David Dilley Monterey, California 93940

NAVAL POSTGRADUATE SGHOOL Monierey, California

THESIS

COMPUTER SIMULATION OF A
FAMILY PRACTICE CLINIC
by
David Dilley
and
James Marion Larkins Jr.

Thesis Advisor:
R.W. Butterworth

June 1973

$$
T 154912
$$

Approved for public release; distribution unlimited.

Computer Simulation of a Family Practice Clinic

> by

```
David Dilley
Lieutenant Commander', United States Navy B.S., Purdue University, 1960
```

and

James Marion Larkins Jr. Lieutenant, United States Navy B.A., University of Louisville, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
June 1973
$x-87$
$-3>$

ABSTRACT

A simulation model of the Family Practice Clinic at Silas B. Hays Army Hospital, Fort Ord, California, is presented. The inputs to the model are the number of doctors, number and type of support personnel, number of waiting and examination rooms assigned and available to the clinic, and the population of potential patients assigned to each doctor, categorized by sex and age. The outputs of the model are the percentage utilization of doctors, support personnel, waiting and examination rooms, and the distribution of various waiting times for those being served by the clinic.

The purpose of the model is to permit hospital administrators to estimate the optimal number of families to assign each doctor in a Family Practice Clinic, and to estimate the support personnel and physical space required to effectively operate the clinic.

TABLE OF CONTENTS

I. INTRODUCTION 5
A. BACKGROUND- 5
B. CLINIC DESCRIPTION and OPERATION 6
C. STATEMENT of the PROBLEM- 16
II. PROBLEM FORMULATION- 19
A. The PATIENT PANEL--------------------------------- 19
B. PATIENT INCIDENCE DATA 20
C. COMPUTER MODEL- 27

1. Inputs 31
2. The Model 33
3. Timer 41
4. Measures of Effectiveness 41
5. Parameter Sensitivity 42
a. Appointment Time 43
b. Emergency Rate 44
c. Day Emergency Time Distribution 47
d. Pediatric Rate 47
e. Walk-in Rate- 47
f. No-show Rate 49
g. Arrival Delays 49
h. Nurse Clinician and Doctor Consults-- 49
i. Exam Lengths 51
j. Referral Rate 54
k. Returns to the Doctor 54
 55
IV. RESULTS and CONCLUSIONS 62
V. RECOMMENDATIONS 65
APPENDIX A. BASIC COMPUTER OUTPUT 66
APPENDIX B. PARAMETER VARIATION OUTPUTS 69
APPENDIX C. NURSE CLINICIAN OUTPUTS 104
COMPUTER PROGRAMS 107
BIBLIOGRAPHY 133
INITIAL DISTRIBUTION LIST 135
DD FORM 1473 136

I. INTRODUCTION

A. BACKGROUND

The American Medical Association (A. M. A.), the Department of Defense, and the Army, Navy, and Air Force are attempting to shift a large portion of medical practice from the impersonal realm of the specialists to that of a new generation of general practioners.

One of the most often heard complaints from patients about medical specialists, both civilian and military, is that the patient believes that the specialist is treating a disease or sympton and not the whole patient. Further, in the military community, the patient is often not able to see the same specialist for his follow-up treatment.

As the result of a felt demand, there has been an increase in the emphasis on the human relations aspect of family medical care. The U. S. Army has selected the Silas B. Hays Hospital at Fort Ord, California, as one of two Army hospitals to initiate an experimental program to provide family medical care to active duty and retired military personnel and their dependents. The new program is called the Family Practice Clinic, and is directed toward creating more of a "country doctor" atmosphere within the military community by assigning one doctor, a specialist in Family Practice, to provide medical care for a specific group of families.

The Family Practice Physician, or Family Physician, has been trained to provide primary care in such speciality areas
as pediatrics, obstetrics and gynecology, internal medicine, etc., and is able to provide total care for about 80% of the occurring medical problems. When necessary, the Family Physican will consult with other specialists to insure that his patients receive the best possible medical care.

Active duty and retired military personnel taking part in the Family Practice Program and all of their eligible family members will have one doctor whom they will see first for an illness, injury, pregnancy, and for routine matters such as well-baby exams, Pap tests, periodic check ups, etc. The same doctor will care for family members whether outpatients or admitted to the hospital.

Prior to the start of the Family Practice Clinic in
January 1973, Hays Hospital was providing medical care for approximately 28,000 families, or about 85,000 individuals, plus 9,000 recruits assigned to Fort Ord for basic and advanced infantry training. The hospital staff in January 1973 was approximately 107 physicians, 145 nurses, and l,240 other support personnel.

B. CLINIC DESCRIPTION AND OPERATION

The Family Practice Clinic began operation with four physicians, two nurses, two nurse clinicians, two medical aides, and four clerk-receptionists shared with the General Medical Clinic. The Family Practice Clinic, shown in figure l, is located in Hays Hospital adjacent to the General Medical Clinic. The two nurse clinicians share the office indicated in the figure. The staff has access to the full range of laboratory

Figure 1. Hays Army Hospital Family Practice Clinic

facilities, X-ray machines, medical specialists in other disciplines, etc., available in any other modern, well equipped hospital.

The general flow through the clinic is indicated in Figures 2.a, b., c., d., and e. When the need to seek medical attention occurs, the patient either calls the office or walks in. When a call is received the receptionist schedules the patient or forwards the call to a nurse. The nurse screens the call to determine the severity of the problem, and then either forwards the call to the doctor or has the patient scheduled by the receptionist. The doctor takes calls forwarded and advises the patient to be scheduled, or, if the problem is acute, to come into the office that day. Periods are set aside in the doctor's schedule for this purpose.

Emergency Patients during office hours take precedence over all other patients and take a doctor away from the clinic for the time required on that case. An emergency is handled by the patient's assigned doctor, if he is in the office, otherwise another doctor will be called. Patients waiting to see the doctor attending to the emergency will be rescheduled, seen by another doctor, or wait to see their assigned doctor.

A doctor's first appointment period in the morning is set aside for walk-ins. This is designed for military personnel, and is similar to sick call. The next ten appointment periods are for scheduled patients, followed by four

Figure 2.a. Clinic Flow Diagram

Figure 2.b.

Figure 2.c.

Figure 2.d.

Figure 2.e.
for patients who called in and must be seen that day. The afternoon schedule is similar except that the sick call period is omitted.

When a non-emergency patient arrives at the clinic, the receptionist logs the arrival and has the patient's chart waiting if it was a scheduled appointment. If the chart has not been pulled, the patient must then go to the record division to check out the chart. Next the patient enters the waiting area to wait for an exam room to become available. As the patient enters the waiting room, one of three priorities has been assigned to the patient by the receptionist. The highest priority is for scheduled patients, next is for those who called ahead, and the last priority is for walkins. In order to go into an exam room, three things must occur; (1) exam room available, (2) aide available, and (3) patient must be the highest priority waiting.

When all three of the above criteria are met, the aide takes the patient to the screening room and performs any preliminary work needed, such as blood pressure, temperature, and history. Next the patient waits in the exam room until the doctor is available. When the doctor arrives, he conducts the examination and in some cases, if the patient is female, he must obtain an observer. The observer is sometimes a friend or relative of the patient, but at other times the doctor must utilize a nurse or an aide.

Periods with the doctor are normally scheduled for fifteen minutes, but in some cases (physicals, or other extensive
examinations/consultations) a longer time is required. These patients are scheduled for thirty minutes, an hour, or an hour and a half.

There are cases when a doctor needs to consult with a nurse clinician. These cases would usually be of a chronic nature and the doctor would like the nurse clinician to follow the case and attend to the patient on subsequent visits. An example of this situation would be that of a diabetic patient, after diagnosis, being scheduled for routine follow-up visits with the nurse clinician. In this situation the nurse clinician would handle the visits and notify the doctor if anything unusual occurred. Nurse clinicians care for patients referred to them by all four doctors. Patients waiting to see the nurse clinicians follow the same general routine as those waiting to see a doctor.

In each category of problems there is a possibility that the doctor will want to consult with a specialist in another medical area. In these cases the doctor either calls the specialist or prepares a "consult" form and sends the patient to the specialist. The Family Physician will continue to follow the patient's progress.

After the patient completes his visit with the doctor or nurse clinician he may leave, require lab work, or in some cases the patient is required to see a nurse for immunizations or other medication. When this is complete the patient will leave the clinic.
C. STATEMENT OF THE PROBLEM

One of the many decisions that had to be made by the hospital administrators concerned the question of the number of families to assign to each doctor. These families make up the population which serves as potential patients for the doctors in the clinic, and are referred to as the doctor's "patient panel." The hospital administrators expressed a strong desire to have each doctor serve and treat a patient panel that was representative of the entire population being served by the hospital. The recruit population is not considered a part of this basic population.

Hays Hospital has been accredited by the American Medical Association as a teaching hospital which allows doctors to serve their residencies there. One of the requirements laid down by the A. M. A. dealt with the breadth of medical problems seen by a resident in the Family Practice speciality. The resident must deal with the full range of medical problems that a Family Practice Doctor is competent to handle. The clinic doctors must, therefore, be assigned families with young children, older children, pregnant females, middle aged and elderly people, etc., in approximately the proportion that they occur in the total population being served by the hospital.

Once the proportions of age/sex categories have been determined, the question of the total size of the patient panels assigned to each doctor presented itself. One of the

goals of the Family Practice Clinic was to increase overall patient satisfaction for the largest number of families. If the doctor is assigned too small a patient panel, patient satisfaction will be high and doctor utilization will be low. When too large a patient panel is assigned, doctor utilization will be high, but patient waiting times will greatly increase, leading to a drop in patient satisfaction.

Another decision faced by the hospital administration concerned the size and composition of the clinic staff. The number of doctors in the clinic was fixed at four and was assumed to stay constant throughout the operation of the clinic. However, the number and type of nurse clinicians, nurses, aides, and clerk-receptionists to assign to the clinic was a major question.

The nurse clinician is a relatively new member of the health care team. Many hospital administrators, doctors, and even nurse clinicians themselves are uncertain as to how many of the duties traditionally reserved for a doctor that they can assume. Nurse clinicians are more highly trained than nurses, and in any case they can assume many of the doctor's routine functions of well baby care, routine pediatric care, follow up care for geriatric patients, diabetics, etc., and routine prenatal checkups, etc., depending on the nurse clinician's speciality area.

The first problem addressed in this thesis is that of estimating the total number of families to assign each doctor so as to maximize the utilization of his time and maximize

patient satisfaction, measured solely by waiting time in the clinic and time spent waiting for an appointment. An ancillary part of this problem is determining the percentages of each age/sex group assigned to each doctor to reflect the population served by Hays Hospital. Further, the number of clinic visits from those in each age/sex group must be estimated in order to correctly gauge the expected work load of each doctor.

The second problem considered was that of maximum utilization of clinic support personnel and the physical layout of the clinic itself in order to most efficiently serve the patient panels.

II. PROBLEM FORMULATION

A. THE PATIENT PANEL

The problem of estimating the makeup of the potential patient population served by Hays Hospital proved to be a major one.

A one percent sampling of the hospital outpatient medical records was taken. Among the items of information were; the sex and age of military sponsor and dependents, and the number of visits to the hospital in the period from 1 July 1971 to 30 June 1972.

The data gathered, however, were not the entire answer to the problem of determining the potential population of the hospital. Some of the potential categories were simply not represented in the sample. Since dependents are no longer required to keep their medical records at the hospital, many of them are kept at their homes. Similarly, most of the active duty sponsors' records were kept at their military unit dispensaries and were not readily available. One of the biggest factors which lowered the credibility of the data obtained from the one percent sample was the fact that some active duty personnel and a larger number of retired personnel and their dependents do not utilize the medical facilities at Hays Hospital for all of their health care needs. Furthermore, some personnel, retired as well as those on active duty, do not make use of the hospital at all.

Data was available concerning the age distribution of military personnel and their dependents from one training command brigade. The training brigade data and the one percent sample data has been combined in Figure 3, and indicates the authors' best estimate of the age distribution of the potential population served by Hays Hospital.

The densities in Figure 3 are certainly open to question, but a more detailed and lengthy examination of data not readily available, if available at all, is beyond the scope of this thesis.

B. PATIENT INCIDENCE DATA

One of the more critical areas of the Family Practice Clinic model is that portion of the model which determines the arrival rates of patients at the clinic. The patient arrival rate at the clinic is determined by three factors: the age distribution of the patient panel, the distribution by sex, and the size of the population in each age/sex category.

In order to successfully model the Family Practice Clinic the authors felt that it was essential to know two things about a group of people once their age and sex were known: how often would a person, on the average, visit the clinic if they (or their parents) were satisfied with the quality of medical care received, and with what frequency would certain medical skills or knowledge be used during those visits?

Again, the data from the one percent sample of outpatient records was incomplete for estimation of the values noted above. Not all of the people using the hospital utilize it exclusively for their medical care. Finally, the medical records were unclear as to the reason for the visit noted in the record. Short of attending medical school, there appeared to be no practical method of making use of the limited data available from the medical records. The authors considered the fact that the clinic records of total visits per month for the different clinics might be used to obtain the patient visit incidence rates. This idea was discarded because of the drawback of insufficient knowledge of the base population from which the clinics drew these visits, and the unquantifiable reluctance of people to use the clinic and go elsewhere for their medical care.

The authors were able to obtain a five percent random sample of patient visit incidence data drawn from a one million member prepaid health plan for the period January through December 1971. Each record contained the following information: the patient's date of birth, date of visit to the clinic, and the medical area of the clinic visited, or medical specialty codes. There were 73 different specialty codes utilized, these were combined by the authors into nine general medical areas shown in Table l. Table l also includes the age codes used when analyzing and presenting the data.

COMBIMED MEDICAL
SPCIALY ARA
(SPECIALTY CODE NUMBER) INDIVIDUAL PHYSICIAR AND NOHM. ${ }^{\text {SPECIALISTS }}$
General Practice (1) General Practice
Surgery (2) General, Meurological, Plastic, Orthopedic, and Thoracic Surgery, and Anesthesiology
Alergy/Shots (3)................Alergy, Alergy Testing and Treatment, injection and Immunization
Eye, Ear, Nose, Throat (4)... Otology, Laryngology, Rhinology, Opthalmology, Optometrist, and Audiologist
Internal Medicine (5)..........Internal Medicine and Gastroenterology
Miscellaneous (6) CARDIOVASCULAR DISEASE
MEUROLOGY, PATHOLOGY, PHYICAL Medicine and Rehabilitation, PSYCHIATRY, PULMONARY DISEASES, Radiology, Urology, Dietician, and Psychologist
Dermatology (7).................Dermatology
Obstetrics/Gynecology (8).....Obstetrics/Gynecology
Pediatrics (9) Pediatrics

AGE CODES

Age*	${ }_{\text {Code }}^{\text {Age }}$	Age*	Code	Age*	CODE
$\begin{gathered} 0-4 \\ 5-9 \\ 10-14 \\ 15-19 \\ 20-24 \\ 25-29 \end{gathered}$	$\begin{aligned} & \frac{1}{2} \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 30-34 \\ & 35-39 \\ & 40-44 \\ & 450-49 \\ & 50.54 \\ & 55-59 \end{aligned}$	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ \hline 12 \end{array}$	$\begin{aligned} & 60-64 \\ & 65-69 \\ & 70-74 \\ & 75-79 \\ & 80+ \end{aligned}$	13 14 15 15 17

* Age at the time of the visit to the clinic

Table 1. Medical Specialty and Age Codes

It is felt that this incidence data more nearly reflects the true propensity of a population to utilize medical care facilities than that obtained from the one percent sample of medical records from Hays Hospital. People who have already paid for their health care are not likely to go elsewhere and pay for it again, and they are also not likely to be shy about using the medical facilities when they believe such care is needed.

The data for male and female visits is summarized in Tables 2 and 3 by age and specialty codes. The letter 'A' in the specialty code column refers to the "actual" average visits per person per year for each age group and medical specialty category, calculated from the five percent random sample data. The letter 'C' refers to a "combined" rate.

In order to simplify the computer model simulation problem, some of these visit rates were combined horizontally and an average or combined rate was used. Instead of considering each age group in a medical specialty area to have a separate visit rate, these rates were combined when they were close to the same values. For example, the actual average number of visits to the General Practice section of the clinic for a male in age groups 4,5 , and 6 was $0.73,0.76$, and 0.71 visits per person per year, respectively. These rates were combined, or averaged, to yield a value of 0.73 visits per year for a person in age groups 4, 5, or 6 .

$=$

$$
\text { (8) }(0 x-y) 8
$$

[^0]The total visit rates are summarized across the bottom of the tables, both for the actual and combined rates. The effect of applying the combined rates to the same population from which the original data was taken is indicated in Tables 4 and 5. It is noted that the overall effect on the number of visits generated when using the combined rates, compared to the actual number of visits, is very small.

Another factor which was investigated was the variation of the visit rates over time. Each age-sex-specialty category visit rate was calculated on a yearly and quarterly basis and the differences noted. The only significant seasonal variations observed were in the two lower age groups of the male and female pediatrics specialty area. These rates are noted in Table 6, and were used in several runs of the computer model noted later in the thesis.

In summary, the authors believe that the analysis of the five percent random sample data resulted in a good estimate of how often a person would be expected to visit a medical clinic, and what medical specialty areas that person would use in the clinic.

C. COMPUTER MODEL

The computer language General Purpose System Simulation (GPSS) was used to model the Family Practice Clinic (Program l) and is well suited for clinic simulation because of the queuing aspects and alternative flow paths for patients. Simulation allows the prediction of effects that the differing

AGE	COMBINED RATE	ACTUAL
CODE	INCIDENCE TOTALS	INCIDENCE TOTALS
1	17.648	17.223
2	13.633	13.474
3	12.274	12.536
4	9,471	9.722
5	6.188	6.103
6	7,408	7.555
7	7,889	7,962
8	6.757	6.780
9	6.796	6,686
10	7.764	7,580
11	7,617	7,543
12	6.435	6.445
13	5,518	5,467
14	3,605	3.728
15	2.381	2,561
16	1.161	1.207
17	685	679
TOTAL POPULATION	123.203	123.251

Table 4. Summary of Actual and Combined
Incidence Rates Applied to Male Population

AGE	COMBIAED RATE	ACTUAL
CODE	INCIDENCE TOTALS	INCIDENCE TOTALS
1	14,901	14,635
2	11,199	11,257
3	9,799	9,853
4	10,958	11,344
5	14,373	14,114
6	15,997	16,186
7	12,406	12,342
8	8,875	9,284
9	9,826	9,798
10	10,956	10,640
11	9,964	9,940
12	7,817	7,785
13	5,950	6,139
14	4,424	4,424
15	2,976	3,035
16	1,611	1,624
TOTAL POPULATION	152,508	494
17		152,894

Table 5. Summary of Actual and Combined Incidence Rates Applied to Female Population

	MaLE		FEMALE	
	Age Codes	Age Codes		
	1	2	1	2
Yearly Rate	5.33	2.00	4.89	1.98
Ist Quater Rate*	6.00	2.28	5.33	2.20
2nd Quater Rate*	5.06	1.89	4.78	1.87
3rd Quater Rate*	4.49	1.84	4.20	1.80
4th quater rate*	5.76	2.01	5.23	2.04

Table 6. Pediatric Visit Rates
 For Children, Listed by Quarters

personnel and patient panels would have on the flow through the clinic. After the initial set-up effects of changes can be examined on the model before their introduction into the clinic.

The personnel assignment in the model is similar to the assignment of personnel at the Hays Hospital Family Practice Clinic. One laboratory technician was added to determine the feasibility of including a small laboratory. For convience another doctor was added. This doctor assumes all emergencies which occur after the office is closed. Although the four doctors rotate the night call duty, the night call doctor being separate allows the development of statistics on the time spent by the doctors on night calls.

For the model, each nurse clinician has one exam room and each doctor is assigned two exam rooms. The schedule of doctors' office hours cycles every two weeks and is represented in Table 7. Nurse clinicians work each day and rotate Saturday duty. Nurses work the normal office days as do two of the aides. The other aide and one receptionist work nights and Saturdays. At Hays Hospital four receptionists work five days a week during regular office hours, but are shared with the General Medical Clinic, therefore only three receptionists were assumed for this simulation.

The above numbers of personnel and rooms were used as a starting point to measure the effectiveness of clinic operations. The number of personnel can be varied in order to obtain an optimal mix for a given patient panel. The number of exam rooms also may be changed to determine the effects of increasing or decreasing space. The number of doctors could be varied, but for purposes of this thesis they are kept constant. .

1. Inputs

The data gathered and explained earlier determine the patient input into the model. The FORTRAN program (Program 2) utilizes this data and an input of the distribution of the ages for patients assigned to each doctor. The interarrival time of patients in each category is outputed in the form of a punched deck ready for insertion into the basic model. The other output is the distribution of assignments by medical specialty to doctors and nurse clinicians,

FIRST WEEK

Doctor Mon. TUEs. Wed. Thur. Erie, Sat, Sun.

1	N	M	D	D
2	D	N	M	D
3	D	D	N	M
4	D	D	D	N

D	N	-	-
D	D	S	-
M	D	S	-
N	M	-	-

SECOND WEEK

1	D	D	N	M	D	S	-
2	D	D	D	N	M	-	-
3	N	M	D	D	N	-	-
4	D	N	M	D	D	S	-

D Day Duty (0800-1700)
M Morning Duty (0800-1300)
$\begin{array}{ll}S \text { Saturday Duty (0800-1230) } & \begin{array}{l}\text { SATURDAY DUTY DOCTORS } \\ \text { ALTERNATE WEEKEND DUTY }\end{array} \\ \text { N Night DUTY (1300-2030) } & \begin{array}{l}\text { ALL NIGHT DUTIES ARE } \\ \text { FOLLOWED BY THAT DOCTOR } \\ \text { BEING ON CALL }\end{array}\end{array}$
Table 7. Doctors' Schedule
based on the proportion of the load the nurse clinician can accept in each medical specialty category and the percentage of patients in a category assigned to each doctor. This produces a distribution of assignments to doctor and nurse clinicians in each of the various age/sex/medical specialty categories, and appears in the form of a punched deck which can be inserted into the basic model.

Three priorities were selected to describe the seriousness of a problem. These are:
(a) Emergency - problems that must be attended to in a short period of time. Problems such as severe accidents and cuts, cardiacs, and deliveries are included.
(b) Today problems - which must be attended to in the next period the office is open. Examples are high fever, abnormal bleeding and severe pain.
(c) Later problems - which can be delayed until the next available appointment time. Regular OB/GYN, aches and pains, well baby checks and physicals are included in this category.

The attempt was made to include as many of the normal operations of a clinic as possible. The data for the basic model was gathered from doctors' estimates and refs. 3, 4, 5, 7, 9, 10, 11, and 14.

2. The Model

Patients with problems are generated in one of ninetytwo categories. These categories designate the age group, sex,
and which of the nine disease areas is involved. The interarrival times are based on the number of people assigned to the doctor in each sex and age group. The number of the disease is also assigned to each patient. Using this disease number, the severity of the problem and length of the appointment are assigned. The distribution of severities and appointment lengths were obtained from estimates made by the Family Practice Doctors at Hays Army Hospital. These distributions are estimated because the clinic had no data base and measurements were not possible.

If the problem is an emergency, it is separated from the other cases. If the clinic is open, the emergency is handled by one of the clinic doctors. After hours the emergency is treated by the doctor on call. In the model this doctor is the extra doctor, who for convenience handles all after hours problems. The service time for this doctor is considered exponental, because of the wide variation in problems considered as emergencies. The mean length of emergency service time, estimated by clinic doctors, was ninety minutes. This includes the total time required to handle the case, time to and from the emergency room and actual treatment time. The patient would usually be scheduled for an office appointment, but the input data to the model was based on single visits to the office and not on return visits.

When the emergency occurs during the day, the patient's doctor is called from the office to treat the problem. If the
patient's doctor is not in, another doctor in the office is selected. The service time for these emergencies is shorter than at night. The patients in the waiting room must wait until the doctor's return, and will increase the length of the doctor's day and the average time spent by a patient in the clinic.

If the problem is not an emergency, there is a possibility that instead of calling first, the patient will simply walk-in. The walk-in rate in General Medicine at Hays Hospital is fifty percent. It was hoped by the supervisors of the Family Practice Clinic that with personal doctor-patient contact this rate would be reduced to fifteen percent. The fifteen percent rate was used, but other rates were tested and their effect on clinic operation will be discussed later.

The patients in the "walk-in" stream are allowed into the clinic immediately if it is open. If the clinic is closed the patients are queued up, waiting for the clinic to open. To make the model perform close to actual clinic operations, problems generated between eight P. M. and four A. M. are delayed twelve hours. This causes approximately one-sixth of the total to arrive at office opening. Twothirds are spread uniformaly over normal working hours (8-4). Walk-ins are still allowed during evening hours and this accounts for the other one-sixth. Upon arriving at the office walk-ins are given the lowest priority for seeing the doctor.

The receptionists are always engaged in the same order. The first is engaged if possible. If she is unavailable, then the second is engaged. Therefore the third is only engaged if all others are busy. From this set up, it is possible to estimate how many receptionists are used. During the daylight hours up to three receptionists can be used. In the evening only one receptionist is on duty. After the patient talks on the telephone with the receptionist he is scheduled or in some cases the call must be forwarded to a nurse for further screening. This nurse may handle the question or forward the call to the patient's doctor. Following this sequence the patient is scheduled. In the scheduling section, the patients who must be seen today are separated from "later problems." If there is room on the schedule, "today's problems" are scheduled. If the schedule for the patient's doctor is full for that day, the patient is placed in the queue for scheduled periods set aside for "today's problems." Four periods are reserved at the end of the morning for these problems. At the end of the afternoon period, the clinic is opened to all patients who must be seen today. These patients are allowed in at a rate of two patients every thirty minutes.

The regular schedule has ten openings, morning and afternoon. These are also at a rate of two every thirty minutes, starting at 0830. The period at 0800 is reserved for walk-ins. If a patient is to be scheduled for more than one period, the following patient is delayed for that number of periods.

After leaving the schedule section, all patients with either today or later problems are allowed to arrive according to an approximate normal distribution centered around their scheduled time. Even though patients are scheduled, this does not ensure that they will arrive, therefore a "no show" rate is included. If the patient does not show up he must be rescheduled. A rate of five percent was estimated by personnel at Hays Hospital.

When the patient enters the clinic, they engage a receptionist. During the day there are three receptionists available but at night only one is on duty. The receptionist's time with a patient was assumed to be uniformly distributed over (1,5). See Table 8. This means that each minute between one and five is equally likely. If the patient is a walk-in and his doctor is not in the office, another doctor is assigned to handle the problem. Following this the patient enters the waiting room where he remains until an exam room is vacated, he is the highest priority patient waiting to see his doctor, and there is an aide available to take him back and make all preparations to see the doctor. At this point the patient waits for the doctor to arrive in the exam room.

Upon the doctor's arrival, the model determines if the patient is female and if so, requires an observer for forty percent of all female patients under fifteen years of age and seventy percent of all female patients fifteen and older. The break at fifteen is caused by the fact that

CATEGORY	minimum	AVERAGE	maximum	DISTRIBUTION
Night Emergency	0	90	720	Exponential
Day Emergency	0	40	320	Exponential
Receptionst Phone Calls	2	3	4	Uniform
Doctor/Nurse Phone Calls	1	3	5	Uniform
Arrival Time Relative to Scheduled Time	-30	0	+30	Approximate Normal
Receptionist Time	1	3	5	Uniform
Aide Time	1	5	9	Uniform
Observer (Female)	6	8	10	Uniform
Doctor/Patient Consult (Female)	3	5	7	Uniform
Exam/Consult (iNo Observer)	8	13	18	Uniform
Extra Periods	15	15	15	Constant
Nurse Clinician Consult	1	5	9	Uniform
Doctor Consult	5	10	15	Uniform
Doctor's Time Spent on Referral	3	5	7	Uniform
Nurse's Time With Patients	3	10	17	Uniform
Time in the Lab	5	10	15	Uniform

All times listed in minutes,
younger patients are usually accompanied by another person. The observer engaged is either a nurse or an aide. The time for these female examinations was considered to be between six and ten minutes. All of these figures are based on estimates by doctors assigned to the Family Practice Clinic.

If the patient needs an observer, time is added following the examination for a doctor-patient conference. This conference time is usually short and is considered to be between three and seven minutes. For all male patients and those female patients not requiring an observer, the examination and consult time was estimated to be equally likely between eight and eighteen minutes. The mean of both routes, observer and no observer, is thirteen minutes. If the patient requires more than one period, fifteen minutes are added for each additional period.

To this point, patients assigned to both doctors and nurse clinicians follow the same sequence of events. But the flow changes here to allow for differing events. If the patient is not assigned to a nurse clinician, the doctor may have to consult with the nurse clinician to set up an ongoing attack on the problem. This rate was set at five percent. The model allows the consultation to be with the first nurse clinician available, if both are present. If only one nurse clinician is working, the other is bypassed. If neither is in the office no consultations are possible, and the nurse clinician is bypassed.

There are times when the nurse clinician must consult with the doctor. A rate of ten percent is used for these consultations, which include anything unusual noted during the clinician's examination. The time for the consultations was considered to be between five and fifteen minutes.

Another event that sometimes occurs in a clinic is the need to consult a specialist. Even though a patient may be referred to a specialist, the doctor continues to monitor the progress of treatment. The referral rate was estimated by the personnel at the Hays Hospital Family Practice Clinic. Rates were assigned to each of the nine problem categories. Twenty-five percent was the highest rate used. This occurred in the surgery area. The lowest, five percent, occurred in the allergy and immunization category.

The next section handles those patients who require the attention of a nurse. Because the nurses only work during the day, provisions are made to skip over this section at night and on Saturdays. If the nurses are there, it was estimated that ten percent of the patients would need to see the nurse for immunizations or other needed treatments. After this, it is sometimes necessary for the patient to return to the doctor. The basic rate used for return was three percent. The last section is the laboratory in the clinic. This had little effect on the rest of the model. There are some patients who after going to the lab are to return to see the doctor. The rate of return from the lab was set at
ten percent. Five and twenty percent were tried but had little or no effect on the output.

3. Timer

The timer section runs for a total of twenty-eight days. It opens and closes the clinic, switchboard and portions of the schedule. It also controls the arrival and departure of personnel. This part of the model is divided into two major areas, weekdays and weekends.

4. Measures of Effectiveness

Several measures were used to determine the effectiveness of the clinic model. The measure used for doctors and all clinic personnel will be referred to as "utilization," which is given by UTIL $_{t s}=T B / T S$, where $T B$ is the time busy and TS is time scheduled. A second form of utilization will be used for doctors and patients and will be called "time there utilization." The time there utilization is given by UTIL $_{t t}=T B / T T$, where $T T$ is the time there. The measure referred to as "patient's time" is the average time a patient spends in the clinic from arrival until departure from the doctor's exam room. The last measure, other than standard averages, is the "doctor's time." This is the total number of minutes spent in the clinic, available to see patients, during the time period covered by the run (usually three months). This time varies with the quitting time of each day and in all cases is greater than the doctor's scheduled time. "Doctor's time" is used as the divisor to determine "time there utilization."

Many statistics are available from each computer run. Not all are presented in this paper, but could be used for a more detailed analysis of any section of the model. Although all of the possible output is not recorded in this paper, it was examined. Given more time and resources a more detailed analysis could be performed in each small area of concern. The questions put forth in this paper are not affected by minute details, but are a measure of overall trends and utilizations.

5. Parameter Sensitivity

The model was always run initially one month during which no statistics were gathered. This allowed the system to be pre-loaded with patients and smooth the starting up shocks. For the next three months, snapshots were taken at the end of each month. In this way not only could an average over the three month period be obtained, but trends in the output could be identified.

Realizing that many assumptions were made, several computer runs were made to determine the sensitivity of the various parameters. To develop a base on which to test the sensitivity to change of these parameters, three simulations were performed varying only the random number seeds. These three sets of output were then used to determine if significant changes had occurred. The comparison of means and ttest were used to determine if the changing of random number seeds had any effect on the model. These results are listed in Appendix A. All means remained relatively close and the

t-test, at ninety-five percent confidence, showed no significant differences. Therefore, it is noted that the model does not seem to be sensitive to changes in the random number seeds.

Two methods of comparisons were used. The first was direct comparison of means. This was used to compare utilization of nurse clinicians and ancillary personnel as well as waiting times. The second method was the use of a t-test. This was used to test the significance of change in doctor's utilization, patient's clinic time, and the total doctor time spent in the clinic. Assuming that each doctor is independent of the others, each run produced data points in each category. Combining all three basic runs, this produced twelve basic data points. Each test, therefore, tested the difference of mean in two samples. One consisted of twelve points, the other consisted of four points. This gave a t-test with fourteen degrees of freedom. A ninety-five percent confidence interval was chosen. All t-scores are listed along with other data from each run in Appendix B.

The basic data is derived from averages of the three initial runs (Appendix A). Appendix B lists the results from each of the sensitivity runs. The basic data ($B-1$) is used to make the following analysis.
a. Appointment Time

The appointment size or visit length (fifteen, thirty, sixty, or ninety minutes) was drawn from one of nine distributions depending on disease category. Two runs were
made to determine the model sensitivity to this variable. The first run set all distributions equal to the low of eighty percent. This means that twenty percent of all patients are seen for thirty, sixty, or ninety minutes. This run showed a three percent decrease from the basic run in patient utilization (Table 9.a.) Patient's and doctor's time in the clinic increased, but not significantly according to the t-test at ninety-five percent confidence level. Doctor's utilization and time there utilization both increased significantly.

The second change was to increase all distributions to ninety-seven percent minimum time visits. This effectively made almost all visits fifteen minutes in length. In this run, patient's utilization increased eleven percent up to forty-four percent. All other parameters tested decreased. Waiting room time decreased seventeen minutes. All four parameters tested by the t-test were found to have significantly decreased.

This distribution can not be affected greatly by changing the operation of the clinic, but does have a great effect on the clinic. If the visit lengths were shorter, more patients could be assigned to each doctor.
b. Emergency Rate

The percentage of emergency cases was dependent upon the disease category. This percentage ranged from onehalf of one percent in the dermatology area to five percent

-20-2

1 $=$
1
4
1 1
$=-1$
$=-=1$ $\left\lvert\, \frac{1}{2}\right.$
 ? ,

+

央

\qquad (2)-

1. -4 $=-2$
 3

in the OB/GYN area. The average was approximately three percent. Two simulations were performed varying these rates. The first run set all emergency rates to one percent. This change had little effect on any of the measures (Table 9.a.), except the night doctor's utilization, which was cut in half. There was a very slight increase in the utilization of the ancillary personnel. But this is explained by the fact if emergencies are decreased and total occurrences remain constant, the number of less severe cases would increase. There were increases in doctor's utilization and patient's time, but these were not significant.

The second run increased all rates to five percent. This change had the opposite effect of the previous run, by decreasing the ancillary personnel utilization slightly. Doctor's utilization again increased, but this time the increase was significant. The night doctor's utilization was doubled to twenty percent. This would cause the doctor on call to be busy one-fifth of the time.

The number of emergencies cannot be controlled, but these two runs show that the emergency rate can vary and have little effect on the clinic operation. The major variation brought by changing this rate is with the night doctor. Any substantial increase greater than the five percent emergency rate would cause too many interruptions in the clinic operation.

Con

$-$
nin

18
\qquad

$=-$

2
为

(and
\qquad
$==$
-

.
c. Day Emergency Time Distribution

The model used an average time of forty minutes for emergencies which occurred during the clinic office hours. This distribution was assumed to be exponential. One run was made changing this to an uniform distribution (all times between ten and seventy minutes are equally likely). No significant changes in system performance resulted.
d. Pediatric Rate

Two simulations were made using different occurrence rates in the pediatric specialty area. All occurrence rates in the model are averages of a one year period. Pediatrics was the only area which seemed to fluxuate significantly. One run was made using the highest quarter's occurrence rate and another using the lowest quarter's rate. Changing this rate to either extreme had no significant effect upon the model. (Table 9a).

e. Walk-in Rate

The walk-in rate is the percentage of all
patients who came directly to the office without calling ahead for an appointment. The walk-in rate for the model was fifteen percent. Three runs (Table 9a) were made to test the model at a rate less than fifteen and up to the fifty percent rate which is now experienced in the General Medical Clinic.

At a walk-in rate of five percent, nịety-five percent of the non-emergency patients were calling for
an appointment. At this rate the system could not hande all who called, therefore, the waiting time to obtain an appointment grew excessively. The number of patients waiting grew to the point where the simulation was stopped, (transaction count exceeded). Data was therefore only available for one month. Doctor's utilization decreased but ancillary personnel utilization remained about the same. Although patients had to wait long periods of time to get into the clinic, their time spent in the clinic decreased and their utilization increased. This low walk-in rate allows the clinic to plan better, and would allow more patients to be scheduled each day. If changes in scheduling policy were not made, the number of families served would be decreased.

Next the walk-in rate was changed to twenty-five percent. Patient's utilization dropped to twenty-seven percent, while the average waiting room time per patient increased ten minutes. The time patients spent in the clinic increased significantly to over one and one half hours. Although doctor's utilization remained approximately the same, their time spent in the clinic decreased.

The last run varying the walk-in rate was to test the fifty percent rate. The trends listed above continued (less patient utilization and more patient time in the clinic). The doctor's "time there" utilization remained the same, but his utilization, using scheduled time, decreased significantly. The doctor's time in the clinic
decreased even further. Higher walk-in rates cause the patient's time to be wasted by longer waiting periods.
f. No-Show Rate

The no-show rate is the percentage of patients who have scheduled appointments but do not arrive. The noshow rate was increased to fifteen then twenty-five percent. The twenty-five percent run was not examined too closely, because the system overflowed at the fifteen percent rate. On the first run, doctor's utilization decreased. This shows that the system is very sensitive to an increase in the noshow rate. In this model every no-show patient was placed back into the system to be rescheduled. This would then cause a pile up to occur in those patients awaiting appointments, and leads to saturation of the system. If no-shows were not required to be rescheduled only the doctor's utilization would be affected.

g. Arrival Delays

The authors assumed that patients arrived for appointments according to a normal distribution centered about their scheduled time. Two other distributions were simulated. The first was uniform over the range of scheduled times plus or minus twenty-five minutes. The second used the distribution depicted in figure 4. Neither of these had any noticeable affect on any of the measures.
h. Nurse Clinician and Doctor Consults

The probability of a doctor having to consult with a nurse clinician was varied from one to twenty percent

(Table 9b). These runs did not affect any of the measures, therefore this parameter is not sensitive to changes in this range. The varying of the probability of a nurse clinician consulting with a doctor also had little effect. This rate was varied from five to twenty percent.

i. Exam Lengths

Although the length of time a patient spends with the doctor is critical to the operation of a clinic, one parameter which affects more personnel than any other is the length of a female exam that requires an observer. The basic model used an average of eight minutes per exam. Two other runs were made using five and ten minute averages (Table 9c).

The first run using five minute exam shows a significant decrease in the doctor's utilization, but with little effect on other utilizations. Doctor's time there utilization also decreased while the doctor time there remained fairly constant. This demonstrates that a three minute decrease in only thirty percent of the exams causes a substantial decrease in the doctor's time busy. According to the t-test the decrease in the patient's time in the clinic was not significant at the ninety-five percent confidence level.

> The second run increased the female exam time to ten minutes. This change had the opposite and predictable effect. Doctor's utilization and time there utilization increased significantly. But the doctor's time in the clinic

0

 \begin{tabular}{l}1

-

$-\quad+$

\hline
\end{tabular} $=-$ $-2+\infty$ $=$ 2

为

 $\mathfrak{m} \ddagger \mathrm{m}$ 出

 patien MEAN
(EIN)
 71.2
81.0
75.5

Parameter Comparisons

DOCTORS' $^{\prime}$	
UTILIZATION	
MEAN	T-SCORE
$(\%)$	
94.8	0
94.5	0.26
95.5	0.45
94.1	0.42
95.2	0.21
95.9	0.81
94.9	0.03
95.6	0.55

[^1]
$=t$

Aer

Hent $-2=-2$

\square a -

4

Her ?
 $\frac{4}{4}$
 $=$
 1, - 1 -18 $-2=$ -(1)

APPENDIX
RUUI \#

Patient UTILIZATION $(\%)$

 $\mathfrak{m} \mathfrak{m} \vec{m} \tilde{m} \tilde{m} \mathfrak{m} \mathfrak{m}$

67.0
78.9
74.6

$$
\begin{aligned}
& 3.03^{*} \\
& 3.74^{*}
\end{aligned}
$$

1.67
$2.04 *$ 90.1
100.3
95.3
100.3
96.7
102.4

$$
\begin{array}{ll}
\text { Basic } & 94.8
\end{array}
$$

1.12
$5.07 *$
0.14
1.21
0

$$
\begin{aligned}
& 94.6 \\
& 96.6 \\
& 94.8
\end{aligned}
$$

[^2]Hurse Return Rate
10%
25%
Lab ReTurn Rate
5%
25%
BASIC
mil
$=$

also increased. These two runs show that the system is extremely sensitive to exam time. If the thirteen minute normal patient exam time were altered only slightly there would be a substantial effect on the entire system.
j. Referral Rate

Two computer runs were performed using five and twenty-five percent referral rate instead of the basic model's ten percent. At a five percent rate, small changes were noted. When the rate was increased to twenty-five percent changes did occur. A significant increase appeared in the doctor's utilization and time there utilization. This indicates that increases in the referral rate have some effect on the system, but they seem to be slight.
k. Returns to the Doctor

Runs were made on the percentage of returns from the nurse and the lab (Table 9c). When the return rate from the nurses was increased to ten percent only slight changes in the measures were detected. But when the return rate was increased to twenty-five percent the doctor's utilization increased significantly. Twenty-five percent returns from the nurse seems to be quite high. Any change in rate of less than five percent would have little effect on the system. Return rates from the lab were varied between five and twentyfive percent. These changes did not cause noticeable increases or decreases in any of the measures of effectiveness.
$=2$
$=2$
$0=1$
\qquad

4
05
$=-$

$=$$\leq \quad-1$

III. MODEL UTILIZATION

The model is designed to determine the number of families that could be served by a Family Practice team consisting of four doctors plus ancillary personnel. A secondary objective is to analyze the best mix of personnel and number of exam rooms needed. These were determined using the input data developed in Section II. A. and B. and estimates by personnel at Hays Hospital.

The number of personnel considered were as follows:
(1) Doctors - 4
(2) Nurse Clinicians - 1, 2, 3
(3) Nurses - 1, 2
(4) Nurse's Aides - 2, 3
(5) Laboratory Technician - 1
(6) Receptionists - 2, 3, 4

Also varied was the number of exam rooms:
(1) Doctor's - 1, 2, 3
(2) Nurse Clinician's - 1, 2

The number of families was also varied to determine the number to assign to each doctor. It was discovered that around three hundred and twenty would keep the system busy and keep average waiting time at an acceptable level (Table 10).

Using the estimates from personnel at Hays Hospital, the number of nurse clinicians was reduced to one. The

	$320 \mathrm{FA}$	ILIES QUA	R Pati TERS	nt Panel	$335 \mathrm{~F}$	ILIES QUAR	R Pat ERS	ent Panel
	EIRST	SECOND	THIRD	EOURTH	EIRST	SECOND	THIRD	FOURTH
Number of Patients Waiting on the Schedule at the end OF EACH QUARTER	218	257	171	162	472	559	576	598
Doctors' UTilization	96\%	95\%	90\%	92\%	94\%	99\%	99\%	101\%
Average Patients' Time in the Clinic (Minutes)	80	75	74	74	79	81	81	85
Average Waiting Time once Scheduled (Days)	4.9	5.0	4.9	4.8	7.5	8.6	9.5	10.4

Table 10. Effect of Varying Patient Panel Size

$$
6
$$

utilization of the one nurse clinician doubled (Tables lla and llb), but still is well below any critical value. The usefullness of nurse clinicians seems to be restricted by the small portion of problems they are allowed to handle. An increase to three nurse clinicians at these rates would not increase the efficiency of the clinic. In later runs a change in the portion of problems handled by nurse clinicians was investigaged, and these results will be covered later. Due to the set up of the clinic and the overlapping nature of duties performed by nurses and aides, nurses' busy time is very low. Cutting the number to one nurse had little effect on the running of the clinic. This is caused by the fact that in the model, aides were selected as observers for female exams before nurses. If nurses were used to escort patients to exam rooms, the decrease of one nurse could be considered as a decrease of one nurse or one aide.

The next change made was to decrease the number of aides to one. This increased the aide's utilization but a significant increase was noted in the average time spent at the clinic by the patient, and a consequent decrease in the patient's utilization. This increase in patient's time was quite significant according to the t-test. Even though the aide's utilization increased a great deal, the nurse's did not seem to increase correspondingly. This shows that more of the aide's time is spent in showing patients to exam rooms than spent in observing female exams. Therefore it would be helpful if nurses were tasked along with aides in this area.

为

REMARKS \&	
	APPENDIX
	RUN \#
	RECEPTIONISTS'
	TILIZATION
	40\%, 24\%, AND
	15% B-1
Time in Exam	
Rooms Increased	
	B-2
	$B-3$
Recept, Util.	
46% AND 32\%	
B-14	
	Recept, UTil.
	77% B-15

PARAMETER
Basic
Three Exam Rooms 95.3
74.8
73.4
\vec{m}
M
0.56
4.34*
0.30
0.67
1
空总

0.35
2.77*
81.2
100.0
$0.43 \quad 100.0$
95.7
Significant by t-test
(i.e, EXCEEDED 1.76)
Table 11.a. Parameter Comparisons

N
$\stackrel{\rightharpoonup}{m}$
1
1

REMARKS \& APPENDIX RUIN \#

$\stackrel{H}{n}$

PARAMETER

Table 11.B. Parameter Comparisons

[^3]0.19
0.99

The need for a full time laboratory technician in a clinic is highly questionable. The number of patients assigned to only four doctors is not sufficient to keep a full time technician busy. Two alternatives are offered. The first is to train a nurse in some aspects of the technician's job. This would allow some laboratory work in the clinic and more complicated work could be sent to the main hospital laboratory. The second alternative is to assign a technician from the hospital for a short period of the day.

The last of the personnel varied was the receptionist. The night receptionist was kept constant and the day receptionists were reduced to two and then to one. When reduced to two, utilization increased but still within limits of acceptability. An increase of five minutes was noted in average patient time, but this is not a significant increase. When reduced to only one, the receptionist was busy most of the time (77\%), but still not near a saturation point. The average patient time spent in the office increased significantly by almost twenty-five minutes. Doctor's time spent in the clinic also increased. This indicates that two day receptionists are needed.

The number of doctor exam rooms was varied with the expected results. One exam room per doctor caused a severe slow down of the system, decreased doctor utilization, and increased quitting time. Raising the number of exam rooms to three had little effect except in two areas. Waiting time in the outer office decreased, while waiting time in the exam

安
 1 18

=
-
\square
\qquad
\qquad
\qquad
\qquad
\qquad

room for the doctor increased. The overall time spent in the clinic by the patient did not change. There seems to be little gained by giving each doctor three exam rooms.

Due to the low utilization of nurse clinicians, increasing their exam rooms would not afford much increase in efficiency. The change to two exam rooms for nurse clinicians will be discussed later.

The final change was to schedule twelve patients per doctor in the morning and afternoon periods of each day instead of the original ten. The effect of this was to increase the doctor's utilization and "time there" utilization. All other measures did not change significantly. This change could be helpful, if not carried too far. If the number of appointments were greatly increased, it could affect both the doctor's and patient's time spent in the clinic.

IV. RESULTS AND CONCLUSIONS

The model shows the optimal number of families to assign a doctor to be approximately three hundred and twenty. This is quite a bit under most estimates of the number that could be served [Ref. 4]. It is also a substantial decline from the number being served by the General Medicine Clinic. The three hundred and twenty figure is based on giving total medical service to a family and assumes that the family would not seek medical service from another clinic or doctor. The Family Practice Clinic would care for all of the patient's needs as they develop.

On the basis of parameter estimates, the optimal mix of personnel would be: four doctors, one nurse clinician, one nurse, three aides, and three receptionists. This is the best set up for a clinic which is separated from other medical services. Each doctor needs two exam rooms and the nurse clinician only one:

The above results are based on estimates given by supervisory personnel at Hays Hospital. From other sources estimates of a nurse clinician's responsibility are greater [Ref. 4]. Therefore, runs were conducted using differing nurse clinician rates (Appendix C).

Runs covering one year were made to discover the optimal number of families that could be assigned under different parameters. The model with the three hundred and twenty

families was the first run for the one year period. The results of this run are used to compare the increases realized by varying the nurse clinician's responsibility. This one year run had similar results to the basic run used in the previous comparisons.

The first change was to increase the nurse clinician's responsibility to a level where the clinician could care for a minimum of twelve percent of all patients. The level in several specific areas was also increased (pediatrics-50\%, allergies and immunizations -60%, $O B / G Y N-40 \%$, patients over fifty-five-50\%). The larger increases in these areas are a result of training received by the nurse clinicians. The two nurse clinicians should be trained in different areas so that as a group they can handle a larger proportion of problems. In this run, it was discovered that the nurse clinician's utilization increased to an acceptable rate. A bottleneck now appeared in the exam room of the nurse clinician, so this was increased to two exam rooms each.

With these changes a doctor was now able to care for four-hundred and twenty families. Doctor's utilization increased slightly as did all ancillary personnel's utilization (Appendix C). The major increase occurred in the nurse clinician's utilization to 73 percent. A slight increase was noted in patient's time in the clinic and a decrease in patient's utilization. These small changes for the patients are heavily outweighed by the increased number of patients served.

The greater utilization of nurse clinicians is a very important area. In a four doctor clinic, this caused a total increase of four-hundred and twenty families. This effectively is an increase of another doctor for the clinic, where the only change was better utilization of nurse clinicians.

Another simulation was performed, increasing the nurse clinician's rate again. This time the overall rate was increased to a minimum of fifteen percent. The rates in several specific areas were again increased (pediatrics-60\%, allergy and immunizations-75\%, OB/GYN-50\% and patients over fifty-five- 60%). This increase required the addition of a third nurse clinician and an extra aide or nurse to assist the night aide. With these changes, the utilization of all personnel increased and a doctor was now able to care for five hundred families. The patient's time in the clinic again increased and his utilization decreased.

V. RECOMMENDATIONS

The key to the Family Practice Clinic being able to provide total medical care for more families lies in increased utilization of the nurse clinicians. If a single doctor can care for only three hundred and twenty families, it will require eighty-eight Family Practice Physicians to care for the 28,000 families of the Hays Hospital potential patient population. These eighty-eight doctors do not include the other specialists in the hospital. If a doctor cares for five hundred families, however, only fifty-six Family Practice Physicians will be required. Since the shortage of doctors has been predicted to continue [Ref. 4], the increased utilization of ancillary personnel is imperative.

The model can be improved by the collection of data to provide more accurate estimates of the parameters listed in Table 10.

The model presented in this thesis can be used to simulate almost any group-doctor situation with a few minor changes.

APPEINIX A FIRST BA			
Length of run 3 months			
UTILIZATION		UTILIZATION	
$\begin{gathered} \text { Scheduled } \\ \text { TIMES } \end{gathered}$	$\operatorname{Timexe~}_{\text {TMERE }}$		$\begin{aligned} & \text { EDULED } \\ & \text { IMES } \end{aligned}$
Doctor 1 95\%	84\%	Recept, 1	39\%
Doctor 2 90\%	84\%	Recept, 2	23\%
Doctor 3 93\%	83\%	Recept, 3	15\%
Doctor 4 99\%	88\%	Nurse 1	7\%
Nurse Clin. 1 20\%		Nurse 2	17\%
Nurse Clin. 2 -16\%		Night Aide	48\%
Nurse Clin. 3 _\%		Aide 1	53\%
Night Doctor -8\%		Aide 2	41\%
Hight Recept, 36\%		Lab. Tech.	12\%
Patients	34\%		

Average Waiting Room Time 35 min. Scheduled 18 min. Call-ahead 45 min. Walk-ins 112 min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
$U_{\text {TIL }}$ TS $^{\text {S }}$	94.22.\%	3.32	0
$U_{\text {til }}^{\text {TT }}$	84.64\%	2.16	0
Patient's Time	74.15 MI	. 9.64	0
Doctor's Time*	28.748 mi	N. 503.1	0

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION

$\underset{\text { Simes }}{\substack{\text { Scheduled }}} \underset{\text { There }}{\text { Time }}$

UTILIZATION

Scheduled times

Doctor 1	98\%	84\%	Recept, 1	40\%
Doctor 2	-92\%	-81\%	Recept, 2	24\%
Doctor 3	96\%	84\%	Recept, 3	15\%
Doctor 4	95\%	87\%	Nurse 1	8\%

Nurse Clin. 1 19\%
Nurse Clin. 2 16\%
Nurse Clin. 3 - \%
Night Doctor 8\%
Hight Recept, 35\%
Nurse 2 18\%
Night Aide 48\%
Aide 1 55\%
Aide 2 40\%
Lab. Tech. 11\%

Average Waiting Room Time 50 min.
Scheduled 21 min. Call-ahead 51 min. Walk-ins 162 min.

I-TEst			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	94.96\%	2.17	0.32
UTIL ${ }_{\text {TT }}$	83.92\%	2.08	0.41
Patient's Time	75,99 M	v. 6.74	0,27
Doctor's Time*	29,278 M	v. 386.2	1.31

* Time in clinic during the number of months noted above.

UTILIZATION

$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { timere }}{\text { time }}$

UTILIZATION

$\underset{\text { Scheduled }}{\substack{\text { imes }}}$
Recept, 1 41\%
Recept, 2 24\%
Recept, 3 16\%
Nurse 1 8\%
Nurse 2 19\%
Night Aide 50\%
Aide 1 57\%
Aide 2 42\%
Lab, Tech, 13\%

Scheduled 21 min. Call-ahead 51 min. Walk-ins 112 min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	95.28\%	1.08	0.53
$U_{\text {TIL }} \mathrm{T}_{\text {TT }}$	85.18\%	0.87	0.40
Patient's Time	79,80	N.12.11	0.63
Doctor's Time*	28,893 M	v.152.1	0.48

* Time in clinic during the number of months noted above.

Average Waiting Room Time 41 min.
Scheduled 21 min. Call-ahead 49 min. Walk-ins 129 min.

I-TESI			
	Mean	Std, Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	94.82\%	2.42	0
UTIL ${ }_{\text {TT }}$	84.58\%	1.87	0
Patient's Time	76.65 M	N. 10.03	0
Doctor's Time*	28,956 M	N. 426.8	0

* Time in clinic during the number of months noted above,

I

$1-=$

\ldots

18－2

2新家 －
是－
，

5元
\qquad
$2(2-2-2-2$ 2

[^4]（2） （a）
相

tis

LENGTH OF RUN 3 MONTHS

UTILIZATION

$\underset{\text { Times }}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

UTILIZATION

Scheduled
imes

Doctor	94\%
Doctor	91\%
Doctor	95\%
Doctor	97\%
Nurse C	
Nurse C	
Nurse C	

Night Doctor 9%
Hight Recept. 36\%
Patients 33\%

Average Waiting Room Time 27 min.
Scheduled 13 min. Call-ahead 43 min. Walk-ins 82 min.

I-TEST

	MEAN	STD. DEV,	I-SCORE
UTIL ${ }_{\text {TS }}$	95.29\%	1.17	0.35
UTiL ${ }_{\text {TT }}$	84.23\%	2.39	0.28
Patient's Time	74.79 m	9,92	0.30
Doctor's Time*	28,920mi	N. 467.2	0.13

* Time in clinic during the number of months noted above.
 a -$2=-\frac{1}{2}$ In
\qquad
\qquad

$$
-
$$

-

\qquad
\qquad
\qquad

\qquad
\qquad
\square

(a)

12 APPOINTMEIT PERIODS

Length of run 3 months

UTILIZATION $\underset{\substack{\text { IImes }}}{\text { Scheduled }} \underset{\text { timere }}{\text { time }}$

UTILIZATION
Scheduled
imes
indizes

Doctor 1	100\%	86\%	Recept, 1	40\%
Doctor 2	95\%	87\%	Recept, 2	23\%
Doctor 3	101\%	89\%	Recept, 3	15\%
Doctor 4	99\%	90\%	Nurse 1	8\%
Nurse Clin. 1	20\%		Nurse 2	17\%
Nurse Clin, 2	18\%		Night Aide	53\%
Nurse Clin. 3	- \%		Aide 1	57\%
Night Doctor	10\%		Aide 2	41\%
Hight Recept.			Lab. Tech.	-\%

Average Waiting Room Time 34 min.
Scheduled 20 min. Call-ahead 41 min. Walk-ins 103 min .

I-TESI

Mean Std, Dèv, I-Score

UTIL ${ }_{\text {TS }}$	98,79\%	2.02	2.77
Util ${ }_{\text {Tt }}$	87,85\%	1.46	2.97
Patient's Time	Z3.42	7.23	0.56
Doctor's Time*	29.048 ml	497.7	0.34

* Time in clinic during the number of months noted above,

里

[^5]
－

\qquad
\qquad

號

蹅

1
號

號

號

\qquad

號

號

位位

 －$=$
P－

0
\qquad

UTILIZATION

UTILIZATION
Scheduled
Times

Doctor 1	97\%	86\%
Doctor 2	98\%	88\%
Doctor 3	98\%	86\%
Doctor 4	100\%	-90\%

Nurse Clin. 1 21\%
Nurse Clin. 2 20\%
Nurse Clin. 3 _ \%
Night Doctor - \%
Hight Recept, - \%

Recept, 1	$=\%$
Recept, 2	$=\%$
Recept, 3	$=\%$
Nurse 1	$=\%$
Nurse 2	$=\%$
Night Aide	$=\%$
Aide 1	$=\%$
Aide 2	$=\%$
Lab. Tech,	$=\%$

Patients $\quad 30 \%$

Average Waiting Room Time 40 min.
Scheduled _ min. Call-ahead _ min. Walk-ins _ min.

I-TEST			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	98.25\%	0.90	2.60
UTIL ${ }_{\text {TT }}$	87.48\%	1.64	2.59
Patient's Time	83.17 M	N. 5.72	1.16
Doctor's Time*	29,010 MI	N. 92.5	0,42

* Time in clinic during the number of months noted above.

15

\qquad
$=-=$
$-=-=$
-

3\% OVER 1 APPOIMTMENT PERIOD _(B-5)		
Length of	RUN	
UTILIZATION		UTILIZATION
Scheduled $\substack{\text { imes }}$ dit	$\operatorname{fime~}_{\text {IMERE }}$	$\begin{aligned} & \text { Scheduled } \\ & \text { IMES } \end{aligned}$

Doctor 1	81\%	74\%
Doctor 2	74\%	71\%
Doctor 3	84\%	78\%
Doctor 4	80\%	77\%

Nurse Clin, 118%
Nurse Clin, 2 15\%
Nurse Clin. 3 - \%
Night Doctor - \%
Hight Recept, _\%
Recept, 1 - \%
Recept, 2 - \%
Recept, 3 - \%
Nurse 1 - \%
Nurse 2 - \%
Night Aide - \%
Aide 1 - \%
Aide 2 - \%
Lab, Tech, - \%

Average Waiting Room Time 24 min.
Scheduled - min. Call-ahead _ min. Walk-ins _ min.

I-TESI

Mean Std, Dev, I-Score

UTIL ${ }_{\text {TS }}$	79.82\%	3.79	8.61
Util ${ }_{\text {Tt }}$	75.15\%	2.57	2.38
Patient's Time	55,77 MI	2.92	3.84
Doctor's Time*	27,420min	314.6	$\underline{6,19}$

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

UTILIZATION
Scheduled
TMES
Recept, 1 - \%
Recept, 2 - \%
Recept, 3 - \%
Nurse 1 8\%
Nurse 2 18\%
Night Aide 55\%
Aide 1 58\%
Aide 2 42\%
Lab, Tech, $=\%$

Average Waiting Room Time 39 min.
Scheduled - min. Call-ahead - min. Walk-ins - min.

I-TESI

Mean Std. Dev, I-Score

UTiL $_{\text {TS }}$	97.09%	1.95	1.60
UTIL $_{\text {TT }}$	$-\quad \%$	-	-
Patient's Time	$-\quad$ Z7.85min.	-6.80	0.21

Doctor's Time* __ MIN._ _

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION

$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { There }}{\text { Ime }}$

Doctor 1	$\underline{99 \%}$	$--\%$
Doctor 2	$\underline{96 \%}$	$--\%$
Doctor 3	$\underline{98 \%}$	$--\%$
Doctor 4	$\underline{97 \%}$	$--\%$

Nurse Clin. 2 18\%
Nurse Clin. 3 - \%
Night Doctor 21\%
Night Recept. - \% Patients

UTILIZATION
Scheduled TIMES

Nurse Clin. 1 20\%
Recept. 1 = \%
Recept. 2 =\%
Recept, $3=\%$
Nurse 1 7\%
Nurse 2 17\%
Night Aide 54\%
Aide 1 56\%
Aide 2 40\%
Lab. Tech, = \%
32\%

Average Waiting Room Time 38 min.
Scheduled - min. Call-ahead - min. Walk-ins - min.
I-TESI
Mean Std. Dev, I-Score

* Time in clinic during the number of months noted above.

Length of run 3 months

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

DOCTOR 1	$\underline{98 \%}$	$--\%$
DOCTOR 2	$\underline{92 \%}$	$--\%$
DOCTOR 3	$\underline{95 \%}$	$--\%$
DOCTOR 4	$\underline{96 \%}$	$-\quad \%$

Nurse Clin. 1 19\%
Nurse Clin. 2 16\%
Nurse Clin, 3 - \%
Night Doctor - \%
Night Recept, - \%
Patients
35\%

UTILIZATION
Scheduled TIMES
Recept, $1=\%$
Recept, $2=\%$

Recept, $3=\%$
Nurse 1 =\%
Nurse $2=\%$
Night Aide = \%
Aide $1=\%$
Aide $2=\%$
Lab, Tech, = \%

Average Waiting Room Time 34 min.
Scheduled - min. Call-ahead _ min. Walk-ins _ min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	95.15\%	1.91	0.23
UTil ${ }_{\text {TT }}$	- \%	-	-
Patient's Time	72,13 Min	N.7.29	0.78
Doctor's Time*	- MI	N. -	-

* Time in clinic during the number of months noted above.

LENGTH OF RUN 3 mONTHS

UTILIZATION

Scheduled	
Times	Time
There	

UTILIZATION
Scheduled
Times
$\begin{array}{lll}\text { Doctor } 1 & \underline{91 \%} \\ \text { Doctor } 2 & \underline{96 \%} \\ \text { Doctor } 3 & \underline{95 \%} \\ \text { Doctor } 4 & \underline{93 \%} \\ \text { Nurse CLin. } 1 & \underline{21} \%\end{array}$
Nurse Clin, 2 18\%
Nurse Clin, 3 - \%
Night Doctor 9\%
Night Recept. 35\% Patients
-\%
-\% RECEPT, 2 23\%
-\% Recept. 3 15\%

- \% Nurse 1 6\%

Nurse 2 17\%
Night Aide 50\%
Aide 1 55\%
Aide 2 40\%
Lab. Tech. - \%

Average Waiting Room Time 35 min.
Scheduled 19 min. Call-ahead 53 min . Walk-ins 100 min .

I-TEST			
	Mean	STD. DEV,	I-SCORE
UTIL ${ }_{\text {TS }}$	93,68\%	1.90	0.80
Util ${ }_{\text {tit }}$	- \%	-	-
Patient's Time	Z3,69 Mi	N. 6.84	0.51
Doctor's Time*	- Mi	N. -	-

* Time in clinic during the number of months noted above,

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { There }}{\text { Ime }}$

UTILIZATION Scheduled
imes
Doctor 1 93\% - \% Recept. 1 40\%
Doctor 2 98\% _\% RECEPT, 2 23\%
Doctor 3 93\% - \% Recept. 3 15\%
Doctor $4 \quad$ 93\% - \% Nurse 1 8\%

Nurse Clin. 1 21\%
Nurse 2 18\%
Nurse Clin. $2 \quad 20 \%$
Nurse Clin. 3 - \%
Night Doctor 11\%
Hight Recept. 35\%
Night Aide 48\%
Aide 1 52\%
Aide 2 41\%
Lab, Tech. - \%

Average Waiting Room Time 37 min.
Scheduled 22 min. Call-ahead 49 min. Walk-ins 102 min.

I-TEST			
	Mean	Std. Dev,	I-SCORE
$U_{\text {TIL }}{ }_{\text {TS }}$	94.15\%	2.30	0.46
UTIL ${ }_{\text {TT }}$	- \%	-	-
Patient's Time	75,07 m	N. 8.49	0.26
Doctor's Time*	- M	N. -	-

* Time in clinic during the number of months noted above.
UTILIZATION
$\underset{\text { Simes }}{\text { Scheduled }} \underset{\text { There }}{\text { Ime }}$

UTILIZATION

Scheduled I IMES

Doctor 1 87\%	78\%	Recept, 1 41\%
Doctor 2 82\%	74\%	Recept. 2 24\%
Doctor 3 83\%	75\%	Recept, 3 15\%
Doctor 4 -84\%	75\%	Nurse 1 8\%
Nurse Clin. 1.24%		Nurse 2 15\%
Nurse Clin, 2 21\%		Night Aide 42\%
Nurse Clin. 3 -\%		Aide 1 52\%
Night Doctor 13\%		Aide 2 38\%
Might Recept, 36\%		Lab. Tech, =\%
Patients	41\%	

Average Waiting Room Time 23 min. .
Scheduled 17 min. Call-ahead 36 min. Walk-ins 91 min.

I-TEST			
	Mean	Std, Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	- \%	-	-
UTil ${ }_{\text {Tt }}$	- \%	-	-
Patient's Time	- MIN	,	-
Doctor's Time*	_ MIN	N. -	-

* Time in clinic during the number of months noted above.

Length of run 3 months

UTILIZATION

$\underset{\text { Times }}{\text { Scheduled }} \underset{\text { there }}{\text { Time }}$

UTILIZATION

Scheduled
Times
Recept, 1 39\%
Recept, 2 22\%
Recept, 3 14\%
Nurse 1 7\%
Nurse 2 18\%
Night Aide 52\%
Aide 1 55\%
Aide 2 41\%
Lab. Tech. = \%

Average Waiting Room Time 51 min. Scheduled 21 min. Call-ahead 47 min. Walk-ins 133 min.

I-Test			
	Mean	Std, DEV,	I-SCORE
UTIL ${ }_{\text {TS }}$	95.11\%	3.19	0.18
UTiL ${ }_{\text {Tt }}$	86.13\%	2.40	1.25
Patient's Time	92,20	N. 10.10	2.51
Doctor's Time*	28,515m	N. 216.9	1.85

* Time in clinic during the number of months noted above.

\qquad

Length of run 3 months

UTILIZATION

UTILIZATION

Scheduled

Recept. 1 34\%
Recept, 2 18\%
Recept, 3 11\%
Nurse 1 5\%
Nurse 2 16\%
Night Aide 56\%
Aide 1 54\%
Aide 2 38\%
Lab, Tech, = \%

Average Waiting Room Time 71 min. Scheduled 19 min. Call-ahead 11 min. Walk-ins 125 min.

I-TEST

Mean Std, Dev, I-Score

UTIL ${ }_{\text {TS }}$	91,81\%	2.97	1.92
UTIL ${ }_{\text {TT }}$	84, 35\%	3.27	0.16
Patient's Time	112.83 MI	33,34	3.12
Doctor's Time*	$28,125 \mathrm{ml}$	597,9	2.83

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION

$\underset{\substack{\text { imes }}}{\text { Scheduled }} \underset{\text { there }}{\text { ime }}$

| Doctor 1 | $\underline{89 \%}$ | $\underline{80 \%}$ |
| :--- | :--- | :--- | :--- |
| DOCTOR 2 | $\underline{95 \%}$ | $\underline{85 \%}$ |
| DOCTOR 3 | $\underline{93 \%}$ | $\underline{82 \%}$ |
| DOCTOR 4 | $\underline{98 \%}$ | $\underline{86 \%}$ |

Nurse Clin. 1 19\%
Nurse Clin. 2 19\%
Nurse Clin. 3 - \%
Night Doctor - \%
Hight Recept, - \%

UTILIZATION
Scheduled
IMES
Recept. 1 46\%
Recept, 2 32\%
Recept. $3=\%$
Nurse 1 =\%
Nurse 2 - \%
Night Aide =\%
Aide 1 - \%
Aide $2=\%$
Lab, Tech, = \%

Average Waiting Room Time - min. .
Scheduled - min. Call-ahead _ min. Walk-ins _ min.

I-TESI

Mean Std. Dev, t-Score

UTIL ${ }_{\text {TS }}$	93.68\%	3.31	0.69
Util ${ }_{\text {tit }}$	83,26\%	2.55	1.04
Patient's Time	81.17 MI	13.49	0.67
Doctor's Time*	29,069 mi	437,5	0.39

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION

$\underset{\text { Times }}{\text { Scheduled }} \underset{\text { There }}{\text { tIme }}$

UTILIZATION
$\underset{\text { Schedules }}{\substack{\text { ames }}}$

| DOCTOR $1 \quad 95 \% \quad 85 \%$ | RECEPT. 1 | Zn\% |
| :--- | :--- | :--- | :--- | :--- |

Doctor $2 \quad 96 \%$ RECEPT, 2 - $\%$
DOCTOR 3 103\% 87\% RECEPT, 3 =\%
Doctor $4 \quad 88 \% \quad 79 \% \quad$ Nurse $1 \quad=\%$
Nurse Cline. 1 20\% Nurse 2 - \%

Nurse Cline. 2 17\%
Nurse Cline. 3 - \%
Night Doctor - \%
Night Recept, 36\%
Recept, 1 Z 7%
Recept, 2 - \%
Recept, $3=\%$
Nurse $1=\%$
Nurse $2=\%$
Night Aide = \%
Aide $1=$ \%
Aide $2=\%$
Lab, Tech, =\%

Average Waiting Room Time _ min. Scheduled _ min. Call-ahead _ min. Walk-ins _ min.

I-TESI

Mean Std, Dey, t-Score

* Time in clinic during the number of months noted above.

Length of run 1 months

UTILIZATION
$\underset{\substack{\text { Scheduled } \\ \text { times }}}{f_{\text {time re }}}$

DOCTOR 1	$\underline{89 \%}$	$\underline{77 \%}$
DOCTOR 2	$\underline{90 \%}$	$\underline{81 \%}$
DOCTOR 3	$\underline{34 \%}$	$\underline{77 \%}$
DOCTOR 4	$\underline{81 \%}$	$\underline{75 \%}$

Nurse Cline. 1 19\%
Nurse Cline. 2 21\%
Nurse Cline. 3 - \%
Night Doctor 11\%
Night Recept. 35\%
Patients
37\%

UTILIZATION

Scheduled

Recept, 1 40\%
Recept, 2 24\%
Recept, 3 16\%
Nurse 1 6\%
Nurse 2 16\%
Night Aide 42\%
Aide 1 55\%
Aide 2 37\%
Lab, Tech, = \%

Average Waiting Room Time 30 min.
Scheduled 17 min. Call-ahead 42 min. Walk-ins 78 min.

I-TESI

Mean Std, Dey, t-Score

* Time in clinic during the number of months noted above.

LENGTH OF RUN 1 MONTHS

UTILIZATION

$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { There }}{\text { tIme }}$

UTILIZATION
Scheduled
TIMES

Average Waiting Room Time _ min. .
Scheduled - min. Call-ahead _ min. Walk-ins _ min.

I-TESI

Mean Std, Dey, I-Score

* Time in clinic during the number of months noted above.

| |
| :--- | :--- |

Length of run 3 months

IMES	there	IMES
Doctor 1 94\%	83\%	Recept, 1 - \%
Doctor 2 95\%	86\%	Recept, 2 -\%
Doctor 3 93\%	82\%	Recept, 3 - \%
Doctor 4 96\%	87\%	Nurse 1 - \%
Nlurse Clin. 1 21\%		Nurse $2=\%$
Nurse Clin. 2 18\%		Night Aide =\%
Nurse Clin. 3 -\%		Aide 1 - \%
Night Doctor -\%		Aide 2 - \%
Hight Recept, -\%		Lab, Tech, =\%
Patients	33\%	

IMES	there	IMES
Doctor 1 94\%	83\%	Recept, 1 - \%
Doctor 2 95\%	86\%	Recept, 2 -\%
Doctor 3 93\%	82\%	Recept, 3 - \%
Doctor 4 96\%	87\%	Nurse 1 - \%
Nlurse Clin. 1 21\%		Nurse $2=\%$
Nurse Clin. 2 18\%		Night Aide =\%
Nurse Clin. 3 -\%		Aide 1 - \%
Night Doctor -\%		Aide 2 - \%
Hight Recept, -\%		Lab, Tech, =\%
Patients	33\%	

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

Nurse Clin. 1 21\%
Nurse Clin. 218%
Nurse Clin. 3 - \%
Night Doctor _-\%
Hight Recept. - \%
Patients
33%

UTILIZATION $\underset{\substack{\text { Scheduled } \\ \text { imes }}}{\text { and }}$

Average Waiting Room Time 35 min.
Scheduled - min. Call-ahead _ min. Walk-ins - min.

I-TEST			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	94.47\%	1.09	0.26
UTIL ${ }_{\text {TT }}$	84.74\%	2.02	0.14
Patient's Time	Z3.57	, 9.60	0.50
Doctor's Time*	28,800 mi	N. 99.5	0.68

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION

UTILIZATION

Scheduled TIMES

Doctor 1	93\%	83\%	Recept, 1	- \%
Doctor 2	97\%	87\%	Recept. 2	- \%
Doctor 3	99\%	86\%	Recept, 3	-\%
Doctor 4	94\%	86\%	Nurse 1	-\%
Nurse Clin. 1			Nurse 2	-\%
Nurse Clin. 2			Night Aide	- \%
Nurse Clin. 3	- \%		Aide 1	-\%
Night Doctor	-\%		Aide 2	-\%
Night Recept.	-\%		Lab, Tech.	-\%

Average Waiting Room Time 35 min.
Scheduled - min. Call-ahead - min, Walk-ins - min.

I-TESI

Mean Std, Dev, I-Score

$U_{\text {TIL }}{ }_{\text {TS }}$	95.49\%	$\underline{2.33}$	0.45
UTIL ${ }_{\text {TT }}$	85.63\%	1.48	$\underline{0,95}$
Patient's Time	74.32	7, 72	$\underline{0.40}$
Doctor's Time*	28,800M	. 277.4	0.64

* Time in Clinic during the number of months noted above.

Length of run 3 months

UTILIZATION

$\underset{\substack{\text { imes } \\ \text { Scheduled }}}{\text { Time }} \underset{\text { there }}{ }$

UTILIZATION
Scheduled
imes

Doctor 1	$\underline{94 \%}$	$\underline{82 \%}$
DOCTOR 2	$\underline{94 \%}$	$\underline{84 \%}$
DOCTOR 3	$\underline{92 \%}$	$\underline{82 \%}$
DOCTOR 4	$\underline{98 \%}$	$\underline{86 \%}$

Nurse Clin. 1 20\%
Nurse Clin. 2 17\%
Nurse Clin. 3 - \%
Night Doctor 10\%
Night Recept, 36\%
Patients
20\%

Scheduled 39 min. Call-ahead 135 min. Walk-ins 183 min.

I-TESI			
	Mean	STD, Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	94.55\%	2.08	0.19
UTIL ${ }_{\text {T }}$	83.30\%	1.94	1.09
Patient's Time	121.28 m	N. 13.96	6.49
Doctor's Time*	29,318mi	N. 305.5	1.47

* Time in clinic during the number of months noted above,

Length of run 6 months

UTILIZATION

$\underset{\substack{\text { imes }}}{\text { Scheduled }} \mathrm{T}_{\text {there }}^{\text {Ime }}$

UTILIZATION
Scheduled
IMES

Doctor 1 -\%	- \%	Recept, 1	\%
Doctor 2 -\%	-\%	Recept, 2	\%
Doctor 3 - \%	-\%	Recept, 3	- \%
Doctor 4 _-\%	-\%	Nurse 1	20\%
Murse Clin, 1 _ \%		Nurse 2	- \%
Nurse Clin. 2 -\%		Night Aide	51\%
Nurse Clin. 3 _\%		Aide 1	56\%
Night Doctor -\%		Aide 2	41\%
Night Recept, _ \%		Lab. Tech.	- \%

Average Waiting Room Time 39 min.
Scheduled _ min. Call-ahead _ min. Walk-ins _ min.

I-TESI			
	Mean	Std. DEV.	I-SCORE
UTIL ${ }_{\text {TS }}$	- \%	-	-
UTIL ${ }_{\text {TT }}$	- \%	-	-
Patient's Time	- MI	-	-
Doctor's Time*	_ MI	.-	-

* Time in clinic during the number of months noted above.

LENGTH OF RUN 3 MONTHS

UTILIZATION
$\underset{\text { Times }}{\text { Scheduled }} \underset{\text { There }}{\text { Iime }}$

UTILIZATION
Scheduled
times

| DOCTOR 1 | $\underline{93 \%}$ | $\underline{81 \%}$ |
| :--- | :--- | :--- | :--- |
| DOCTOR 2 | $\underline{93 \%}$ | $\underline{83 \%}$ |
| DOCTOR 3 | $\underline{93 \%}$ | $\underline{84 \%}$ |
| DOCTOR 4 | $\underline{95 \%}$ | $\underline{85 \%}$ |

Nurse Clin. 1 40\%
Nurse Clin. 2 - \%
Nurse Clin. 3 - \%
Night Doctor -\%
Night Recept, - \% Patients
33%

Average Waiting Room Time 37 min. Scheduled - min. Call-ahead - min. Walk-ins - min.

I-TESI			
	Mean	STD, DEV,	I-SCORE
UTIL ${ }_{\text {TS }}$	93.52\%	0.86	0.99
UTIL ${ }_{\text {TT }}$	83,13\%	1.33	1.34
Patient's Time	74.69 MI	, 12.43	0.30
Doctor's Time*	29,063mi	N. 399.3	0.41

* Time in clinic during the number of months noted above.

Average Waiting Room Time 33 min.
Scheduled 19 min. Call-ahead 48 min. Walk-ins 92 min .

I-TEST

Mean Std, Dev, I-Score

UTIL ${ }_{\text {TS }}$	94.13\%	3.40	0.42
UTIL ${ }_{\text {TT }}$	84.45\%	3,06	0.09
Patient's Time	71.20	Z.91	0.92
Doctor's Time*	28,793	.523.7	0.58

* Time in clinic during the number of months noted above,

UTILIZATION

$\underset{\text { Scheduled }}{\substack{\text { Times }}} \underset{\text { Timere }}{\text { Time }}$

UTILIZATION

Scheduled IIMES

Doctor 1 96\%	85\%	Recept. 1	-\%
Doctor 2 94\%	87\%	Recept, 2	\%
Doctor 3 101\%	88\%	Recept, 3	\%
Doctor 4 90\%	83\%	Nurse 1	\%
Nurse Clin. 1.25%		Nurse 2	-\%
Nurse Clin. 2 -18\%		Night Aide	\%
Nurse Clin. 3 -\%		Aide 1	\%
Night Doctor -\%		Aide 2	-\%
Night Recept, -\%		Lab, Tech.	-\%

Average Waiting Room Time 41 min. Scheduled 23 min. Call-ahead 61 min. Walk-ins 117 min.

I-TESI			
	Mean	STD. DEV.	I-SCORE
UTiL ${ }_{\text {TS }}$	95.18\%	3.83	0.21
UTiL ${ }_{\text {Tt }}$	85.79\%	$\underline{1.85}$	1.05
Patient's Time	80.97 mi	4.89	0.78
Doctor's Time*	$28,643 \mathrm{ml}$	N.432.3	$\underline{1.19}$

* Time in clinic during the number of months noted above.

Length of run 3 months

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { fimere }}{\text { fime }}$

UTILIZATION
Scheduled
Times

Doctor 1 96\%	84\%	Recept, 1	-\%
Doctor 2 97\%	87\%	Recept, 2	\%
Doctor 3 -96\%	85\%	Recept, 3	-\%
Doctor 4 95\%	88\%	Nurse 1	\%
Nlurse Clin. 1 28\%		Nurse 2	-\%
Nurse Clin. 2 20\%		Night Aide	-\%
Nurse Clin. 3 -\%		Aide 1	-\%
Night Doctor -\%		Aide 2	\%
Hight Recept, - \%		Lab, Tech.	-\%

Patients
34\%

Average Waiting Room Time 35 min. Scheduled 20 min. Call-ahead 42 min. Walk-ins 105 min.

I-TESI			
	Mean	STD. DEV.	I-SCORE
UTIL ${ }_{\text {TS }}$	95,88\%	0.84	0.81
UTIL ${ }_{\text {TT }}$	86.12\%	1.61	1.38
Patient's Time	75,47 MI	. 6.51	0.28
Doctor's Time*	$28,763 \mathrm{mi}$	N.343,6	0.77

* Time in clinic during the number of months noted above.

UTILIZATION

Schepuled $\operatorname{TIMES}_{\text {IMERE }}^{\text {IME }}$

Doctor 1 96\%	85\%	Recept, 1	- \%
Doctor 2 93\%	86\%	Recept, 2	- \%
Doctor 3 96\%	86\%	Recept, 3	- \%
Doctor 4 94\%	85\%	Nurse 1	\%
Nurse Clin. 118%		Nurse 2	- \%
Nurse Clin. 2 17\%		Night Aide	- \%
Nurse Clin. 3 -\%		Aide 1	\%
Night Doctor _\%		Aide 2	- \%
Hight Recept, - \%		Lab, Tech.	-

Average Waiting Room Time 34 min. Scheduled 18 min. Call-ahead 40 min. Walk-ins 108 min.

I-TESI

Mean Std. Dev, I-Score

UTIL ${ }_{\text {TS }}$	94.85\%	1.43	0.03
UTiL ${ }_{\text {Tt }}$	85.48\%	0.44	0.89
Patient's Time	73.53	7.08	0.54
Doctor's Time*	28,658mi	. 247.7	1.24

* Time in clinic during the number of months noted above.

LENGTH OF RUN 3 MONTHS

UTILIZATION

Scheduled
Times Time there

| DOCTOR 1 | $\underline{98 \%}$ | $\underline{84 \%}$ |
| :--- | :--- | :--- | :--- |
| DOCTOR 2 | $\underline{98 \%}$ | $\underline{88 \%}$ |
| Doctor 3 | $\underline{95 \%}$ | $\underline{87 \%}$ |
| Doctor 4 | $\underline{92 \%}$ | $\underline{86 \%}$ |

Nurse Clin. 1 21\%
Nurse Clin. 2 19\%
Nurse Clin. 3 - \%
Night Doctor - \%
Night Recept, - \%
Patients

UTILIZATION
Scheduled
Times

Length of run 3 months

UTILIZATION
$\underset{\text { Scheduled }}{\substack{\text { imes }}} f_{\text {fime }}$

Doctor 1 92\%	79\%	Recept, 1	40\%
Doctor 2 85\%	79\%	Recept, 2	24\%
Doctor 3 93\%	81\%	Recept, 3	16\%
Doctor 4 90\%	82\%	Nurse 1	6\%
Nurse Clin. 1 20\%		Nurse 2	17\%
Nurse Clin. 2 16\%		Night Aide	44\%
Nurse Clin. 3 - \%		Aide 1	58\%
Night Doctor 9\%		Aide 2	41\%
Hight Recept, 34\%		Lab, Tech.	-\%

UTILIZATION

Scheduled
imes

Patients
36%
Average Waiting Room Time 30 min.
Scheduled - min. Call-ahead _ min. Walk-ins _ min.

I-Tesi

Mean Std. Dev, I-Score
$U_{T I L}^{T S}$
UTIL ${ }_{\text {TT }}$
Patient's Time 67.04 min. Z. 15
Doctor's Time* 28,988min.555.4
$90.07 \% \quad 2.88 \quad 3.03$
$80.26 \% \quad 1.52 \quad 3.91$
1.66
0.11

* Time in clinic during the number of months noted above,

10 MINUTE FEMALE EXAM

Length of run 3 months

UTILIZATION
$\underset{\text { Times }}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

Doctor 1	$\underline{101 \%}$		$\mathbf{8 8 \%}$
Doctor 2	$\underline{101 \%}$	$\underline{91 \%}$	
Doctor 3	$\underline{102 \%}$	$\underline{84 \%}$	
Doctor 4	$\underline{97 \%}$	$\underline{87 \%}$	

Nurse Clin. 120%
Nurse Clin. 2 17\%
Nurse Clin. 3 - \%
Night Doctor 11\%
Night Recept. 37\%
Patients
33\%

UTILIZATION Scheduled
Times

Recept, 1 40\%
Recept. 2 24\%
Recept, 3 15\%
Nurse 1 8\%
Nurse 2 17\%
Night Aide 52\%
Aide 1 54\%
Aide 2 41\%
Lab, Tech, = \%

Average Waiting Room Time 37 min. .
Scheduled _ min. Call-ahead _ min. Walk-ins _ min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
$U_{\text {TIL }}{ }_{\text {TS }}$	100.27\%	2.19	3.74
Util ${ }_{\text {tit }}$	87,60\%	2.46	2.40
Patient's Time	78.85	N. 9.64	0.36
Doctor's Time*	29,580 mi	N. 815.3	1.84

* Time in clinic during the number of months noted above.

LENGTH OF RUN 3 MONTHS

UTILIZATION
$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { Time }}$

UTILIZATION
Scheduled TIMES

Doctor 1	$\underline{93 \%}$		82%
Doctor 2	$\underline{95 \%}$	$\underline{86 \%}$	
Doctor 3	$\underline{97 \%}$	$\underline{85 \%}$	
Doctor 4	$\underline{96 \%}$	$\underline{88 \%}$	

Nurse Clin, 1 22\%
Nurse Clin. 2 18\%
Nurse Clin. 3 - \%
Night Doctor 10\%
Hight Recept, 36\% Patients 34\%

Average Waiting Room Time 36 min.
Scheduled 21 min. Call-ahead 47 min. Walk-ins 106 min.

I-TESI			
	Mean	Std, DEV,	I-SCORE
$U_{\text {TIL }}{ }_{\text {TS }}$	95,33\%	1.72	1.67
UTIL ${ }_{\text {TT }}$	85.20 \%	2.22	0.50
Patient's Time	74.63 M	4.79	1.11
Doctor's Time*	28,905 M	N. 280.2	1.51

* Time in clinic during the number of months noted above.

LENGTH OF RUN 3 MONTHS

UTILIZATION $\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { tIme }}$

UTILIZATION

\(\underset{\substack{aMES}}{\substack{Scheduled
Tin}}\)

Doctor 1	103%	$\underline{90 \%}$	Recept. 1	$\underline{39 \%}$
Doctor 2	103%	$\underline{91 \%}$	RECEPT. 2	$\underline{23 \%}$
Doctor 3	100%	$\underline{87 \%}$	ReCEPT. 3	$\underline{15 \%}$

Doctor 4 96\% 89\% NURSE 1 구
Nurse Cline. 1 19\% Nurse 2 16\%

Nurse Cling. 220%
Nurse Cline. 3 - \%
Night Doctor 10\%
Hight Recept, 36\%
Patients
31\%

Average Waiting Room Time 41 min.
Scheduled 21 min. Call-ahead 51 min. Walk-ins 131 min.

I-TESI

Mean Std. Dey, t-Score

* Time in clinic during the number of months noted above,

10\% RETURUS FROM NURSE

Length of run 3 months

UTILIZATION

$\underset{\substack{\text { Times }}}{\text { Scheduled }} \underset{\text { there }}{\text { Ime }}$

UTILIZATION
$\underset{\substack{\text { imes }}}{\substack{\text { Scheduled }}}$

Doctor 1	100\%	86\%	Recept, 1	-\%
Doctor 2	101\%	92\%	Recept, 2	\%
Doctor 3	94\%	84\%	Recept, 3	-\%
Doctor 4	93\%	85\%	Nurse 1	8\%
Nurse Clin. 1			Nurse 2	17\%
Nurse Clin.			Night Aide	50\%
Nurse Clin.	-\%		Aide 1	56\%
Night Doctor	-\%		Aide 2	41\%
Hight Recept	-\%		Lab. Tech.	-\%

32\%

Average Waiting Room Time 40 min .
Scheduled 21 min. Call-ahead 58 min, Walk-ins 117 min.

I-TESI			
	Mean	Stid. Dev,	I-SCORE
UTiL ${ }_{\text {TS }}$	96.71\%	3.54	1.12
$U_{T i L} L_{T T}$	86.65\%	3.25	1.47
Patient's Time	79.95	. 9.80	0.54
Doctor's Time*	28.830 mm	. 356.6	0.49

* Time in clinic during the number of months noted above.

Doctor 1	101\%	87\%	Recept, 1	- \%
Doctor 2	104\%	93\%	Recept, 2	-\%
Doctor 3	105\%	91\%	Recept, 3	- \%
Doctor 4	100\%	89\%	Nurse 1	7\%
Nurse Clin.	21\%		Nurse 2	18\%
Nurse Clin.	18\%		Night Aide	55\%
Nurse Clin.	-\%		Aide 1	56\%
Night Doctor			Aide 2	41\%
Hight Recept			Lab. Tech.	-\%

UTILIZATION

$\underset{\text { Scheduled }}{\substack{\text { Times }}} \underset{\text { There }}{\text { Ime }}$

Nurse Clin. 1 21\%
Nurse Clin. 2 18\%
Nurse Clin. 3 - \%
Night Doctor -\%
Night Recept, _-\%
Patients

UTILIZATION
Scheduled
imes

Average Waiting Room Time 41 min. Scheduled 22 min. Call-ahead 63 min. Walk-ins 124 min.

I-TESI			
	Mean	Std, DEV,	I-SCORE
UTil ${ }_{\text {TS }}$	102.36\%	2.39	$\underline{5.07}$
UTIL ${ }_{\text {TT }}$	89.89\%	2.39	4.27
Patient's Time	83.25 m	N. 5.31	$\underline{1.18}$
Doctor's Time*	29,415mi	N. 303.4	$\underline{1.86}$

* Time in clinic during the number of months noted above,

LENGTH OF RUN. 3 MONTHS

UTILIZATION

Scheduled
Times
time
time
Itize

Doctor 1	96\%	84\%
Doctor 2	93\%	85\%
Doctor 3	96\%	84\%
Doctor 4	93\%	85\%

Nurse Clin. 1 20\%
Nurse Clin. 2 17\%
Nurse Clin. 3 - \%
Night Doctor - \%
Hight Recept, - \%
Patients

UTILIZATION

Scheduled
Times

Recept, $1=\%$
Recept, 2 =\%
Recept, $3=\%$
Nurse 1 7\%
Nurse 2 17\%
Night Aide 47\%
Aide 1 55\%
Aide 2 41\%
Lab. Tech. $=$ \%

Average Waiting Room Time 34 min.
Scheduled - min. Call-ahead - min. Walk-ins - min.

I-TESI

Mean Std. Dev, I-Score

UTIL ${ }_{\text {TS }}$	94.62\%	1.68	0.14
UTIL ${ }_{\text {TT }}$	84, 63 \%	0.35	0.05
Patient's Time 73.40 min. 6.26			0.57
Doctor's Time* $28,875 \mathrm{~min}$, 337.8			0.32

* Time in clinic during the number of months noted above,

Length of run 3 months

UTILIZATION
Scheduled
imes
Timere
Hese

| DOCTOR 1 | $\underline{98 \%}$ | $\underline{87 \%}$ |
| :--- | :--- | :--- | :--- |
| Doctor 2 | $\underline{98 \%}$ | $\underline{89 \%}$ |
| Doctor 3 | $\underline{97 \%}$ | $\underline{85 \%}$ |
| Doctor 4 | $\underline{93 \%}$ | $\underline{82 \%}$ |

Recept, 1 = \%
Recept, 2 - \%
Recept. $3=\%$
Nurse 1 8\%
Nurse 2 17\%
Nurse Clin. 2 17\%
Nurse Clin. 3 - \%
Night Doctor -\%
Night Recept, - \%
Night Aide 52\%
Aide 1 56\%
Aide 2 41\%
Lab. Tech, - \%

Average Waiting Room Time 36 min.
Scheduled _ min. Call-ahead _ min. Walk-ins _ min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
$U_{\text {TIL }}{ }_{\text {TS }}$	96.55\%	2.06	1,21
UTIL ${ }_{\text {TT }}$	85, 83%	2.52	0.99
Patient's Time	75.14 MI	N. 9.53	0.25
Doctor's Time*	29,063min	N. 340.3	0.42

* Time in clinic during the number of months noted above,

APPENDIX C 320 FAMILIES, 2 iUUR, CLIN,, 1 EXAM ROOM (C-1)
Length of run 12 months

UTILIZATION
Scheduled
Times
time
Here

UTILIZATION
Scheduled
TMES

Doctor 1 97\%	87\%	Recept, 1	40\%
Doctor 2 94\%	85\%	Recept. 2	23\%
Doctor 3 91\%	79\%	Recept. 3	15\%
Doctor 4 97\%	87\%	Nurse 1	7\%
Nurse Clin. 1 19\%		Nurse 2	17\%
Nurse Clin, 2 17\%		Night Aide	49\%
Nurse Clin. 3 -\%		Aide 1	55\%
Night Doctor 10\%		Aide 2	40\%
Hight Recept, 35\%		Lab, Tech.	13\%

Average Waiting Room Time 37 min.
Scheduled 20 min. Call-ahead 52 min. Walk-ins 111 min.

I-TESI

Mean Std, DEV, I-Score

* Time in clinic during the number of months noted above.

425 FAMILIES, 2 NUR. CLIN, 2 EXAII ROOMS (C-2)

Length of run 12 months

UTILIZATION
$\underset{\substack{\text { imes }}}{\text { Scheduled }} \underset{\text { timere }}{\text { Ime }}$
Doctor 1 102\% 91\%

Doctor 2	$\underline{96 \%}$	$\underline{86 \%}$
Doctor 3	$\underline{96 \%}$	$\underline{84 \%}$
Doctor 4	$\underline{98 \%}$	$\underline{87 \%}$

Nurse Clin. 1 73\%
Nurse Clin. 2 73\%
Nurse Clin, 3 - \%
Night Doctor _14\%
Hight Recept, 47\%
Patients

Scheduled 24 min. Call-ahead 78 min. Walk-ins 132 min.

I-TESI			
	Mean	Stid. Dev,	I-SCORE
$U_{T I L} L_{\text {TS }}$	98.05\%	-	
UTIL ${ }_{\text {TT }}$	86.71\%	-	
Patient's Time	88.87 M	.	-
Doctor's Time*	116,850mi	N. -	

* Time in clinic during the number of months noted above,

500 FAMILIES, 3 NUR, CLIN., 2 EXAM ROOMS (C-3)

 Length of run 12 monthsUTILIZATION

$\underset{\text { Scheduled }}{\substack{\text { imes }}} \mathrm{T}_{\text {time }}^{\text {Her }}$

 104\% 88\%$101 \% \quad 90 \%$
107% 91\%
100\% 89\%
Nurse Clin. 1 70\%
Nurse Clin, 2 68\%
Nurse Clin. 3 74\%
Night Doctor 15\%
Might Recept, 54\% Patients

DOCTOR 1	$\underline{104 \%}$	$\underline{88 \%}$
DOCTOR 2	$\underline{101 \%}$	$\underline{90 \%}$
DOCTOR 3	$\underline{107 \%}$	$\underline{91 \%}$
DOCTOR 4	$\underline{100 \%}$	$\underline{89 \%}$

UTILIZATION
Scheduled IMES
Recept, 1 51\%

Recept, 2 36\%
Recept. 3 26\%
Nurse 1 15\%
Nurse 2 26\%
Night Aide 89\%
Aide 1 68\%
Aide 2 60\%
Lab, Tech, 17\%

Average Waiting Room Time 57 min. .
Scheduled 28 min. Call-ahead 103 min. Walk-ins 170 min.

I-TESI			
	Mean	Std. Dev,	I-SCORE
UTIL ${ }_{\text {TS }}$	103.07\%	-	
UTIL ${ }_{\text {TT }}$	89,40\%	-	
Patient's Time	109,80m	.-	-
Doctor's Time*	119,100mi	-	-

* Time in clinic during the number of months noted above.

PROGRAM 1

```
// EXEC GFSS,FAR:N=C,REGICA=25OK
//GO.0ULTPUT UD SYSOUT=A,SPACE=(CYL, (5,1))
//GC.SYSIA DD**
REALLCCATE CCM,84000
    KEALLOCATE ELO,840,FUN,,125,VAR,80
    REALLOCATE FAC,30,STO,31,LOG,70,FSV,45
    REALLOCATE HSV,O,CHL,O,GKP,U,OVK,O,FMS,O,FMS,O
    REALLOCATE QLE,27,TAE,16,XAC,900
    SInulate
    RNULT 987,789,963,741,753,551,759,557
```


THIS IS A MODEL OF A FAMILY PFACTICE CLINIC J．M．LARKINS AND D．DILLEY

INITIAL	LS1／LS2／LS3／LS4／LS $5 / L S 6 / L S 7 / L S E / L S 9 / L S 10$
INITIAL	
INITIAL	LS＜9／LS $30 / L S 31 / L S 32 / L S \equiv 3 / L S 34 / L \leq 36 / L S 37$
INITIAL	LS38／LS3G／LS40／LS41／LS42／LS43／LS44
INITIAL	LS $45 / L S 46 / L S 47 / L S 48 / L S 49 / L S 50 / L S 51 / L S 52$
INITIAL	LS 3 ／LS54／LS55／LS5C／LS57／LS58／LS59／LS6C
INITIAL	－X 10.30
INITIAL	X11， $10 / \times 12,2 / \times 15,3 / \times 14,4 / \times 15,1 / \times 16$
INITIAL	$\times 18,6 / \times 19,7 / \times 20,10 / \times 21,7$

FACILITIES	$1-5$
FACILITIES	$6-10$
FACILITES	$21-24$
FACILITY	25
FACILITIES	$66-2 G$
FACILITYGS	30
FACILITIES	$31-34$
FACILITY	35
FACILITY	36

DOCTORS
NURSE CLINICIANS
RECEPTICNISTS
NIGHT RECEPTIONIST
DAY EACK CFFICE GIRLS NICHT BACK IFFICE GIRL NURSES
AFTEK HCURS DOCTGR LAB TECH

$\in 1$	VARIABLE	(FR1*472) / 1000
E 2	VARIADLE	(FR2 4 404)/1000
63	VARIAdLE:	(FR3=473)/1000
64	\checkmark ARIABLE	(FR4*464)/1000
65	vakiable	(FR21*395)/1000
Et	VARIAOLE	(FR22×395)/1CCO
67	VARIAELE	(FR23*シラ5)/1000
- 8	vaki Able	(FR24*355)/1000
69	$\checkmark \triangle R I A B L E$	(FR25\%
70	variaule	(FR26*37) / /1000
71	variadle	(FR27-373) / 1000
72	\checkmark ARIABLE	(FR30*747)/1000
73	$\checkmark A R I A O L E$	(FR31*373)/1000
74	variable	(FR32x:373)/1000
75	VARIAdLE	(FR35*167)/1000
76	variaole	(FR36\%373)/1000
77	variable	(FR6 $=378$)/1000
78	variable	$(F R 7 \div 378) / 1000$
75	variable	(FK8~47s)/1000

IHESE FUNCTICNS ASSIGN THE REFERRAL RATE

1 FUNCTION	RN2,D2
5, C/1, 1 FUNCTION	RN2,D2
.75, c/1,1	RN2,02
3 Flacticn	RN2, 02
4 functicn	RN2, D2
5 fl function	RN2,D2
5,C/L, ${ }_{\text {CLNCTICN }}$	
0\%1,1	RN2, 2
7 FUNCTICN	RN2, D2
8 functicn	RN2,D2
c/lalunction	RN2,02

THE FOLLOWING FUNCTIONS ASSIGN A DCCTOR OR NURSE CLINICIAN NUMBER

$$
\begin{aligned}
& \begin{array}{l}
10 \text { FUNCTION RN3,D6 } \\
.2375,1 / 4750,21.7125,3 / .95,4 / .975,6 / 1,7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 12 \text { FLNCTICN RNZ,06 } \\
& \text { •225, } 1 / .45,2 / .675,3 /, 50,4 / .95,6 / 1,7 \\
& .225,1 / .45,21.675,3 / .50,4 / .95,6 / 1,7 \\
& 2125,1 / 4 U N C T O N \text { RNE,DE } \\
& .2125,1 / 425,2 / .0375,3 / .85,4 / .925,6 / 1,7 \\
& .2125,1 / 425,2 / .6375,3 / .85,4 / .925,6 / 1,7
\end{aligned}
$$

$$
\begin{aligned}
& \text {. 225, i/ 4 45, 2/ © } 675,3 / .90,4 / .95,6 / 1,7 \\
& .225,1 / .45,2 / . C^{-} 75,3 / 90,4 / .95,6 / 1,7 \\
& \text { - } 2125,1 / 40425, \angle / .6375,3 / .85,4 / .925,6 / 1,7 \\
& \text { •21< } 2 \text {, 1/ } 425,2 \% .0375,3 / .85,4 / .925,6 / 1,7 \\
& .225,1 / .45,2 / .675,3 / .90,4 / .95,6 / 1,7 \\
& .225,1 / 45,21.675,3 / .90,4 / .95,6 / 1,7 \\
& \text {. 20, 1/.40,2/.6C,3/.80,4/.50, 6/1,7 }
\end{aligned}
$$

11
113
$-$
$+$

Con

. 20, 1/.40, 21.00, 3/.80,41. SO, 6/1,7
. $2 \mathrm{C}, 1 / .4 \mathrm{C}, 21.60,3 / .80,4 / .50,6 / 1,7$

- $20,1 / .4 \mathrm{C}, 21$ © C $, 3 / .8 \mathrm{~B}, 41.90,6 / 1,7$
-2375,2/4750,2/.7125,3/.95,4/.975,6/1,7
. $2375,1 / .4750,2 / .7125,3 / .55,4 / .975,6 / 1,7$
$.237 \frac{2}{3}, 1 / 4750,2 / .7125,31.95,4 / .975,6 / 1,7$
. 237E, 1/.4750, 2/. $71<5,3 / .55,4 / .975,6 / 1,7$
. 225, 1/.45,2/.675,3/.90,4/.95,6/1,7
224 FUNCTICN KNS, 06
-225,1/.45,21.675,3/.90,4/.95,6/L,7
35 FUNCTICN RN3, DO
. 225, 1/.45,21.675,31.90,4/.95,6/1,7
. 225, 1/.45, 2/.675, 3/.50,4/.95.0/1,7
27 FUNCTICN RN3,DE
. 225, 1/.45, 2/.675,3/.90,4/.95,6/1,7
. 212 2 2 , $1 / .425$, $2 / .6375,3 / .85,4 / .925,6 / 1,7$
. $2375,1 / .4750,21.7125,13 / .95,4 / .975,6 / 1,7$ 40 FUNCTICN RNJ, D6
. 225,1/.45,21.675,3/.90,4/.95,6/1,7 41 FUNC I Civ RN3,DE
. 225, 1/.45, 2/.075,3/.90,4/.95,6/1,7 42 FLACTION RN3, D6
. $2125,1 / .425,2 / .6375,3 / .85,4 / .925,6 / 1,7$ 43 FLACTICA RN3,06
. 2375,1/.4750,2/.7125,3/.95,4/.975,6/1,7 44 FUNCTIUN RN3,D6
. $225,1 / .45,2 / .675,3 / .90,4 / .95,6 / 1,7$ 45 FUNCTION RN3,D6
$.2125,1 / .425,21.0375,3 / .85,4 / .925,6 / 1,7$
 47 FUNCTICN RNE, D6
. 2375, 1/.475心,2/.7125,3/.95,4/.975,6/1,7 48 FUNCTICN RNE,D6
. $2375,1 / 4750,2 / .7125,31.55,4 / .975,0 / 1,7$

. 237

.225, 1/45, 2/.675, 3/.90,4/.95,6/1,7

. 2375,11 . $4750,21.7125,31.95,4 / .975,6 / 11,7$
. 2375,11.475U,2/.7125,31.95,4/.975,6/1,7
.2375,1/.4750,2/.7125,3/.55,4/.975,6/1,7


```
.225,1/.45,2/.675,3/.90,4/.95,6/1,7
.225,1/F4S,21,075, 隹,90,4/.95,6/1,7
.225,1/.45,2/.675,3/9.90,4/.95,6/1,7
.2125,1/.425,21.6375,3/.85,4/.925,6/1,7
    IC1 FLNCTICN KN3,D6
.225,1/.45,2%.675,3/.90,4/.95,6/1,7
TrESE FUNCTICNS ASSIGN A SEVERITY CODE
\begin{tabular}{|c|c|}
\hline 102 & RN4, \({ }^{\text {d }}\) \\
\hline  & 3 \\
\hline  & \\
\hline C4 & RN4, \(\mathrm{D}_{3}\) \\
\hline ,1/12,2/1,3 & \\
\hline 105 FUNCTICN & RN4, \({ }^{\text {d }}\) \\
\hline ICE FUNCTIGN & RN4, \({ }^{\text {R }}\) \\
\hline 20,1/.10,2/1,3 & \\
\hline \(1 C 7\) FLACTICN & RN4, D3 \\
\hline C, \(1 / 15,2 / 1\), & \\
\hline CB FCACTICN & RN4, D3 \\
\hline 109 FUACTICN & RN4, \({ }^{\text {R }}\) \\
\hline 50,1/.15,2/1,3 & \\
\hline 110 FUNCTIUN & F.N4, D3 \\
\hline \[
20,1 / .20,2 / 1,3
\] & \\
\hline
\end{tabular}
THE APPOINTMENT SIZE IS ASSIGNED BY THE FCLLCHING
111 FLNCTICN FNN5,D4
.SC,1/.5 5,2/.580,4/1,6
    113 FUNCTION, RN5,D4
.90,1/.55,2/.980,4/1,6
    14 FLICTICN RN5,D4
.90,1/.95,2/.980,4/i,6
.80,1/.90,21.c70,4/1,6
.90,1/.95, S/.S&C,4/1,0
9517 FUNCTION RN5,D4
.95,1/8.G8,2/.950,4/11,6
.80,1/.SON'2/:G70,4/1,6
.80,1/.50,2/.570,4/1,6
***
EXPC FLNCTION RN7,C24
0,0/.1,.144/.<.,.222/.1,.335/.4,.j09/.5,.69/.0́,.515/.7,1.2/.7
.8,1.6/.04,1.33/.38,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.
.97,彐.5/.98,3.5/.99,4.6/.595,5.3/.598,\epsilon.</.999,7/.9593,3
#
ARIVE FUNCTIGN RNE,CT
#+0/.05,.333/.20,.667/.50,1/.80,1.333/.55,1.667/1,2
#
LONG FUNCTION P3,D4
4,0/2,1/4,3/6,5
#
    DOTC FUNCTICN RN7,D4
.25,1/.50,21.75,3/1,4
```


SADI GENERATE $A S S I G N$ TRANSFER
SAD 2 GENERATE ASSIGN TRANSFER
SACZ GENERATE A SSIGN TRANSFER
SAC4 GENERATE ASSIGN TRANSFER GENERATE ASSIGN TRANSFER

$$
\begin{aligned}
& 2216, F N \$ E X P O, 1,8,6 \text { GP MALE 0-4 } \\
& 1,1 \\
& \text {, AGNL } \\
& \text { 1758,FN\$EXPO, , 8,6 GP MALE 5-14 } \\
& \text { 1,2 } \\
& \text {, AGNI } \\
& \text { i } 146 \text {, FN } \$ \mathrm{EXPO}, 1,8,6 \\
& \text { GP MALE 15-29 } \\
& 1,3 \\
& \text {, AGNL } \\
& 1352, F N \pm E X P O, 1,8,6 \text { GP MALE } \because C-54 \\
& \text { 1,4 } \\
& \text {, AGNI } \\
& \text { 10528,FN\$EXPO, , 8,6 GP MALE 55-75 } \\
& \text { 1, AGNI }
\end{aligned}
$$

SACG GENERATE ASSIGN TRANSFER
SAC7 GENERATE ASSIGN TRANSFER
SAC8 GENERATE ASSIGN TRANSFER
SACG GENERATE ASSIGN TRANSFER
SACIO GENERATE ASSIGN TRANSFER
SADII GENERATE ASSIGN TRANSFER
*
SAC12 GENERATE $\triangle S S I G N$ TFANSFER
SAD 13 GENERATE ASSIGN TRANSFER
SAC14 GENERATE ASSIGN TRANSFER
SAC15 GENERATE - A SSIGN TRANSFER
SAC16 GENERATE ASSIGN TRANSFER
SACI7 GENERATE ASSIGN TRANSFER
SACIE GENERATE \triangle SSIGN TRANSFER
SACIG GENERATE ASSIGN TRANSFER

SAD $\angle C$ GENERATE \triangle SSIGN TRANSFER
SACEL GENERATE ASSIGN TRANSFER
SAC22 GENERATE ASSIGN
TKANSFER

SAL23 EENERATE ASSIGN TRANSFER
SAC24 GENERATE ASSIGN TRANSFER
SAC25 GENERATE ASSIGN TRANSFER
SAL26 GENERATE ASSIGN TKANSFER
SAC27 GENERATE ASSIGN TRANSFER
SAD 28 GENERATE ASSIGN TRANSFER
$55019, F N \$ E X P O,, 8,6$ 1,6
, AGNI
$1764, F N$ F $\mathrm{FXPO}, 1,8,6$ 1,7

- AGN 2

948 , FN \$ EXPO, , , 3,6 1,8
, AGN 2
$4137, F N \$ E X P C, 1,8,6$ 1,9
, AGN 2
11859, FN\$EXPO, , 8,6
1, 10
, AGN2
$79878, F N \pm E X P O, 1,8,6$ 1,11
, AGN2
$1415, F N \$ E X P O,, 8,6$ 1,12
, AEN3
$593, F N \$ E \times P O,, 8,6$ 1,13
, AGN3
$3821, F N \$ E X P O, 1,8,0$ 1,14
, AGN3
$1555, F N \$ E X P O, 1,8,6$ 1.15
, AGN3
69S,FN\$EXPO, , 8,6
1,16
, AGN3
$23287, F N \$ E X P O, 1,8,6$

1. 17

- AGN3

26201 , FN\$EXPO, , 8,6 1,18
, AGN3
$73613, F N S E X P O,, 18,6$ 1,15
, AGN 3
805,FN\&EXFL,,,8,6 1, 20
, AGN4
7184,FNSEXPC,,, 6,6 1,21
, AGN4
S125,FN\$EXPO, , 6 , 1, 22

- AGN4

7500,FN\$EXPO,,, $\varepsilon, 6$ 1,23
-AGN5
$5210, F N \$ E X P O, 1,8,6$ 1,24
, AGN 5
416, FN 4 EXPC, $, 8,6$
1,25
-AGN5
$5625, F N \Phi E X P O, 1,8,6$ 1,26
, AGN 5
S266,FN\$EXPO, , , 8,6 1,27

- AGN5

3924,FN\$EXPO, , 8 , 6 1,28 , AGN5

GP MALE EC+

SURG MALE O-14

SURG MALE 15-39

SURG MALE 40-59

SURG MALE 60-74

SURG MALE $75+$

ALL/SHCTS NALE 0-4

ALL/SHOTS NALE 5-14

ALL/SHCTS MALE 15-1S

ALL/SHOTS MALE 2C-2ら

ALL/SHOTS MALE $30-59$

ALL/SHQTS NALE co- $-\dot{3}$

ALL/SHOTS MALE $7 \mathrm{C}-74$

ALL/SHOTS MALE75+

EENT MALE O-44

EENT MALE 45-64

EENT MALE 65+

INT MED NALE 0-14

INT MED NALE 15-19

INT MED MALE 2C-44

INT MED MALE 45-49

INT MED MALE 50-59

INT MED MALE 60-74

$\begin{aligned} & \text { RCCM } \\ & G \cup E \end{aligned}$			PAT'S TINE IN CLINIC WAIT TINE SCHED TYPE AVG EXAN RDCM WAIT		
	CEPART	13			
	GUEUE	P4			
	QUEUE	$\vee 51$			
	GUEUE	17			
*					
*	PATIENT ENTERS EXAM ROUM				
*	EnTER	P4	ENGAGE EXAM ROCM		
	CEPART	$\vee 51$			
	GUEUE	$\vee 6$	WAIT TINE IN EXAM RM.		
	DEPART	17			
	HKIORITY	6			
	CATE LR	$26, N B C G$	IS DAY EEE ON		
	TRANSFER	ALL, BCGL, BCGN, 4	TRY EACF ECG		
NBCE	SEIZE ADVANCE	30 5,4	$\begin{aligned} & \text { ENGAGE AICHT BGG } \\ & \text { BOG INE } \end{aligned}$		
	RELEASE	30			
	7 TANSFER	, COCT			
BCG1			ENGAGE EACK BOG 1		
	ADVANCE RELEASE	$5,4$	BOG TINE		
	$\begin{aligned} & \text { RELEASE } \\ & \text { TRANSFER } \end{aligned}$	26			
BOEN	SEIZE	27	ENGAGE EACK BOG 2		
	ADVANCE	5,4	EOG TIME		
	RELEASE	27			
*	CCCTOR SEES PATIENT				
*					
DOCT	SEIZE	P4	ENGAGE CCCTCR		
	CEPART				
TEGE	TEST GE	P1,K41, ADV	IS PATIENT FEMALE		
	TRANSFER	-40, OLDER,FEM	SOME NEEC OBSERVER		
OLCER	TEST GE	P1,K52, 10 CV	IS FEMALE AN ADULT		
	TRANSFER	. 50, ADV, FEM	SOME NEEC CBSERVER		
FEN	FRIORITY	8	TO ENGAGE CBSERVER		
*	FEMALE OBSERVER NEEDED		FEMALE OBSERVER NEEDED		
			ARE [AY HOG THER		
NAI [TARANSFR	26.NAIC ALL, AIDL, NURN, 4	ENGAGE $\$ ALC CR BCG \hline & SEIZE & 30,1010 & ENGAGE NICHT BOE \hline & AUVANCE & 8,2 & CBSERVER TINE \hline & P.ELEASE & 30 & \hline \multirow[b]{4}{*}{AICI} & TRANSFER & TTRAN & \hline &SEIZE ACVANCE& $\begin{aligned} & 26 \\ & 8,2 \end{aligned}$ & ENGAGE ECE AS CBS. OBSERVER TIME \hline & RELEASE & 26 & \hline & TRANSFER & , TRAN & \hline \multirow[t]{2}{*}{AICN} & SEIZE ACVANCE & 27.2 & ENGAGE BCG AS OBS. CBSERVEF TINE \hline & RELEASE & 27 & \hline & TRANSFER & , TRAN & \hline \multirow[t]{3}{*}{NUR 1} & $\begin{aligned} & \text { SEIZE } \\ & \text { ACVANCE } \end{aligned}$ & 32, & ENGAGE NUFSE AS CES. CBSERVER TIME \hline & $\begin{aligned} & \text { ACVANCE } \\ & \text { RELEASE } \end{aligned}$ & 8,2 & \hline & TRANSFER & & \hline \multirow[t]{2}{*}{NURA} &SEIZE aCVANCE & 318,2 & ENGAGE NLRSE AS OBS. CBSEKVER TIME \hline & RELEASE & 31 & \hline \multirow[t]{3}{*}{TRAN} & OCVANCE & 5,2 & DOCTOR CCAFER TIME \hline & FRIDRITY & & RESET PRICKITY \hline & TRANSFER & , NEXT & \hline ADV & ADVANCE & 13,5 & DOCTOR'S TIME \hline \multirow[t]{3}{*}{NEXT} & $\triangle C V A N C E$	15,FN\$LONG	IF MORE THAN 1 PER
	ASSIGN	3.1	ASSIGN PAT 1 PERIOC		
	TEST L	P4,K6, CLIN	SEEN BY [CCTOR?		
	TRANSFER PRIORITY		NUR CLIA EONSULT? CONSULT FRICRITY		
		$\dot{8} 05, C L I A, N U R C$			

IS NUR. CLIN. I IN? IS NUR: CLIN: 2 IN? TRY EACH NUR. CLIA. ENGAGE NUR CLIN I IS NJR CLIN 1 TtERE NUR CLIA CCNSULT

ENGAGE NLR CLIN 2 IS NUR CLIN 2 THERE Nur clia consult

RESET PRICRITY
IF SEEN BY NUR CLIA
AC CONSULT WITH COC
CONSULT FRICRITY
ASSIGN A CCCTOR
ASSIGN AAETHER DCC

ENGAGE CCCTCR
DOCTOR S TINE
RESET PRICRITY
REFERRAL ?
REFERRAL TINE

ECCTOR CEFARTS
ARE NURSES THERE? SCME NEEC NURSE ATTN

```
ENGAGE A NURSE ENGAGE A NURSE nurse time
ENGAGE A NURSE NURSE TIME
```

RETURN FRICRITY
SGME RETURN TO DOC
RE-ENGAGE CCCTCR
FAT DEPARTS EXAN RN DCCIS GLITTING TINE? DOCTOR CR NUR CLIN IS COC'S GUEUE EMPTY

EXIT EXAN RGCM
SOME NEEC LAB WORK
ENGAGE LAE TEST DONE

RETURN PRIORITY
RETURNEE NUMBER
HÄS DCC GLIT
SOME GG BACK TO DCC

BACKC	énerate ASSIGN LCCP	$\begin{aligned} & 40320, C, 1, ., 5 \\ & 1,5 \\ & 1, \text { CUTER } \end{aligned}$	START TINER RUNS 4 LEEKS WEEKS
$\stackrel{*}{4}$	ENC OF THE	MONTH	
*			
	SAVEVALUE	$25, V 61$ $26, V 62$	LTILIZATICN COCTCR
	SAVEVALUE	27,V63	UTILIZATICN COCTCR
	SAVEVALUE	28, V64	LTILIZATICN DOCTCR 4
	SAVEVALUE	29, V77	UTIL. NUR CLIN 1
	SAVEVALUE	30,V78	UTIL. NLF CLIN 2
	SAVEVALUE	$31, \vee 79$	UTIL. NLR CLIN 3
	SAVEVALUE	$32, \vee 65$	UTIL. RECEPTIUNIST
	Savevalue	3 $3, V \in E$	UTIL. RECEFTISNIST
	SAVEVALUE	$34, \vee 67$	UTIL. RECEPTIONIST
	SAVEVALUE	$35, \vee 68$	UTIL. RECEPTIONIST 4
	SAVEVALUE	$36, V 65$	UTIL. NIGHT RECEPT.
	SAVEVALUE	$37, \vee 70$	UTILIZATICN AIDE 1
	SAVEVALUE	$38, \vee 71$	UTILIZATICN AIDE 2
	SAVEVALUE	39, V^{2}	UTIL. NIGFT AIDE
	SAVEVALUE	$40, \vee 73$	UTILIZATICN NURSE 1
	SAVEVALUE	$41, \vee 74$	UTILIZATICN NURSE 2
	SAVEVALUE	$42, \vee 75$	UTIL. NIGFT DOCTGR
	SAVEVALUE	$43, \vee 76$	UTILIZATICN LAE TECH
	TERMINATE		
*			
*			
OUTERBACKI	ASSIGN	$2,6$	RUNS 5 CAYS
	LCCF	$2, \text { INTER }$	DAYS
\#	WEEKEND SECTION		
\%	\triangle CVANCE	240,0	0400
	SAVEVALUE	11, K10	NCRNING [CCTCR
	S \triangle VEVALUE	$22+$ K1	ADD 1 CAY
	LOGIC	37	CPEN WALK-IN GATE
$\%$	ACVANCE	210,0	0730
	LCGIC S	V26,	SCHEDULE CCNTROL
	LCEIC S	V27	
	LCGIC S	V31	
	LOGIC R	V 37	
	LCGIC R	V38	
	LCGIC R	V42	
	LOGIC R	25	SAT. RECEFT ARRIVES
	LCGIC R	39	SWITCHECARD GPENS
*			
	ALVANCE	30,0	0800
	LCGIC S	35 $\times 16$	CLOSE NIGHT DCCTOR SAT. DCCTCRS
	LCGIC	$\times 16$	SAT• LCCTCRS
	LCGIC. R	$\times 21$	SAT. NUF. CLIN.
	LOGIC R	30	SAT: BCE
*	LOGIC R	38	CFFICE CFENS DOORS
	ADVANCE	120,0	1000
	LCGIC S	$\vee 37$,	SCHEDULE CCNTRCL
	LEGIC S	V38	
	LOGIC S	$\checkmark 42$	
	LOGIC R	$\checkmark 48$	
	LCEIC R	V49	
	LOGIC R	V19	
$\stackrel{ }{*}$			
	ACVANCE		1130
	LOGIC S	$\vee 48$	SCHEDULE CCATROL
	LEGIC S	V4S	
	LCEIC S	V19	
	LOGIC R	$\checkmark 20$	
	I.CGIC R	$\checkmark 27$	
	LCGIC R	V31	

hCRK2$L C \in 2$	$\begin{aligned} & \text { ASSIGN } \\ & \text { IEST } \end{aligned}$	$\begin{aligned} & 3, \times 12 \\ & 6 * 3, K O, \text { hORK2 } \end{aligned}$	$\begin{aligned} & \text { DAY DOCTCR I } \\ & \text { IS DOC I GUEUE EMPTY } \\ & \text { RECORDS TINE } \end{aligned}$	
	TABULATE	$\times 12$		
	TRANSFER	, LOG2		
	LCGIC S	$\checkmark 54$	CPEN GUIT TIME TAELE	
	\triangle SSIGN	3, $\times 13$	DAY DCCTCF 2	
	TEST E	Q*3, KC, WORK3	IS DOC 2 GUEUE EMPTY	
	TABULATE	$\times 13$	RECGRDS IIME	
	TRANSFER	, LUG3		
$\begin{aligned} & \text { WCRK3 } \\ & \text { LOGZ } \end{aligned}$	LCGIC S	$\checkmark 55$	OPEN QUIY TIME TABLE	
	ASSIGN	$3, \times 14$	CAY DCCTCF 3	
	$\begin{aligned} & \text { TEST E } \\ & \text { TABULATE } \end{aligned}$	6*3,KO, WORK 4	IS DOC 3 GLELE ENPTY	
		X14	RECORDS TINE	
	TRANSFER	, LOG 4		
$\begin{aligned} & \text { WCRK4 } \\ & \text { LOG4 } \end{aligned}$	LCGIC S	$\checkmark 56$	OPEN QUIT TIME TABLE	
	LOGIC S	X18	cay Nur. CLIN. LEAVE	
	LCGIC S	$\times 19$		
\%	ADVANCE	60,0	1800 SCHEDULE CCATROL	
	LOGIC S	$\vee 25$		
	LCGIC S	$\checkmark 30$	SCHEDULE CCATROL	
	LOGIC R	$\vee 36$		
	LOGIC R	V41		
*	ADVANCE	60,0		
	LOGIC R	$\checkmark 54$	CLOSE	
	LCEIC R	$\checkmark 55$	QUITTING TIME	
	LOGIC R	$\checkmark 56$	\qquad	
	LCGIC R	V18		
	LCGIC S	V36		
	LOGIC S	$\checkmark 41$		
	LCGIC R	V25		
	LCGIC R	$\checkmark 30$		
*	ACVANCE	60,0	2000	
	LCGIC S	V18		
	LCGIC S	25	SCHEOULE CCATRCL NITE RECEPT LEAVES	
	LCGIC S	37	CLOSE WALK-IN GATE CLOSE SWITCHBCARC	
	LOGIC S	39		
	$\triangle C V A N C E$	30,0		
	LCGIC S	38		
	LCGIC S	30	CLOSE CFFICE DCCR NIGHT BCG QLITS	
	LCGIC S	X15	NIGHT CCCTOR QUITS	
	ASSIGN	3, X15		
	TEST E	$Q \div 3, K O, \text { WORK } 5$	IS NITE CCC QUEUE 0 RECCRDS TIME	
	TABULATE	$\times 15$		
$\begin{aligned} & \text { WCRK5 } \\ & \text { LCGS } \end{aligned}$	TRANSFER	$\checkmark 1095$	CPEN QUIT TIME TABLE NITE NUF CLIN QUITS DOCTOR CA CALL	
	LCGIC S	$V .57$ $\times 20$		
	LOGIC R	35		
	$\begin{aligned} & \text { ADVANCE } \\ & \text { LOGIC R } \\ & \text { SAVEVALUE } \\ & \text { MACRO } \\ & \text { SAVEVALUE } \\ & \text { NACRO } \\ & \text { TRANSFER } \end{aligned}$	$210,0$	$\begin{aligned} & 2400 \\ & \text { CLOSE QLITTING TABLE } \\ & \text { RESETS MORNING COC } \end{aligned}$	
NDAY		MAR 81, MAR 82,	84 RESETS CAY DCC 3	
		14,K10		
INIT		, BACKI		
*				
	START	1		
	RESET			
	START	1		
	RESET			
	START	1		

0
0
0 T0009コ T0009IJ と000ッココ 26）

$\begin{aligned} & 000 \\ & 000 \\ & \text { nin } \\ & 000 \\ & 000 \\ & 000 \\ & \text { ann } \\ & \text { unu } \end{aligned}$

00000 ひいロへN 00000 00000 ペーOU $\rightarrow 4 \rightarrow+4 \rightarrow 4$

FIGURE INTERARRIVAL TIMES FOR EACH CATAGORY

SLBROUTINE ADD (A, B)
SUEROUTINE FOR COMBINING AGE/SEX GROUPS INTO PROBLEM CATAGORY
INPLICIT INYEGEF (A-B)
DINENSION A(G2), B $(2,17)$
ADD BY PRUELEM CATAGORY

 00000000000000.7000000000000020000000

1 -

	$\begin{aligned} & 11,12)+B(1,13)+B(1,14)+B(1,15)+B(1,16) \\ & A(36)=B(1,17) \\ & A(37)=B(1,1) \\ & A(38)=B(1,2) \\ & A(39)=b(1,2 j) \\ & A(40)=B(1,4) \end{aligned}$	$\begin{aligned} & \text { FIGO1470 } \\ & \text { FIGO1490 } \\ & \text { FIGO1470 } \\ & \text { FIGO1500 } \\ & \text { FIGO1510 } \\ & \text { FIGOL } 200 \end{aligned}$
C	FEMALES UNDER 15	
	$A(41)=B(2,1)$	FIGO1530
	$A(42)=B(2, \dot{C})+B(2,3)$	FIGO1540
	$A(43)=B(2,1)+B(2,2)+B(2,3)$	FIGU1\% 0
	$A(44)=B(2,1)+B(2,2)+B(2,3)$	FIGO15心0
	$A(45)=B(2,1)$	FIGO1570
	$A(40)=6(2,1)+B(2,2)+B(2,3)$	FIGO1500
	$A(47)=B(2,1)+B(2,2)+B(2,3)$	FIG01550
	$A(48)=B(2,1)+B(2,2)+B(2,3)$	FIGU1600
	$\Delta(49)=B(2,1)$	FIGOLC10
	$A(5 C)=0(\dot{L}, 2)$	FIGO1620
	$A(51)=B(2,3)$	FIGO1630
CC	ADLLT FEMALES	
	$A(52)=B(2,4)+B(2,5)+8(2,6)$	FIGO1040
	$A(53)=B(2,7 j+B(2,3)+B(2,9)+B(2,10)+B(2,11)+E(2,12)+B(2$	FIGC1650
	$1+E(2,15)$	FIGO1600
	$A(54)=B(2,1 \dot{0})+8(2,17)$	FIEC1670
	$A(55)=3(2,4)+b i<2,5)+3(2,6)+8(2,7)$	FICO1630
	$A(56)=0(2, d)+B(2,9)+0(2,10)$	FIGO1090
	$A(57)=0(2,11)+b(2,12)+B(2,13)+\bar{B}(2,14)+B(2,15)+B(2,16)$	FIGOL700
	$A(58)=B(2,17)$	FIGOL710
	$A(5)=,c(2,4)+8(2,5)+8(2,6)$	FIGO17:0
	$A(60)=b(2,7)$	FIGC1730
	$A(6 L)=6(2, G)+B(2,9)+B(2,10)$	FIGO1740
	$A(62)=B(2,11)$	FIGO1750
	$A(63)=6(2,12)+B(2,13)+B(2,14)+6(2,15 i+3(2,16)$	FIGO170.
	$A(64)=匕(2,17)$	FIGO1770
	$A(65)=0(2,2)+B(2,5)+6(2,4)+B(2,5)+B(2,0)+E(2,7)+B(2,8)$	FIGOL780
	$A(C 6)=B(2, S)+E(2,10)+8(2,11)$	FIGO1790
	$A(67)=B(2,12)+8(2,13)$	FIGOL8CO
	$A(68)=B(2,14)+$ c $(2,15)+B(2,16)+B(2,17)$	FIGO1010
	$A(69)=3(2,4)$	FIGO1820
	$A(70)=6(2,5)+B(2,6)+B(2,7)+E(2,8)+E(2,9)$	FIGC1830
	$A(71)=B(2,10)+B(2,11)+B 12,12)$	FICO1840
	$A(72)=B(2,13)$	FIGOL 350
	$A(73)=3(2,14)+B(2,15)$	FIGO18t0
	$A(74)=B(2,16)$	FIEOL870
	$\Delta(75)=\dot{0}(2,17)$	FIGO1830

BIBLIOGRAPHY

1. Ad Hoc Committee on Education for Family Practice of the Council on Medical Education-American Medical Association, Meeting the Challenge of Family Practice, September $196 \overline{6}$.
2. Carmichael, L. P., and others, "Residents Evaluate Office Practices," Patient Care, p. 35-51, 15 August 1972.
3. Darsky, B. J., Sinai, N., and Axelrod, S. J., Comprehensive Medical Service under Voluntary Health Insurance, Harvard University Press, 1958.
4. Fein, R., The Doctor Shortage: An Economic Diagnosis, The Brooking Institution, 1967.
5. Fetter, R. B., and Thompson, J. D., "Patient's Waiting Time and Doctor's Idle Time in the Outpatient Setting," Health Services Research, v. 1, p. 66-90, Summer 196б.
6. Garfield, S. R., "The Delivery of Medical Care," Scientific American, v. 222, p. 15-23, April 1970.
7. Health Economics Branch U. S. Public Health Service, Medical Care Financing and Utilization, U. S. Public Health Service, 1962.
8. Hess, I., Riedel, D. C., and Fitzpatrick, T. B., Probability Sampling of Hospitals and Patients, University of Michigan, 1961.
9. Schonfeld, H. K., Heston, J. F., and Falk, I. S., "Number of Physicians Required for Primary Medical Care," New England Journal of Medicine, v. 286, p. 571-576, 16 March 1972.
10. Smith, K. R., Miller, M., and Golladay, F. L., "An Analysis of the Optimal Use of Inputs in the Production of Medical Services," Journal of Human Resources, v. 7, p. 208-225, Spring 1972.
11. Soriano, A., "Comparison of Two Scheduling Systems," Operations Research, v. 14, p. 388-408, May-June 1966.
12. Stanford, B. J., "Portraits of Family Practice Residencies," American Family Physician/GP, v. 1, p. 149-158, May 1970
13. Ullmann, J. E. (editor), The Application of Management Science to the Evaluation and Design of Regional Health Services, Hofstra University, 1968.
14. Zemach, R., "A Model of Health-Services Utilization and Resource Allocation," Operations Research, v. 18, p. 1071-1086, iNovember-December 1970.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
2. Library, Code 0210 2
Naval Postgraduate School
Monterey, California 93940
3. Naval Postgraduate School l
Department of Operations Research and Administrative Sciences
Monterey, California 93940
4. Chief of Naval Personnel 1
Per llb
Department of the Navy
Washington, D. C. 20370
5. Col L. J. Legters, MC, USA 2
Chief of Ambulatory Services
Silas B. Hays Hospital
Fort Ord, California 93941
6. Asst. Professor R. W. Butterworth, Code 55 Bd 1 Department of Operations Research and Administrative Sciences
Naval Postgraduate School Monterey, California 93940
7. Asst. Professor M. U. Thomas, Code 55 To 1
Department of Operations Research and Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
8. LCDR David Dilley 1
14357 Sladon Court
Poway, California 92064
9. LT James M. Larkins Jr. 1
130 Arbor Park South
Louisville, Kentucky 40214

DOCUMENT CONTROL DATA.R\&D

(Security classification of llile, body of abstract and indexing annotalion must be entered when the overall report is classifled) ORIGINATING ACTIVITY (CORPORAC Quthor)
Naval Postgraduate School Monterey, California 93940

2e. REFORT SECURITY CLASSIFICATION Unclassified
2b. GROUP

REPORT TITLE

Computer Simulation of a Family Practice Clinic

DESCRIPTIVE NOTES (TYPO of reporf And.inclusive dafes)
Master's Thesis; June 1973
AU THOR(S) (First name, midde inltlal, laat name)

David Dilley and James Marion Larkins Jr.

REPORT OATE June 1973	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 137 14
1. CONTRACT OR GRANT NO. 3. PROJECT NO.	OA. ORIGINATOR'S REPORT NUMBER(S)
	Db. OTHER REPORT NOIS) (Any other numbere that may be eetened thle report)

D. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

1. SUPPLEMENTARY NOTES
2. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

3. $\operatorname{ABSTRACT}$

A simulation model of the Family Practice Clinic at Silas B. Hays Army Hospital, Fort Ord, California, is presented. The inputs to the model are the number of doctors, number and type of support personnel, number of waiting and examination rooms assigned and available to the clinic, and the population of potential patients assigned to each doctor, categorized by sex and age. The outputs of the model are the percentage utilization of doctors, support personnel, waiting and examination rooms, and the distribution of various waiting times for those being served by the clinic.

The purpose of the model is to permit hospital administrators to estimate the optimal number of families to assign each doctor in a Family Practice Clinic, and to estimate the support personnel and physical space required to effectively operate the clinic.

MEDICAL CLINICS
FAMILY PRACTICE CLINIC
MILITARY MEDICAL CARE

32768001894009
DUDLEY KNOX LIBRARY

[^0]: -

[^1]: PARAMETER

[^2]: $T-T E S T$
 $1.76)$

[^3]:

 Significant by t-TEST
 (i, e, EXCEEDED 1.76)

[^4]: \qquad

[^5]: \square

