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The COVID-19 pandemic that started in China in December 2019
has not only threatened world public health, but severely
impacted almost every facet of life, including behavioural and
psychological aspects. In this paper, we focus on the ‘human
element’ and propose a mathematical model to investigate the
effects on the COVID-19 epidemic of social behavioural
changes in response to lockdowns. We consider an SEIR-like
epidemic model where the contact and quarantine rates depend
on the available information and rumours about the disease
status in the community. The model is applied to the case of
the COVID-19 epidemic in Italy. We consider the period
that stretches between 24 February 2020, when the first bulletin
by the Italian Civil Protection was reported and 18 May
2020, when the lockdown restrictions were mostly removed.
The role played by the information-related parameters is
determined by evaluating how they affect suitable outbreak-
severity indicators. We estimate that citizen compliance with
mitigation measures played a decisive role in curbing the
epidemic curve by preventing a duplication of deaths and
about 46% more infections.
1. Introduction
In December 2019, the Municipal Health Commission of Wuhan,
China, reported to the World Health Organization a cluster of
viral pneumonia of unknown aetiology in Wuhan City, Hubei
province. On 9 January 2020, the China CDC reported that the
respiratory disease, later named COVID-19, was caused by the
novel coronavirus SARS-CoV-2 [1]. The outbreak of COVID-19
rapidly expanded from Hubei province to the rest of China and
then to other countries. Finally, it developed in a devastating
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pandemic affecting almost all the countries of the world [2]. As of 14 August 2020, a total of more than 21

million cases of COVID-19 and 764 741 related deaths were reported worldwide [2].
In the absence of a treatment or a vaccine, the mitigation strategies enforced by many countries

during the COVID-19 pandemic were based on social distancing. Each government enacted a series of
restrictions affecting billions of people, including recommendation of restricted movements for some
or all of their citizens, and localized or national lockdown with the partial or full closing-off of non-
essential companies and manufacturing plants [3].

Italy was the first European country affected by COVID-19. It was strongly hit by the epidemic, which
triggered progressively stricter restrictions aimed at minimizing the spread of the coronavirus. The
actions enacted by the Italian government began with reducing social interactions through quarantine
and isolation and culminated in a full lockdown [4,5]. On 4 May 2020, the phase two began, marking a
gradual reopening of the economy and restriction easing for residents.

During the period that stretches between 22 January and 14 August 2020, Italy suffered 252 809
official COVID-19 cases and 35 234 deaths [6].

The scientific community promptly reacted to the COVID-19 pandemic. Since the early stage of the
pandemic a number of mathematical models and methods was used. Among the main concerns were:
predicting the evolution of the COVID-19 pandemic worldwide or in specific countries [7–9]; predicting
epidemic peaks and ICU accesses [10]; assessing the effects of containment measures [7–9,11] and, more
generally, assessing the impact on populations in terms of economics, societal needs, employment,
healthcare, death toll etc. [12,13].

Among the mathematical approaches used, many authors relied on deterministic compartmental
models. This approach was successful for reproducing epidemic curves in the past SARS-CoV outbreak in
2002–2003 [14]. Specific studies were focused on the case of the COVID-19 epidemic in Italy: Gatto et al.
[11] studied the transmission between a network of 107 Italian provinces by using an SEPIA model as a
core model. Their SEPIA model discriminates between infectious individuals depending on presence and
severity of their symptoms. They examined the effects of the intervention measures in terms of the
number of averted cases and hospitalizations in the period 22 February–25 March 2020. Giordano et al. [9]
proposed a very detailed model, named SIDARTHE, in which the distinction between diagnosed and
non-diagnosed individuals plays an important role. They predicted the course of the epidemic and
showed the need to use testing and contact tracing combined with social distancing measures.

The mitigation measures for COVID-19 like social distancing, quarantine and self-isolation were
encouraged or mandated [8]. Although the vast majority of people were following the rules, even in
this last case there were many reports of people breaching restrictions [15,16]. Local authorities
needed to continuously verify compliance with mitigation measures through monitoring by health
officials and police actions (checkpoints, use of drones, fine or jail threats etc.). This behaviour might
be related to costs that individuals affected by epidemic control measures paid in terms of health,
including loss of social relationships, psychological pressure, increasing stress and health hazards
resulting in a substantial damage to population well-being [12,17].

Modelling the interplay between human behaviour and the spread of infectious diseases is a topic of
increasing interest [18,19] and includes recent models focusing on COVID-19. For example, Acuña-
Zegarra et al. [20] assumed that sanitary emergency measures are implemented at a given time, after
which the population splits in two distinct subpopulations depending on whether they adhere or do
not adhere to the measures. Inspired by the behavioural economic model by Chen et al. [21], an SEIR
model was proposed by Suwanprasert [22] where individuals are allowed to optimally choose their
public avoidance actions in response to COVID-19 risk.

In this paper, the change in social behaviour is described by employing the method of information-
dependent models [23,24] which is based on the introduction of a suitable information index (see [23,24]).
This method has been applied to vaccine-preventable childhood diseases [24,25] and is increasingly being
used (see [26,27] for very recent contributions).

The main goal here is to assess the effects on the COVID-19 epidemic of human behavioural changes
during the lockdowns. To this aim, we build an information-dependent SEIR-like model which is based
on the key assumption that the choice to respect the lockdown restrictions, specifically the social distance
and the quarantine, is partially determined on a fully voluntary basis and depends on the available
rumours and information concerning the spread of the COVID-19 disease in the community.

A second goal of this manuscript is to provide an application of the information index to a specific
field-case, where the model is parametrized and the solutions are compared with official data.

We focus on the case of the COVID-19 epidemic in Italy during the period that begins on 24 February
2020, when the first bulletin by the Italian Civil Protection was reported [6], includes the partial and full
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Figure 1. Flow chart for the COVID-19 model (2.1)–(2.2). The population N(t) is divided into seven disjoint compartments of
individuals: susceptible S(t), exposed E(t), post-latent Ip(t), asymptomatic/mildly symptomatic Im(t), severely symptomatic
(hospitalized) Is(t), quarantined Q(t) and recovered R(t). Blue colour indicates the information-dependent processes in model
(see (2.4)–(2.6), with M(t) ruled by (2.2)).
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lockdown restrictions, and ends on 18 May 2020, when the lockdown restrictions were mostly removed.
We stress the role played by circulating information by evaluating the absolute and relative variations of
disease-severity indicators as functions of the information-related parameters.
:201635
2. Model formulation
2.1. State variables and balance equations
We assume that the total population N is divided into seven disjoint compartments: susceptible S, exposed
E, post-latent Ip, asymptomatic/mildly symptomatic Im, severely symptomatic (hospitalized) Is,
quarantined Q and recovered R (therefore N = S + E + Ip + Im + Is +Q +R).

The size of each compartment at time t represents a state variable of a mathematical model. The state
variables and the processes included in the model are illustrated in the flow chart in figure 1. In tables 1
and 2, we provide a description for each parameter. The model is given by the following system of
nonlinearordinarydifferential equations,where each balance equation rules the rate of changeof a state variable.

_S ¼ L� b(M)
S

N �Q
(1pIp þ 1mIm þ 1sIs)� mS, (2:1a)

_E ¼ b(M)
S

N �Q
(1pIp þ 1mIm þ 1sIs)� rE� mE, (2:1b)

_Ip ¼ rE� hIp � mIp, (2:1c)
_Im ¼ phIp � g(M)Im � smIm � nmIm � mIm, (2:1d)
_Is ¼ (1� p)hIp þ smIm þ sqQ� nsIs � dIs � mIs, (2:1e)
_Q ¼ g(M)Im � sqQ� nqQ� mQ, (2:1f)
_R ¼ nmIm þ nsIs þ nqQ� mR: (2:1g)

The model formulation is described in detail in the next subsections.

2.2. The role of information
We assume that the final choice to adhere or not to adhere to lockdown restrictions is partially
determined on a fully voluntary basis and depends on the available information concerning the
spread of the disease in the community.

The information is mathematically represented by an information index M(t) (see electronic
supplementary material, §S1 for the general definition), which summarizes the information about the
current and past values of the disease [25,26,28] and is given by the following distributed delay:

M(t) ¼
ðt
�1

k(Q(t)þ Is(t))Erl1,a(t� t) dt:

This formulation may be interpreted as follows: the first-order Erlang distribution Erl1,a(x) represents an
exponentially fading memory, where the parameter a is the inverse of the average time delay Ta of the



Table 1. Temporal horizon, initial conditions and epidemiological parameters values for model (2.1)–(2.2).

parameter description baseline value

t0 initial simulation time 24 February 2020

tf final simulation time 18 May 2020

S(t0) initial number of susceptible individuals 60.357 × 106

E(t0) initial number of exposed individuals 1.695 × 103

Ip(t0) initial number of post-latent individuals 308.8

Im(t0) initial number of asymptomatic/mildly symptomatic individuals 462.4

Is(t0) initial number of severely symptomatic (hospitalized) individuals 127.4

Q(t0) initial number of quarantined individuals 93.7

R(t0) initial number of recovered individuals 311.1

M(t0) initial value of the information index 101.9

Λ net inflow of susceptibles 1.762 × 103 d−1

μ natural death rate 10:7=1000 yr�1

R0 basic reproduction number 3.49

βb baseline transmission rate 2:25 d�1

β0 mandatory social distancing transmission rate 0− 0.74βb
ɛp modification factor w.r.t. transmission from Ip 1

ɛm modification factor w.r.t. transmission from Im 0.033

ɛs modification factor w.r.t. transmission from Is 0.034

ρ latency rate 1=5:25 d�1

η post-latency rate 1=1:25 d�1

p fraction of post-latent individuals developing no/mild symptoms 0.92

γ0 mandatory quarantine rate 0:057 d�1

σm rate at which members of Im class hospitalize 0:044 d�1

σq rate at which quarantined individuals hospitalize 0:001 d�1

δ disease-induced death rate 0:022 d�1

νm recovery rate for asymptomatic/mildly symptomatic individuals 0:145 d�1

νs recovery rate for severely symptomatic (hospitalized) individuals 0:048 d�1

νq recovery rate for quarantined individuals 0:035 d�1

Table 2. Information-dependent parameters values for model (2.1)–(2.2).

parameter description baseline value

α reactivity factor of voluntary change in contact patterns 6 × 10−7

D reactivity factor of voluntary quarantine 9 × 10−6

ζ 1− ζ is the ceiling of overall quarantine rate 0:01 d�1

a inverse of the average information delay Ta 1=3 d�1

k information coverage 0.8
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collected information, so Ta = a−1. We assume that people react in response to information and rumours
regarding the daily number of quarantined and hospitalized individuals. The information coverage k is
assumed to be positive and k≤ 1, which mimics the evidence that COVID-19 official data could be
under-reported in many cases [8,29].
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With this choice, by applying the linear chain trick [30], we obtain the differential equation ruling the

dynamics of M

_M ¼ a(k(Qþ Is)�M): (2:2)

2.3. Formulation of the balance equations
Here, we derive in details each balance equation of model (2.1).

2.3.1. Equation (2.1a): susceptible individuals, S(t)

Susceptibles are the individuals who are healthy but can contract the disease. The susceptible population
increases by the net inflow Λ, incorporating both new births and immigration (for further details,
see electronic supplementary material, §S3), and decreases by natural death—with natural death rate
μ—and following infection.

It is believed that COVID-19 is primarily transmitted from symptomatic people (mildly or severely
symptomatic). In particular, although severely symptomatic individuals are isolated from the general
population by hospitalization, they are still able to infect hospitals and medical personnel [31,32] and, in
turn, give rise to transmission from hospital to the community. The pre-symptomatic transmission (i.e. the
transmission from infected people before they develop significant symptoms) is also relevant: specific
studies revealed an estimate of 44% of secondary cases during the pre-symptomatic stage from index
cases [33]. The importance of the asymptomatic transmission (i.e. the contagion from a person infected
with COVID-19 who does not develop symptoms) is a controversial matter [34,35]. However, available
evidence suggests that asymptomatic individuals are much less likely to transmit the virus [36]. We also
assume that quarantined individuals are fully isolated and therefore unable to transmit the disease.

In summary, the compartments of individuals capable to transmit the disease are Ip, Is and Im, which
contains not only asymptomatic but also mildly symptomatic individuals.

The routes of transmission from COVID-19 patients as described above are included in the Force of
Infection (FoI) function, i.e. the per capita rate at which susceptibles contract the infection. Quarantine
at home during the lockdown led to the substantial separation of quarantined individuals from the
general population. For this reason, we consider the quarantine-adjusted FoI [37], given by

FoI ¼ b(M)
1pIp þ 1mIm þ 1sIs

N �Q
:

The transmission coefficients for Ip, Im and Is are given by ɛpβ(M ), ɛmβ(M) and ɛsβ(M ), respectively, with
0≤ ɛp, ɛm, ɛs < 1.

The function β(M ), which models how the information affects the transmission rate, is defined as a
piecewise continuous, differentiable and decreasing function of the information index M, with
β(max(M)) > 0. We assume that

b(M) ¼ p(cb � c0 � c1(M)), (2:3)

where π is the probability of getting infected during a person-to-person contact and cb is the baseline
contact rate. In (2.3), we represent the reduction in social contacts through the sum of two social
distancing contact rates: the constant rate c0, which represents the choice of social distancing due to
the restrictive measures imposed by the government, and an information-dependent voluntary rate
c1(M ), with c1( · ) increasing with M and c1(0) = 0. In order to guarantee the positiveness, we assume
cb > c0 +max(c1(M)). Following [28], we finally set

b(M) ¼ bb � b0

1þ aM
, (2:4)

namely πcb = βb (baseline transmission rate), πc0 = β0 (mandatory social distancing transmission rate) and
πc1(M ) = αM (βb− β0)/(1 + αM), where α is a positive constant tuning the reactivity factor of voluntary
change in contact patterns. For illustrative purposes, see electronic supplementary material, figure S1A.

2.3.2. Equation (2.1b): exposed individuals, E(t)

Exposed (or latent) individuals are COVID-19 infected but are not yet infectious, i.e. capable of transmitting
the disease to others. Such individuals arise as the result of new infections of susceptible individuals. The
population is diminished by development at the infectious stage (at rate ρ) and natural death.
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2.3.3. Equation (2.1c): post-latent individuals, Ip(t)

We assume that after the end of the latency period, the individuals enter a phase where they are
infectious and asymptomatic. We call this phase post-latency [38] (other authors call it pre-symptomatic
phase [11] or prodromic phase [7]). Post-latent individuals belong to two groups: a truly asymptomatic
group paIp (people that have no symptoms throughout the course of the disease) and a pre-symptomatic
group (1− pa)Ip (people who develop symptoms at the end of such a phase). The latter, in turn, splits into
two subgroups: pm(1− pa)Ip will develop mild symptoms, and (1− pm)(1− pa)Ip will develop severe
symptoms. In our model, we take p = pa + pm(1− pa). Post-latent individuals diminish due to natural
death or because they enter the compartment of asymptomatic/mildly symptomatic individuals Im (at
a rate pη) or that of severely symptomatic individuals Is (at a rate (1− p)η).

2.3.4. Equation (2.1d): asymptomatic/mildly symptomatic individuals, Im(t)

This compartment includes both the asymptomatic individuals, that is infected individuals who do not
develop symptoms, and mildly symptomatic individuals [11]. Mildly symptomatic individuals are
the only symptomatic individuals that move freely (as far as they can). There is no clear evidence of the
relevance of asymptomatic individuals in the COVID-19 transmission. However, asymptomatic
individuals test positive in screenings (pharyngeal swabs) and therefore are a part of the count of official
diagnoses. Members of this class come from the post-latent stage and get out due to quarantine (at an
information-dependent rate γ(M)), worsening symptoms (at rate σm), recovery (at rate νm) and natural death.

2.3.5. Equation (2.1e): severely symptomatic individuals (hospitalized), Is(t)

Severely symptomatic individuals are isolated fromthegeneral population byhospitalization. Theyarise: (i) as
consequence of the development of severe symptoms by mild illness (the infectious of the class Im or the
quarantined Q); (ii) directly from the fraction 1− p of post-latent individuals that rapidly develop severe
illness. This class diminishes by recovery (at rate νs), natural death and disease-induced death (at rate δ).

2.3.6. Equation (2.1f ): quarantined individuals, Q(t)

Quarantined individuals Q are those who are separated from the general population.
The basic idea is to characterize the quarantined compartment in away that its temporal evolution can be

compared with official data. Therefore, we assume that quarantined individuals are asymptomatic/mildly
symptomatic individuals. As a matter of fact, the Italian government daily released the number of
detected COVID-19 positive cases, which was approximately given by quarantined at home and
hospitalized individuals. Self-isolation of susceptible and post-latent individuals is implicitly incorporated
in the social distancing term. As for exposed individuals, the permanence in that class is shorter than the
infectious classes, hence the potential self-isolation effect of this population on the model dynamics is
considered negligible here. We point out that other compartments, like the susceptible or the exposed
compartments, could be also split into quarantined and non-quarantined individuals (e.g. [39]).

Quarantined individuals diminish by natural death, aggravation of symptoms (at rate σq, so that they
move to Is) and recovery (at a rate νq).

Quarantine may arise in two different ways. On one hand, individuals may be detected by health
authorities and daily checked. Such active health surveillance ensures also that the quarantine is, in
some extent, respected. On the other hand, a fraction of quarantined individuals chooses self-isolation
since they are confident in the government handling of the crisis or just believe the public health
messaging and act in accordance [40].

We assume that the final choice to respect or not respect the self-quarantine depends on the
awareness about the status of the disease in the community. Therefore, we define the information-
dependent quarantine rate as follows:

g (M) ¼ g0 þ g1(M), (2:5)

where the rate γ0 mimics the fraction of the asymptomatic/mildly symptomatic individuals Im that has
been detected through screening tests and is ‘forced’ into home isolation. The rate γ1(M ) represents
the undetected fraction of individuals that adopt quarantine by voluntary choice as result of the
influence of the circulating information M. The function γ1( · ) is required to be a piecewise
continuous, differentiable and increasing function w.r.t. M, with γ1(0) = 0. As in [25,26], we set

g1(M) ¼ (1� g0 � z)
DM

1þDM
, (2:6)
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where D is a positive constant tuning the reactivity factor of voluntary quarantine, and ζ is a constant such

that 0 < ζ < 1− γ0. The quantity 1− γ0− ζ is the value of the quarantine rate by voluntary choices γ1(M) that
can be reached in the case of a high level of circulating information (i.e. a high level of social alarm, ideally
represented byM→ +∞). This means that the total quarantine rate γ(M) = γ0 + γ1(M) reaches a ceiling value
of 1− ζ under circumstances of very high perceived risk. A representative trend of γ(M) is displayed in
electronic supplementary material, figure S1B.

2.3.7. Equation (2.1g): recovered individuals, R(t)

After the infectious period, individuals from the compartments Im, Is and Q recover at rates νm, νs and νq,
respectively. Natural death is also considered. We assume that recovered individuals acquire long-lasting
immunity against COVID-19, although this is a currently debated question (as of 22 May 2020) and there
is still no evidence that COVID-19 antibodies protect from re-infection [41].

3. The reproduction numbers
A frequently used indicator for measuring the potential spread of an infectious disease in a community is
the basic reproduction number, R0, namely the average number of secondary cases produced by one
primary infection over the course of the infectious period in a fully susceptible population. If the
system incorporates control strategies, then the corresponding quantity is named the control
reproduction number and is usually denoted by RC (obviously, RC , R0).

The reproductionnumber can be calculated as the spectral radius of thenext generationmatrixFV−1,whereF
and V are defined as Jacobian matrices of the new infection appearance and the other rates of transfer,
respectively, calculated for infected compartments at the disease-free equilibrium [42]. In this specific case, if
β(M) = βb and γ(M) = 0 in (2.1)–(2.2), namely when containment interventions are not enacted, we obtain the
expression forR0; otherwise, the correspondingRC can be computed. Simple algebra yields

R0 ¼ bbr
1p

B1B2
þ 1mph
B1B2B3

þ 1s(1� p)h
B1B2B6

þ 1sphsm

B1B2B3B6

� �

and

RC ¼ (bb � b0)r
1p

B1B2
þ 1mph
B1B2B4

þ 1s(1� p)h
B1B2B6

þ 1sphsm

B1B2B4B6
þ 1sphg0sq

B1B2B4B5B6

� �
, (3:1)

with

B1 ¼ rþ m, B2 ¼ hþ m, B3 ¼ sm þ nm þ m,
B4 ¼ g0 þ sm þ nm þ m, B5 ¼ sq þ nq þ m, B6 ¼ ns þ dþ m:

A more detailed derivation and interpretation of the reproduction numbers are given in electronic
supplementary material, §S2.

4. Parametrization
Numerical simulations are performed in Matlab [43]. We use the ode45 solver for integrating the system
and the platform-integrated functions for getting the plots.

The epidemiological parameters of the model as well as their baseline values are reported in table 1.
In the same table, simulation time frame and initial conditions are given. A detailed derivation of such
quantities is reported in electronic supplementary material, §S3 and §S4.

In the next subsections, we focus on the numerical implementation of lockdown restrictions and
ensuing changes in social behaviour.

4.1. The effects of the lockdown on transmission
We explicitly reproduce in our simulations the effects of the restrictions posed to human mobility and
human-to-human contacts in Italy. Their detailed sequence is summarized in electronic supplementary
material, §S5.

Because data early in an epidemic are inevitably incomplete and inaccurate, our approach has been to
try to focus on what we believe to be the essentials in formulating a simple model. Keeping this in mind,
we assume that the disease transmission rate occurs in just two step reductions (modelled by the
mandatory social distancing transmission rate β0 in (2.4)), corresponding to
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— 12 March (day 17), i.e. after the first rapid succession of lockdown decrees [5], which cumulatively
resulted in a sharp decrease of SARS-CoV-2 transmission;

— 23 March (day 28), that is the starting date of the full lockdown [4] that definitely impacted the disease
incidence.

In the wake of [8,9], we account for a first step reduction by 64% (that is βb− β0|17≤t<28 = 0.36βb), which
drops the control reproduction number (3.1) close to 1 (see figure 2, dotted black and red lines). It is then
strengthened by about an additional 28%, resulting in a global reduction by 74% (βb− β0|t≥28 = 0.26βb)
that definitely brings RC below 1 (see figure 2, dotted black and blue lines).

4.2. Information-dependent parameters
The information-related parameter values are reported in table 2 together with their baseline values.

Following [25,26], we set z ¼ 0:01 d�1 potentially implying an asymptotic quarantine rate of 0:99 d�1

if we could let M go to +∞. As mentioned in §2, the positive constants α and D tune the information-
dependent reactivity. In particular, α is the reactivity factor of voluntary changes in contact pattern by
susceptible and infectious individuals; D is the reactivity factor of voluntary quarantine by individuals
with no or mild symptoms. Since the variability of contact rate is strongly affected by limitations
imposed by government decrees, we assume that the reactivity in choosing self-isolation in response
to information is greater than the reactivity in reducing contacts, that is D > α.

The range of values for the information coverage k and the average time delay of information Ta = a−1

are mainly assumed or taken from papers where the information index M is used [25,26,28,44]. The
information coverage k may be seen as a ‘summary’ of two opposite phenomena: the disease under-
reporting, and the level of media coverage of the status of the disease, which tends to amplify the
social alarm. It is assumed to range from a minimum of 0.2 (i.e. the public awareness is 20%) to
1. The average time delay of information Ta ranges from the case of prompt communication (say,
Ta ¼ 1 day) to the case of large delay (say, Ta ¼ 60 days).

The baseline values of the parameters α, D, k and a are obtained by comparing the model solutions
with the official data regarding the number of hospitalized individuals (Is), the number of quarantined
individuals (Q) and the cumulative deaths as released every day since 24 February 2020 by the Italian
Civil Protection Department and archived on GitHub [6].

We get α = 6 × 10−7 and D = 9 × 10−6. With this choice, numerical simulations not displayed here show
that the maximum order of magnitude reached by the information indexM in the time span considered is
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individuals (c) and cumulative deaths (d ). The predicted evolution (black solid lines) is compared with the unresponsive case
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equal to 105. Moreover, we obtain k = 0.8 and Ta ¼ 3 days, meaning a level of awareness about the daily
number of quarantined and hospitalized individuals of 80%, resulting from the balance between
underestimates and media amplification and inevitably affected by rumours and misinformation
spreading on the web (the so-called infodemic [45]). Such awareness is not immediate, but
information takes on average 3 days to be publicly disseminated, the communication being slowed by
a series of articulated procedures: timing for swab tests results, notification of cases, reporting delays
between surveillance and public health authorities, and so on.

Of course, parameters setting is influenced by the choice of curves to fit. Available data seem to
provide an idea about the number of identified infectious people who have developed mild/moderate
symptoms (the fraction that mandatorily stays in Q) or more severe symptoms (the hospitalized, Is)
and the number of deaths, but much less about those asymptomatic or with very mild symptoms
who are not always subjected to a screening test.
5. Numerical results
Let us consider the time frame [t0, t], where t0 ≤ t≤ tf. We consider two relevant quantities, the cumulative
incidence CI(t), i.e. the total number of new cases in [t0, t], and the cumulative deaths CD(t), i.e. the disease-
induced deaths in [t0, t].

For model (2.1)–(2.2), we have, respectively

CI(t) ¼
ðt
t0
b(M(t))

S(t)
N(t)�Q(t)

(1pIp(t)þ 1mIm(t)þ 1sIs(t))dt,

where β(M ) is given in (2.4), and

CD(t) ¼
ðt
t0
dIs(t) dt:

In figure 3, the time evolution in [t0, tf ] of CI(t) and CD(t) is shown (figure 3a and figure 3d ), along with
that of quarantined individuals Q(t) (figure 3b) and hospitalized individuals Is(t) (figure 3c). The role
played by information on the public compliance with mitigation measures is stressed by the
comparison of the baseline scenario with the unresponsive case (α =D = 0 in (2.1)–(2.2)), that is the case
when circulating information does not affect disease dynamics. Corresponding dynamics are labelled
by black solid and red dashed lines, respectively.

In the unresponsive case, the cumulative incidence is much less impacted by the lockdown
restrictions in comparison with the baseline scenario (11.45 × 105 versus 7.85 × 105 on 18 May).
Furthermore, in this case, the quarantined individuals given by the model are only those that choose
self-isolation when ‘forced’ by public health authorities after detection. That is to say, the quarantined
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individuals predicted by the model reduce to those ones officially detected (i.e. what is counted in the
official data). As a consequence, the peak of hospitalized patients is about 77% higher and 10 days
time-delayed, with a corresponding increase in cumulative death of more than 100%. For all reported
dynamics, the deviation between the baseline and the unresponsive case starts to be clearly
distinguishable after the first step reduction of 64% in transmission rate (on 12 March).

Trends are also compared with officially disseminated data [6] (figure 3, blue dots), which seem to
conform accordingly for most of the time horizon, except for CI, which suffers from an inevitable and
probably high underestimation [8,9,11,29]. As of 18 May 2020, we estimate about 785 000 infections,
whereas the official count of confirmed infections is 225 886 [6].

We now investigate how the information parameters k and a may affect the epidemic course.
More precisely, we assess how changing these parameters affects some relevant quantities: the peak of
quarantined individuals max(Q) (i.e. the maximum value reached by the quarantined curve in [t0, tf ]),
the peak of hospitalized individuals max(Is), the cumulative incidence CI(tf ) evaluated at the last day of
the considered time frame, i.e. tf = 85 (corresponding to 18 May 2020), and the final cumulative deaths
CD(tf ).

The results are shown in the contour plots in figure 4. As expected, CI(tf ), max(Is) and CD(tf ) decrease
proportionally to the information coverage k and inversely to the information delay Ta: they reach the
minimum for k = 1 and Ta ¼ 1 day. Differently, the quantity max(Q) may not monotonically depend
on k and Ta as it happens for k≥ 0.6 and Ta � 15 days (see figure 4b, lower right corner). In such
parameter region, for a given value of k (resp. a) there are two different values of a (resp. k) which
correspond to the same value of max(Q). The absolute maximum (max[k,Ta] (max(Q))) is obtained for
k = 1 and Ta � 7 days. Note that the pair of values k = 1, Ta ¼ 1 day corresponds to the less severe
outbreak, but not with the highest peak of quarantined individuals.

In what follows, we compare the relative changes for these quantities w.r.t. the unresponsive case. In
other words, we introduce the index

RX ¼ X � X0

X0 ,

which measures the percentage relative change of X∈ {CI(tf ), max(Q), max(Is), CD(tf )} w.r.t. the
corresponding quantity X0 predicted by model (2.1)–(2.2) with α =D = 0.

All the possible values arising in the parameter ranges k∈ [0.2, 1] and Ta [ [1, 60] days are shown
in electronic supplementary material, figure S2. However, we report in table 3 the results
corresponding to the unresponsive case and to three example responsive cases, the baseline and
two extremal ones



Table 3. Exact and relative values of final cumulative incidence CI(tf ), the peak of quarantined individuals max(Q), the peak of
hospitalized individuals max(Is) and final cumulative deaths CD(tf ), for three combinations of information parameters k and Ta
(second to fourth row), in comparison with the unresponsive case: α = D = 0 in (2.1)–(2.2) (first row). Other parameters values
are given in tables 1 and 2.

case CI(tf ) RCI(tf ) max(Q) Rmax(Q) max(Is) Rmax(Is) CD(tf ) RCD(tf )

α = D = 0 11.45 × 105 0 0.82 × 105 0 6.09 × 104 0 7.00 × 104 0

k = 0.8, Ta = 3 d 7.85 × 105 −0.31 2.08 × 105 1.53 3.45 × 104 −0.43 3.48 × 104 −0.50
k = 1, Ta = 1 d 7.27 × 105 −0.37 2.05 × 105 1.49 3.10 × 104 -0.49 3.12 × 104 −0.55
k = 0.2, Ta = 60 d 10.83 × 105 −0.05 1.30 × 105 0.58 5.70 × 104 −0.06 6.21 × 104 −0.11
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(i) the baseline scenario k = 0.8, Ta ¼ 3 days, which is close to the best possible fitting with official
data, given the model and the considered parameter ranges;

(ii) the case of highest information coverage and lowest information delay, k = 1, Ta ¼ 1 day;
(iii) the case of lowest information coverage and highest information delay, k = 0.2, Ta ¼ 60 days.

Compared with the baseline scenario, a more accurate and faster communication (case (ii)) would

drive to a significant reduction of CI(tf ), max(Is) and CD(tf ) (more precisely, by 37%, 49% and
55%, respectively, see table 3, third row). Moreover, even the worst possible information-based
scenario (case (iii)) is significantly better than the unresponsive case (compare first and fourth rows in
table 3).

As mentioned above, information and rumours regarding the status of the disease in the community
affect the transmission rate β(M ) (as given in (2.4)) and the quarantine rate γ (M) (as given in (2.5)).

In our last simulation, we want to emphasize the role of the information coverage on the quarantine
and transmission rates. In figure 5, a comparison with the case of low information coverage, k = 0.2, is
given assuming a fixed information delay Ta ¼ 3 days (blue dotted lines). It can be seen that more
informed people react and quarantine: an increasing of the maximum quarantine rate from 0.32 to
0:69 d�1 (which is also reached a week earlier) can be observed when increasing the value of k to k = 1
(figure 5b).

The effect of social behavioural changes is less evident in the transmission rate where increasing the
information coverage produces a slight reduction of the transmission rate mainly during the full
lockdown phase (figure 5a). This reflects the circumstance that the citizens choice of social
distancing is not enhanced by the information-induced behavioural changes during the first stages
of the epidemic.
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6. Conclusion

In this work, we propose a mathematical approach to investigate the effects on the COVID-19 epidemic of
social behavioural changes in response to lockdowns.

Starting from an SEIR-like model, we assume that the transmission and quarantine rates are
partially determined on a voluntary basis and depend on the circulating information and rumours
about the disease, modelled by a suitable time-dependent information index. We focus on the case of
the COVID-19 epidemic in Italy and explicitly incorporate the progressively stricter restrictions
enacted by the Italian government, by considering two step reductions in the contact rate (the partial
and full lockdowns).

The main results are as follows:

— we estimate two fundamental information-related parameters: the information coverage regarding
the daily number of quarantined and hospitalized individuals (i.e. the parameter k) and the
information delay (the quantity Ta = a−1). The estimate is performed by comparing the model’s
solutions with official data. We find k = 0.8, which means that the public was aware of 80% of real
data and Ta ¼ 3 days, the time lag that was necessary for information to reach the public;

— social behavioural changes in response to lockdowns played a decisive role in curbing the
epidemic curve: the combined action of voluntary compliance with social distance and
quarantine resulted in preventing a duplication of deaths and about 46% more infections (i.e.
approx. 360 000 more infections and 35 000 more deaths compared with the unresponsive case, as
of 18 May 2020);

— even under circumstances of low information coverage and high information delay (k = 0.2,
Ta ¼ 60 days), there would have been a beneficial impact of social behavioural response on
disease containment: as of 18 May, cumulative incidence would be reduced by about 5% and
deaths by about 11%.

Shaping the complex interaction between circulating information, human behaviour and epidemic
disease is challenging. In this manuscript, we give a contribution in this direction. We provide an
application of the information index to a specific field-case, the COVID-19 epidemic in Italy, where the
information-dependent model is parametrized and the solutions are compared with official data.

Our study presents limitations that leave the possibility of future developments. In particular: (i) the
model captures the epidemics at a country level but it does not account for regional or local
differences and for internal human mobility (the latter having been crucial in Italy at the early stage
of the COVID-19 epidemic). (ii) The model does not explicitly account for ICU admissions. The
limited number of ICU beds constituted a main issue during the COVID-19 pandemics [46]. This
study does not focus on this aspect but ICU admissions could be certainly included in the model. (iii)
The model could be extended to include age structure. Age was particularly relevant for COVID-19
lethality rate (in Italy, the lethality rate for people aged 80 or over was more than double the average
value for the whole population [47]).

Further developments may also concern the investigation of optimal intervention strategies during
the COVID-19 epidemics and, to this regard, the assessment of the impact of vaccine arrival. In this
case, the approach of information-dependent vaccination could be employed [24,26,44].

Data accessibility. Numerical simulations are performed in Matlab version R2019b by routinely implemented algorithms.
We use the ode45 solver for integrating the model system and the platform-integrated functions for getting the plots.
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