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The development of metal-free organic reactions is one of the

hotspots in the synthesis of cyclic compounds. ROTf (alkyl

trifluoromethanesulfonates), due to their good electrophilicity,

are powerful alkylating reagents at heteroatoms such as

nitrogen, oxygen, sulfur and phosphorus to induce an

electrophilic centre for carbon–carbon or carbon–heteroatom

bond formation. Inspired by this chemistry, a variety of

research concentrating on heterocycles synthesis has been

carried out. In this review, we mainly summarize the ROTf-

induced annulation of heteroatom reagents such as nitriles,

carbodiimides, azobenzenes, isothiocyanates, aldehydes,

isocyanates and phosphaalkene with themselves or alkynes to

afford cyclic compounds.
1. Introduction
Heterocycles are ubiquitous in natural products, pharmaceuticals,

organic materials and numerous functional molecules. Therefore,

organic chemists have been making extensive efforts to produce

these heterocyclic compounds by developing new and efficient

synthetic transformations. Transition-metal-catalysed reactions are

some of the most attractive methodologies for synthesizing

heterocycles, because a transition-metal-catalysed reaction can

directly construct complicated molecules from readily accessible

starting materials under mild conditions [1–6]. Nevertheless,

transition-metal-catalysed reactions are still limited in applications

and confront challenges to some extent, because transition-metals

are expensive, toxic, inconvenient for operation and environment

damage. In this regard, a transition-metal-free methodology for the

construction of important heterocyclic compounds in drug

discovery and material science has attracted attention [7–15]. ROTf
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Scheme 1. ROTf-mediated reactions.
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(alkyl trifluoromethanesulfonates) are powerful alkylating reagents, which are frequently used in alkylation of

nucleophiles [16–18]. Benefiting from fluorine in –OTf to stabilize the negative charge, –OTf possesses

excellent leaving ability, which makes the ROTf much more reactive as alkylation reagents than alkyl

iodide and (MeO)2SO2. As useful and versatile precursors in a variety of organic transformations, many

methods have been developed to prepare ROTf, such as the reaction of orthoformates and triflic anhydrides

under solvent-free condition [19–26]. The intrinsic electrophilicity of ROTf is often used as alkylation

reagents for diverse substrates containing heteroatoms such as P [27], O [28], N [29–31], S [32,33], Te [34],

Ge [35], Bi [36], Si [37] and Se [38,39], which straightforwardly affords the corresponding alkylated

products with aid of base or stable triflates irreversibly that even could be applied as ionic liquids [40,41].

Moreover, the resulting triflates could be further transformed into other products by substitution [30,42–44]

(scheme 1a). On the other hand, unsaturated heteroatom-containing reagents, such as nitriles, aldehydes,

isocyanates and isothiocyanates, could be captured by ROTf to generate electrophiles bearing carbon

cations [29,31,45,46], which could be subsequently reacted with appropriate unsaturated substrates to

produce cyclic compounds by tandem electrophilic reactions/cyclization (scheme 1b); although HOTf or

HNTf2 as a catalyst or promoter also demonstrated excellent electrophilic cyclization involving alkynes or

alkenes. However, preparing highly functionalized heterocycles is still difficult. ROTf-induced cyclization

featuring metal-free, easy to handle and good selectivity provided a feasible approach to diverse

heterocyclic compounds. In this review, we mainly focus on the ROTf-induced annulation of unsaturated

heteroatom reagents such as nitriles, carbodiimides, azobenzenes, isothiocyanates, aldehydes, isocyanates

and phosphaalkene with themselves or alkynes to afford cyclic compounds.
2. ROTf-induced annulation of nitrogen-containing substrates with
unsaturated compounds

2.1. ROTf-induced annulation of nitriles
Nitriles as unsaturated heteroatom reagents could react with ROTf to form N-alkylated nitriliums, which

were well investigated by Booth et al. [31] in 1980. However, electrophilicity of N-alkylated nitriliums has

rarely been used in further reactions until recently. In 2014, our group [47] reported MeOTf-induced

carboannulation of arylnitriles and aromatic alkynes to construct indenones 1 (scheme 2). Triflate 3

was isolated when 5-decyne was used indicating I-1 might be an intermediate in this reaction.

A range of functionalized indenone derivatives was obtained. When ortho-substituted arylnitriles

were used, indenone imine I-2 would further cyclize with another molecule of nitriliums to give

indeno[1,2-c]-isoquinolines 2 with the construction of one carbocycle and one heterocycle. Although

transition-metal-catalysed annulation of benzimide or arylcarbonyl and arylnitrile with alkynes to the

formation of indenones has been reported (for examples, see [48–55]), this reaction reveals a simple

reaction process for the synthesis of indenones under metal-free conditions.

Arylnitriles and alkynes could be induced by MeOTf to afford indenones via intermediate I-5. We

envisioned the utilization of alkylnitriles, which lack an aryl group for the ring closure, might lead to a

different way for ring formation. To our delight, the reaction of alkylnitriles, alkynes and MeOTf

indeed afforded tetrasubstituted NH-pyrroles 4 with high regioselectivity. The structure includes one

carbon from ROTf to join the pyrroles [56] (scheme 3). It is noteworthy that the cyclized pyrrole captures
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Scheme 2. MeOTf-induced cyclization of arylnitriles and alkynes.
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Scheme 3. ROTf-induced cyclization of alkylnitriles and alkynes.
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another nitrilium leading to substituted 2-acyl-NH-pyrroles after hydrolysis. When EtOTf was used instead of

MeOTf, the product 5 was obtained. This reaction provides a practical and convenient method for the synthesis

of multiply substituted 2-acylpyrroles from readily available starting materials in a one-pot reaction.

Furthermore, when 1,2-diphenylethyne and 1,2-di-p-tolylethyne were employed to react with MeOTf

and alkylnitriles at 1308C, the isoquinolines 6 were obtained in good yields via intermediate I-9. The
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representative results are summarized in scheme 4. In the cases, the Friedel–Crafts reaction is favoured to

give 6-membered products.
2.2. ROTf-induced annulation of carbodiimides
More recently, ROTf-induced electrophilic cyclization was extended to carbodiimides. Our group

demonstrated an efficient ROTf-triggered intermolecular cyclization of carbodiimides to afford a range of

2-amino-4-imino-quinazolines 7, 2-aminoquinazolinones 8 and 2,4-diaminoquinazolines 9, respectively,

which are important motifs in pharmaceuticals [57]. When N,N’-diarylcarbodiimides were employed, the

reaction proceeded smoothly to afford the corresponding 2-amino-4-imino-quinazolines 7, which could

be hydrolysed to generate the corresponding 2-aminoquinazolinones 8. The representative results are

shown in scheme 5.

To further extend the substrate scope, a combination of two different carbodiimides has been achieved.

A range of diarylcarbodiimides and dialkylcarbodiimides was investigated under the optimized reaction

condition. The representative results are shown in scheme 6. A plausible mechanism was proposed. First,

the carbodiimide is methylated by MeOTf and subsequently attacked by another molecule of carbodiimide

to give intermediate I-11. Then, the intramolecular nucleophilic attack takes place to afford the

four-membered intermediate I-12, which generates carbenium I-13 after ring opening via C–N bond

cleavage. Finally, intramolecular Friedel–Crafts annulation occurs to form the corresponding quinazolinone

imine 7, which could give 2,4-diamino-quinazoline 9 (R ¼ alkyl group) and 2-amino-quinazolinone 8 (R ¼

aryl group) after hydrolysis. This annulation reaction appears a general entry to the synthesis of

2-aminoquinazolinones and 2,4-diaminoquinazolines in a one-pot reaction under metal-free conditions.
2.3. ROTf-induced annulation of azobenzenes
Apart from nitriles and carbodiimides, azobenzenes are also significant nitrogen-containing compounds,

which possess Lewis alkalinity. In 2014, we demonstrated MeOTf-induced cyclization of azobenzenes

by N¼N bond cleavage with aid of TCQ (tetrachloro-1,4-benzoquinone) as oxidant to afford

N-arylbenzimidazoles 10 [58] (scheme 7). When unsymmetrical azobenzenes were used, cyclization tends to

occur on the electron-rich anisolyl ring (10e–10g). EtOTf could facilitate N¼N bond cleavage as well to

generate 2-methylbenzimidazole 10h. Although the reaction mechanism is not clear, a plausible mechanism

is shown in scheme 7. The carbon atom from MeOTf inserts into the N¼N bond and then cyclization to

form N-arylbenzimidazole. This is the first example of N¼N bond cleavage by a light main group element.
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3. ROTf-induced annulation of sulfur-containing substrates with alkynes
3.1. ROTf-induced annulation of arylisothiocyanates
The isothiocyanates possess the chemical group –N¼C¼S, which represents versatile reactivity in the synthesis

of nitrogen- or sulfur-containing heterocycles. Comparativelyspeaking, the sulfur atom is strongly nucleophilic.

Recently, we reported MeOTf as an electrophile [59] to react with aryisothiocyanates and alkynes leading to

diverse highly substituted quinolones. The representative results are shown in scheme 8. A tandem

electrophilic activation/cyclization via intermediate I-18 is believed to be a possible process. This reaction

demonstrated superiority on substrate scope for isothiocyanates. Furthermore, unsymmetrical alkynes such

as terminal alkynes, (bromoethynyl) benzenes, even alkynes containing ester group could be applied in this

reaction. In addition, alkyltriflates bearing C–C triple bond gave polycyclic quinolines 11d via sequent

cyclization process. Great effort has been paid in the transformation of a thioalkoxyl group such as oxidation,

reduction and cross-coupling reaction, which make this method more powerful in organic synthesis [59].

This reaction represents a concise, metal-free and one-pot method for synthesis of functionalized quinolines.

3.2. ROTf-induced annulation of alkylisothiocyanates
Substitution of arylisothiocyanates with alkylisothiocyanates that lack an aryl group for the ring closure might

lead to a new reaction mode. To our delight, the reaction proceeded well to afford indenone 12 after hydrolysis

[60]. A range of arylalkynes could be employed in this reaction. The representative results are summarized in

scheme 9. A plausible mechanism is also described in scheme 9. MeOTf as an electrophile reacts with

isothiocyanate to form methylthio-substituted carbenium ion I-19, which followed the reaction with

arylalkyne to form intermediate I-20. Utilization of the arylisothiocyanate affords quinoline 11. Without aryl

group in the alkylisothiocyanate, the nucleophilicity-strong sulfur atom attacks carbenium of I-20 to form

four-membered thiete I-21, which could be followed by ring opening with the C–S bond cleavage to form

carbenium I-23 via intermediate I-22. Finally, intramolecular Friedel–Crafts reaction of I-23 affords
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Scheme 6. ROTf-induced cyclization of diarylcarbodiimides and dialkylcarbodiimides.
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indenone imine I-24, which undergoes hydrolysis to form indenone 12. This reaction represents the first

example of cleavage C–S bond in the isothiocyanate for construction of the carbocyclic compound under

metal-free conditions.

More recently, Li and co-workers [61] reported MeOTf-induced intramolecular cyclization of

isothiocyanates to afford 1-(methylthio)-3,4-dihydroisoquinolines 13 (scheme 10). The reaction may

process by a tandem electrophilic activation and intramolecular Friedel–Crafts reaction.
4. ROTf-induced annulation of oxygen-containing substrates
4.1. ROTf-induced annulation of aldehydes
Apart from S- and N-reagents that could react with ROTf straightforwardly, O-reagents also

demonstrated a good affinity with ROTf. As a part of ongoing projects on the alkyltriflate-triggered

annulation, a reaction of MeOTf, aldehydes and arylalkynes was investigated [62] and a variety of

2,3-disubstituted 1-indanones was obtained. The representative results are shown in scheme 11. It is
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noteworthy that a catalytic amount of MeOTf was employed and the reaction proceeded in satisfactory

yield. Although the reaction mechanism is not clean, a plausible mechanism is shown at the bottom of

scheme 11. First, MeOTf as an electrophile reacts with an aldehyde to afford the oxonium I-25, which

couples with alkyne to form the highly active oxetenium intermediate I-26 via [2 þ 2] cycloaddition.
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Then, the intermediate I-26 undergoes spontaneous isomerization to form the 4p-Nazarov intermediate

I-27, followed by Nazarov cyclization to give 1-indanone 14 and regeneration of MeOTf. This reaction

provides a practical and convenient method for the synthesis of 2,3-disubstituted 1-indanones from

readily available starting materials via MeOTf-induced catalysis.
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Scheme 11. MeOTf-induced cyclization of aldehyde with arylalkynes.
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4.2. ROTf-induced annulation of arylisocyanates
Isocyanate is the functional group with the formula R–N¼C¼O, in which N and O may both be

alkylated by ROTf. We investigated a reaction of MeOTf, arylisocyanates and arylalkynes [63].

Notably, a range of 4-methoxyl-2,3-diarylquinolines 15 was obtained in good yields and the

representative results are shown in scheme 12. Based on the results, a tandem [2 þ 2] cycloaddition

and intramolecular Friedel–Crafts reaction may be included in the reaction pathway. It is noteworthy

that this reaction has limitations with only diarylalkynes and MeOTf for the construction of

4-methoxyl-2,3-diarylquinolines 15.

Phenanthridinones are extensively found in natural products and bioactive molecules. We envisioned

that MeOTf-induced intramolecular annulation of 2-phenyl aryllisocyanates would provide a pathway

for the synthesis of phenanthridinones. During the course of our study on the CO2 chemistry [64–67],

we found a one-pot method for the synthesis of phenanthridinones [68] based on the MeOTf- and

TBD-mediated carbonylation of ortho-arylanilines with CO2. The representative results and reaction

pathway are shown in scheme 13. This reaction shows MeOTf-induced carbonylation reaction of o-

arylanilines applying CO2 as the ideal carbonyl source to synthesize phenanthridinones containing a

free (NH)-lactam motif under metal-free conditions.
5. ROTf-induced annulation of phosphorus-containing substrates
In 2006, Bates & Gates [69] used the strong electrophilicity of MeOTf in the synthesis of highly strained

four-membered phosphorus heterocycles with phosphaalkenes as a precursor (scheme 14). The structure
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of the unprecedented diphosphetanium salt 17 was identified by single crystal X-ray diffraction.

Although the reaction mechanism is not clean, this reaction demonstrated a convenient method for

synthesis of highly strained phosphorus heterocycles, which may be used as a propagating species in

the cationic polymerization of phosphaalkenes.
lsocietypublishing.org
R.Soc.open

sci.5:181389
6. Conclusion and future outlook
ROTf has been a powerful reagent in organic synthesis featuring efficient, metal-free and easy of

handing. A range of heteroatom-containing unsaturated reagents such as nitriles, carbodiimides,

azobenzenes, isothiocyanates, aldehydes, isocyanates and phosphaalkene could be alkylated by the

ROTf to generate reactive intermediates, which are capable of capturing other electrophilic substrates

to afford cyclic compounds with a rational design. The strong electrophilicity of ROTf has bestowed

the heteroatom-containing reagent quite unique versatility as a catalyst, promoter or reactant in a

wide range of organic transformations, including carbon–carbon and carbon–heteroatom bond

formation processes. The synthetic methodology to various carbocyclic and heterocyclic compounds

has been widely developed. Although ROTf has exhibited great value for the synthesis of cyclic

compounds, further exploration is required for the utilization of functionalized ROTf reagents and

other heteroatom reagents such as organoselenium, organophosphorus substrates for synthesis of

functionalized compounds. Furthermore, ROTf-induced unsaturated heteroatom-containing reagents

to generate electrophiles bearing carbon cations could be involved in new approaches in many

synthetic organic reactions under mild and metal-free conditions. Moreover, ROTf-induced [2 þ 2]

cycloaddition to afford four-member ring intermediates proposed to elucidate surprising

rearrangements still needs firm evidence. We anticipate that ROTf can be extended to more organic

reactions in organic synthesis.
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