NAVAL POSTGRADUATE SCHOOL Monterey, California

COMPUTER SIMULATION OF INERT
 GAS INTERSTITIALS IN TUNGSTEN

Richard David Williams III
Thesis Advisor: D.E. Harrison, Jr.
COMPUTER SIMULATION OF INERT
GAS INTERSTITIALS IN TUNGSTEN
by
Richard David Williams III
Thesis Advisor:
December 1972

Thes is
December 1972

naval Postgradaate school Monterey, California

THESIS

COMPUTER SIMULATION OF INERT GAS INTERSTITIALS IN TUNGSTEN
by

Richard David Williams III

Thesis Advisor:
D.E. Harrison, Jr.

December 1972

Apprcved for public release; distribution unlimited.

- y y Pestgraduate Schoo

Monterey, Calitornia 93940

Computer Simulation of Inert Gas Interstitials in Tungsten
by

Richard David Williams III Lieutenant Commander, United States Navy B.S., United States Naval Academy, 1964

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS
from the
NAVAL POSTGRADUATE SCHOOL December 1972

ABSTRACT

Computer simulation techniques were used to determine equilibrium positions and binding energies of inert gas atoms implanted in a tungsten crystal and to investigate the potential wells around these equilibrium positions in both perfect lattices and relaxed lattices. Stable positions were found for inert gas interstitials near lattice atoms in the third and fourth layers of the crystal. Interstitial positions near atoms in the first and second layers of the crystal appeared to be unstable if they exist at all. As a result of potential well studies, it was concluded that the mechanism associated with equilibrium position formation was a combination of local liquefaction of the lattice structure and interaction of the interstitial with lattice atoms. Equilibrium positions were found to be ill-defined regions in the general $\langle l 10\rangle$ direction. The binding energy determined for an interstitial site near a lattice atom in the third layer of the crystal was in excellent agreement with experimental results.

TABLE OF CONTENTS

I. INTRODUCTION -7
II. THE NATURE OF THE PROBLEM -9
A. THE LATTICE DYNAMICS PROBLEM IN THE COMPUTER----9
B. HISTORICAL DEVELOPMENT OF COMPUTER SIMULATION
OF LATTICE DYNAMICS 11
III. THE SIMULATION PROCEDURE 16
A. THE MODEL 16

1. The Crystal 16
2. The Potential Function 19
3. The Timestep 21
a. General Discussion of the Timestep 21
b. The Average Force Method and Timestep Determination 23
c. Procedures Used to Determine DTI 24
B. THE PROGRAMS 26
4. The Static Program 26
5. The Dynamic Program 28
6. Equilibrium Sites Viewed As Potential
Wells 29
7. Determination of Possible Interstitial
Sites 30
a. Implantation Procedure 30

IV. PRESENTATION OF DATA 31
A. STATIC SIMULATION 31
8. Initial Simulations 31
9. Site 39 31
10. Site l4C 34
11. Force Calculations 35
12. Investigation of Potential Wells 36
a. Potential Well Studies in a Perfect
Lattice 36
(1) Interpretation of Results 39
b. Potential Well Studies in a Relaxed Crystal 40
(1) Interpretation of Results 41
B. DYNAMIC SIMULATIONS 43
V. CONCLUSIONS AND RECOMMENDATIONS 45
APPENDIX A: SUBROUTINE PLUCK- 47
APPENDIX B: COMPUTER PROGRAM GLOSSARY 50
APPENDIX C: ERROR IN THE LITERATURE 59
COMPUTER PROGRAMS 65
BIBLIOGRAPHY 97
INITIAL DISTRIBUTION LIST 99
FORM DD 1473 100

LIST OF TABLES

I. Interstitial and Lattice Atom Displacements From Reference Site 89---------------------------------132
II. Results of Replacement Runs in Site 89--------------38
III. Interstitial Potential Energies for Site 89C------- 38

LIST OF DRAWINGS

1. Atom Numbering Procedur 61
2. The Function of Subroutine 62
3. Xenon Behavior in a Perfect Lattice 63
4. Argon Behavior in a Relaxed Lattice- 64

I. INTRODUCTION

In 1968 Kornelsen and Sinha [1] of the National Research Council of Canada published results of radiation-damage experiments performed on tungsten. In these experiments a tungsten surface was bombarded with ions of neon, argon, krypton, and xenon respectively. Then, while the tungsten was heated, gas desorption rates were measured as the gas evolved from the crystal. The resultant desorption spectrum was interpreted to yield a binding energy spectrum for the trapped particles. In 1970 Professor Don E. Harrison, Jr., of the Naval Postgraduate School undertook the modeling of these experiments utilizing computer simulation techniques in order to provide a means for interpretation of their results. Two successive thesis research efforts [2,3] have been specifically directed toward the investigation of inert gas implantation in a tungsten crystal. It was anticipated that a corollary to the successful computer simulation of this problem might possibly be an improved understanding of the interstitial atom stabilization mechanism in tungsten, with more general application to other materials.

The investigations reported in this paper are a continuation of work begun by Vine [2] and Tankovich [3] under Harrison's supervision. The simulation procedures followed were a combination of static and dynamic approaches to the problem. The static portion of the problem entailed
interstitial implantation of an inert gas atom in a tungsten crystal and the subsequent relaxation of the crystal until the equilibrium position of the interstitial could be ascertained. In the dynamic portion of the problem decreasing amounts of energy were imparted to the interstitial in its equilibrium position until the minimum energy, and direction, which still allowed the interstitial to escape from the crystal was determined (i.e., the binding energy of the particle). The binding energies thus determined provided a basis for comparison with the results of Kornelsen and Sinha.

II. THE NATURE OF THE PROBLEM

A. THE LATTICE DYNAMICS PROBLEM IN THE COMPUTER

For a little over a decade high speed digital computers have exhibited their usefulness as tools for investigation of physical systems. Specifically, the inherent periodicity and order of crystal lattices have made the study of lattice dynamics particularly adaptable to investigation by computer simulation. It is a relatively simple matter to "construct" a crystal of the desired body-centered cubic or face-centered cubic structure in the computer. Various types of point defects can also be "created" in the crystal with relative ease. A vacancy is obtained by simply removing an atom from the crystal, while interstitials can be created by implanting an additional atom in the crystal. Two types of interstitials have been used in investigations of lattice dynamics, atoms identical to the crystal lattice atoms ("self-interstitials") and atoms different from the crystal lattice atoms (interstitials).

Although a crystal lattice containing a point defect can be easily represented in a computer, modeling of the dynamics, which allows alterations of the crystal structure resulting from the presence of the point defect, is more involved. The dynamic portion of the problem of computer modeling of lattices can be characterized by four key decisions which must be made.

- First, it is necessary to find some mathematical relationship to govern the interaction among the atoms of the crystal. This interaction is a complex many body problem which is nearly always approximated in computer simulations as a sum of appropriate two body interactions. With this approximation it is then possible to represent these two body interactions by some type of potential function, which, in turn, can be used to determine forces on individual atoms. Secondly, since the number of calculations required is directly related to the number of atoms in the crystal, a judicious choice of crystal size must be made. Large crystals would give more accurate results, but would also require more computational time.

A third key problem which must be solved results from the inability of a digital computer to perform a direct integration. Since the lattice dynamics problem is most often directed at a determination of lattice atom positions after some type of interaction, an integration of the equations of motion is required. A choice of the numerical integration technique to be used must therefore be made.

Last, and probably most important, since an iterative process is used to integrate the equations of motion, the length of the time interval of the iteration must be chosen so that the force variations within this time interval are small and, consequently, stability of the system is insured. At first glance, this suggests that only very small timesteps should be taken, but this would require excessive computer
time. Consequently, some variational method of timestep determination would be optimum.

B. HISTORICAL DEVELOPMENT OF COMPUTER SIMULATION OF LATTICE DYNAMICS

The four basic problems of computer simulation of lattice dynamics have been solved in various ways in previous investigations.

In 1960 Gibson, Goland, Milgram, and Vineyard [4] (referred to hereafter as Gibson, et.al) of the Brookhaven National Laboratory published the first complete statement of computer simulation procedure as a tool for investigation of radiation damage of crystal materials. Due to the complexity of the radiation damage problem and the inadequacy of analytical methods as a means of analysis of the damage processes, Gibson, et.al. turned to a numerical integration of the problem utilizing high speed computers. Their pioneering work gives insight into such pertinent subjects as crystal size, choice of potential functions, computational methods for solving the equations of motion, and timestep determination.

Specifically, their research utilized copper as the crystal material since its relatively simple face-centered cubic structure and its widespread use in actual experimentation made it particularly appropriate for initial investigation. A Born-Mayer repulsive potential was used to describe atom-atom interaction, and a constant cohesive force was applied to each atom on the crystal surface to balance the

Born-Mayer repulsion. A central difference iterative procedure was used to integrate the equations of motion. The procedure used for timestep determination is of particular significance since the principles involved are still the governing criteria for choice of timestep duration. The fundamental observation was made that the greatest stress on the crystal system was a result of the strongest atomatom interaction in the system. This interaction was therefore chosen as the basis for timestep determination. Simply, the timestep duration was chosen to be inversly proportional to the velocity created by the strongest atom-atom interaction.

In addition to verifying the applicability of computer simulation techniques to radiation damage studies and providing specific information on collision chains and focusing phenomena in crystallites, the work of Gibson, et.al.[4] determined that the only stable configuration for selfinterstitials in a face-centered cubic crystal was the 〈100〉 split configuration. The split configuration implies that the interstitial causes a lattice atom to split away from its normal lattice position, and then both atoms, the interstitial and the lattice atom, share (or split) the normal lattice site when equilibrium is reached.

Johnson and Brown [5] confirmed the split configuration as the only stable interstitial position in their studies of copper utilizing a Born-Mayer repulsive force between nearest neighbors and an elastic continuum containing the remainder of the atoms of the crystal. Erginsoy, Vineyard,

-

-

$-21+8$ 9
\qquad
(1) $=$ 픈 --
and Englert [6] (referred to hereafter as Erginsoy, et.al.) extended these calculations to the body-centered cubic case bẏ performing investigations using \propto iron. Computational techniques paralleled those of the Brookhaven group except for the choice of a potential function. After experimentation with a Born-Mayer potential and a Morse potential with parameters derived by Girifalco and Weizer [7], Erginsoy, et.al.[6] settled on a combination potential which utilized an exponentially screened Coulomb potential for close approaches, a Born-Mayer potential for first nearest neighbor, and a Morse or modified Morse potential for higher order neighbors. This research verified the split configuration as the only stable configuration for bodycentered cubic structures, but the orientation of the split was found to be in a (ll0) plane, (vice a (l00) plane as in the face-centered cubic case). R.A. Johnson [8] confirmed the split interstitial orientation in similar work with \propto iron, vanadium and tungsten.

In their work on collisions between a copper atom and a copper lattice, Gay and Harrison [9] introduced the average force procedure for integrating the equations of motion. A complete description of this procedure has been reported by Gay, Effron, and Harrison [10]. In two more recent efforts Johnson and Wilson [11,12] determined new potential functions for use in face-centered cubic and body-centered cubic defect calculations and published results of defect calculations of helium in various metals.

Parallel to the computer simulation efforts described above, Kornelsen [13,14] and Kornelsen and Sinha [1,15] have published the results of extensive experimentation involving the interaction of inert gas ions with tungsten. Under Harrison's supervision, Vine [2] initiated attempts to devise a computer model of Kornelsen's experiments on neon implantation in tungsten. He attempted to develop a relationship between equilibrium positions of tungsten interstitials in a tungsten crystal determined, first, by using a Born-Mayer repulsive potential to describe tungsten interstitial interaction with a tungsten lattice then, by using the same tungsten-tungsten composite potential which was assumed between atomsof the tungsten crystal. This relationship would then have been applied to neon equilibrium positions derived from a repulsive potential to provide a comparison with Kornelsen's data. These efforts met with little success.

Follow-on work by Tankovich [3] utilized the static/ dynamic approach described in more detail in Section III-B. The potential function used in these investigations was a composite Born-Mayer and Morse potential joined by the best cubic fit in the area of intersection which had previously been developed by Harrison and Moore [16]. Static program runs confirmed the 〈ll0〉 split interstitial for helium, neon, argon, krypton, and xenon point defects in a tungsten crystal for possible interstitial sites in planes three through six of the ten plane crystal used. Preliminary
dynamic testing of an argon equilibrium position in plane four of the crystal was begun with limited success. Of particular significance in Tankovich's work [3] was the introduction of a timestep decrementing process into the static program. In previous investigations the timestep duration was chosen at the outset of the problem and remained constant through all computations. At this author's suggestion, a timestep decrementing process was devised which allowed a more rapid approach to the equilibrium positions with a concomitant saving of computer time required for computation. (See Section III-A-3 for a discussion of the timestep.)

III. THE SIMULATION PROCEDURE

A. THE MODEL

1. The Crystal

Two factors are of primary importance in determining the size of the crystal to be used in computer simulation investigations. First, the crystal must be large enough to provide realistic results, and, second, the crystal must be as small as possible in order to minimize computer time required for calculation of atom-atom interactions.

After experimenting with crystals of various sizes, Tankovich [3] determined that a crystal with ten planes of atoms in each coordinate direction, which is equivalent to five unit cells, (l0 x l0 x l0) was suitable for static investigations with tungsten. The same crystal was consequently used in the investigations reported in this paper. The lattice unit, or distance between adjacent (100) planes of atoms, for a body-centered cubic tungsten crystal is 1.58 A. All distances in the computer simulation were measured in lattice units. The lattice constant for the tungsten crystal is $3.16 \AA$ (or two lattice units), and the nearest neighbor distance is $\sqrt{3}$ lattice units.

The same numbering sequence for atoms of the crystal that was employed by Tankovich [3] was used in these investigation. (See Figure 1.) Atom number one was always assigned to the interstitial atom. A rectangular coordinate system was placed on the upper, left hand, front face of the crystal.

The positive "x" direction was chosen to the right from the origin, the positive "Y" direction was down, and the positive "z" direction was to the rear. Atoms were numbered consecutively, beginning with atom number 2 at the origin and continuing until all atoms of the $Y=0$ plane had been numbered. This same numbering sequence was then followed for each Y plane of the crystal until all 250 atoms of the crystal had been numbered. Figure 1 shows the numbering of the atoms in the $Y=0$ and $Y=1$ planes. The numbering of atoms in the remainder of the planes follows the same pattern.

For the dynamic program it was felt that a smaller crystal could be used and still yield meaningful results. The rationale for this determination was based on the go-no go (i.e., escape or no escape) character of the dynamic program. The dynamic program essentially provides an answer to this question - Will an interstitial atom escape from the crystal if it is given a specific energy and directed in a specific direction? If the energy dissipation mechanism provided by collisions with, and close approaches to, the lattice atoms along the path traveled is great enough, the interstitial will remain in the crystal. If these energy dissipation mechanisms are not large enough to overcome the kinetic energy of the interstitial, the interstitial will escape. Since the atoms of the crystal along this line of motion must provide the mechanism to dissipate the interstitial's kinetic energy, for escape to be prevented, only atoms in the horizontal planes above the interstitial and atoms in vertical planes within a few lattice units of the
$\frac{-5}{-2}$
\qquad
an
2
\qquad

interstitial will affect the possible escape. The remainder of the atoms of the crystal would not have time to react with the interstitial or affect its movement. As a minimum, the smaller crystal could be used to eliminate excessively high or low energies from consideration at a considerable savings of computer time and, instead, give a limited range of energies to be checked by dynamic runs using the entire crystal.

To implement this procedure SUBROUTINE PLUCK was developed. (See Appendix A for a complete discussion of SUBROUTINE PLUCK.) Basically, SUBROUTINE PLUCK uses the results of the static program, but causes a crystal to be printed out that only contains the interstitial and all lattice atoms from two planes below the interstitial to the surface plane of the crystal and all atoms in vertical planes which are within two (or three) lattice units of the vertical plane containing the lattice site shared by the split interstitial. (See Figure 2.) The savings in computer time resultingfrom the use of this smaller crystal is demonstrated by the following comparison. A thirty timestep dynamic run with the entire $10 \times 10 \times 10$ crystal (250 atoms) used approximately three and one half minutes of computer time. A thirty timestep dynamic run using a $7 \times 5 \times 7$ crystal (60 atoms) used slightly less than one minute of computer time - a 71% savings in computer time:

Most of the dynamic runs made during the course of these investigations utilized the $7 \times 5 \times 7$ "PLUCK" crystal. Final confirmation of minimum energies was determined using the entire crystal.
2. The potential Function

As mentioned previously, the many-body interaction which characterizes actual lattice dynamics is approximated in computers by many two-body interactions. These two-body interactions are represented in the computer by some type of central, pairwise potential function. Various types and combinations of potential functions have been considered for use in computer simulation investigations of lattice dynamics.

The choice of the potential function must be made with due consideration to the range of applicability of the potential function, the correlation of potential function parameters with observable properties of the material being investigated, and the amount of computer time required for calculations using that potential function. The potential function used in these investigations was the composite Born-Mayer potential and Girifalco and Weizer Morse potential used by Tankovich [3,16]. This composite potential is constructed as follows:
a. Region $1-(r<1.5 \AA)$

The atom-atom interaction at close approach is
represented by a Born Mayer repulsive potential of the form,

$$
\begin{equation*}
\Phi_{i j}=\exp \left(A+B r_{i j}\right) \tag{1}
\end{equation*}
$$

where $\Phi_{i j}$ is the interaction energy between particles i and j and $r_{i j}$ is the distance between particles i and j.
b. Region $2-(1.5 \AA<r<2.0 \AA)$

This portion of the potential function is obtained by computing the best cubic equation between the value
of the Born Mayer potential at $1.5 \AA$ and the value of the Morse Potential at $2.0 \AA$.
c. Region $3-(2.0 \AA<r<5.38 \AA)$

For equilibrium and greater separations, a
Morse potential of the form,

$$
\begin{equation*}
\Phi_{i j}=D\left[\exp \left\{-2 \alpha\left(r_{i j}-r_{0}\right)\right\}-2 \exp \left\{-\alpha\left(r_{i j}-r_{0}\right)\right\}\right] \tag{2}
\end{equation*}
$$

where $\Phi_{i j}$ is the interaction energy between particles i and j, D is the dissociation energy of the particles i and $j, r_{i j}$ is the distance between particles i and j, and r_{o} is the equilibrium separation, is used. The Morse potential was computed so that the tail of the function was truncated to zero at 5.38 . This effectively meant that atoms out to the fourth nearest neighbor were included in calculations of interaction energies. Girifalco and Weizer [7] had previously determined Morse potential parameters for tungsten and other elements which included interactions out to the 150th nearest neighbor. Use of the complete function, however, would have required an excessive amount of computer time for calculation. Additionally, contributions to the interaction energy of all atoms beyond the fourth nearest neighbor is essentially insignificant for our calculations. Many computer simulations of lattice dynamics of bodycentered cubic materials have utilized potential functions which only included first and second nearest neighbors with satisfactory results [6,11]. To check the adequacy of this potential function in describing this crystal system, the
largest binding energy observed in the crystal model
(-8.283 eV) may be compared with the experimentally determined heat of sublimation for tungsten (-8.8 eV) reported by Harrison and Magnuson [17]. This agreement within 5.9 percent was considered satisfactory for these simulations.

3. The Timestep

a. General Discussion of the Timestep

Most of the early simulations of lattice dynamics used a central difference method as the numerical procedure of integrating the equations of motion of the atoms in the crystal. See Gibson, et.al [4] or Gay, Effron and Harrison[10] for an explanation of the central difference method of numerical integration. The investigations reported in this paper, however, used the average force method which is completely described by Gay, Effron, and Harrison [10]. Inherent to both numerical methods of integration is the replacement of time derivatives in the equations of motion with a finite time difference, i.e., the timestep interval. As mentioned previously, the strongest interatomic interaction places the greatest demand on the system; consequently, the timestep duration is usually determined through consideration of the strongest interatomic interaction of the system. These investigations followed the procedure of Gay, Effron, and Harrison [10] and determined the timestep duration by a consideration of the maximum displacement that the most energetic atom of the crystal was allowed to move. This parameter, referred to hereafter and in all computer programs as DTI, is determined as follows:
(1) The equation of motion of $i^{\text {th }}$ atom of the crystal during timestep interval ΔT can be written in the form

$$
\begin{equation*}
x_{i}(t+\Delta T)=x_{i}(t)+\left[v_{i}(t)+\left\langle F_{i}\right\rangle \Delta T / 2 m\right] \Delta T \tag{3}
\end{equation*}
$$

or in the equivalent form

$$
\begin{equation*}
\Delta x_{i}=\left(v_{i}+\left\langle F_{i}\right\rangle \Delta T / 2 m\right) \Delta T \tag{4}
\end{equation*}
$$

(2) Rearranging terms of equation (4) yields

$$
\begin{equation*}
\Delta T=\Delta x_{i} /\left(v_{i}+\left\langle F_{i}\right\rangle \Delta T / 2 m\right) \tag{5}
\end{equation*}
$$

where ΔT is the timestep interval, Δx_{i} is the displacement of the $i^{\text {th }}$ atom during the timestep, v_{i} is the velocity of the $i^{\text {th }}$ atom, and $\left\langle F_{i}\right\rangle$ is the average force on the $i^{\text {th }}$ atom. From equation (5) it can be seen that the timestep interval is a function of both the kinetic energy and the force. Rather than solving this quadratic equation for the timestep interval, the average force method considers separately the cases when energies dominate forces $\left(v_{i} \gg\left\langle\mathrm{~F}_{\mathrm{i}}\right\rangle \Delta \mathrm{T} / 2 \mathrm{~m}\right)$ and when forces dominate energies $\left(\left\langle F_{i}\right\rangle \Delta T / 2 m \gg v_{i}\right)$. Solutions for each of these cases yields a different value for the (next) timestep interval.

In energy dominant cases,

$$
\begin{equation*}
\Delta T=\Delta x_{i} / v_{i} \tag{6}
\end{equation*}
$$

or, expressed in the form of energies,

$$
\begin{equation*}
\Delta T=\Delta x_{i}\left(m / 2 T_{m}\right)^{-\frac{1}{2}} \tag{6a}
\end{equation*}
$$

and, in force dominant cases,

$$
\begin{equation*}
\Delta \mathrm{T}=\left(2 \mathrm{~m} \Delta \mathrm{x}_{\mathrm{i}} /\left\langle\mathrm{F}_{\mathrm{i}}\right\rangle\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

where T_{m} of equation (6A) represents the kinetic energy of the atom of the crystal with the greatest kinetic energy, and $\left\langle F_{i}\right\rangle$ of equation (7) represents the average force on the atom with the maximum force, the Δx_{i} of each equation becomes DTI.

In these investigations, DTI was set at the beginning of the program. Ideally, the proper choice of timestep duration for the first timestep and the proper choice of DTI would lead to a smooth movement of the interstitial to its equilibrium position in a manner similar to the movement of a critically damped oscillator.

It was anticipated that energies would dominate forces in early timesteps which would lead to timestep determination from the energy equation, equation (6A). At some point in the crystal relaxation procedure, energies should have been dissipated to the point where further timestep determination would become force dependent (equation (7)).
b. The Average Force Method and Timestep Determination In the average force method of integration of the equations of motion, velocities (i.e., energies) of, and forces among, all atoms of the crystal are computed with the atoms in their initial positions. Based on these forces and energies and the initial timestep duration, new positions for all atoms of the crystal are computed. The forces at the new positions are then averaged with the forces at the original positions to determine the average force, and hence the final positions of all atoms at the end of the first timestep.

In the meantime, the maximum force exerted on an atom of the crystal in its original position and the maximum force exerted on an atom of the crystal in its final (averaged) position are used with the DTI and equation (7) to calculate two possible alternatives for the next timestep interval. Likewise, the energies of the most energetic atoms in both original and final positions are used with DTI and equation (6A) to calculate two other possible alternatives for the next timestep interval. These four alternatives are then compared, and the smallest is chosen as the next timestep interval.
c. Procedures Used to Determine DTI

Vine[2] utilized a constant DTI in all of his computations. Since the movement of an interstitial to an equilibrium position cannot, in general, be characterized by a small range of energies and forces and since DTI should be closely correlated with energies and forces at least in appropriate regions, the use of a constant DTI in all calculations made the initial choice of DTI extremely critical. Success could only be attained by resorting to small DTI's and concomitant excessive program run times (≥ 100 timesteps).

Tankovich [3] obtained more satisfactory results by successively decrementing DTI for each timestep. This procedure allowed long timesteps in early portions of a run when the interstitial was far from its equilibrium position. As equilibrium was approached, the decrementing process had progressed to the point such that significantly smaller and smaller timesteps were taken allowing a smooth arrival at the
equilibrium position. Additionally, this was accomplished at a considerable savings of computer time (~ 30 timesteps).

Although this decrementing process for DTI provided considerable improvement, on occasion, the final few timesteps used such a small DTI that practically no atom movement was discernible. During these investigations this situation was alleviated by incorporating a minimum DTI into the decrementing process. This insured that atom movement was still discernible near equilibrium and assisted in guarding against possible false assumption of equilibrium because of the relatively small movement observed under the continuous decrementing process.

In an attempt to more fully understand the mechanisms of the static solution, the computer program was adjusted so that the maximum force, the atom upon which this force was exerted, and the four "new" possible timesteps for each timestep interval were printed out after each run. It was observed that the timestep calculations based upon "new" and "old" energies were overwhelmingly the basis for timestep determination. To insure that the force dependence of the timestep was not being unduly disregarded, the program was adjusted so that DTI was determined solely as a function of the minimum of the two forces. These "force calculations" of equilibrium positions agreed with "energy calculations" within 0.03 lattice unit.

B. THE PROGRAMS

Although the basic computational procedures contained in the computer programs for the static and dynamic portions of the problem were essentially the same, an understanding of the subtle differences between the programs and an appreciation for several computational tools and procedures used in the programs have to be gained prior to further discussion of the actual investigation and results.

1. The Static Program

In the static program, a tungsten crystal of appropriate size was created in the computer. An interstitial atom was then implanted at a chosen site within the crystal. Potential energies and mutual forces of all atoms were computed. The crystal was then allowed to relax in appropriately chosen timesteps. At the end of each timestep an energy dissipation mechanism was introduced in the form of a predetermined damping factor which was used to decrease all velocity components of the atoms of the crystal. The next timestep interval was then computed, and the process was repeated until an indicated number of timesteps had been completed. If an equilibrium position had been reached, positions and energies of all atoms in the crystal, including the interstitial, and other pertinent data could be punched out on cards for later use in the dynamic program.
a. Equilibrium Positions of Interstitials In interpreting the results of the static simulations it was necessary to arrive at some criterion to use as a determining factor for the interstitial's final
equilibrium position. It was expected that the crystal would relax around the split interstitial site forming a "pocket" within the crystal which would interrupt the periodicity of the lattice. Stability in this configuration was determined to have been reached when the atoms of the deformed crystal, including the interstitial, had been allowed to relax (i.e., adjust to the presence of the interstitial) to the point where their kinetic energies were all below thermal. ($<0.025 \mathrm{eV}$)

If more than one possible equilibrium position met this criterion, it was felt that different positions within the "potential well" of the equilibrium site were probably being observed. The position in which the interstitial atom had the smallest amount of potential energy was then chosen as the equilibrium position for the lattice site under investigation.
b. Handling of Oscillations Near Equilibrium While performing the "force calculations", some runs began with the interstitial moving toward an apparent equilibrium until an oscillation, or "rattle", developed about the suspected equilibrium position in the "z" direction. It was first confirmed that this "rattle" was solely in the "z" direction (i.e., no significant "x" or "Y" displacement) by extending the computation from 30 to 200 timesteps. It was shown that in a 〈100〉 direction in a body-centered cubic a narrow potential energy minimum was observed at (100) planes. The region of the $\langle 110\rangle$ line between the octahedral void and the reference lattice site was contained within
this potential energy minimum. With this information as justification, it was determined that the velocity of the interstitial in the "z" direction could be completely damped at the end of each timestep to hasten the determination of the true equilibrium position. This technique was useful in restricting computer run time whenever an obvious "rattle" in the " z " direction developed.

2. The Dynamic Program

The initial step of the dynamic program was the recreation in the computer of the tungsten crystal, including the interstitial, after relaxation of the crystal had taken place and the interstitial had come to an equilibrium position. This was accomplished by utilizing the output of the static program as the input to the dynamic program.

Before continuing with the problem, it was necessary to realize that the minimum energy required for the interstitial to escape from the crystal would be a function of the path of escape. To account for this "direction dependence", impact points were chosen in the surface plane of the crystal perpendicular to the direction of escape. The negative "Y" direction was always used as the direction of escape. Energy was then imparted to the interstitial which was, in turn, "aimed" at a specific impact point. The interstitial was then allowed to travel through the crystal using a timestep procedure based on a constant DTI. (The timestep procedure in the dynamic program is simpler than in the static program since energies are dominant throughout.) Each impact point (i.e., direction of escape) was subsequently
tested in the same manner using the same initial energy. If the interstitial escaped from the crystal in any direction tested, it was assumed that the initial energy applied to the interstitial was greater than the binding energy for that particular ion in that particular equilibrium position. In this case, the initial energy was decreased and another survey of the impact points was taken. When the minimum initial energy which still allowed the interstitial to escape was determined, the binding energy for that particular ion in that particular equilibrium position was known.
3. Equilibrium Sites Viewed As Potential Wells

One means of modeling equilibrium positions of interstitials in a crystal lattice is to consider each possible equilibrium position as a three dimensional potential well. A foreign atom migrating through the lattice which reaches the confines of one of these potential wells with sufficiently small energy would fall into the potential well and remain there. In conjunction with this research, the character of these potential wells was also investigated.

Two different approaches were taken to investigate the potential well aspect of the problem. First, the static program was used to investigate behavior of interstitials implanted at various positions around a previously determined equilibrium position in a perfect lattice to determine which of these positions sought equilibrium. The second method offset the interstitial from its equilibrium position in the relaxed crystal and then allowed the crystal to undergo
further relaxation to determine whether the offset interstitial would seek the original equilibrium position.
4. Determination Of Possible Interstitial Sites

In a body-centered cubic material there are twelve possible locations for a 〈ll0〉 split interstitial. In an infinite crystal these sites are equivalent; that is, no one site can be distinguished from another. When a finite crystal is considered, the presence of a crystal surface allows identification of three distinct interstitial sites. An "A" site is located in a (ll0) plane which contains the lattice site about which the split occurs and is closer to the crystal surface than the shared lattice site. A "C" site is also in a (ll0) plane containing the shared lattice site, but is located below the shared lattice site. A "B" site is located in the same (100) plane parallel to the surface that contains the shared lattice site.
a. Implantation Procedure

In the static program the interstitial was initially implanted in an offset position in the direction of the expected equilibrium position. This procedure allowed a smooth movement toward the suspected equilibrium position in a minimum number of timesteps. For the heavier interstitial atoms (xenon and tungsten) the lattice atom was also offset in its direction of suspected movement as a result of the presence of the large interstitial.

IV. PRESENTATION OF DATA

A. STATIC SIMULATION

1. Initial Simulations

After the minimum DTI procedure had been incorporated into the DTI decrementing process, investigations of tungsten interstitials in a tungsten crystal were made. In particular, a comparison between tungsten movement under the influence of an attractive potential and tungsten movement under the influence of a repulsive potential was sought. Equilibrium positions determined separately with these two potentials gave agreement within 0.02 lattice unit.

Investigations were then extended to verify equilibrium positions near lattice sites 89 and 64 which had previously been obtained by Tankovich [3]. Positions for argon, neon, krypton, and xenon were examined for each site, and results agreed with Tankovich's data within 0.02 lattice unit, see Table I. As the mass of the interstitial atom decreased, its equilibrium position moved from the shared lattice site location previously reported $[7,8]$ toward the center of the octahedral void.

2. Site 39

Investigations were then directed toward determining equilibrium positions of a split interstitial near lattice site 39 , which is one layer below the surface of the crystal. Calculations were made separately for argon, neon, krypton, and xenon interstitials. At the end of thirty timesteps,

TABLE I

Interstitial and Lattice Atom Displacements from Reference Site

Interstitial	Interstitial Site	Interstitial Displacement		Lattice Atom Displacement	
		Δx	Δy	Δx	Δy
Neon	89 C	-0.86	+0.87	+0.06	-0.06
Argon	89 C	-0.80	+0.80	+0.19	-0.19
Krypton	89 C	-0.77	+0.77	+0.24	-0.24
Xenon	89 C	-0.48	+0.48	+0.41	-0.42
Tungsten	89 C	-0.38	+0.39	+0.35	-0.35

all atoms of the crystal in each case had kinetic energies below thermal, which indicated that an equilibrium had been reached. An observation was made, however, that tended to abrogate this determination. The lighter interstitials, neon and argon, exhibited a definite affinity for the surface of the crystal. In all three possible sites (A, B, and C), argon and neon interstitials were found to seek positions significantly (0.1 lattice unit) closer to the surface than the expected 〈ll0〉 split. Final positions for argon and neon interstitials in site 39A were located less than three tenths of a lattice unit below the surface of the crystal. Similar behavior, but to a lesser degree, was also observed with the heavier interstitials, krypton and xenon. Additionally, although the kinetic energy criteria indicated that an equilibrium had been reached, the small velocities that were available at the end of each timestep were in such a direction as to allow escape from the crystal if these velocities could be maintained. In fact, although velocities were halved at the end of each timestep, a comparison of velocities over the last five timesteps of the computer run showed that the negative " y " (direction of escape) velocity component of the interstitial at the end of timestep thirty was actually only twenty percent lower than the same velocity component at the end of timestep twenty five. In other words, even with fifty percent damping applied during each timestep, velocities actually decreased by only twenty percent over 5 timesteps. It was also observed that during these last five timesteps the
maximum movement allowed by the most active atom of the crystal (the DTI) had reached its minimum value, 0.0005 lattice unit. These observations suggested that the small movement allowed during these timesteps combined with the damping factor might be "forcing" the interstitial to exhibit equilibrium criteria. It was concluded that equilibrium positions near site 39 were unstable, if they exist at all.
3. Site 14 C

Until these investigations little thought was given to the possibility of an equilibrium position in site l4C. With no precise knowledge available concerning the actual quantitative value of the damping experienced by a foreign interstitial implanted in a crystal lattice and with the possibility of equilibrium sites near lattice site 39, some credence had to be given to the possibility of equilibrium positions near surface atoms of the crystal. It was, therefore, decided to investigate the possibility of an equilibrium position in site l4C. It was postulated that in the case of light atoms (neon, for example) the interstitial position for the 14 C site should be deeper in the crystal than the 39A site, as a result of the greater repulsion of the lattice atom with which the site was shared. Simulations showed that the l4C interstitial site was located at a distance of 0.43 lattice unit below the surface of the crystal while the 39A interstitial site was located at a distance of 0.26 lattice unit below the crystal surface. When the displacement of this interstitial site was compared
wịth the 64C interstitial site (0.84 lattice unit below the next higher lattice plane), the effect of the surface of the crystal on interstitials in close proximity to the surface was clearly exhibited. Velocity characteristics similar to those of site 39A were also observed indicating that the amount of damping applied and the DTI could be forcing the interstitial to exhibit equilibrium properties in this site. In general, it can be said that interstitial equilibrium sites in the first two layers of the crystal are ill defined in position if they exist at all.

4. Force Calculations

As mentioned previously, in the course of these investigations it was determined that energies nearly always dominated forces for the timestep ranges used in the calculations, and, consequently, the timestep was nearly always chosen as a function of the energy of the most energetic atom. To ascertain whether the use of timesteps determined by maximum forces would yield better or significantly different results, the static program was modified so that the timesteps were determined strictly as a function of the maximum force. This was accomplished by first printing out the maximum force observed during each timestep. By surveying these maximum forces, several values of force were chosen to be used as test forces. As the program was subsequently run, the maximum force in each timestep was compared with these test forces, and a DTI for that timestep was assigned based on the results of that comparison. This assigned value of DTI was then used to compute the next
timestep interval. These calculations of equilibrium positions based on forces agreed with previous energy calculations of equilibrium positions within 0.03 lattice unit.

It should be realized here that the terminology "force calculations" and "energy calculations" do not imply any significant difference in method for determining equilibrium positions. They are merely two different procedures for determining the maximum displacement which will be allowed by'the most energetic atom of the crystal during the next timestep. The importance of this parameter (DTI) is in the effect it has in insuring the smooth movement of the interstitial to its equilibrium position.

5. Investigation of potential Wells

Viewing interstitial equilibrium positions as potential wells of varying depths is a convenient means of modeling the entrapment of foreign atoms by lattice structures. In order to minimize the effects of the crystal surface on investigations, interstitial site 89 C , which had exhibited good stability and almost perfect 〈ll0〉 splitting in previous testing, was chosen for investigation of the characteristics of interstitial potential wells.
a. Potential Well Studies in a Perfect Lattice The first approach to the study of the interstitial potential well utilized essentially the same method that had been originally employed to locate equilibrium positions. It was postulated that any interstitial atom that was implanted in a perfect lattice at or near the coordinates of
the equilibrium position which had been previously determined for interstitial site 89C would seek the same equilibrium site. Interstitial atoms could be implanted further and further from the previously determined equilibrium position until they no longer returned to it. In this manner a map of the size of the potential well around site 89C could be obtained.

The results obtained in investigations of xenon in site 89C are presented in Figure 3. In this figure each coordinate intersection represents an implantation site which was tested. The arrows drawn from these implantation sites indicate the direction of movement of the interstitial from that specific implantation site. The tip of the arrow represents the interstitial position after thirty timesteps. In considering the data obtained in these investigations, two significant observations were made. First, an interstitial implanted at the previously determined equilibrium position (coordinates (4.52, 3.48) in Figure 3) moved from this position to another position which also met the criteria for equilibrium. Secondly, all other implantation sites also moved to positions which met equilibrium criteria. An analysis of the program print out data provided information of secondary importance. All implanted atoms exhibited an initial movement in the general 〈ll0〉direction even though final positions were not necessarily in that direction. Similar investigations were conducted using argon and neon interstitials with similar results.

In light of this unexpected behavior in the perfect lattice the stability of a foreign atom, inserted into the crystal as a replacement for the lattice atom in site 89, was examined. Investigations were made using neon, argon, krypton, and xenon as the replacement atoms. The data from these runs are tabulated below.

TABLE II
Results of Replacement Runs in Site 89

Replacement	Y Displacement (L.U.)	Final Kinetic	Final Potential
Atom	After 30 Timesteps	Energy (eV)	Energy (eV)
Neon	-0.049	0.0000	1.0444
Argon	-0.036	0.0008	3.5118
Krypton	-0.029	0.0001	3.5120
Xenon	-0.020	0.0000	1.3297

The y displacement values are sufficiently small that site 89 must be presumed to be a stable replacement site. This conclusion is further confirmed by observing that the potential energies are also significantly lower than those obtained for the same atoms when acting as interstitials, see Table III.

TABLE III

Interstitial Potential Energies for Site 89C
Interstitial
Atom \quad Enal Potential

Neon
Argon
Krypton
4.7
16.3
15.5

Xenon
9.1

\&

-2

\qquad
$10^{2}-0$ $-$

To further check the stability of this site, a kryptron replacement atom was then initially offset from the site 89 coordinates, 0.7 lattice unit in the " x " and " y " directions, and the program was run again. The krypton atom moved precisely along the $\langle 110\rangle$ line back toward site 89. At the end of thiry timesteps, the krypton atom was located 0.4 lattice unit in the "x" and "y" directions, " x " and " Y " velocity components were still in the direction of site 89, and potential energy had decreased from 54 eV in the initial offset position to 8.7 eV at the end of thirty timesteps.
(1) Interpretation of Results

Interpretation of the results reported in the previous section led to a re-examination of the concept of the equilibrium positions of interstitials and raised a question concerning the validity of solely using relaxed crystals for determinations of equilibria.

The equilibrium positions obtained by using a perfect crystal were a function of the implantation site. This dependency of the final equilibrium position on the implantation site suggested that the movement of the interstitial to an equilibrium site can not be explained in terms of the lattice structure "forcing" the interstitial to its lowest energy configuration. Rather, these results suggested that the actual mechanism is a process of local "liquefaction" of the lattice as it adjusts to the presence of the interstitial combined with interstitial movement caused by interaction with the lattice atoms. This, in turn,
suggested that a more accurate means of localizing equilibrium positions might be to utilize a crystal which had already been allowed to "relax", or adjust to the presence of the interstitial. (See next section.)

The movement of atoms from nine different implantation sites in an area two tenths of a lattice unit per side to nine different positions which exhibit equilibrium criteria indicated that equilibrium positions are not precise positions coordinate - wise within the time range of these computations.
b. Potential Well Studies in a Relaxed Lattice The conclusions reached as a result of studies of potential wells in a perfect crystal prompted similar studies in a crystal which had been allowed to adjust to the presence of the interstitial. An argon interstitial and interstitial site 89 C were chosen for investigation. The relaxed lattice was obtained by using the results of the static simulation of argon in site 89 C which had first indicated that an equilibrium position had been reached. These results were read into the computer as initial positions for the lattice atoms and the interstitial. The interstitial was then offset from its position and a new static simulation was performed. An array of sites was chosen for investigation in this manner. The results of these simulations with various interstitial offsets are shown in Figure 4. The representation in Figure 4 is analogous to the representation in Figure 3. The start point for each run is numbered (1-9 and A, B).

The interstitial movement depicted in Figure 4 was encouraging in many respects. An argon interstitial placed successively at each initial site (numbered l-9 in Figure 4) appeared to head for roughly the same region of the crystal. The potential energy of the interstitial at the conclusion of each run ranged in value from 8.8 to 9.8 eV. A comparison of these energies with the energy of the interstitial in the initial equilibrium position found in the perfect lattice ($\sim 16 \mathrm{eV}$) indicated that this equilibrium region is much more stable than the position determined previously. While not precisely defined in position, this equilibrium region was located in roughly the $\langle 110\rangle$ direction from the shared lattice site.

Since this equilibrium region appeared to be located nearer to the shared lattice site (site 89) than offset start points l-9, two additional computer runs (labeled A and B in Figure 4) were made with start points bordering this equilibrium region. These runs indicated that, even in a relaxed crystal, the equilibrium reached was still somewhat a function of the initial position of the interstitial. In both of these runs, equilibrium was reached by movement in the $\langle l l 0\rangle$ direction, and the potential energy of the interstitial after thirty timesteps ($\sim 10 \mathrm{eV}$) was lower than the potential energy originally determined in the perfect lattice.
(1) Interpretation of Results

The results obtained in the relaxed lattice
seemed to reinforce the conclusions drawn during the study
of potential wells in the perfect lattice．Basically，the relaxed crystal studies gave a picture of equilibrium posi－ tions much more in tune with what might reasonably be ex－ pected in nature．It seems clear that the equilibrium site of an interstitial is an ill－defined region in the general $\langle 110\rangle$ direction from the shared lattice site．Determination of this equilibrium region cannot be made based solely on the kinetic energy of the interstitial；potential energies must also be considered．

This equilibrium region could have been postulated from a consideration of the rms displacement of a tungsten atom in a tungsten lattice．Houska［18］has measured this rms displacement to be 0.049 lattice unit at $300^{\circ} \mathrm{K}$ ．The ordinary thermal activity of the lattice atoms， then，can be expected to cause the equilibrium positions of interstitials to fluctuate over some region．This equili－ brium region might best be described as roughly a cylinder whose axis is in the 〈ll0〉 direction and whose height and radius are some function of the relationship between inter－ stitial mass，lattice atom mass，and，the interatomic poten－ tial function．The equilibrium positions determined in these investigations appeared to be centered in the $\langle 110\rangle$ direction at the intersection of the（110）and（100）planes through the lattice atom and covered a section of the 〈ll0〉 line on the order of 0.2 of a lattice unit long．This seems to be a reasonable range of equilibrium positions for the re－ latively light argon interstitial in a tungsten crystal．
indicated the usefulness of conducting implantation studies in relaxed crystals. The movement of interstitials to equilibrium in the relaxed crystal was much less dependent upon initial positions, and all sites investigated showed a preference for positions in the $\langle 110\rangle$ direction. Such was not the case in perfect lattice studies.

B. DYNAMIC SIMULATIONS

Concurrent with the investigations into the potential wells of the equilibrium sites, dynamic simulations were conducted using the argon interstitial in site 64A. Since Tankovich [3] had investigated an argon interstitial in site 89 C and had determined that the binding energy of this site was in the range $2-4 \mathrm{eV}, 4 \mathrm{eV}$ was chosen as the initial energy for the dynamic tests. It was determined that the binding energy of the argon interstitial in site 64A was between 0.02 and 0.04 eV . At 0.04 eV escape of the interstitial was noted for several of the twelve impact points tested. At 0.02 eV the interstitial first moved slightly toward the surface of the crystal, then changed directions and moved to a position deep inside the crystal while gaining considerable energy. This phenomena had been seen and interpreted previously as the expected behavior of a stable site in which the interstitial has been required to move too large a distance in one timestep. Since the timestep is constant (0.l lattice unit) in the dynamic simulation, an interstitial that is oscillating in a stable configuration
can be required to move out of its stable position. When this movement is directed into the crystal, it can be assumed that the original position was stable.

This binding energy falls in the range of the first desorption peak measured by Kornelsen and Sinha (see Figure 5 in Ref. 1). This result indicated that interstitial sites formed with lattice atoms in the third crystal plane (corresponding to the $y=2$ plane of these calculations), such that the interstitial site was in the $\langle 110\rangle$ direction above the lattice atom, are the sites nearest the surface of the crystal stable enough to entrap measurable amounts of argon. This excellent concurrence with experiment further substantiated the conclusion drawn earlier in these investigations about the doubtful character of positions near sites 39 and 14 which had exhibited equilibrium criteria.

V. CONCLUSIONS AND RECOMMENDATIONS

During the course of these investigations the possibility that the DTI decrementing procedure and the procedure for incorporating damping into the problem might be forcing interstitials to exhibit equilibrium properties arose. At first, the DTI was thought to possibly be restricting atom movement to such an extent during the last few timesteps of a calculation (i.e., when DTI had reached its minimum value -0.0005 lattice unit) that atom movement and, consequently, kinetic energy could no longer be used as equilibrium criteria. This became more significant when the small DTI and the damping factor were considered together. The damping factor seemed particularly appropriate for scrutiny near the surface of the crystal and when DTI was small, since the probability of collisions and close approaches and the subsequent damping of atom motion could be expected to decrease in both instances. The excellent agreement with experiment of the results of the dynamic and static simulations suggests, however, that the DTI and damping procedures employed might be adequate for these simulations except when atom movement is particularly close to the surface of the crystal. It is recommended that future investigations explore the use of a damping factor which varies with decreasing DTI and movement toward the surface of the crystal.

These investigations have shown the value of using a relaxed crystal in the computer simulation of lattice dynamics. The relaxed crystal simulation indicated that:
(1) The equilibrium position initially sought by an interstitial is a function of implantation position.
(2) The mechanism associated with the establishment of an equilibrium position seems to be a combination of interatomic interaction and local liquefaction of the crystal structure in the vicinity of the interstitial.
(3) The character of equilibrium potential wells is more readily observable in a relaxed crystal.
(4) The actual equilibrium position of an interstitial seems to be some region in the general 〈ll0〉 direction from the reference (shared) lattice site.

Again, however, for determining binding energies, the original procedure for determining equilibrium positions may yield adequate results. Such was the case for the dynamic simulations reported here. It is recommended that replacement interstitials and other split interstitial sites undergo dynamic simulation in an attempt to correlate other desorption peaks as determined by Kornelsen and Sinha [l] with interstitial sites.

APPENDIX A

SUBROUTINE PLUCK

Subroutine Pluck was developed to allow the use of a crystal smaller than the original model in dynamic testing. This subroutine was developed so that the only pieces of information required as input to the subroutine were the number of crystal planes desired in the "x" and " z " directions and the number of the lattice site desired at the center of the PLUCK crystal. Once the size of the PLUCK crystal is decided upon, the subroutine stores the original numbers of the atoms in the PLUCK crystal in an array. This allows reference to any atom by its original number throughout computation. The atoms of the PLUCK crystal were numbered consecutively, and the number of atoms in the PLUCK crystal was assigned a variable name. In this manner, a minimum of adjustment was required in the dynamic program when the PLUCK crystal was used.

SUBROUTINE PLUCK is included in this appendix in its most general form. Parameters are listed below for two different sizes of PLUCK crystals. Sizes refer to the number of "x" and "z" planes in the PLUCK crystal. "Y" planes from the surface of the crystal through the two planes below the plane of the lattice site under investigation are always included.

COMMON/COM1/RX(500), RY(500), RZ(500), LCUT(500),
1LL,LD, ITYPE,NVAC
COMMON/CCM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ,
1 IVACX, I VACY, IVACZ
COMMON / COM1O/I XNEW, IYNEW, IZNEW, II
COMMON/COMII/RXNEWI (250), RYNEWI(250),RZNEWI(250),
1KEEP (250), NNUM(250)
1500 IXNEW=IXNEW
I YNEW=I $\vee A C Y+3$
I YNEW = I YNEW
NM=NMI
$\mathrm{NI}=\mathrm{NII}$
I I=2
MM=0
NX=NX1
NII3=NII31
NII4 =NII41
IF (IYNEW.EQ. 3) GO TO 1514
1505 DO 1509 I =II,NM
NNUM(I) =NI
$1509 \mathrm{NI}=\mathrm{VI}+1$
$\mathrm{NI}=\mathrm{NI}+\mathrm{NIINCl}$
$\mathrm{II}=\mathrm{II}+\mathrm{IIINC} 1$
$N M=N M+N M_{1 N C 1}^{1}$
IF (II.LE.NX) GO TO 1505
$N \mathrm{~N}=\mathrm{NX}+\mathrm{NXINCl}$
$\mathrm{NI}=\mathrm{NI}+\mathrm{NII} 4$
$M M=M M+1$
IF(IYNEW.EQ.MY) GO TO 1600
$N M=N M+N M I N C 2$
GO TO 1515
1514 NX=NX2
$N M=N M 2$
NI =NI 2
NII $3=$ NII 32
NII4 =NII42
1515 DO $1520 \mathrm{I}=\mathrm{II}$, NM
NNUM(I)=NI
NI $=\mathrm{NI}+\mathrm{NI}$ INC 3
$I_{I}=1 I+I I I N C 2$
$N M=N M+N M I N C 3$
IF (II.LE.NX) 30 TO 1515
$N X=N X+N X I N C 2$
$\mathrm{NI}=\mathrm{NI}+\mathrm{NII} \mathrm{I}$
$M M=M M+1$
IF(IYNEW.EQ.MY) GO TO 1600
$N M=N M+N M I N C 4$
GO TO 1505
1600
RXNEWI $(1)=R \times(1)$
RYNEWI(1)=RY(1)
RZNEWI(1)=RZ(1)
$\operatorname{KEEP}(1)=1$
$\operatorname{NNUM}(1)=1$
1700
DO 1750 I $=2$. II
RXNEWI (I) $=R X(N N U M(I))$
RYNEWI(I)=RY(NNUM(I))
RZNEWI(I)=RZ(NNUM(I))
1750
KEEP (I) =NNUM(I)
CONTINUE
RETURN

APPENDIX B

COMPUTER PROGRAM GLOSSARY
ALPHA: Input Morse potential parameter.
BSAVE: Target Mass/ (target mass + bullet mass); distributes potential energy between target and bullet.

BIND: Negative of the total potential energy (TPOT) at time zero.

BMAS: Mass of bullet in AMU.
BULLET: Alpha-numeric array for point defect material. CFO, CF1, CF2: Force parameters of cubic fit between Morse and Born-Mayer functions.

CGB1, CGB2: Morse potential parameters.
CGDl, CGD2: Morse potential parameters.
CGF1, CGF2: Morse force parameters.
CPO, CP1, CP2, CP3: Potential parameters of cubic fit
between Morse and Born-Mayer functions.
CVD: CVR X 10 ${ }^{-10}$: Converts lattice units to meters.
CVE: 1.6×10^{-19} : Converts electron volts to Joules.
CVED: CVE/CVD: A ratio used to avoid repeated division. CVM: 1.672×10^{-27} : Converts atomic mass units to kilograms. CVR: LU in angstroms; converts lattice units to angstrom units.

DIX, DIY, DIZ: Displacement coordinates for location of interstitial from reference atom, NVAC.

DCON: Input Morse potential parameter.

DDTIF: The minimum value that DTI is allowed to assume. DDTII: The initial decrement of DTI.

DFF: ROE-DIST. The distance closer than ROE that an atom is to the primary.

DIST: Distance between any two atoms.
DLPE: TLPE-TLPE \varnothing : The change in total local potential energy since time zero.

DRX, DRY, DRZ: x, y, z components of DIST.
DT: Length of a timestep in seconds.
DTE, DTE1: The two possible alternatives of the timestep computed from maximum energies.

DTF, DTFl: The two possible alternatives of the timestep computed from maximum forces.

DTI: Number of lattice units most energetic atom may move in one timestep.

DTl (I), DT2 (I), DT3 (I), DT4 (I): Vector arrays which save the possible choices of timestep determined in the "energy" method.

DTSTEP (I): Vector array which saves the timestep interval chosen for each timestep.

DTOD: DT/CVD -- A ratio used to avoid repeated division. DTOM:DT/PTMAS -- A ratio used to avoid repeated division. DX(I), DY(I), DZ(I): Change in position of ith atom from initial position at time zero.

EMAX: The maximum energy encountered in any cycle.
EV: Primary energy in electron volts.
EVR: Primary energy in kiloelectron volts.

EXA, EXB: Input Born-Mayer potential function parameters for the target.

F2: Square of the force on a specific atom.
FA: The component force increment on an atom.
FDTI: DTI X CVD: A parameter used to determine DT by maximum energy method.

FM: A small number used in checking potential energy zero point.

FM2: FM squared.
FMAX: Maximum total force on the most stressed atom in the crystal.

FOD: FORCE/DIST: A ratio used to avoid repeated division. FORCE: Numerical value of the force function with a variable parameter.

FORMAX (I): Vector array which saves the maximum force in each timestep.
 an atom.

FAX: Born-Mayer force function parameter.
HBMAS: $\frac{1}{2}$ BMAS: A ratio used to avoid repeated division.
HDTOD: $\frac{1}{2}$ DTOD: A ratio used to avoid repeated division.
HDTOM: $\frac{1}{2}$ DTOM: A ratio used to avoid repeated division.
HDTOMB: $\frac{1}{2}$ DTOMB: A ratio used to avoid repeated division.
HTMAS: $\frac{1}{2}$ TMAS: A ratio used to avoid repeated division.
Il: Variable in cubic fit subroutine.
I3: Variable in cubic fit subroutine.
IDEEP: First fixed layer.

IFMXAM (I): Vector array which saves the atom number which experiences the maximum force.

IH1:
IH2:
IHB :
IHS:

IHT:
II:

ILAY:
IN:

IP:

IQ:

ISHUT:
IT:

ITT:

ITYPE: Alpha numeric array for program title. Alpha numeric array for Morse function parameters. Alpha numeric array for bullet element. Alpha numeric array for type and orientation of crystal.

Alpha numeric array for target element. Number of atoms in a crystal using subroutine PLUCK.

Number of free (mobile) layers.
Odd-even integer used to determine atom site establishment.

Subscript value of atom. Void in subroutines STEP and ENERGY.

Parameter that determines whether or not a self defect is to be given a repulsive potential or a composite attractive - repulsive potential. establishment.

Parameter used to determine the type of point defect: vacancy, interstitial, or replacement.

IX, IY, IZ: Number of x, y, z planes of cyrstal.
IXNEW, IYNEW, IZNEW: Number of x, y, and z planes in the PLUCK crystal.

$$
-
$$

LCUT (I): Used to identify an ith atom which is not included in calculations.

LD:
LL:
LOCAT (K): Dimensioned variable that remembers the numbers of the atoms within a radius ROEL of the primary at time zero.

LS:

MCRO:

ND:
NEW:

NNUM (I): Vector array used in Subroutine PLUCK to renumber atoms.

NPAGE: Page numbering variable.
NRUN: Parameter used to determine whether or not to read additional data cards.

NS: Initial print statement timestep number.
NT: Timestep number.
NTT: Timestep number limit before shutdown.
NVAC: An atom number used to establish point defects or used as a reference point for interstitial placement.

PAC: Parameter for bullet force function correction. PBMAS: Primary mass in kilograms.

PEXA, PEXB: Input Born-Mayer potential function parameters for the bullet-target interaction.

PFPTC: Primary force function evaluated at ROE.
PFXA: Primary force function parameter.
PKE (I): Kinetic energy of the ith atom.
PLANE: Alpha-numeric array for lattice orientation.
POT: Potential energy between two atoms.
PPE (I): Potential energy of the ith atom.
PPEINT (I): Vector array that saves the difference in potential energy before and after implantation.

PPENCK: Potential energy check value which determines potential energy decreases which will be printed.

PPENEG (I): Vector array which saves potential energy decreases.

PPEPCK: Potential energy check value which determines which potential energy increases will be printed.

PPEPOS (I): Vector array which saves potential energy increases.

PPESAV (I): Vector array which saves the initial potential energy of lattice atoms before implantation. PPKEEP (I): Vector array which saves potential energy differences between perfect crystal and relaxed crystal.

PPTC: Primary potential function evaluated at ROE.
PTE (I): Total energy of the ith atom (potential + kinetic).

PTMAS: Target mass in kilograms.
RE: Input Morse potential parameter.
RO: Spacing constant in BCC(ll0) lattice generation subroutine.

ROE: Nearest neighbor distance.
ROE 2: ROE squared.
ROEA: Maximum cut-off for Born-Mayer potential.
ROEB: Minimum cut-off for Morse potential.
ROEC: Maximum cut-off for Morse potential.
ROEC2: ROEC squared.
ROEL: Radius inside of which local potential energy is found.

ROEL2: ROEL squared.
ROEM: ROE-DTI, Region in which modification of repulsive force must be made.
$R X(I), R Y(I), R Z(I): X, Y, z, c o o r d i n a t e s$ of an ith atom at any time.

RXI (I), RYK(I), RXI (I): X,Y,z, coordinates of an ith atom's initial position.

RXK (I), RYK(I), RZK(I): x, y, z coordinates of temporary position of an ith atom during force cycle. RXNEWI, RYNEWI, RZNEWI: Vector arrays which contain the x, y, z, coordinates of the atoms of the PLUCK crystal.

RXSAVE, RYSAVE, RZSAVE: x, y, z, coordinates of the impact point in the dynamic program.

SAVE: $\quad \frac{1}{2}$ POT.
SCX, SCY, SCZ: X,Y,Z, coordinate scale factors.
SSCZ: , A z scale factor used for the FCC(lll) lattice generator subroutine.

START: An optional timing variable, not used in this simulation.

SUM: Variable in cubic fit subroutine.
TARGET: Alpha-numeric array for target material.
TSAVE: Bullet mass/(target mass+bullet mass);
distributes potential energy between target and bullet.

TE: Total energy of all crystal atoms (kinetic + potential).

TEMP: Temperature of lattice in degrees Kelvin not used in this simulation.

TFAC: A time factor ratio used to determine DT by maximum force method.

TFACB: TFAC for the bullet.
THERM: Thermal energy of atom not used in this simulation.

TIME: Elapsed problem time in seconds.

TLPE: Total local potential energy of atoms within a radius ROEL.

TLPE \varnothing :TLPE at time zero.
TMAS: Target atom mass in AMU.
TPKE: Total kinetic energy of all crystal atoms. TPOT: Total potential energy of all crystal atoms. VSS: Storage variable for velocity components. VS(1), VY(1), VZ(1): x, y, z components of ith atoms velocity. X, Y, Z: Unscaled coordinates used in crystal generation. XNVAC, YNVAC, ZNVAC: The initial displacement (in LU) of atom NVAC.

YLAX(I): Relaxation in $-Y$ direction of ith layer in L.U. ZP: Floating point form of JTT.

APPENDIX C

ERROR IN THE LITERATURE

It was discovered during the course of these investigations that Equation (20) of Ref. 10 (corresponding to equation 6A of the report) was incorrect.

Equation (19) of Ref. 10 is,

$$
\Delta T \doteq \Delta x_{i} / v_{i}
$$

where ΔT is the timestep interval, ΔX_{i} is the displacement of the $i^{\text {th }}$ particle, and v_{i} is the velocity of the $i^{\text {th }}$ particle.

To express the timestep in terms of the energy of the particle with the maximum energy, Δx_{i} is defined as the displacement of the particle with the greatest energy and is replaced by the symbol $D . T_{m}$ is this particle's energy, which is the largest kinetic energy at end of each timestep. If T_{m} is expressed as

$$
T_{\mathrm{m}}=\frac{1}{2} m v_{\mathrm{m}}^{2}
$$

substitution into equation (19) yields,

$$
\Delta T=D /\left(2 T_{m} / m\right)^{\frac{1}{2}}
$$

or , $\Delta T=D\left(m / 2 T_{m}\right)^{-\frac{1}{2}}$,
vice

$$
\Delta T=D\left(2 \mathrm{~m} / \mathrm{T}_{\mathrm{m}}\right)^{-\frac{1}{2}} \cdot \quad \text { (Equation (20)Ref. 10) }
$$

It should be noted that this error has no affect on the calculations reported here. D (DTI in these calculations) is a parameter which has been specifically chosen in order
to provide a timestep interval over which there are no significant force changes. The factor of 2 which is introduced in this correction would merely have required a subsequent alteration of the DTI's chosen so that the timestep interval would remain essentially the same.

```
                                    ATOM
        Y=O PLANE
                                    NUMBERING
        (22) (23) (24) (25) (26) PROCEDURE
    (17) (18) (19) (20) (21)
    (12) (13) 14) 15 16
```



```
SM, (4) 5 6 P
    (47) 48) 49 50 51
    (42) 43)44 45 46
    (37) (38) (39) 40)
    (32) 33)34 35 36
2 27 28)29 30 31
```

A TOM

Figure l. Atom Numbering Procedure.

THE FUNCTION OF SUBROUTINE PLUCK

Figure 2. The Function of Subroutine Pluck.

$$
\begin{aligned}
& \begin{array}{l}
\text { XENON BEHAVIOR } \\
\text { IN A } \\
\text { PERFECT LATTICE }
\end{array} \\
& 1 \\
& \stackrel{\%}{\circ}+ \\
& \text { 2s.t } \\
& \text { (1) } \\
& \underset{y}{\downarrow} \\
& 3.48 \\
& 3.58
\end{aligned}
$$

Figure 3. Xenon Behavior in a Perfect Lattice.

Figure 4. Argon Behavior in a Relaxed Lattice.

FOR STATIC SIMULATIONS

Static simulations were used to investigate the EQUILIBRIJM POSITIONS OF INTERSTITIAL ATOMS IMPLANTED IN A TUNGSTEN CRYSTAL. FOUR DIFFERENT CONFIGURATIONS OF THE STATIC PROGRAM WERE USED AS THE INVESTIGATIONS PROGRESSED. THESE CONFIGURATIDNS WERE USED TO
(1) DETERMINE EQUILIBRIUM POSITIONS BY 'ENERGY' CALCULATIONS,
(2) DETERMINE EQUILIBRIUM POSITIONS BY 'FORCE' CALCULATIONS,
(3) PRINT OUT THE SMALLAR CRYSTAL DETERMINED BY

SUBROUTINE PLUCK FOR USE IN INITIAL DYNAMIC TESTING, AVD
(4) INVESTIGATE THE POTENTIAL WELLS IN THE RELAXED CRYSTAL
THE 'ENERGY' CONFIGJRATION OF THE STATIC PROGRAM IS PRESENTED BELDW WITH DIFFERENCES FROM THIS PROGRAM REQUIRED BY OTHER CONFIGURATIONS INCLUDED AND DI SCUSSED AT APPROPRIATE POINTS. ADDITIONALLY, BRIEF COMMENTS ARE INCLUDED AT VARIOUS POINTS TO CALL ATTENTI ON TO SIGNIFICANT PROCESSES OF THE PRCGRAM.
C
C
C
C
C
DIMENSION VECTOR ARRAYS USED EXCLUSIVELY IN THE MAIN PROGRAM. THE DIMENSIONING SCHEME FOR EACH CONFIGURATION IS GIVEN BELOW IN ITS ENTIRETY.

C

DIMENSION VX(500), VY(500), VZ (500), PKE(500)
DIMENSI DN DX(500), DY(500), DZ (500), PTE(500)
DIMENSI ON PPESAV (500), PPEINT (500), PPEPOS(500), 1 PPENEG(500)
DIMENSI ON FSTACC (100), FSSACC(100), FORMAX(100),
1 I FMXAM(100)
DIMENSION DTFSP (50), DTIASP(50), DTESP(50), DTIVSP(50),
1 DETI (50)
DIMENSION PPKEEP 500$)$
DIMENSION DTSTEP(200)

C
 - OTHER CONFIGURATIONS'


```
            DIMENSION VX(500),VY(500),VZ(500),PKE{500)
            DIMENSION DX(500), DY(500),DZ(500),PTE(500)
            DIMENSI ON PPESAV(500),PPEINT(500),PPEPOS(500),
1 PPENEG(500)
    DIMENSION FSTACC(100),FSSACC(100),FORMAX(100),
1 IFMXAM(100)
    DIMENS ICN DT1 (50),DT2(50),DT3(50),DT4(50)
    DIMENSION PPKEEP(500)
    DIMENSION DTSTEP(200)
```

PRESCRIBE COMMON STORAGE OF VARIABLES AND VARIABLE ARRAYS REQUIRED IN SUBROUTINES.

COMMDN/COM1/RX(500),RY(500),RZ(500),LCUT(500),
1 LL, LD, ITYPE, NVAC
CDMMON/COM $2 / \operatorname{It} 1(20), I H 2(8), I H S(10), \operatorname{IHB}(6), \operatorname{IHT}(6)$, 1 TARGET (4), TMAS, BULLET (4), BMAS, PLANE, TEMP, THERM, IDDTII, DDTIF
COMMON/COM3/RXI (500), RYI (500), RZI (500), CVR, EVR, 1 NT, TIMF, DT, DTI, ILAY, RXK (500), RYK (500), RZK (5j0) COMMON/CCM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ, IIVACX, IVACY, IVACZ
COMMON/CCM5/ROE,ROE2,ROEM, EXA, EXB, PEXA,PEXB,FXA,PFXA, IIO,TSAVE, BSAVE
COMMON/COM6/FX (500), FY (500), FZ (500), PAC, PFPTC,FM COMMON/COMT/PPTC,TPOT, PPE (1000), TLPE,ROEL, ROEL2, NEW COMMON/COM8/ROEA, ROEB, ROEC,ROEC2,CPO,CP1,CP2,CP3,
1 CFO, CF1, CF2, CGD1, CGD2, CGB1, CGB2, CGF1, CGF2
CGMMON/COM9/XNVAC, YNVAC, ZNVAC
COMMON/COM1O/I XNEW, IYNEW, IZNEW, I I
COMHON/COMII/RXNEWI(25) , RYNEWI (250), RZNEWI(250), 1KEEP (250), NNUM (250)
COMMON/COMA/ A(4,5),MCRO
C
C
C
LIST FORMAT STATEMENTS OF ALL READ COMMANDS.

9010 FORMAT (20A4)
9020 FORMAT (8A4, 3F8.5,2F5.2)
9030 FORMAT (4 A4, 3F8.5,6A4,F6.2)
9040 FCRMAT (FE.3,5X,I5,5I4,4X,3F5,312)
9041 FORMAT 2 F6. 4,6 F6.3)
9042 FORMAT (F8.4,F8.4)
9050 FORMAT (1JA4,A4,4I3,F8.4.14,F5.4)
9052 FORMAT (6(F6.3))

LIST FORMAT STATEMENTS OF ALL WRITE COMMANDS.

9610 FORMAT (1H1
 9630 FORMAT ($3(I 5,3 F 6.2, F 8 \cdot 4,8 \mathrm{X}$))
9640 FORMAT $/ 4 \times, F 10 \cdot 3,25 \mathrm{H}$ ᄃV,TOTAL KINETIC ENERGY, FF1O.3, 127 HEV , TOTAL POTENT IAL ENERGY,F10.3.' EV, REDUCTION', 1 1/6JX, RADIUS = 'FF.2,i

9660 FORMAT (/ VY ATOM VZ DX KE DY PE DZ TE',/ノ
9670 FORMAT (II8,3F10.3,3F10.1,3F10.4)
9680 FORMAT (SHARP DT DECREASE, 2E10.3)
9690 FORMAT (I4,3F5.2, 14)
9691 FORMAT (9 F8.4)
9692 FORMAT ($1 \times, 14,1)$
9693 FORMAT ($4(\mathrm{I} 5,3 \mathrm{X}, \mathrm{F} 8.4,9 \mathrm{X}$))
9694 FORMAT (22 X , SUMMARY'OF POSITIVE POTENTIAL ENERGY CHAN
 1 L/FINAL X INITIAL/FINAL Y INITIAL/FINAL $Z \quad P E$ ICHANGE'/
9695 FORYAT ($22 X$.' SUMMARY OF NEGATIVE POTENTIAL ENERGY CHAN 1 GES GREATER THAN ',F7.4,2X,'NT=1,I2,//,' ATOM INITI

C

> - FORC E CONFIGURATION'

C
C
C
CHANGE STATEMENT NUMBER 9704 TO READ

9704 FORMAT(20X:'DT CHECK FOR EACH STEP',//ISTEP',IIX,

9705 FORMAT(I5,4(3X,E12.4), /)

C
C
C
INITIALIZE APpropriate variables and variable arrays.

START $=0.01 * \operatorname{ITIME}(X X)$
DO $2 I=1,100 う$
$R \times K(I)=0.0$
RYK (I) $=0.0$
$\operatorname{RZK}(1)=0.0$
$V \times(I)=0.0$
$V Y(I)=0.0$
$V Z(I)=0 . J$
PKE (I) $=0.0$
PPE (I) $=0.0$
PTE (I) $=0.0$
$2 \operatorname{RZI}(I)=0.0$
I SHUT $=1$
NRUN $=0$

C
C READ INPUT DATA COMMCN TO ALL DESIRED CALCULATIONS.

$$
\begin{aligned}
& \begin{array}{lll}
\text { READ } & (5,9010) & \text { IH1 } \\
\text { READ } & (5,920) \\
\text { READ } & \text { IH2, DCON, ALPHA, RE, ROEC, ROEL } \\
\text { (} 9030)
\end{array} \\
& \text { READ (5,9030) TARGET, TMAS,EXA, EXE, IHT, TEMP } \\
& \text { READ (} 5,9050 \text {) IHS,PLANE,LS,IX,IY,IZ,CVR,MCRO, DTI } \\
& \text { READ }(5,9042) \text { PPEPCK,PPENCK }
\end{aligned}
$$

DTIS=DT I
ROE $2=4.0$
ROE $=$ SORT (ROE 2)
ROEM = ROE-DT
ROEL2 $=$ ROEL*RONL
$C V E=1.60 E-19$
CVM $=1.672 E-27$
$\mathrm{VFAC}=0.5$
$F M=1 \cdot O E-10$
$F M 2=F M * F M$
CVD $=$ CVR*1.JE-1 0
CVED=CVE/CVD
PTMAS = TMAS $\% C V M$
PBMA S=BMAS $\approx C V M$
HTMAS $=0.5 * P T M A S / C V E$
HBMAS $=0.5 * P B M A S / C V E$
TSAVE $=B M A S /(B M A S+T M A S)$
$B S A V E=T M A S /(B M A S+T M A S)$
define repulsive potential parameters.
$F X A=A L O G(-E X B E C V E D)+E X A$
$P F X A=A L O G(-P E X B=C V E D)+P E X A$
PPTC=EXP (PEXA+PEXB*ROE)
$P A C=A L O G(C V E D)+P E X A$
$P F P T C=E X P(P A C+P E X B * R O E)$
define attractive potential parameters.
$C G D 1=A L O G(D C O N)+2.0 * A L P H A * R E$
CGD2 $=A L O G(2.0 \div D C O N)+A L P H A * R E$
CGB1 $=-2 \cdot 0^{*}, A L P H A * C V R$
CGB2 $=-$ ALPHA ${ }^{2}$ CVR
CGF1 $=A L O G(-C G B 1 * C V E D)+C G D 1$
CGF2 $=A L O G(-C G B 2 \div C V E D)+C G D 2$
C
C
C
DEFINE REGIONS OF APPLICABILITY OF POTENTIAL FUNCTIONS

```
ROEA=1.5 J/CVR
ROEB=2.0/C VR
ROEC2=ROEC*ROEC
```

DEFINE PARAMETERS USED TO DETERMINE THE BEST CUBIC FIT BETWEEN THE MAXIMUM DISTANCE OF APPLICABILITY OF OF THE REPULSIVE POTENTIAL AND THE MINIMUM DISTANCE
OF APPLICABILITY OF THE ATTRACTIVE POTENTIAL.
SUBROUTINE CROSYM PERFORMS THE NECESSARY CALCULATIONS.
$A(1,1)=1.0$
$A(1,2)=R O E A$
$A(1,3)=$ ROEA $\%$ ROEA
$A(1,4)=R C E A * * 3$
$A(1,5)=E X P(E X A+E X B * R O E A)$
$A(2,1)=1.0$

```
\(A(2,2)=R O E B\)
\(A(2,3)=R O E B * R O E B\)
\(A(2,4)=R O E B * * 3\)
\(A(2,5)=E X P(C G D 1+C G B 1 * R O E B)-E X P(C G D 2+C G B 2 * R O E B)\)
\(A(3,1)=0.0\)
\(A(3,2)=-1.0\)
\(A(3,3)=-2 \cdot 0 *\) ROEA
A \((3,4)=-3\). \(3 *\) ROEA ROEA
\(A(3,5)=E X P(F X A+E X B * R O E A) / C V E D\)
\(A(4,1)=0.0\)
\(A(4,2)=-1.0\)
\(A(4,3)=-2.0 \div\) ROEB
\(A(4,4)=-3.0 * R O E B * R O \subseteq B\)
\(A(4,5)=(E X P(C G F 1+C G B 1 * R O E B)-E X P(C G F 2+C G B 2 * R O E B)) / C V E D\)
CALL CROSYM
\(C P O=A(1,5)\)
CP \(1=A(2,5)\)
\(C P 2=A(3,5)\)
CP3 \(=A(4,5)\)
CFO = - CP \(1 \div C V E D\)
CF1 \(=-2.0 * C P 2 * C V E D\)
\(C F 2=-3.0 \div C P 3 * C V E D\)
```

READ INPUT DATA FOR EACH SITE TO BE INVESTIGATED. MULTIPLE INVESTIGATIONS ARE POSSIBLE BY SIMPLY READING IN DATA FOR MORE THAN ONE SITE.

5 READ (5.9७4J) EVR, NTT,NS,ND,IP,IDEEP,ITYPE, DIX, 1DIY, D1Z, IVACX, IVACY, IVACZ READ (5.9041, END=9999) DDTII, DDTIF, XNVAC, YNVAC, ZNVAC

C


```
                        'FORCE CONFIGUP,ATION'
```


C
C
C
C
C
in the force configuration only, read in dti values TO BE ASSIGNED AFTER FORCE COMPARISON, AND define variable vFacz.

READ(5,9052) OTIA1,DTIA2,DTIA3,DTIV1,DTIV2,DTIV3 $V F A C 2=V F A C=\vee F A C$


```
IF(NTT.EQ.O) GO TO 9999
IQ=ITYPE-1
EV=EVR*1.0E+3
DTI=DTIS
TPKE=EV
```


C

C VICE USING SUBPOUTINE B100 TO CONSTRUCT THE CRYSTAL.

```
            READ (5,9690) LL,D1X,D1Y,D1Z,NVAC
    K=I +1
    J=1+2
        READ (5,9691) RX(I),RY(I),RZ(I),RX(K),RY(K),RZ(K),
        1RX(J),RY(J),RZ(J)
    15 CONTINUE
```

C

' OTHER CONFIGURATIONS'

C
C
C
C
C
SELECT THE DESIRED CRYSTAL STRUCTURE AND ORIENTATION. SUBRCUTINE BIOO CONSTRUCTS THE (100) PLANES OF A BODYCENTERED CUBIC CRYSTAL IN THE COMPUTER.

14 CALL B 100

30 ILAY=IDEEP
IF (IDEEP) $35,35,40$
35
$L D=L L$
ILAY = IY
40 RLL=1.0/LL
TPOTL=1.0

RYK (I) $=$ RY(I)
RZK (I) $=$ RZ(I)
RXI (I) $=$ RX(I)
RYI (I) $=$ RY(I)
$45 \operatorname{RZI}(I)=R Z(I)$
C
IF(NRUN.EQ.O) GO TO 60
DO $55 \mathrm{I}=1, \mathrm{LL}$
LCUT (I) =
RX(I)=RXI(I)
$R Y(I)=R Y I(I)$
RZ(I) $=R Z I(I)$
$R X K(I)=R X I(I)$
RYK(I) $=$ RYI (I)
RZK (I)=RZI (I)
NRUN $=1$

THIS SECTION CALCULATES THE ENERGIES OF ALL ATOMS IN THEIR INITIAL POSITIONS IN THE PERFECT LATTICE ITHAT IS. WITH NO INTERSTITIAL IMPLANTED). INITIAL POSITICNS AND ENERGIES OF ALL ATOMS ARE PRINTED TO PROVIDE A COMPARISON WITH CHANGES IN CRYSTAL ATOM POSITIONS AND ENERGIES CAUSED BY IMPLANTATION OF THE INTERSTITIAL.

THIS CALCULATION CAN NOT BE MADE IN THE POTENTIAL WELL CONFIGURATION WI THOUT DESTROYING THE INPUT DATA OF THE 'RELAXED' CRYSTAL. CONSEQUENTLY,
$R \times(1)=25.0$
SHOULD BE DELETED IN THE POTENTIAL WELL CONFIGURATION.

61

```
PTE (I) \(=0.0\)
\(T P O T=0.0\)
NEW=0
CALL ENERGY
NPAGE=1
NT \(=0\)
WRITE (6.9610)
WRITE (6.962J) IH2,NT
DO \(61 \mathrm{I}=1, L \mathrm{~L}, 3\)
\(K=I+1\)
\(J=1+2\)
\(1 R Y(K), R Z(K), P P E(K), J, R X(J), R Y(J), R Z(J), P P E(J)\)
WRITE ( 6,9650) NPAGE
DO \(62 \mathrm{I}=1, \mathrm{LL}, 3\)
\(\mathrm{K}=\mathrm{I}+1\)
\(J=I+2\)
PPESAV(I)=PPE(I)
\(\operatorname{PPESAV}(K)=\operatorname{PPE}(K)\)
PPESAV ( \(J\) ) = PPPE ( \(J\) )
62 CONT INUE
\(R X(1)=25.0\)
DO \(63 \mathrm{I}=1, \mathrm{LL}\)
\(V \times(I)=0.0\)
\(V Y(I)=0.0\)
\(V Z(I)=0.0\)
PPE (I) \(=0.0\)
PKE (I) \(=0.0\)
TMU
```

C
' POTENTIAL WELL CONFIGURATICN'

กดกดกดกด
THE VARIABLES BELOW ARE USED TO CREATE OFFSETS FROM EQUILIBRIUM POSITIONS IN THE IRELAXED' CRYSTAL. IF NO OFFSET IS DESIRED, THESE VARIABLES SHOULD BE INCLUDED BUT SET EQUAL TO ZERO. THE OFFSET IS SHOULD NOT BE INCLUDED IN OTHER CONFIGURATIONS.

D1 $X=0.0$
D1 $Y=0.3$
D1Z $=0.0$
C
C
C
C
SUBROUTINE PLACE CREATES THE DESIRED VACANCY, INTERSTITIAL, OR SELF INTERSTITIAL IN THE CRYSTAL. in the potential well configuration, the interstitial

CALL PLACE
DO $65 I=1$, LL
$V X(I)=0.0$
$V Y(I)=0.0$
$V Z(I)=0.0$
$\operatorname{PPE}(1)=0.0$
$\left.\begin{array}{l}\text { PKE } \\ \text { PTE }(I)=0.0 \\ \text { I }\end{array}\right)=0.0$
65
$T P O T=0.0$
NEW=0
nanonana
THE ENERGY SUBROUTINE NOW CALCULATES ENERGIES OF ALL ATOMS OF THE CRYSTAL AFTER IMPLANTATION. THE SE ENERGIES AND THE INITIAL POSITIONS OF ALL ATOMS ARE PRINTED FOR TIME ZERO. CHANGES IN POTENT I AL ENERGY OF ALL ATOMS AS A RESULT OF IMPLANTATION ARE ALSO CALCULATED AND PRINTED.

CALL ENERGY
BIND=-TPOT
C

```
70
```

TIME $=0.0$
NT $=0$
WRITE (6,9620) IH2,NT
DO $70 \quad \mathrm{I}=1, \mathrm{LL}, 3$
$K=I+1$
$J=1+2$
E (6,9630) I, RX(I), RY(I), RZ(I), PPE(I), K,RX(K),
1 RY(K), RZ(K), PPE(K), J, RX(J), RY(J),RZ(J),PPE(J)
WRITE (6.9640) TPKE, TPOT,TE,ROEL
NPAGE=NPAGE+1
WRITE (6.965)) NPAGE
WRITE (6.9697)
DO $80 \mathrm{I}=1, \mathrm{LL}, 4$
$\mathrm{K}=I+1$
$J=I+2$
$L=I+3$
PPEINT(I)=PPE(I)-PPESAV(I)
PPEINT(K)=PPE(K)-PPESAV(K)
PPEEINT $(J)=P$ PE $(J)-P P E S A V(J)$
PPEINT $(L)=P P E(L)-P P E S A V(L)$
80 WRITE (6.9693) I, PPEINT(I), K, PPEINT(K),J,PPEINT(J),L, 1 PPEINT (L)
NPAGE =NPAGE+1
WRITE (6.9650) NPAGE
$D T=1.0 E-15$

C

- FORCE CONFIGURATION'

nกดกล
SINCE TIMESTEPS IN THIS CONFIGURATION ARE DETERMINED DIRECTLY BY A FORCE COMPARISON, NO TIMESTEP DECREMENT ING PROCEDURE IS REQUIRED. THE ONLY CARD NEEDED IS

C

C THE FOLLOWING STATEMENTS DEFINE THE DTI DECREMENTING PROCEDURE.

C
C
DOTI =DOTII
NDEC $=0$
100
105 NDEC=NDEC+1

THE MAIN BOCY OF THE PROGRAM NOW SOLVES THE EQUATIONS OF MOTION BY THE AVERAGE FORCE METHOD AND DETERMINES POSITIONS OF ALL ATOMS AT THE END OF THIS TIMESTEP. SLBROUTINE STEP PERFORMS ALL FORCE CALCULATIONS.

DTOD=DT/CVD
TFAC $=2.0 \div P T M A S * D T I * C V D$
TFACB $=2.0 * P$ PMAS*DTI $\% C V D$
TEFAC= $T 1 \% C$ V
HCTOD $=0 ; 5 * D T C D$
DTOM $=$ DT PTMAS
HOTOM $=0.5 \%$ TO
DT $O M B=D T / P B M A S$
HD TCMB $=3.5 \%$ TOMB
CALL STEP
IF(LCUT(1).GT.O) GO TO 240
$\mathrm{I}=1$
$\operatorname{RXK}(I)=R X(I)$
RYK(I) $=$ RY(I)
RZK(I)=RZ(I)
RX(I) $=$ RX(I) + DTOD*(HDTOMB*FX(I) $+V X(I))$
RY(I) $=$ RY(I) + DTCD*($\operatorname{HDTOMB*FY(I)+VY(I))~}$
RZ(I) $=R Z(I)+D T O D \because(H D T O M B * F Z(I)+V Z(I))$
240
IF(LCUTII) GT.0)GO TO 245
RXK (I) $=$ RX(I)
RYK (I) $=$ RY(I)
RX(I) $=$ RX(I) + DTOD*(HOTOM*FX(I) $+V X(I))$
RY(I) $=$ RY(I) + DTOD* (HDTOM*FY(I) $+V Y(I))$
$R Z(I)=R Z(I)+D T O D *(H D T O M * F Z(I)+V Z(I))$
245 CONT INUE
CALL STEP
FSTACCINT
EMAX $=0.0$
FMAX $=0.0$
TIME =TIME+DT
$N T=N T+1$
IF(LCUT(1).GT.0) GO TO 265
$\mathrm{I}=1$
$V S S=V \times(I)$
$V \times(I)=V S S+H D T O M B * F X(I)$
$R X(I)=R X K(I)+(V X(I)+V S S) * H D T O D$
VSS $=V Y(I)$
$V Y(I)=V S S+H D T O M B * F Y(I)$
RY(I) $=$ RYK(I) $+(V Y(I)+V S S) * H D T O D$
$\mathrm{VSS}=\mathrm{VZ}(\mathrm{I})$

```
    VZ(I)=VSS+HDTOMB*FZ(I)
    RZ(I)=PZK.(I)+(VZ(I)+VSS)*HDTOD
    PKE(I)=VX(I)*VX(I)+VY(I)*VY(I)+VZ(I)*VZ(I)
    EMAXI=PKE(I)
    FMAX12=FX(I)*FX(I)+FY(I)*FY(I)+FZ(I)*FZ(I)
    FMAX1=SORT(FMAX12)
    AMAXI=FMAXI/BMAS
    FSSACC(NT)= AMAXI
    FX(I)=0.0
    FY(I)=0.0
    FZ(I) =0.0
    FMAX=0.0
    EMAX=0.0
    F2M=0.0
    265 DC 280 I =2.LD
    IF(LCUT(I).GT.0)GO TO 280
    VSS=VX(I)
    VX(I) =VSS+HDTOM*FX(I)
    RX(I)=FXK(I)+(VX(I)+VSS)*HDTOD
    VSS=VY(I)
    VY(I)=VSS+HDTON*FY(I)
    RY(I)=RYK(I)+(VY(I)+VSS)*HDTOD
    VSS=VZ(I)
    VZ(I)=VSS+HOTJM*:FZ(I)
    RZ(I)=RZK(I)+(VZ(I)+VSS)*HDTOD
    PKE(I)=VX(I)*VX(I)+VY(I)*VY(I)+VZ(I)*VZ(I)
    275 F2=FX(I)*FX(I)+FY(I)*FY(I)+FZ(I)*FZ(I)
    FX(I )=0.0
    FZ(I)=0.0
    IF(F2.LE.F2M) GO TO 278
    F2M=F2
    IFMXAM(NT)=I
    IF(PKE(II).GT.EMAX) EMAX=PKE(I)
    CONT INUE
    FMAX=SQRT (F2M)
    AMAXL=FMAX/TMAS
    FORMAX (NT)=AMAXL
```


C
'FORCE CONFIGURATION'

กดกดก

TIMESTEP DETERMINATION IN THE FORCE CONFIGURATION IS PERFORMED BY COMPARING THE MAXIMUM FORCE IN THE CRYSTAL WITH APPROPRIATELY CHOSEN TEST VALUES.

```
\(A M A X=A M A X 1\)
IF (AMAXL.GT.AMAX) GO TO 282
\(\operatorname{IFMXAM}(N T)=1\)
GO TO 284
282 AMAX=AMAXL
\(D T L=D T\)
\(E M A X L=E M A X * V F A C 2\)
IF (AMAX.LE.1.OE-8) DTIA=DTIA1
IF (AMAX.LE•1•OE-S) DTIA=DTIA2
IF (AMAX.LE.1.OE-10) DTIA=DTIA3
IF ( \(\triangle M A X \cdot L E \cdot 1 \cdot O E-11)\) ISHUT \(=-1\)
CTIME =0.O1 ITIME (XX)-START
\(E M A X=E M A X I\)
IF (EMAXL.GT.EYAX) EMAX=EMAXL
IF (EMAX.LE•1.OE+6) DT IV = DT IV 1
\(\begin{array}{ll}\text { IF } F(E M A X \cdot L E \cdot 1 \cdot U E+4) & D T I V=D T I V 2 \\ \text { IF EMAX.LE } 1 \cdot O E+2) & D T I V=D T I V 3\end{array}\)
IF \(F E M A X \cdot L E 1 \cdot O E+2) D T I V=D T I V 3\)
\(D T F C K=\left(D T I A^{*} C V D * 2.0\right) /(A M A X / C V M)\)
```

IF(OTFCK.LT.O.O)DTFCK=-DTFCK
DTF=SQRT (DTFCK)
DTFSP $(N T)=D T F$
DTIASP $(N T)=D T I A$
IF(EMAX.GT.O.O) GO TO 290
DTE $=1 \cdot O E-5$
290
GO TD 295
295
$D T E=(D T I V \star C V D) / S Q R T(E M A X)$
DTESP $(N T)=D T E$
DTIVSP $(N T)=D T I V$
DT = DTF
IF (DTE.LE.DT)DT=DTE
DTSTEP $(N T)=D T$

C

DTL=DT
CTIME = O. OI \because ITIME $(X X)-S T A R T$
DTE1 = TEFAC SQRT (1.0/EMAX1)
DTF $1=$ SQRT (TFACB/FMAXI)
DTE =TEFAC*SQRT (1.0/EMAX)
$D T F=S Q R T$ (TFAC/FMAX)
DT1(NT) = DTEI
DT2 $2(N T)=D T F 1$
DT3 (NT) = DTE
DT4(NT) = DTF
IF (EMAX1.GT •EMAX) $\subseteq M A X=E M A X I$
DT=DTE 1
IF(DT.GT.DTFI) DT=DTFI
$\begin{array}{ll}I F(D T \cdot G T: D T E) & D T=D T E \\ I F(D T: G T: D T F) & D T=D T F\end{array}$
DTSTEP $(N T)=D T$

DAMP ING IS INTRODUCED IN THE FORM OF A DAMPING FACTOR WHICH DECREMEVTS ALL VELOCITY COMPONENTS.

```
300 IF(ISHUT.EQ.-1) GO TO 400
\(310 \mathrm{IF}(N S-N T) 4 J 3.40 \mathrm{~J}, 320\)
320 DO \(325 \quad I=1, L L\)
    \(V X(I)=V F A C+V X(I)\)
    \(V Y(I)=V F A C \div V Y(I)\)
\(325 \vee Z(I)=V F A C \div V Z(I)\)
```

.

C

C SHIFT TO STATEMENT NUMBER 800 FCR CALCULATION OF THE DTI DECREMENT IF REQUIRED FOR THIS TIMESTEP.

GO TO 800

C C C C

SUBROUTINE PRINT PRINTS PERTINENT GENERAL DATA FOR EACH TIMESTEP PRINTOUT.

400 CALL PRINT
C
C
C
C
RELATIVE MOTION, VELOCITY, AND ENERGY OF EACH ATOM ARE PERIODICALLY PRINTED.

410 TPOT=0. J
DO $450^{\circ} \mathrm{I}=1$, LL
PPE (I) $=0.0$

450

CALL ENERGY
PKE (1) $=$ HBMAS $F P K E(1)$
TPKE=PKE(1)
PTE (1) $=$ PKE (1) +PPE(1)
$00620 \mathrm{I}=2$. LL
PKE(I) = HTMAS*PKE(I)
TPKE=TPKE+PKE(I)
620 PTE (I) = PKE (I) +PPE(I)
TE =TPOT+BIND
WRITE (6.9660$)$
DTEST = J. 1 * (RX(1)-RXI(1)) **2
IF (DTEST.GT. O.01) DTEST $=0.01$
IF (TPOT. LE. TPOTL) GO TO 700
700
ERAT=TPKE*RRL
$D X(I)=R X(I)-R X I(I)$
$D Y(I)=R Y(I)-R Y I(I)$
OZ (I) =RZ(I)-RZI(I)

C
720 WRITE (6.9670$)$ I, DX(I), DY(I), DZ(I), VX(I), VY(I),
$7501 \mathrm{VZ}(\mathrm{I})$. PKE(I), PPE(I), PTE (I)
750 CONTINUE WRITE (6.9640) TPKE,TPOT,TE,ROEL
NPAGE =NPAGE+1
WRITE (6,9650$)$ NPAGE
TPOTL=TPOT,9650) NPAGE

IF(NT-NTT) 760.950,950
760
$V \times(I)=V F A C=V \times(I)$
$V Y(I)=V F A C * V Y(I)$
$V Z(I)=V F A C * V Z(I)$
780
CONTINUE
790
IF (ISHUT.EO.-1) GO TO 950
NS=NS+ND

C


```
' FORCE CONFI GURATION'
```


C NO DECREMENTING PROCEDURE FOR DTI IS NEEDED, SC THE C FORCE CONFIGURATION SHIFTS TO STATEMENT NUMBER 100 FORCE CONFIGURATION SHIFTS TO STATEMENT NUMBER
AND BEGINS CQYPUTATIONS FOR THE NEXT TIMESTEP.

830 GO TO 100

C

C
C
C THE DTI ALTERATION PROCESS IS BEGUN FOR THE NEXT

```
800 IF(NDEC. ᄃQ.1)) GO TO 810
810 DDTI=0.1*DDT I
    DTI=DTI + DDTI
    NDEC=0
820 GO TO 100
```


950 CONTINUE

FINAL pGSITIONS (IN RECTANGULAR COORDINATES) AND BINDING ENERGIES OF ALL ATOMS ARE PRINTED AFTER THE LAST TIMESTEP. WRITE $(7, X X X X)$ STATEMENTS ARE INCLUDED WHEN DATA DECKS CONTAINING COMPLETE INF ORMATI ON FOR THE ENTIRE CRYSTAL ARE DESIRED. ADDITIONALLY, POSITIVE AND NEGATIVE POTENTIAL ENERGY CHANGES GREATER THAN a PRESET VALUE ARE DETERMINED AND PRINTED.

955 WRITE (6,9620) IH2,NT
WRITE (7,9690) LL,DIX,D1Y,DIZ,NVAC
DO $965 \mathrm{I}=1, \mathrm{LL}, 3$
$K=I+1$
$J=I+2$
WRITE (7,9691) RX(I), RY(I), RZ(I), RX(K), RY(K), RZ(K),
$1 R X(J), R Y(J), R Z(J)$
965 WRITE (6.9630$) \mathrm{I}, R X(I), R Y(I), R Z(I), P P E(I), K, R X(K)$, IRY(K),RZ(K), PPE (K), J,RX(J),RY(J),RZ(J), PPE(J) WRITE (6,9640) TPKE,TPOT,TE,ROEL

```
    NPAGE =NPAGE+1
    WRITE (6,9650) NPAGE
    DO 970 I =1.LL
    PPEPOS(I)=0.0
    PPENEG(I)=0.0
    PPKEEP(I)=PPE(I)-PPESAV(I)
    IF(PPKEEP(I).ST.PPEPCK) GO TO 968
    IF(PPKEEP(I).GT.PPENCK) GO TO 970
    PPENEG(I)=PPKEEP(I)
    GO TO 970
    968 PPEPOS(I)=PPKEEP(I)
    97J CONTINUE
    WRITE (6,9694) PPEPCK,NT
    DO 980 I=1,LL
    IF(PPEPOSII).LT.PPEPCK) GO TO 980
    HRITE (6,9696) I,RXI(I),RYI(I),RZI(I),RX(I),RY(I),
    1RZ(I),PPEPOS(I)
980 CONTINUE
    NPAGE=NPAGE+1
    WRITE (6,9650) NPAGE
    WRITE(6.9695)PPENCK,NT
    DO 990 I=1,LL
    IF(PPENEG(I).GT.PPENCK) GO TO 990
        WRITE (6,9696) I,RXI(I),RYI(I),RZI(I),RX(I),RY(I)
    1RZ(I),PPENEG(I)
    990 CONTINUE
    NPAGE=NPAGF+1
    WRITE (6.9650) NPAGE
    WRITE (6,9699)
    DO 995 I=1.NT
    995 WRITE (6,9700) I,DTSTEP(I),FORMAX(I),IFMXAM(I),
    IFSSACC(Ij
    NPAGE=NPAGE+1
    WRITE (6,9650) NPAGE
    WPITE (6.9704)
```


C
- FORCE CONFIGURATION'

DATA PERTINENT TO TIMESTEP DETERMINATION BY THE

 FORCE METHOD ARE PRINTED.999 WRITE (6,9705) I,DTFSP(I),DTIASP(I),DTESP(I),DTIVSP(I)

'OTHER CONFIGURATIONS'

C
dATA PERTINENT TO TIMESTEP DETERMINATION BY THE ENEP.GY METHOD ARE PRINTED.

```
999 WRITE (6,9705) I,DT1(I),DT2(I),DT3(I),DT4(I)
```

C
C
C
C
C
C
SUBRDUT INE PLUCK CAN BE USED TO PUNCH DATA CARDS FOR A SMALLER CRYSTAL CENTERED ON THE INTERSTITIAL FOR USE IN THE DYVAMIC PROGRAM. DELETE THESE CARDS IF DATA FOR THE SMALLER CRYSTAL IS NOT DESIRED

CALL PLUCK
WRITE (7.9690) LL,DIX,DIY,DIZ,NVAC,IXNEW, IYNEW, I ZNEW $L L=I I$
1100 OO $1100 \mathrm{I}=1$, LL


```
1000 IF(ISHUT) 9999.5.5
9999
IF(ISHUT) 9999.5 .5
STOP
END
```

SUBROUTINE CROYSM SOLVES M SIMULTANEQUS EQUATIONS BY THE METHOD OF CROUT IN ORDER TO FIT THE BEST CUBIC EQUATION BETWEEN THE REPULSIVE AND ATTRACTIVE PARTS of the potential.

SUBROUTINE CROSYM
C
C
COMMON/COMA/ A(4,5),MCRO
$M=M C R O$
$\mathrm{N}=\mathrm{M}+1$
$11=1$
100
$13=11$
SUM $=A B S(A(I 1, I 1))$
DO $120 \mathrm{I}=\mathrm{I} 1, \mathrm{M}$
IF(SUM-ABS(A(I, I1))) $110,120,120$
110
I $3=I M=A B S(A(I, I 1))$
120
CONTINUE
IF(13-I) $130,150,130$
DO $14 \mathrm{~J} J=1 \cdot N$
SUM $=-A(11, J)$
$A(I 1, J)=A(I 3, J)$
140 A (I3,J) $=$ SUM
$150 \quad 13=11+1$
DO $160 \mathrm{I}=\mathrm{I} 3 . \mathrm{M}$
$160 \mathrm{~A}(\mathrm{I}, \mathrm{I} 1)=\mathrm{A}(\mathrm{I}, \mathrm{I} 1) / \mathrm{A}(\mathrm{I} 1, \mathrm{I} 1)$
$\begin{array}{ll}170 \begin{array}{ll}12 & =1 \\ 13 & =11+1\end{array} \\ 1 & 1\end{array}$
IF(J2) 180,200,180
180
DO $190 \quad \mathrm{~J}=\mathrm{I} 3, \mathrm{~N}$
$190 \mathrm{~A}(\mathrm{II}, \mathrm{J})=\mathrm{A}(\mathrm{I} 1, \mathrm{~J})-\mathrm{A}(\mathrm{II}, \mathrm{I}) * A(I, J)$
$200 \begin{aligned} & \text { IF } 2=I 1-M \\ & \text { I } 1=I 1+1\end{aligned}$
$I 1=I 1+1$
00
210
$D O$
$210 \quad J=11, ~$
$J 2$
210 A(I,I1) $=A(I, I 1)-A(I, J) * A(J, I 1)$
$A(I 3, N)=A(I 3, N) / A(I 3, I 3)$

240 A $(J, N)=A(J, N)-A(I 3, N) * A(J, I 3)$
250
RETURN A(J,N) A(13,N) $A(J, 13)$
RETURN
END

SUBROUTINE B1OJ GENERATES A BODY-CENTERED CUBIC LATTICE IN THE (100) DIRECTION.

SUBROUTINE B100

COMMON/CCM1/RX(500),RY(500),RZ(500), LCUT(500), 1LL, LD, ITYPE, NVAC
COMMON/COM4/IX, IY, IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,
$101 Z$, IVACX, IVACY, IVACZ
DIMENSION YLAX (20)
DATA YLAX/20*0.01
$Y \operatorname{LAX}(1)=-0.20$
$Y \operatorname{LAX}(2)=-0.03$
SCX=1.0
SCY $=1.0$
SCZ $=1.0$
$\begin{array}{ll}M & ={ }^{2} \\ J T & \end{array}$
$Y=-S C Y$
DO $60 \quad J=1, I Y$
$Y=Y+S C Y$
$K T=0$
$\mathrm{Z}=-\mathrm{SCZ}$
$0059 \mathrm{~K}=1$, IZ
$Z=z+S C z$
IT=0
$x=-s c x$
$x=x+s C x$

$\begin{array}{lll}\text { IF } & \\ I F(J T-(I T / 2) * 2) & 21,11,21\end{array}$
$\begin{array}{ll}I F(J T-(J T / 2) * 2) & 57,12,57 \\ \text { IF } K T-(K T / 2) * 2) & 57,30,57 \\ \text { IF } J T-(J T / 2) * 2) & 22,57,22\end{array}$
IF (JT-(JT/2)*2) 22,57,22
$\operatorname{IF}(K T=(K T / 2) * 2)$
$R Y(M)=Y+Y \operatorname{LAX}(J)$
$R Z(M)=Z$
$M=M+1$
IF (IT.NE.IVACX)
IF $(J T: N E: I V A C Y)$
IF (KT:NE:IVACZ)
$\begin{array}{lll}\text { GO } & \text { TO } & 57 \\ \text { GO } & \text { TO } & 57 \\ \text { GO } & \text { TO } & 57\end{array}$
NVAC $=M-$
$I T=I T+1$
57
58
CONT INUE
$K T=K T+1$
59 CONT INUE
JT = JT + ${ }^{1}$, $60,110,60$
60
$L L=M-1$
RETURN
LD $=M-1$
GO TO 60
END
 'RELAXED' CRYSTAL.

SUBROUTINE PLACE

 LCUT(1) \(=1\)
 RX(1)=0.0
 \(R Y(1)=0.0\)
 \(R Z(1)=0.0\)
 GO TO \(50^{\circ}\)
 \(R X(1)=R X(1)+D 1 X\)
 \(R Y(1)=R Y(1)+D I Y\)
 \(R Z(1)=R Z(1)+D 1 Z\)
 GO TO 50
 30 LCUT (NVAC) \(=1\)
 \(R \times(1)=R X(N \vee A C)\)
 RY(1) \(=R Y(N V A C)\)
 \(R Z(1)=R Z(N V A C)\)
 GO TO 50
 \(40 \operatorname{RX}(1)=R X(1)+\) DIX
 \(R Y(1)=P Y(1)+01 Y\)
 RZ \((1)=R Z(1)+D 1 Z\)
 50 CONTINUE
 \(R X(N V A C)=R X(N V A C)+X N V A C\)
 \(R Y(N V A C)=R Y(N V A C)+Y N V A C\)
 \(R Z(N V A C)=R Z(N V A C)+Z N V A C\)
 RXI(NVAC) \(=\) RX(NVAC)
 RYI (NVAC) \(=\) RY (NVAC)
 RZI(NVAC) \(=\) RZ (NVAC)
 RXK \((N V A C)=R X(N V A C)\)
 RYK (NVAC) \(=\) RY \((N V A C)\)
 RZK (NVAC) \(=R Z(N V A C)\)
 RXI(1) \(=\) RX(1)
 \(\operatorname{RYI}(1)=R Y(1)\)
 RZI(1) \(=\) RZ(1)
 RXK(1) \(=\) RX(1)
 RYK \((1)=R Y(1)\)
 RZK (1) \(=\) RZ(1)
 RETURN
 END

' OTHER CONFIGURATIONS'
 LATTICE ATOMS ARE ALSO OFFSET AS REQUIRED BY INPUT DATA．

SUBROUTINE PLACE

C
C

COMMON／COM1／RX（500），RY（500），RZ（500），LCUT（500），
1 LL，LD，ITYPE，NVAC
COMMON／COM3／RXI（500），RYI（500），RZI（500），CVR，EVR，
1 NT．TIME，DT，DTI，ILAY，RXK（500），RYK（500），RZK（500） COMMON／CCM4／IX，IY，IZ，SCX，SCY，SCZ，IDEEP，DIX，DIY，
101Z，IVACX，I VACY，I VACZ
COMMON／COMG／XNVAC，YNVAC，ZNVAC
GO TO（10，20，30，4），ITYPE
LCUT（NVAC）$=1$
LCUT（1）$=1$
$R X(1)=0.0$
RY（1）$=0.0$
$R Z(1)=0.0$
$G 0(1)$
RO
$R X(1)=R X($ NVAC $)+D 1 X$
$R Z(1)=R Z(N V A C)+D 1 Z$
GOTO 50
RX（1）$=$ RX（NVAC）
$\begin{aligned} R Y(1) & =R Y(N V A C) \\ R Z(1) & =R Z(N V A C)\end{aligned}$
GO TO 50
$40 R X(1)=P X(N V A C)+D 1 X$
$R Y(1)=R Y(N V A C)+D I Y$
$R Z(1)=R Z(N V A C)+D 1 Z$
CONTINUE
$R X(N V A C)=R X(N V A C)+X N V A C$
RY $(N V A C)=R Y(N V A C)+Y N V A C$
$R Z(N V A C)=R Z(N V A C)+Z N V A C$
RXI（NVAC）$=R \times($ NVAC $)$
RYI $(N V A C)=R Y(N V A C)$
RZI（NVAC）＝RZ（NVAC）
RXK（NVAC）$=$ RX（NVAC）
RYK（NVAC）$=$ RY（NVAC）
RZK（NVAC）$=$ RZ（NVAC）
RXI（1）$=R \times(1)$
RYI（1）＝RY（1）
$\operatorname{RZI}(1)=R Z(1)$
$\operatorname{RXK}(1)=R X(1)$
RYK（1）$=$ RY（1）
RZK（1）＝RZ（1）
RETURN
END

C SUBROUTINE STEP CALCULATES FORCES ON THE INTERSTITIAL
C AND ALL OTHER ATOMS DF THE CRYSTAL．

SUBROUTINE STEP
C

C

1LL, LD, ITYPE, NV AC
COMMON/C CM5/ROE, ROE 2, ROEM, EXA, EXB, PEXA, PEXB,FXA, PFXA,
1 IO, TSAVE,BSAVE
COMMON/COM6/FX(500), FY(500), FZ (500), PAC, PFPTC,FM
COMMCN/COM8/ROEA,ROEB,ROEC,ROEC2, CPO, CPI, CP2,CP 3,
1 CF0,CF1, CF 2, CSD1, CGD2, CGB1, CGB2, CGF1, CGF2
IF (IQ-1) 100,101.102
100
101 I $P=1$
GO TO 200
102
$I=1$
$\mathrm{I}=2$
105 DO $195 \mathrm{~J}=I P, L L$
IF(LCUT (J)) 195,110,195
$110 \mathrm{DRX}=\mathrm{RX}(J)-R X(I)$
IF (DRX) 113,117,117
113 IF (DRX +ROE) $195,195,120$
117 IF (DRX-ROE) $120,195,195$
120 DRY=RY(J)-RY(I)
IF (DRY) 123.127.127
123 IF (DRY+ROE) $195,195,139$
127 IF (DRY-ROE) $130,195,195$
130 DRZ=RZ(J)-RZ(I)
IF (DRZ) $133,137,137$
133 IF (DR $2+R O E) 195,195,140$
137 IF (DRZ-ROE) 140,195.195
140 DIST = DR $X * D R X+D R Y \approx D R Y+D R Z \approx D R Z$
IF (DIST-ROE2) $150,195,195$
150 DIST $=$ SORT (DIST)
160 IF(DIST-ROEM) $162,162,165$
162 FORCE =EXP (PFXA+PEXB $\frac{1}{2}$ OIST)
GO TO 185
165 DFF $=$ ROE-DIST
IF(DFF-1.0E-10) 195,195,167
167 FORCE $=(E X P(P A C+P E X B \div D I S T)-P F P T C) / D F F$
180 IF (FM-FCRCE) $190,190,195$
$190 \mathrm{FOD}=\mathrm{FORCE} / D I S T$
$F A=F O D N D R X$
$F X(J)=F X(J)+F A$
$F X(I)=F X(I)-F A$
$F A=F O D * D R Y$
$F Y(J)=F Y(J)+F A$
$F Y(I)=F Y(I)-F A$
$F A=F O D * D R Z$
$F Z(J)=F Z(J)+F A$
$F Z(I)=F Z(I)-F A$
195 CONT INUE
C
200 DO $300 \mathrm{I}=I \mathrm{P} . \mathrm{LD}$
IF(LCUT(I)) 300,205,300
205 I $P=I+1$
$00295 \mathrm{~J}=\mathrm{IP}, \mathrm{LL}$
IF(LCUT(J)) 295,210,295
210

IF (DRX) 213:217.217
213 IF (DRX + ROEC) $295,295,220$
217 IF (DRX-ROEC) 220.295.295
220
$D R Y=R Y(J)-R Y(I)$
IF (DRY) 223. 227,227
223 IF (DRY + ROEC) $295,295.230$
227 IF (DRY-ROEC) $230,295,295$
230 DRZ $=R Z(J)-R Z(I)$
$\operatorname{IF}(D R Z) 233.237 .237$
233 IF (DRZ + ROEC) $295,295,240$
237 IF (DRZ-ROEC) $240,295,295$
237 IF (DRZ-ROEC) $240,295,295$
240 DIST=DRX*DRX+DRY*DRY+DRZ*DRZ
250 IF (DIST-ROEC2)
IF (DIST-ROEA) $260,255,255$
255 IF(DIST-ROEB) $265,270,270$

265 FORCE $=$ DIST*(DIST*CF2+CF1) + CFO
GO TO 280
270 FORCE $=E X P(C G F I+C G B I * D I S T)-E X P(C G F 2+C G B 2 * D I S T)$
280 FOD=FORCE/DIST
$F A=F O D * D R X$
$F X(J)=F X(J)+F A$
$F X(I)=F X(I)-F A$
$F A=F O D * D R Y$
$F Y(J)=F Y(J)+F A$
$F Y(I)=F Y(I)-F A$
$F A=F O D * D R Z$
$F Z(J)=F Z(J)+F A$
$F Z(I)=F Z(I)-F A$
295 CONTINUE
300 CONT INUE
RETURN
END

SUBROUTINE ENERGY CALCULATES MUTUAL POTENTIAL ENERGIES FCR THE INTERSTITIAL AND ALL OTHER ATOMS OF THE CRYSTAL.

SUBROUTINE ENERGY
CCMMON/COM1/RX(500),RY(500),RZ(500), LCUT(500),
1LL,LD. ITYPC.NVAC
COMMON/COM5/ROE, ROE2, ROEM, EXA, EXB, PEXA, PEXB,FXA,PFXA,
IIQ,TSAVE.BSAVE
COMMON/CCMT/PPTC,TPOT, PPE(1000), TLPE,ROEL,ROEL2,NEW
CQMMCN/CCM8/ROEA, ROEB, ROEC, ROEC 2, CPO,CP1, CP2, CP3,
1 CFO. CF1. CF2, CGD1, CGD2, CGB1, CGB2, CGF1, CGF2
IF (IQ-i) $100,101,132$
100
$I P=2$
$G O \quad 10200$
131
$\begin{array}{ll}\text { IP } \mathrm{GO}=1 & 200\end{array}$
102
$I=1$
$I P=2$
105 DO $595 \mathrm{~J}=\mathrm{IP} \cdot \mathrm{LL}$
510 DRX=RX(J)-RX(I)
IF (DRX) 513.517.517
513 IF (DRXXROE) $595,595,52$)
517 IF (DRX-ROE) 520
IF (DRY) 523.527 .527
523 IF (DRY+ROE) $595,595,530$
527 IF (DRY-ROE) $530,595,59$ 30
DRZ $=R Z(J)-R Z(I)$
IF (DRZ) 533.537.537
533 IF (DRZ FROE) $595,595,549$
537 IF (DRZ-ROE) $540,595,595$
540 DIST=DR X*DRX+DRY*DRY+DRZ*DRZ
IF (DIST-ROE 2) 550,595,595
550 DIST=SQRT(DIST)
560 POT=EXP (PEXA+PEXB*DIST)-PPTC
580 TPOT=TPOT+POT
PPE $(I)=P P E(I)+B S A V E \pm P O T$
PPE (J) = PPE (J) + TSAVE*POT
595 CONTINUE
600 CONTINUE
C
200 DO 300 I =IP,LD

```
    205
    IF(LCUT(I)) 300,205,300
    20-IP=I+1
    OO 295 J=IP,LL
    IF(LCUT(J)) 295,210,295
    210 DRX=RX(J)-RX(I)
    IF(DRX) 213,217,217
    213 IF(DRX +ROEC) 295,295,220
    217 IF(DRX-ROEC) 220,295,295
    220 DRY=RY(J)-RY(I)
    IF(DRY) 223,227,227
    223 IF (DRY+ROEC) 295,295,230
    227 IF(DRY-ROEC) 230,295,295
    IF(DRZ) 233,237,237
    233 IF(DRZ+ROEC) 295,295,240
    237 IF(DRZ-ROEC) 24J,295,295
    240 DIST=DRX*DRX+DRY*DRYYDRZ*DRZ
    IF(DIST-ROEC2) 250,295,295
    25J DIST=SQRT(DIST)
    IF(DIST-ROEA) 260,255,255
    255 IF(DIST-ROEB) 265,270,270
    260 POT=EXP (EXA}+EXB*DIST)
    GOTO 280
    265 POT=DIST*(DIST*(DIST*CP3+CP2)+CP1)+CPO
    GO TO 280
    270 POT=EXP(CGD1+CGB1*DIST)-EXP(CGD2+CGB2*DIST)
    280 TPOT=TPOT+POT
        SAVE=0.5*POT
        PPE(I)=PPE(I)+SAVE
        PPE (J) =PPE(J) + SAVE
    295 CONTINUE
    RETURN
    END
```

C
C
C
C

SUBROUTINE PRINT PRINTS PERTINENT GENERAL DATA FOR
EACH TIMESTEP PRINTOUT.

SUBROUTINE PRINT

COMMON/COM1/RX(500), RY(500), RZ(500), LCUT(500), 1 LL LD, ITYPE,NVAC
COMMON/COM2/IH1(20), IH2(8). IHS(10), IHB(6), IHT (ó),
1 TARGET (4), TMAS, BULLET (4), BMAS, PLANE, TEMP, THERM,DDTII, 1DDTIF
COMMON/COM3/RXI (500), RYI (500), RZI (500), CVR,EVR,
1 NT, TIME, DT, DTI, ILAY,RXK(500), RYK (500), RZK (500)
COMMON/COM4 I IX, IY, IZ, SCX, SCY, SCZ, IDEEP, DIX, DIY,
$101 Z$, IVACX, IVACY, IVACZ
COMMON/COM5/ROE,ROE2,ROEM, EXA, EXB, PEXA,PEXB,FXA,PFXA,
1 IQ, TSAVE, BSAVE
COMMON /COM 8/ROFA, ROEB, ROEC, ROEC 2, CPO,CP 1,CP2,CP3,
1 CFO, CF1, CF2, CGD1, CGO2, CGB1, CGB2, CGF1, CGF2
9710 FORMAT (40X, $1044,1,28 \times, 2044,1)$
9720 FORMATISH TARGET -,4A4,IOHPRIMARY - ,4A4,1X,14HLATTICE
1 UNIT $=, F 7.4,4 \mathrm{H}$ ANG)
9730 FORMAT $14 X, 6 H M A S S=, F 7.2,13 X, 6 H M A S S=, F 7.2,9 X, 14 H L A T T I C$
$1 E$ TEMP $=F 5.2,7 \mathrm{H}$ DEG $\mathrm{K}, 18 \mathrm{H}$ THERMAL CUTOFF $=, \mathrm{F} 5.2,3 \mathrm{H}$ E
1 V/)
9740 FORMAT $(2 H(, A 4,8 H)$ PLANE,, $18 H$ PRIMARY ENERGY $=$,
1 F5.2, 21 HKEV, CRYSTAL SIZE!

9741

1 F5.3,21HKEVA, CRYSTANE, 18 H
II 3 ; $3 \mathrm{H} X, I 2,3 \mathrm{HX}$,
PRIMARY ENERGY $=$,
PRIMARY ENERGY $=$,
$, I 2,3 H X \quad, I 2,3 H X, I 2$,

```
\(13 H\) ), \(4 X, I 3,1\) LAYERS \(A R E\) FREE TO MOVE', /)
9742
    1 F5.2,21HKEV, CRYSTAL SIZE (, I2, 3HX , I2, 3HX, I2, 3H
    1,., 4X, 2OHREPLACEMENT IN SITE, I4/)
9750 FORMAT(: IMPLÄNTATION AT SITE # ',I 3, 3X,'X=1,I2,4X,
    1'Y=',I2,4X,'Z=',I2,5X,'IQ=',I2,4X,'DDTI I=',F6.4,4X,
    1'DDTIF=',F6.4,//', LATTICE ATOM START POINT',5X,
    1'X=',F5.2,3X,'Y=',F5.2,3X,'Z=',F5.2,6X,'INTERSTITIAL
    ISTART PDINT',5X,' X=',F5.2,3X,'Y=',F5.2,3X,'Z=',
    1F5.2..//1
9760 FORMAT (12H POTENTIAL, ,6A4,3X,5HPEXA=,F9.5,2X,5HPEXB=,
    1F9.5,2X.5HPFXA =,F9.51
9765 FORMAT (12X,6A4,3X,5HEXA =,F9.5, 2X,5HEXB =,F9.5, 2X,5HFX
    1A=,F9.5/1
9770 FORMAT': WHEN',F8.4,'< R <',F8.4,' THE MATCHING POTEN
    1TIAL PARAMETERS ARE',//,', CPO =',F1O.3,', CP1 =',
    1F1J.3,:,CP2=1,F1O.3,:,CP3 =',F1J.3,%,: CFO = =
    1E10.3,', CF1 =',E10.3,', CF2 =',E10.3.//)
9780 FORMAT(: CUT-JFF AT:,F5.2,',WHEN R >, F6.3,' LU, MOR
    1SE POTENTIAL PARAMETERS ARE', 8A4,//, 1OX,', CGD1 =',
    1F8.4,', CGD2 = ',F8.4,',CGB1 =1,F8.4,', CGB2 =1,F8.4,
    I'GOCGF1 =', F8.4,', CGF2 =',F8,4,//)
        WRITE (6.9710) IHS.IHI
        WRITE (6,9720) TARGET,BULLET,CVR
        WRITE ( 6,9730) TMAS,BMAS,TEMP,THERM
    GO TO (401,402,403,402), ITYPE 
    GO TO 405
    4 0 2 ~ W R I T E ~ ( 6 . 9 7 4 1 ) ~ P L A N E , E V R , I X , I Y , I Z , I L A Y ~
    GO TO 405
    4 0 3
        WRITE (6,9742) PLANE,EVR,IX,IY,IZ,NVAC
        1CGF1,CGF2
        WRITE (6.9790) NT,DTI,TIME,DT
        RETURN
```

C

C

'PLUCK CONFIGURATION' CAN THEN BE PUNCHED CUT ON DATA CARDS TO BE USED AS INPUT TO THE DYNAMIC PROGRAM.

SUBROUTINE PLUCK
COMYON/COM1/RX(500),RY(500),RZ(500), LCUT(500),
1 LL. LD, ITYPE, NVAC
COMM ON/COM4/IX, I Y, IZ, SCX,SCY,SCZ, IDEEP, DIX,DIY,DIZ,
1 IVACX, IVACY, IVACZ
COMMON/COMIO/IXNEW, IYNEW, IZNEW, II
COMMON/COM11/RXNEWI (250), RYNEWI(250), RZNEWI(250),
1KEEP (250), NNUM(250)
I XNEW = 7 VACY +3
I YNEW $=$ IVAC

I 2 NEW $=7$
$N M=5$
$\mathrm{NI}=8$
$I I=2$
$M M=0$
$N X=16$
NII $3=10$
NI I $4=5$
IF (IYNEW.EQ.3) GO TO 1514
IF (IYNEW.EQ.5) GO TO 1514
1505001509 I = II 1 NM
$N N=N(1)=N 1$
$1509 \begin{aligned} \mathrm{NI} & =\mathrm{NI}+1 \\ \mathrm{NI} & =\mathrm{NI}+1\end{aligned}$
$\mathrm{II}=\mathrm{I} I+4$
$N M=N M+4$
IF (II.LE.NX) GO TO 1505
$N X=N X+9$
$N I=N I+N I I 4$
$M M=M M+1$
IF(IYNEW.EQ.MY) GO TO 1600
$N M=N M-1$
GO TO 1515
$N X=9$
$N M=4$
NII 3=4
NII4=11
1515 DO $1520 \quad I=I I, N M$
NNUM (I) = NI
$N I=N I+2$
$I I=I I+3$
$N M=N M+3$
IF(II.LE.NX) GO TO 1515
$N X=N X+16$
$N I=N I+N I I 3$
$M M=M M+1$
IF (IYNEW.EQ.MM) GO TO 1600
$N M=N M+1$
GO TO 1505
1600 II = I I-1
RXNEWI(1) = RX(1)
RYNEWI $\{1)=R Y(1)$
RZNEWI (I) = RZ(1)
$\operatorname{KEEP}(1)=1$
$\operatorname{NNUM}(1)=1$
1700
DO 1750 I $=2$. I I
RXNEWI(I) $=$ RX(NNUM (I))
RYNEWI (I) = RY (NNUM (I))
RZNEWI (I) = RZ (NNUM (I))
KEEP (I) = NNUM II)
1750
RETURN
END

BLOCK DATA
COMMON/CCMI/RX(1000), RY(1000),RZ(1000), LCUT(1000),
1LL, LD. ITYPE, NVAC
DATA RX/ $1000 \% 0.0 /$, RY/1000*0.0/,RZ/10うJ*0.0/,
1LCUT / $1000 \% 0.0 /$
COMMON/COM3/RXI (1000),RYI (1000),RZI (1000), CVR,EVR,
1 NT, TIME, DT, DTI. ILAY, RXK (10J) , RYK (IJOJ), RZK (1JOJ)
DATA RXI / 1000* $0.0 /$, RYI / I OOO* O.O/,RZI / IOOO*0.0 /
COMMJN/CCMG/FX(1000), FY(1000),FZ(1000), PAC,PFPTC,FM
DATA FX/1000*0.0/,FY/1000*0.0/,FZ/1000ヶ0.01
END

THE DYNAMIC PROGRAM IS USED TO DETERMINE THE MINIMUM ENERGY REDUIRED IN A SPECIFIC DIRECTION TO CAUSE AN INTERSTITIAL ATOM TO EXIT FROM THE CRYSTAL. THE CDMPUTATIONS REQUIRED ARE ESSENTIALLY THE SAME AS THOSE IN THE STATIC SIMULATIONS. CONSEQJENTLY, COMMENTS WILL ONLY BE INCLUDED TO POINT GJT PROGRAM. TWO CONFIGJRATIONS OF THE DYNAMIC PROGRAM EXIST:
(1) THE ENTIRE CRYSTAL CONFIGURATION - THE ENTIRE 250 ATOM CRYSTAL IS USED IN ALL CALCULATIONS
(2) THE PLUCK CONFIGURATION - A SMALLER CRYSTAL DETERMINED BY SUBROUT INE PLUCK IS USED FOR ALL CALCULATIONS.

DIMENSION VX (1000), VY (1J0J), VZ (1000), PKE (1000)
DIMENSION DX(1000), DY(1000), DZ (1000), PTE (1000)
DIMENS ION RXK (1000), RYK (1000), RZK (1000) DIMENSIDN KEEP (503)
COMMON/COMI/RX (1000),RY(1000),RZ(IOOO),LCUT(IOOO),
1 LL. LD, I TYPE, NV AC
COMMON/COM2/I-1(20), IH2(8), IHS(10), IHB(6), IHT (6),
ITARGET (4), TMAS, BULLET(4), BMAS, PLANE, TEMP, THERM COMMON/COM3/RKI (1000), RYI (100J), RZI (IJJJ), CVR,EVR,
INT, TIME, OT, DTI, ILAY COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ COMMON/COM5/ROE,ROE2,ROEM, EXA, EXB, PEXA, PEXB,FXA,PFXA,
1 IQ, TSAVE,B SAVE, CX,CY,CZ COMMON/COM6/FX (1000), FY (1000), FZ (1000), PAC,PFPTC,FM COMMON/CCH7/PPTC,TPOT, PPE (1UUO), TLPE,ROEL,ROEL2,NEW COMMOV/COM8/ROEA,ROEB, ROEC, ROEC2,CPO,CP1,CP2,CP3,
1 CFO, CF 1. CF 2, CGD1, CGO2. CGB1, CGB2, CGF1, CGF2 COMMON/C OM9/RXSAVE, RYSAVE,RZSAVE COMMON/COMA/ A $(4,5)$, MCRO

C

$$
9010 \text { FORMAT (20A4) }
$$

9020 FCRMAT ($\left.8 A_{4}, 3 F 8.5,2 F 5.2\right)$
SO 3 J FORMAT (4 A 4,3 F3. 5,6 A 4, FS . 2)
9040 FORMAT (F6.5,5X,I 5, 6I $4,3 F 5.2)$
9050 FORMAT (10A4, A'4, 4I3,F8.4, I4,F5.3)
C
9610 FORMAT(IHI)
9620 FORMAT (47X,'SJMMARY OF ATOMS'//, 35X, 8A4,', NT = I $4,1 /$, BIND ENERGY (),//)
9630 FORMAT (3(I 5, 3F6.2,F8.4.8X))
9640 FORMAT $/ / 4 X, F 1 J .3 .25 H$ EV,TOTAL KINETIC ENERGY, F F10. 3 , $127 H$ EV.TOTAL POTENTIAL ENERGY,F1O.3,' EV, REDUCTICN',/ 1/60X, 'RADIUS $=1, F 5.2$,)
9650 FORMAT ($135 \mathrm{X}, 4 \mathrm{HPAGE}, \mathrm{I} 3, /, 1 \mathrm{HI})$

9675 FORNAT(1I8,3F1J.3,3F1 J. 1,3 F10.4)
9680 FORMAT(SHARP DT DECREASE', 2E10.3)

'ENTIRE CRYSTAL CONFIGURATION'

9690 FORMAT (I 4, 3F5.2, I4)
9691 FORMAT (9F8.4)

9690 FORMAT (I 4,3 F5.2.4(I4))
9691 FORMAT (I5,3(1X,F8.4),1X,I5)

C
RUNTM $=4 * 60-20$
START $=0.31=1$ TIME $(X X)$
DO 2 I $=1,1000$
RXK (I) $=0.0$
RYK (I) $=0.0$
RZK (I) $=0.0$
$V X(I)=0.0$
$V Y(I)=0.0$
$V Z(I)=0.0$
PKㄷ $(I)=0.0$
$\operatorname{PPE}(I)=0.0$
PTE (I) $=0.0$
$2 \operatorname{RZI}(I)=0.0$
ISHUT $=1$
NRUAN $=0$
C

C

ROE RE $=3.0$, 9050 I IHS,PLANE,LS,IX,IY,IZ,CVR,MCRO ,DTI
ROE =SQRT (ROE2)
ROEM = ROE-DTI
ROEL2=ROEL *RGEL
CVE $=1.6$ JE-19
$C V M=1.672 E-27$
FM $=1.0 E-10$
$F M 2=F M * F M$
$C V D=C V R * 1 . O E-10$
CVED=CVE/CVD
PTMA S = TiMAS*CVM
PBMAS = BMAS $\because C V Y ~$
HTMAS $=0.5 *$ PTMAS /CVE
HBMAS $=0.5 \approx$ PBMAS/CVE
$V F A C=1.0$
TSAVE $=$ B $11 A S /(B M A S+T M A S)$
$B S A V E=T M A S /(B M A S+T M A S)$
C
$F X A=A L O G(-E X B \div C V D)+E X A$
PFXA $=A L O G(-P E X B=C V E D)+P E X A$
$P P T C=E X P(P E X A+P E X B \cong R O E)$
$P A C=A L O G(C V E D)+P E X A$
PFPTC=EXP (PAC+PEXB:ROE)
C
CGD1=ALOG(DCON) +2. O\#ALPHA*RE
CGD2 $=A L$ OG ($2 \cdot 0 \div D C O N)+A L P H A * R E$
CGB1 $=-2 \cdot 0 \% A L P H A * C V R$
CGB2 $=-A$. $P H A * C V R$
CGF1=ALOG(-CGB1*CVED) +CGD1
CGF2 $=A L O G(-C G B 2 * C V E D)+C G D 2$
C
ROEA $=1.50 / C V R$
ROE $\mathrm{B}=2.0 / \mathrm{CVR}$
ROEこ2=ROEC ニROEC
C
$A(1,1)=1.0$

```
    A(1,3)=ROEA*RJEA
    A (1,4)=ROEA**3
    A(1,5) =EXP(EXA+EXB次ROEA)
    A(2,1)=1.0
    A(2,2)=ROEB
    A(2.3) = KOEB*ROEB
    A(2,4)=ROE B**3
    A(2,5)=EXP(CGD1+CGB1~ROEB)-EXP(CGD2+CGB2*ROEB)
    A(3,1)=0.0
    A(3,2)=-1.0
    A(3.3)=-2. )* ROEA
    A(3.4)=-3.0%ROEA*ROEA
    A(3.5) = EXP(FXA +EXB*ROEA)/CVED
    A(4.1)=0.0
    A(4.2) =-1.0
    A(4,3)=-2.0**RJEB
    A(4,4)=-3.)}=\mathrm{ ROEB*ROEB
    A(4.5)=(EXP(CGF1+CGB1*ROEB)-EXP(CGF2+CGB2*ROEB))/CVED
    CALL CROSYM
    CPO=A (1,5)
    CP1=A(2,5)
    CP2 =A (3,5)
    CP3=A (4,5)
    CFO=-CP1*CVFD
    CF1=-2.0*CP2*CVED
5 READ (5.9040) EVR,NTT,NS,ND,IP,IDEEP,ITYPE,NVAC,DIX,
1D1Y.D1Z
    IF(NTT.EQ.O) うO TO 9999
    IQ=ITYPE-1
    NTTS=NTT
    EV=EVR2* 1.OE+3
```



```
    READ (5,9690) LL,DIX,D1Y,D1Z,NVAC,IXNEW,I YNEW,IZNEW
    \(I I=60\)
\(L L=1 I\)
    IX = IXNEW
    I Y = I YNEW
    IZ = IZNEW
    DO 15 I=1.LL
    READ (5.9691) I,RX(I),RY(I),RZ(I), KEEP(I)
15 CONTINUE
```

C

```
    \(0015 \quad \mathrm{I}=1, \mathrm{LL}, 3\)
    \(K=I+1\)
    \(J=I+2\)
    READ (5,9691) RX(I), RY(I), RZ(I), RX(K), RY(K), RZ(K),
IRX(J),RY(J),RZ(J)
```

$* * * * * * * * * * * * * * * * ~$
30 ILAY
$35 \mathrm{LD}=\mathrm{LL}$
ILAY=IY
40 DO $45 \mathrm{I}=1$. LL
RXK(I) $=$ RX(I)
$\operatorname{RYK}(I)=R Y(I)$
RZK (I) $=$ RZ (I)
RXI(I) $=$ RX(I)
RYI (I) $=$ RY (I)
45
$R X I(1)=R X(1)$
$R Y I(1)=R Y(1)$
RZI(1) $=$ RZ (1)
RXK(1)=RX(1)
$R Y K(l)=R Y(1)$
$R Z K(1)=R Z(1)$
C
TPOT=0. J
CALL ENERGY
BIND $=-$ TPOT
TE=TPOT+BIND
TPKE=EV
$T E=T P O T+B I N D+T P K E$
WRITE $(6,9610)$
WRITE 6,620$)$ IH2,NT
DO 70 I $=1, \mathrm{LL}^{2}, 3$
$K=I+1$
$J=I+2$
70 WRITE (6.9630) KEEP(I), RX(I), RY(I),RZ(I), PPE(I), IKEEP(K), RX(K), RY(K), RZ(K), PPE (K), KEEP(J), RX(J), RY(J), 1RZ(J), PPE(J)

WRITE (6.964) TPKE,TPOT,TE,ROEL
NPAGE=1
WRITE (6.9650) NPAGE
nดกดก
APPRCPRIATE IMPACT POINTS FOR INTERSTITIAL ESCAPE ARE CHOSEN ANO AN IMPACT PDINT GENERATOR IS CREATED TO
GENERATE AND THEN TEST POSSIBLE DIRECTIONS OF ESCAPE.

```
\(C X=3.8\)
\(\mathrm{CY}=0.00\)
\(C Z=3.6\)
NTT=NTTS
DO 30J0 I I =1,4
\(C x=C x+0.4\)
DO \(3000 \mathrm{JJ}=1,3\)
\(C Z=C Z+0.4\)
RXSAVE \(=C X\)
RYSAVE = CY
RZSAVE = CZ
\(A C=\operatorname{SORT}((C X-R X I(1)) * * 2+(C Y-R Y I(1)) * * 2+(C Z-R Z I(1)) * * 2)\)
COX=(CX-RXI (1))/AC
\(C O Y=(=Y-R Y I(1)) / A C\)
\(\checkmark O L=S Q R T(E V / H B M A S)\)
\(\vee \times(1)=V O L \ddagger C O X\)
\(V Y(1)=V O L * C O Y\)
\(C O Z=(C Z-R Z I(1)) / A C\)
VZ(1) \(=\mathrm{VOL}+\mathrm{COZ}\)
IF(NRUN.EQ.O) GO TO 60
```

$\begin{aligned} & \text { DO } \\ & \text { LCUT } \\ & \text { (I) } \\ & \text { I }\end{aligned}=1, L L$
RX(I)=RXI(I)
$\operatorname{RY}(I)=R Y I(I)$
$R Z(I)=R Z I(I)$
$R X K(I)=R X I(I)$
RXK (I) $=$ RXI (I)
RYK(I) $=$ RYI (I)

C

C
95 TFAC $=2.0 \div P T M A S$ 亦DTI*CVD
TFACB $=2.0 * P B M A S$ *DT $\ddagger C V D$
$D T=1.0 E-17$

100

HDTOD $=0 ; 5 * D T O J$
DTOM $=$ DT PTMAS
HDTOM $=0.5 \approx D T C Y$
DTOMB = DT $/ P B M A S$
HOTOMB $=0.5$ ㄱTOMB
IF(LCUT(1).GT.0) GO TO 240
$I=1$
$R X K(I)=R X(I)$
RYK (I) $=$ RY(I)
RZK (I) $=$ RZ(I)
$R X(I)=R X(I)+D T O D *(H D T O M E * F X(I)+V X(I))$
$\operatorname{RY}(I)=R Y(I)+D T O D *(H D T O M B * F Y(I)+V Y(I))$
$R Z(I)=R Z(I)+D T O D *(H D T O M B \pm F Z(I)+V Z(I))$
IF (LCUT (I). GT.0)GO TO 245
RXK (I) $=R X(\mathrm{I})$
RYK (I) $=$ RY(I)
RZKII) $=R Z(I)$
$R X(I)=R X(I)+D T O D *(H D T O M * F X(I) * V X(I))$
RY(I) $=R Y(I)+D T O D *(H D T O M * F Y(I)+V Y(I))$
$R Z(I)=R Z(I)+D T O D *(H D T O M * F Z(I)+V Z(I))$
CONT INUE
CALL STEP
$E M A X=0.0$
$F M A X=0.0$
FMAX $=0.0$
TIME =TIME+DT
$N T=N T+1$
IF(LCUT(1).GT.0) GO TO 265
$I=1$
$V S S=V X(I)$
$V X(I)=V S S+H D T J M B \% F X(I)$
$R X(I)=R X K(I)+(V X(I)+V S S) * H D T O D$
$V S S=V Y(I)$
$V Y(I)=V S S+H D T J M B * F Y(I)$
RY(I) $=R Y K(I)+(V Y(I)+V S S) \neq H D T O D$
$V S S=V Z(I)$
$V Z(I)=V S S+H D T O M B * F Z(I)$
$R Z(I)=R Z K(I)+(V Z(I)+V S S) * H D T O D$
$\operatorname{PKE}(I)=V X(I) \neq V X(I)+V Y(I) * V Y(I)+V Z(I) \neq V Z(I)$
$E M A X=P K E(I)$

n α 0

$F X(I)=0.0$
$F Y(I)=0.0$

```
    2 6 5
    DO 280 I =2,LD
    IF(LCUT(I).GT:O)GO TO
    VSS=VX(I)
    VX(I)=VSS+HDTJM*FX(I)
    RX(I)=RXK(I)+(VX(I)+VSS)*HDTOD
    VSS=VY(I)
    VY(I)=VSS+HDTJM*FY(I)
    RY(I)=RYK(I)+(VY(I)+VSS)*HDTOD
    VSS=VZ(I)
    VZ(I)=VSS+HDTJM*FZ(I)
    RZ(I)=RZK(I)+(VZ(I)+VSS)*HDTOD
    PKE(I)=VX(I)*VX(I)+VY(I)*VY(I)+VZ(I)*VZ(I)
    FX(I)=0.0
    FY(I)=0:0
    FZ(I)=0.0
    IF(PKE(I).GT.EMAX) EMAX=PKE(I)
    280 CONTINUE
    DTL=DT
    IF(EMAX.EQ.O.0) GO TO 285
    GO TO 2 290
    GO TO 300
    290 DT=DTI*CVD/SQRT(EMAX)
    CTIME=0.01*ITIME (XX)-START
    300 IF (ISHUT.EQ.-1) GO TO 40J
    310 IF(NS-NT) 400,400,100
    400 CALL PRINT
    410 TPOT=0.0
    DO 450 I=1,LL
    450 PTE(I)=0.0
    CALL ENERGY
    PKE(1)=HBMAS*PKE(1)
    TPKE=PKE (1)
    PTE(1)=PKE(1)+PPE(1)
    DO620 I=2,LL
    PKE(I)=HTMAS*DKE(I)
    TPKE=TPKE+PKE(I)
    620 PTE(I)=PKE(I) +PPE(I)
    TE=TPOT+BIND
        WRITE ( 6.9650)
        DTEST=(RY(I)-RYI(1))**2
    7 0 0
    IF (DTEST.GT. 0.01) DTEST = 0.01
    DX(I)=RX(I)-RXI(I)
    DY(I)=RY(I)-RYI(I)
    DZ(I)=RZ(I)-RZI(I)
    IF (DX(I)**2.JE.DTEST) GO TO 720
    IF (DY(I)**2.GE.DTEST) GO TO 720
    IF(PPE I).GE:-3.0) GO TO 720
C
```

C
' PLUCK CONFIGURATION'

IN ORDER TO FOLLOW THE LOGIC OF THE DYNAMIC PROGRAM THE ATOMS CREATED BY SUBROUTINE PLUCK HAVE BEEN RENUMBERED CONSECUTIVELY FROM ATOM NUMBER 1, BUT THE ATOM NUMBER OF EACH ATOM AS IT WAS IN THE ORIGINAL CRYSTAL HAS BEEN SAVED IN AN ARRAY. THE WRITE COMMANDS MUST THEREFOPE PRINT THE ARRAY KEEP(I) SO THAT PRINTED OUTPUT WILL BE IN A FORM TO ALLOW READY COMPARISON WITH THE ORIGINAL CRYSTAL. TO ACCOMPLISH
C. THIS IN THE PLUCK CONFIGURATION, THE STATEMENTS NUM-
C.
BERED 720 AND 965 SHOULD BE CHANGED TD READ:

720 WRITE(6,9670) KEEP(I),DX(I),DY(I),DZ(I),VX(I),VY(I), IVZ(I), PKE(I), PPE(I), PTE(I)

965 WRITE (6,9630) KEEP(I), RX(I), RY(I), RZ (I), PPE (I), $1 K E E P(K), R X(K), R Y(K), R Z(K), P P E(K), K E E P(J), R X(J), R Y(J)$, 1RZ(J), PPE(J)

720 WRITE (6,967) I, DX(I), DY(I), DZ(I), VX(I),VY(I),
1VZ(I), PKE(I), PPE(I), PTE(I)
750 CONTINUE
WRITE (6.9640) TPKE,TPOT,TE,ROEL
WRITE (6.9650) NPAGE $N P A G E=N P A G E+1$
IF (NT-NTT) $790,950,950$
790 NS = NS + ND
950 CONTINUE
C
955 WRITE $(6,9620)$ IH2,NT $K=I+1$ $\mathrm{J}=\mathrm{I}+2$
965
WRITE (6,9630) I, RX(I), RY(I), RZ(I), PPE(I), K,RX(K), 1RY(K),RZ(K), PPE (K), J,RX(J), RY(J),RZ(J), PPE(J) WRITE (6,9640$)$ TPKE,TPOT,TE,ROEL

C AFTER CALCULATIONS OF THE DYNAMICS ASSOCIATED WITH ALL IMPACT POINTS ALDNG A (IOO) DIRECTION, THE IMPACT POINT GENERATOR MUST BE INCREMENTED.

IF(JJ.EQ.3) CZ=3.6
100 IF (ISHUT) $9999,3000,3000$
3000 CONTINUE
C

C SUBROUTINES BIOO, PLACE, AND PLUCK ARE NOT USED IN DYNAMIC SIMULATIONS. SUBROUTINES STEP, CROYSM, AND ENERGY ARE USED IN THE SAME FORM AS IN THE STATIC SIMULATIONS AVD ARE NOT REPEATED HERE. SUBROUTINE PRINT APPEARS IN DYNAMIC SIMULATIONS AS FOLLOWS:

SUBROUTINE PRINT
C
COMMON/COML/RX(1000), RY(1000),RZ(1000), LCUT(1000), 1 LL, LD, ITYPE,NVAC
COMMON/COM2/IHL (2)), IH2 (8), IHS (10), IHB (6), IHT(6), 1 TARGET(4), TMAS, BULLET(4), BMAS, PLANE, TEMP, THERM COMMON/COM3/RXI (1000), RYI(1000),RZI(1000), CVR,EVR, INT,TIME,DT,DTI, ILAY

COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ
COMMON/COM5/ROE,ROE2,ROEM, EXA, EXB, PEXA, PEXB, FXA, PFXA, 1IQ,TSAVE,BSAVE,CX,CY,CZ
COMMON/COM8/ROEA, ROEB, ROEC, ROEC 2,CPO,CP1,CP2,CP3,
$1 \mathrm{CFO}, \mathrm{CF} 1, \mathrm{CF} 2, \mathrm{CGD1}, \mathrm{CGD2}, \mathrm{CGB1}, \mathrm{CGB2}, \mathrm{CGF} 1, \mathrm{CGF} 2$
COMMON/COM9/RXSAVE, RYSAVE,RZSAVE
9710 FORMAT ($40 \mathrm{X}, 10 \mathrm{~A} 4,1,28 \mathrm{X}, 2044,1$)
9720 FORMAT 9 H TARJET -,4A4,1JHPRIMARY - ,4A4,1X,14HLATTICE 1 UNIT $=, F 7.4,4 \mathrm{H}$ ANG)
9730 FORMAT $(4 X, 6$ HMASS $=, F 7.2,13 X, 6$ HMASS $=, F 7.2,9 X, 14$ HLATTIC 1E TEMP $=F 5.2,7 \mathrm{H}$ DEG $\mathrm{K}, 18 \mathrm{H}$ THERMAL CUTOFF $=, F 5.2,3 \mathrm{H}$ E 1V/)
9740 FORMAT $\left(2 \mathrm{H} 1, A^{\prime}, 8 \mathrm{H}\right)$ PLANE, 18 H PRIMARY ENERGY $=$,
1 F5.2,21HKEV, CRYSTAL SIZE $, I 2,3 H X, I 2,3 H X, I 2,3 H$ 1), 16 XVACANCY IN SITE I $4 /$)
9741 FORMAT $(2 \mathrm{H}(, 44,8 \mathrm{H})$ PLANE, 18 H PRIMARY ENERGY $=$,

$13 H, 1,14 X$, 1GHINTERSTITIAL (-,F5.2,2H,-,F5.2,2H,+,
1F5.2,12H) FROM SITE, I4 (I
9742 FORMAT $2 \mathrm{H}(, A 4,8 \mathrm{H})$ PLANE,, 18 H PRIMARY ENERGY =,
1 F5.2,21HKEV, CRYSTAL SIZE $, I 2,3 H X, I 2,3 H X, I 2,3 H$
1) ${ }^{2} X, 2$ OHREPLACEMENT IN SITE , I4/)
9750 FORMAT (' PRIMARY START POINT (LU) $X={ }^{\prime}, F 5.2, ', Y=1$, $1 F 5 \cdot{ }^{2}, 1, Z=1, F 5 \cdot 2,5 X, 13, ' L A Y E R S$ ARE FREE TO MOVE',
$110 \mathrm{X}, 1 \mathrm{I} 0=1,12)$
9751 FORMAT (' OFFSET FROM EQUILIB (LU) OX=',F5.2,',OY=1, 1F5.2,' OZ=',F5:2,5X,'PRIMARY ENERGY IS', F6•3,' KEV', /) 9760 FORMAT ($12 \mathrm{HPOTEVTIAL} 6 A 4,,3 X, 5 H P E X A=, F 9.5,2 X, 5 H P E X B=$, $1 \mathrm{F9} .5 .2 \mathrm{X}, 5 \mathrm{HPFXA}=, \mathrm{F9} .51$
9765 FCRMAT112X,6A4, $3 \mathrm{X}, 5 \mathrm{HEXA}=, \mathrm{F9} .5,2 \mathrm{X}, 5 \mathrm{HEXB}=, \mathrm{F9} .5,2 \mathrm{X}, 5 \mathrm{HFX}$ $1 A=F 9.5 / 1$
9770 FORMAT ${ }^{\circ}$. WHEN', F8. ${ }^{\prime},^{\prime}<R<1, F 8.4, '$ THE MATCHING POTEN 1 TIAL PARAMETERS ARE', //,' \quad CPO $=1, F 10.3,1, C P 1=1$
1F10.3.1, CP2 $=1, F 10.3,1, C P 3=1, F 10.3,1,1 \quad$ CF0 $=1$ $1 E 10: 3,1: C F 1=1, E 10.3,1, C F 2=1, E 1 J .3,1 / 1$
9780 FORMAT : CUT-JFF ATi.F5.2,' WHEN R $>1, F 6.3,1$ LU, MOR $1 S E$ POTENTIAL PARAMETERS ARE $, 8 A 4,1 /, 10 X, 1$ CGD $=1$,
1F8.4, ${ }^{\prime}$, CGD2 $=1, F 8.4,1, C G E 1=1, F 8,4,1, C G B 2=1, F 8.4$, 1', CGF1 $=1, F 8.4,1, C G F 2=1, F 8.4,1 / 1$
9790 FORMAT $110 H$ TIMESTEP. $44.22 \mathrm{X}, 6 \mathrm{HDTI}=, F 5.4,5 \mathrm{HLU}$,
$1,22 H$ ELAPSED TIME $(S E C)=, E 10.4, ', N E X T$ TIMESTEP IS
$1=1, E 10 \cdot 4 /)$
WRITE $(6,9710)$ IHS.IH1
WRITE $(6,9720)$ TARGET, BULLET, CVR
WRITE 6,9730$)$ TMAS. BMAS. TEMP. THERM
GO TO $(401,432,403,432)$ I ITYPE
401 WRITE (6.9740) PLANE, EVR,IX,IY,IZ,NVAC
GO TO 405
402 WRITE (6,9741) PLANE, EVR,IX,IY,IZ,DIX,DIY,DIZ,NVAC
GO TO 405
403 WRITE (6,9742) PLANE,EVR,IX,IY,IZ,NVAC
405 WRITE (6.975) RXI(1), RYI (1), RZI (1), ILAY,IQ
WRITE (6.9751) RXSAVE,RYSAVE, RZSAVE, EVR
WRITE $(6,9750)$ IHB,PEXA, PEXB, PFXA
WRITE $(6,9765)$ IHT, XA, EXB,FXA
WRITE 6,9770$)$ ROEA, ROES, CPO, CP1,CP2,CP3,CFO,CF1,CF2
WRITE $(6,9770)$ ROEA, ROES,CPO,CP1,CP2,CP3,CFO,CF 1,
WRITE $(6,978 J)$ ROEC, ROEB, IH2,CGDI,CGD2,CGB1,CGB2,
1CGF1,CGF2
WRTITE (6,9790) NT,DTI,TIME,DT
RETURN
END

BLOCK DATA
COMMDN/COM1/RX(1000),RY(1000),RZ(1000),LCUT(1000),
1 LL, LD, ITYPE, NVAC
DATA RX/100 J*0.0/,RY/1000*0.0/, RZ/1000*0.0/,
1 LCUT/1000*0.01
COMMON/COM3/RXI (1000), RYI(1000), RZI(1000), CVR,EVR,
INT, TIME, DT, DTI, ILAY
DATA RXI/1000*0.0/,RYI/1000*0.0/,RZI/1000*0.0/
COMMON/COM6/FX(iJOJ), FY(1000), FZiliOOO), PAC, PFPTC, FM

DATA FX/1000*0.0/,FY/1000*0.0/,FZ/1000*0.0/ END

$$
7 .
$$

BIBLIOGRAPHY

1. Kornelsen, E.V. and Sinha, M.K., "Thermal Release of Inert Gases from a (l00) Tungsten Surface," Journal of Applied Physics, v. 39, p. 4546-4555, September 1968.
2. Vine, G.H., Computer Simulation of Copper and Tungsten Crystal Dynamics With Vacancies and Interstitials, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1971.
3. Tankovich, J.A., Computer Simulation of Split Interstitial Equilibrium Positions and Binding Energies In a Tungsten Crystal: M.S. Thesis, Naval Postgraduate School, Monterey, California, 1972.
4. Gibson, J.B., Goland, A.N., Milgram, M., and Vineyard, G.H., "Dynamics of Radiation Damage," The Physical Review, v. 120, p. 1229-1253, 15 November 1960.
5. Johnson, R.A., and Brown, E., "Point Defects in Copper," The Physical Review, v. 127, p. 446-454, 15 July 1962.
6. Erginsoy, C., Vineyard, G.H., and Englert, A., "Dynamics of Radiation Damage in a Body-Centered Cubic Lattice," The Physical Review, v. l33, p. A595-A606, 20 January 1964.
7. Girifalco, L.A. and Weizer, V.G., "Application of the Morse Potential Function to Cubic Metals," The Physical Review, v. ll4, p. 687-690, l May 1959.
8. Johnson, R.A., "Point Defect Calculations in Alpha Iron," Diffusion in Body-Centered Cubic Metals, American Society For Metals, p. 357-370, 1965.
9. Gay, W.L., and Harrison, D.E. Jr., "Machine Simulation of Collisions Between a Copper Atom and a Copper Lattice," The Physical Review, v. 135, p. Al780-A1790, 14 September 1964.
10. Harrison, D.E., Jr, Gay, W.L., and Effron, H.M.,
"Algorithm for the Calculation of the Classical Equations of Motion of an N-Body System," Journal of Mathematical Physics, v. 10, p. 1179-1184, July 1969.
11. Johnson, R.A., and Wilson, W.D., "Defect Calculations For FCC and BCC Metals," Interatomic Potentials and Simulation of Lattice Defects, (Plenum Press, New York, 1972) Ed. by P.C. Gehlen,Jr.,R. Beeler, Jr.. and R.I. Jaffee, p. 30l-315.
12. Wilson, W.D.. and Johnson, R.A., "Rare Gases in Metals," Interatomic Potentials and Simulation of Lattice Defects, (Plenum Press, New York, 1972) Ed. by P.C. Gehlen, Jr., R. Beeler, Jr., and R.I. Jaffee, p.375-385.
13. Kornelsen, E.V., "The Ionic Entrapment and Thermal Desorption of Inert Gases in Tungsten for Kinetic Energies of 40 eV to $5 \mathrm{KeV}, "$ Canadian Journal of Physics, V. 42, p. 364-381, February 1964.
14. Kornelsen, E.V., "The Interaction of Injected Helium with Lattice Defects in a Tungsten Crystal," Radiation Effects, v. 13, p. 227-236, 1972.
15. Kornelsen, E.V., and Sinha, M.K., "Thermal Release of Inert Gases From Tungsten: Dependence on the Crystal Face Bombarded," Canadian Journal of Physics, v. 46, p. 613-619, 1968.
16. Harrison, D.E., Jr., and Moore, W.L., Unpublished research.
17. Harrison, D.E., Jr., and Magnuson, G.D., "Sputtering Thresholds", The Physical Review, v. 122, p. 1421-1430, June 1961.
18. Houska, C.G., "Thermal Expansion and Atomic Vibration Amplitudes for TiC, TiN, ZrC, ZrN, and Pure Tungsten," Journal of Physics and Chemistry of Solids, v. 25, p. 359-366. 1964.
19. Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314
20. Library, Code 0212 2
Naval Postgraduate SchoolMonterey, California 93940
21. Prof. D.E. Harrison, Jr., Code 6lHx 5
Dept. of Physics \& Chemistry
Naval Postgraduate School
Monterey, California 93940
22. Prof. J.N. Cooper, Code 6lCx1Dept. of Physics \& Chemistry
Naval Postgraduate SchoolMonterey, Califomia 93940
23. LCDR R.D. Williams, III, USN 1
855-4 So. Yates
Memphis, Tennessee, 38117
No. Copies

Tz. refort security clasification
Unclassified
2b. GROUP

Naval Postgraduate School Monterey, California 93940

3 REPORT TITLE

Computer Simulation of Inert Gas Interstitials in Tungsten

4. DESCRIPTIVENOTES (Type of report and.inclusive dates)

Master's Thesis; December 1972
5. AUTHORISI, (First neme, middie initial, leat neme)

Richard D. Williams, III.

10. oistribution statement

Approved for public release; distribution unlimited.
12. SPONSORING military activitr

Naval Postgraduate School Monterey, California 93940

T3. AsTRACT
Computer simulation
techniques were used to determine equilibrium positions and binding energies of inert gas atoms implanted in a tungsten crystal and to investigate the potential wells around these equilibrium positions in both perfect lattices and relaxed lattices. Stable positions were found for inert gas interstitials near lattice atoms in the third and fourth layers of the crystal. Interstitial positions near atoms in the first and second layers of the crystal appeared to be unstable if they exist at all. As a result of potential well studies, it was concluded that the mechanism associated with equilibrium position formation was a combination of local liquefaction of the lattice structure and interaction of the interstitial with lattice atoms. Equilibrium positions were found to be illdefined regions in the general $\langle 110\rangle$ direction. The binding energy determined for an interstitial site near a lattice atom in the third layer of the crystal was in excellent agreement with experimental results.

Security Classificetion

LINKA		LINK B		LINK C	
ROLE WT	ROLE	WT	ROLE	WT	

Simulation
Defect Binding Energy

141852

141852
Thesis
W615
c. 2

Williams
Computer simulation of inert gas interstitials in tungsten.

32768003057241

