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The Coral Triangle is widely considered the most important
centre of marine biodiversity in Asia while areas on its
periphery such as the South China Sea, have received much less
interest. Here, we demonstrate that a small population of the
knobbly sea star Protoreaster nodosus in Singapore has similarly
high levels of genetic diversity as comparable Indonesian
populations from the Coral Triangle. The high genetic diversity
of this population is remarkable because it is maintained
despite decades of continued anthropogenic disturbance. We
postulate that it is probably due to broadcast spawning which
is likely to maintain high levels of population connectivity.
To test this, we analysed 6140 genome-wide single nucleotide
polymorphism (SNP) loci for Singapore’s populations and
demonstrate a pattern of near panmixia. We here document
a second case of high genetic diversity and low genetic
structure for a broadcast spawner in Singapore, which suggests
that such species have high resilience against anthropogenic
disturbances. The study demonstrates the feasibility and power
of using genome-wide SNPs for connectivity studies of marine
invertebrates without a sequenced genome.
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1. Introduction

The Coral Triangle is widely acknowledged as the origin and centre of high marine biodiversity [1,2],
and has therefore attracted much attention and research. Recently, there has been much debate as to
the evolutionary origin of its high biodiversity (reviewed in [1,3]) and biologists are now starting to
appreciate the important contributions from peripheral areas. For instance, Bowen et al. [3] suggested a
biodiversity feedback model in which peripheral populations are important in supporting the processes
that maintain high diversity within the Coral Triangle. The South China Sea, which is on the western
boundary of the Coral Triangle, is part of the biodiversity-rich periphery [4] that contributes to the area
(e.g. [5]), but has received much less attention than the Coral Triangle. Fortunately, the many studies
on fauna in the Coral Triangle (e.g. [6-9]) provide excellent background information for comparing
patterns of diversity with its peripheral areas such as the South China Sea. A good example is the
widespread knobbly sea star, Protoreaster nodosus, which was the subject of a previous phylogeographic
study that documented a continuous genetic landscape across approximately 2000 km of the archipelagic
Indonesian extent of the Coral Triangle from Karimunjawa to Raja Ampat [10].

Although not considered endangered at a global scale, knobbly sea stars are listed as endangered
in Singapore waters due to their restricted distribution [11] within a few seagrass and shallow sandy
intertidal habitats [12]. Rapid economic development over the past few decades has led to significant
fragmentation of Singapore’s coastal and marine habitats, mainly due to conversion of coastal habitats
and land reclamation [13]. Here, we compare the population genetic diversity of the highly impacted
knobbly sea star populations in Singapore at the southern end of the South China Sea, with the
less impacted populations within the Coral Triangle in an effort to assess the status of Singapore’s
populations while allowing for the identification of anthropogenic signatures. Reduced genetic diversity
and higher rates of linkage disequilibrium, for example, can indicate a recent population bottleneck, and
diversifying selection can suggest local adaptive forces [14].

With anticipated near- and long-term changes to Singapore’s coastal profile articulated in the
country’s latest strategic land use and transportation plans [15], there is a need to understand the
current status of Singapore’s marine biodiversity, which will facilitate resource management agencies in
identifying conservation priorities while providing a baseline for future comparisons. Our current study
mirrors a similar study of Platygyra sinensis, a scleractinian coral species in Singapore that suggested no
significant anthropogenic impact on the genetic diversity or connectivity of this broadcast spawner [16]
despite substantial reef loss and fragmentation. Given the similarity of the reproductive characteristics
of P. nodosus to broadcast-spawning corals, namely high reproductive capacity as a broadcast spawner
and long planktonic larval duration (PLD) of two to four weeks [17], genetic connectivity and diversity
of Singapore’s P. nodosus populations could also be expected to be high, but the population dynamics
might differ between coral reef and seagrass-dependent species, especially because Singapore’s seagrass
beds occupy a much smaller area and are more fragmented [18]. Therefore, in this paper we aim to (i)
compare the population genetics of P. nodosus in Singapore waters with those in the Indonesian region of
the Coral Triangle to determine if genetic diversity has been impacted in populations of the former and
(ii) investigate the fine-scale genetic structure of Singapore’s P. nodosus populations using thousands of
genome-wide single nucleotide polymorphism (SNP) markers, which are capable of detecting low levels
of genetic structure not reflected by the traditional cytochrome oxidase I (COI) genetic marker used in
previous studies of Coral Triangle populations (e.g. [19-22]).

2. Material and methods

2.1. Tissue sampling

Five to ten tube feet were collected from 80 individuals of Protoreaster nodosus from five locations
in Singapore (‘north’: Pulau Sekudu, Chek Jawa and Beting Bronok; ‘south’: Cyrene reefs and Pulau
Semakau; figure 1) from January to July 2013, preserved in molecular grade ethanol and stored at —20°C.
Photo-identification vouchers of the aboral surface of individuals [23] were taken prior to release of the
animals, to prevent repeat genetic sampling of the same individual.

2.2. Mitochondrial analyses

Genotyping was performed using the tRNAasn42F and ValvaCOI-770R primers [10] for the
mitochondrial cytochrome oxidase subunit-I (COI). PCR conditions were optimized to bypass DNA
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Figure 1. Locations of Protoreaster nodosus populations from Singapore and Crandall et al. [10] analysed in this study (numbered black
circles). Corresponding specific site names are in the electronic supplementary material, table S1. Sampling locations in Singapore are
presented in the inset map. Boundaries of the Coral Triangle are highlighted with a dotted line.

extraction and conduct PCR directly on the preserved tissue [24]. Tissue samples were placed directly
in 25 ul reactions containing 1x reaction buffer, 0.8 mM total dNTPs, 0.4 uM each primer and 0.8 ul
of a generic Taq polymerase. Cycling parameters were a step-up protocol of 95°C (3 min), 10 cycles
of 94°C (30's), 58°C (30 s) and 72°C (60 s), followed by 20 cycles of 94°C (30s), 60°C (30's) and 72°C
(60's), and a final extension of 72°C (5 min). PCR products were purified using SureClean™ (Bioline)
following manufacturer’s instructions, and sequenced using BIGDYE™ v. 3.1 (Applied Biosystems Inc.)
on an ABI Avant 3130x] Genetic Analyzer. Sequence chromatograms were checked for quality, assembled
and translated to check for stop codons in SEQUENCHER™ v. 4.5 (Gene Codes Corporation).

COI sequence data were also obtained for P. nodosus populations from the Coral Triangle [10]
(figure 1). All sequences were aligned and trimmed to 710 bp using MEGA v. 6 [25]. After removing
samples with significant portions of missing terminal sequences and small populations with less
than 10 individuals, a total of 363 individuals were analysed (electronic supplementary material,
table S1). Haplotype and nucleotide diversities were calculated using DnaSP [26]. Other population
genetic parameters were computed using ARLEQUIN v. 3.5 [27]: (i) pairwise population differentiation
statistics (¢sT values) were calculated with 10000 pairwise permutations for which the p-values were
subject to the Benjamini-Hochberg procedure to correct for multiple comparisons [28], (ii) a mismatch
distribution analysis was conducted under the model of sudden demographic expansion using 10 000
bootstrap replicates, (iii) tests for neutrality were evaluated with Tajima’s D [29,30] and Fu’s Fg [31], and
(iv) a minimum spanning network was computed for all 363 individuals with 10000 permutations.
The network was visualized in HapStar [32]. To account for possible bias in genetic diversity estimates
(number of haplotypes and haplotype diversity) due to sample size variations, each population was
rarefied 30 times to match one of the smallest sample sizes of 15 for Numfor [33]. Four sampling sites
that had fewer than 10 individuals were excluded.

2.3. ddRADseq library preparation

DNA extracts were prepared from two to four tube feet following the manufacturer’s protocol of the
Biospin tissue genomic DNA extraction kit. Extracted DNA samples were quantified using NanoDrop
1000 and assessed for quality on a 1% agarose gel. In total, 36 samples were selected from across
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the three main sampling localities, Pulau Sekudu, Pulau Semakau and Cyrene reefs, based on DNA
quality. A double-digest restriction enzyme associated DNA sequencing (ddRADseq) library was then
prepared from these extracts for genome-wide SNP analyses, using the adapters and PCR primer
pairs in Peterson et al. [34] (refer to electronic supplementary material, table S2, for samples and
corresponding barcodes and indexes). A total of 100 ng DNA from each sample was simultaneously
double-digested with restriction enzymes and ligated to adapters in duplicate 13 ul reactions at 37°C for
3.5 h. Each reaction contained 5 U EcoRI-HF® (NEB), 1 U Mspl, 80 U T4 DNA ligase, 1x T4 DNA ligase
buffer, 50 mM NaCl, 0.05 mg ml~! bovine serum albumin and 3.85 uM of each adapter. The duplicate
digestion-ligation reactions were pooled and size-selected using Sera-Mag™ Magnetic SpeedBeads™
Carboxylate-Modified suspended in an 18% PEG-8000 (w/v) buffer (1 M NaCl, 10 mM Tris-HCI,
1 mM EDTA, pH 8). Briefly, 18 ul per sample was subjected to size-selection with sequential bead : DNA
ratios of 0.78x and 0.95x to extract 250-600 bp DNA-adapter fragments, washed with 85% ethanol
and resuspended in 20 pul molecular grade water. Triplicate PCRs were used to amplify 2 ul of the
size-selected, adapter-ligated DNA fragments in a 10 ul reaction containing 1x Q5 reaction buffer, 200
uM each dNTP, 0.2 M each PCR primer and 0.2 U Q5® High-Fidelity DNA polymerase. PCR cycling
conditions were as follows: 98°C for 30 s, two cycles of 98°C for 10 s, 55°C for 30 s and 72°C for 1 min,
18 cycles of 98°C for 10s and 68°C for 1 min, followed by a final extension at 72°C for 2 min. Size-
selection was repeated using the same bead:DNA ratios as before, to ensure clean products of the
desired fragment size. Purified DNA libraries for 36 P. nodosus samples were quantified using the Qubit®
2.0 Fluorometer, pooled in equal proportions, and sequenced on a single Illumina HiSeq lane (100 bp
paired-end, occupying approx. 65% of the sequencing run).

2.4. ddRADseq analyses

Read quality of the raw sequencing data was assessed using FastQC v. 0.11.2 [35]. Data processing using
STACKS v. 1.24 [36] was as follows: (i) sample reads were demultiplexed, trimmed to 94 bp based on
quality scores for Read 1 (electronic supplementary material, figure S1), filtered for low quality bases and
reads with a sliding window score limit of Phred 20 in process_radtags. The rescue barcodes option was
enabled. Only Read 1 of the paired-end data was used for subsequent radtag assemblies and SNP calling,
reducing the inclusion of erroneous chimera sequences in subsequent analyses, which may have formed
during the DNA ligation step of the RAD DNA library preparation. Furthermore, any read containing
restriction recognition sites of EcoRI or Mspl, which are potential chimera junctions, was removed using
a custom bash script. The subsequent SNP-calling pipeline was repeated for both datasets, filtered and
not filtered for potential chimeras, to assess the degree and impact of potential chimera formation on the
results. One sample (TP12) was excluded from subsequent steps due to low amounts of data retrieved.
(ii) For each sample, reads were sorted into ‘stacks” of at least five identical reads using the ustacks
module. A sensitivity analysis of the mismatch thresholds (M) for merging of stacks was conducted with
1,2,4,7 and 14 bp mismatches between stacks. The removal and deleveraging algorithms were enabled
to remove highly repetitive stacks and resolve over-merged stacks. (iii) A catalogue of radtag loci was
created with loci from across all samples using cstacks with the same number of mismatches allowed
between stacks during step (ii) as the number of mismatches between loci to generate the catalogue.
(iv) Stacks from each sample were matched against the radtag locus catalogue to determine the allelic
state in the sstacks module. (v) The populations module was then used to filter and retain the first SNP
per radtag locus with a stack depth of at least 30 and not more than 20% missing data, and calculate
basic population statistics such as nucleotide diversities and heterozygosities. Several trial runs were
conducted under the exclusion of one to several samples with little data. Two samples, SE20 and TP14,
were eventually excluded from further analyses because the number of SNPs called dropped below 100
when these samples were included. The final dataset consisted of 33 samples. A minor allele filter was
also applied to remove alleles present in only one (MAF > 0.06) of these 33 individuals. Preliminary
sample clustering analyses suggested little differences in the final population structuring patterns across
different parameter setting combinations (electronic supplementary material, figure S2). We chose to
focus on a mismatch threshold of four as the number of SNP loci mined increased to almost a plateau
for most datasets from four to seven (electronic supplementary material, figure S3). Effects of minimum
stack depths on population genetic structure were then explored (mismatch thresholds fixed at 4) using
initial stack depths of 3 and 5, and final stack depths of 20 and 10 (electronic supplementary material,
figure S4). Because the version of STACKS used here did not consider indels which may lead to over-
splitting of loci, SNP calls were also made using pyRAD v. 3.0.65 [37] at several settings (refer to the
electronic supplementary material).

£6200L € s uado 205y BioBuysiqndizaposjeorsos:



Input files for downstream analyses were formatted using PGDSpider v. 2.0.5.1 [38]. ARLEQUIN
was used to screen for loci that were found to deviate from Hardy-Weinberg equilibrium (HWE).
Identification of loci possibly under selection was performed using Bayescan v. 2.1 [39], with a
burn-in of 5 x 10* followed by 1x 10° iterations, and all other parameters left as default. At false
discovery rate (FDR) levels of 0.05, 0.1 and 0.2, loci were determined as under directional (diversifying)
selection when positive alpha values were encountered, and under balancing or purifying selection
(background) when zero or negative o values were encountered [39,40]. Loci found to deviate from
Hardy-Weinberg equilibrium, or under diversifying selection were removed from subsequent analyses.
Bayesian clustering analyses were performed in STRUCTURE v. 2.3.4 for up to five genetic clusters (K)
considering correlated allele frequencies in the admixture model and without using sampling locations as
priors [41-43]. Preliminary trials were run to achieve a burn-in that allowed for convergence of . StrAuto
[44], which is a Python program that streamlines and automates multiple iterations of STRUCTURE runs
in its Unix command line version, was used to automate 10 iterations of a 6 x 10° burn-in followed
by 1x 10> MCMC iterations for data collection. The optimal K was determined using STRUCTURE
HARVESTER [45,46]. To account for variations across the 10 iterations of STRUCTURE runs, the Greedy
algorithm in CLUMPP v. 1.1 [47] was used, and the resulting barplots were constructed using DISTRUCT
v. 1.1 [48]. Pairwise population differentiation statistics (G'st [49], Djost [50], Fst [51]) were calculated
with 100 bootstrap replicates (across loci) using the fastDivPart function in the package diveRsity [52] that
is available in R [53]. The discriminant analysis of principal components (DAPC) which identifies clusters
of genetically related individuals without relying on any population genetic model, and is therefore
free of HWE or linkage disequilibrium assumptions [54], was performed in the R package adegenet
v. 2.0.0 [55].

3. Results

Genetic diversity of Singapore’s P. nodosus populations as assessed by COI haplotype diversity was
high; rarefied haplotype diversity of the three main populations at Pulau Sekudu, Cyrene reefs and
Pulau Semakau in Singapore (0.798-0.869) fell in the upper end of the spectrum of the Coral Triangle
(figure 2; electronic supplementary material, table S1), and 18 of the 91 haplotypes were unique to
Singapore (GenBank accession numbers KU896219-KU896296)—most of which were found at Cyrene
reefs (figure 3). Mismatch distribution analysis results suggest that most of the locations investigated
in this study have undergone a recent population expansion; both tests of goodness of fit from the
model of instantaneous demographic expansion were mostly non-significant at the 0.05 level (table 1),
which indicates that there is no significant difference (i.e. a good fit) between the observed data and
data expected under a model of demographic expansion. Plots of pairwise differences were also roughly
unimodal and smooth (figure 4), suggesting an excess of low frequency mutations acquired during
population expansion, compared with stationary populations that have been subject to more genetic
drift and tend to exhibit multimodal distributions [56-58]. Populations at Nusa Tenggara and Yapen,
however, differed significantly from the model of recent population expansion as indicated by the sum
of squared deviations (SSD), but not the Raggedness index. The many unique haplotypes and strongly
negative Fu’s F statistic and Tajima’s D (table 1; electronic supplementary material, table S1) are also
consistent with a recent population expansion at most sites except Pulau Semakau and Numfor.
Excluding three data-deficient samples, 82.0+s.d. 3.5% of the barcoded reads from the Illumina
HiSeq sequencer remained after quality filtering (1.7 to 7.1 x 10° reads per sample). Inspection of the
raw sequence files revealed that this high drop-out rate was largely due to the presence of an N base
call at the second position of the barcode region. Of these, 93.0 +s.d. 1.7% were retained per sample
after filtering for potential sites of chimera formation. The sensitivity analysis of mismatch thresholds for
calling SNPs showed that varying the mismatch threshold had little effect on results. Log-likelihood score
profiles of the assembled stacks (good likelihood ratios are close to zero, while loci with highly negative
log likelihood scores tend to have low coverage or high sequencing errors [36]) displayed gradual
negative displacement with increasing mismatch thresholds (M) although the distributions for M =1 and
M =2 were similarly close to zero (electronic supplementary material, figure S5). Fis distributions across
the mismatch thresholds also displayed a similar pattern of minimal effect (electronic supplementary
material, figure S6a—c). Applying a minor allele frequency filter of requiring alleles to be present in at
least two or more individuals (MAF > 0.06), however, resulted in a shift in peak away from Fjg =0 and
increase in the number of loci at Fig =1 (electronic supplementary material, figure S6a—), which was
similar to the effect of using the rxstacks catalogue correction module in STACKS (preliminary trials, data
not presented). A similar effect was also reported in [59]. All in all, 1431-6140 SNP loci were called across
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Figure 2. Average genetic diversities of three sampling localities in Singapore and nine from within the Coral Triangle based on (0l data.
Different sample sizes were accounted for by 30 sets of random subsamples of 15 individuals per sampling locality. Number of haplotypes
per site are represented on the x-axis, haplotype diversities on the y-axis. Standard error bars are indicated. Specific site diversity and
standard error values are in the electronic supplementary material, table S1.
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Figure 3. Minimum spanning network for Protoreaster nodosus populations in Singapore and the Coral Triangle based on (0l sequence
data. All samples from within the Coral Triangle are grouped together as the lightest shade of grey. Each haplotype is represented by one

circle and separated by one mutational step, unless indicated by additional hatch marks. Diameters of circles are proportionate to the
frequency of each haplotype occurrence, ranging from 1to 29, except for the most common haplotype (178) which was scaled down.

the various parameter combinations tested (electronic supplementary material, figure S3, shows SNP
numbers for mismatch threshold sensitivity analysis), but results were similar across all combination
sets. Here, we present the SNP analyses with 6140 SNP loci called using a mismatch threshold of 4, final
stack depth of 10 and with the minor allele frequency filter of more than 0.06.
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Figure 4. Frequency distribution of the number of pairwise sequence differences among individuals from each sampling locality in
Singapore ((a)(i—iii)), and across the Coral Triangle ((b—d)(i—iii)). *p-value of SSD test for goodness-of-fit with the model of sudden
population expansion was significant at the 0.05 level.

Table 2. Summary of population genetic statistics considering the variant positions among the 6392 ddRADseq SNP loci called by
STACKS, when 20% missing data was allowed. N, number of individuals; p, average frequency of the major allele; Hyys, average observed
heterozygosity per locus; Hey,, average expected heterozygosity per locus; 7z, average nucleotide diversity and s, the average Wright's
inbreeding coefficient.

N p Hops Hexp /4 Fis

Pulau Sekudu n.7 0.789 0.268 0.294 0.307 0.M
Pu|au5emakau .................... 103 ...................... 0792 0257 ...................... 0 291 ..................... 0305 ...................... 013
(yreneReefs ............................. 94 ........................ 07930258 ........................ 0 239 ........................ 0305 ........................ 013

Only less than or equal to three loci were identified as outliers in Bayescan (electronic supplementary
material, figure S7b). Considering only loci that were polymorphic, genetic diversities across the three
main sampling sites in Singapore were similar with minimal variation (table 2). Compared with previous
studies of marine fish and a sea anemone that also used STACKS to call genome-wide SNPs, the genetic
diversity of Singapore’s P. nodosus populations are moderately high (Hps—sin 0.298-0.305, table 2 versus
Hyps 0.023-0.402, [20,60,61]), although comparability across such datasets needs to be viewed with
caution when based on different SNP sets.

Only very subtle genetic structure (statistically non-significant) was detected among Singapore’s
P. nodosus populations in both the mitochondrial COI and ddRADseq SNP data. Of the 22 COI haplotypes
found in Singapore waters, the three most common haplotypes were detected at three of the five locations
(figure 3). Pairwise ¢st was highest between the population at Pulau Sekudu and Cyrene reefs in



rsos.royalsocietypublishing.org R. Soc. open sci. 3: 160253

_____________________ VOO 000 HSE0 k000 €0 000 k€0 A PC0 x6L0 k€0 k0 (O UG L

...... WO OO0 500 800 %00 800 . 600 . 600 600 900 .. (6=}

AAAAA VEO D00 e X0 9C0 L 0E0 a0 k060 k080 k€0 k0 %000 SEZWAWON L
000 000 000 100 00 €00 S00 100 x8L°0 *L0 %0 (¥§ = u) Jedwy eley a

676010 | 870 £8€0°0 (L7 = u) npm}as neyng
lojwny 1edwy efey RJ3UeWRH 1S3Me[ng eiebbus]  emelunwiey  neyewss SEEN npnyas

yanos esny nejng EITENTS) nejng

sasayuated uy uanib are uopendod yoea Jo s3zis 3jdwies *| > d USYM YSLIISe U YLIM pajed|pul pue
(500 > d) 1y Ul uo3LI0) BI3qYIOH—Iulweluag 3y} Jae sanjea JurdLIUBIS "3n0qe 348 sanjeA-d 3[iym ‘|eucbelp 3y Mojaq San|eA 1S g “NIdITey Ul painduuod ‘eep 3uanbas |0 Uo paseq suosliedwod 1S gy asimiieq *¢ ajqer



§

z%’\
o
&
Nz

o

Figure 5. STRUCTURE barplots at K = 2 and K = 4 calculated over 10 iterations (dataset of 6140 SNPs; M = 4, m = 5,10, MAF > 0.06).
Each bar depicts the genotype assignment for each individual. Barplots at other SNP-calling parameter sets showed similar profiles (data
not shown).

Table 4. Pairwise Fs; (W&C) comparisons calculated based on 6140 ddRADseq SNP loci in the R package diveRsity. Bias corrected 95%
confidence intervals for each pairwise Fs are indicated in brackets above the diagonal. G’sr, Do were also calculated, but all three indices
gave insignificant pairwise comparisons, so only the Fs; (W&C) values are presented here. Pairwise Fsr values were also calculated for all
SNP-calling parameter sets (data not shown), and all runs gave similar patterns.
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Singapore (¢st = 0.05, significant at the 0.05 level but not after performing the Benjamini-Hochberg
correction, table 3). This weak genetic structure between Pulau Sekudu, which is located north of
mainland Singapore, and the sampling locations to the south of Singapore was consistent across the
analyses of thousands of genome-wide SNP loci called with different parameter combinations. Although
none of the pairwise Fst values across all SNP datasets were statistically significant, the pairwise Fst
value between Pulau Semakau and Cyrene reefs was almost fivefold smaller than pairwise Fst values
between Pulau Sekudu and the two southern sites (table 4, 95% confidence intervals were all inclusive
of zero). Furthermore, the same two genetic clusters were identified by both the STRUCTURE and
STRUCTURE HARVESTER analyses (figure 5; electronic supplementary material, figure S8), and DAPC
scatter plots (figure 6; electronic supplementary material, figures S2 and S4). SNP loci obtained using
pyYRAD also suggested the same genetic clusters (electronic supplementary material, figure S9). At a
larger scale, COI sequence data detected low but significant levels of genetic differentiation between
the P. nodosus populations in Singapore, with populations approximately 2800 km eastwards within the
Coral Triangle until Halmahera (0.05 < ¢st < 0.11, table 3). Similar to what was reported in Crandall et al.
[10], a significant genetic break was found at the eastern-most cluster of P. nodosus populations beyond
Raja Ampat (0.09 < ¢sT <0.27, table 3).

4. Discussion

The most surprising finding is the remarkably high level of genetic diversity in Singapore’s P.
nodosus population in relation to those within the Coral Triangle, despite the many anthropogenic
impacts on Singapore’s marine environment [62] and the small size of the remaining habitats (sum
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Figure 6. DAPC plots when one (a) and two (b) discriminant functions were retained (dataset of 6140 SNPs; M =4, m =5,10,
MAF > 0.06). Similar cluster profiles were observed for other SNP-calling parameter sets (electronic supplementary material,
figures 57-59).

of three largest seagrass meadows in Singapore=33.7 ha [18]). This could be due to Singapore’s
central location between the Indian Ocean and the western tropical Pacific, which lies in the
middle of its geographical range [63], but it also suggests high genetic resilience of this species
that is probably due to its broadcast-spawning characteristics. While the Coral Triangle is widely
acknowledged as a hotspot and origin of marine biodiversity (e.g. [1,2]), our analyses reveal
similarly high genetic diversity in Singapore’s populations, which lie just outside the Coral Triangle
and at the southern end of the South China Sea. Our finding of high genetic diversity is in
agreement with earlier reports on high species diversity within the South China Sea [64] and
highlights the importance of the South China Sea for the maintenance of genetic diversity in
marine invertebrates in tropical Asia [4]. Despite the low global conservation priority of P. nodosus,
we show that Singapore’s P. nodosus populations can be important contributors to the global gene pool,
with 18 COI haplotypes unique to a small area.

A near-panmictic genetic landscape was found for most of the P. nodosus populations (table 3),
extending approximately 2800 km eastwards from Singapore into the Coral Triangle. At a smaller scale
within Singapore waters, low and statistically insignificant pairwise Fst values also indicated near
panmixia. Widespread dispersal and high connectivity is generally expected for a broadcast-spawning
species with a long larval planktonic duration (e.g. [65,66], and see [67]) such as P. nodosus [17]. This
is especially because the spawning period of P. nodosus is expected to coincide with synchronous
mass coral spawning in Singapore [12,68], and high connectivity and high levels of larval exchange
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have been predicted for broadcast-spawning coral larvae among Singapore’s southern islands during
this period [69]. High levels of connectivity among populations typically increase effective population
sizes, and could have contributed to relatively high levels of genetic diversity [70-72] observed here.
However, while PLD plays a major role in determining connectivity, other factors have also been
shown to affect the connectivity patterns so that PLD is not necessarily a good predictor of connectivity
(e.g. see [73-78]). Also, just 1-10 migrants per generation can be sufficient to minimize heterogeneity
among populations [79] and can lead to a pattern of apparent panmixia. It is thus difficult to
discern based on genetic structure alone whether the apparent high connectivity is a result of
ongoing gene flow or a genetic signature of past dispersal events (reviewed in [80]). Preliminary
hydrodynamic modelling of the dispersal of P. nodosus larvae within Singapore waters [81] suggests
high rates of ongoing larval exchange especially across the Southern Islands, and less pronounced
exchange between sites to the north (Johor Strait) and south (Singapore Strait) of mainland Singapore.
This may have contributed to the observed subtle genetic structure between ‘populations’ to the
north and south. Crandall et al. [10] previously also demonstrated fine-scale structure across a
much shorter 13 km stretch of coastal ocean despite using only mitochondrial sequences instead
of SNP data which provides better resolution (e.g. [19-22]), which could be due in part to the
positive geotactic behaviour approximately 2 days after attaining motility in larvae of the knobbly
sea stars [17] that reduces the window of opportunity for long-distance dispersal by the currents.
Other factors that could have contributed to the fine-scale genetic structure in this species in
Singapore include anthropogenic impacts such as (i) the high shipping traffic [62] across more than
30 km of coastal waters, (ii) coastal pollution from runoff and effluent from a highly urbanized terrestrial
environment, which has been suggested to be an effective barrier to larval dispersal [82], and/or
(iii) the lack of many suitable habitats [18] for larval settlement and growth into reproductive adults. The
low genetic divergence and lack of loci under diversifying selection, however, suggest that the possible
anthropogenic impacts on this species in Singapore, if any, are still minimal.

Although neither population genetic differentiation estimates for the mitochondrial nor SNP datasets
were statistically significant, the relative estimates for north-south comparisons were consistently higher
than within the Southern Islands (an almost fivefold difference in pairwise Fst values in the SNP dataset,
tables 3 and 4). The robustness of relative Fst values that reflect relationships or clustering patterns have
also been shown despite changes in absolute values with different mismatch parameter settings during
SNP loci clustering [83]. Nevertheless, the absolute Fst values obtained in this study should be cautiously
interpreted because the inclusion of only a subset of 10-12 samples per population in SNP analyses
may have resulted in an over-estimation of pairwise Fst values (sample sizes smaller than 4-6; [84]).
However, the use of a large number of SNP loci (more than 1000, this study used 1431-6140) coupled
with the use of the Weir and Cockerham estimate of genetic differentiation [51] should still allow for
accurate detection of even low levels of population genetic differentiation [84]. A false-positive detection
of genetic structure based on Fsr values in this study is also unlikely because the Fsr values in this
study are already low and not significant. Furthermore, the more than 10-fold difference in pairwise
Fst values found for north-south comparisons, compared to within the Southern islands (table 4), was
also supported by STRUCTURE and DAPC analyses. DAPC analyses are less likely to be biased due to
the small sample sizes because they are not based on any population genetic model assumptions such
as HWE or linkage disequilibrium [54]. Hence, we are confident that the observed low level of genetic
structuring is not an artefact of small sample size.

This is the second case where we find high genetic diversity and apparent connectivity in a broadcast-
spawning marine species that lives in the heavily impacted marine environment of Singapore [62].
The first was the scleractinian coral Platygyra sinensis [16]. These studies support the contention that
broadcast spawners may have higher resilience to anthropogenic disturbances, which should facilitate
their survival in human-impacted habitats, and concur with the assessment by Jones et al. [85] that highly
connected systems grant populations greater resilience to perturbations due to enhanced recovery rates
via external larval seeding. Conversely, isolated reef systems with broadcast spawners have been shown
to display slower recovery rates when the systems rely on the reproductive success of the few remaining
survivors [86]. In some cases, one good population may suffice to seed impacted sites upon recovery
from disturbance. Indications of recent population expansion were found in at least two of the P. nodosus
‘populations’ in Singapore, which demonstrate their ability to quickly recover from disturbances. In
December 2006 and January 2007, an unusually heavy rainfall event over southern Johor in Peninsular
Malaysia caused an excessive discharge of freshwater and hence sudden drop in salinity into the area
around Pulau Sekudu [87]. Mass mortalities of intertidal organisms in the area were observed, including
P. nodosus, but the populations appear to have restored their genetic diversity levels within 6 years of
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the devastation. At Cyrene reefs, only few individuals of P. nodosus were encountered in 2007 (K.P.P.T.
2007, personal observation), but in 2013 while sampling for this study, they were extremely abundant
and genetically diverse (estimated population approx. 900 individuals [81]). The reason for this rapid
population expansion at Cyrene reefs is, however, still unclear. Within Singapore waters, the most
important population of P. nodosus is arguably at Cyrene reefs and it should be the main conservation
target if resources are limited and prioritization of sites is required. The high genetic variability in such
populations should be maintained because it will allow for adaptive changes to environmental change
(reviewed in [88]).

Our study of genome-wide SNPs supports previous research using fewer genetic markers, showing
patterns of high genetic diversity and likely high connectivity consistent among several broadcast-
spawning marine organisms in Singapore, and supports the concept of unified conservation strategies
for marine biodiversity. With the advent of next-generation sequencing technology, more population
studies can be performed rapidly using genome-wide SNPs for non-model organisms (e.g. [20-22,59,61]),
bypassing the time- and resource-consuming process of developing and using species-specific markers
(e.g. [89,90]). The ddRADseq SNP loci obtained and used in this study can also be easily adapted
elsewhere for comparison. Future work, especially on organisms that show similarly shallow genetic
structure, can be complemented with hydrodynamic models of larval dispersal patterns, which are
integrated with in-depth behavioural and life cycle studies, in order to obtain a more comprehensive
understanding of population dynamics (e.g. [91]).
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