This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

I

THE

DESCRIPTIQN and USE

OF A NEW

CELESTIAL RLANISPHERE,

 ADAPTED to theLatitude \& Parallel of London: inspec red, and approved, by the astronomer royan AND BEING

PROJECTED upon the PLANE of the EQUIINOCTIAL,
Proves every Way convenient for illuftrating that moft apparent and USEFUL PART cf ASTRONOMY, The DIURNAL MOTIONS of the SPHERES.

With A
CONCISE APHORISM OF THE ANNUAL MOTION OB THE EARTH ROUND THE SUN;
THE NATURE OF

The PRECESSION of the EQUINOXES; ANE THE CONSEQUENT DIRECT MOTION OT THE STARS: With all other PRECEPTS and EXAMPLES which are requilite in fuch a WORK.

CALCULATEDAS WELL POETHEINSTRUCTIONOFPRIVAT STUDENTS, ASTOACCOM̈PANY, AND SUCCEEDTHEUSE OFTHEGLOBES INTHEFINISHINGSCHOOLI,
8) SOLVING all the mof ufeful PROBLEMS in ASTRO MOMY, With the utmoft Facilify and Easi.

By STEPHEN GODWIN,
 v. Teacher of the Mathematics, in London.

[^0]```
FW%%
 N0%-
```



```
 *
 {\begin{array}{cl:}{ME:M}\\{\mathrm{ BRSITIN}}\\{\mathrm{ NICIM}}\end{array})
 *
 *
 * *
```


## ADVERTISEMENT.

ANY. Gentlemen who travel; or reside at times in Foreign Parts, may have correet Drazvings at the shortest notice; or T'mporary Horizons, for any Latitude, to apphy to this Planisphere.

I also nả̉ke other Circular Planispheres, in Pairs, to shut up torether, for the Pocket, projected both on ${ }^{\text {• the }}$ South and North Poles, which contain all the Stars in both Hemispheres, of any note.-Also, Mercator's, and other Charts, chiefly adapted to solve the Diurnal and Horary Motions of the Spheres, fitted to all Latitudes, and are equally useful to the young Academic, the private Student, and the Traveller, as they convey a general, clear, and pleasing Idea of the Positions and Motions of the Spheres.

[^1]

1
if
*

5

## The PREFACE.

There have been many Planifpheres ins vented and published; at different periods, within a century or two past, for different uses; some for Geography, some for Aftronomy and Chronology, and some applicable to a ferw detached articles -of all the three; but all that I have seen are very unsatisfactory, and some very erroneous : yet there are some Planifpheres now extant, which are perfect in their kind, but not very useful, they being projected upon the Plane of the Meridian, are not capable of a Rotatory Motion, and, consequently rendered very limited: others have been projected on the Planes of the Horizon, or the Ecliptic, but none of them are adapted for, or capable of showing the Diurnal Motions; and, consequently, of very little utility, in comparison of what is wanted: my seeing these wants and defects, set me to consider, that, as the Earth's Diurnal Rotation was made upon the Poles of the Equator, so a Planifphere, projected upon the Plane of the Equinoctial, would answow my utmost wishes, and would be capable, not only to solve the daily apparent Motions af the Hearens, but also far more other Astronomical Problems than any of the abovementioned can do: this Planifphere is a true representation of the Celestial Sphere, in the parallel of London, B 3

## vi

extending to the Southern Horizon, or fifteen degrees below the Tropic of Capricorn; it is.jtted with a circular and morabte Index,' consisting of à Horizon, an Hour Circle, the prime Vertical, the Meridian, and Equinoctial Colure, with a straight director above it, and moring on the center of the projection, or Pole of the Equinoctial; it generally solves each Problem at one remore, and in less time than can possibly be done by the Globe, or by. any Planifphere hitherto extant, they being applicable to the use of Scales and Compasses, or of some troublesome and tedious Index: in short, a sight only, of the construction of this Planifphere, will sufficiently concince every discerning person of its superior utility and readiness in all the purposes of Astronomy to which it is intended; also, the World will readily be aware, that the Diurnal and Horary Motions of the Spheres is the mast useful, the most general; and practical part of Astronomy; it is that which attracts the attention of every thinhing being; all can discern the apparent Diurnal Motions of the Heavens, and zoould wish the phenomena solved to their capacitics; indeed, most men are, more or less, deeply concerned in this part of Astronomy, either for profit or pleasure, or both. Who does not make some use or other of the rising, culminating, (ar, passing the Meridian) and setting of the Sun, Moon, and Stars?-The mer©hant, the mariner, the traveller, and every public and private student, down to the peasant, who knows and regulates his times and seasons, his labour and rest, by the Sun, Moon and Stars, all have their interests in this part of Astronomy, the Diurnal and Horary Motion of the

## vii

Spheres; and what further beneft and pleasure may we not expect to accruc among these respective classes, when this plain, easy, and familiar Treatise, (with the Planifphere) falls into their hands? when, by only turning the hour and minute given, and found on the Index, to the day of the month, the Planifphere stands rectified for that time, and represents the true situation of the Heavens, and the Problem is performed in a quarter of a minute of time, or less; and, by continuing to move the Index to a good regulated clock or watch, not only the relative positions and situations of the Celestial Bodies with respect to cach other, and to the prime Circles of the Sphere, but their Horary Progressive Motion from East to West, is most beautifully seen by day and night perpetually; which, with the extensive variety of uses that this Planifphere is applicable to, cannot fail to enlighten and enlarge the understandings of every possessor of it, in the most rapid degree; and I humbly conceive and flatter myself, that if this little Work should be made an auxiliary Study in our Finih-: ing Schools, great benefit will be derived therefrom in the education of the rising generation; as the precepts and examples are easy, pleasing and engaging, and are calculated to allure, rather than to deter the minds of Youth from the study thereof; which, if this should be the case, my utmost wishes will be answered, and my labour amply rewarded.

It will appear obvious to every one, that the Want of such a Planifphere, as an easy and sure Guide by which to demonstrate the Theory of Astronomy, hath always been the grand obstacle, the fatal check to the Study of
this Science: it is not every Student that can, or that shuses to purchase a Pair of Globes, and to study Astronomy in bare and dry Authors, kath always been found an hopeless task, which hath deterred many a good genius from attempting this Study at all: but, I presume, and shall wenture to affirm, that the encouragement erery one will meet with at the first use of this Planifphere, will do away every objection, and will lead them on, by pleasing steps, through this short, pertinent, and useful Introdue* tion, into the woide campaign of the most sublime Science of Astronomy.

London, July I, 1802,

## THE

## PRINCIPLE AND USES

OF THE KBW

## CELESTIAL PLANISPHERE.

TAKE any Sector, or Gunter's Rule, (but the Sector is the beft, becaufe it can be fet to any Radius) and, with a pair of compaffes, take the parallel diftance of $60^{\circ}$, and $60^{\circ}$ in the Chords, or the parallet diftance of $45^{\circ}$ in the Semi-Tangents, opening the Sector to any Radius as will beft fuit your Plane; with this diftance fiweep a circle in the middle of your Plane, which is the Equinoctial, and muft be divided into 360 equal parts, or degrees; and alfo into 24 hours, at the rate of $15^{\circ}$ per hour; beginning where the degrees do ; this circle is the Right Afcenfion in time, and degreesin this cafe, the center of the Sector is the pole of the projection, and the parallel of $45^{\circ}$ is the radius of the Equinoctial; and, as the Tropic of Cancer is $23^{\circ} 28^{\circ}$ from the Equinoctial towards the Pole, take the parallel diftance of thefe degrees (counting them.doubly.)
and fweep this circle concentric with the Fquinoctials and this is the paraliel of Concer, which will be e $60^{\circ}$ $32^{\prime}$ from the Pole, or $33^{\circ} 16^{\prime}$ on the seftor. Then, to find the Tropic of Capricorn, you muft ma:ke $45^{\circ}$ on thefe lower Tangents a paraliel ditanace of $45^{\circ}$ on the upper Tangents, and take $23^{\circ}$ as' beyond that, for the parallel of Capricorn. Then, the Arctic Circle is $2.3^{\circ} 30^{\prime}$ from the Pole: and thefe are all the concentric Circles in the Plane, except the Circle of the Months, which is near the outwarl edge of the Pianisphece. The next Circle is the Ecliptic, the apparent annual path of the Sun, and it is drawn thus:-fet off the Secant of $23^{\circ} 30^{\prime}$ fronr Cancer, on the Sulftitial Colure towards the Pole, and this fhall be it's center; and it's Pole is at the interfection of the Arctic Circle, and the Meridian or Solditial Colure; in this Circle, the figns of the Zodiac are placed; and, in tables of the Right Afcenfion of the Ecliptic, you will find the proper divifions of this Circle into figns and degrees; then lay a thread, or an Index, from the Pole, through every degree of Right Afcenfion of the Ecliptic, and it will give points in this Circle where all the Signs and Degrees do fall; the fixed Stars are haid down the fame way by their right Afcenfion and Declination as found in the tables of the Stars, and thofe in my Planisphere are all of the firft and fecond Magnitude, and their places computed up to the prefent year 1802, inclufive. - Then through the firft points of Cancer and Capricorn, draw a ftraight line, and this will be the Meridian and Solftitial Colure; then again through the firft points of Aries and Libra draw another line,

## 11

Which is the Tquinotial Colure and Hour Circle of fix; thefe two Circles do interfect each other in the Pole of the world, and you will find the fituation and names of all thefe Circles in the Plunisphere; the next is the Circle of Months; and if you look on the horizon of a) new Globe, or in any Almanac, you will there fee the Sun's place to every day of the year; then lay an index from the cester of the Plane through every point of the Ecliptic into the Circle of Months, and mark the days accordingly, and it is dore: the index confifts of an Hour Circle, next to the Circle of Months; and, as you hold the South point from you, the left hand hours are the morning and forenoon hours, and the right hand are the afternoon hours, to twelve at night, which is at the bottom next to you, due North; then the Meridian reaches from 12 to 12 through the Pole, and on the fouthern part is a fcale of meridional Altitude from the Horizon $u_{p}$ to the Zenith of London; and, on the northern part, is a fcale of Declination, North and South; the Circle of the Horizon hath the points of the Compais, the Azimuth, and the Amplitude; and note, that the inward edge of the Circle is the fenfible and apparent Horizon; next is the Prime Vertical, or Azimuth of Gaft and Weft, and on it is a fcale of Altitude when due Eaft or Wieft, up to the Zenith; the next is the Equinotial Colure and Hour Circle of fix; and above this is a fimall incex, or direfor, to be ufed, as will be taught among the Problems. This may fafice for a defeription of the principle and con?ation of the Planisphere. I muft now proceed to it's ufss, as it relates to Afronomy: and
here I muft beg, that the more proficient in the science will-not think I infult their judgment, by laying down the firft rudiments of it. I wifh firt to inform, and bring forward young minds, and then 1 mean to advance, and find amufement for them, if not inftruction.

The Circle of the Zodiac is divided into tweive parts, called Signs, and each fign into $30^{\circ}$; their names and characters are as follow:

| $\gamma$ Arics. | ४ Taurus. | II Gemimi. | $\sigma$ Cancer. | $\Omega$ | 取 Virgo. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Omega$ | IT | 1 | ทf | m | $\cdots$ |
| Libra. | Scorpio. | Sagittary. | Capricorn. | Aquarius. | Pijces. |

The firf fix of thefe are called Northern Signs, and poffers that half of the Ecliptic that is on the north fide of the Equinoctial, beginming at the firt point of Aries, and ending at the laft point of Virgo; the latter fix are called Southern Signs, and poffefs the Southern half of the Ecliptic, beginning at the firft point of Libra, and end at the laft degree of Pisces, where Arics begins again : and note, that thefe figns are different from the-Conftllations which bear their names; for, though they were formerly fituated together, yet now, by a llow retrograde motion of the Equinoctial points, at the rate of about 50 feconds per year, or one degree in 72 years, the Conftellation Aries is got into the Sign Taurus, and fo of the reft, till the Stars of Pisces are now in Aries; this motion is made upon the Poles of the Ecliptic, contrary to the fucceffion of the Signs, and is called the Preceffion of the Equinoxes. The
beginning of the four Quarters of the Ecliptic are called Cardinal Signs, viz. Aries, Cancer, Libra, and Capricorn, becaufe the Sun enters them at the beginning of the four Quarters of the year ; the four Points of the Compars, called Eaft, Weft, North, and South, are called Cardinal Points alfo; and if you bring Cancer or Capricorn to the Meridian, the Cardinal Signs will coincide with, and lay over the Cardinal Points of the Horizon. Aries and Libra are alfo called Equinoctial Points and Signs, becaufe the days and nights are then equal, as you will fee by the Planisphere; if you take the Sun's diurnal Arc on thofe two days that the Sun enters thefe Points, the two Meridians paffing through thefe Points, are called Colures, and that which paffeth through the Equinoctial Points is called the Equinoctial Colure ; and that which is at right Angles to it, pafing through the Solftitial Points, is called the Solftitial Colure, as you will fee them named in the Planisphere. The ufe of the Prime Vertical in the Planisphere is very obvious; for when, by the diurnal rotation of the Earth, any celeftial object comes to this Circle in the eaftern Hemirphere, it appears due Eaft : and if it be in the weeftern Hemifphere, it is due Weft, and its Altitude, in both Cafes, is feen by infpection; alfo, when any celeftial object comes to the fouthern part of the Meridian, its meridian Altitude is feen on the fcale of Altitude; and when any object is rifing or fetting, its Azimuth and Amplitude are feen on the Horizon, with the Point of the Compars on.which it rifes or fets.

When the reader has ftudied and learnt the Principle and Conftruction of the Planisphere, which is eafy to accomplifh, he will find it is adapted, in the moft eafy and ready manner, for folving all the Problems to which it is applied, and I may venture to fay, far more fo than the Celeftial Globe, it being inconvenient on the Globe to apply, and work the Hour Circle and the days of the months together, and to concentrate the Hour Circle and the Ecliptic is impoffible; but, on this Planisphere, the Days of the Months and the Degrees of the Ecliptic are adjufted together, by which means the Day of the Month being given, is the fame as the Sun's place in the Ecliptic, or the contrary, fo that thefe may become fynonymous terms in the Planisphere, and as the Hour Circle on the Index turns concentrical with the Circle of Months, and juft within it, fo moft of the Problems are folved at one remove of the Index, and the anfwer appears in an inftant, by infection.

Having now defcribed, and prepared the Planisphere for ufe, I fhall next explain the motions of the Terraqueous Globe on which we live : and firft, according to the true, or Copernican Syftem of the Univerfe, this Globe is a Planet, revolving round the Sun in an orbit fomewhat elliptical, and in the fpace of 365 days, 5 hours, and 49 minutes, being accompanied with the Moon, and hath the Sun at reft in the center of its orb.-Now, conceive at a vaft diffance, without this fyftem, the fphere of the fixed Stars; and then imagine that on this, or fome one day, the Sun appears to a be,-

## 15

Fohder on: this Earth, to be in a ftraight line, or in conjuaction with fome one of the Stars; but as the Earth revolves in its orbit, the Sun will apparently leave this Star; and feem to pafs from the right to the left, or from Weft to Eaft with refpect to the Stars, 'till it hath paffed over all the Stars in it's path quite round the Heavens in one year; and here it is evident to the underftanding of every one, that this apparent motion of the Sun, arifes from the real motion of the Earth in its orbit round the Sun, and the path, or. circle that the Sun appears to defcribe in the Heavens, is called the Ecliptic; and note, that this fame path would be traced out by the Earth in its annual motion, to a beholder in the Sun, with only this differencethat when the Sun appears to us to be in Aries, the Earth would appear to a folar fpectator to be in Libra, and fo always with fix figns, or $180^{\circ}$ difference; while the Earth is performing its annual courfe round the Sun, it turneth round upon an imaginary axis in every 23 hours, 56 minutes, from Weft to Eaft, with its inhabitants, to whofe fight, all the celeftial bodies maft of courfe appear to move the contrary way, viz. from Eaft to Weft; for, the fenfible Horizon being an. opaque, folid, and apparently level expanfe, doth always conceal the lower Hemifphere from our fight, but as the whole Earth continues to revolve upon the Poles of the Equinoctial, from Weft to Eaft, the eaftern part of the Horizon will be depreffed below thofe Stars, or celeftial bodies, that were before below it, and invifible, and they will become vifible to our fight, and are then

C 2
faid to rife : the fame way the Weftern Horizon doth elevate itfelf above thofe bodies that are the moft Weftern, and they are faid to fet; and fo thofe bodies, that are on the eaftern fide of the Meridian, will, by this motion of the Earth, culminate, or tranfit the Meridian, and in turn will fet; as alfo the imaginary Circles of. the Sphere, fuch as the Equinoctial, the Ecliptic with the Sun, and Planets therein, will, by the rotation of the Earth, all appear to rife, culminate and fet, caufing day and night to all; this is called the Diurnal, and Ilorary Motions of the Spheres; this is the part of Af: tronomy that is peculiarly noticed by, and ufuful to every one; it is thefe motions, that my Planisphere is chiefy intended to illuftrate, and render familiar to the capacity and practice of everg Lover of Aftronomy; and this leads me to the following Precepts, on the Properties and Ufes of the Circles of the I'lanisphere.

Prccept 1. Declination of the Celestial Bodies, is an Arc of the Meridian, beginning at the Equinoctial, and counting it North and South to the Poles, fo any celeftial object, while it is fituated on the North fide of the [quinoctial, is faid to have North Declina--tion; but, while they are on the South fide of the Epuincetial, are faid to have South Declination: and note! on my Planisphere, a Scale of Declination, North and South, is laid down upon the Meridian of the $\mathrm{I}_{\mathrm{k}}$ dex with $0^{\circ}$ degrees, revolving in the Equinoctial,

[^2]
## 17

point of Aries, and counting Eaftward round the Plawisphere, and, with the celeftial bodies, it is that degree of the Equinoetial that comes to the Meridian with any of them refpetively; and the Right Afcenfion of every fign, degree, and point of the Ecliptic, is to be found the fame way, by bringing thofe points refpeatively to the Meridian, and the degree of the Equinoctial cut thereby, is the Right Afcenfion of that fign, or point required; and note! that $15^{\circ}$ of this circle revolves through the Meridian in every hour, it being the 24th part of $360^{\circ}$, which the whole Circle contains.

Precept 3. Oblieqe Ascension, and Descension; is the degree of the Equinotial cut by the Horizon, at the time of the rifing, and fetting of any of the celeftial bodies, or of any part of the Ecliptic, as may be required.

Precept 4. Ascensional Difference, is the differ: ence between the Right, and Oblique Afcenfion; and with the Sun, it dhows how much it rifes and fets, before, and after fix o'clock.

Precept 5. Celestial Longitude is an Arc of the Ecliptic, beginning at the firft point of Aries; and if the Sun, or any celeltial object, be in any particular fign, degree, and minute, as if in 24 degrees, 35 mi nutes, and 49 feconds of leo-we write it's Longitude thus $-4^{s} 24^{\circ} 35^{\prime} 49^{\prime \prime}$. Obferve the fame rule in all other cafes, as required.

Frecept 6. Latytude ofa Star, or Plinit, is an Arc of a great Circle, interfecting the Ecliptic at right angles, and paffing through the Poles thereof; that on the North fide of the Ecliptic is called North Latitude, and the cther fide South.

Precept 7. Azimuths are Vertical Circles, paffing through the Zenith and Nadir, interfecting the Horizon at right Angles, and counted from the South, and North, towards the Eaft and Weff, or it is an Arc of the Horizon, intercepted between the North, or South Points, and the place where any celeftial body rifcs or fets.

Precept 8. Amplitude of trib Sun, or a Starb is an Arc of the Horizon, intercepted between the Eaft or Weft Points, and that Point where the objeet rifes or fets; and note! you will find the degrees of the Azimuths, and Amplitudes on the Horizon of the Index to the Planisylere; the degree of Amphtude at rifing, is called Amplitude Ortive, and Occafive at fetting, which mult be denominated, whether it be North, or South.

Prccept 9. Cosmical Rising, or Settine, is when 2 Star or Planet rifes or fets when the Sun doth.

Precept 10. Achronical Rising, and Sbtting, io when a Star, or other object rifes, when the Sun fets, or fets when the Sun rifes.

Precept 11. Circlesoffrtrpetual Apparition,

## 19

and́ Pirpetual Occultation, are different patts, or portions of the celeftial fyhere in all the different Latitudes upon this Globe; and in this parallel, the Circle of Perpetual Apparition is all that part of the celeftial fphere round the North Pole, that never fets below the Horizon, being from the parallel of $38^{\circ} 28^{\prime}$ declination Northward, and is always equal to the compliment of the Latitude; all the Stars within this Parallel revolve round and round the Pole, but never difappear, nor defcend lower than the Northern part of the Horizon, and thefe are fometimes called CircumPolar Stars, and you will fee them, with their names in the Planisphere, by turning the Index roand about; by the fame caufe, the Circles of Perpetual Occultation, is, all thofe Stars, near, and round the South Pole, which never rife above the Southern part of our Horizon, from $3^{\circ}{ }^{\circ} 8^{\circ}$ Declination Southward, to the South Pole.

But, this fubjea will be better illuftrated, and rendered apparent, by the folution of the following Problems with the Planisphere.

Problem 1. The day of the month, and hour of the day given, to reetify the Planisphere for ufe, fuppofe July 5th, at 4 hours, 36 minutes, P. M. 3

Find the day of the month in the outermof circle, and bring the hour and minute on the index thereto, and it is done. This Problem is very flort, and folved in an inftant; but its effects are very extenfive and
great; for it prefents to our yisw the true and perfect fituation of the celeftial Sphere, together with all the Stars, and other celeftial bodies, in their true pofitions with refpect to each other, and to the Horizon, and. Meridian, and all the other Circles of the Spheres: this effect cannot fail to delight and gratify every beholder, who will make their various ufes of it accordingly, and by contipuing to turn the Index by a good regulated clock, or watch, as often as we chufe to take an obfersation, we fhall mof beautifully difcern and comprehend the diurnal rotation of the Earth upon its axis, from Weft to Eaft, caufing the apparent diurnal motion of the Heavens from Eaft to Weft.

Problem 2. To find the Sun's place in the Ecliptic, fuppofe an Auguft 14th, and November 29th, at noon. Turn the director to the days propofed, and you will find it points to 220 of Leo on Auguft 14 th , and $7^{\circ}$ of Sagittary on November 29th, for anfwer.

Problem 3. To find the Sun's Declination on June . 4th, and December 1tt. Eind the Sun's place by the fecond Problem, for each day, and bring thefe points of the Ecliptic to the Meridian of the Index North, and it gives $22^{\circ} 30^{\prime}$, North, on June the and $21^{\circ} 40^{\circ}$ South, on Decepper 1 ft.

Problem 4. Ta find the Sun's right Afcenfipn in time, and degrees, on April gth, and on September 2d. Lay the director to each day, and it interfects the Sun's place in the Ecliptic, and his right Afcenfion in the

Equinotial 180, or, 1 hour, 12 minutes in time, on April 9th-and $161^{\circ} 30^{\prime}$, or 10 hours, 46 minutes, in time, on September 2 d .

Problem 5. To find the Declination, and right Afcenfion of the fixed Stars, fuppofe Cor-Scorpin, and the Virgin Spike, and Cor Leo-bring each star to the Meridian of the Index, North, and it gives the right Afcenfion of Cor. Scorpio $244^{\circ} 20^{\prime}$, or 16 hours, 17 minutes, 20 feconds, in time, with $26^{\circ}$ South Declination.—Obferve the faine rule with all the other Stars.

Problem 6. To find the Right Afcenfion and Declination of the Moon, or a Planet, depends on two cafes, thus-Seek the Planet's Longitude and Latitude in the Nautical Ephemeris, for the time given.-So, Auguft 7th, at noon, the Moon's Longitude is $22^{\circ}$ $39^{\prime}$ of Scorpio, or 7 figns, $22^{\circ} 39^{\prime}$, with $4^{\circ} 57^{\prime}$ South Latitude; then find this Point in the Zodiac on the Planisphere, and take the Right Afcenfion and Declination of it, as in the laft Problem by the Stars, and you will find the Moon's Right Afcengion $261^{\circ} 40^{\prime}$, or 17 hours, 27 minutes in time, and $27^{\circ} 45^{\prime}$ South Declination, as was required.

Problem 7. To find the Sun's Oblique Afcenfion and Afcenfional Difference on April 14th. Find his place in the Ecliptic $25^{\circ}$ of Aries, bring it to the eaftern Horizon, and you will fee $11^{\circ}$ of the Equinoctial rife with it, which is the Cblique Afcenfion required; then find the Sun's Right Afcenfion as before, $23^{\circ} 40^{\prime}$ and fub-
tract the Oblique Afrenfion from it, and it leaves $12^{\circ}$ $40^{\prime}$, which is the Afcenfional Difference required.Obferve the fame rule with the Moon, Planet, or any Star.

Problem S. To find the time of Sun-rifing, and length of the day and night, on February 4th and Auguft 9th. Bring the Sun's place to the Horizon, Eaftward, and lay the director through it into the Hour: Circle, and it points to 25 minutes paft 7 . For rifing on February 4 th, fubtract this from 12 hours, and the remainder is the Sun's Semi-diurnal Arc, 4 hours, 35 minutes, which doubled, is 9 hours, 10 minutes, for the length of the day; but fubtract this 9 hours, 10 minutes, from 24 hours, and the remainder is the Nocturnal Arc, or the length of the night, 14 hours, 50 minutes, as required; but, on Auguft 9th, the Sun rifes 25 minutes before 5 ; therefore, the Semidiurnal Arc is 7 hours, 25 minutes, which doubled, makes 14 hours, 50 minutes, for the length of the day, which, fubtracted from 24 hours, leaves 9 hours, 10 . minutes, for the length of the night required.

Problem 9. To find the length of the longeft and fhorteft days at London. Bring the firft point of C'ancer to the eaftern Horizon, lay the direftor through it, and it points to 3 hours, 47 minutes, A. M. or 13 minutes before 4 in the morning, fubtract this from 12 hours, and it leaves 8 hours, 13 minutes for the Semidiurnal Arc, which doubled, gives 16 hours, 26 minutes for the length of the day; but, fubtract this
from 24 hours, and it leaves 7 hours, 34 minutes for the Morteft night under Cancer; by the fame rule, you will find this 7 hours, 34 minutes, to be the length of the day under Capricorn, and the 16 hours, 26 mi nutes, the length of the night as was fought.

Problem 10. To find the Meridional Altitudezof the Sun on the 3d of October. Bring the Sun's place for that day, found by Problem 2d. to the Meridian, viz. $10^{\circ}$ of Libra, and you will find $34^{\circ} 40^{\prime}$ Altitude, by the fcale of Meridional Altitude, as required.

Problem 11. To find the Meridional Altitude of the fixed Stars, Fomahaut and Lyra. Bring them refpec.tively to the Meridian, and you will find Fomahaut hath $7^{\circ} 39^{\prime}$ Altitude, and Lyra $77^{\circ} 4^{\prime}$, and Canis Minor hath $44^{\circ} 37^{\prime}$ Meridional Altitude.

Problem 12. What is the Zenith diftance of the Sun on May 13th, at noon? Find the Sun's place $22^{\circ}$ of Taurus, bring it to the Meridian, and it hath $56^{\circ} 30^{\circ}$ Meridional Altitude; fubtract this from $90^{\circ}$, and the remainder $33^{\circ} 30^{\prime}$, is the Zenith diftance required.

Problem 13. To find the Sun's Amplitude at rifing, on the 15th of February. Bring the Sun's place $10^{6}$ $27^{\circ}$ to the Eaftera part of the Horizon, and you will fee it interfect the Amplitude of $21^{\circ}$ towards the South, the fame with any Star or Planet.

Problem 14. To find the Right Afçenfion and Decli:

## 24

nation of: any Point in the Ecliptic; fuppore $20^{\circ}$ of Yeo. Bring that Point to the Meridian, and it hath $-142^{\circ}$ Right Afcenfion, and $14^{\circ}$ North Declination.
'Problem' 15. To find what Point of the Ecliptic doth rife, culminate, and fet, at any day, hour, and minute propofed; as September 4th, 3 hours, 42 minutes, P. M:-Rule,-Bring the day of the month to the hour and- minute given, and you will find 50 of Capricorn rifing, and $11^{\circ}$ of Scorpio tranfiting the Meridian, Southward; and, of courfe, $5^{\circ}$ of Cancer fetting, and $11^{\circ}$ of Taurus on the Meridian, North.

Problem 16. May 24th, in the morning, the Sun was obferved due Eaft; What is his Altitude, and the Hour of the Day? _- Find the Sun's place, $2^{s} 3^{\circ}$. Bring it to the Prime Vertical, Eaftward; lay the director through it into the Hour-Circle, and it thews the Time of the Morning to be $16^{\mathrm{m}}$ paft 7 , with $27^{\circ}$ of Altitude, as was required.

> Problem 17. To find the Diurnal Arc of any Star, or Planet, fuppofe the Virgin's Spike, (being the Star to the eaftern Horizon). Lay the director through it into the Hour-Circle, and it points to 5 minutes before 7, which is 5 hours, 5 minutes, A. M. this is its Semi diurnal Arc, which, doubled, makes 10 hours, 10 minutes, for the Diurnal Arc, or time of this Star's duration above our Horizon; which, fubtracted from 24 hours, leaves 13 hours, 50 minutes, for the Nocturnal Arc, or time of its fay below our

## 25

'Horizon. Mind the fame rule with all the fixed Stars, (but the Moon), and the fwifteft of the Planets will require a reduction is their places in this Problem.

Problem 18. To find at what hour a Star rifes on any day, fuppofe Oct. 14th. What time doth the Bull's Eye :rife?-Bring the Star to the Horizon; and fee what hour and minute points to the day propofed, and it is found to be 12 minutes before Eight at.hight; and rets 12 minutes before Ten in the morning. *

Problem 19. To learn to kaow the Stars by fight, at any hour, by the help of the Plazispiere. Suppofe July 20th. at $10^{3}$ \&c. P. M. you are out of doors, and rectify the Planisphere to that hour; then fuppofe yourfelf to ftand under that part of the heavens where is marked the Zenith of London in the Planispkere, and you will see the Dragon's Head in the Vertex, Lyra South by Eaft, the Stars of Pegasws nearly Eaft, with from ten to twenty degrees of Altitude, the Great Bear Weft North Weft; Arcturus Weft South Weft; the Virgin's . Spike nearly fetting Weft-South-Weft; Cor-Scorpio South-South-Weft; Atair in the Eagle South-SouthEaft ; Perseus and Capelle near the northern Horizon; and you may fee the names of the reft in the Planisphere, that are then above the Horizon; and by varying the time of the year in your obfervation, you will eafily fee, and learn the names of them all.-This is a preful Problem, and thould often be repeated.

Problem 20. To find the time of night. Being out from home, on January 20, I faw the great Dog jtar, Sirius, on the fouthern Meridian, by a quadrant, or compafs, then bring the Star to the meridian of the Planisphere, and lay the director to the day of the month, and it points to half paft 10 at night, as was fought.

Problem. 21. To find the time of night on the 15 th of May. "Being out from home, 'I'oblerve' the "Star Atuir, due Eaft, with $11^{\circ}$ Altitude.-What is the hour ?-Bring the Star to the Prime Vertical, Eaft, and turn the director to the day of the month, and it points to the hour, 20 minutes before $110^{\prime}$ clock at night, Which is the time required.

Problem 22. Auguft ift. being out, I obferved the Sun was due Weft by the compafs-What is the hour? -Find the Sun's Place, and bring it to the Prime Vertical, Weft; then lay the director through it, and it Shows the time to be 4 minutes before 5 , in the afternoon, as was fought.

Problem 23. What time of day or night, will Cor Leo appear due Eaft on October gth? Bring the Star to the Prime Vertical, Eaftward; lay the director to the day of the month, and it fhows the time to be 20 minutes before 4 , in the morning, for anfwer.

Note! That if, on the contrary of this Problem, the hour be given, then the Planisphere will difcover

What point the Star is upon: Example, obferving the Srars in the Great Dog's hind part, above the Horizon, and having no compafs, I refer to my watch, and find it 3 in the morning of the' 15 th of October, then rectily the Planisphere to the day and hour, and we find the Star in the Dig's flank, South-Eaft by South, and that in the tail a quarter Eaft; Aldebaran is on the Maridian, and the large Star in the Liwn's tail, juft rifing on the Eaft-North-Eaft; thus, the points are gained by the Planisphere, without any other inftrument, not only by land, but on the fea, between London and Holland; or in the Irifh fea, or the Weftern Ocean to Newfoundland, or any other part, in or near this parallel, with ufeful and pleafing effects both to the landfo man and mariner.

Problem"24. To find when the Sun rifes or fets cofmically with any Star, fuppofe the Great Dog, Sirius. Bring the center of the Star to the eaftern Horizon; ldy the director through the interfection of the Horizon and the Ecliptic, and it points out the isth of Auguft for the day required; but to know when they fet cofmically, or together, bring the Star to the weftern' Horizon, and the director through the interfection of' the Ectiptic and the weftern Horizon, and it points out ${ }^{*}$ the 15 th of May to be the day fought.

[^3]rector through the interfection of the Ecliptic and the eaftern Horizon, and it points to the 28 th of November, for the day of Achronical rifing; but, if you bring the Star to rife, and turn the director through the interfection of the Ecliptic and the weftern Horizon, it. points out the 8th of January to be the day on which the Sun fets achronically with that Star.

Problem 26. To find what days of the year the Sun enters into each fign of the Zodiac? Ruke-Begin at Aries, and lay the director through it into the circle of months, and it cuts the 20th of March, when the Sun enters that fign; then lay it through $0^{\circ}$ of Taurus, and it points out the 20th of April; and 50, whatever day is pointed to, when the director is laid through any point of the Ecliptic, that is the day.in which the Sun will be in that fign and degree.

Problem 27. To find what time of the year the Little: Dog Star will be on the Meridian at eleven o'elock at night ?-Turn the Index, till the Star is on the Meridian; then look for eleven at night, and it points to ; the 26 th of January, for the day fought; at which time. of the year, and hour of the night, we may feer Procyon, Castor and Pollux, tranfit the fouthern Me-. ridian.

Problem 28, To find 2 true Meridian line by the precife time of the Tranfit of any Star found by the, Planisphere, thus: Drop a perpendicular line between ${ }_{i}$ the eye and the Star down to any fixed object before
joc on the Horizon, and a line drawn from'the eye to ; that object is a true Meridian line.

Problem 29. To firid what two days of the year,' the ’ days will be of any given length lefs than fixteen hours, fuppofe 10 hours, 20 minutes long? Ruile: Find the : Semidiarnal Arc on the index; viz. 5 hours, 10 minutes, both Ealt and Weft; lay the direfor to thefe: hours and minutes, on both fides of the Meridian al-ternately; then turn the director: and the Horizon to $a$ gether, till fume point in the Ecliptic interfeas them: both, and the director will then lay over the day of the month required, viz. the 22d of February; and Ocrober 19; for anfwer. Again, what two days will be: 13. hours, 30 minutes long each . Turn the diretor to 45 : minutes after fix. Weftwards and more it and thethe Horizon together; till fome point in the Eclipticexacly interfeets them both, and it points oút Septomber 1ft. for one of the days; and, when brought to 15 minutes paft 5, in the morning hours, or Eaftern Gide of the Meridians the director points out April 10the. for the other.:

Problem 30. To find what two days in the gear the Sun will have $50^{\circ}$ Meridian Altitude at London 7 : Turn the Meridian of the Index on each fide of the Tropic of Cancor, till fome point of the Ecliptic interfects it in the given Altitude, and in one cafe it points oat Auguft 28d. and in the other, April 21ft. for anfwer.

Problem 31. To find the Longitude and Latitude of D 3
the Moon, Planets, or fixed Stars, refer to the 5thant 6th Precepts for a Rule. Example: Required to find the Moon's place in the Zodiac, on Auguft 9th at noon ? Look in the Nautical, or any good Ephemaris, for the Moon's Longitude, and we find it $8^{\circ} 19^{\circ} 32^{\text {b }}$, feek this place in the Ecliptic of the Plawisphere, viz. $19^{\circ}$ of Sagittary, but this is not her true place, for if you look in the next column in the Ephemeris, to the right hand, you find $5^{\circ} 12^{\prime}$ South Latitude; then bring the Longitude to the Scale of Declination, and with the compaffes take $5^{\circ} .12^{\prime}$. Southwand from this point, and fet it off at right angles with the Ecliptic; with one foot in the Moon's Longitude, and the other will ftand in the Moon's true place in the Zodiac; but if the had had North Latitude, then you mult have taken the. Latitude Northward on the. Scale, and projected that diftance on the North fide of the Ecliptic, and that would be the Moon's true place in the Zodiac, where, if you make a point with a pencil, you may take the right Afcenfion, or Declination of the Moon, or a Planet at that time-the reafon why the Scale of Declination will folve this Problem of celeftial Latitude, is, the Radius of the Equinontial and the Ecliptic being fimilar, and both on a tangent fcale, the error, if any, is wholly imperceptible; and note! if the place of the Moon, or a Planet be required for any certain number of hours after noon, a reduction muf be made in their Longitude and Latitude for that hour; and that Arc added to the place at noon, (if it be the Moon, or a Planet direct in motion), and that point Sought in the Zodiac as before directed.

Problem 32. There are many fecret ways by which Aftronomers may date their letters to each other, fome of them as follow. © m久 $5^{\circ} 51^{\prime}$-if you receive a letter from your friend in the country thus dated, you look in the Nautical Almanac, and correct the Sun's motion the day in which it is in that fign and degree, and find it was on the 29th of Auguft, at midnight, in which he wrote it.-Again, $\quad 13^{\circ} 10^{\prime}$ m-This anfwers to September 22, at fix in the afternoon-Again, the Dragon's Head in $\times 8^{\circ} 8^{\prime}$, this will direct you to the 7 th November, at noon-or, ) $\boldsymbol{\sigma} 2^{\circ} 17^{\prime}$ —§ $8^{8} 2^{\circ} 12^{\prime}$ this can be no other time than Decem. 10th, at noon s and many other ways you may invent from thefe examples, according to your fancy.

Problem 33., To find the Jewih hours by the Planieghere, viz. they divide the day, and night, be it long or hort, into twelve equal parts, from Sun-rifing to Sun fetting, for the day, and from Sun-fetting to its rifing for the night; thus, in the Equinoctial, the Jewih hours, and the common hours are alike in length; viz. 60 minutes; but, it is evident, when the Sun is in Cancer, the twelfth part of the day will be more than 60 minutes, and the night hours lefs, and they continually vary between the Tropies: thus, fuppofe at London the longeft day is 16 hours, 26 mi-nutes-multiply this by 60 , and divide the product $986^{\mathrm{m}}$ by 12 , and the quotient is $82^{\mathrm{m}} \frac{2}{12}$ for the length of a Jewifh hour by day under Cancer, and this is the length of the night hours under Capricorn; by this ynle, we. fiad a night hour under Cancer is 37 minutes;

## 32'

Which is the length of a day hour under Capricotn; : but, to find the length of thefe hours at all times of: the year by night and day; by the Planisphere, do thus' 9 fuppofe, for Example, on the firf of Auguft, at 10 :3 hours, 12 minutes in the forenoon; I wihh to know the : exact time of day, according to the Jews?-Take the Semi-diurnal Arc, by Problem 8, which is 7 hours, 37 minutes, multiply this by 60 , and divide the product, 457 minutes by 6 , and the quotient is $76^{\mathrm{m}} \frac{1}{6}$, for the length of a Jewifh hour that day; then reciify the Pla-. sisphere to the hour and minute given, 10 hours, 12 : minutes, A. M. and fteady it there; then bring the direetor to the time of Sun-rifing before found, 23. minutes paft 4 , and carry it warily over 76 minutes, or 1 hour, 16 minutes, and it will then lay over 21 minutes before 6, and call this the firfl jewifh hour ; : then move it on a hour, 16 minutes more, to .5 minutes before 7, and call it the fecond hours; then to 11 mi nutes after 8, and it ends the 3d hour; then proceed : to 27 minutes paft 9 , for the 4th hour; fo now; as the: director lays, you will plainly fee these is not:another : whole hour, before you come to our 12 mimutes paft: 30; fo count the odd minutes, till the director comes ina fraight line with the ift of Auguft, the hour and minute given, and the Sun's place, and you find 46 ; minutes towards the 5th Jewihh hours, with 31 minutes, to come to finifh that hour: by this rule, you will : come at the true Chronological time mofly made ufa. of in the Scriptures, and may reduce it:' by this laft: Problem, to our time of the day; fo we find, ati she Crucifixion of our Saviour, there was dakknefy

## 3s.

from the 6th. Kour until the 9th hour ; now, by this. Problem, we learn, that the 6 th hour ended at the Semidiurnal Arc, or when the Sun was on the Meridian at noon; and the 9th hour was a few minutes after 3 , byinf equal Hour Clock ; inafuuch as it wa. near the Vernal Equinox. But, the Arithmetical way to find the Jewifh hour and minute, is thus-find how many of our hours: and minutes the day confifts of; then fay, as thefe hours. and minutes are to 12 hours, fois the hoars and minutes fince Sun-rifing, to a faurth proportional, the Judaical. hour required; but obferve, the time gained as abore, is only that fhewed by a clock or watch that goes equal hours at the place where the occurrence happened; but to find the real time of day at anotier place, (fuppofeLondon), we muft find the difference of Longitude of the two places, and turn it into time, at the rate of $15^{\circ}$ per hour; fo, Jerufalem, being $35^{\circ} 20^{\circ}$ Eaft of London, or $2^{\mathrm{b}} 21^{\mathrm{m}} 20^{\circ}$ in time earlier, this muft be fubtracted from the time given by their equal hour clock; and the remainder will be the time at London, as though their ninth hour; at that time of the year,: ended at $8^{\mathrm{m}}$ after 3 in the afternoon, fubtract $2^{h} 2^{\circ}$ $20^{\circ}$ from $9^{\mathrm{h}} 8^{\mathrm{m}}$, and the remainder is $46^{\mathrm{m}} 40^{\circ}$, after 12 . at noon at London.

Problem 34. To find the Horary Angle, or the apy parent time from noon by a fingle Altitude of the Sun: for which purpofe, Mr. Syid's Patent Quadrant is the beft inftrument by land; as well as by fea, it having an artificial Horizon, which the common Hadley's Quadi ruts haye not; but if one fould have ạ Collings'an on
a Sutton's Quadrant in hand, it will do in this cafe; but, if neither are in your poffeffion, then the Planisphere will be fufficient for this work. Thus, hang a fmall plummet by a fine hair to the center-pin, then ftick a fine pin in the morning hour line of 6 , and another in the fame line near the center, both perpendicular to the Plane, then hold the Planisphere up with the Southern 12 to the Vertex, and the Eaft fide next the Sun, and elevate the index, till the fhadow of the outermoft pin falls on the other, and then the hair. will thow the Altitude on the lower limb of the index, counting each divifion for a degree from the Northern 12 to the right hand.--Thus, for Example, on Auguft the 13th, 1802, I find the Sun's Altitude in the forenoon $430^{\circ}$ Kitequired the Horary Angle, or apparentime: from noon? Take the Secant of the Latitude rejeeting. the index, - $51^{\circ} 31^{\prime}-0,20601^{\circ}$
And the Secant of the Declina-
nation, - $14^{\circ} 53^{\circ}-0,01482$

Subtract the Declination from
the Latitude, and the difference is, . - $\therefore$. $36^{9} 38^{\prime}$
To which add the Complement


Now add the Secants of the Latitude and the Declination to thele two fines all into one fum, which makes - - 19,00069
The half of which will be, - 9,50034
Which is the fine of - $18^{\circ} 27^{\prime}$
Which double, or multiply it
by 2 , and the product is, $36^{\circ} 54^{\prime}$
Which, convert into time, at
$15^{\circ}$ per hour, and it gives $2^{\mathrm{h}} 27^{\mathrm{m}} 36^{\circ}$
Which is the Horary Angle, or the time the Sun wanss
of being on the Meridian-or it is $32^{\mathrm{m}} 24^{8}$ paft 9 o'clock in the morning, for anfwer. And note! the beft tables for thefe and the Lunar Obfervations, are the Requifite tables; yet, if they are not at hand, any tables of artificial Sines, Tangent, and Secants will do to falve this laft Problem; but to illuftrate this Problem fill mare, and render it perfect in its ufe, both to feamen, and others who have no Quadrant, I will Thew how to take an Altitude by the Planisphere to the neareft minute, by which the Horary Angle, or time from noon, will come out correct to a fecond, as thus: on the director is a line called Perpendicular, divided into four equal parts-and a fimilar line of equal parts, up to ten, on the Hour Circle of fix, Weftward; hang the plummet on the center, and let the hair haing over the 12 , at night, and then the line of fix is an Horizon; put a fine pin in the 2,3, or 4 , of the perpendicular lines, and bring this Scale to the Meridian, South, and form a right Angle with the line of fix, and fee what divifion the fhadow of the
pin falls on, in the horizontal line; as fappofe, if the Sun is near the Horizon, you put the pin in 2, or 3, on account of the obliquity of the fhadow; but, if the Sun hath greater altitude, then place it in 4 : and fuppofe the fhadow falls on 5 , fo have you a Rectangular' Triangle, the Legs being formed by the Scales of equal parts, and the Sun's Rays is the Hypothenufe ; then "work by this amalogy, as the Log. of the length of the Shadow, 5, - 0,69897 Is to the Log. of the Eerpendicular, 4, $-0,60206$ So is Radius, - $\quad \mathbf{1 0 , 0 0 0 0 0}$ TO the Tangent of the Sun's Alt. $38^{\circ} 39^{\circ} \quad 9,90309$ and; note! if the fhadow falls between the divifions, then take the proportional part of the logarithms, and work as before, as if the fhadow falls on $5 \frac{1}{4}$ patts, then take a quarter of the difference of the next.lefs, and greater Arcs, and add it to the logaritimm of the leffer Arc, and work with it as in the laft Example.; by which Rule you can never err a minute, either in the altitude or the time; and you may fafely fet the watch thereby. This Problem is univerfal, and is of the utmoft utility to the pradical Navigator, at well as for the exercife and amufement of every priwate.fludento by land.

Problem 35. To regulate and adjuft the motions of the Planets from noon, or midnight, as found in the Nautical, Alnanax, to any other intermediate hour and minute of the day or night required, and consequently to find their true places in the Zodiac, in the Planisphere, and their fituations, at all times, with respect to, and their progreffive motion among the fixed.

Stars, \&c. their names and charafters are as follow? ©, the Sun;' is in the center; and '\%, Mercury, is neareft to the San of all the Planets; and performs its courfe round the Sun in about three months, or 87 days; 23 hours.' 9 , Venus; whofe Orb is next to Mercury, revolves round the Sun in 224 days, and 17 hours; or about eight months. I he Planet, which is the third in order from the Sun, is our Earth, performing its annual orbit in 365 days, 5 hours; and 49 minutes: the next is $\delta$ Mars, which moves round his Orb in 686 days and 23 hours. Then 4 Jupiter, performs his circuit in 4332 days and 12 hours, or about 12 years. Then $\zeta$ Saturn, completes his revolution in 10759 days, and 7 hours, or a little lefs than 30 years. Then the Georgian Planet, whofe Orb is exceeding remote, and motion very flow, as may be feen in the Nautical Almanac. Thofe Planets, whofe Orbs are beyond the Orb of the Earth, are called Superior Planets; but Venus and Mercury, whofe Orbs are between the Earth's Orb and the 'Sun, are called Inferior Planets. The Georgian, Saturn, Jupiter, and the Earth, have their fecondary Planets, or Satellites accompanying them round the Sun; and moving round them alfo, in certain periods. Fupiter hath four, and the Earth one; which is the Moon, revolving round it in 27 days, 7 hours, and 43 minutes, which is alfo the exact time of her rotation round her axis, fo that fhe always turneth the fame fide, or part of her Surface towards us; her Orbit is an Ellipfis; whofe mean Radius is about 244258 miles, and whofe Plane is inclined to the Plane
-of the Ecliptic, at an Angle of $5^{\circ} 18^{\prime}$ at the moft ; the Moon never remains in the Ecliptic, but interfects it twice in a month, in the points called her Nodes, or the Head and Tail of the Dragon; or, thefe are the points in which the Moon's Orbit bifects the Plane of the Beliptic, and while the is in that half of her Orbit, which is on the South fide of the Ecliptic, fle is faid to have South Latitude; and the point of the Ecliptic : where the Moon paffeth out of South, into North Latitude, is called her North Node, or Head of the Dragon, and then the hath North Latitude, till the arrives at her South Node, or, to the Dragon's Tail. The Nodes of the other Planets, according to Geocentric Vifion, are, in thofe points of the Ecliptic where they have no Latitude, which are feen in the Nautical Almanac: I need not premife farther, inorder to this Problem.

Required the Moon's true place on Sept. 15th, 1802, at $7^{\mathrm{h}} 24^{\mathrm{m}}, \mathrm{P}_{2}$ M. Find in the Nautical, or in any good Ephemeris, her Longitude at noon on the 15th, $1^{s} 10^{\circ}$ $49^{\prime}$, and fubtract it from her Longitude on the 16 th , at noon, $1^{\circ} 24^{\circ} 41^{\prime}$, and the difference is, $0^{\circ} 13^{\circ} 52^{\prime}$; then fay, by the rule of proportion, if $24^{\mathrm{h}}$ give this Arc $0^{\circ} 13^{\circ} 52^{\circ}$, what will the time from noon, $7^{\mathrm{h}} 24^{\mathrm{m}}$ give ?-Anfwer; $4^{\circ} 16^{\prime}$, which, added to her Longitude the 15 th, at noon, makes it $1^{s} 15^{\circ} 5^{\prime}$, her true and corrected Longitude at the hour and minute required. But nute! this is not the moon's true place in the Zo--diac ; for, againft the 15 th at noon, the hath $4^{\circ} 33^{\prime \prime}$ North Latitude, which; fubtract from her Latitude the

6th at noon, viz. $5^{\circ} 4^{\prime}$, and the difference is $31^{r}$; then fay, if 24 hours, give this Arc $31^{\prime}$, what will $7^{\mathrm{i}^{-}}$ $24^{\mathrm{m}}$ give?-Anfwer, $9^{\prime}$ : which, as her Latitude is increafing, mult be added to the Latitude at noon, the 15th, $4^{\circ} 33^{\prime}$, and it makes $4^{\circ} 42^{\prime}$, the true Latitude fought; then feek the Longitude found, $1^{\circ} 15^{\circ} 5^{\circ}$, in the Ecliptic; in the Planisphere, and point off the Lavitude $4^{\circ} 42^{\prime}$, at right Angles thereto Northward, as per Problem 31, for noon, and this point will be thetrue place of the Moon at the hour and minute required, fituated in the Heavens, in the Angle between the Whale's Jaw, the Pleiades, and the Ram's North Horn; and you may now take her right Afcenfion and Declination with the utmoft eafe in an inftant, by Problems 3 and 4 ; and, if you rectify the Planisphere for the day and hour given, you will find the Moon rifing between thofe Stars on the Eaft-North-Eaft. The fame rule muft be ufed with all the Planets: and note! that when any Planet is direct in motion, or increafing in Latitude, then fuch increafed Arcs, in any number of hours and minutes given, muft be added to their place the preceeding noon, and the fum is the true place at the time required; but if the Planet be retrograde, or decreafing in Latitude, then fuch Arcs of motion mult be fubtracted from their place the preceeding noon, and the remainder is the true place of the Planet required. Example, in the Planet Mercury, Novernber 2d, 1802, at $6^{\mathrm{h}} 33^{\mathrm{m}}$, P. M. his Longitude at noon, $7^{\mathrm{s}} 23^{\circ} 49^{\prime}$. and the third day at noon, $7^{3} 23^{\circ} 7^{\prime}$, which is lefs than the fecond day, and confequently he is retrograde, fubtract, and take the difference, which is $42^{\prime}$; then fay,
if $24^{\text {h }}$ give $42^{\prime}$, what will $6^{\text {h }} 30^{m}$ give ?-Anfwer, $m^{n}$ $20^{\prime \prime}$ : fubtrait this from $7^{3} 23^{\circ} 49^{\prime}$, the Longitude at moon on the fec ond day, and the remainder is, $7^{5} 23^{\circ}$ $37^{\prime} 40^{\prime \prime}$, the true Longitude of Mercury at the time required; then for the Latitude of the Planet, obferve, on the firft day it is $2^{\circ} 16^{\prime}$ South; and on the feventh day, $0^{\circ} 3 \mathrm{~s}^{\prime}$ South, and of courfe decreafing : fubtrait, and the difference is $1^{\circ} 38^{\prime}$ : then fay, if fix days give $1^{\circ} 38^{\prime}$, what will 1 day, $6^{\text {b }} 30^{m}$ give? $-A n f w e r, 20^{\prime}$ $21^{\prime}$, to be fubtracted from the Latitude on the firft day, $2^{\circ} 16^{\prime}$, and it leaves $1^{\circ} 55^{\prime} 39^{\prime \prime}$ for the true South Latitude of the Planet at the day and hour propofed; feek thefe points in Longitude and Latitude in the Zo-. diac of the Planisphere, and that is the true and corrected place of Mercury for the time required, vizu in $7^{\circ} 23^{\circ}$ $37^{\prime} 40^{\prime \prime}$, and between the Stars in the Scales, and the Claws of the Scorpion, and you may take the right Afcenfion and Declination of the Planet at the time, as before taught; by this rule, we have the fituation of all the Planets among the Stars at any time required, and by which, any perfon may learn to diftinguiih, and \&now them by fight from the fixed Stars, and to trace their progreflive motions continually.


Semmik, Printer, King-Street, Borough. 1


Digitized by COOgle

$\cdot 6$

SHELFMARK 5.7.0....!

THIS BOOK HAS BEEN<br>MICROFILMED ( 1994 )<br>N.S.T.C.<br>MICROFILM NO SEE RPM


[^0]:    SOUTHWARK; Printed by W. KEMMISH, King-Street. BOROUGH And Suld by the AUTHOR, at No. 20, Bride Lane ; alfo hy Smith, 172 . Styand; Leathwait, at the Reval Fxchange; Safficl, Compton Street, Soho; Syeds, Cumpafs \& Quadrant Maker, \&e. 17, Rotherhithe Wall; Snatt, Optician, 215, Tooley Stucet; and Meffrs, Muggeridge, 93, Burough, $0=1803$.

[^1]:    N. B. Lessons of Instruction given on the most liberal Terms.

[^2]:    Precept 2. Right Ascension in Time, and De-- REEg, is an Arc of the Equinoctial, beginning at the firft

[^3]:    Ptoblem 25. To fird when the Sun rifes or fets achronically, fuppofe with the right fhoulder of Orion. ${ }^{\text {i }}$ Bring the Star to the weftern Horizon, and lay the di-:-

    $$
    \text { D. } 2
    $$

