relationship is found in Figure 11b for a two-dimensional regression scenario (i.e., 

0 1 1x    ). For NR/EMOS models, the cost function is modified to estimate the 

parameters according to the method of minimum CRPS; the details of this analysis are 

beyond the scope of the dissertation and available to eager readers in Gneiting et al. 

(2005) and Richter (2012). 

Unlike traditional parameter estimation techniques, which make direct inferences 

about the parameters of the selected continuous distribution (e.g.,   and 2 ), EMOS 

requires estimates for the parameters of the multiple linear regression specified by 

Equation 9 and Equation 10. Contemporary predictors (i.e., current values for 

1 2 1, ,..., Kx x x  ) are then inserted into the multiple linear regression structure of the model 

to produce updated estimates for the distributional parameters (e.g.,   and 2 ). Once 

these parameters have been specified, synthetic data (i.e., unobserved observable random 

variables) can be randomly sampled to produce a calibrated probabilistic forecast over the 

desired sensible weather variables (e.g., Figure 6 and Figure 7). 
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C. BAYESIAN ENSEMBLE MODEL OUTPUT STATISTICS 

A direct Bayesian extension of Gneiting et al. (2005) was introduced by Richter 

(2012) to provide an alternate means of parameter estimation for the NR/EMOS 

technique. A rigorous treatment of the foundational benefits of the Bayesian approach to 

parameter estimation is beyond the scope of this dissertation and is, in fact, part of larger 

contemporary debate within the statistical community (e.g., the validity of hypothesis 

testing, statistical significance, and p-values). The present work does not seek 

participation in this conflict. Nevertheless, the advantages of intuitive, common-sense 

Bayesian statistical conclusions detailed by Casella (2008), Gelman et al. (2013), and 

Kruschke (2014) provide a fundamental motivation for the BEMOS technique. Moreover, 

Gelman et al. (2013) and Kruschke (2014) note the utility of the Bayesian approach to 

data analysis in formulating sophisticated probability models. Gelman et al. (2013) 

defines this process as 

1. Setting up a full probability model—a joint probability distribution for 

all observable and unobservable quantities in a problem. The model 

should be consistent with knowledge about the underlying scientific 

problem and the data collection process.  

2. Conditioning on observed data: calculating and interpreting the 

appropriate posterior distribution—the conditional probability distribution 

of the unobserved quantities of ultimate interest, given the observed data. 

3. Evaluating the fit of the model and the implications of the resulting 

posterior distribution: how well does the model fit the data, are the 

substantive conclusions reasonable, and how sensitive are the results to the 

modeling assumptions in step 1? In response, one can alter or expand the 

model and repeat the three steps. 

Richter (2012) found that a Bayesian approach produced calibrated forecast 

distributions with improved mean absolute error (MAE) and CRPS performance (Table 

1) compared with competing OLS and EMOS methods. Hodyss et al. (2016) similarly 

advocated for “a direct application of Bayes’ rule” in their examination of BMA in 

significant wave height forecasts. To this end, this dissertation relies on a Bayesian 

framework for prediction that produces counterfactual statements about unobserved 
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observable forecast quantities conditioned on a posteriori beliefs about multiple linear 

regression parameters (e.g., Equation 9). 

“With inferential statistics,” Kruschke (2014) observes, “we don’t just introspect 

to find the truth. Instead, we rely on data from observations. Based on the data, what 

should we believe in?” As described by this dissertation’s research motivations, it is 

advantageous to explicitly quantify the underlying uncertainty associated with an 

inference. To properly develop the methods (Chapter III) of this dissertation, consider 

again the pedagogical regression analysis explored in the previous section. If the 

observed predictands are assigned to random variable y  in a two-dimensional stochastic 

framework as 

 2 2

0 1 0 1( | , , ) ( , ),y x N x        (11) 

where y is drawn from a normal distribution with mean 
0 1x    , 2  is the variance 

associated with Gaussian “noise” in the data, 
0  and 

1  are unknown regression 

coefficients (i.e., the intercept and slope of the desired post-processing transformation), 

and x  is the independent predictor (i.e., model output), then the regression problem has 

been suitably reformulated as indicated in Figure 11b. That is, a statistical inference is 

sought for the latent model parameters (i.e., 0 , 1 , and 2 ) that will provide an ideal fit 

to the data. 

Kruschke (2014) notes that this parameter estimation can be completed by 

classical methodologies and, specifically, by the well-known maximum likelihood 

estimation (MLE) procedure introduced by Fisher (1922). While a full treatment of MLE 

concepts is also beyond the scope of the present work, the MLE approach does share an 

important feature with Bayesian parameter estimation. It minimizes a cost function that 

quantifies the likelihood of the data as the model parameters are varied over the indicated 

support of the latter. This cost function is known, quite appropriately, as the likelihood 

function in statistical inference, and it is a function of the latent parameters—not the 

observed data. If multiple predictors are considered (i.e., Equation 9), MLE seeks an 

extreme value of 
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where l  is the log-likelihood for the model parameters in vector   over N  forecast trials 

given the fixed observations in random variable  1 Ny y y , the ith predictors in 

, 11i i Kx x 
    , regression parameters  0 1Kb    , and the unknown variance in 2 . 

As is common in the statistical literature (e.g., Fisher 1922), the log-likelihood has 

been reported in Equation 12 to simplify the details of the analysis; finding the extremum 

of the log-likelihood is identical, and often more computationally more convenient, than 

finding the extremum of the likelihood. It should be noted that a generic likelihood 

function may be constructed for any parametric distribution by fixing the data (vis-à-vis 

the Bayesian perspective) and evaluating the product of sequences over N  forecast trials 

of each observation as a function of the parameters of the specified PDF. In this way, the 

log-likelihood converts the logarithm of a product of sequences into a sum of logarithmic 

sequences through the canonical properties of logarithms. The Gaussian log-likelihood in 

Equation 12 is also notable for the additional interaction between the logarithm and the 

exponential term in the probability density for the Gaussian distribution; as inverse 

functions, the right-hand side of Equation 12 becomes a convenient sum over the 

Mahalanobis distance, which is simply proportional to the Euclidean distance in the one-

dimensional case considered by Equation 12 (Gu 2008). In matrix notation, Gu (2008) 

writes the Mahalanobis distance for the multivariate Gaussian distribution (or 

multivariate normal distribution; MVN) as 

    2 1 ,
T

y y       (13) 

where y  is vector of predictands,   is a vector form of Equation 9 that is formed by a 

matrix product of the predictors and regression coefficients, and   defines the associated 

covariance matrix. This quantity will be critical for the methods detailed in Chapter III 

where both MVN and multivariate t location-scale (MVT) distributions will be used as 

likelihood functions in the BEMOS model developed by the present work. 
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The MLE solution to the procedures described by Equation 11 and Equation 12 

will produce single-valued, point estimates of the parameters in the inference; values that 

are most probable for the sample of data considered given the model structure. The 

analytical development of similarities between traditional OLS and MLE approaches—

especially when residuals are assumed to have a Gaussian distribution—is similarly 

beyond the scope of this dissertation; however, the eager reader can find examples in 

Feigelson (2015) and most foundational texts covering regression analyses (e.g., Neter et 

al. 1996). While this may be sufficient for some applications, there is no explicit 

uncertainty information for the underlying parameter inference in these approaches. MLE 

also lacks a mechanism for combining empirical evidence with a priori beliefs (e.g., 

based on other similar data, the variance 2  is probably less than one). While additional 

development of classical frequentists methods can mitigate some of these limitations, 

Bayesian data analysis provides a different approach to the same fundamental 

optimization problem articulated by Fisher (1922) and, indeed, the model specified by 

Equation 11 and Equation 12. Casella (2008) even notes that “likelihoodists [are] 

Bayesians, but they don’t know it.” More specifically, we seek an inference scheme that 

permits model parameters as random variables and parameter estimation that quantifies 

uncertainty explicitly via Bayesian posterior distributions. As a result, the BEMOS 

technique has been selected by the present work based on the findings of Richter (2012) 

and Hodyss et al. (2016) and the aforementioned arguments. 

A concise description of Bayesian reasoning, which was notably advanced by 

Laplace and other contemporary mathematicians (Stigler 1990), is provided by Gelman et 

al. (2013) as a procedure to “invert the probability statement and obtain probability 

statements about [parameters] given observed [data].” Adopting the notation of Gelman 

et al. (2013) for unobservable model parameters 
1 2( , ,..., )K     and observable data y

, Bayes’ rule is frequently derived by expanding a generic joint probability distribution, 

( , )p y , as 

 ( , ) ( | ) ( ) ( | ) ( ),p y p y p y p y p       (14) 
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where ( | )p y   is the conditional probability of observed data given the model 

parameters, ( | )p y  is the conditional probability of model parameters given the 

observed data, and ( )p   and ( )p y  are the marginal probabilities of the model 

parameters and the data. An example for observable data y  would be observations for an 

arbitrary sensible weather variable (e.g., surface temperatures). Unobservable, latent 

model parameters are quantities in the model structure for which direct observations are 

unavailable (e.g., the mean and variance of a Gaussian PDF); they must be computed 

with descriptive statistics or otherwise inferred from observable data. Bayes’ theorem 

itself is then revealed by a trivial manipulation of Equation 14 to produce  

 
( | ) ( )

( | ) ,
( )

p y p
p y

p y

 
    (15) 

where ( | )p y   now identifies the well-known likelihood function or, sometimes, the 

sampling distribution, ( )p   is the subjective prior, and ( )p y  is the prior predictive 

distribution; the latter is sometimes described, more simply, as the evidence for the 

observed data with this probability model (Kruschke 2014). 

As with Lorenz and chaos theory, the implications of Equation 15 are difficult to 

overstate. In simple terms, there is value in “inverting the probability statement” to 

update our beliefs in model parameters, regardless of their subjective origins, and, 

therefore, refine the inferences they inform with data (Gelman et al. 2013). Unlike the 

non-parametric schemes and simple linear regression methods previously considered, 

which work directly with objective evidence in a more naïve fashion, this expression 

produces a more rigorous basis—and cost function—for the parameter optimization in 

Equation 11 and Equation 12. This Bayesian framework can similarly exploit the chain 

rule of probability indicated by Equation 14, as described by Hodyss et al. (2016), to 

construct Bayesian JPMs with an arbitrarily large number of parameters. In this way, 

Bayesian reasoning can be easily scaled to generate tractable probability models of 

exceptional sophistication (Gelman et al. 2013). To this end, the multiple linear 

regression framework of Kruschke (2014) extends the description provided by Equation 

11 and Figure 11b to include multiple predictors that are potential covariates of the 
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predictand. That is, a predictor may ultimately be found to have little influence on a 

predictand and, therefore, be appropriately associated with a trivial beta-slope (i.e., small 

values of the normalized regression coefficients). In simple terms, this means that OLS, 

MLE, and Bayesian parameter estimation schemes can diagnose the sensitivity of a 

predictand to variance in the independent predictor and, if necessary, return a null result. 

For these reasons, the model uncertainty analysis of Richter (2012) is considered 

superfluous by the present work. 

With the foundation of a Bayesian inference framework established, the full 

multiple linear regression model may now be expressed for a Gaussian likelihood 

function as 

 
1

2

0

( | ) ( , ),
K

i i

i

y x N x  




   (16) 

where the location parameter   in Equation 2 has been reparametrized with 1K   

predictors in an expanded linear model with homoscedasticity (i.e., constant, state-

independent variance); using this notation, 
0 1x  . In this way, the Bayesian probability 

model is now structured to capture the sensitivity of the observable predictand to multiple 

predictor variables through the magnitudes of the various regression coefficients. 

Predictions extracted from this generative model will now include the relevant variability 

of multiple covariates, which may themselves be correlated in the linear model. This 

multiplicative interaction can be similarly modeled in Equation 16 with products of 

predictors (e.g., 
12 1 2x x ) that are nonlinear functions of the predictors but linear functions 

of the regression coefficients (Kruschke 2014). 

If the inference structure is to be further extended to capture covariance among 

multiple response variables, in such a way that y  becomes a vector y  of statistically 

coupled predictions for several predictands (e.g., tropical cyclone position and intensity), 

then a multivariate multiple linear regression framework is required. More specifically, 

Equation 12 and Equation 16 can be modified according to Sinay and Hsu (2014) and Gu 

(2008) for a linear system to construct a MVN log-likelihood as 
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N
l B y x B y x B



          (17) 

where l  is the log-likelihood of the observations,  T

iy  is a 1xM  vector of observations, 

T

ix is an 1xK  vector of independent predictors,   is a KxM  parameter matrix of 

regression coefficients (including the intercepts), and   is an MxM  covariance matrix 

that replaces the univariate variance 2 . For a case with three predictands and three 

predictor variables, which describes a model with 3M   and 1 3K   , the coefficient 

and covariance matrices expand as 
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where 
i  describes the standard deviation of the corresponding predictand 

iy  and ij  

identifies the Pearson correlation coefficient (PCC) between predictands 
iy  and jy . The 

first column of the coefficient matrix describes the sensitivity of 1y  to variance along 

each predictive dimension of 
T

ix  using multiple linear regression; that is, 0  is the 

intercept associated with 1y , 3  measures the sensitivity of 1y  to predictor 1x , 6  

measures the sensitivity of 
1y  to predictor 

2x , and 9  measures the sensitivity of 
1y  to 

predictor 3x . Similarly, 1  is the intercept associated with 2y , 4  measures the 

sensitivity of 2y  to predictor 1x , 7  measures the sensitivity of 2y  to predictor 2x , and 

10  measures the sensitivity of 2y  to predictor 3x . Finally, 2  is the intercept associated 

with 3y , 5  measures the sensitivity of 3y  to predictor 1x , 8  measures the sensitivity of 

3y  to predictor 2x , and 11  measures the sensitivity of 3y  to predictor 3x . In this way, a 
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stochastic formulation of the multivariate multiple linear regression framework with 

3M   and 1 3K    is appropriately visualized as a linear system with 
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  (20) 

where   describes the i th location parameter of ( , )MVN    with covariance matrix  ; 

subscript n  describes the n th forecast trial in a training period with N  total forecast-

observation data comparisons. The precise number of predictands, M , predictor 

variables, 1K  , and training points, N , is selected by the statistical modeler and the 

constraints of the problem according to the “underlying scientific problem and the data 

collection process” (Gelman et al. 2013). Moreover, this multivariate multiple linear 

regression framework—which represents a combination of modeling approaches 

assembled from Sinay and Hsu (2014) and K14, but is also commonly found in the 

statistical literature for linear models (e.g., Neter et al. 1996)—can be inserted into any 

parametric distribution appropriate for the forecast application. In this way, it is 

consistent with primary motivations of NR/EMOS, which sought a convenient parametric 

representation of the forecast uncertainty communicated by a linear combination of EPS 

output. 

Bayesian estimation permits a wide variety of likelihood functions—that is, 

( | )p y  —when constructing the JPM. In the context of the BEMOS approach to 

statistical post-processing, the selection of the Bayesian likelihood function specifies the 

stochastic character of the data generation process—the manner by which meteorological 

truth is drawn from our hypothetical parametric forecast distributions. While many 

candidate parametric distributions exist, including the ( , )Beta   , ( , )Gamma k  , and 

2 ( )k , or chi-squared, distributions, the ubiquitous Gaussian—that is, 2( , )  —finds 

wide application throughout statistics and Bayesian data analysis. The multivariate form 

of 2( , )   (e.g., Figure 12) is similarly analytically tractable and computationally 

efficient (e.g., the convenient form of Equation 17). Moreover, 2( , )   is statistically 
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conjugate with itself when used as a Bayesian likelihood and prior. Gelman et al. (2013) 

defines such conjugacy as “the property that the posterior distribution follows the same 

parametric form as the prior distribution.” The latter was important in the original 

BEMOS analysis of Richter (2012); it permits direct analytical solutions to Bayesian 

parameter estimation and, in some cases, the availability of more efficient MCMC 

techniques (e.g., Gibbs sampling). 

 

Figure 12.  A pedagogical representation of a two-dimensional multivariate 

Gaussian distribution (MVN) with elliptical presentation (i.e., non-

zero covariance elements). Source: Wikipedia 2017a. The scatter of 

points in the horizontal plane represents a discrete sample from the 

joint probability distribution. Each dimension of the joint PDF can 

be decomposed into one-dimensional Gaussian marginal 

distributions. 
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Figure 13.  Pedagogical comparison of univariate parameter estimation 

performed with a Gaussian (i.e., normal) distribution and the classic 

Student’s t-distribution. Source: Kruschke (2014). The location 

parameter of each distribution is estimated based on the statistical 

properties of the underlying data. The presence of an outlier 

(extreme right) causes the location of the Gaussian distribution to 

shift further towards the outlier than the t-distribution. 

While the present work has sought the widest application of the MVN as a 

likelihood function, there are reasons to consider other distributional forms. Kruschke 

(2014) notes that outliers in data can sometimes produce undesirable consequences in 

parameter inference schemes. In particular, Figure 13 demonstrates the influence of a 

single outlier on the MLE estimates produced by fitting a univariate Gaussian (i.e., 

normal) and a Student’s t-distribution to a “toy” data sample (Kruschke 2014). Both 

PDFs are symmetric with the bulk of the probabilistic mass concentrated near the central 

tendency of the distribution; however, the t-distribution shifts some of its probabilistic 

mass further into the tails. The latter property of the t-distribution becomes advantageous 

in so-called robust regression, which is defined in this context as a procedure to mitigate 

the impact of outliers in parameter estimation. In this way, Kruschke (2014) notes: 
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Outliers are simply data values that fall unusually far from the model’s 

expected value. Real data often contain outliers, presumably because some 

extraneous influences have sporadically perturbed the data values. 

Sometimes these extraneous influences can be identified, and the affected 

data values can be corrected. But usually we have no way of knowing 

whether a suspected outlying value was caused by an extraneous 

influence, or is a genuine reflection of the target being measured. Instead 

of deleting suspected outliers from the data according to some arbitrary 

criterion, we retain all the data but use a likelihood function that is less 

affected by outliers than is the normal distribution. (Kruschke 2014) 

The central tendency of the t-distribution in Figure 13 is less sensitive to the 

outlier at 15x   precisely because it permits more probabilistic mass in the tails, or 

wings, of its PDF. In other words, the t-distribution is allowed to assign higher 

probabilistic density to locations further away from its mean and, as a result, can keep its 

location parameter closer to the central tendency of the rest of the data (i.e., the points 

assumed not to be outliers). In this way, the t-distribution provides a concise method of 

robust regression in Bayesian estimation and an attractive alternative to the Gaussian 

likelihood function examined in Equation 12. Since no separate model specifications are 

required to formulate this approach (e.g., removing outliers from the training set), it is 

computationally convenient vis-à-vis the MCMC sampling techniques described in the 

following section. Kruschke (2014) adds that 

the estimated parameter values for a normal likelihood function can be 

greatly distorted by outliers in the data. This sensitivity also occurs when 

the normal distribution is used in linear regression. The normal likelihood 

function demands that the regression line is vertically close to all the data 

points, because the likelihood value is tiny for points more than about 

three standard deviations from the line. Consequently, outlying data points 

can have disproportionate leverage in the estimate of the regression 

coefficients. (Kruschke 2014) 

Wiecki (2013) considers the practical impact of outliers on Bayesian parameter 

estimation using the PyMC3 Python package for Bayesian statistical modeling and 

Probabilistic Machine Learning. Using a collection of normally distributed errors around 

simulated data (blue), a true regression line can be compared with Bayesian estimation 

solutions with univariate Gaussian (panel a) and t-distribution (panel b) likelihood 

functions. The regression performance of each likelihood function is represented by the 
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family of regression solutions (i.e., black lines) in each panel. The outliers found in the 

top left of each panel have a notable influence on the regression solutions for the 

Gaussian likelihood function (i.e., panel a); by comparison, the t-distribution likelihood 

function produces regression estimates that remain closer to the true value (i.e., panel b). 

As a result, the regression residuals produced by the Gaussian likelihood function are 

larger near the boundaries of the data interval considered and, perhaps more importantly, 

a poorer fit to the underlying data. 

 

Figure 14.  A practical comparison of robust regression in Bayesian parameter 

estimation using univariate Gaussian (left) and t-distribution (right) 

likelihood functions. Source: Wiecki (2013). The influence of 

outliers on each probability model is represented by the fit of the 

regression solutions (black lines) compared with the true solution 

(yellow line). The simulated data (blue) was generated assuming 

normally distributed errors with outliers (top left) added manually. 

To this end, a multivariate form of the t location-scale distribution (MVT), which 

merely describes a non-standardized form of the t-distribution, has been adapted for the 

present work. The PDF for the MVT is frequently represented as a combination of the 

MVN and 2  (i.e., chi-squared) distributions as 
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where   is the degrees-of-freedom parameter,   and x  are as before, and M  specifies 

the number of predictands (i.e., the dimensionality of  , x , and y ). The stochastic 

samples x  produced by the multivariate PDF t  are formed according to  
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    (22) 

where y  and u  are IID samples from the ( , )MVN    and 2 ( )   (i.e., chi-squared) 

distributions, respectively, and x  is “said to have a (nonsingular) multivariate t-

distribution” (Lin 1972). Finally, an appropriate modification to the MVN log-likelihood 

in Equation 17 must be specified. Unfortunately, the lack of an exponential function in 

Equation 21 renders a convenient form of Equation 17 unattainable; the MVT log-

likelihood must therefore be written as 
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where y  now describes a vector of observations from training data,   is parameterized 

according to Equation 20, and all other variables are as before. The logarithm of the ratio 

on the left hand side of Equation 23 has been retained for parsimonious specification in 

this document. The expression on the right-hand side of Equation 23 also retains a 

logarithm and removes the benefits of conjugacy in Bayesian probability models with 

Gaussian prior distributions. This is notable for the MCMC methods described in the next 

section, as closed-form solutions are not available when JPM conjugacy is broken. 

Bayesian inference requires the specification of prior information. In this way, the 

modeler must choose the distributional forms of each term in the numerator of Equation 

15 and what numerical information is stored in each. While the details of specific 

parametric selections used in this dissertation will be reserved for Chapter III, the 
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interaction of each component in the JPM can be diagrammed to articulate the analytical 

structure of each aspect of the probability model. Figure 15a shows a JPM diagram for a 

pedagogical Bayesian model consistent with Equation 17; that is, a univariate stochastic 

framework for predictand 
iy  with a Gaussian generative process (i.e., a normal likelihood 

function with mean 
i  and standard deviation y ) wrapped around the multiple linear 

regression framework for 
i  specified by Equation 9. The distributions above this level 

represent Bayesian prior information selected for each of the model parameters. For this 

example, the lone intercept parameter 
0  is given a Gaussian prior with fixed location 

hyperparameter 0M  and fixed standard deviation hyperparameter 
0T ; this communicates 

the modeler’s a priori belief that model parameter 0  has a true value inside the support 

of the indicated distribution. 

 

Figure 15.  JPM diagrams for two multiple linear regression models. Source: 

Kruschke (2014). The panel on the left (a) depicts a non-hierarchical 

model in which the hyperparameters are fixed. The panel on the right 

(b) depicts a hierarchical model in which the hyperparameters of the 

Bayesian priors are treated as random variables and influenced by 

the data via hyperpriors. Standard, non-hierarchical priors with fixed 

hyperparameters (i.e., hyperpriors) are placed on the hierarchical 

hyperparameters. 
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Similarly, the regression parameters j  are assigned identical Gaussian priors 

with fixed hyperparameters M   and T —the location and scale parameters of the prior. 

Finally, the variance of the Gaussian likelihood fit to the data, y , is assigned a Gamma 

prior distribution with fixed hyperparameters yS  and yR  - the shape and scale parameters 

of the indicated Gamma distribution. The latter communicates the modeler’s a priori 

belief that model parameter y  has a true value inside the support of the positively-

skewed Gamma distribution with these fixed hyperparameter values. In this way, the 

Bayesian prior modifies the cost functions of Equation 12 and Equation 17 to weight 

likely parameter values with additional, external information—a modification to the MLE 

optimization process introduced by Fisher (1922). It allows a subject matter expert to 

imbed scientific reasoning into the JPM—not simply from the distribution chosen for the 

likelihood function, which describes the manner in which observed and unobserved data 

are stochastically realized, but also from beliefs about model parameters we include in 

the Bayesian prior. 

However, it should be noted that the absence of Bayesian prior information, 

which is sometimes described as “letting the data speak for itself,” is also considered a 

part of Bayesian data analysis (Gelman et al. 2013). This is often implemented with early 

versions of the Bayesian data analysis process, when confidence in a priori beliefs is 

either low or incomplete, through so-called noninformative or weakly informative priors. 

Gelman et al. (2013) describes a weakly informative distribution as a Bayesian prior 

“which contains some information—enough to ‘regularize’ the posterior distribution, that 

is, to keep it roughly within reasonable bounds—but without attempting to fully capture 

one’s scientific knowledge about the underlying parameter.” Using the JPM in Figure 15a 

as an example, a noninformative approach would simply remove the prior distributions 

above the likelihood function; this is equivalent to setting ( ) 1p    in Equation 15. 

Unfortunately, the latter method can also produce improper posterior distributions that do 

not integrate to unity over the full support of the distribution (Gelman et al. 2013). In this 

way, care must be taken with the selection of Bayesian prior information to ensure 

posterior beliefs in model parameters are valid. In the present work, JPMs with 
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noninformative priors are labeled as MLE; while not truly equivalent to the classic 

method introduced by Fisher (1922), they are also not fully Bayesian in character either. 

However, a primary advantage of Bayesian data analysis with noninformative priors is 

that it permits an equivalent MLE analysis while simultaneously delivering the associated 

Bayesian uncertainty estimates—with no separate or additional calculations required. In 

this regard, Bayesian parameter estimation on the MLE cost function—that is, the 

likelihood function—might be considered superior to the classical frequentist estimates 

they replace.  

For many Bayesian probability models, including the multiple linear regression 

framework described by Sinay and Hsu (2014) and Kruschke (2014), the prior 

distributions can be augmented with hyperparameters that are also influenced by the data. 

In simple terms, this means the Bayesian priors have hyperparameters that are not fixed; 

they are treated as random variables that must also be estimated from data. To this end, 

additional level(s) of stochastic expressions, each with their own hyperparameters and 

priors can be added above the final level indicated in Figure 15a. This is known as a 

hierarchical Bayesian model and Figure 15b shows how the pedagogical JPM in Figure 

15a can be modified to permit parameter inference on additional levels. While the prior 

information for the regression intercept 0  and likelihood y  remain unchanged, Figure 

15b shows an example of regression coefficient shrinkage; that is, the regression 

coefficients j  are now grouped together with a common t-distribution prior and 

hyperparameters  ,  , and df . These hyperparameters correspond to the location, 

scale, and shape parameters of the t-distribution and are treated as model parameters—

that is, they are estimated from the data in the same manner as other model parameters. 

Since these non-fixed hyperparameters are treated as random variables, they also require 

prior information. The latter is indicated by a new level of distributions at the top of 

Figure 15b; each hyperparameter in the t-distribution now has its own prior distribution—

a hyperprior—that performs the same function as any prior distribution. More 

specifically, these hyperpriors describe the modeler’s a priori belief in the 

hyperparameters—only now on this new level of information. Bayesian data analysis 
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permits other forms of hierarchical modeling, where clustering in the underlying data can 

be modeled with parameters organized at different model levels (e.g., global and regional 

regression coefficients). 

Hierarchical models capture additional structure in the parameters that can 

improve the fit of a JPM to the data. Kruschke (2014) describes the benefit of regression 

coefficient shrinkage in this context: 

A desirable side-effect of incorporating this prior structure is that the 

estimates of the regression coefficients experience shrinkage. If many 

regression coefficients are near zero, then the t distribution will have a 

high precision (τ parameter), which in turn will shrink the estimates of the 

regression coefficients. The regression coefficients are mutually informing 

each other, via the prior knowledge that they should be distributed 

according to a t-distribution. The shrinkage is desirable not only because it 

expresses our prior knowledge, but also because it rationally helps control 

for “false alarms” in declaring that a predictor has a non-zero regression 

coefficient. When there are many candidate predictors, some of them may 

spuriously appear to have credibly non-zero regression coefficients, even 

when the true coefficient is zero. This sort of false alarm is unavoidable 

because data are randomly sampled, and there will be occasional 

coincidences of data that are unrepresentative. (Kruschke 2014) 

While the present work does not consider the selection of t-distribution priors to be a 

necessary condition for regression coefficient shrinkage, since the Gaussian may be 

considered an extension of the t-distribution when the degrees of freedom have become 

sufficiently large (e.g., rules of thumb indicating 30  ), it does consider the presence of 

the hierarchical hyperparameters to be sufficient. This assumption will be revisited in 

Chapter III. To this end, both the MVN and MVT likelihood functions selected for this 

dissertation use hierarchical Gaussian priors. The analytical details of the resulting 

hierarchical multivariate Bayesian models, which include the relevant JPM diagrams, will 

be similarly reserved for Chapter III. 

The inferences produced by the methods described heretofore focus exclusively 

on the parameters of the selected JPM. In this way, Bayesian posteriors are useful for 

diagnostic analyses of model parameters, because they describe optimal updated 

statistical beliefs in the elements of the generative model. However, they are not 

explicitly prognostic. If predictive statements about unobserved data are desired, as 
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required by the nature of the statistical post-processing methodologies engaged by the 

present work, then additional analysis must be pursued. In particular, the posterior belief 

in model parameters acquired though Bayesian estimation, which is contained in the joint 

probability distribution of ( | )p y , must be weighted by the conditional probability of 

observing the unobserved random variable and summed over all possible values of the 

model parameters (Gelman et al. 2013). To this end, let z  be an unobserved observable 

random variable (i.e., synthetic data), y  be an observed observable random variable (i.e., 

training data), and ( | )p z y  describe the posterior predictive distribution as 

 ( | ) ( , | ) ( | ) ( | ) ,p z y p z y d p z p y d         (24) 

where the quantity ( | )p z   is functionally equivalent to the likelihood selected for the 

JPM (Gelman et al. 2013). While this expression is analytically intractable for some 

models, including many implementations of the MVT likelihood function and, indeed, 

many forms of hierarchical parameter inference, the same MCMC techniques that helped 

popularize Bayesian estimation can produce joint posterior samples from ( | )p y  that are 

easily repurposed for a discrete analogue of Equation 24. In simple terms, the MCMC 

samples produced by the methods described in the next section produce solutions for 

( | )p z y  with little additional computational expense or modeling effort. 

D. MARKOV CHAIN MONTE CARLO METHODS 

In some applications, the Bayesian estimation described in the previous section 

can be completed without the aid of computational techniques. These circumstances 

typically result from the selection of noninformative or conjugate priors (e.g., panels a, b, 

and c in Figure 16 from Wiecki 2015), which guarantee that, for a given likelihood 

function, the Bayesian posterior and prior will belong to the same distributional family 

(Kruschke 2014). While computationally tractable and conceptually convenient, 

conjugate priors can limit the scope and utility of Bayesian models—perhaps most 

notably in the complexity of the JPM permitted by the inference. In this way, MCMC 

computational methods are frequently invoked to complete the inference in Bayesian 

“models with many parameters and complicated multilayered probability specifications” 
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(Gelman et al. 2013). While a full description of MCMC theory is beyond the scope of 

the present work, the eager reader is encouraged to consult Gelman et al. (2013) or Gilks 

et al. (1996)—among many others. In this way, the essential elements of one popular 

approach—the Metropolis algorithm (Metropolis et al. 1953)—will be developed to 

demonstrate their application to the hierarchical multivariate Bayesian probability models 

identified in Chapter III.      

 

Figure 16.  Pedagogical visualization of a Bayesian posterior distribution 

formed during a single iteration of the Metropolis algorithm. Source: 

Wiecki (2015). The individual panels depict, from left to right, a 

comparison of the (a) prior, (b) likelihood, and (c) posterior 

distributions at the current (blue) and proposed (red) phase space 

locations. Panel (d) is a trace diagram that records the sequence of 

chain states visited by the algorithm. 

The primary obstacle to arbitrarily complex models in Bayesian data analysis is 

the specification of the normalizing constant in Equation 15—that is, the denominator in 

Bayes’ theorem (Gilks et al. 1996). To this end, Gelman et al. (2013) expands ( )p y  in 

Equation 15 as 

 ( ) ( , ) ( | ) ( ) ,p y p y d p y p d         (25) 

where the interpretations of all quantities remain unchanged from their original 

descriptions in Equation 15 and Equation 24. Unlike the other elements of Equation 15, 

which are functions of the model parameters  , the quantity defined in Equation 25 has 

marginalized this dependence out of the integrand. Although a constant with respect to 

the parameters, this expression—which ensures the Bayesian posterior integrates to unity 
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(i.e., produces a PDF)—is frequently unavailable in closed-form (Gelman et al. 2013). 

Without the benefits of Markov chain simulation, this analytical obstacle prevents an 

otherwise-viable Bayesian probability model from completing the necessary parameter 

inferences. 

To this end, a computational scheme introduced by Metropolis et al. (1953), and 

later generalized by Hastings (1970), provides a method of drawing samples from 

arbitrarily complicated target distributions that are intractable by classical methods 

(Robert and Casella 2011). Compared to other schemes available for parameter 

estimation (e.g., the expectation-maximization algorithm in Raftery et al. 2005), MCMC 

methods offer many advantages (Vrugt et al. 2008). In particular, these MCMC 

methodologies leverage a special property of Markov chains—that is, the Markov 

property—for which the development of any state, 
t , in a sequence of random variables 

is dependent solely on the previous state, 
1t 
, and a transition kernel, T , that 

stochastically maps every possible state of   to any other (Gilks et al. 1996). As a result, 

this sequence of states is considered memoryless; each additional step is independent of 

all previous states visited and, perhaps more importantly, the sequence of states produced 

in this manner—that is, the Markov chain—represents a random walk through the phase 

space of the random variables and the transition kernel (Kruschke 2014). 

The efficacy of Markov chain simulation in Bayesian estimation depends on three 

additional properties: if the chains are observed to be irreducible (i.e., transitions to and 

from any phase space location have non-zero probability and are possible in finite time), 

aperiodic (i.e., no diagnosable periodicity in the frequency with which phase space 

locations are visited), and non-transient, then the Markov chain is guaranteed to “forget” 

its initial state (Gilks et al. 1996) and converge to a unique stationary distribution 

(Gelman et al. 2013). MCMC methods exploit these properties by reverse-engineering a 

Markov chain with a stationary distribution that matches the Bayesian target—that is, 

( | ) ( | ) ( )p y p y p   , the unnormalized Bayesian posterior. In particular, we seek a 

Markov chain that visits phase space locations with a relative frequency that is 

statistically consistent with the probabilistic mass contained within the desired joint 



 57 

probability distribution. The analytical development of this condition, which guarantees 

the equivalence of the stationary and target distributions, is similarly beyond the scope of 

this dissertation; however, Gilks et al. (1996), Gelman et al. (2013), and Kruschke (2014) 

provide the necessary details. Nevertheless, a parsimonious description of the Metropolis 

algorithm reproduces the most relevant portions of the associated proof. 

 

Figure 17.  Visualization of a univariate Gaussian proposal distribution (red 

curve) superimposed on a target distribution (black curve). Source: 

Stansbury (2012a). Samples from the target are generated according 

to the Metropolis algorithm, which compares the target density at 

two locations: the current position (blue vertical line) and at the 

proposed location (red vertical line). 

To generate samples from an arbitrary target distribution over  , we seek a 

Markov chain that produces a random walk through the multi-dimensional phase space of 

the parameters (Kruschke 2014). To accomplish this, Metropolis et al. (1953) introduced 

a simple modification to Markov chain mechanics that ensures the chain “finds” the 

desired stationary distribution (Gelman et al. 2013). If the unnormalized Bayesian 

posterior is the target (e.g., the black distribution in Figure 17), the Metropolis algorithm 

generates each step in the resulting sequence by evaluating the quantity ( | )p y  at two 

locations in the phase space of the model: the current location, 
t , and a proposal 

location, 
1t 
 (red vertical line), which is stochastically drawn from a symmetric proposal 

distribution (red distribution) centered on the current value of 
t  (blue vertical line). 

Recall that the observed observable data y  is fixed by our Bayesian assumptions; the 

ratio of the target densities at the proposed and current locations (i.e., the ratio of the 

ordinates of the red box and blue circle in Figure 17) may now be written as 
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where the expression in Equation 27 is, quite conveniently, the ratio of the unnormalized 

Bayesian posterior (i.e., the product of the likelihood function and the prior) at the 

proposed and current phase-space locations. 

 

Figure 18.  Multiparameter trace diagram for five parallel Markov chains in a 

semi-log time series of discrete phase space locations (grey dots). 

The moving average of each chain (solid blue and dashed black 

curves) is superimposed over the discrete MCMC samples (grey 

filled circles). Panel (a) shows a joint trace for two model 

parameters; panels (b) and (c) depict the associated marginal traces 

(i.e., cross-sectional views) for these parameters. The discrete time 

sequence of the Markov chain increases vertically (up) in panel (a) 

and horizontally (right) in panels (b) and (c). 
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Using this expression, transitions are accepted with probability min( ,1)r ; that is, 

the location 
1t 
 is “accepted” and appended to the sequence if a random number drawn 

from the open interval (0,1)  is less than r  (Gelman et al. 2013). If this condition is not 

satisfied, then 1t   is “rejected” and the current value of 
t  is appended as the next 

element of the chain. This process is repeated in the above manner until the moving 

average of multi-dimensional states reaches its stationary distribution. Monte Carlo 

samples of the desired target distribution may be taken from any portion of the chain that 

has reached its stationary distribution (i.e., converged) in this manner. It should be noted 

that proposal distribution is also sometimes known as the transition distribution, 

transitional kernel, or jumping distribution. If this proposal distribution is not symmetric, 

then the generalized Metropolis-Hastings algorithm is required; analytical details for the 

latter are available in Gilks et al. (1996) and Gelman et al. (2013). 

 

Figure 19.  Comparison of analytical (green plot) and MCMC (blue histogram) 

solutions for a simple Bayesian inference scheme with a conjugate 

normal prior distribution. Source: Wiecki (2015). The normal 

posterior distribution represented in the histogram was generated by 

extending the Metropolis algorithm represented in Figure 16 through 

15,000 additional MCMC iterations. 
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The Markov chain created by this procedure does not discriminate between multi-

dimensional states that have been accepted or rejected; the Metropolis algorithm merely 

records the sequence of phase space locations visited during this random walk (e.g., 

Figure 18). In this way, transitions to phase-space locations with lower target density are 

permitted (e.g., the red square has a lower density than the blue circle in Figure 17); 

however, we always accept transitions to locations with a greater density in the joint 

probability distribution and, as a result, these locations will be recorded more frequently 

in the multi-dimensional sequence of the evolving chain (the black circles at the bottom 

of Figure 17). Equation 26 and Equation 27 also reveal the mechanism by which the 

normalizing constant is managed in MCMC algorithms. While crucial to the completion 

of the Bayesian inference by purely analytical means, the normalization constant ( )p y  is 

absent from the ratio in Equation 27 because it does not depend on the variability of the 

multi-dimensional parameter   and has been identically cancelled on the right-hand side 

of Equation 26; the data are considered fixed and all dependence on model parameters 

has been marginalized out of the integrand in Equation 25. The resulting expression, 

which requires only the likelihood function and the Bayesian prior, can be 

computationally evaluated for arbitrarily complex Bayesian models. This gives the 

Bayesian approach to parameter estimation tremendous flexibility in JPM selection and, 

ideally, the fit of the inference scheme to data conditioned on model assumption and a 

priori beliefs. 

Finally, the posterior samples produced by MCMC methods require additional 

manipulation to make probability statements about unobserved observable data (i.e., 

predictions). To this end, the likelihood function found in MLE and Bayesian estimation 

can be similarly tasked to produce samples from Bayesian PPDs (Gelman et al. 2013). 

This reflects the goals of the NR/EMOS technique, which sought a simple parametric 

representation of the probabilistic forecasts meteorologist extract of ensembles. MCMC 

methods make this process conceptually and computational efficient. As suggested by 

Equation 2, a Gaussian likelihood function similarly assumes that an unobserved 

observable random variable z  is stochastically drawn as 
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 2( , ),z N     (28) 

where   and 2  are location and shape parameters that may be arbitrarily 

reparametrized in a linear model (e.g., Equation 9). Multi-dimensional samples from the 

joint posterior distribution of unobservable, latent parameters   (e.g., Figure 18) can be 

combined with updated predictor variables (e.g., current values for the ensemble 

predictors in Equation 3) to iteratively populate the parametric elements of the 

corresponding predictive distribution (e.g., Equation 9). In this way, PPD samples are 

generated by a discrete formulation of Equation 24 as 

 ( | ) ( | ) ( | ),p z y p z p y    (29) 

where each sample of z  is stochastically drawn from the likelihood specified by ( | )p z   

according to the multi-dimensional posterior parameter samples in ( | )p y . While no 

prohibitions on the number of z  samples drawn from the “warmed,” final   samples are 

known to exist, so long as the same number of z  samples drawn from each cross-

sectional element of the warmed MCMC chain are equal, the present work assumes that a 

1:1 ratio between z  and   samples—that is, one z sample for each i —is sufficient to 

accurately specify the desired PPDs. The details of PPD construction will be further 

developed in Chapter III. In this way, Bayesian estimation and MCMC methods provide 

a complete inference structure, for both unobservable model parameters and unobserved 

observable data, in a wide variety of practical predictive modeling applications. 
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III. METHODS 

The present work adapts a number of techniques from statistical post processing, 

statistics, and data science to produce a functional predictive model. At its core, the 

hierarchical multivariate Bayesian approach to atmospheric prediction developed for this 

dissertation represents an extension of the multivariate multiple linear regression detailed 

by Sinay and Hsu (2014) and Kruschke (2014), the stochastic predictive framework of 

Gneiting et al. (2005), and perhaps most importantly, the Bayesian methods explored by 

Richter (2012). However, the BEMOS model in the present work is distinct from 

Gneiting et al. (2005) and Richter (2012) in the following ways: 

1. It permits full multivariate predictions, with coupled covariance 

between vector predictands, with MVN and MVT likelihood functions. 

2. It uses hierarchical parameter structure, which treats the 

hyperparameters of Bayesian prior distributions as random variables 

with their own hyperprior distributions, to permit hyperparameter 

inference from the data. 

3. It uses a customized adaptive multivariate Metropolis sampler, with 

block-wise component updates, to permit more sophisticated, non-

conjugate probability models (e.g., the aforementioned hierarchical 

structure). 

4. It can engage robust regression with multivariate t location-scale 

distributions (i.e., MVT likelihood functions). 

5. It uses logarithmic data transformations to produce asymmetric 

predictive distributions for sensible weather variables with intrinsic 

skew. 

As described by the research motivations in the introduction, these model 

innovations are consistent with the recommendations of Gneiting (2014)—especially the 

desire for coupled statistical predictions of sensible weather variables. They also attempt 

to make a unique contribution to statistical post-processing research in meteorology. In 

this way, the Naval Postgraduate School (NPS) BEMOS model represents a proof of 

concept that may ultimately be applied with more rigor to nearly any predictive 
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application where training data are available (e.g., electromagnetic propagation, tropical 

cyclone, and surface spectral reflection prediction). 

A. RESEARCH QUESTIONS 

The first conjecture of this dissertation is that a MVT likelihood function will 

provide better predictive performance, with forecast distributions that are better 

calibrated, than a MVN likelihood function in the NPS BEMOS JPM. In this way, the 

likelihood function contains the modeler’s belief in the stochastic generative process that 

best describes the distribution of the observable data. It also represents a core component 

of the model’s cost function. With the data fixed, the likelihood function describes how 

the model parameters may be heuristically perturbed over the support of the prior to make 

inferences regarding the underlying model parameters. As described in Chapter II, the 

Gaussian PDF is convenient in statistical modeling; the analytical form of the PDF is 

easily adapted in log-likelihood expressions (e.g., Equation 12), and 2( , )N    is 

conjugate with itself in Bayesian posterior inference. Many of the relevant investigations 

cited in the literature review (e.g., Gneiting et al. 2005, Krzysztofowicz and Evans 2008, 

Richter 2012, and Hodyss et al. 2016) fit Gaussian likelihood functions. However, the 

advantages of robust regression are well known in applied statistics (e.g., Wiecki 2013 

and Kruschke 2014). To this end, the present work will explore the comparative efficacy 

of the MVN and MVT distributions as likelihood functions in the application considered 

by Chapter IV. The t-distribution produces location parameter estimates that are less 

sensitive to outliers vis-à-vis robust regression; this property is assumed to be desirable in 

atmospheric prediction. 

The second conjecture of this dissertation is that hierarchical Bayesian priors will 

provide better predictive performance than noninformative priors in the NPS BEMOS 

JPM. This research question therefore explores the sensitivity of predictive performance 

to Bayesian prior information. Chapter II introduced some of the basic distinctions 

between the MLE and Bayesian approaches to parameter estimation. While the former 

introduced the analytical form of the likelihood as a cost function, the latter effectively 

extends this approach by combining it with prior information. It also produces full 
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posterior distributions over the model parameters of interest with explicit uncertainty 

information that is delivered in parallel with the primary inference—especially when 

paired with MCMC sampling techniques. To investigate the utility of Bayesian priors, 

especially with the hierarchical methods detailed by Gelman et al. (2013) and Kruschke 

(2014) for regression coefficient shrinkage (e.g., Figure 15b), the present work will 

compare hierarchical Bayesian model instances against similar models with 

noninformative priors—that is, ( ) 1p   ; the former are label as “NPS” models and the 

latter as “MLE” models. These hierarchical JPMs contain informative and, ostensibly, 

meaningful prior information that should contribute to enhanced predictive performance. 

It should be noted that the “MLE” model instances created by the present work are not 

truly representative of the original MLE approach introduced by Fisher (1922), because 

they benefit from a Bayesian/MCMC formulation of the likelihood function. In this way, 

Bayesian predictive models with identical likelihood functions, for both the MVN and 

MVT distributions, will also be compared with OLS methods to see if hierarchical prior 

information improves predictive performance relative to classical techniques. 

The third conjecture of this dissertation is that larger amounts training data will 

produce better predictive performance than smaller sets of training data. Moreover, this 

conjecture further assumes that training data that is more meteorologically similar (e.g., 

synoptic pattern) to the test period will produce an NPS BEMOS model that performs 

better than when trained with data that is identical in size yet more meteorologically 

dissimilar to the test period. This research question therefore examines the impact of 

training period length and character on predictive performance. The former describes the 

amount of data given to the model (e.g., two months vs. 12 months); the latter describes 

the similarity of the training data to the test data used to evaluate predictive performance 

(e.g., training data from April and May 2016 to evaluate predictive performance during 

the same months in 2017). The majority of the statistical post-processing literature 

considers this question at some length (e.g., Raftery et al. 2005, Gneiting et al. 2005, 

Berrocal et al. 2008, and Hodyss et al. 2016), as it has relevance to the obtainable forecast 

skill, its associated computational cost, and the need for countermeasures against 

overfitting the data. This analysis may be broadly described as statistical cross-validation; 
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contemporary inferences are evaluated against one another as training samples of varying 

length and/or composition are considered. In simple terms, this dissertation will assume 

more training data are better and, when data sparsity is a constraint, similar data are 

preferable. This conjecture has particular relevance in operational applications, where 

large sets of quality-controlled training data may be unavailable or irrelevant (e.g., 

forecast personnel deployed internationally to data-sparse regions). Moreover, 

operational schedules may preclude model training with large data; in these 

circumstances, computational efficiency is paramount.  

The fourth conjecture of this dissertation is that a NPS BEMOS model trained on 

ensemble control elements (i.e., information available outside of the parent EPS) will be 

able to outperform the raw EPS and, indeed, comparable statistical reference methods 

(i.e., OLS) dressed with frequentist variance estimates. This conjecture further assumes 

that predictors based on the central tendency (i.e., mean) of the parent ensemble will 

provide better predictive performance than the aforementioned control predictors. While 

multiple linear regression permits an arbitrarily large number of predictor variables, the 

computational efficiency of such an approach can rapidly diminish—especially for 

Bayesian inferences completed with MCMC methods. The practical limitations 

associated operational applications therefore provide an additional incentive for 

parsimonious model specifications. However, all of the statistical methods previously 

described are more computationally efficient than the EPS schemes they seek to improve. 

In this way, the present work seeks a foundational comparison with the ensemble 

approach itself. More specifically, it seeks a performance comparison with EPS output 

that assesses the importance of the information provided by the ensemble distribution. If 

a Bayesian generative model can offer predictive performance that meets or exceeds raw 

ensemble output, for both measures-oriented and distributions-oriented scoring rules, 

then the computational cost EPS forecasts will need to be carefully considered against the 

merits of comparatively more efficient statistical approaches. To this end, model 

instances trained with ensemble control predictors—information available outside of an 

EPS—will be compared with similar variants trained with predictors derived from the 
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ensemble mean. The latter models will be identified with “NPSR” and “OLSR” model 

instances. 

B. DATA TRANSFORMATIONS 

The parameter estimation schemes examined in this dissertation operate on large 

systems of linear equations (e.g., Equation 4 and Equation 20). While the cost functions 

in Equation 8 and Equation 11 can process raw training data (i.e., no systematic 

manipulations with analytical functions), it is common in the statistical literature to apply 

mathematical transformations (e.g., Manikandan 2010, Gelman et al. 2013, Kruschke 

2014 and Hodyss et al. 2016) to the data before the primary analysis begins. The goal of 

such transformations is to shape the numerical character of the data (e.g., it’s central 

tendency and spread) to make them more suitable for the assumptions and structure of the 

model. 

1. Z-Score Standardization 

Standardization in statistical analysis describes a transformation that shifts and 

scales each member of the data so that the resulting set has a convenient central tendency 

and spread (e.g., 0   and 2 1  ). It is common practice in statistical modeling (e.g., 

Neter et al. 1996 and Kruschke 2014) to compute z-scores for each dimension of the 

training data—that is both, predictors and predictands. The transformed data may then be 

written as 

 ( ) ,s

x

x
z x

s


   (30) 

where x  describes an arbitrary data point, 
s  is the mean of the raw data sample, and 

xs  

is the standard deviation of the raw sample; the transformed element, ( )z x , now belongs 

to a sample that has been centered (i.e., 0z  ) and normalized (i.e., 
2 1zs  ). This form 

of standardization permits comparisons between beta regression coefficients, which 

indicate the impact of each variable in the data set. 



 68 

Standardized regression coefficients reflect the normalized sensitivity of the 

associated predictand to normalized perturbations in a single predictor while all other 

predictors are held constant; if 
3 0.5   in Equation 18, for example, then this implies 

1y  

will experience 0.5 ys  change for every 
xs  change in 

1x . Moreover, standardized data 

have no units and permit the mixing of predictor variables of different types (e.g., 

temperatures and wind speeds) in the same linear model. Neter et al. (1996) advise 

caution when interpreting beta regression coefficients, because correlations between 

predictors can mask their “comparative importance.” However, Kruschke (2014) notes 

the importance of standardization in MCMC sampling as illustrated in Figure 20: 

In principle, we could run the [model] on the raw x, y data. In practice, 

however, the attempt often fails. There’s nothing wrong with the 

mathematics or logic, the problem is that believable values of the slope 

and intercept parameters tend to be tightly correlated, and this narrow 

diagonal zone of believability is difficult for sampling algorithms to 

explore…MCMC sampling can be made much more efficient if the data 

are standardized. Standardizing each variable is straight forward. 

(Kruschke 2014) 
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Figure 20.  Comparison of standardized (left; a) and raw (right; b) regression 

parameter estimation procedures. Source: Kruschke (2014). The 

intercept and slope parameters of a linear regression model with a 

single predictor. MCMC samples from each approach are indicated 

with black circles. The “intercept” corresponds to “height” data 

when the “weight” variable is zero with pedagogical “toy” data. 

To this end, the present work has adopted standardized regression coefficients for 

three primary reasons: 

1. The MCMC-convergence of some Bayesian JPMs was found to rely 

strongly on z-score standardization; Figure 20b depicts the issues for 

MCMC methods: “sampling from such a tightly correlated distribution 

is typically very difficult to do directly. It is difficult to discover a 

point in the narrow zone in the first place. Then, having discovered a 

viable point, the chain does not move efficiently” (Kruschke 2014). 

2. The relative strength in predictive influence can generally be inferred 

by the magnitude of the associated regression parameter (e.g., 3 6   

in Equation 18 would suggest that 1x  is a better predictor for 1y  than 

2x ); conversely, small beta values indicate relatively poor predictive 

influence—a null result that can be equally useful in prioritizing or 

eliminating superfluous features in the training data. 

3. Standardized data permits mixed predictors for the same predictand; 

for example, temperature, wind speed, and pressure could be used in a 
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multiple linear regression model to predict any other sensible weather 

variable—regardless of units. 

2. Log Transformations 

Hodyss et al. (2016) considered an additional step to their direct approach to 

Bayesian predictive modeling; they applied a log transformation to the raw data to make 

it “more Gaussian before analytic evaluation through Bayes’ rule.” Like z-score 

standardization, this transformation is common in statistical analysis (e.g., Gelman et al. 

2013 and Kruschke 2014). The goal of logarithmic transformations is to shape the data to 

fit the parametric assumptions of the statistical model. In parameter estimation schemes 

like MLE and Bayesian data analysis, this is employed to improve the fit of the likelihood 

function to training data—especially when the natural variability of the data is expressed 

with positive skew. Figure 21 illustrates the impact of various log transformations on so-

called “toy” (i.e., pedagogical) data. The IID samples in random variable X  (top panel; 

blue) have a positive (right) skew and a non-Gaussian presentation; however, a log 

transformation of X  produces a more symmetric distribution (top panel; green) with no 

skew. The IID samples in random variable  Y  (bottom panel; blue) are normally 

distributed with no perceptible skew and a Gaussian presentation; however, a log 

transformation applied to this data produces a distribution (bottom panel; green) with a 

comparatively smaller negative (left) skew and a quasi-Gaussian presentation.  
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Figure 21.  Visualization of log transformations for pedagogical “toy” data with 

positive (blue; panel a) and zero (blue; panel b) skew. In both cases, 

the resulting distributions (green; both panels) have negligible skew 

and Gaussian presentations. 

In this way, log transformations can give raw data with undesirable positive skew 

and non-Gaussian presentations a more suitable Gaussian appearance in the transformed 

coordinate space of the statistical model. Similarly, log transformations applied to raw 

data that is already Gaussian in appearance have little effect; while the spread of the 

resulting distribution has changed, the skew of the transformed data is comparatively 

small and does not notably degrade its Gaussian appearance. In both cases, changes to the 

central tendency and spread of the transformed data will be shifted and scaled by the z-

score standardization techniques in the previous section so that the final data are 

relatively consistent with a standard normal distribution—that is, (0,1)N . In this way, the 

present work uses a combination of contemporary data transformation techniques to 
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ensure raw training data provides a good fit to MVN and MVT likelihood functions 

described in Chapter II and the following section. 

C. MODEL STRUCTURE 

1. Likelihood Functions 

The NPS BEMOS model uses MVN and MVT likelihood functions. The 

analytical details of the latter were introduced in Chapter II with Equation 21, Equation 

22, and Equation 23. The log-likelihood of the former was introduced in Equation 17; 

however, an important computational modification has been introduced into the present 

work. The so-called “trace trick” in Gu (2008) is frequently invoked in linear algebra to 

simplify the triple matrix product in Equation 17, which is a multivariate form of the 

Mahalanobis distance from Equation 13, to generate an updated expression for the log-

likelihood. The simplified MVN log-likelihood may therefore be written as 
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where l  is the log-likelihood of data with N  forecast instances,  T

iy  is a 1xM  vector of 

observations, T

ix is an 1xK  vector of independent predictors,   is a KxM  parameter 

matrix of regression coefficients (including the intercepts),   is an MxM  covariance 

matrix that replaces the univariate variance 2 , and tr  describes the matrix trace of the 

quantity in brackets. 

It should be noted that 1  has been conveniently removed from the Mahalanobis 

distance term and, perhaps most importantly, brought outside of the summation of 

sequences where it can be computed a single time. Moreover, the quantity inside of the 

summation is recognizable as a Euclidean outer product for each forecast instance of the 

training data—that is, ( ) ( )T T T T

i i i iy x B y x B   . The summation is therefore expanded as 
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where the capital letters now indicate full matrix represents of each variable over the N  

forecast instances of the training period; Y  is a NxM  matrix  of observations, X  is a 

NxK  matrix of predictors, and B  is a KxM  matrix of regression parameters. Finally, the 

matrix trace of the quantity inside of the brackets in Equation 31 can now be solved as a 

linear system (i.e., 1x A b Ax b   ) according to 

 1 1
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where 1  and [ ] [ ]TY XB Y XB   assume the role of A  and b , respectively, in the linear 

system Ax b . When simplified to Equation 33, the MVN log-likelihood expression in 

Equation 31 is considerably more efficient than the MVT form in Equation 23; it also 

notably improves the computational speed of MCMC sampling. This performance impact 

should be considered when evaluating the relative merits of these likelihood functions—

especially when priors are added to the JPM. 

2. Covariance Parameter Decomposition 

The MVN and MVT likelihood functions in the previous section share an 

identical covariance structure for the predictands that will be described in the forecast 

application of Chapter IV. This is self-evident from the original description of the MVN 

log-likelihood in Equation 17, with univariate variance 2  replaced by a full covariance 

matrix as 
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  (34) 

where i  describes the standard deviation of the corresponding predictand iy  and ij  

identifies the Pearson correlation coefficient (PCC) between predictands iy  and jy . 

Equation 34 is appropriate for a model with three predictands—that is, 3M  . Equation 

34 is similarly applicable to the MVT distribution because of the analytical relationships 

described by Equations 21 and 22; that is, samples from the MVT were generated by 
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combining samples from the MVN with covariance   and samples taken from the 

univariate chi-squared distribution. In this way, Equation 21 explicitly invokes the same 

covariance matrix for a random variable that is distributed according to a multivariate 

extension of the classic t-distribution. 

 Nevertheless, the information contained within the covariance matrix has 

important constraints. To have physical significance, the standard deviations in Equation 

34 must have nonnegative values. Moreover, the matrix inversion required by Equation 

23 and Equation 31 must be permissible for all parameter samples generated by the 

random-walk Metropolis algorithm adapted by this dissertation. This is more precisely 

expressed by the requirement that covariance matrix   be positive semidefinite (or 

nonnegative definite) (Liu and Daniels 2006). More specifically, a positive semidefinite 

covariance matrix will satisfy  

 0,Tx x    (35) 

where x  describes an arbitrary real-valued column vector. For the Gaussian proposal 

distribution considered by the MCMC methods in Chapter II, the Metropolis algorithm 

will generate real-valued proposals according to the location and scale hyperparameters 

of that distribution. However, these proposals are not guaranteed to satisfy Equation 35. 

As a result, we seek a collection of raw model parameters that are compatible with these 

constraints. 

Cholesky (LDL) decomposition provides a solution. Krishnamoorthy and Menon 

(2013) note that the LDL decomposition of an arbitrary real-valued positive-definite 

matrix M  may be written as 

 ,TM LDL   (36) 

where L  is a lower triangular matrix and D  is a diagonal matrix with positive elements. 

This decomposition becomes convenient when generating MCMC samples for 

covariance matrix parameters, because the lower triangular matrix L  is only constrained 

to assume real values. A Gaussian proposal distribution in the Metropolis algorithm will 

produce both positive and negative samples for model parameters according to the details 



 75 

of the memoryless random walk structure of the evolving Markov chain. However, these 

samples can be repurposed according to Equation 36 to populate the elements of L  and 

D  directly with 
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where 
i  describes the associated raw model parameters. In simple terms, the MCMC 

sampler populates L  and D  directly; it does not generate proposals for the parameters in 

Equation 34. This matrix triple product is calculated for each step in the Markov chain so 

that   can be included in the cost functions of Equation 23 and Equation 31 as 
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After some linear algebra, these raw samples can be transformed into the common, 

intuitive elements of the covariance matrix—this includes the off-diagonal PCC terms.  

3. Prior Distributions 

The Bayesian prior distribution in Equation 14 arises from the decomposition of 

an arbitrary joint probability distribution, ( , )p y , according to the chain rule of 

probability. In particular, we observe that the unnormalized Bayesian Posterior becomes 

 ( | ) ( | ) ( ),p y p y p     (39) 

where ( | )p y   is the conditional probability of observed data given the model parameters 

(i.e., the likelihood function), ( | )p y  is the conditional probability of model parameters 

given the observed data (i.e., the posterior), and ( )p   is the marginal probability of the 

model parameters (i.e., the prior). We recognize the latter as the full vector representation 

of the Bayesian prior information, which is more appropriately written as joint 

probability distribution for all model parameters according to 
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0 1 1( ) ( , , , ),Pp p       (40) 

where all quantities are as before for an NPS BEMOS model with P  raw model 

parameters. Glickman and van Dyk (2007) note that it is common to assume that 

Equation 40 can be decomposed into a product of sequences by assuming that each model 

parameter has mutually independent prior information so that  
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Figure 22.  Gaussian prior distributions for random variable x  according to 

various values of hyperparameters   and 2 . Source: Wikipedia 

2017b. The ordinate describes the probability density assigned to the 

associated abscissa of parameter x . 

In this way, each model parameter can have a distinct distribution assigned to it 

that describes the a priori belief in reasonable values for that parameter. This PDF is a 
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function of the model parameter, but it also depends on the hyperparameters of the prior 

distribution. For a Gaussian prior (e.g., Figure 22), the appropriate distribution is 

 

2

2

( )

2 2

2

1
( ) ( | , )

2
,p f e

 

   





    (42) 

where   is the random variable associated with an arbitrary model parameter;   and 2  

are known as the hyperparameters of the prior and they control the location and scale of 

the modeler’s a priori belief in this parameter. In simple terms, this PDF is a function of 

the model parameter because it is plotted over the random variable  . 

The hierarchical framework for beta regression shrinkage described by Kruschke 

(2014) treats these hyperparameters as model parameters themselves; they behave as 

ordinary parameters that must be inferred by the data. Moreover, some of the parameters 

at the primary model level (i.e., parameters on the bottom tier of Figure 15), which are 

designated as Level 1 parameters by the present work, are assigned identical 

hyperparameters consistent with a priori knowledge about the structural relationships 

between these parameters; in particular, we generally expect to find the beta regression 

coefficients in Equation 20 clustered around small values of  , which is consistent with 

the belief that the predictand(s) will have modest sensitivity with most model predictors 

(Kruschke 2014). However, this assumption and prior structure permits a few regression 

coefficients to have values displaced further away from the concentration of the 

aforementioned parameters, consistent with the distribution of probabilistic mass in 

Figure 22; that is, we would like to assume the betas are themselves normally distributed.  

By giving the model freedom to infer the hyperparameters of the Gaussian prior, 

we allow the data to influence the analytical details of this hierarchical relationship. The 

present work has adopted the beta regression shrinkage framework of Kruschke (2014) 

and, in particular, assigned Gaussian prior distributions to all model parameters. For the 

forecast application described in Chapter IV, the NPS BEMOS model has 3M   and 

1 3K    so that the regression coefficient and covariance matrices expand as before with 



 78 

 

0 1 2

3 4 5

6 7 8

9 10 11

B

  

  

  

  

 
 
 
 
 
 

  (43) 
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  (44) 

To this end, the regression coefficients in Equation 43 are structured for the present work 

with common Gaussian hyperparameters—that is a single location and scale applicable to 

all beta coefficients (e.g., Figure 15b). This reflects an assumption about the distribution 

of these parameters in the model—one that seeks beta shrinkage to minimize “false 

alarms” (vis-à-vis Kruschke 2014) in the posterior inferences they inform. 

Unfortunately, the covariance elements in Equation 44 are not strictly appropriate 

for Gaussian prior distributions; the latter are symmetric and permit both positive and 

negative values. In this way, we intuitively expect the diagonal elements of Equation 

44—the variance parameters—to be restricted to nonnegative values and present a 

positive (right) skew. This reflects an assumption that variance elements should be 

positive and, importantly, the probability of finding larger 
2

i  values should decrease 

monotonically. The Gamma distributions in Figure 15 are consistent with this description 

and are frequently selected for Bayesian priors on variance parameters (e.g., Kruschke 

2014). However, Gelman et al. (2013) suggests a log transformation of these parameters 

to give them a more Gaussian appearance. Figure 21 described such benefits with a log 

transformation applied to raw data with positive (right) skew—as one might expect for 

the variance elements of Equation 44. To this end, the present work has adopted the log-

sigma (i.e., the logarithm of standard deviation parameters) convention of Gelman et al. 

(2013) so that Gaussian priors on the raw model parameters are consistent with the 

Gamma priors suggested by Kruschke (2014) in Figure 15. These considerations 

provided an additional motivation for the LDL decomposition described in the previous 

section, and they are reflected by the exponential transformations of the diagonal 
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elements of matrix D  in Equation 37 and Equation 38. More specifically, we allow a 

Gaussian proposal distribution to generate real-valued samples for these raw variance 

parameters; the exponential transformation ensures they become positive in the 

subsequent LDL matrix triple product. Moreover, Gaussian priors on these raw variance 

parameters are entirely consistent with both our a priori assumptions and the practical 

constraints of the Metropolis sampler.  

The parameters of the covariance matrix can also be modeled with hierarchical 

structure. As indicated for the beta regression coefficients, which were assumed to be 

identically distributed (i.e., Gaussian) with common location and scale hyperparameters, 

the diagonal and off-diagonal elements of the LDL framework can be given a similar 

treatment. In particular, the covariance elements of   associated with lower diagonal 

matrix L  in Equation 37 are assumed to be identically distributed (i.e., Gaussian) with 

common location and scale hyperparameters. Moreover, the variance elements of   

associated with diagonal matrix D  in Equation 37 are assumed to be identically 

distributed (i.e., Gaussian) with common location and scale hyperparameters. In this way, 

“NPS” model instances are hierarchical Bayesian variants of the multivariate multiple 

linear regression model specified by Equation 43 and Equation 44 with 18 primary 

parameters and six hyperparameters. The latter describe non-fixed hyperparameters that 

must also be inferred by the NPS BEMOS model. The “MLE” model instances described 

in a previous section have the same multivariate multiple linear regression framework, 

and indeed deliver Bayesian uncertainty estimates with the aid of MCMC sampling, but 

they lack prior information and, as a consequence, contain only 18 parameters—no 

hyperparameters.  

Finally, the present work would like to engage the benefits of the t-distribution 

priors in the original regression shrinkage procedure described by Kruschke (2014) (e.g., 

Figure 15). While the advantages of the t-distribution are well-known vis-à-vis robust 

regression, they can be problematic in practice—especially in the context of MCMC 

sampling. The full t location-scale distribution implied by Equation 21 has three 

hyperparameters: the location, scale, and shape (i.e., degrees of freedom). Unfortunately, 

permitting all three hypermeters as random variables in the model can cause 
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computational difficulties that are difficult to resolve. Vehtari (2017) suggests a 

compromise procedure that heuristically fixes some hyperparameter values in the prior. 

The modeler can then iterate, according to step three in G13’s Bayesian data analysis 

process (i.e., Chapter II, page 34, of the present work), to tune these fixed parameters or, 

if necessary, keep them fixed with appropriate values. To avoid such complications in the 

NPS BEMOS model, a Gaussian prior was selected to engage the regression coefficient 

shrinkage of K14. Having the same general characteristics of the t-distribution—that is, a 

greater concentration of probabilistic mass near the central tendency with a symmetric 

presentation—the Gaussian can still engage the core distributional assumption of 

identically distributed betas. Moreover, the hierarchical nature of the hyperparameter 

inference is similarly retained; these parameters are included in the Bayesian cost 

function of the NPS BEMOS model. “By letting the regression coefficients be mutually 

informed by other predictors, and not only by the data of the single predictor each 

multiplies,” Kruschke (2014) notes that the “the coefficients are less likely to be 

spuriously distorted by a rogue sample.” 

4. JPM Diagrams 

Kruschke (2014) introduced “hierarchical diagrams” to map the structure 

Bayesian probability models and better visualize the relationships between various model 

elements. Figure 15 is an example of such a diagram, and it describes the primary 

elements of a hierarchical Bayesian linear regression model (i.e., Figure 15b) with a 

normal likelihood function and t-distribution priors on the beta regression coefficients; 

Gaussian priors are placed on most of the remaining parameters and hyperparameters. 

The present work describes these visualization aids as JPM diagrams to avoid confusion 

with hierarchical modeling terminology. In this way, a non-hierarchical model can also 

have a JPM diagram (e.g., Figure 15a) that describes the core elements of Bayesian cost 

functions—that is, the analytical machinery that ultimately generates our posterior 

parameter beliefs. 

The MVN and MVT likelihood functions considered by this dissertation will 

produce four distinct JPM diagrams: two for the “MLE” model instances with 
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noninformative priors and two for the “NPS” instances with hierarchical prior 

information. The former is indicated by Figure 23, which shows the stochastic 

relationship between observable predictand vector y  and MVN (left; panel a) and MVT 

(right; panel b) likelihood functions. Raw model parameters (i.e., the “thetas”) are 

indicated according to their roles in the model (e.g., as regression coefficients or 

covariance parameters). The absence of prior information in these diagrams is consistent 

with ( ) 1p    and, indeed, the basic motivations for the classical MLE approach to 

parameter estimation. As previously noted by Kruschke (2014), classical MLE merely 

reports a single-valued parameter estimate for each model—the one that makes the fixed 

data sample most probable. The Bayesian version of MLE has the same cost function, but 

it seeks a full posterior PDF. By comparison, the OLS/MLE modeler must append 

uncertainty information to their point estimates in a separate procedure. The NPS 

BEMOS model also fixes the degrees-of-freedom parameter   in Figure 23 based on 

Vehtari (2017). This was done to facilitate MCMC convergence; the presence of all three 

MVT parameters in the NPS BEMOS model caused erratic Markov chain behavior. The 

present work chose 5   to maximize the probabilistic mass in the MVT tails while also 

ensuring the variance, skewness, and kurtosis were all defined (i.e., 4  ).  
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Figure 23.  JPM diagrams for noninformative priors paired with MVN (left; 

panel a) and MVT (right; panel b) likelihood functions. Adapted 

from Kruschke (2014). The unnormalized Bayesian posteriors 

associated with these models comprise only the indicated likelihood 

functions.  

 

Figure 24.  JPM diagram for a hierarchical version of the NPS BEMOS model 

with MVN likelihood function. Adapted from Kruschke (2014). The 

likelihood function is in Level 1, the hierarchical hyperparameters 

are in Level 2, and the hyperprior distributions are in Level 3. 
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For “NPS” model instances with MVN likelihood functions and hierarchical 

Bayesian priors, the JPM diagrams are consistent with Figure 24. The stochastic 

relationship between observable predictand vector y  and the MVN likelihood function is 

indicated in Level 1. The MVN location and scale parameters (i.e.,   and  ) each 

contain model parameters with prior distributions placed over them. The beta matrix 

containing all regression parameters has been decomposed into intercept parameters (i.e., 

0B ) and regression coefficients (i.e., B ) to allow mutual, non-fixed Gaussian 

hyperparameters 
18  and 

19  to be placed on regression parameters 
3 4 11, , ,   . 

Similarly, the raw parameters that feed covariance matrix   via Equation 38 are 

decomposed into lower triangular and diagonal groups according to their analytical roles 

in  . Each group has Gaussian priors placed so that hyperparameters 
22  and 

23  are 

coupled with 15 16 17, ,    in lower triangular matrix L  and hyperparameters 
20  and 

21  

are placed on raw parameters in diagonal matrix D . As a result, the beta regression 

coefficients 
3 4 11, , ,    are assumed to be normally distributed with mean 

18  and 

standard deviation  19exp  ; raw covariance parameters are assumed to be normally 

distributed with mean 22  and standard deviation  23exp  ; raw variance parameters are 

assumed to be normally distributed with mean 20  and standard deviation  21exp  . All 

hierarchical hyperparameters (i.e., 18 19 23, , ,   ) are located in Level 2 of the model. 

Hyperparameters 19 21 23, ,    have been exponentiated in the aforementioned descriptions 

to ensure their values are valid (i.e., positive) as scale parameters; their raw values 

generated by a Gaussian proposal distribution in the Metropolis algorithm can be both 

positive and negative. This approach is consistent with the log-sigma convention 

described by Gelman et al. (2013) and is analogous to placing Gamma priors on variance 

parameters vis-à-vis Kruschke (2014) and Figure 15. Finally, the beta intercepts (i.e., 

0 1 2, ,   ) and all hierarchical hyperparameters are assigned to a standard normal prior 

distribution in Level 3; the latter (i.e., priors for hyperparameters) are also known as 

hyperpriors. A similar structure is assigned to “NPS” model instances with MVT 
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likelihood functions—only the likelihood function changes. Computational difficulties 

associated with MCMC convergence similarly compelled the present work to fix the 

degrees-of-freedom parameter as before. To this end, 5   was chosen to maximize the 

probabilistic mass found in the MVT tails to ensure the variance, skewness, and kurtosis 

of the likelihood function were all suitably defined (i.e., 4  ). 

Both likelihood functions are non-conjugate with the normal prior distributions 

indicated in Figure 24. Gelman et al. (2013) notes that the MVN likelihood requires a 

normal-inverse-Wishart distribution for conjugacy, which places additional constraints on 

the selection of common-sense prior beliefs. The lack of an exponential term in the MVT 

PDF means that the associated log-likelihood is similarly intractable when paired with 

Gaussian prior information. Moreover, the hierarchical structure of both models 

complicates the aforementioned conjugacy considerations with no clear indications for 

analytical solutions in the statistical literature (e.g., Gilks et al. 1996, Gelman et al. 2013, 

or Kruschke 2014). While conjugacy is essential for model interpretation and inference 

completion by purely analytical means, the MCMC methods described in Chapter II 

provide a compelling motivation for the sophisticated JPM in Figure 24—especially 

when compared with the univariate framework considered by Gneiting et al. (2005) and 

Richter (2012). 

5. Posterior Predictive Distributions 

Chapter II introduced the concept of Bayesian PPDs. While the methods 

described heretofore focus on the specification of the probability model—including the 

parametric form of the likelihood function and the mathematical character of a priori 

assumptions—they have not detailed a procedure to convert posterior parameter beliefs 

about model parameters into prognostic statements. Using a modified form of the 

notation in Gelman et al. (2013), the latter is engaged by Equation 29, which describes 

the probability of unobserved observable data in random variable z  conditioned on the 

observed observable data in random variable y  as 

 ( | ) ( | ) ( | ),p z y p z p y


    (45) 
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where ( | )p z   is simply the original likelihood function of the model and ( | )p y  

represents the posterior parameter beliefs obtained from our previous Bayesian data 

analysis. By design, the former is a parametric distribution; we can draw an arbitrary 

number of samples from it once we know the values of its distributional parameters. In 

this way, the discrete sum in Equation 45 is important to our probabilistic forecasts; it 

marginalizes out dependence on the posterior inferences. In other words, the Bayesian 

PPD is an “average of conditional predictions over the posterior distribution of  “ 

(Gelman et al. 2013). 

Recall again the behavior of a hypothetical Markov chain that evolves according 

to the rules in Equation 27. At each step in the chain, the proposal distribution draws a 

multiparameter sample based on its current location in the phase space of the model. In 

this way, each multiparameter sample is a vector of estimates—guesses, really, as the 

proposal distribution is doing this randomly—for the true values of the model parameters. 

Equation 20 describes the multiple linear regression procedure that combines betas with 

ensemble predictors to produce updated estimates of the location, scale, etc., of ( | )p z  . 

Thus, each step in the Markov chain represents a new set of mathematical instructions 

that map ensemble predictors to the updated location, scale, etc., of ( | )p z  . Equation 45 

simply weights these mathematical instructions according to the probabilistic mass in 

( | )p y . Each sample drawn from ( | )p z   is therefore paired in a 1:1 ratio with a sample 

from ( | )p y ; the distribution of samples generated in this manner merely communicates 

a weighted average of the former conditioned on the latter. 

The Bayesian PPDs constructed for the present work require random sampling 

from both MVN and MVT distributions—that is, the parametric distributions selected for 

( | )p z  . The procedure for sampling from the MVN distribution is straightforward; most 

programming languages (e.g., MATLAB, Python, etc.) have numerical routines that will 

complete the task directly. However, Equation 21 shows the comparatively sophisticated 

structure of the MVT distribution, which is actually a combination of the former with the 

univariate chi-squared distribution. As a result, MVT samples are constructed from 

sampling both of these PDFs—that is, the MVN and 2 ( )   distributions—separately and 
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combining the results according to Equation 22. In the present work, this is pursued 

without recursive looping by pre-allocating a MxN  array of (0, )MVN I  samples and a 

1Nx  column vector of 2 ( )  samples with Python NumPy functions; N  here represents 

the desired number of samples. Contemporary ensemble predictors are then standardized 

according to Equation 30 with 
s  and 

xs  measured from the training data. The 

standardized predictors are then combined with longitudinal slices of the posterior 

parameter samples according to 

 ,XB    (46) 

where X  is 1xKxN  matrix of predictors, B  is a KxMxN  matrix of posterior parameter 

samples, and   is 1xMxN  matrix of location samples. The matrix multiplication is 

executed on each vertical slice of the aforementioned elements with a Python NumPy 

function called “matmul.” Parameter samples appropriate for the elements of the 

covariance matrix are first reshaped according to Equation 38 and then combined with 

the (0, )MVN I  samples shifted according to Equation 22 as 
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The data transformations described at the beginning of this chapter must be taken 

into consideration before a final, complete PPD is produced. In this way, vector samples 

for predictands in Equation 47 are in the standardized, log-transformed coordinate space 

of the NPS BEMOS model. The present method applies a log transformation before 

standardizing each dimension of the training data separately. Vector samples obtained 

from Equation 45 and Equation 47 must have a reverse transformations applied to make 

predictions or other inferences. Figure 25 demonstrates the impact of these 

transformations on a joint PPD for minimum diurnal surface temperature and maximum 

diurnal surface wind speed. While both variables have been fit with symmetric MVN 

likelihood functions according to the JPM in Figure 24, the marginal PPD at top has an 

asymmetric presentation with positive skew; the associated joint distribution in the center 

of Figure 25 has a corresponding PCC that is non-zero. This asymmetric PPD is a 
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consequence of the aforementioned data transformations and provides additional 

predictive fidelity when fitting parametric distributions to observable data with the 

NR/EMOS technique. 

In this way, predictions formed from Bayesian data analysis are produced 

according to the modeling process indicated in Figure 26. Training data must first be 

selected from a suitable period in which predictions for sensible weather variables 

extracted from a parent model may be compared with corresponding observations (i.e., 

observed observable data). Data transformations suitable to the sensible weather variables 

may then be applied. The underlying shape and character of the data, as well as the 

details of the forecast application, can then inform the modeler’s selection of the 

likelihood function and prior distributions. The former describes the stochastic generative 

process best suited to the anticipated shape and character of unobserved observable data; 

the latter represents statistical belief from any source of information—empirical or 

otherwise—that might constrain or weight likely values of model parameters in Level 1 

of Figure 24. These elements form the unnormalized Bayesian posterior (i.e., the JPM). 
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Figure 25.  Joint posterior predictive distribution (PPD) with 10000 discrete 

samples for maximum diurnal surface wind speed (abscissa) and 

minimum diurnal surface temperature (ordinate). The contours 

superimposed on the primary plot represent isopleths of probability 

density (lighter is higher); the underlying hex-plot indicates the 

relative density of samples in local area (darker is higher). Marginal 

PPDs for each forecast variable are located on the appropriate border 

with KDE superimposed on histograms of the underlying data. The 

true values observed for this day are indicated with dashed black 

lines. This PPD corresponds to a forecast valid May 31, 2017 for 

Monterey, CA. 

Once the JPM has been selected, the total number of raw model parameters can be 

determined from all model components—that is, from the primary linear regression and 

covariance framework imbedded within the likelihood function and, if any, the number of 
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hierarchical hypermeters located in prior distributions on additional model levels (e.g., 

Level 2 in Figure 24). The Metropolis sampler must then be tuned to specify the total 

number of Markov chain transitions (i.e., MCMC chain length), the burn-in threshold 

(i.e., the transition number after which the chain is assumed to have reached equilibrium), 

and the number of posterior samples retained after burn-in (i.e., thinning). Markov chain 

length and burn-in are frequently determined in a heuristic manner to ensure model 

convergence—topics described in more detail in the next section. Finally, the model is 

initialized and posterior samples for each model parameter are collected and combined 

with random samples from the likelihood function according to Equation 45. Reverse 

transformations are then applied to form the final PPDs for the desired predictands.   

 

Figure 26.  A pedagogical representation of the NPS BEMOS modeling process. 

The order of major actions is represented with red arrows. Minor 

actions are indicated outside of primary actions with black arrows. 
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D. METROPOLIS SAMPLER 

With the theoretical foundation of the Metropolis algorithm established in Chapter 

II, this section describes the details of the method adapted for the NPS BEMOS model. 

This includes the adaptive components of the Metropolis sampler, multi-dimensional 

Markov chains initialization, details associated with the multiparameter updating scheme, 

the computational structure of a Bayesian log-odds ratio as a MCMC target density, and 

Markov chain autocorrelation and thinning vis-à-vis MCMC burn-in. 

1. Adaptive Sampling 

The Metropolis algorithm requires the selection of a symmetric proposal 

distribution. This PDF determines the stochastic manner by which proposals are made 

and, if accepted, appended to the evolving Markov chain. In this way, Equation 27 

determines only if proposals are accepted or rejected; it has no influence on the locations 

proposed by the sampler. The latter is engaged by the proposal distribution. However, 

standard techniques render it oblivious to the frequency with which proposals are 

accepted; it merely uses the current location of the Markov chain, and the width of its 

distribution (i.e., jumping kernel variance), to draw samples from itself. Wiecki (2015) 

notes that this form of sampling requires iterative tuning to ensure the phase space of the 

model is adequately and efficiently explored. Inappropriate proposal widths can 

unnecessarily delay MCMC convergence or, in the case of the unstandardized parameters 

described earlier in this Chapter (i.e., Figure 20b), produce Markov chains that are poorly 

suited to the probability structure of the joint posteriors. 

Wiecki (2015) demonstrated the impact of proposal width on Metropolis sampling 

in Figure 27. A Gaussian jumping kernel has been selected with two step sizes: “large” 

and “small” proposal widths. In the former, a large number of samples are clustered in a 

high-probability region near the primary mode of the distribution (blue; left). However, 

the impact of small kernel variance is evident in the smaller peak (blue; right); the chain 

is effectively stuck in a narrow region of the model’s phase space, because the sampler is 

unable to generate proposals that significantly differ from the current location. In this 

way, the proposal distribution is unable to efficiently sample the model space when the 



 91 

proposal width is too small; the result is an implausible multimodal distribution (blue). A 

larger step size (green) can generate proposals that are more displaced from the current 

location of the Markov chain. However, some of the fine structure of the analytical 

posterior distribution (i.e., Figure 19) is lost. In this way, the proposal distribution must 

be iteratively tuned by the modeler to ensure posterior samples adequately represent the 

desired inferences. The impact of proposal width on Markov chain sample 

autocorrelation is indicated in Figure 28. The autocorrelation function measures the 

“clumpiness” of the posterior samples retained from MCMC sampling and can be an 

important convergence diagnostic. The determination of the latter frequently requires low 

sample autocorrelation consistent with the “large” and “medium” step sizes in Figure 28. 
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Figure 27.  Posterior parameter samples obtained from a Bayesian parameter 

estimation scheme completed with the Metropolis algorithm. Source: 

Wiecki (2015).  The variance of the Gaussian proposal distribution is 

indicated with binary step sizes. Both representations would be 

considered undesirable in MCMC sampling relative to the true 

solution Figure 19. 
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Figure 28.  Visualization of MCMC sample autocorrelation obtained from a 

pedagogical Bayesian parameter estimation scheme. Source: Wiecki 

(2015). Each curve represents a distinct width of a proposal 

distribution used to generate samples from the Gaussian target 

distribution in Figure 19. Low(er) autocorrelation is desirable in 

MCMC sampling. 

While manual tuning might be practical for simple, pedagogical Bayesian 

inference schemes, complicated JPMs (e.g., hierarchical) require more efficient Markov 

chain sampling. To this end, Roberts et al. (1997) proved that an “asymptotically optimal 

acceptance rate is 0.234 under quite general conditions” in their paper “Weak 

Convergence and Optimal Scaling of Random Walk Metropolis algorithms.” This classic 

and important result suggests that a modeler should “tune the proposal variance so that 

the average acceptance rate is roughly 1
4

“ (Roberts et al. 1997). Their “useful heuristic” 

is critical for adaptive sampling techniques, which seek programmatic tuning of proposal 
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distribution variance. To this end, the present work has developed a modified form of the 

Metropolis algorithm—one that tunes the proposal width programmatically. 

 

Figure 29.  Semi-log visualization of NPS BEMOS proposal width variability 

(ordinate) as a function of proposal number (abscissa). The red 

vertical line indicates model “burn-in,” which describes a pre-

defined boundary between valid and invalid posterior parameter 

samples. The horizontal dashed lines indicate average proposal 

distribution variances found for each training period.  

For the NPS BEMOS model, the moving average of the proposal acceptance rate 

is tracked at each step in the evolving sequence of Markov chain transitions and, perhaps 

more importantly, compared with the optimal value provided by Roberts et al. (1997). 

The proposal of the next step in the Markov chain is computed iteratively according to 

    1ln ln ( ),i i if a      (48) 
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where 
i  is the standard deviation of the proposal distribution at the current step, 

1i 
 is 

the standard deviation of the proposal distribution to be used in the next step, 
ia  is the 

current acceptance rate, and ( )if a  is a custom model function that depends on the 

current acceptance rate and the predetermined length of the full Markov chain. For the 

present work, ( )if a  was heuristically specified as 

 
ln( ) ln( ) ln( )

( )
(0.25 1000)( ) 1000

T
i

j i a
f a

iN
N

 


 
  (49) 

where j  represents the number of accepted proposals, i  represents the current proposal 

number, N  is the predetermined full length of the Markov chain, and 0.234Ta   was 

developed from theory. The numerator in Equation 49 is formed by the natural logarithm 

of the ratio of the current acceptance rate, 
ia  , and the desired theoretical rate 

Ta . The 

denominator represents a scaling factor that permits larger adaptive corrections with 

earlier Markov transitions. This is designed to ensure adaptive tuning is suitably damped.  

Figure 29 and Figure 30 demonstrate the impact of this adaptive approach to 

proposal width tuning on the log-variance of a customized MVN proposal distribution. 

The latter is analytically described as 

 
2

1 ( , ( ) ),i i kMVN i I     (50) 

where i  is the multiparameter location of the Markov chain at sequence number i , 1i   

is the multiparameter location of the Markov chain at next step in the chain (i.e., the 

proposed multiparameter location), 
2 ( )k i  is the variance of the jumping kernel at 

sequence number i , and I  is an identity matrix that matches the dimensionality of i  

and 1i  . Over three distinct training periods, which are represented by the blue, gold, 

and grey curves, the JPM structure in Figure 23a was paired with the NPS BEMOS 

sampler to complete the inference for 18 model parameters. A time series of the proposal 

widths developed by Equation 48 and Equation 49 is indicated with a semi-log plot of 
2

k  

and a  as a function of the proposal number in Figure 29. The longest training period (i.e., 
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“Full”) required a distinct proposal width from the remaining two training periods; 

however, all were found to converge to the optimal acceptance rate in Figure 30. 

 

Figure 30.  Semi-log visualization of NPS BEMOS proposal acceptance rate 

(ordinate) as a function of proposal number (abscissa). The red 

vertical line indicates model “burn-in,” which describes a pre-

defined boundary between valid and invalid posterior parameter 

samples. The horizontal dashed lines indicate the average acceptance 

rate found for each training period; the indicated values are 

consistent with the optimal theoretical value. 

These figures are also notable for demonstrating the damped oscillator behavior 

of the heuristic approach developed by the present work. This follows from the form of 

Equation 48: the magnitude of the correction applied at each step is proportional to 

deviation between the current and optimal acceptance rates and the proposal number—

similar to the restoring spring-force applied in a damped system. Unlike their analogues 
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from classical Physics, however, no analytical solutions are known to exist for an a 

priori, optimal solution to this problem for arbitrary Bayesian probability models; the 

results depend on the details of the JPM and the training data. While generalized methods 

for adaptive sampling are common in data science (e.g., Gelman et al. 2013), the details 

of the approached developed by the present work were pursued somewhat independently 

and specialized to the scientific application presented in Chapter IV. Moreover, they 

provide a customized, heuristic solution to the problem of optimal proposal width 

articulated by Wiecki (2015). 

2. Convergence and Thinning 

Chapter II noted that MCMC convergence was guaranteed if the evolving chain 

was found to be irreducible, aperiodic, and non-transient (Gilks et al. 1996 and Gelman et 

al. 2013). In this way, the utility of the Metropolis algorithm is revealed when our 

posterior parameter inferences are structured so that the equilibrium distribution of the 

Markov chain matches the unnormalized Bayesian posterior distribution—that is, our 

“target” distribution—according to Equation 39. Conveniently, the adaptive sampling 

procedure described in the previous section can help diagnose model convergence. In 

conjunction with the aforementioned autocorrelation metric, convergence can be 

informally verified when a time series of these quantities reaches a plausible equilibrium 

(e.g., the quasi-steady behavior of the time series data in Figure 29 and Figure 30). While 

model convergence isn’t guaranteed from the former, the quasi-steady behavior of 
2

k  

and a  is consistent with model convergence. To be sure, one must also examine the 

behavior of the Markov chain as it evolves in the phase space of the model. Data 

scientists commonly use these so-called trace diagrams (e.g., Stansbury 2012a and 

Wiecki 2015) to examine the parameter proposals generated by a Metropolis sampler as a 

function of the Markov chain sequence (i.e., proposal) number. 

Figure 31 is an example of such a trace diagram; it extends the inference 

considered by Figure 29 and 30 to show the actual location of the associated 

multiparameter Markov chain (i.e., i ) along a single dimension (e.g., 5 ) of the full 18-

parameter vector for each transition (i.e., proposal) in the chain. Moreover, three training 
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periods are indicated (i.e., the blue, gold, and grey curves); each corresponds to a one-

dimensional slice of an 18-dimensional Markov chain associated with the indicated 

period of training data (i.e., “Full,” “Similar,” and “Recent”). All three figures (i.e., 

Figure 29, 30, and 31) correspond to a multiparameter (i.e., 18-dimensional) Markov 

chain realized with two million state transitions (i.e., proposals). To this end, Figure 32 

further considers a particular “view” of this Markov process that is more relevant to the 

ultimate posterior parameter inferences we seek. If one were to stand at the end (far right) 

of the “Similar” (blue) chain in Figure 31 with a longitudinal perspective, so that the 

vertical variability observed in parameter location is aligned perpendicular to one’s line 

of sight, then Figure 32 provides a visualization of random samples taken from the rear 

half, or “burn-in” region, of this chain. This plot is analogous to Figure 19 and represents 

a “machine-learned” solution to a Bayesian parameter estimation scheme formed by the 

JPM in Figure 23a—that is, posterior belief ( | )p y  in model parameter 
5  conditioned 

on model structure, prior information, and training data. Kruschke (2011) and Gelman et 

al. (2013) discuss data “thinning” so that posterior samples are drawn only from the burn-

in region. MCMC proposals generated after burn-in are described as “warmed” samples 

by the present work. If the Markov chain has been constructed with sufficient length so 

that equilibrium is achieved prior to burn-in, then the warmed samples may be considered 

IID draws from the target distribution—that is, the unnormalized Bayesian posterior. In 

this way, sample autocorrelation can be reduced with longer Markov chains and thinning 

from the burn-in region. Figure 32 has been constructed in this manner; random samples 

taken from the warmed portion of the chain form an empirical distribution that 

corresponds to the Bayesian posterior. The posterior is visualized with a grey histogram 

and, optionally, KDE (continuous black curve) of the underlying distribution. 

The steady-state behavior of the moving average of each one-dimensional slice of 

the chain in Figure 31 is desirable and highly consistent with model convergence. In this 

way, the present work assesses model convergence heuristically with a combination of 

trace diagrams for each parameter dimension (e.g., Figure 31), autocorrelation metrics 

(e.g., Figure 28), diagnostic metrics associated with the adaptive sampler (e.g., Figure 29 

and Figure 30), and, indeed, plausible posterior parameter distributions (e.g., Figure 32). 
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For comparison, the implausible posterior parameter beliefs in Figure 27 suggest that 

model convergence may not have been obtained. In this scenario, additional convergence 

diagnostics would be required. To ensure convergence, the model may simply require 

more transitions so that the total chain length and burn-in region are suitably extended. 

While more formal methods of assessing model convergence are available (e.g., Gelman 

and Rubin 1992; Brooks and Gelman, 1998), they are beyond the scope of the present 

work. The eager reader is encouraged to consider Gilks et al. (1996), Gelman et al. 

(2013), and Kruschke (2014) for more information. 
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Figure 31.  Semi-log trace diagram of an NPS BEMOS Markov chain. MCMC 

samples generated from an adaptive multiparameter variant of the 

Metropolis algorithm are depicted with filled circular markers. The 

ordinate describes the location of the parameter proposal in the phase 

space of the model as a function of proposal number (abscissa). The 

red vertical line indicates model “burn-in,” which describes a pre-

defined boundary between valid and invalid posterior parameter 

samples. The solid blue, gold, and grey horizontal lines describe the 

moving average of the chain along this parameter dimension.  
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Figure 32.  Distribution of discrete posterior parameter samples obtained from 

“thinning” the “Similar” (blue) Markov chain in Figure 31.  

Posterior samples are indicated with a grey histogram and 

superimposed KDE for the PDF; the cumulative distribution function 

(CDF) is plotted in solid blue over the model parameter. The sample 

median is indicated with a dashed black line; the narrowest interval 

containing (50%) 95% of the probabilistic mass is indicated with a 

dashed (blue) red line.  

3. Posterior Odds and Multiparameter Updates 

Gelman et al. (2013) notes that the Metropolis algorithm actually views the 

Bayesian target distribution according to Equation 27—the posterior odds ratio. The latter 

is a product between the prior odds and the likelihood ratio, and is frequently modified in 

data science with another log transformation to produce 

        1
1 1

( | )
ln ln ( | ) ln ( | ) ln ( ) ln ( ) ,

( | )

i
i i i i

i

p y
p y p y p p

p y


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 
    

 
  (51) 
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where each quantity is as before—now only transformed to benefit from a sum of natural 

logarithms. In this way, the log transformation of the posterior odds provides a complete 

description of the cost function evaluated by the Metropolis algorithm and, indeed, the 

models produced by the present work. Moreover, this modification is valid in the same 

way that log-likelihood optimization is valid; the logarithmic transformation preserves 

the order of the original data while significantly reducing computational issues associated 

with the products and ratios of exceptionally large and small numbers. The present work 

experienced significant instances of computational “blow up” without this log 

transformation and is consistent with the work of other Bayesian/MCMC modelers (e.g., 

Wiecki 2015). It should also be noted that the details of the Bayesian JPM specify the 

right-hand side of Equation 51. More specifically, proposals generated by Equation 50 

are now accepted with probability  min ln( ),0r  so that location 
1t 
 is accepted and 

appended to the sequence if a random number drawn from the open interval  ln (0,1)  is 

less than ln( )r  vis-à-vis Chapter II page 56. The benefits of the aforementioned log 

transformations are consistent with the data transformations introduced previously in this 

chapter. However, they are applied to model elements and, as a result, do not require 

inverse transformations.   

The MVN proposal distribution indicated in Equation 50 is conceptually 

straightforward. However, it also assumes that parameter updates are performed 

simultaneously for each step in the chain. In simple terms, the model must specify how 

the individual model parameters (e.g., 5 ) are updated. Stansbury (2012b) describes two 

common multiparameter updating schemes: block-wise and component-wise updates. 

The former engages a full multivariate proposal distribution consistent with Equation 50 

where each element of   is updated in parallel—that is, with each step in the evolving 

Markov chain. The component-wise updating scheme only updates a subset of  —often 

only one dimension—with each Markov transition. Stansbury (2012b) similarly describes 

the advantages and disadvantages of each scheme: block-wise updates are complex and 

reject many proposals because it can be difficult to satisfy  min ln( ),0r  according to 
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Equation 51 with each dimension of   changing at every step in the Markov chain. 

Component-wise updates address this problem, but develop fewer transitions along each 

dimension of  , since the total number of transitions must now be allocated between the 

parameter dimensions. As a result, component-wise updating can require more total 

transitions to reach equilibrium (i.e., model convergence) when compared with the 

former scheme. 

As indicated by Equation 50, the present work has selected block-wise component 

updates to improve the efficiency of the adaptive sampler (i.e., require fewer total 

proposals to reach convergence). Moreover, the NPS BEMOS model pre-allocates vector 

samples from 
2( , )i kMVN I   to avoid the computational cost of successive Python 

function calls. In this way, an NxL  matrix of samples are drawn from (0, )MVN I  for an 

L-dimensional parameter vector and subsequently normalized along each row so that 

each sample of   created in this manner represents a random jump from the current chain 

location (i.e., i ) along the boundary of an L-dimensional unit hypersphere—that is, a 

unit L-sphere. Finally, the adaptive updates to 
2

k  in Equation 50 are recombined with 

this pre-allocated matrix of unit L-sphere jumps and the current chain location (i.e., i ) 

to produce an unstandardized jump to a new location (i.e., 1i  ) with each transition. 

E. REFERENCE METHOD 

Chapter II developed a portion of the theoretical framework that connects MLE 

and Bayesian parameter estimation schemes. However, the original method of least 

squares, or OLS, introduced by Gauss, Legendre, and Laplace serves as a ubiquitous 

point estimation scheme in science today—one that ultimately led to Fisher’s work with 

MLE (Feigelson 2015). Conveniently, the multivariate multiple linear regression 

approach to statistical post-processing can similarly be pursued with OLS techniques. 

That is, an OLS cost function can provide point estimates of the regression parameters in 

Equation 43. To this end, Neter et al. (1996) offers a complete analytical solution to 

Equation 4 with the Moore–Penrose pseudoinverse as 
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 1( ) ,T TB X X X Y   (52) 

where X  is the NxK  design matrix of predictor variables from the training period, Y  is 

the NxM  predictand matrix of observations from the training period, and B  contains the 

regression parameters from Equation 20 and Equation 43. As previously noted, Bayesian 

models with Gaussian likelihood functions and noninformative priors will produce 

posterior distributions that are similar, but not identical to, the point estimates generated 

by classical OLS methods when errors are assumed to be normally distributed. More 

specifically, Neter et al. (1996) describes this for one predictand as 

 ,y Xb     (53) 

where y  is a 1Nx  column vector, X  is as before, b  is an arbitrary column of betas from 

Equation 43, and   is a 1Nx  column vector of normally-distributed errors. For this 

scenario, OLS is minimizing the SSR consistent with Equation 8—a quantity that is 

similar to right-hand side of Equation 12. The presence of the variance parameter does 

add additional information into the MLE/Bayesian cost function.   

 Neter et al. (1996) offers a classical frequentist approach to variance estimates 

associated with the OLS inferences in Equation 52 and Equation 53. More specifically, 

Neter et al. (1996) expresses the estimated variance of unobserved observable data as 

 2 11 ( ) ,T T

p h hs MSE X X X X      (54) 

where 
2

ps  is the variance of the univariate prediction, hX  is a 1xK  row vector of 

predictors for the current forecast instance (i.e., not from the training period), X  is the 

NxK  design matrix from before. The MSE describes the error mean square, or residual 

mean square, as 
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 where the numerator is the SSR from Equation 8 and N  describes the number forecast 

instances in the training period. To produce reference distributions that provide 
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meaningful comparisons with NPS BEMOS model output, the present work extends the 

variance estimates in Equation 54 to a multivariate framework. More specifically, the 

single-valued parameter estimates are combined with contemporary predictors vis-à-vis 

Equation 4 to produce point estimates for the desired predictands. A multivariate 

Gaussian predictive distributed is therefore centered on these OLS point estimates and 

combined with diagonal variance elements from Equation 54 as  

 ( , ),h pz MVN X B    (56) 

where z  is the multivariate predictand, 
hX  is as before, and B  is determined by 

Equation 52. For 3M   and the application in Chapter IV, p  is therefore properly 

visualized as  
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  (57) 

F. PERFORMANCE METRICS 

Scoring rules appropriate for measures-oriented and distributions-oriented 

forecasts have been considered for this dissertation. While there are numerous approaches 

to evaluating forecast performance (e.g., Murphy and Winkler 1987; Murphy 1993; 

Wilson et al. 1999), the present work focused on the PIT visualizations of Dawid (1984) 

and Diebold et al. (1998), the calibration and sharpness analysis of Gneiting et al. (2007), 

and the proper scoring rules for continuous forecast distributions articulated by Gneiting 

et al. (2005), Bröcker and Smith (2007), Gneiting and Raftery (2007), and Bröcker 

(2012). This special class of metrics is concisely defined in Gneiting and Raftery (2007) 

by the following description: 

A scoring rule is proper if the forecaster maximizes the expected score for 

an observation drawn from the distribution F if he or she issues the 

probabilistic forecast F, rather than G [not equal to] F. It is strictly proper 

if the maximum is unique. In prediction problems, proper scoring rules 

encourage the forecaster to make careful assessments and to be honest. In 

estimation problems, strictly proper scoring rules provide attractive loss 
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and utility functions that can be tailored to the problem at hand. (Gneiting 

and Raftery 2007) 

Examples of strictly proper scoring rules in Bröcker and Smith (2007) include the 

ignorance score of Good (1952) in Equation 58, the Brier score in Equation 59, and the 

proper linear score in Equation 60; the error in the mean of Equation 61 is non-strictly 

proper. These quantities are respectively defined by Bröcker and Smith (2007) as 

 [ ( ), ] ln[ ( )],S p x X p X    (58) 

 2( , ) ( ) ,S p X X p    (59) 

 2[ ( ), ] ( ) 2 ( ),S p x X p z dz p X    (60) 

 
2[ ( ), ] ( ) ,pS p x X X m    (61) 

where [ ( ), ]S p x X  corresponds to the score expectation associated with the specified rule, 

X is an observed forecast quantity (i.e., the realized predictand) associated with the a 

random variable x  (i.e., the predictand), pm is the mean of probabilistic forecast 

distribution ( )p x , z  is the associated dummy integration variable, and ( )p X  describes 

the probability density assigned by ( )p x  to outcome X . The notation in Equation 59 

differs from the other metrics in evaluating a discrete probability p  when X  is 

constrained to assume binary verification values—that is, 0X   or 1X   (Bröcker and 

Smith 2007). Finally, the scoring rules detailed in the following sections have been 

selected by the present work based on their relevance to the NR/EMOS and BEMOS 

analyses of Gneiting et al. (2005) and Richter (2012), and, indeed, the forecast 

application presented in Chapter IV, 

1. Measures-Oriented Scores 

This dissertation used three primary scoring rules for single-valued estimates of a 

desired forecast quantity. The first is the classical, ubiquitous mean absolute error 

(MAE). Richter (2012) summarizes it according to Gneiting et al. (2005) as  
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1

1 N
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i

MAE f t
N 

    (62) 

where 
if  and 

it  are the prediction and truth on the i th  forecast trial. Consistent with 

notation and theory introduced by Taylor (2001), the present work has also adopted a 

variant of the canonical mean squared error (MSE)—that is, the centered MSE as 
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where 
if  and 

it  are as before and overbar quantities describe the mean of each variable. 

Additionally, the linear correlation between the forecasts and observations is described 

by the PCC as 
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  (64) 

where f  and 
t  are the standard deviations of the forecasts and observations. The latter 

metrics will not be computed and displayed separately, but rather combined with the 

variance of the forecasts and observations (i.e., the quantities in the denominator of 

Equation 64) in an eponymous Taylor diagram (e.g., Figure 33). 
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Figure 33.  Taylor diagram indicating three distinct measures of forecast 

performance for eight single-valued predictions of annual mean 

precipitation. Source: Taylor (2005). Forecast variability is indicated 

by the radial distance between the indicated forecasts and the true 

origin (black); the variability of the observations is indicated with 

the dashed, constant-radius arc marked “observed” (purple). The 

linear correlation (i.e., PCC) between forecasts and observations is 

visualized by the azimuthal coordinate (teal) of the indicated 

forecasts. The centered RMS error for each of the indicated forecasts 

is indicated by the radial distance from the adjusted, reference origin 

(purple). Generalized forecast performance is indicated by the 

location of each forecast relative to green isopleths of centered RMS 

error. 
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Taylor (2001) recognized that the canonical Law of Cosines could be 

reformulated to express the quantities in Equation 63 and Equation 64 as a single 

expression. In particular, Taylor (2001) observed that the Law of Cosines, which may be 

written as 

  2 2 2 2 cos ,c a b ab      (65) 

could be adapted to express the centered MSE as a function of the PCC and forecast and 

observation variances as 

 
2 2 2 2 ,f t f tE          (66) 

where   is the linear correlation (i.e., PCC) between the forecasts and observations from 

Equation 64 and all other quantities are as before. In this way, Taylor diagrams provide 

three distinct performance metrics, which are connected by the Law of Cosines, on a 

single two-dimensional graph. Using a polar coordinate system as a reference, the linear 

correlation   is interpreted as  cos   and, therefore, associated with the azimuthal 

coordinate; the variability of the forecasts, f , is associated with the radial coordinate. 

Using the variability of the observations, 
t , as a reference, Equation 66 then creates a 

new radial dimension with a displaced origin at ( , ) ( ,0)tp r   . 

The radial distance between any estimate in the plane and this new origin 

describes the square root of the centered MSE—that is, the centered RMS error. As a 

result, Taylor diagrams provide a convenient method of visualizing measures-oriented 

forecast performance; one can quickly assess comparative model quality over a set of 

forecast trials by the separation between each forecast estimate and the center of the 

“bullseye” pattern of green isopleths in Figure 33. Models with better centered RMS error 

will appear closer to the center of this “bullseye” pattern. Moreover, the metrics that 

compose the centered RMS error are still visible on the same plot. In this way, one can 

verify that a predictive scheme is producing forecast variability consistent with the 

observations—a common deficiency with statistical forecasts—and, indeed, that the 

forecasts are well-correlated with the observations—all while assessing traditional MSE.  
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2. Distributions-Oriented Scores 

Hersbach (2000), Gneiting et al. (2005), Juban et al. (2007), Gneiting and Raftery 

(2007), Bröcker (2012), and Richter (2012) give additional consideration to the 

continuous ranked probability score (CRPS), which Gneiting and Raftery (2007) define 

as 

  
2

( , ) ( ) ( ) ,CRPS F x F y H y x dy



      (67) 

where y is a random variable for the predictand with realized x , ( )F y  is the cumulative 

distribution function for forecast distribution ( )p y , and ( )H y x  is the Heaviside step 

function. According to Hersbach (2000), this proper scoring rule is derived from the 

ranked scoring rules considered by Matheson and Winkler (1976), which have special 

utility to the evaluation of Bayesian methods. To this end, Bröcker (2012) notes that the 

CRPS permits direct comparisons of EPS performance without the need for additional 

kernel dressing. Gneiting and Raftery (2007) similarly observe its utility with MCMC 

methods and its relation to the discrete Briar score. Juban et al. (2007) also describes its 

relation to MAE for discrete forecasts. Grimit et al. (2006) note that the CRPS for linear 

forecast variables may be reported for an ensemble of discrete forecasts as 
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1 1 1

1 1
( , ) ,

2

M M M

ens m m n

m m n

CRPS F x x x x x
M M  

       (68) 

where ensF  is the predictive distribution comprised of 1 2, , , Mx x x  single-valued 

estimates from an EPS or PPD, and x  is the true value observed for this forecast trial; the 

right-hand side of Equation 68 describes the absolute difference between each discrete 

element of ensF  and every other over a double sum of sequences. In this way, Grimit et al. 

(2006) observe the utility of the CRPS: 

The first term on the right-hand side of [Equation 68] is the expected value 

of the absolute error, and the second terms is a correction factor that 

measures the sharpness of probabilistic forecast F  and renders it proper. 

The linear CRPS generalizes the absolute error, to which it reduces if F is 

a deterministic forecast…Thus, the linear CRPS provides a direct way of 

comparing deterministic and probabilistic forecasts with a single metric 
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that is proper and reported in the same unit as the observations, making it 

a tangible measure of predictive performance. (Grimit et al. 2006) 

As with Gneiting et al. (2005), Bröcker and Smith (2007) and Gneiting and 

Raftery (2007), Grimit et al. (2006) also note the resurgence in popularity of the 

dimensionless ignorance score introduced by Good (1952). It represents an intuitive 

metric for predictive distributions, as it measures the a posteriori probability density 

assigned to truth. As mentioned in Chapter II, this does require KDE to generate a PDF 

for the associated predictive distribution. However, the CRPS and ignorance score are 

both strictly proper scoring rules well-suited to a rigorous evaluation of the predictive 

distributions produced by the OLS, MLE, and Bayesian methods in this dissertation. To 

this end, the present work will report the ignorance score (or logarithmic score) alongside 

the aforementioned CRPS. 

 

Figure 34.  PIT histograms for four probabilistic forecast schemes of maximum 

diurnal surface temperature. Source: Gneiting et al. (2005). 

Calibrated PPDs have a uniform appearance; biased and 

underdispersive PPDs have skew and curvature. 

Probability integral transforms (PIT) have been used to quickly assess the 

calibration of forecast distributions according to Dawid (1984), Diebold et al. (1998), 

Gneiting et al. (2005), and Richter (2012). The PIT of a probabilistic forecast is 

  ,PIT F y  where F  describes the cumulative distribution function (CDF) associated 
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with predictive distribution ( )p y  and truth y . In this way, PIT histograms represent a 

discrete distribution of probabilities associated with predictive CDFs. Calibrated PPDs 

will therefore have a relatively uniform PIT histogram (e.g., Figure 34c/d); biased PPDs 

will have a skewed presentation consistent with Figure 34a; underdispersive PPDs will 

appear as in Figure 34b. 

The final measure of ensemble calibration considered for this dissertation is 

provided by reliability diagrams. They compare the relative frequency of observed 

outcomes against the probabilities assigned to them by a forecast scheme (CAWCR 

2017). The present work has modified the traditional reliability diagram and, indeed, the 

coverage of the central prediction intervals considered by Gneiting et al. (2005) and 

Richter (2012) to examine the reliability of Bayesian highest density intervals (HDI). 

These intervals may be computed for any predictive distribution regardless of the 

generative process; they describe the narrowest interval that contains a specified fraction 

of the probabilistic mass (Kruschke 2014). In this way, a 95% HDI would refer to the 

narrowest interval that contained 95% of a continuous distribution’s probabilistic mass. 

These intervals are often equivalent to central prediction intervals (e.g., symmetric 

Gaussian PDF), but may be different when the PPD is, for example, skewed or 

multimodal. To this end, the present work computed the HDI endpoints for 19 evenly-

spaced probabilistic mass fractions (i.e., 0.05,0.1, ,0.95 ) for every one of the 172,935 

forecast distributions evaluated in this dissertation. Each HDI can then be checked 

against the corresponding observations to examine the relative frequency these intervals 

contained the true value of the predictand. In this way, a calibrated forecast distribution 

will produce probability statements (i.e., predictive HDIs) that match the frequency these 

intervals contained the observations. 



 113 

IV. ANALYSIS 

A. MOTIVATION 

The present work was initially motivated by the University of Oklahoma Weather 

Challenge (WxC)—a North American collegiate weather forecasting competition 

available to alumni, faculty, staff, and students (i.e., undergraduate and graduate) of 

institutions of higher education (WxC 2017). More specifically, NPS BEMOS was 

conceived in the search for a programmatic scheme that could consistently convert 

ensemble predictors into reliable forecast distributions that outperform raw objective 

guidance and, indeed, other WxC competitors. In this way, the competition compels 

roughly 1200 human participants to use a combination of objective guidance—that is, 

real data from operational NWP models—and their dynamical reasoning to submit daily 

meteorological predictions for diurnal extrema of select sensible weather variables. These 

predictions are made in parallel with National Weather Service (NWS) official forecasts 

for designated American cities and are designed to provide a rigorous assessment of real-

world forecast skill. 

The competition requires participants to predict diurnal maximum surface 

temperature, diurnal minimum surface temperature, diurnal maximum wind speed, and 

diurnal cumulative liquid precipitation for a 24-hour forecast window. Predictions are 

submitted no later than six hours prior to this window; however, most objective guidance 

available for the relevant forecast is initialized 12 to 24 hours before the valid period. 

Verification is facilitated by observational stations in the Automated Surface Observing 

System (ASOS), which are typically located at suitable airports near cities selected for 

the competition. In this way, each forecast season comprises 11 cities with functional 

ASOS stations. Eight forecasts are allocated to each non-tournament city over a 

piecewise continuous period of two calendar weeks; that is, forecasts are submitted 

Monday through Thursday on the first week with an inclusive break between Friday and 

Sunday. Forecasting for the current city resumes on Monday of the second week as 

before. The next city becomes active on the following Monday after the final four days of 

the current city have been completed. 
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The WxC preserves the fundamental challenges of any operational forecast and 

illustrates the difficulties of meteorological prediction—even over relatively short 

timescales. Human participants quickly learn that objective model guidance is difficult to 

consistently outperform. They are also likely to note the skill of the WxC consensus 

solution, which represents the central tendency of all competition participants; it also 

serves as a practical demonstration of the efficacy of filtered solutions vis-a-vis Leith 

(1974) and Kalnay (2003). Nevertheless, the short time horizon of WxC forecasts 

accommodates the strengths of subjective (i.e., human) guidance and high-resolution, 

limited-area dynamical models. As previously stated, the former is well-positioned to 

monitor model performance, add prognostic detail in the mesoscale domain, and 

communicate forecast uncertainty—elements that become more difficult to engage with 

longer forecast lead times. Limited-area (i.e., regional) models, by comparison, are 

specialized to outperform global models by adding fine structure to meteorological 

prediction at short timescales. Kalnay (2003) notes some of the primary advantages and 

disadvantages:  

Because of their higher resolution, regional models have the advantage of 

higher accuracy and the ability to reproduce smaller-scale phenomena 

such as fronts, squall lines, and much better orographic forcing than global 

models. On the other hand, regional models have the disadvantage that, 

unlike global models, they are not “self-contained” because they require 

lateral boundary conditions at the borders of the horizontal domain. For 

this reason, regional models are used only for short-range forecasts. After 

a certain period, which is proportional to the size of the model, the 

information contained in the high-resolution initial conditions is “swept 

away” by the influence of the boundary conditions, and the regional model 

becomes merely a “magnifying glass” for the coarser model forecast in the 

regional domain. (Kalnay 2003) 

In this way, the WxC is reasonably regarded as a forecast application that 

emphasizes the strengths of human forecasters and high-resolution dynamical guidance. 

With the same reasoning, the competition format diminishes the efficacy of statistical 

forecast methodologies relative to the former. Gneiting et al. (2005) and Richter (2012) 

considered a similar forecast application for their research; the former examined “48-h 

forecasts of sea level pressure and surface temperature over the northwestern United 

States and British Columbia, using phase I of the University of Washington ensemble” 
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(Gneiting et al. 2005). Richter (2012) focused on the same geographic area with the 

University of Washington Mesoscale Ensemble, but only considered surface temperature 

forecasts as a predictand. While prosaic from a research perspective, Gneiting et al. 

(2005) notes that these sensible weather variables are consistent with the practical 

interests of the public vis-à-vis Murphy and Winkler (1979). As a result, the present work 

considers the WxC format an appropriate forecast environment for the NR/EMOS 

technique and the NPS BEMOS model developed for this dissertation. Moreover, shorter 

lead-times and diurnal extrema provide additional difficulties for statistical post-

processing methods relative to high-resolution dynamical guidance. To facilitate a more 

tractable analysis, NPS BEMOS performance will therefore be compared to raw 

ensemble guidance and the reference method with diurnal maximum surface temperature, 

diurnal minimum surface temperature, and diurnal maximum wind speed predictands. 

B. DATA 

1. Parent Ensemble 

The daily 15Z run of the NCEP Short Range Ensemble Forecast (SREF) system 

was selected for training and comparison with the NPS BEMOS model. This is the last 

SREF model run available before the WxC submission deadline at 00Z and corresponds 

to a 15-hour lead time before the start of the next 24-hour forecast window (i.e., 06Z). 

The SREF system was recognized as a convenient, publically-available source of high-

resolution ensemble model output with a 16-km horizontal resolution and 40 vertical 

levels (Du et al. 2015). It also enables efficient programmatic collection of predictors at 

most WxC forecast locations for the past 12 months. The present work focused on SREF 

plume output (e.g., Figure 35), which describes ensemble flows from model initialization 

through 84 hours. After a significant model upgrade on October 21, 2015, SREF plumes 

are derived from the Weather Research and Forecasting (WRF) model, which comprises 

two dynamical solvers or cores: the Advanced Research WRF (WRF-ARW) and the 

Nonhydrostatic Multiscale Model on B-Grid (NMMB) model (NWS 2015). These SREF 

plumes provide a total of 26 ensemble predictors; this includes six positive perturbations, 

six negative perturbations, and one control solution from each model core (NWS 2015). 
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Figure 35.  A times series of NCEP SREF ensemble flows for surface 

temperature at Beckley, WV for March 16–20, 2016. Adapted from 

SREF 2016. Each discrete flow represents a member of the 26-

member SREF plume. Flows with a “warm” hue are associated with 

the ARW core; “cold” hues correspond to the NMMB core. The area 

shaded in red corresponds to a 24-hour forecast window for the WxC 

forecast competition. Extrema associated with each flow are 

extracted and used as training data by the present work. 

2. Verification 

The predictors extracted from SREF plumes must be combined with 

corresponding observations to produce a full set of training data. Data collected from the 

aforementioned ASOS stations is transformed into observed weather reports by NWS 

weather forecast offices (WFOs) and hosted by the Climate Services Division for public 

distribution. The present work selected preliminary monthly climate (CF6) data for 

verification of designated WxC cities. These reports convert daily observations into 

monthly summaries of relevant sensible weather variables. The NWS provides the 

following description of CF6 data: “daily weather statistics for the month, including 

temperatures, precipitation, degree days, wind and sky cover. In addition, monthly 

statistics such as average temperatures and departures from normal, degree days, and 

rainfall are also included. This product is available for up to 5 years” (NWS 2017). All 

variables (i.e., SREF and CF6) were converted to the International System of Units (SI) 

so that surface temperatures are reported with the Kelvin scale [K] and surface wind 

speeds are reported in meters per second [ m 1s  ]. 
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3. Research Design 

This dissertation generated 14 primary variations (i.e., Table 2) of the multivariate 

multiple linear regression model described in Chapter II. As previously stated, model 

instances labeled “MLE” describe a Bayesian probability model with a stochastic 

regression structure specified by Equation 9 and noninformative prior information (i.e., 

( ) 1p   ) indicated by Figure 23; instances labeled as “NPS” share the stochastic 

regression structure of Equation 9 and add full hierarchical prior information according to 

the JPM in Figure 24; “OLS” instances have a deterministic regression structure 

consistent with Equation 3 and, as a result, have no likelihood or prior distributions. It 

should be noted that “MLE” and “NPS” inferences were completed with the adaptive 

multiparameter Metropolis sampler developed by this dissertation. The OLS reference 

method was solved directly with the linear algebra specified by Equation 52. In this way, 

each model instance was developed to explore a disparate element of the research 

questions posed at the beginning of Chapter III. In no particular order, these model 

conjectures considered the impact on predictive performance from 

 training period length and character 

 the type of ensemble predictor(s) used to train the model 

 the distributional form of the parametric likelihood function selected 

 the presence of Bayesian prior information. 

These 14 primary model instances were designed a priori to express measureable 

variability in forecast performance according to the assumptions of the aforementioned 

research questions. To this end, this dissertation considered a number of additional 

perturbations to the MLE, NPS, and OLS comparisons described above; these elements 

are indicated by the additional columns included in Table 2. The “Model Core” and 

“Predictor” columns, for example, describe the source of the predictor variables used to 

train the indicated model instance. All model instances use three predictor variables 

consistent with 1 3K    in Equations 3 and 9. More specifically, the stochastic 

regression framework for “MLE” and “NPS” instances is now properly visualized as 
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where 
1 2 3, ,    describe the updated multiparameter location of the parametric 

likelihood function with predictors 
1 2 3, ,x x x  and regression coefficients 

1 2 11, , ,   . 

The deterministic regression framework for OLS estimation is similar; however, the left-

hand side of Equation 69 becomes observable predictands—that is, 
1 2 3, ,y y y . The critical 

distinction made by the present work, for both deterministic and stochastic approaches, is 

that 1 2 3, ,x x x  correspond specifically to maximum diurnal surface temperature, minimum 

diurnal surface temperature, and maximum diurnal surface wind speeds, respectively, 

from the dynamical solvers indicated in column two of Table 2. Column three clarifies 

further whether the control member or ensemble mean was used for 1 2 3, ,x x x . 

 

Table 2.   Summary of various NPS BEMOS model instances evaluated by this 

dissertation. Each column describes a research design element that was 

perturbed to explore the conjectures outlined in Chapter III. Training 

period details are examined further in Table 3. 
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Table 3.   Summary of various training and test periods considered by this 

dissertation. All intervals are continuous except for the “Similar-

Extended” period, which is piecewise continuous with a break between 

the indicated end date and the start of the extended training period 

(i.e., April 2017). 

Column four of Table 2 describes the training period given to the indicated model 

instances according to the abbreviations indicated in Table 3. Each period corresponds to 

a different set of training data and, depending on the details of the parameter estimation 

specified (i.e., OLS, MLE, and NPS), potentially distinct predictive distributions during 

the test period. It should be noted that the extended periods include a portion of the test 

period and are, therefore, not valid indicators of predictive performance for April 2017. 

However, they do provide valid comparisons for May 2017 and a difficult reference for 

non-extended models during April 2017 test days. Table 3 also communicates that the 14 

primary model instances in Table 2 were further conditioned into 42 distinct models 

variations. The final two columns in Table 2 describe the structure of the JPM selected 

for each instance. The JPM comprises the likelihood function and the prior; the 

perturbations in these columns engage assumptions associated with the efficacy of MVT 

distributions in robust regression and, indeed, the ostensible importance of beta 

regression shrinkage through hierarchical prior information. In this way, each column of 

Table 2 represents a dimension along which the various OLS, MLE, and NPS statistical 

models were perturbed. 

Comparisons between odd and even “MLE” and “NPS” model instances 

communicate the impact of potentially disparate predictor information coming from each 

dynamical solver (i.e., model core) in the SREF system. For the present work, odd 

instances always use the ARW core; even instances use the NMMB core. Model 
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instances ending in a “3” or “4” similarly describe the influence of MVT likelihood 

functions vis-à-vis robust regression; all other model variations have a MVN likelihood 

function. Finally, the present work considers the research design details associated with 

NPS1 and NPS2 to represent “default” configurations of the NPS BEMOS model. They 

include hierarchical prior information to make them fully Bayesian in character, and they 

also use a standard MVN likelihood function. As a result, this default configuration was 

used as a foundation for the research questions focusing on the influence of additional 

training data (i.e., the extended training periods in the “April update” for NPS5 and 

NPS6) and the importance of SREEF ensemble mean predictors given to NPSR and 

OLSR. In this way, NPS5, NPS6, and NPSR share identical JPMs with NPS1 and 

NPS2—only training data has been modified between them. Model instances ending with 

an “R” use the ensemble means of the entire SREF ensemble as predictors for each 

sensible weather variable. This expresses an explicit desire to demonstrate that NPS 

BEMOS instances using ensemble control information can meet or exceed the 

performance of all other models considered by the present work. 
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Table 4.   Summary of forecast cities selected for evaluation by this dissertation. 

Cities 1–10 (left) correspond to competition cities from the 2015–

2016 WxC season. Cities 11–20 (right) correspond to competition 

cities from the 2016–2017 WxC season. The final city (i.e., No. 21; 

Monterey, CA) selection was based on the location of the author’s 

university. 

Table 4 describes the 21 cities selected for model training and evaluation by the 

present work. In this way, the two most recent WxC competition seasons were sampled to 

produce a collection of cities sufficiently large to minimize the influence of local 

topography, mesoscale dynamics (e.g., coastal metrological considerations), and seasonal 

synoptic forcing. The quasi-uniform geographic distribution of these locations is 

indicated by Figure 36. The number of cities selected was also comparable with the 

original research design of Gneiting et al. (2005) and Richter (2012); however, these 

studies only considered the Pacific Northwest region. For the periods indicated in Table 

3, these 21 cities generated a total of 30,240,000,000 MCMC transitions—the equivalent 

of 15,120 univariate Markov chains with 2,000,000 transitions. With 1% thinning, these 

MCMC samples produced a total of 126,819 point forecasts and 1,268,190,000 discrete 

PPD samples during the 61-day test period when summed over all predictands, cities, and 

training periods. 
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Figure 36.  The geographic distribution of the 21 cities selected for a 

comparative model evaluation by this dissertation. 

Finally, the parameter estimation schemes detailed in Chapters II and III can be 

applied to the present forecast application with a local or regional format vis-à-vis 

Richter (2012). The former describes an inference framework where posterior model 

parameter beliefs are conditioned on data from individual cities—no regional or national 

mixing of training data. In simple terms, this means each city in Figure 36 has unique 

regression parameters according to the details of the SREF forecasts and observations at 

that location. The regional approach mixes training data from neighboring cities 

according to shared topographic or synoptic characteristics, so that multiple cities will 

share the same regression coefficient beliefs; only the local predictor variables supplied 

by the SREF system will vary between them. While a regional approach might have merit 

in data- and time-constrained training environment, Richter (2012) found that the local 

approach was generally more effective. The local approach was selected by the present 

work based on these findings and the overdispersive distribution of cities in Figure 36.  
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C. RESULTS 

1. Parameter Beliefs 

Posterior parameter beliefs obtained from Bayesian data analysis and MCMC 

sampling techniques explicitly incorporate the uncertainty of the inference. As previously 

stated in Chapters II and III, no additional computations are required to produce 

uncertainty intervals for the parameter estimates we seek. In this way, a visual inspection 

of Bayesian posterior distributions reveals the impact of the model perturbations in Table 

2. To this end, Figure 37 depicts a pairplot matrix for posterior parameter beliefs 

estimated by the NPS1 model for Monterey, CA conditioned by training period. It 

corresponds to the true PPC terms (i.e., ij ) in the covariance matrix specified by 

Equation 44—not the raw covariance parameters in Equation 37. Diagonal elements of 

Figure 37 describe the marginal univariate PDFs for each parameter according to training 

period. Upper triangular elements describe pairwise joint scatter plots for the posterior 

samples collected for each parameter. Lower triangular elements depict the associated 

two-dimensional PDFs and isopleths of joint probability density for these pairwise 

relationships. 
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Figure 37.  Pairplot matrix for NPSR and Monterey, CA showing posterior 

parameter beliefs for true covariance parameters. Results have been 

conditioned by training period; “Similar” data are indicated in blue; 

“Recent” data in gold; “Full” data in grey.   

In this way, Figure 37 represents a multiparameter extension of Figure 32 that 

also communicates the sensitivity of Bayesian parameter estimation to the size and 

character of the training data. The blue and gold data correspond to shorter training 

periods (i.e., 60 days); the grey data are associated with the “Full” training periods and 

contains 363 multivariate forecast trials. The impact of the longer training period is 

indicated by sharper posterior distributions for the grey PDFs. Moreover, we observe that 

the central tendency of each marginal univariate distribution in the diagonal plots 

depends on the training period as well. The Univariate PDF for 13  suggests that the 
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“Full” parameter estimates represent a mixture of beliefs from the shorter periods; the 

grey PDF is centrally located between their corresponding blue and gold distributions. 

Conversely, the NPS1 model found (i.e., “learned”) that optimal 
12  and 

23  beliefs for 

the “Full” training period are generally higher (i.e., right) for larger values of the 

posterior beliefs obtained from the shorter training periods. The uncertainty associated 

with all of these estimates is indicated by the dispersion of the PDFs and, perhaps more 

importantly, by the spread of the associated joint scatter plots in the upper triangular 

panels of Figure 37. The off-diagonal panels emphasize the distinct central tendencies 

produced for these model parameters by each training period and, indeed, disparate 

confidence levels (i.e., dispersion) in the associated inference. 

Figure 38 reinforces this result. It depicts the parameter trace for raw model 

parameter 
4 , which corresponds to the regression coefficient for maximum diurnal 

surface temperature predictors associated with the minimum diurnal surface temperature 

predictand. The running average of the posterior parameter samples generated by the 

Metropolis algorithm is indicated with solid, blue, gold, and grey lines. The 

multiparameter Markov chain was seeded so that all parameters begin at their associated 

OLS solutions indicated by Equation 52. However, the equilibrium distributions for the 

“Similar” and “Recent” training data, which are found at the end (i.e., right) of each 

chain, are distinct from their OLS starting locations. This indicates that the NPS BEMOS 

model produced a parameter estimation solution that differed from the classical OLS 

solution. Moreover, the differences in central tendency for each training period are 

evident by the equilibrium location of the running averages (i.e., solid curves). As noted 

with Figure 37, this result reinforces the unique posterior parameter estimates produced 

by each training period. The confidence of the associated inference in similarly apparent 

with the dispersion of the samples (i.e., filled circular markers) in Figure 38. The “Full” 

training period produced the narrowest parameter interval estimates. As previously noted, 

the convergence of the model run is partially indicated by the steady state behavior of the 

running mean. This suggests that posterior parameter samples collected after the burn-in 

threshold are representative of the target Bayesian posterior distributions sought for each 

model parameter. 
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Figure 38.  Semi-log trace plot for the NPS1 model at Monterey, CA. The 

ordinate describes the location of the parameter proposal in the phase 

space of the model as a function of proposal number (abscissa). The 

red vertical line indicates model “burn-in,” which describes a pre-

defined boundary between valid and invalid posterior parameter 

samples. The solid blue, gold, and grey horizontal lines describe the 

moving average of the chain for the indicated parameter. 

A broader examination of the disparities in parameter estimation produced by 

classical OLS methods and the NPS BEMOS model instances is considered in Figure 39. 

It depicts the OLS margin—that is, the difference between the Bayesian and OLS 

parameter estimates—for each of the regression coefficients in Equation 69 associated 

with four statistical model perturbations from the ARW dynamical model core. The box-

and-whisker plots—or, more simply, box plots—show the distribution of OLS margins 

for each parameter over the 21 cities and three training periods considered for each 

model. In this way, each box plot corresponds to 63 OLS margins for each model 

parameter. An OLS margin of zero corresponds to equivalence between the two 

parameter estimation methods; values away from zero indicate distinctions. The results 
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from Figure 39 depict consistent disparities between NPS BEMOS and OLS parameter 

estimates. While the MLE1 model produced almost no margins, due to its MVN 

likelihood and noninformative prior, the MLE3, NPS1, and NPS3 models all produced 

meaningful variability from the reference OLS solutions. This was caused by the details 

of their JPMs—either the presence of a MVT likelihood function or hierarchical priors. 

NPS3 was the most different from its OLS counterpart, due to the presence of both a 

MVT likelihood function and hierarchical priors. Both MVT models—that is, MLE3 and 

NPS3, produced non-zero beta intercept parameters. This result is notable based when 

compared with Kruschke (2014), which posits that intercept parameters will be zero with 

standardized parameters. Finally, the magnitude of the OLS margins in Figure 39 should 

be considered non-trivial for standardized regression coefficients. 

 

Figure 39.  Box plot of OLS margins for linear regression coefficients 

associated with four NPS BEMOS models. 
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Figure 40.  Mean posterior parameter beliefs averaged over all training periods, 

cities, and MCMC samples for each regression coefficient. Results 

have been standardized within each regression parameter to 

emphasize differences between statistical model perturbations. OLS 

parameter estimates have been excluded. Cooler colors indicate 

smaller mean posterior parameter values relative to the beta-group 

mean. 

Figure 40 depicts a heatmap of posterior parameter means conditioned to show 

the sensitivity of model parameters to the JPM structures indicated in Table 2. This 

information has been standardized with z-scores for each parameter to produce a stronger 

visual contrast within each column. In this way, the color palette now indicates the 

magnitude of mean posterior parameter belief centered and scaled according to the group 

mean and standard deviation for each model parameter. As previously noted, MVT 

likelihood functions produced non-zero intercept coefficients. Moreover, the distinct 
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signature of each ensemble core is evident in the differences between even and odd 

model instances. The ensemble mean predictors from the full SREF ensemble also 

produced distinct regression coefficient beliefs as evident in the bottom row of Figure 40 

for NPSR. 

 

Figure 41.  Mean posterior parameter beliefs averaged over all training periods, 

models, and MCMC samples. Results have been standardized within 

each beta group to clarify differences between cities. OLS parameter 

estimates have been excluded. Cooler colors indicate smaller mean 

posterior parameter values relative to the beta-group mean. 

The same standardized heatmap format has been repeated in Figure 41 to express 

the sensitivity of parameter estimation to the data collected from each city in Table 4. The 

present work has trained the statistical models in Table 2 so that each city is free to 



 130 

produce unique regression parameter beliefs. In this way, local topography and mesoscale 

dynamics can be captured and combined with location-specific predictor variables. 

Figure 41 reveals locations that produced anomalous posteriors averaged over all models 

and training periods. Consistent outliers (e.g., Key West, FL) and variability within each 

beta group suggests that the local approach was justified. Nevertheless, the full impact of 

disparate posterior parameter beliefs will be assessed through forecast performance. 

2. Measures-Oriented Performance 

The dynamical solvers in the SREF EPS form the predictive basis of the statistical 

forecasts produced by the models in Table 2. However, Richter (2012) notes that 

ensemble perturbations (i.e., members) frequently exhibit linear correlation. To examine 

this for the diurnal extrema considered by the present work, the PCC from Equation 64 

was applied between all members of the SREF system in the diagonal correlation matrix 

heatmap for diurnal maximum surface temperatures in Figure 42. The sequential 

colormap indicates the magnitude of covariance between respective ensemble members; 

warmer colors correspond to a higher relative linear correlation. Redundant covariance 

information in the upper triangular portion of the matrix has been masked. The top left 

portion of visible matrix describes the linear correlation of ARW core members; 

similarly, the bottom right portion of the visible matrix indicates the linear correlation 

between NMMB members. The covariance between dynamical solvers is represented by 

the primary block at the bottom left of the matrix. 

As with Richter (2012), PCCs were found to be high with a minimum coefficient 

above 0.93. However, the ARW core demonstrated more linear correlation between its 

members than the NMMB core. This suggests that ARW perturbations are more 

correlated (i.e., less distinct) than their NMMB counterparts. Moreover, the covariance 

between ARW and NMMB perturbations was found to be of comparable magnitude to 

the covariance within NMMB members—save for the NMMB control. This is evident in 

Figure 42 by the block of cooler colors in the lower half of the visible matrix; the higher 

relative covariance of the NMMB control perturbation with other elements of its core is 

indicated by the vertical strip of warmer colors at the bottom-center of the visible matrix. 
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A similar pattern was observed for the other predictands; however, covariation between 

SREF perturbations for maximum diurnal surface wind speeds were found to have a 

larger range (i.e., Figure 43). Warmer colors in Figures 42 and 43 indicate higher relative 

linear correlation between respective ensemble members; cooler colors indicate lower 

relative linear correlation between respective ensemble members. The colorbar ranges for 

each figure are distinct and based on the extrema found for with each predictand. In this 

way, the variability in correlation coefficient between SREF EPS forecasts of maximum 

diurnal surface temperature was notably lower than that found for maximum diurnal 

surface wind speed predictions. 
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Figure 42.  Diagonal correlation heatmap for diurnal maximum surface 

temperature predictions with the NCEP SREF EPS. Indicated values 

correspond to the correlation coefficient between forecast from all 26 

members of the SREF system extracted during the 61-day test 

period. 
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Figure 43.  Diagonal correlation heatmap for diurnal maximum surface wind 

speed predictions with the NCEP SREF EPS. Indicated values 

correspond to the correlation coefficient between forecast from all 26 

members of the SREF system extracted during the 61-day test 

period. 

Figure 44 compares the covariance between the statistical forecasts models in 

Table 2 with the dynamical SREF system. To reduce the total number of matrix elements, 

only the means from each core and the full ensemble are reported (i.e., AREF, MBEF, 

and SREF). Linear correlations between statistical models was found to be similarly high; 

PCCs typically exceeded 0.9 across all predictands and model perturbations. Moreover, a 

larger range in covariance was observed for maximum diurnal wind speed predictions. 

The “checkerboard” structure observed along various matrix diagonals in Figure 44 

represents the information and structure shared between model instances (i.e., model 
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core, predictors, training period, and JPM). In this way, models using the same dynamical 

solver and predictor variables are likely to experience more covariance than more 

disparate instances. The relative covariance between the dynamical and statistical 

forecasts was found to be notably distinct. This is recognized from the vertical strip of 

cooler values found in the first three columns. This finding was repeated in all three 

predictands to varying degrees; however, the diurnal maximum surface wind speed 

results were the most pronounced and, as a result, are reported here. This covariance 

structure suggests that statistical model instances in Table 2 have unique predictive 

character—they are not superficial bias adjustments that mimic the generalized 

tendencies of their parent predictor variables. 
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Figure 44.  Diagonal correlation heatmap depicting covariance between 

statistical and dynamical models for diurnal maximum surface wind 

speed predictions. This includes the 42 model instances in Table 2 

and the means of each SREF core extracted during the 61-day test 

period. 

To evaluate the nature of the low relative correlation found between statistical and 

dynamical forecasts (i.e., the cooler strip of covariance in Figure 44), the typical 

variability observed in the former should be compared against the latter and, indeed, the 

observations themselves. If the statistical models in Table 2 produce forecast variability 

that is inconsistent with the natural variability of the sensible weather variables, then 

these models would be recognized to have poor resolution (i.e., in a verification sense). In 

this way, we desire statistical forecasts that have a standard deviation that better matches 

the natural variability of the observations when compared with its parent dynamical 

source. We also seek forecasts with higher linear correlation with the observations 
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themselves. Taylor diagrams for each model perturbation and predictand permit a 

graphical comparison of these performance metrics and conveniently add the centered 

MSE—a modified form of the classic metric for measures-oriented forecast performance. 

To this end, Figure 45 depicts a Taylor diagram for diurnal maximum surface 

temperature predictions over all 21 cities and 61 days in the test period. All model 

instances in Table 2 are compared with the ensemble mean from each core and the full 

ensemble (i.e., the central tendency of the members from each dynamical solver and the 

full ensemble). The PPD mean (median) of each MVN (MVT) model instance was used 

to form the relevant single-valued forecast estimates. OLS estimates were originally 

determined as point estimates and required no descriptive statistics. In this way, each 

point in Figure 45 (i.e., model number) corresponds to three dimensions of forecast 

performance for the indicated models. The forecast data represented in Figure 45 has also 

been normalized relative to 
t —that is, the standard deviation of the observations—so 

that all indicated performance metrics are dimensionless. Taylor (2005) notes that each 

performance dimension describes some aspect of agreement between the forecasts and 

the observations; that is, the linear correlation, the relative variance, and the centered 

RMS error. The covariance (i.e., linear correlation) between model forecasts and the 

observations is indicated by the logarithmic azimuthal scale on the outboard arc. The 

radial dimension expresses the standard deviation of the forecasts normalized by the 

standard deviation of the observations. The radial distance from the displaced origin 

(black pentagon) indicates the normalized magnitude of the centered RMS error.  
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Figure 45.  Taylor diagram for maximum diurnal surface temperature 

predictions for 45 models over 21 cities and 61 test days. Raw 

dynamical predictions extracted from the SREF EPS are indicated in 

grey; MLE estimates are indicated in purple; NPS estimates are in 

indicated in green; OLS estimates in red. The black pentagon 

indicates the normalized variance of the observations and the 

displaced origin for centered RMS error comparisons. 

The tight radial clustering near 1f   in Figure 45 indicates little disparity 

between model forecast variance when compared with the observations. In simple terms, 

this means all models demonstrated meaningful forecast resolution with predictive 

variability that matched the observations. However, there is non-trivial spread along the 

azimuthal dimension. Raw ensemble output (grey) demonstrated lower linear correlation 

with the observations and, indeed, higher centered RMS error. The best generalized 

performers (i.e., the models closest to the displaced origin) were produced by OLS (red) 

and hierarchical Bayesian methods (green) trained with ensemble mean predictors 
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extracted from the full SREF ensemble. However, the Bayesian models had forecast 

variability that was closer to the observations. In this way, the NPSR model trained over 

the “Full” and “Similar” periods demonstrated the best measures-oriented performance in 

these Taylor diagram metrics. It should be noted that all Bayesian (i.e., non-OLS) post-

processing methods in Figure 45 improved upon their raw predictors; one of the OLS 

instances showed poorer PCC and centered RMS error performance. 

 

Figure 46.  Taylor diagram for minimum diurnal surface temperature predictions 

for 45 models over 21 cities and 61 test days. Raw dynamical 

predictions extracted from the SREF EPS are indicated in grey; MLE 

in purple; NPS in green; and OLS in red. The black pentagon 

indicates the normalized variance of observations and the displaced 

origin for centered RMS error. 
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Figure 47.  Taylor diagram for maximum diurnal surface wind speed predictions 

for 45 models over 21 cities and 61 test days. Raw dynamical 

predictions extracted from the SREF EPS are indicated in grey; MLE 

in purple; NPS in green; and OLS in red. The black pentagon 

indicates the normalized variance of observations and the displaced 

origin for centered RMS error. 

Figure 46 indicates a similar pattern of Taylor diagram results for minimum 

diurnal surface temperatures. The radial distribution of forecast variability is clustered 

near 1f   and raw ensemble output showed the poorest performance along all three 

Taylor diagram dimensions. While all statistical models showed better forecast variability 

than the central tendency of the dynamical model cores, NPS (green) and MLE (purple) 

estimates showed better performance relative to the reference OLS methods (red). This is 

demonstrated by a tight grouping of green instances closest to the displaced origin. The 
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NPSR model performed well for both temperature predictands, with performance 

meeting or exceeding all other instances. The performance distribution for maximum 

diurnal surface wind speed predictions is provided in Figure 47. This predictand 

produced a notable increase in radial spread, which is believed to result from the natural 

positive skew in wind speed data. Moreover, all models demonstrated poorer normalized 

covariance with the observations and, as a result, higher centered RMS error. 

Nevertheless, the NPS BEMOS forecasts in green (NPS) and purple (MLE) demonstrated 

larger relative performance gains over the OLS reference solutions (red). All three of the 

NPSR instances performed well, with the “Full” and “Similar” training periods leading 

the group. 

All three Taylor diagrams validate the low covariance observed between 

statistical and dynamical forecasts (i.e., Figure 44), because the former were found to 

demonstrate enhanced forecast variability and were more closely related to the 

observations when compared with the latter. This suggests that the unique predictive 

character of the statistical post-processing solutions is beneficial vis-à-vis measures-

oriented forecast performance. However, these comparisons included NPS5 and NPS6, 

which were trained with the “April update” and had some knowledge of the true values in 

the full test period (Table 3). To properly consider the value of the extended training 

periods on NPS5 and NPS6—which are identical to NPS1 and NPS2, save for the 

additional training information—the test period must be constrained to the last 31 days in 

the interval. To this end, Figures 48, 49, and 50 repeat the information from Figures 45, 

46, and 47, respectively—now with a focus on the “Recent” and “Recent-Extended” 

training periods. The latter has been updated to include April 2017 training data and both 

periods are compared with test data from May 2017 only. These updated figures provide 

a more granular view of the performance comparisons in the previous three images. For 

the maximum diurnal surface temperature predictions in Figure 48, the NPS BEMOS 

models in green and, to a lesser extent, purple demonstrate a performance margin relative 

to the majority of raw ensembles (grey) and OLS estimates (red). NPS5 and NPS6 also 

demonstrated better performance along the indicated metrics when compared with NPS1 

and NPS2—that is, models with identical JPMs but different training data. 
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Figure 48.  Taylor diagram for maximum diurnal surface temperature 

predictions produced by the “Recent” and “Recent-Extended” 

training periods. This analysis covers 17 models over 21 cities 

during a May 2017 test period. Raw dynamical predictions extracted 

from the SREF EPS are indicated in grey; MLE in purple; NPS in 

green; and OLS in red. The black pentagon indicates the normalized 

variance of observations and the displaced origin for centered RMS 

error. 

Figure 49 communicates a stronger performance margin for NPS BEMOS models 

in diurnal minimum surface temperature predictions. NPS5 and NPS6 lead the group of 

17 model instances trained on “Recent” and “Recent-Extended” data, with a majority of 

the Bayesian/MCMC models outperforming their OLS counterparts. The raw ensembles 

demonstrated poorer normalized centered RMS error compared with all statistical 
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estimates. NPS6 and NPSR exhibited forecast variance that was remarkably consistent 

with the natural variability of the observations during this test period. 

 

Figure 49.  Taylor diagram for minimum diurnal surface temperature predictions 

produced by the “Recent” and “Recent-Extended” training periods. 

This analysis covers 17 models over 21 cities during a May 2017 test 

period. Raw dynamical predictions extracted from the SREF EPS are 

indicated in grey; MLE in purple; NPS in green; and OLS in red. 

The black pentagon indicates the normalized variance of 

observations and the displaced origin for centered RMS error. 

Figure 50 describes the same Taylor diagram performance metrics for maximum 

diurnal surface wind speed predictions with “Recent” and “Recent-Extended” training 

data. Half of the NPS BEMOS model instances beat out all raw ensemble (grey) and OLS 



 143 

(red) competitors; NPS6 and NPSR were the best performers. In most cases, the 

Bayesian/MCMC solutions provide better forecast resolution when compared with their 

peers. This was especially true for the raw ensemble output, which demonstrated little 

more than 50% of the standard deviation of the observations in May 2017. 

 

Figure 50.  Taylor diagram for maximum diurnal surface wind speed predictions 

produced by the “Recent” and “Recent-Extended” training periods. 

This analysis covers 17 models over 21 cities during a May 2017 

test period. Raw dynamical predictions extracted from the SREF 

EPS are indicated in grey; MLE in purple; NPS in green; and OLS 

in red. The black pentagon indicates the normalized variance of 

observations and the displaced origin for centered RMS error. 
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Figure 51.  Box plots of inter-city MAE distributions for diurnal maximum 

surface temperature predictions with 45 models over 21 cities and 61 

test days.  Models are sorted in ascending order according to median 

inter-city MAE (better performance on the left). Raw dynamical 

predictions extracted from the SREF EPS are indicated in grey; MLE 

in purple; NPS in green; and OLS in red. 

Similar—albeit smaller—performance margins for NPS BEMOS model instances 

in the May 2017 test period were observed with the “Similar-Extended” and “Full-

Extended” training periods. However, these figures were omitted for brevity. A summary 

of the measures-oriented forecast performance can be alternatively engaged through 

MAE comparisons. As described in Chapter III, MAE is closely related to the CRPS—

that is, a strictly proper scoring rule that has become something of an unofficial standard 

for distributions-oriented forecast performance in the statistical post-processing 

community. MAE comparisons provide a convenient transition to CRPS comparisons and 
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other scoring rules appropriate for full predictive distributions—a primary focus of this 

dissertation vis-à-vis ensemble calibration and forecast uncertainty. 

To this end, Figure 51 depicts box plots of the MAE produced by each of the 

models compared in Figures 45, 46, and 47 for diurnal maximum surface temperatures. 

Absolute errors for each model, city, and day are averaged over the 21 cities to produce a 

61-day distribution of inter-city MAEs for each model. The interquartile range and 

median of these MAE distributions is identified by a box and solid horizontal line; the 

former is bounded by the first and third quartiles. Figure 51 has been sorted in ascending 

order according to median inter-city MAE so that relative performance is expressed with 

the order of the model instances (i.e., left is better). The color palette provided in the 

Taylor diagrams has been reproduced in Figure 51 to provide consistent model group 

comparisons. NPSR instances associated with the “Full” and “Similar” training periods 

were the best MAE performers. However, the performance margins for this predictand 

are not significant and are sometimes trivial compared with their OLS counterparts. This 

is demonstrated by the NPSR_F and OLS_F instances; while the former had smaller first, 

second (i.e., the median), and third MAE quartiles, the differences are indeed small. 

Moreover, the performance gradient for the statistical post-processing forecasts was 

similarly small. Nevertheless, the poor performance of the raw ensemble is notable in 

Figure 51. Also evident is the comparatively poor performance of model instances trained 

over the “Recent” training period, which primarily occupy the right side of Figure 51. It 

should be noted that NPS BEMOS instances generally outperformed OLS models trained 

with identical data (e.g., NPS2F vs OLS2F). However, the research conjectures focused 

on JPM structure were not validated. NPS BEMOS models with noninformative priors 

(purple) sometimes outperformed hierarchical models (green); a similar pattern was 

sometimes observed with MVN and MVT likelihood functions.  

To obtain a more granular view of the MAE performance for maximum diurnal 

surface temperature predictions, we can remove the dynamical models and focus on the 

estimates produced by statistical post-processing. To this end, Figure 52 shows the same 

information as in Figure 51—now conditioned by trained period to better reflect its 

impact on forecast performance. The “Full” training data (grey) indicate that the model 
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perturbations explored in Table 2 show very little impact through MAE scores alone. 

Models trained with SREF ensemble mean predictors lead this group (e.g., NPSR and 

OLSR), but other comparisons yield no meaningful differences. The “Similar” training 

period (blue) exhibited similar patterns; NPSR_S and OLS_S lead their group with a 

narrow range of MAE performance distributed over the remaining model perturbations. It 

should be noted that the NPSR and OLSR models were able to meet, and in some cases 

exceed, the performance of NPS5 and NPS6—models trained with a partial knowledge of 

the test data. As with the Taylor diagram comparisons, however, the “Recent” training 

period (gold) expressed more meaningful performance variability. The OLS reference 

forecasts performed particularly poorly in this training period—even OLSR. 

 

Figure 52.  Box plots of inter-city MAE distributions for maximum diurnal 

surface temperature predictions. Performance has been conditioned 

by training period for 21 cities and 61 test days. 
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Similar patterns were observed for the remaining two predictands when 

conditioned by training period. Focusing again on the “Recent-Extended” training period 

to properly examine the impact of the April 2017 update, Figure 53 provides box plots for 

inter-city MAE distributions associated with maximum diurnal surface temperature 

predictions during the May 2017 test period. The models benefiting from the update—

that is, NPS5 and NPS6—rise to the top of the MAE performance comparison. While the 

performance gradient is small amongst NPS BEMOS models in this case, two of the three 

OLS models performed poorly. Moreover, Bayesian models with hierarchical priors and 

MVT distributions outperformed their noninformative and MVN counterparts. 

 

Figure 53.  Box plots of inter-city MAE distributions for maximum diurnal 

surface temperature predictions. “Recent” and “Recent-Extended” 

training data for 14 model perturbations over 21 cities during the 

May 2017 test period are depicted. Models are sorted in ascending 

order according to median inter-city MAE. 
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Figure 54 is identical to Figure 53 but depicts MAE performance for minimum 

diurnal surface temperature predictions. NPS5 and NPS6 show the benefit of the updated 

training information relative to peer models trained with “Recent” data. However, the 

narrow performance range for the remaining model perturbations is evident here too. 

Performance differences between noninformative (purple) and hierarchical Bayesian 

models (green) is generally negligible. However, models with MVT likelihoods 

demonstrated a slight performance advantage. Only the OLS2 reference estimate 

performed poorly with this predictand; NPS BEMOS instances using NMMB control 

predictors made non-trivial improvements over the reference bias correction scheme. 

 

Figure 54.  Box plots of inter-city MAE distributions for minimum diurnal 

surface temperature predictions. “Recent” and “Recent-Extended” 

training data for 14 model perturbations over 21 cities during the 

May 2017 test period are depicted. Models are sorted in ascending 

order according to median inter-city MAE. 
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Figure 55 depicts the inter-city MAE distributions for maximum diurnal surface 

wind speed predictions during the May 2017 test period. As with the previous two 

figures, NPS5 and NPS6 demonstrate the impact of April 2017 training data for “Recent” 

model perturbations. For this predictand, however, the April update did not provide the 

best MAE performance; MVT model perturbations faired marginally better than the rest 

of the group with a modest performance gradient delineating the bulk of the models. 

Hierarchical priors (green) also provided a slight performance advantage over 

noninformative priors (purple). All three OLS models occupy the bottom half of the 

group again; OLS1 and OLS2 demonstrated the poorest performance in this comparison. 

 

Figure 55.  Box plots of inter-city MAE distributions for maximum diurnal 

surface wind speed predictions. “Recent” and “Recent-Extended” 

training data for 14 model perturbations over 21 cities during the 

May 2017 test period are depicted. Models are sorted in ascending 

order according to median inter-city MAE. 
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A summary of MAE performance for each model perturbation in Table 2 is 

reported by the heatmaps in Figures 56 and 57. Each column is formed by averaging the 

absolute error of each statistical model over all training periods, cities, and days for the 

May test period. In this way, the heatmaps provide the broadest generalization of MAE 

performance for each of the three predictands. Figure 56 describes this generalized MAE 

comparison in the original units of the sensible weather variables—that is, [K] for diurnal 

surface temperature extrema and [ m 1s ] for diurnal maximum surface wind speeds. 

Figure 57 reports the standardized MAE performance so that all MAE scores have been 

centered and scaled according to the mean and variance (i.e., z-scores) of each predictand 

group.  

 

Figure 56.  Heatmap of MAE for the statistical models in Tables 2 averaged 

over all training periods, cities, and days for the May test period.   
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The sequential color palette applied to Figure 56 is consistent with the MAE 

reported for each column in the original units of the predictand. In this way, darker colors 

indicated higher relative MAE (i.e., poorer performance) within each group. Figure 56 

confirms that OLS 2 had the poorest MAE performance of all models over all 

predictands. It also indicates that NPSR, NPS6 and, to a lesser extent, NPS5 

demonstrated the best relative performance. Comparisons between MVN and MVT 

likelihood functions (e.g., NPS1 and NPS3) showed a slight advantage for the latter. The 

presence of hierarchical prior information for the NPS BEMOS instances a slight impact 

as well. Figure 57 communicates similar findings. It shows a clear trend for relative OLS 

performance; with one exception, all three performed at or below group means. 

 

Figure 57.  Heatmap of standardized MAE performance for the statistical 

models in Tables 2. Values are averaged over all training periods, 

cities, and days for the May test period. 
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3. Distributions-Oriented Performance 

NPS BEMOS forecasts were produced according to Equation 45 by drawing 

10,000 random posterior parameter samples from the thinning region of their respective 

Markov chains—that is, the portion of the Markov chain beyond burn-in vis-à-vis Figure 

31. In this way, NPS BEMOS PPDs (e.g., Figure 25) are explicitly probabilistic and 

compose joint probability distributions in the 3-dimensional state space of the 

predictands. Nevertheless, the NPS BEMOS estimates evaluated in the previous section 

were derived from descriptive statistics extracted from the full Bayesian PPDs. Figure 58 

recovers the full 3-dimensional probability structure and decomposes the pairwise 

relationships along each dimension of the multidimensional predictand—that is, a 

pairplot matrix. Univariate PPDs for each predictand are indicated on diagonal elements. 

Pairwise scatter plots of the joint posterior predictive samples are depicted in the upper 

triangular elements. Two-dimensional KDE is represented on the lower triangular 

elements and describes the probabilistic density associated with each joint scatterplot 

comparison. Finally, dashed black lines indicate true values for each predictand. 

While representing only one PPD for the NPSR_F model instance over the full 

61-day test period, Figure 58 describes the probabilistic relationships between each 

predictive dimension and, indeed, a complete Bayesian probability statement for each 

variable. Positive skew with the diurnal maximum surface wind speed is also evident, and 

this structure gives rise to the covariance observed in off-diagonal elements that include 

this variable. The marginal probability densities produced by two-dimensional KDE 

techniques are further examined in Figure 59 and correspond to the forecast indicated in 

Figure 25. In this way, the lower diagonal elements of the pairplot matrix can be seen as 

the normalized density of the upper triangular scatter plots; higher densities yield brighter 

colors in Figure 59 and describe forecast regions with more probabilistic mass. The 

observed values (dashed lines) indicated in Figure 58 and 59 suggest that the joint PPD 

structure is consistent with the observations; they could be considered plausible IID 

samples from each marginal PPD in Figure 58. However, more forecast trials are needed 

to properly assess the performance and calibration of thee distributions. 
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Figure 58.  Pairplot matrix for the NPSR model with “Full” training data 

corresponding to a PPD valid May 31, 2017 for Monterey, CA. The 

3-dimensional structure of the PPDs are decomposed along each 

predictive dimension. Univariate PPDs for each predictand are 

depicted as marginal distributions on diagonal panels. Joint scatter 

plots of PPD samples for each pairwise relationship are depicted in 

the upper triangular panels. Two-dimensional KDE estimates of the 

joint probability distribution for each pairwise relationship are 

depicted in lower triangular panels. Truth is indicated with dashed 

black lines. 
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Figure 59.  Joint PPD density for minimum diurnal surface temperature and 

maximum diurnal surface wind speed for the NPSR model with 

“Full” training data. Forecast corresponds to May 31, 2017 for 

Monterey, CA. Brighter colors represent higher probability densities. 

Dashed white lines indicate the true values observed for this forecast 

trial. 

The MAE comparisons in the previous section can be extended for full predictive 

distributions with the CRPS according to Equation 68. To provide a fair comparison with 

Bayesian PPDs (i.e., NPS BEMOS instances), OLS forecasts have been dressed 

according to Equation 52 and 54. More specifically, the present work produced suitable 

estimates for the mean and variance with the OLS/frequentists methods described in 

Chapter III. Once these distributional parameters were determined for each forecast trial, 

10,000 forecast samples were drawn from a MVN normal distribution according to 

Equation 56. Raw SREF output was dressed in a similar manner. Each dynamical solver 

and the full ensemble produced a sparsely populated ensemble of discrete forecast 
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estimates for each forecast trial in the test period. The mean and variance of each 

distribution (i.e., AREF, MBEF, and SREF) was computed and 10,000 multidimensional 

samples were subsequently drawn from a corresponding MVN distribution for each test 

day. These discrete forecast estimates formed equivalent SREF and OLS forecast 

distributions that can be scored with the same functions as NPS BEMOS PPDs. In simple 

terms, this approach formed SREF PPDs so that they would retain the original spread of 

their ensembles; OLS PPDs have been post-processed with frequentist uncertainty 

information according to traditional methods of regression modeling. 
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Figure 60.  Box plots of inter-city CRPS distributions for diurnal maximum 

surface temperature predictions. Results correspond to 45 models 

evaluated over 21 cities and 61 test days. Models are sorted in 

ascending order according to median inter-city CRPS. Raw 

dynamical predictions extracted from the SREF EPS are indicated in 

grey; MLE in purple; NPS in green; and OLS in red. 

To this end, Figure 60 shows a full distributions-oriented comparison of diurnal 

maximum surface temperature forecast performance with the CRPS for the dynamical 

and statistical models originally considered in Figure 51. The CRPS for each model, city, 

and day are averaged over the 21 cities to produce a 61-day distribution of inter-city 

CRPS for each model. Lower CRPS indicates better predictive performance; values are 

reported in the original units of the predictands—that is, [K] for diurnal temperature 

extrema and [ m 1s ] for diurnal maximum surface wind speeds. A modest performance 

gradient is indicated by the median CRPS of each model with “Recent” model 
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perturbations and the raw dynamical output indicating the worst performance over the 

full 61-day test period, which are located on the right side of Figure 60. Reference 

models OLS1 and OLS2 performed similarly to the comparisons in Figure 51 for 

analogous MAE scores. Conversely, the “Full” instances tended to provide the best 

performance with NSPR_F and OLSR_F leading the group. Both models beat equivalent 

NPS5 and NPS6 instances, which trained with data from the April 2017 test period. NPS 

BEMOS models generally outperformed OLS peers trained with similar predictors. 

As with the previous MAE comparisons, the dynamical models were found to be 

outliers for poor CRPS performance with all three predictands. A more granular view of 

the statistical model performance can be obtained by conditioned the remaining set of 42-

models from Table 2 according to training period as indicated by Figure 61. These box 

plots mirror the form of Figure 52 and show the notable disparities in forecast 

performance between the training periods for maximum diurnal surface temperature 

predictions. “Recent” training data (gold) again provided the poorest performance; 

however, it also expressed more differences between the perturbations and notably 

provided the largest performance margin for NPS BEMOS models. In this way, the 

Bayesian approach to parameter estimation appears to provide a greater return on 

modeling investment with less training data—especially when the training data is less 

consistent with the test period (e.g., the “Recent” versus “Similar” performance 

comparison). 
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Figure 61.  Box plots of inter-city CRPS performance distributions for 

maximum diurnal surface temperature predictions. Data are 

conditioned by training period for 42 model perturbations over 21 

cities and 61 test days. 

It is notable that NPSR performance generally matched or exceeded that of NPS5 

and NPR6, both of which have been trained with data from the April 2017 test period. 

This suggests that the influence of SREF ensemble mean predictors was highly beneficial 

to performance, for both SREF and OLSR models, and in some cases was more impactful 

than including test data in the training period. To provide a fair comparison, Figure 62 

repeats this analysis for the May 2017 test period and examines CRPS performance for 

maximum diurnal surface temperature predictions with “Recent” and “Recent-Extended” 

training data. NPS5 and NPS6 provide the best CRPS performance over this test period, 

while NPSR provides similar—albeit lower—performance. It should be noted that all 
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three references models provided the poorest CRPS results with these test conditions—

even OLSR. Models with MVT likelihoods provided a slight performance advantage.  

 

Figure 62.  Box plots of inter-city CRPS distributions for maximum diurnal 

surface temperature predictions with “Recent” and “Recent-

Extended” training data. Data correspond to 14 statistical model 

perturbations over 21 cities during the May 2017 test period. Models 

are sorted in ascending order according to median inter-city. 

A complete summary of CRPS performance is provided by the heatmaps in 

Figures 63 and 64. As before, the heatmap columns are formed by averaging the absolute 

error of each statistical model over all training periods, cities, and days for the May test 

period. Figure 63 describes the generalized CRPS performance of each model in the 

original units of the sensible weather variables—that is, [K] for diurnal surface 

temperature extrema and [ m 1s ] for diurnal maximum surface wind speeds. Figure 64 
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describes standardized CRPS performance with centered and scaled scores according to 

z-score transformations within each predictand group. This permits comparisons within 

and between the predictand groups and provides additional contrast in performance. 

 

Figure 63.  Heatmap of CRPS performance for the statistical models in Tables 2 

averaged over all training periods, cities, and days for the May test 

period. 

NPSR, NPS6, and, to a lesser extent, NPS5 provided the best distributions-

oriented performance according to the CRPS comparisons in Figure 63. The color palette 

similar indicates that perturbations trained with control predictors from the NMMB core 

generally outperformed their peers trained with the ARW control predictors. Figure 64 

indicates that models trained from the former provided above-average performance. 

Moreover, the reference OLS distributions performed poorly overall—especially OLS2. 
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This result is notable because it represents the reference regression method trained with 

NMMB predictors—an inversion of the performance pattern observed with the Bayesian 

schemes. As with the MAE comparisons, no notable differences were observed between 

model instances with noninformative and hierarchical priors (e.g., MLE1 vs NPS1). 

However, a slight performance advantage was observed for MVT likelihood functions.  

 

Figure 64.  Heatmap of standardized CRPS performance for the statistical 

models in Tables 2 averaged over all training periods, cities, and 

days for the May test period. Values represent dimensionless z-score 

comparisons of CRPS. 

Mirroring the original analysis of Gneiting et al. (2005), the present work found 

similar patterns in ignorance (logarithmic) scores with the aforementioned test 

conditions. As a strictly proper scoring rule that examines the a posteriori probability 
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density of observed truth with the relevant predictive distributions vis-à-vis Equation 58, 

it measures performance without regard for the desperate units of the predictands. In this 

way, model skill across predictands can be validly compared according to the idealized 

point mass of an observation in the associated probability distribution. A convenient 

reference is provided by the dashed lines in Figure 58 and 59. Ignorance scores measure 

the agreement between PPDs and observations according to the probability density each 

forecast distribution assigned to the true value; lower ignorance scores are better.  

 

Figure 65.  Heatmap of ignorance scores for the statistical models in Tables 2 

averaged over all training periods, cities, and days for the May test 

period. Lower ignorance scores (lighter shading) indicate better 

performance.  



 163 

To this end, and for the sake of brevity, the present work will examine ignorance 

score comparisons beginning with the full heatmaps previously examined. Figure 65 

provides such a comparison averaged over all cities, training periods, and days for the full 

61-test period covering April and May 2017. JPMs with noninformative and hierarchical 

prior information show no meaningful distinctions (e.g., MLE2 vs. NPS2). Moreover, the 

reference OLS distributions produced some of the highest ignorance scores in group—

especially OLS2—and were always observed above group means. These ignorance 

scores also reveal the first valid comparisons—that is, without additional 

transformations—between predictive performance across the predictands. In the present 

work, they suggest that the best skill (i.e., the lightest shading) was obtained for 

minimum diurnal surface temperature and maximum diurnal wind speed predictions. 

However, differences between predictands were relatively small. 
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Figure 66.  Heatmap of ignorance scores for diurnal maximum surface 

temperature predictions with the statistical models in Tables 2. 

Results are averaged over all cities and days for the full 61-day test 

period. Lower ignorance scores (lighter shading) indicate better 

performance. 

Nevertheless, an interesting result emerged in Figure 65 for the likelihood 

function comparisons. MVT likelihood functions appeared to affect more noticeable 

performance benefits vis-à-vis robust regression. In particular, we note that NPS3 

provided a modest yet non-trivial advantage over NPS1; this finding was repeated with 

the other dynamical solver (i.e., NMMB) for NPS2 and NPS4. However, this effect was 

only observed with diurnal maximum surface temperature predictions. Regardless, the 

parallel performance gains between both SREF cores are compelling. To examine this 

finding in more detail, we can condition the information in Figure 65 by training period 

in the same heatmap format. Figure 66 depicts the ignorance score results for maximum 
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diurnal surface temperature predictions as a function of training period when averaged 

over all cities and days in the full 61-day test period. Similar to the findings with MAE 

and CRPS comparisons, ignorance scores revealed the best performance with “Full” and 

“Similar” training data. However, Figure 66 indicates that MVT likelihood functions 

expressed performance gains during all three training periods (e.g., MLE1 vs MLE3). As 

previously indicated, this finding was not duplicated with the remaining two predictands. 

Heatmaps conditioned by other variables can be similarly explored. Figure 67 

considers standardized ignorance scores associated with maximum diurnal surface 

temperature predictions for each forecast city. It also adds ignorance score information 

for the raw dynamical distributions for a full 17-model comparison. The poor 

performance of the raw ensemble distributions is evident with the horizontal strip of 

warm shading in the first three rows; this indicates ignorance scores that are well above 

the average the model group within each city. AREF was notable for producing high 

ignorance scores with every city; however, the MBEF ensemble—which is based on the 

13-memebr distribution from the NMMB dynamical solver—did perform well during the 

61-day test period in certain cities. Dallas/Fort Forth (i.e., DFW) was notable for 

providing an inversion of distributions-oriented forecast performance for the OLSR 

model. Moreover, MVT distributions in MLE3 and NPS3 mitigated the poor showing by 

other ARW models (i.e., AREF, MLE1, NPS1, and OLS1) for this city. Nevertheless, 

both OLS and NPS BEMOS perturbations consistently outperformed the raw ensembles 

from which their predictors were drawn. The latter was notable for outperforming their 

dynamical counterparts in almost every city for maximum diurnal surface temperature 

and wind speed predictions. Figure 68 provides the same basic ignorance score 

information—now without the z-score standardization and conditioned by training day. 

Moreover, it describes raw ignorance score results for minimum diurnal surface 

temperature predictions. In this way, each column represents ignorance scores averaged 

over all 21 cities and test periods for each forecast trial in the full 61-day test period. 
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Figure 67.  Heatmap of standardized ignorance scores for all 17 primary models. 

Scores are averaged over all training periods for diurnal maximum 

surface temperature predictions during the full 61-day test period. 

Shaded values represent dimensionless z-score comparisons within 

each city (column). Lower (cooler) values indicate better 

performance. 

Figure 68 similarly indicates that the raw dynamical distributions consistently 

provided the poorest distributions-oriented performance. This is evident with the darker 

horizontal strip of ignorance scores in the first three rows. An inversion of the 

performance comparison between AREF and MBEF is apparent as well; the former 

provided the worst performance when ignorance results were conditioned by city. 

However, this result is localized to the predictand; the reverse was found with maximum 

diurnal surface temperatures—as before. Finally, the conditioning in Figure 68 indicates 
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that the statistical forecasts did not experience any “catastrophic” forecast days; this is, 

forecast trials where the predictive distribution was notably inconsistent with truth. 

 

Figure 68.  Heatmap of ignorance scores for diurnal minimum surface 

temperature predictions. Results are averaged over all cities and 

training periods for the full 61-day test period. Lighter shading 

indicates better performance. 

To summarize these dimensionless ignorance scores with additional clarity, an 

aggregated performance measure that combines information from all predictands has 

been formed according to a sum of squares so that  

 2 2 2

1 2 3 ,CIGN IGN IGN IGN     (70) 
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where 
iIGN  describes the ignorance score obtained from the i th predictive dimension 

(e.g., 
1IGN  corresponding to ignorance scores for maximum diurnal surface 

temperatures) and 
CIGN  describes the combined performance along all three predictands. 

Using this format, dotplots for the combined performance of the statistical models in 

Table 2 are reported in Figure 69. These results combine ignorance scores from all 

predictive dimensions averaged over all cities, training periods, and test days. Models 

have been sorted in ascending order according to the combined ignorance scores so that 

relative performance is indicated by model order; better performance is indicated on the 

left of each panel. Figure 69a considers the full 61-day test period (i.e., April and May 

2017) from Table 3; Figure 69b fairly considers the influence of the April training update 

with NPS5 and NPS6 by showing combined ignorance scores during May 20017 only. 

Raw dynamical distributions have been omitted from Figure 69 due to poor performance 

and scale considerations. In this way, Figure 69 arguably represents the most complete 

single measure of performance appropriate for the full forecast distributions produced by 

the statistical models in this dissertation. 
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Figure 69.  Summary of statistical model performance with combined ignorance 

scores averaged over all cities, training periods, and forecast days. 

The top (bottom) panel considers the full (May) test period. 

Figure 69 suggests that hierarchical prior information had a very small effect on 

measures-oriented performance when compared with noninformative JPMs. While both 

NPS1, NPS2, NPS3, and NPS4 outperformed their noninformative counterparts (i.e., 

MLE1, MLE2, MLE3, and MLE4)—a consistent trend that is notable when averaged 

over all design variables—the margins were nevertheless small. Comparisons between 

MVT and MVN likelihood functions yielded larger and more measurable performance 

margins. This result was also repeated over both dynamical solvers and, as a result, is 

likely non-trivial. However, these margins were smaller than the impact provided by 

predictor variables and training period. The former is demonstrated by SREF ensemble 

mean predictors consistently outperforming control predictor from each core. Moreover, 

NMMB predictor variables produced statistical forecasts that outperformed their ARW 

counterparts. Figure 69b similarly suggests that updated training information provided a 
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notable improvement in predictive performance relative to peer-models (i.e., NPS5 vs. 

NPS1 and NPS6 vs. NPS2). This indicates that predictor source and the length/character 

of the training data had a larger impact on measures-oriented performance than JPM 

perturbations. Finally, it should be noted that all NPS BEMOS instances added value 

over the reference OLS methods—even the OLSR instance trained with ensemble mean 

predictors. 

4. Calibration 

Ensemble calibration can be partially assessed with the distributions-oriented 

scoring rules considered by the previous section. In this way, lower CRPS and ignorance 

scores suggest that a model is producing forecast distributions that are relatively more 

calibrated. Nevertheless, the reliability and resolution of the probabilistic forecasts is 

frequently evaluated with other visual methods of inspection. Gneiting et al. (2005) and 

Richter (2012) notably use the PIT histograms described in Chapter III to assess the 

sharpness and calibration of their forecast distributions. In this way, the present work has 

aggregated PIT values from every training period considered by the statistical forecast 

distributions in Table 2. Much like the Taylor diagrams, the distribution of PIT values 

communicates a great deal about the characteristics of the forecast distributions and how 

well they correspond to the observations. Uniform PIT histograms indicate a calibrated 

distribution; a non-uniform distribution suggests the ensemble is biased or contains 

anomalous dispersion. 
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Figure 70.  PIT histograms for SREF (a), OLSR (b), and NPSR (c) forecast 

distributions over all cities, training periods, and test days.  

To this end, Figure 70 shows a PIT histogram comparison for all models 

associated with the full SREF ensemble. The top panel (a) corresponds to the PIT values 

for each predictand extracted from the raw EPS for every city and test day; the middle 

panel (b) describes the PIT values obtained from the OLS reference method trained with 

ensemble mean predictor variables for every city, training period, and test day; the 

bottom panel depicts PIT values collected from the NPSR model for every city, training 

period, and test day. In this way, each panel in Figure 70 examines forecast distributions 

that are based on the same dynamical information. Raw EPS output (top panel) produced 

notably uncalibrated forecast distributions. Predictive distributions for maximum diurnal 

surface temperature and wind speed show significant bias; the left skew in both subplots 

indicates a cold bias for the former and a calm bias for the latter. Minimum diurnal 

surface temperature predictions appear to be relatively unbiased from the negligible skew 

in the center column of the top panel (a); however, the “u-shaped” curvature of this PIT 
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distribution indicates that the raw ensemble is underdispersive—that is, it is 

overconfident with minimum diurnal surface temperatures. 

OLSR predictive distribution calibration is indicated in Figure 70b. These results 

are notably more calibrated—especially for maximum diurnal surface temperature and 

wind speed predictive distributions. The first column of the middle panel (b) is relatively 

uniform in appearance—save for the large number of observations found below the 

predictive distributions. This suggests that OLSR has a slight warm bias but is otherwise 

calibrated. The middle column is also unbiased; however, it is also underdispersive and 

provided no meaningful improvement to calibration relative to the original dynamical 

EPS. The third and final column in the middle panel (b) is marginally overdispersive and 

contains a slight bias toward calmer winds relative to the observations. This is certainly 

an improvement over the raw EPS output. In this way, OLSR forecast distributions were 

adequately calibrated relative to the original SREF ensemble. 

The Bayesian estimation scheme associated with NPSR is considered in Figure 

70c. Forecast distributions for the diurnal surface temperature extrema have relatively 

uniform PIT distributions—especially for diurnal minimum surface temperature. The 

latter suggests that the NPS BEMOS model has properly calibrated the original EPS 

output for this predictand. Based on the change in scale for the first column of Figure 

70c, maximum diurnal surface temperatures are also well calibrated. A slight warm bias 

is indicated, but it is smaller in magnitude than the raw EPS and OLS solutions. Finally, 

the NPSR perturbation is overdispersive relative to wind speed observations. This 

suggests that the associated forecast distributions have too much spread—that is, they are 

underconfident. There is a slight bias toward calmer surface winds too. Nevertheless, the 

magnitudes of these defects are smaller than with other methods in Figure 70. In this 

way, the NPSR model produced forecast distributions with the best calibration across all 

predictands relative to peer models using similar dynamical information. 
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Figure 71.  PIT histograms for MLE1 (a), NPS1 (b), and NPS3 (c) forecast 

distributions. The PIT values represented in each distribution are 

aggregated from all cities, training periods, and test days.  

Additional calibration comparisons are available in Figure 71. Each panel depicts 

PIT values from models trained with control predictors from the ARW dynamical solver 

over every city, training period, and test day. The top panel (a) corresponds to MLE1; the 

middle panel (b) describes NPS1; the bottom panel (c) depicts NPS3. In this way, Figure 

71 explores two of the research questions posed for this dissertation: it considers the 

impact of JPM structure on calibration vis-à-vis likelihood functions and Bayesian priors. 

Figures 71a and 71b have identical likelihoods but different priors. Nevertheless, they are 

virtually indistinguishable. This suggests that the hierarchical Bayesian prior information 

in NPS1 had little impact on calibration. However, Figure 71c provides modest but 

noticeable improvements to calibration for all three predictands; the center column is 

particularly uniform. In this way, all three predictive dimensions displayed more uniform 

PIT histograms for NPS3. This result was replicated with NPS4, which suggests MVT 

likelihood functions were better calibrated than peer models with MVN likelihoods. 
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Figure 72.  Reliability diagram comparing the relative frequency of diurnal 

maximum surface temperature observations in various predictive 

HDIs. Raw dynamical PPDs are indicated in grey; OLS PPDs in red; 

NPS PPDs in green; and MLE PPDs in purple. Perfect reliability is 

indicated with a dashed black line; solid black lines border a red 

shaded region of “poor” reliability. 

Figure 72 considers another calibration metric—that is, reliability—for the 

models compared heretofore. It depicts the relative reliability performance of diurnal 

maximum surface temperature PPDs produced by raw dynamical (grey), OLS (red), NPS 

(green), and MLE (purple) methods. A dashed black line of perfect reliability indicates 

ideal performance. These results have been averaged over all cities, training periods, and 

days in the full 61-day test period. Figure 72 indicates that the statistical models are 

notably more reliable than the raw ensemble distributions; the latter are typically 

observed in a region of “poor” reliability. However, there are no meaningful distinctions 

between statistical methods were readily apparent; NPS BEMOS models are generally 
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observed above the line of perfect reliability, while OLS models (blue) are generally 

below this line. In this way, the former would be properly described as underconfident 

(i.e., overdispersive HDIs) while the latter is overconfident (underdispersive HDIs). 

Nevertheless, the magnitudes of theses reliability anomalies relative to the “prefect” line 

are notably smaller than the reliability anomalies associated with the dynamical models. 

 

Figure 73.  Reliability diagram comparing the relative frequency of diurnal 

minimum surface temperature observations in various predictive 

HDIs. Raw dynamical PPDs are indicated in grey; OLS PPDs in red; 

NPS PPDs in green; and MLE PPDs in purple. Perfect reliability is 

indicated with a dashed black line; solid black lines border a red 

shaded region of “poor” reliability. 

Results for diurnal maximum surface wind speed PPDs (not shown) were 

consistent with Figure 72. The raw ensemble PPDs produced the poorest reliability 

performance while the statistical models were tightly clustered near the line of perfect 
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reliability. NPS BEMOS models again show a slight tendency toward underconfident 

HDIs relative to OLS methods. However, Figure 73 shows an advantage for NPS 

BEMOS models (green and purple) with HDIs for diurnal minimum surface temperature. 

In particular, OLS models (red) were underdispersive compared with their Bayesian 

counterparts. Raw ensembles (grey) produced their best relative reliability performance 

with this predictand—especially the full SREF ensemble. 

A combined summary of reliability performance is provided in Figure 74. It 

considers the absolute deviation of each individual reliability curve from perfect 

reliability (i.e., the dashed black reference line) to form an absolute anomaly for each 

model. These values were then averaged over all HDI mass fractions and predictands for 

each of the 17 primary models considered by this dissertation. Models have been sorted 

in ascending order according to their mean reliability anomaly rank; better performance is 

indicated on the left. Figure 74a depicts the combined anomaly performance for the full 

61-day test period; Figure 74b describes the same but for the May 2017 test period only. 

Both panels indicate a poor reliability performance for the raw dynamical distributions. 

This was especially true for the MBEF core, which produced mean absolute reliability 

anomalies above 0.4 for both test periods. Calibration via OLS methods fared better; 

however, only one of the OLS models was able to generate reliability performance above 

the group mean. In this way, NPS BEMOS models consistently outperformed their 

dynamical and OLS counterparts—albeit with small margins for the latter. Bayesian 

models with hierarchical priors outperformed peer models with noninformative priors. 

Moreover, Bayesian models with MVT likelihood functions lead the group and produced 

small yet consistent margins over similar models with MVN likelihood functions. This 

finding was duplicated with combined ignorance scores and with PIT histograms and is, 

therefore, likely meaningful. Nevertheless, the performance margins between statistical 

methods was comparatively small. As before, the primary performance distinctions are 

expressed between statistical and dynamical methods—not within the former. 
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Figure 74.  Mean absolute reliability anomalies averaged over all HDI mass 

fractions, predictands, cities, training periods, and test days. The top 

(bottom) panel considers the full (May) test period. 
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V. SUMMARY 

A. DISCUSSION 

Previous research in statistical post-processing methods has found systematic 

deficiencies in deterministic forecast guidance. Gneiting et al. (2005), Raftery et al. 

(2005), and Hodyss et al. (2016) all note that ensemble predictions are frequently 

observed with biased central tendencies and anomalous dispersion. In this way, 

regression techniques that statistically characterize the relationship between objective 

guidance and its predictive errors have been developed to post-process raw NWP output 

and affect better forecast performance. To this end, Gneiting et al. (2005) introduced the 

NR/EMOS technique as a parametric extension of MOS (Glahn and Lowry 1972) to 

generate probabilistic forecasts for continuous weather variables in the form of predictive 

distributions (Gneiting et al. 2005). Richter (2012) then adapted the NR/EMOS approach 

for Bayesian inference to adopt a more rigorous framework of parameter estimation. This 

dissertation independently developed a Bayesian approach to EMOS that is consistent 

with the BEMOS technique originally introduced by Richter (2012). It was conceived in 

the search for a programmatic scheme that transforms deterministic predictors into 

reliable forecast distributions that outperform raw objective guidance and other common 

forms of statistical post-processing. 

This dissertation developed a multivariate multiple linear regression model that 

uses Bayesian parameter estimation and MCMC sampling techniques to heuristically 

“learn” optimal posterior inferences for model parameters conditioned on the structure of 

the joint probability model and available training data. Posterior beliefs in model 

parameters contain probability statements in the form of PDFs and HDIs that explicitly 

and reliably communicate the joint uncertainty of the regression coefficients. Bayesian 

posteriors were formed by optimizing a cost function associated with a parametric 

predictive distribution (i.e., likelihood function) and hierarchal priors shaped by model 

parameter structure and training data. Posterior predictive distributions are then formed 

by drawing representative samples from the parametric predictive distribution weighted 

by Bayesian posterior beliefs in our model parameters. These Bayesian PPDs were then 
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compared with raw EPS guidance from the SREF system and a peer multivariate multiple 

regression model completed with traditional OLS methods. Predictive distributions for 

the dynamical models was formed by dressing the daily central predictive tendency of 

SREF dynamical solvers with the variance of their members; OLS distributions were 

created by fitting frequentist variance estimates to the associated single-valued parameter 

estimates. 

In this way, the present work represents an extension of the original BEMOS 

concept. It permits full multivariate predictions with coupled covariance between vector 

predictands. Moreover, it introduces a hierarchical parameter structure that treats some 

hyperparameters as random variables that must be inferred from training data. It also uses 

a customized adaptive Metropolis sampler with block-wise multiparameter updates to 

complete non-conjugate Bayesian inferences. It engaged robust regression through the 

novel use of a multivariate t location-scale distributions as a parametric predictive 

distribution. Finally, it uses logarithmic data transformations to produce asymmetric 

predictive distributions for sensible weather variables with intrinsic skew. Unlike the 

NR/EMOS/BEMOS techniques of Gneiting et al. (2005) and Richter (2012), the present 

work primarily used information available outside of a full EPS. In this way, the NPS 

BEMOS model can be directly compared with raw dynamical EPS guidance to assess the 

relative forecast performance of both methods vis-à-vis their generalized computational 

costs. 

This dissertation introduced four primary research questions associated with the 

impact of various model components on forecast performance. More specifically, it 

investigated the influence of training period length and character, the type of ensemble 

predictor(s) used to train the model, the distributional form of the parametric likelihood 

function selected, and the presence of Bayesian prior information. Based on the theory 

and methods in Chapters II and III, it was assumed that more training data affects better 

performance; additionally, training data with more meteorological similarity/relevance to 

the test period was believed to be more ideal. The present work also assumed that 

statistical models using control predictors (i.e., estimates available outside of an EPS) can 

meet or exceed the performance of raw ensembles. Moreover, these control predictors 
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should be able to match or beat the performance of predictors formed from ensemble 

statistics (e.g., the ensemble mean). A MVT likelihood function was assumed to provide 

better forecast performance vis-à-vis robust regression. Finally, hierarchical prior 

information was assumed to be superior to JPMs with noninformative priors. These 

conjectures were formalized and explored by the statistical model perturbations 

summarized in Table 2. 

Predictive trials for these models were evaluated over three predictands, 21 cities, 

and 61 test days during 2016 and 2017. The test period comprised April and May of 

2017. This represents a modification to the WxC forecast competition format so that the 

present work considers locations in parallel over a single, comparatively large continuous 

test period. Three disparate statistical model training periods were formed according to 

their relationships to the test period. “Similar” training data was collected from a 60-day 

period with identical seasonal synoptic forcing (i.e., April and May 2016). “Recent” 

training data was formed by the most recent 60 days to the training period (i.e., February 

and March 2017). The “Full” test period considered the previous calendar year prior to 

the test period and contained data from both of the shorter periods. Forecast performance 

was evaluated by measures-oriented (e.g., MAE) and distributions-oriented (e.g., CRPS) 

scoring rules to assess the agreement between the predictive distributions and the 

observations. PPD calibration—that is, sharp forecast distributions subject to 

observational consistency—was also assessed according to the methods of Gneiting et al. 

(2005), Gneiting et al. (2007), and Richter (2012). 

Results from the analysis and forecast evaluation suggest that the local approach 

to parameter estimation was appropriate. Posterior parameter beliefs showed meaningful 

variability across cities and, in some cases, training periods. Dynamical model 

perturbations (i.e., SREF ensemble members) were found to be highly correlated. 

Statistical forecasts produced by OLS and Bayesian methods exhibited similar levels of 

group covariance; however, the statistical models showed notably reduced linear 

correlation with the central tendencies of each dynamical solver (i.e., SREF core) and, 

indeed, the entire 26-member ensemble. The comparatively low covariance between 

statistical and dynamical forecasts suggests a unique predictive character for the former. 
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In simple terms, the statistical perturbations were not found to be superficial bias 

corrections that mirrored the variability of the dynamical estimates. Taylor diagrams were 

then introduced to examine the variability of the models relative to the observations and 

determine if the low relative covariance was beneficial vis-à-vis measures-oriented 

forecast performance. These results were averaged over all cities, training periods, and 

test days and indicate that the statistical models—both Bayesian and OLS—had forecast 

variability that better matched the observations compared with dynamical forecast 

variability. However, NPS BEMOS model perturbations were found to consistently 

outperform OLS models in linear correlation with the observations and centered RMS 

error—especially the NSPR model given “Full” and “Similar” training data. The 

Bayesian models also demonstrated notable performance margins in relative forecast 

variability with diurnal maximum surface temperature predictions. The “Recent” training 

period accentuated the aforementioned performance comparisons for all predictands. 

Examining the May 2017 subset of test data revealed similar findings. However, NPS 

BEMOS models given access to extended training data from April 2017 (i.e., NPS5 and 

NPS6) showed notable performance gains during this test period. This suggests that 

training updates can have a beneficial impact on forecast performance. 

Measures-oriented forecast performance was then examined through MAE scores. 

A rank-sorting of the models according to median inter-city MAE indicated that “Full” 

and “Similar” models generally provided the best results; NPSR_F lead all models. 

Instances trained with SREF ensemble mean predictors (i.e., all variants of NPSR and 

OLSR) also did well within their respective training groups. Dynamical model 

performance was notably poorer in the MAE comparison and fell short of the statistical 

models in each comparison. However, the performance gradient within statistical models 

was small. While Bayesian models typically outperformed their OLS counterparts within 

each training period group, the margins were generally negligible. As with the Taylor 

diagram comparisons, the “Recent” period produced greater contrasts in forecast 

performance. In particular, the OLS models fared poorly relative to NPS BEMOS 

instances for all three predictands in this training period. Moreover, important patterns in 

relative performance was expressed between models with MVT and MVN likelihood 
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functions and, separately, hierarchical and noninformative priors. MAE results in the 

“Recent” test period suggest that MVT models may have a small performance advantage; 

however, no meaningful differences between noninformative and hierarchical JPMs were 

observed. 

The theoretical similarities between MAE and CRPS compelled the first 

distributions-oriented performance considered by this dissertation. The latter describes 

the dispersion of ensemble members and extends the performance comparison initially 

pursued with MAE to full predictive distributions. To this end, the CRPS results mirrored 

the trends observed with MAE scores. In particular, models trained with SREF ensemble 

mean predictors performed well. Bayesian models generally outperformed their OLS 

counterparts—especially during the “Recent” training period. Raw EPS distributions 

fared poorly and consistently provided the worst CRPS values. Standardized heatmaps 

for CRPS performance indicate larger relative improvements for MVT models—a small 

yet consistent finding. However, hierarchical prior information had a negligible impact 

on performance. Dimensionless ignorance scores were then combined in a sum of squares 

formulation to considered forecast performance coupled along all three predictands in 

Figure 69. These results were averaged over all cities, training periods, and forecast 

variables for both test periods. In this way, Figure 69 provided the most generalized 

distributions-oriented performance measure considered by this dissertation. Diurnal 

maximum surface temperature predictions were found to be the most challenging for the 

models. NPS BEMOS models showed consistent performance advantages; every single 

Bayesian model outperformed their OLS and dynamical counterparts. The combined 

ignorance score findings also provided clearer evidence for the impact of the MVT 

likelihood functions. This result was replicated over both dynamical solvers and JPMs. 

The benefit of hierarchical priors was evident as well—albeit to a smaller degree. 

However, the largest performance margins were associated with models trained with 

SREF ensemble mean predictors (e.g., NPSR) and extended data from April 2017 (i.e., 

NPS5 and NPS6). 

Finally, forecast calibration was visually inspected with PIT histograms and a 

modified form of reliability diagram appropriate for continuous forecast variables and 



 184 

Bayesian HDIs. PIT histograms indicated that raw ensemble distributions were poorly 

calibrated and generally biased. When models based on the same dynamical information 

were directly compared, Bayesian PPDs were found to have less bias and anomalous 

dispersion (i.e., better calibrated) than the reference OLS models. Moreover, models with 

MVT likelihood functions were observed to have more uniform PIT distributions. This 

result was replicated with both SREF cores and all JPMs and reinforces a similar finding 

from the combined ignorance scores. However, Bayesian models with hierarchical priors 

showed no meaningful distinctions in PIT distributions when compared with models 

using noninformative priors. Results from the reliability diagrams indicated that NPS 

BEMOS model instances were generally underconfident (overdispersive) while the OLS 

distributions were slightly underdispersive (overconfident). The dynamical models 

produced the lowest forecast reliability and were generally found in a region of “poor” 

performance. Reliability scores were then combined in a manner analogous to ignorance 

scores in Figure 74. These results suggest that Bayesian models consistently produced the 

lowest mean absolute reliability anomalies when averaged over all cities, training 

periods, test days, and HDIs. While the performance margins were small between 

statistical models, the results were consistent with previous findings and indicate OLS 

methods lagged behind their Bayesian counterparts. Moreover, NPS BEMOS instances 

with MVT likelihood functions produced the best reliability performance and consistently 

outperformed their MVN peers. Hierarchical priors also outperformed their 

noninformative peers; however, the margins were even smaller. As previously stated, 

distinctions within statistical methods were notably smaller than the differences between 

dynamical and statistical models. Regardless, the reliability results indicate that Bayesian 

models were better calibrated than their OLS and dynamical peers. 

B. CONCLUSIONS 

A primary finding of this research concerns the efficacy of the ensemble approach 

to meteorological forecasting. While Gneiting et al. (2005) notes that many forms of 

statistical post-processing correct biased dynamical guidance, there are fewer schemes 

that engage full ensemble calibration. In this way, the NR/EMOS technique is special. It 

“plays dice” with the atmosphere to directly parameterize meteorological phenomena 
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with probability distributions that describe the intrinsic structure of the observable data. 

These parametric distributions should be constructed so that future observations could be 

mistaken for IID samples from the forecast distributions. Calibration vis-à-vis Gneiting et 

al. (2007) describes this relationship perfectly, and it provides the motivation for the 

Bayesian methods explored by the present work. 

However, this research considered an important modification to the NR/EMOS 

technique: it used predictor variables outside of the parent ensemble. In this way, 10 of 

the 11 primary Bayesian models used dynamical controls instead of information sampled 

from the EPS perturbations. All of these NPS BEMOS models consistently outperformed 

forecast distributions formed from the raw ensemble distributions. A similar—albeit 

smaller—result was obtained when the SREF EPS was calibrated with classical OLS 

methods using the same multivariate multiple linear regression framework given to the 

Bayesian models. Bayesian PPDs provided the most accurate and reliable forecast 

distributions considered by this dissertation—and they did so at a fraction of the 

computational cost of the parent EPS. While OLS methods are even more efficient, since 

they obviate the need for sophisticated MCMC sampling techniques, the difference on a 

single forecast trial is trivial (i.e., on the order of minutes). Dynamical ensembles, for 

comparison, require many additional hours over their deterministic control members. The 

NPS BEMOS model can learn from large sets of multivariate training data and produce a 

calibrated multivariate forecast distribution in roughly 10 minutes on a personal 

computer. Perhaps most importantly, the central tendency and spread of these Bayesian 

PPDs is rigorously conditioned to provide consistent agreement with the observations—a 

result that was replicated with nearly every forecast metric considered by this 

dissertation. 

Moreover, the results engaged key aspects of the primary research questions. As 

previously stated, Bayesian models trained with ensemble control predictors were found 

to significantly outperform the raw ensembles and, to a lesser extent, equivalent OLS 

regression methods. It should be noted that performance margins between NPS BEMOS 

and OLS models were generally small and might be regarded as negligible in some 

forecast applications. In this way, classical OLS methods are entirely appropriate when a 
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“good-enough” solution is desired or, perhaps, when measures-oriented metrics are the 

primary concern. OLS methods may also be ideal for model prototyping; that is, one can 

use OLS methods to quickly find skilled predictor variables and then use a full Bayesian 

framework for operational applications. In this way, Bayesian models consistently 

offered the best predictive performance—especially with scoring rules appropriate for 

full predictive distributions. The single best performer was also found in a Bayesian 

model; however, it was trained on SREF ensemble mean predictors (i.e., NPSR). This 

suggests that ensemble information can be useful in statistical post-processing and that 

additional predictors can potentially affect better performance. Nevertheless, the 

performance observed with control predictors was still quite good and, in some cases 

(e.g., mean absolute reliability anomalies), was the best in the comparison. This 

reinforces the primary result: full dynamical ensembles are not required to produce 

calibrated forecast distributions.  

The impact of training data length and character was well described by the 

consistent performance advantages associated with the “Full” training period. The “Full” 

training set contained both of the other training periods and was notably longer. It also 

produced the best models in the majority of the performance comparisons. This result 

was duplicated with multiple performance metrics for both measures-oriented and 

distributions-oriented scoring rules. In this way, the research conjecture that more data 

are better was validated. Nevertheless, the largest performance margins between 

Bayesian and OLS methods were observed with training data that was comparatively 

short and meteorologically dissimilar (i.e., the “Recent” train period) from the test period. 

This suggests that BEMOS techniques likely offer the best utility in data-limited 

environments where time, resources, and operational constraints may preclude thorough 

model training. Performance with “Similar” test data suggests shorter data sets are 

feasible, and sometimes desirable vis-à-vis computational resources, when the training 

data are meteorologically consistent test data. In this way, generalized performance with 

“Similar” training data was remarkably consistent with the “Full” period. This aspect of 

the research conjecture was also validated. Regardless of the data available for training, 

Bayesian models appear to offer better predictive performance. It’s merely a question of 
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how large that margin is likely to be and whether the additional cost of MCMC sampling 

is appropriate for the forecast application. 

The results appeared to contradicted the research conjecture that hierarchical 

Bayesian priors—at least as formulated by the present work—make a meaningful 

contribution to the MLE/Bayesian cost function. While combined ignorance scores and 

mean absolute reliability anomalies indicated a consistent advantage for hierarchical 

JPMs, the margins were so small that the effect would likely go unnoticed in the majority 

of forecast applications. PIT histograms for noninformative and hierarchical JPMs were 

also indistinguishable, so the impact on calibration is likely minimal. Large training sets 

are known to minimize the influence of prior information in Bayesian inference (Gelman 

et al. 2013), so it is possible that hierarchical model structure could add value in data-

sparse environments. Different forms of hierarchical modeling—especially an approach 

that formed local and regional parameters according to clustering in the data—might 

offer measurable performance gains. The findings in the present work merely indicate 

that beta regression shrinkage was ineffective for this application with the number of 

model parameters considered. Alternatively, beta regression shrinkage performed with t-

distribution priors vis-à-vis Kruschke (2014) might make a bigger impact on forecast 

performance.  

Finally, robust regression appeared to provide a more meaningful contribution to 

forecast performance. Bayesian model perturbations with MVT likelihood functions 

collected small margins in MAE and CRPS results; however, the performance advantage 

become more apparent with raw and combined ignorance scores, combined reliability 

diagrams, and, notably, PIT histograms. While the performance margins were still small 

with the former metrics, the PIT results showed a measurable contribution to PIT 

distribution uniformity. When one considers that these findings were repeated, to varying 

degrees, in almost every performance evaluation—across both dynamical solvers and, 

indeed, noninformative and hierarchical priors alike—it seems likely that MVT 

distributions can meaningfully impact forecast performance. In this way, the unique 

shape of the t-distribution is believed to make parametric regression models more 

resistant to outliers. This could have important relevance to future work that seeks 
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predictions for extreme, so-called “black swan” events. Nevertheless, the performance 

impact of t-distribution likelihoods should be balanced against their computational cost. 

NPS BEMOS models with MVT likelihoods generally required 50% more training time.  

C. RECOMMENDATIONS 

The research questions posed by this dissertation were structured to permit the 

associated investigation within suitable time constraints. With more time, the present 

work would focus on four primary areas for additional development: upgrades to the 

adaptive Metropolis sampler using Hamiltonian Monte Carlo methods; more 

sophisticated hierarchical prior structures that cluster model parameters according to 

important structure in the data; full three-parameter t-distribution likelihood functions 

that permit all distributional parameters as random variables; and, finally, a full 

evaluation of training data updates that properly explores the relationship between 

training period length and predictive performance. It would also seek a wider application 

of the hierarchical multivariate BEMOS approach in other forecast applications (e.g., 

tropical cyclone forecasting). Future investigators should note that free, open-source 

MCMC samplers are widely available within the data science community. The present 

work considers the construction of the customized Metropolis sampler as a necessary 

pedagogical exercise in Bayesian data analysis appropriate for a doctoral dissertation. 

However, standard investigations are encouraged to use existing resources (e.g., the 

sampler developed for this work or, perhaps, the professional PyMC3 probabilistic 

programming framework). 
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