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The work of Kleene [1] and of Rabin and Scott [2] has

provided the impetus for the current interest in the alge-

braic properties of the classes of languages corresponding

to various classes of automata or accepting devices. As a

result of the recent studies of Ginsburg and Greibach [3],

a uniform method of procedure has been employed for research

in this direction. They considered six basic operations,

that of union (+) , concatenation (.), Kleene star (*),

regular event intersection, homomorphism, and inverse

homomorphism, and defined a (full) "abstract family of

languages" as a non-empty class of events closed under

these "AFL" operations. The class of regular events then

becomes the 'smallest' (full) AFL and the need for regu-

larity is fundamental for the study of AFL's . If we let

S be a collection of events (over a finite alphabet) closed

under the regular operations of + ,., and *, then the

question of the closure of a class of events /C in S under

regular intersection, homomorphism, and inverse homomorphism

becomes one of examining the ^-/class-preserving operators

for S. In addition, the algebraic structure of S induces





2.

an algebraic structure on the class, & [S] say, of operators

for S, that is, for fi and y in &Z s], we define:

(fi + V) [E] = n[E] + 1»[E] ,

ny[E] = n[v[E]],

fl*[E] = E + fi[E] + G.G[E] +

for an event E in S . Thus we are led to an investigation

of the algebra of operators for S, and in particular, to a

study of the regular algebras of class-preserving operators

for S. Defining a regulator as an operator which maps

regular events to regular events, our basic aim in this

dissertation is to study the algebra of regulators and we

show that the questions on the closure properties for

various classes of events then find a natural setting in

this context.

Chapter 1 is an introduction to the theory of operators

For arbitrary classes of events QL , §-> , and C- , we introduce

(0
the notion of a class of generalized transductions, [32] >

the operators of which are C* -class functions over a finite

number of ordered pairs of the form,
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[rj = { [ J |weA, A an event in O- and veB, B an event in 63 }

,

B V

where the composition is component wise, and we establish

some preliminary results on their properties. We then

prove a general theorem on the Peirce product of two

transductions which nas many implications.

In Chapter 2, we show that the general theorem provides

us with a large class of regulators, the operator class,

["^ ] , where ^& is the collection of arbitrary events,

and Q^ is the collection of regular events. This class

includes the operations of homomorphism, inverse homo-

morphism, regular event intersection, regular substitution,

inverse substitution, event derivation or quotient, regular

event "shuffling", and many others. We also obtain several

characterizations of full AFL's, and full AFL's closed under

full substitution, in terms of generalized transductions.

Chapter 3 is an investigation of several classes of

regulators which themselves form regular algebras. Of

special interest is the class of total regulators , operators

which map every event to a regular event, and it is shown

that this class can be inserted into any regular algebra

of regulators. We then consider the effect of the regulators

on the context-free languages, and contrast the results with
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the first part of the chapter.

In Chapter 4, the algebra of commutative regular

events is studied. We establish its algebraic properties

and provide a proof that the axiom scheme of Redko suffices

to prove all tautologies in the algebra. We also point out

the flaw in Redko 's original proof.

Employing the structure developed in Chapter 4, the

last chapter is a study of the regulators for commutative

events. We first show that regular equations of a certain

form have regular solutions, and obtain Parikh's theorem

on the commutative image of a context-free language as a

special case. We then examine the properties of the regu-

lators for commutative events analogously to the non-

commutative case of Chapters 1-3, and conclude with some

conjectures about a very large class of regulators for the

commutative events, the proof of which might have several

interesting implications in the study of the context-free

languages

.

Preliminaries

Let Z be an infinite set of symbols, called letters .

A word is a finite formal sequence of letters in Z, possibly

empty, and an event is a set of words over a finite subset





of Z, the alphabet V say. As usual, we do not distinguish

between a letter and the corresponding word of length 1,

nor between a word and the corresponding event of

cardinal 1. We will denote letters as a, b, ..., words as

w, v, ..., and events as E, F, ..., . We define:

E + F = E ^ F, the set union of E and F,

E.F = (ef|e,f words, eeE, feF}, (E.F can be written EF)

,

E*=l+E+E 2 +...= I E
n

,

n>0

where E° = 1, the empty word, E
n

= E.(En_1 ),

T E = U E for an index set A,
aeA aeA

and we partially order events by defining

E <_ F if and only if E + F = F.

A standard algebra , S, is a set with three operations

Z, . , *, defined on it, called the standard operations ,

with special elements 1, (the empty event) , such that

SI: I E = if A is the empty set,
aeA

S2:
. I I E - J E
aeA 6eB P

ge (IB P

a , a
aeA





S3: E.l = l.E = E,

S4: (E.F) .G = E. (F.G)

S5: I E I E = I (E F )

aeA 3eB P <a,3>eAxB p

S6: E* = I E
n where N = {0,1,2,...}.

neW

Now, nxn matrices over an S-algebra form an S-algebra

with the operations of I, (M.N) .. = I M. ..N., , 1 the nxn
ik 13 JK

identity matrix, the nxn zero matrix, and M* defined by

S6. Also it is clear that in any standard algebra, E*G

is the least F satisfying F = G + EF, and this enables one

to prove:

A BTheorem (Conway [4]) . If M = [- ] is a matrix over an

S-algebra which is partitioned so that A,D are square, then

'(A*BD*C)*A* (A*BD*C) *A*BD'

M* =

(D*CA*B)*D*CA* (D*CA*B)*D 1

We call arbitrary events standard events , (in the class

Jb ) , and an event is said to be regular if and only if it

can be obtained from 0,1, and the events, a, (in some finite





alphabet V) by repeated applications of + ,., and *.

In particular, the theorem above implies that the star

of a matrix with regular events as entries is again a

matrix of regular events.

A regular algebra , R, is a set with special elements

and 1, and operations +,.,*, (the regular operations ) which

satisfy all the formal laws which +,.,*,0,1 satisfy in

every S-algebra.

Let (X denote the class of regular events; then it

is clear that the regular events (over a finite alphabet)

form a regular algebra. The work on regular events has

been extensive, and we list here some results for historical

reasons and for the sake of completeness.

We define a finite machine , M, as a 5-tuple,

{S,V,T,s
o/

F}, where,

(i) S is a finite set of states ,

(ii) V is a finite set of input letters ,

(iii) T is a function, T: SxV+S, the transition function ,

(iv) s is a state in S, the initial state ,

(v) F is a subset of S, the final states .

For a word, v = a. ...a. , a.eV, we define
x
l

1
n





T(s.v) = T(... (T(T(s ,a ),a. ),...,a. ).

Then an event E is said to be repres entable if and only

if there exists a finite machine, M = {S,V,T,s ,F}, such
ili o

that

veE if and only if T(s ,v) e F.

Kleene's classic theorem is:

Kleene Theorem : An event E is representable if and only

if it is regular.

Thus we have a finite machine characterization for

the regular events. Rabin and Scott in a later paper [2]

showed that if T above was a relation, that is, M was a

finite automaton, the result was still valid, and in

particular, that Ov was closed under event intersection,

complement (with respect to a fixed alphabet) , and word

reversal, that is, for a regular event, E, the event

T T
{w |weE, w the mirror image or transpose of w) was regular,

Brzozowski [5] introduced the notion of differentiation

(we use here left differentiation) , that is, for a^V, and

an event E,





6 [E] = {w|aweE}, is called a letter derivate , and

for a word, v = a. ...a. ,a.eV.

6
V
[E] = 6

a [« [...[6
a

[E]]
X
*l Vl X

l

is called a word derivate.

We can then define an event derivate as

6 [E] = I 6,[E] = {w|fweE for some feF}.
* feF

Theorem (Brzcazwski, Conway): The word (respectively, event)

derivates of a regular event E are regular events, and E is

a regular event if and only if E has a finite number of

word (event) derivates.

We conclude this discussion of regular events by

introducing the decomposition theory or factor theory

for (regular) events, again due to Conway [4], which is

basic for the proof of some of our results.

Definition : For an event E,

F.G H....J.K is a subfactorization of E if

F.G. . .H. . .J.K _< E. (*)

F, .G, . . .H . . . J .K dominates a subfactorization if

F<F, / . . . , K<K, , and

F
1
.G

1
.. .H

JL

. ..J
JL

.K
1

_< E.
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A term H is maximal if it cannot be increased

without violating the inequality (*) . A factorization

of E is a subfactorization in which each term is

maximal, and a factor is any element which can appear

in a factorization.

Now any subfactorization is dominated by a factor-

ization (not necessarily unique) in which every maximal

term is unchanged. This enables one to prove:

Lemma : Any factor is a central factor in some 3-term

factorization

.

We say that F is a left (respectively, right ) factor

if it can appear at the left (right) in a factorization,

and, as in the lemma, any left factor (right factor) is

the left factor (right factor) in some two term factoriz-

ation. Hence the condition that LR be a factorization

defines a (1-1) correspondence, L<r> R, between left and

right factors. We index left and right factors, L
.

, R., ieN,

so that L.f->R., and we define the event E. . by the

condition that L.E. . R. be a subfactorization in which
1 3-D J

E. . is maximal. Thus, E. . is a factor, and by the lemma,

any factor H is central in some 3-term factorization, LHR,
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so that H = E. . for some i,j, not necessarily unique.

In addition, we have that l.E is a subfactorization in

which E is maximal, hence dominated by a factorization

L .E for some I . So E = R , and L _> 1. Further, for

any i,

L .L. .R. < E.
4 11-

As L. .R. must be maximal in this, we have that L. = E„

.

11 1 Xi

for each i, and hence that E = L = E (by the

symmetric argument to the one above for E.l _< E.R _< E) .

Theorem (1) Each E. . is a factor and each factor is an E .

.

(2) There exist indices £, r, such that

E = L = R = E„ , L. = E„., R. = E. .

r l ir 1 £1 1 lr

Thus the factors naturally form a square matrix, among

the entries of which is E.

Now as right factors are the maximal events R such

that K.R _< E for some K, we have that,

K.R _< E iff k.R _< E for every keK iff R _< <$

k
[E] for every keK

if f R < C) 6 [E],
keK K
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and as R is maximal,

R = 6 k
[E].

keK
K

In view of the fact that E is regular if and only if E

has finitely many word derivates, we have:

Theorem ; E has finitely many factors if and only if E

is regular.

Hence, for a regular event E, the factor matrix, f E
|

,

is finite. It is easy to show that (i) 1 _< E. .,

(ii) E..E., < E.,, and (iii) A.B < E., if and only if
IJ J K. — IK — IK

there exists i such that A < E. . and B < E., (hence, forJ — lj — jk '

a word uveE, there exist factors L. and R. such that

ueL. , veR.) . As a result, we have in addition:

Theorem : Factors of factors are themselves factors, and

for a regular event E, the factor matrix, [ E 1 , is its own

star, that is,

pn* - rri

.
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We conclude our preliminary remarks with a

grammatical characterization of some of the classes

of events which we will study, and in particular,

gain another characterization of Gv as the class of

events generated by one-sided linear grammars. For

the equivalence of the event-classes and the corres-

ponding classes of automata or accepting devices, see [ (o }

Definition : A grammar, r , is a 4-tuple, {V , V , A~,P},

where

(i) V is a finite alphabet, {A~,A, , . . . ,A } say,

the non-terminal alphabet .

(ii) V is a finite alphabet, {a-,,..., a } say, the
J. -L |J

terminal alphabet .

(iii) A in V„ is the unique initial non-terminal

letter.

(iv) P is a finite set of productions of the form

n *
\\> where it and \p are words in (V + V )*•

For words u, z, in (V + V) * , write u -> z if there

exists v and w in (V + V )
* and a production i\ -*

\\> in P

such that u = vttw, and z = v\pw. Write u ->* z if there

exists a finite sequence of words such that

U+V+W+...+V+Z.
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For a word u in (V +V )*, let Ira (u) be the set

{zeV * |u-»-*z}. The language (or event), L , generated

by r is then Im (A )

.

Let °y denote the class of events generated by

grammars. This is a very large class of events and it

can be shown that it contains a coded form of every

recursively enumerable set.

We say that a grammar is context-sensitive if all

productions have the form vAw * vi^w where A is in V

and i> is a non-trivial word in (V +V )*. The class of

events, IL , generated by the context sensitive grammars

(and possibly adding the empty word) is the class of

context-sensitive languages , which correspond to the

events accepted by the linear bounded automata.

A grammar is said to be context-free if every

production in P has the left-hand side a letter in V,,,

that is, TreV
N f°r * "*"

i> in P. This class of grammars

generates the context-free languages , the class 1^. ,

which corresponds to the class of events accepted by

push-down automata, d. also includes the class of

linear languages , /*
, which are generated by context-

free grammars in which the productions are of the form,
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A -> bCd, where A,C, are in V , and b,d, in V ^{1}, or

A -> b.

A context-free grammar is said to be one-sided linear

if the productions have the form, A -> be (alternatively,

A * Cb) , or A -* b, for A,b,C, as above, and these grammars

generate the class of regular events, ^, as the productions

of the grammar are in fact just state transitions when we

consider the finite automata with the set of states VT7 .

N

We also have as a subclass of 0<_ , the class of finite

events, 0~
, where F is in J- if and only if F is a finite

sum of non-trivial words, w.

We have the following relations between these classes

of events,

_ioY = U^CoC
A
=><R.^^

where all the inclusions are proper.

Finally, we remark that when we define ^6-class

functions for an arbitrary class of events, ^O say, we

shall understand that X, is either the empty class or

contains a non-empty word in some event. This precludes ¥-s

from being the exceptional event class,. j», consisting of

only the empty event and 1.
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Chapter 1

Operator Theory and Generalized Transductions

In this chapter we introduce the algebra of operators

for a standard algebra. After defining the class of gener-

alized transductions, we prove a general theorem on the

Peirce product of two such operators, a result which has

far ranging implications for the study of event classes,

and in particular, provides us with a large class of

regulators.

Let S be a standard algebra over a finite alphabet V.

Let &[S] be the set of maps of s'into itself.

Definition : Let 0, A, C, respectively, denote the operators

in &[S] such that

0[E] = 0, the empty event in S,

A[E] = E,

C[E] = E
c

, the complement of E in S.

For operators fl, ¥ in C7[S],

(ft+V) [E] = fl[E] + Y[E] ,

Q.*[E] = Q[¥[E]] f

fl*[E] = I n
n
[E], where n° = A, ft

n = fi.fl
n_1

,

n>0
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and we partially order
ffi

[S] by

J2 _< V if and only if ft[E] _< y[E] for all E in S

.

Let J! [S] = {fie^S] |fi[ZE. ] > Z^[E
± ]} / the super-linear

operators, and we let / [S] = {«e ^[S]
|

fl [ZE . ]
= Ifl[E.]}, the

linear operators.

For 0. in t^[S], we define the dual operator 3. by

8 [E] = {w|fl[w] fl E ? 0} for events E in S.

Lemma 1.1 : (1) For words w and v in S,

we3 [v] if and only if veft[w].

(2) fi_<y implies that 3 < 3 .

(3) For n in (9"[S], d
Q

is in £ [S]

.

Proof : (1) and (2) are immediate from the definition

of 3 . (3): From (1) we have that we3 [E] iff n [w] f] E ? 0.

But there exists veE such that veft[w], iff there exists veE

such that we3 [v], iff we £ 3 n [v], and hence, 3 e/[S].
" VeE " "

Theorem 1.2 : 3:©"[S] * £ [S] is an anti-homomorphism

mapping ii to d such that:
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(1) 3
fl
[0] = O, 8

A
= A, 3

Q
= O,

(2) 3^ " *Sl
+ 8

f '

(3) 3
«.* = V 3

. '

(5) 3. < n for SI in ^[S], and
3

ft

"

3. = ft if and only if Si is in p£ [S"}

.

ft

Proof : 3 is well-defined in view of 1.1 (2). The proof

of the theorem is immediate with the exception of (5)

.

Consider 3. [E] for an event E in S . Then we 3 [E] iff
3

ft

3
ft

there exists veE such that vc3
fi
[w], which by 1.1 (1) is

y\

equivalent to saying that we Z ft [v] . Hence if ft is in ^ [S],
veE

then 3. < SI, and if ft is in o£ [S] , then 3„ = SI, Now 1.1 (3)
3

ft

~ 3
ft

implies the converse, that is, if 3 _ - SI, then SI is in

Definition : For words w and v in S, we define the operator

by

fv if w = u

[»] - 1
/ otherwise.
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We extend the operator f linearly so that for an event E

that is, is an operator in cCtS]]. We also observe that

[:]3
rw
L v.

The composition of two operators of this form then becomes:

[:]"[u] = [11 ifw = u, and

otherwise ( the Peirce product )

.

Theorem 1.3 : ex [S] is generated as a standard algebra

by operators of the form T
w

|
for words w and v in S,

with the operations of union, Peirce product, and star.

Proof : For a in <£ [S], let ft
1 = e[™], (veftfwj). Then

fi ' is a linear operator, and for a word w in S,

n*[w] = {v|v £ ft[w]} = a[w],

that is, Q = n ' . Note that for operators ft, 4
/

, and $ in
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c£ [S] , we have the left distributivity required for a

standard algebra, that is, ft(y + $) = ft . y + ft . $ , a

A
property lacking for ^ [S] operators.

From now on, we identify each operator ft of

with the set
{

["^"1
1 ven[w] } of ordered pairs [-]•

Corollary 1.3.1 : For a linear operator ft,

d
a

m }
, r»{"[™]|veQ[w]}

= <K]|w*Vv]>.

Transductions

Let E be an X -class event in a standard algebra

over the alphabet {a,,..., a }. Associated with E is a

function, f, of n variables, a-,,..., a , say, such that

f(a,/...,a ) = I a. a. , (a a eE) .

X P X
l n

1
1

X
n

We call functions of this type % -class functions .

For a class of events (J, let ^L (fy) denote the class

of events of the form f (F,,...,F ), where f is an X -class

function of m variables, meN, and F,,...,F , are (J -class

events.
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%(%>). ^2 /£ is equivalent to saying that the class

of events OC is closed under "full substitution" in the

sense of [3] . For example, it follows from our definition

of regular events that L\ ( (R )
C- (& , as an event which is a

regular function of regular events can also be obtained

from 0, 1, and a finite alphabet by a finite number of

applications of + ,., and *. The fact that £ ( £) ^ £
is also well known [<o], and trivially we have that

id) cj.

Let %,[S] represent the subclass of C^[S] that

preserves jC -class events, that is,

% [S] = {fte &[S]
|
for every /£ -event E in S, fi[E] is in ^6 }

.

It is clear that &~[S] = J^ [S] . It is the investigation

of vK[S] that motivates the following definitions.

For standard algebras S, and S
2

, let S, * S
2
denote

the standard algebra of orderd word pairs (or relations)

of the form F ^J for words w in S, and v in S~, with the

operations:
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« + * " OP in a ^><

fi x y
"1*2

in y}
1

" v 2"

flt =
[l '

A a
TV

Ot

oteA oteA

If f(a,b,c / ...) is an 62 -class function of its

arguments, then we write f (fi ,¥,*,.. .) for the operator

obtained from the linear operators tt,V t $,..., and the

function f with the operations of + ,*, , and z corres-

ponding to +,./*/ and Z respectively.

For an event E in S, and an event Fin S^, we let

[p] { [v]l weE 'veP >-

For classes of events X , ^f / and U(_, let E,,...,E

beX-class events, F
1
,...,F

n
be ^U -class events, and f

an Ol -class function of n variables. Then,
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a = f

the class

m ry

is said to be an ^ -transduction , or an operator in

if we interpret ft as a linear operator

%-!mapping some standard algebra S, into S-. Note that
[
^, J

is defined for all JG~/ ^ " ' an<^ (x. -class events, not

necessarily in a fixed standard algebra. However, ft is

in some standard algebra S as the events E
.

, F

.

above are over some finite alphabet. In our use of these

operators, we assume without loss of generality that S = S,

= S_ is a standard algebra over some finite alphabet,

m
{a,,..., a } say, unless otherwise specified.

Of special interest is the operator class

the biregular operators over JL and U , where we consider

regular functions with the operations of +, *, and .

PIVFor the sake of notation, we usually write ir
L V(R

as

Corollary 1.3.2 : For a standard algebra S

-3 & [S] = o£[S]
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Proof : For an operator ft in o( [S] , 1.3 implies that ft

is of the form E[_
W
J/

veft[w], which clearly is an Mj J<

operator. The converse is immediate.
^

Definition : For an event E, we define the intersection

operator f) Tn by
1 hi

*

E
[F] = E r\ F

for all events F. If E = f(a,b,c,...), then the operator

^E is f
x ( [a]' fbl' [c]"" 1, For a Class of events % »

we define the operator class < »^o as the set of operators

{ f]
|
E an event in u } . For a class of events 1L , we

denote the class f\<\,[)Q as /G^ . (We allow this asymmetric

notation in view of the fact that .in our usage, w will be

the class of regular events (a .)

We now state the main theorem for the Peirce product

of generalized transductions.

Theorem 1.10 ; For classes of events Q , 03 , otj , and {? ,

such that le Q ,

Q
L a j

t

6

R
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To this end we begin with some results which are

needed for the proof of the theorem but also prove

interesting in their own right.

Definition : For standard algebras S, with an alphabet

V, and S« with an alphabet V„ , a substitution , f, is a

linear operator mapping S, to S
2

such that

V[E.F] = V[E].V[F]

for all events E, F in V,*. We say that ¥ is in the

operator class SUB .

For a class of events jL> , V is said to be a

X -substitution (in the operator class % -SUB ) if y[a]

is an % -class event for a in V, IMl}. If in addition,

we have that ¥[1] = 1, V is said to be a unit substitution

A homomorphism , <J>
, is a unit substitution such that

letters are mapped to words. <j> is said to be in the

operator class HOM. ^ is a letter homomorphism if 4>[a]

is in V~\J{1} for aeV, , and is a 1-free homomorphism if

<f>[a] is in V
2
*\l.

For a substitution y (respectively, homomorphism <p) ,

3 (respectively 3 ) is called a dual substitution or
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inverse substitution (respectively, inverse homomorphism )

Lemma 1.4: SUB sffi-

Proof : For ¥ e SUB, it is sufficient to consider the

effect of H* on the unit word and the letters of the

alphabet in its domain. Then we have that

a
l

CV
']*

1
- t

fi
an operator in \

Corollary 1.4.1 : d -SUB C
j^g J

for a class of events (^

Corollary 1.4.2 : The operator classes HCM, 3 HQM , (K-SU3

and 3/q _crjB are sukclasses °f [_(bj •

We now prove a decomposition theorem for
Q

operators

Theorem 1.5 : For a class of events C£_ such that leOL,

and an operator fte

JJ = n
E • \ '
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where 6 is an 6L -substitution, E is a regular event,

and t is a letter homomorphism.

Proof : The theorem is proved for the case where ftrS-j+S^

with the standard algebras over the alphabets V,

,

= {a, , . . . ,a } say, and V- • As Q\ ( & ) ^ 6L , we may

assume that 0, is of the form

r x l

A
i-

where A, , . . . ,A are CL -class events and h is a regular

function.

Let (i)

-fi3
•• v + . . .+

with (c,,...,c } an alphabet of q letters distinct from

V, , and as leOL , e is an (32 -substitution,

(ii) r

rV + . . .+

Lv [?] n<]

a letter homomorphism,

(iii) E = h{a^, ' ap ' c i
, c ) a regular event,





Then 6. H^.3 = .h P
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d- "<

4M Ll V la

MJ CI

as was to be shown.

Corollary 1.5.1 ; For ft e kR / n = Q - M . 3 where e and t

are letter homomorphisms and E a regular event.

Proof ; As G\ (vJ\) ^ G< , we may assume that Q is of the

form,

mct [;-][] a
1 q /

and 6 above becomes a letter homomorphism.

Corollary 1.5.2 ; For a class of events £f such that leL^,
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r ^
a £. a-suB.ru.& SUB

Lemma 1.6; For a letter homomorphism t,3 eu\-SU3.

Proof ; Let t be a letter homomorphism mapping an alphabet

V, = {a,,..., a , c,,...,c } say, to an alphabet

Vp = {b,,...,b } say, such that

t [a
± ] = b

± , i=l, ...,P/ and

t [c.] = 1, j=l, . ..,q

Then , 8 =
c1+

rb.

+c J
q-

rb

I

P

L a

trivially a substitution, and for i=l,...,p, 3 [b.] is ,

regular event of the form (C-.+...+C )*(a. +...+a. ) (c,+
1 q !i i c -

1-

where x[a. b±/ t=l,...,s

Corollary 1.5.3 ; f®"! E (^ -SUB . C]^ . (R-SUB.

Definition ; For a X -class function f of n variables,

x,,...,x say, and a fy -class function g of m variables,

y-,,...,y say, we define the ordered pair function fAg

(of nm variables) as

v
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fAg(<x
1 ,y1

>,<x
1 ,y2

>,..,<x1/ ym
>

/ ..,<xi ,yj
> f .. / <xn ,ym-1

> / <xn ,y.,Y >)

n n

I <x,y >},..,{ I
j=l - J

j = l " J i=l
X -1

i=l
f ({ .I/ X

i^y j

> >/••/{ I <x
n ^j >})

ri g({ .L
<X

i ,yl
> } '**' { X <X

i ,ym>}

so that <x, ,y, >...<x, , y, > is in11 P P

fAg(<x1/ y 1
>

/ <x 1/ y2
>

/ .. / <xi ,y j

>
/ .. / <xn/ ym_ 1 >,<xn/ ym >;

if and only if x, ...x, e f(x,,.. .,x ) and
1 P

yk ...yk
e g(yr ...,y).

1 P

1.7 ; Let %, and cJ be classes of events such thatLemma

%(&) <z% and^i (vF) ^lJ • Then for an %, -class function

f and a U -class function g, f Ag is an JCq -class function,

Proof ; The event intersection specified above is an

jc,-). -event (of ordered pairs of words) , and thus an

^jln "Class function.

Theorem 1.8 ; For classes of events ^ and J-> , such that
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Proof : Let g(D,,...,D ) be an ^ ( ff) event where g is a

£ -class function and D, ,...,D are events in U . Let E

be a regular event and note that 0\ {£ ) <^_ G\ as C c. Q^ .

Now let
j

E*| be the factor matrix for E and replace

each factor E. . by a variable e. . , so that we transform

I
Ej to a matrix / e / say. We then consider

I
e ( *, a

matrix of regular events in the variables e. .. and examine
13'

the £r— entry where E = E in JEj . This is a regular

function f of the e. ., and as { E [ * =
j E

J , we may replace

each variable in the function by its corresponding factor.

Thus we obtain E as a regular function of its factors,

that is, E = f(E,,...,E ), where we have listed the

factors of E with single subscripts for the sake of

notation.

Then for a word d. ...d. in the event g(D,,...,D ),

d. e D. , to be a word in the event E, there must be an
X
j j

event E. . . .E, in f(E 1 ,...,E ) such that d. e E , i and
1 P 3 J

j as above. Then 1.7 provides the result as we now have

that

f (E1# . . ,En )f) g(D1 , . . ,Dm ) =fAg (E^D^ . . jE/IL^, . . ,E.f|D , . . ^PlD^)
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where f Ag is an £-n -class function, and E . f\ D . is an

event in £v

Theorem 1.9 : For classes of events Oi , Co , and <C7
,

(*) (0.(®)) (S) £ a (6(3)) .

(*) is an equality if Co is invariant under all

permutations of Z

.

Proof : Any event in (0_((B)) ( & ) or 0L(<8(&)) can be

interpreted as an event of the form ft . y [f(x,,...,x )],

where ft is a _3 -substitution, f is a (B -substitution,

and f is an d -class function over the variables x, ,...,x

(Note that fi.y is a (& (cD ) -substitution.

)

Proof of 1.10 : We consider the product of an operator ft

in r^- and an operator f in P^ . In view of the

fact that (X (LK) c 0< , we may assume that ft is of the

form

;

i

i mi a)





33

where A,,..., A are OL -class events and h is a regular

function. Further, as in the proof of 1.5, ft = Q.O
y .d

where

(i) 8 = [S*E] t:

with {c,,...,c } an alphabet of q letters distinct from

a1/ . ..#ap/

(led. so that 9 is an (^-substitution.

)

(ii) E = h(a, ..,a ,c, ,..,c ) is a regular event,
-L p ± Cj

(iii) t + . . .+
r a -i

P "1

1 J

a letter homomorphism.

Let * = g [j [H where g is an

C -class function, the B., Uj -class events, and the

D., <xj -class events. We consider

n E . a
T

. t ,

and we observe that
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3 . f = g
" B

l

8
[
DJ

As in the proof of 1.8, there exists a regular function f

such that E = f(E,,...,E ), the E. the factors of E, and

hence,

A .3 .* = fAgJOE T x E.
3 [D,

"

L x L 1"

r
B -

'

' n E
•

3

1 LMVj
,..,A E

' B "1

m

9 [D
t

L nv

Composing this product with the CL -substitution 6, we obtain

fi.V = fAg
3
T
[D

1
]nE

1 ]

B- I
D

[a
T
[D

i
]nE 1]

-
[3 [D ]f|E ]

L
l

x
L m J n J

1.9 implies that (£(vf)) (.P) C £ (
£"

) as £ (£) ^ g
so that 1.7 implies that fAg is an ( £ C^~ ) )/q class

function. Then

a . y

fe«0),d
as was to be shown,
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Corollary 1.10.1 : For classes of events CO and £ sue

that £ ( vf ) C-£ ,

Proof: The dual result of 1.10 is that

(3

t

61

'«

L
<8

£
<R

Letting Jj = J& , OL = "1 the class consisting of the empty

event and the empty word, E a regular event, and ft an

operator in ^ .we then have.

ft[E] = ft .[1] [1] =
1

ft[E]
[1]

Now
ft E-

f
(JZ(GO)^ CD

is an operator in the class (X

L (B

which is actually the class

L

1
•<R

as the image of

£<R

any non-zero function of empty words is again the empty

word. Thus ft [E] is an event in £^ ((d) as was to be

proved.
&
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Corollary 1.10.2 : For a class of events jC such that

[%1.
y-

Corollary 1.10.3 : For classes of events OL , &J , and £. ,

such that le(X and £ (
J") <£ £"

,

Proof : The proof is similar to that of 1.10.1.

Corollary 1.10.4 : For classes of events CL and ^O

such that le(H,

$] iZl Q (XC(R0^ COO

One might hope for a more general result than 1.10

by replacing for arbitrary classes of

events jC and ch . However, we can argue, heuristically

at best, that 1.10 is a 'best possible' result. For
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n e I n \ , as above, we may consider the operator as

the composition of an (^-substitution 0, an intersection

operator f) y for a U -class event Y, and a dual ^

-

substitution 3 . When we consider 3 . ¥ , we have no

technique of determining the interplay between the IJ-

and /C -class events, unless we are considering letters

as in the case ^u = 0\ . Similarly, when we consider

(I . ¥ * , it is only the fact that regular events have

finitely many factors that enables us to prove a theorem

of the nature of 1.8. Below we give further support for

our contention when we examine the class of events -<>

and the class of context-free events d which are the

most natural classes in which to expect some generalization,

For a finite alphabet V = {a-,,..., a }, let

\ t

iri )

•

the unit operator for C^[S] and the identity / Q

J

operator over S. When the alphabet over which we are

working is obvious, the subscript V will be suppressed

Recalling the definitions of differentiation, for

two events E and F, let
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6 , [F] = {v| there exists weE such that wveF} and
E
1

6 [F] = (w| there exists veE such that wveF}.
E
r

The differential operators are discussed more fully

in the third chapter where we consider their effect on

regular events. Ginsburg and Spanier [7] have shown

that differentiation of context-free events by context-

free events does not preserve context-freeness , and for

the sake of completeness , we describe their example.

Let L-, be the context-free event generated by the

productions

2 3
S
l

"*" aS
i
b s

i
"* bs

i
a s

i
"*" cSjCba S, •* d,

and L
2

the context-free event generated by the productions

S > aS
2
a S„ * bS

2
b S

2
> cS

2
c S •> d.

It is clear that L^ = {wdw | we (a+b+c) * } , and in [7 ] it is

shown that

6 JL X
] = {ba,a4

/ a
3
b
2
,a

2
b
4

/ ab
6
,b

8
/ b

7
a
3

/ b
6
a
6

/ .. / a
24

/ ...}.
L
2
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But C- is an AFL, so that O is closed under regula:

intersection. f\ *.6 [L,] = {a
n

|
n = 4.6

1
, i > 0} is a

a _ j.

non-periodic event and thus not context-free (see Chapter 5

for a discussion of context-free events over a single

letter), so 6 [L, ] is not context-free. It is clear
L
2

that 6 is actually the operator
:i *v

where

reV = {a,b,c}. As this operator is in the class /o ,

we have that
£ [e]£ £

In light of our method of proof for 1.10.1, we have the

following:

Proposition 1.11 : e
<K J

«1 i C

Corollary 1.11.1: e] . \^1 <fe fej
CJ

C
Lejc £

When we consider the class of all events J<$ , we

do have that

<R J

PI s -S
,
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but the similar result of 1.11 for this class also follows.

Proposition 1.12 ; 4
J8 * iJ

•

Proof : Let V be the finite alphabet {a,b,c,d} and X the

event {wdw| we (a+b+c)*}. Consider the operators

x A j- . , and ¥ = A,{a,b / c} la ,b,c}
x

LdJ
x

LlJ

where L„ is the context-free language in the example above.

Si and V are operators in the classes L0*\J and L-& —

I

respectively, and fi.y = {
U z H w

|
u,z,w,v (a+b+c

L Z J LwrJvrJv
i J

)*}

= (|
"

I
|
we (a+b+c)*}. The following

lemma provides the result.

Lemma 1.13 ; =
{J"

WJ
I

we (a+b+c)*} is not an operator

Proof ; We first note that each biregular operator over 0\

corresponds to a linear context-free event, with pro-

ductions of the form

A .
[ 51

x c
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corresponding to the linear productions of the form

A + bCd,

where A and C are non-terminal letters and b,c are terminal

Hence (uv
|

T J
e 9

1

} for an operator 8
' in ^ is a

linear language (see Gruska [? ] and Rosenberg [ ^ ] where

this correspondence is fully studied.) . If 6 is an [ /3 J

operator, then the set of words L = {ww | we (a+b+c) * } would

be a context-free event, a contradiction as L is a context-

sensitive, non context-free event [jO].

Now, if 6 were an |c operator, there would exist

a regular function f and events S,,...,S . T,,...,T ,

such that S. ^ 0, T. ^ 0, and

= f.

s, i rs
n1

T
l

T
n

and for some je{l,...,n}, S. or T. is an infinite (in fact,

non-regular) event. Without loss of generality, assume

that S. is such an event. Then for a word x. ...x....x.
J 1 J p

in the event f(x,,...,x ), we have that the corresponding

event word S. ...S....S. is an infinite event. For a word
1 J p
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w in the event T. T T. , it follows that
i, -j i
1 J p

{i~
V
l I veS. ...S S. }

P

is an infinite operator event and a sub-operator of 0,

another contradiction.

As J£ is the class of all events, we do not have

the analogous result of 1.11.1 for this class. But we

do have:

Lemma 1.14: J
J

-si - m .

j> j
la

Proof;

by 1.3.2.

^1
^ is the universal class of linear operators
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Chapter 2

The Bireqular Operators

Theorem 1.10 provides us with several important

consequences in our study of regular events.

!.l: *3 P) £^[S] S (K[SJ for any standard

algebra S.

Proof : As (R((R) ^6^ and (R Cft , 1.10.2 provides

the result.

Corollary 2.1.1 : Regular events are closed under inverse

substitution.

Proof : SUB C l^v by 1.4

J

Definition : For events ,E and F, we define the shuffle

of E and F, E Hi F, as the event {e. f. ...e. f.
|x

l
x
l

1
n

x
n

e. ...e. eE. f. ...f. eF} , and the alternate shuffle of
x
i

xn x
i v

E and F, E Lt~l F, as the event
alt

{a. b. ..a. b. b. ..b. la. ..a. eE, b. ..b. eF,
x
l

x
l

x
n

x
n

xn+l V x
l

x
n

x
l

xm

n < m, a. , b . letters}
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U{a. b. ..a. id. a. ..a. a. ..a. eE, o. ..b. eF,
1, i, ill,, l ' i, l ' i, l '11 n n n+1 m 1 m In

n _< m, a . , b . letters }

.

Corollary 2.1.2 : Regular events are closed under

shuffling and alternate shuffling.

Proof : Let E = f(a,,...,a ) be a regular event and F

a regular event over the alphabet V = {b,,...,b }.

(R
Consider the I r> operator

J2 = f „ (A
V

X
[aJ

XA
V 'v"[al " V

= {
n

I w, ...w eV*, v, . ..v eE},
1 1 n ' 1 n '

V,W, . . .V w J1"1 n"n

It is clear that ft[F] = E UJ F, and as

E LLi F is a regular event.

Now let V = {b 1

.
|b.eV} be an alphabet disjoint

from {a,,...,a }, and let 6, t be the letter homomorphisms
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ra .

3

j = l La

rb.i
i

i=l
respectively

Then y =
G-

f xf A
V'

X

fJ
xA
V AV X

[J
XA
V') *

g^pMil-'
where G is the regular event ( I a .b '.)*.( (a,+. .+a )*+V'*),

i/D

is an
[ |] operator as [|]. [§] S [§] . It follows

that y[F] = e. 0^[2LUF'] , where F 1 = F(b' , ...,b' ), is
b l q

the event E |_J I F, hence is regular.
alt

There are many more operators in Chapter 3 which we

can show are regulators, that is, preserve regularity, by

interpreting them as ^ operators. Thus

large class of regulators closed under + and composition

It is not closed under star.

Proposition 2.2: ^ I is not closed under *, and thus
Lfc1

<R]

<RJ

operators over a standard algebra S do not form a regular

algebra of regulators for S.

Proof: Consider Q =
t re

Lou-
Then

,

ft* [a] = {a |n _> 0} which is not a regular event. By
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q:
1.10.2, \i* is not in |q .

In fact, through a suitable Godel numbering of the

words in V*, (where V is a finite alphabet with at least

two distinct letters) , we can effectively generate all

coded recursively enumerable sets as the images of words

under the stars of certain [_Q J operators, in the sense

of "normal" systems [ ii ]

.

Theorem 2.3 ; Let t be a semi-Thue system with alphabet

V= {a,,..., a }, p^ 2, and axiom word u. Then there
P

r1?1exists an operator, ft , in A such that the 'theorems'

of t are exactly the words of A . Q* [u]

.

Proof : Let V = {a' ,...,a' } be a disjoint primed

alphabet corresponding to V, and V = V + V. We mimic

the normal system obtained from t as follows:

(1) for productions of the form a.v > va ' . with v

p p a. . -| r 1 -]

a word in V*, let n. = V
1

x a- x
,

i-lLlJ V
[a'J

(2) for productions of the form a'.v * va . , let

H ra'.-i r
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(3) For words w, , k = 1,2,.. ,111, over V, and the

corresponding words w', over V (that is, if w, = a, •• a
i<

1 1

then w' = a' -..a 1
. ), let

k m *1
m r wk

.

"3 = I
k=l L 1 J

I

1

correspond to the set of productions w,v + vwV .

Then for any semi-Thue system x, the theorems of t

are the unprimed words obtained by a finite number of

applications of the productions of the above form to the

axiom word u. It is clear that this set of theorems is

equivalent to the event

A . (ft, + ft„ + fl

3
)*[u], and as ft, + ft + ft 3 is in q /

,

the theorem follows.

Definition : For linear operators ft, y, we define ft f) y

as the set ^[^]l[^] £ A/ HJ~] e ¥}. Note that ft f) y

is not the same operator which maps E to ft[E3 (1 ¥[E].

Proposition 2.4 : Q J i

Proof: Let Q = [*] * [j^l and » =
[ ^J <[»]'. Both

Ls not closed under intersection.

t

these ooerators are in rA |
but their intersection,





n ru = {
n. n

a Da j

|
n _> 0} ,

is not, as ft ft* [a*] = {a ba
|
n _> 0} is not a regular

event.

Corollary 2.4.1 :
\ (X J

is not cl°se(^ under complement

(with respect to a fixed alphabet)

.

Elgot and Mezei [l a.] have considered the class of

'binary transductions' obtained from the component-wise

regular closure of the ordered pairs <a,, 1>, . . .
, <a ,1>,

<1, a, >,..., <l,a >, for a finite alphabet {a-,,...,a }.

It is clear that the class of binary transductions is

equivalent to the operator class

shown that

«]•L$
They have also

Theorem
- kJ UJ ' La J

a result which follows from 1.10.

Fischer and Rosenberg [13] have investigated the

classes of events, // , n _> 0, accepted by n-tape non-

deterministic finite automata in the sense of Rabin and

Scott, and the resultant decision problems for these

classes of events. They have shown that these classes
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correspond to "n-regular" events in a natural sense,

and in particular, for n = 2, to the binary trans-

the sake of completeness, we list here the results of

their work.

Theorem B ; The following decision problems for I

J

(n _> 2) are recursively insoluble:

(1) the disjointness problem,

(2) the containment problem,

(3) the universe problem,

(4) the cofiniteness problem,

(5) the equivalence problem.

Bireqular Operators and AFL ' s

:

—

—

r«iWe now show that the biregular operators and
I (D J

operators in particular play an important role in the

theory of AFL ' s

.

Definition : Given an infinite set of symbols, Z, an

abstract family of languages (AFL) is a family %. of

events of Z* with the following properties:

(1) For each X in %, , there is a finite set V C i

such that X C v*

.
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(2) % contains a non-empty event.

(3) % i s closed under the operations of +, .,

*+l
, inverse homomorphism, 1-free homomorphism, and

intersection with regular events. A full AFL is an AFL

closed under arbitrary homomorphism.

Lemma 2.5 : If a class JC containing a non-empty event

*+l n/
is closed under + , , and homomorphism, then yC is

closed under *.

Proof : For an % -class event E over the finite alphabet

{a1# ...,a },

!* = E*
+1

+
([I

1
] + ...+ [^

P]) [F], (F ? 0, Fs^

Theorem 2.6 : A class of events X, is a full AFL if and

only if (JU%,) <Z /C and T^]l%l C Jj .

Proof : As homomorphism, inverse homomorphism, and

regular intersection are I Q operators, if 0<(%) £ !(_,

and \r\\ LXl - %* , then /6 is a full AFL. Note

that the non-emptiness of A is implied by the fact that

T, is closed under *, hence the empty word is in some

%-event, and f^] [%,] £ P
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The fact that every
I qI operator can be

represented in the form 8.0^.3 where and x are^ E t

(letter) homomorphisms and E is a regular event

implies the converse.

Corollary 2.6.1 : Full AFL ' s are closed under regular

event shuffling, regular alternate shuffling, regular

substitution, and regular event differentiation.

Proof : All of these operations can be interpreted as

4^ operators.

Corollary 2.6.2 : (X is a full AFL, and if 36 is a full

AFL, then X ~? ®\ •

Proof : The fact that 01 is a full AFL follows from 2.1

and 0\ ((&) <£ G< . As % is a non-empty class, there is

a word w in some event X in}C . As $ [
C ^ J - A-"

/

we have that
j

™
|

[X] = S is a. 'Y, -class event for every

regular event E.

The theorem above and its proof suggest the following

definition and corollary.

Definition : For a finite alphabet V, the map

EXP : V* » (V+x) * is an expansion if EXP [a. ...a. ]
=

x x i
x

i
n

x*a. x*o..x*a. x* for letters a. in V. The map
X
l
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CON : (V+x) * * (V\x)* is a contraction if

CON [x ° a. x
1 ...x

n L
a. x n

] = a. ...a.
X x

l
x
n

x
l

x
n

Lemma 2.7 : li e ^ j if and only if 0. is a finite compo-

sition of expansions, contractions, and intersection

operators in / Iq .

Proof ; The letter homomorphisms
<f>

and x in 1.5 may be

replaced by iterated products of contractions (and then

8_ is an iterated expansion).

Corollary 2.6.3 : A class of events jC is a full AFL if

and only if (X ( /0) ^ /^> and /6 is closed under expansions,

contractions, and intersection with regular events.

The choice of nomenclature of [3] is unfortunate

from the viewpoint of PA operators as an AFL might

better be called an "unfull" AFL, rather than adding

the adjective "full" when we remove the restriction on

the type of homomorphism allowed. We may define a sub-

class!
f$

of A to cater for this and remark that

our characterizations of full AFL ' s carry through for

AFL's and |
^ with the obvious restrictions.
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Definition: ft is said to be an
CvI operator if and

only if there exists a regular function, f, such that

ft f B (

u 1
n

w
n J

*([$Itw)

where u.eV,*, w.eV *\1.

Theorem 2.7 : For an arbitrary non-empty class of events jL ,

is a full AFL.

Proof : We are required to show

(ii)

Now (i) follows trivially from 1.9 and the fact that

6{{(K) £-0^. 1.10.3 implies that

for an arbitrary class of events m , and 1.10 implies

that <3 £; f ^X "7
/ whence (ii)
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Corollary 2.7.1 : For a class of events /C such that

[%]l%l £ <R CKj) , we have

(i) <R(l%lW3) £ &OQ , in other words,

U\ -closure preserves z£ j-closure,

(ID [§] [(R(tt]£ 03O6),

(iii) (R (%J is a full AFL.

Proof : Immediate.

Corollary 2.7.2 : For a class of events JC such that

OL £ % ^d %(iO C^, then

<RO0 £ [§]C^] implies

(iii) r^,"| Z%3 is a full AFL.

Proof : We verify (ii).^(fi]ra)= (R ((£<:«%<:«)

which is a subclass of (R (J^((Rj) by 1.8, 1.9, and the

fact that \K (Qo S^« This class is equivalent to the
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class & -SUB [&{%)] which is ^[^]'[§]c%l^ [<R 1 L%>1

by 1.10 and the fact that (R -SUB is a subclass of [ (jQ .

In a similar vein, we can also show that 0\ -closure

preserves, individually, closure under substitution or

regular intersection.

Lemma 2.8 : For arbitrary classes of events /C and U,
,

(i) %Cl$)G<ZC%) =^ ((RC/0) C^) Q (RCX.)

(2) %„ c (RCX) =^ fSU^ <^ £O0

Proof : (1) 1.9 and 01(61) ^ 6^ .

(2) 1.8 and (L C (R .

Corollary 2 s.i: xr<30 £ Rex) -*> C «cx)) c«0 £ sr^j

Corollary 2.8.2 : For classes of events /C and U such

that li

Proof : 1.10.3, 1.9, andd(S^) £-61.

To conclude this section, we prove:

(XCZ)
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Theorem 2.9 : For an arbitrary class of events /_, ,

Proof : First we note that the closure of CK under

regular substitution implies that L^-i = L ®C/0 J

Then by 1.10, }[%]- [(xc&^l ' andtMs

operator class trivially reduces to 0< _ <X /

L<2CX)j L X^J

Conversely, let 0. be an operator in >^ , and X an event

in /t . As in the proof of 1.10.1,

8[X] = (Q.[£]> [1] =
[ n }x]]

[1] where f^] is an

operator in Ly / . Hence n[X] is an ^ (^£) event.

We remark that for any finite alphabet V C- I,

Corollary 2.9.1 : For a class of events %, such that

Proof: 2.7.1.
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Corollary 2.9.2 : For an arbitrary class of events %,

thatX^, [%jr^l£ &^X) if and only if

Proof : The same as in 2.9, but note that we require

le % to insure that we are dealing with ^ -substitutions

when decomposing the M*
j
-operators.

Full AFL's and closure under substitution :

Lemma 2.10 : For a class of events /C such that ^X- ^ G\
,

r? 1 L
rC\ S £ implies that (R CZJ £ X

A— J

Proof : Let X, and X~ be arbitrary events in JO over the

finite alphabets V, and V„ respectively. Then

Y ) [X-, ] = X, + X~ is an event in /O as the

operator is in
j ry> • Similarly, we have that

(j^l x a ) [XJ = X
2
.X

1 andf^l [1] = Xj* are ^-events

We are now in a position to present some character-

izations for full AFL's in terms of the biregular operators
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Theorem 2.11 : The following are equivalent for a class

of events %.:

(1) X is a full AFL closed under ^-substitution (that

is, with the "full substitution property" in the sense

of [3])

.

(2) [J] CXI £ % and X ?<R .

(4) r^]rXl<^^ and T-SUBLX]^Z,.
L (K J

Proof : We show in order that 1+2+3+4+1.

1+2: 2.6.2 shows that % ~> 61 for a full AFL % , and

2.6 along with the fact that every J^ operator is the

composition of a /-'-substitution and an qj -operator,

implies that F^] EXT] 9 #

2-+3: As % P 6^ , 2.10 implies that &.(%,) =%, and

2.9.2 provides the result for the Peirce product of ,6/

operators

.

3+4: Again we have that OC 5^ • Then 2.9.2 shows that

\Q.~\ Iftl <=.%,- Q C/6) / which implies that ^S is
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closed under full substitution. As % r? £R. / we also

have that j"

^

4+1: r^lLXl^-X implies that X 5 <R • Closure

under ^)/ -substitution implies that ^ [ ZJ - /^

Hence, by 2.10, (R ( %,) = %.

Two other results in this direction seem worth

mentioning.

Theorem 2.12 : For a full AFL jL , closure under fly

implies that /• is closed under full substitution. (The

converse is false, for example, the context-free languages.)

Proof : As X is a full AFL, then %, (& ) C. ^ . Then for

n e Hj , , we may assume that ft is of the form

'At
1
] [i

p
l<[*il [%]><

where f is an X~class function. As [^ ^ (R -SUB./)^.6l-S

|& i
is a class of operators preserving ]^.

Further, % 2 6^ and &(%,) £ %/ , so that

(X+a-jX^H-. . ,+a X )
* is a <%. -class event, and hence a

^C-class function, over the /_-class events X,X,,...,X ,
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and {a,,..., a }. Now, any 7^, -substitution is of the

form * = (T^l + L 1
!

+...+ [ v
m
] ) , and thus an

LXJ lX
x J lXm J

operator in
|
^ , so that V preserves % -class events.

A-

Theorem 2.13 : For full AFL's % and 7^ , %(V) is a full

AFL.

Proof: 3y 1.9, & ( % ( M ) ) = ( d ( % ) ) (Oj ) = X(^)

so that XC^) is closed under regular functions. The

closure of '/C Cl{ ) under regular intersection follows

from 1.8, that is

n^ixiyi - ^y\ <= VV - %^-.

and the closure of n
/j^

rU) under regular substitution follows

from 1.9 as & -SUB[ JC (Oj ) ] = % ( ^ ( $ ) ) = X (^ ) .

Hence K]^^)] = ^ ( ^ ) .

In 2.7, it was shown that for any class of events /S

,

(R ( r§l [)6]) was a full AFL, but due to the problems

involved with iterated substitution, the similar result

for full AFL's closed under full substitution does not

seem to be forthcoming.
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We conclude the chapter with some examples to show

that the closures of an event-class under regular inter-

section, regular substitutions, and regular functions

over the class are in fact independent.

Proposition 2.18 : Let JC be an arbitrary class of events

Then

(1) f)(g [£]?:£and ®.C%) ^% =f? <R-*«6[X]c;6

(2) (R-SUB[-6]<r%and <8,«)£^^? D^ [^] ? ^

•(R(3) [§][%-] s % f? (kcx) &X

Proof : (1) The class of context-sensitive events, (J

is closed under regular intersection and +, ., *.

However, it is not closed under regular substitution;

it can be shown that HOM flX ) is the class of events /

which properly contains 6c.
"

(2) The class of events consisting of the empty event

and all events containing 1 is closed under regular

substitution, and the regular operations of +, ., *.

It is not closed under regular intersection.
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(3) The class of linear events (^ is closed under
A

the V<R

t &
-operators but not under ^\ -closure.(R

From the theory of
[ Q J operators, it is also

quite easy to show some of the results of Greibach and

Hopcroft [IH-], that is, for a class of events ^- such

that [^] m C.%,

(i) closure under composition implies closure under +,

(ii) closure under + ,
* implies closure under composition
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Chapter 3

The Class of Linear Regulators

For a standard algebra S, c£ [S] forms a regular

algebra in a natural way. The aim of this chapter is

to investigate subclasses of ok [S] 0\[S] which form

regular algebras. As any finite sum of (linear) regu-

lators is a (linear) regulator, the problem involved

is one of investigating the effect of starring a regu-

lator. In Chapter 2 it was shown that starring an ^J
operator led to the generation of all recursively

enumerable events so that q£ [S] (| &\[S] does not form

a regular algebra itself. However, it is closed under

the biregular operations.

Theorem 3.1 : For a standard algebra S, oC I s ] C\ (SjS]

is closed under regular functions of the operations of

+ , * , and

Proof : Let ft and y be linear regulators and E a regular

event. It is clear that ft+¥ is a linear regulator as

(ft+y) [E] = ft[E] + ¥[E]. When we consider ftx^, the fact

that E is regular implies that E can be represented as a
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finite sum J L.R. where L- (respectively, R.) is a

left (respectively, right) factor of E, and for uveE,

there exist L., R. such that ueL. and veR. . Then

ftxy[E] = Zftxy[uv], for uveE, and hence equal to
m

Zft[u].v[v] = I Q[L
± ] .¥[R. ] , so that ftxy ± s a linear

regulator if ft and Y are. Now, ft
+
[E] =

J

Z"
j

[E] + ft . ft

f
[E.

[J [E] + {«[e
1

] .n[e
2

] . .. .^[e
n ] |e

1
e
2

. . .e
n
eE}, and as

each subword of a word of E is a word of a factor of

E, ft.ft
f
[E] is then the £r— entry in the star of the

matrix] ft [E]j where
|

E
|
is the factor matrix of E and

E = E . That is, ft. ft [E] is the ir— entry in

ft[E
11-

"tEmJ

ft[E, ]L lm J

ft[E
T

and as ft is a linear regulator, the Conway Theorem on

the star of a matrix provides the result.
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The proof of 3.1 also implies the following:

Corollary 3.1.1 ; For a standard algebra S and an

arbitrary class of events jL> , the biregular closure

of the operators in ^ [S] that map regular events to

X/-class events is an operator class which maps

regular events to (\ ( Jj)
-events .

Proof : Let n and * be operators as above and E a

regular event in S. Then, as in the proof of 3.1,

(ft+y)[E], BxyfE], and fl
f
[E] are 8,

(
^6) -class events

if n[E] and ¥ [E] are.

The algebra of open convex operators:

Definition : For standard algebras S, and S„, a

operator 0. is a linear operator mapping S, to S„ such

that

fl[E.F] _< fi[E] .fl[F]

for all events E,F in S, . ft is said to be in the operator

class CVX and it is clear that CVX 3 SUB 3 UNIT SUB p HOM,

A linear operator Si is said to be open (in the

operator class OPN) if
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ft[E.F] _> E.ft[F] + ft[E] .F .

This condition is equivalent to

ft[E.F.G] > E.ft[F] .G

which implies that OPN is the class of linear operators

(for some standard algebra S over an alphabet V). such

that ft = A ' x ft x a For a standard algebra S, let

•

a[s] be the class of open operators in U[S] .

For arbitrary classes of operators n, II
1

, let

n = {ften | fte S^S] for some standard algebra S over an

alphabet V such that ft _> A }, the increasing

n-operators

,

n = {ft | ften,fteOPN }, the open n-operators,

and for a standard algebra S,

11

A [S ]

=
{ "' ften,fteA [S]},

II* = {ft*
I

ftell},

n f) n ' = {ft| ften ,fteii ' },

()\(n) = {£(&-. , . . . ,fi )| f a regular function of n variables

neN, (l^...^ el}.
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6\ ( ) is a closure operator for operator classes

as

(i) n 9 Qjn),

(ii) &(n) c G<( 0\(n)) , and

(iii) n c n' =^ 0^(n) £ G^(n') .

The aim of this section is to examine the regular

closure of the operator class CVX Aro -, for a fixed standardF A[S]

algebra S, and to show that under certain restrictions,

the dual operators of this class form a regular algebra

of regulators.

Lemma 3.2 : 6\ (CVX f\ & [S] ) = CVX (\ &[S] •

Proof : CVXf\ <> [S] is trivially closed under + and for

convex operators ft, ¥, events E, F in S,

ft.y[E.F] = ft[^[E.F]] .

The linearity of CVX operators implies that this is

_< ft [*[E] .V[F] ] _< (fi.V) [E] . (ft.*) [E] .

The conclusion for (CVXfl ©~[S] )
* follows from the fact

that
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«*[e.f] = I n
n
[E.F] _< I n

n
[E].n

n
[F] < n*[E].n*[F].

n>0 n>0

Lemma 3.3 : (j\(A[S]) = A[S].

Proof : Again A[S] is trivially closed under + and for

open Q,_ y, events E, F in S,

(0.¥) [EF] _> fi[E.y[F]+y[E] .F] = Q[E.y[F] ]+fl[y[E] .F]

_> E. (fl.y) [F]+fl[E] . y[F] + y [E] .fltFj+Cfi.Y) [E] .F,

so that &.¥ is open. The conclusion for (a[S])* operators

follows from the lemma below.

Lemma 3.4 : For an open operator 0. in A.[S] and events

E and F,

fi*[E.F] _> ft* [E] .ft* [F] .

Proof : ft*[E.F] = I Q
n
[E.F] = £ I ft

n
.ft
m
[E.F]

n>0 p_>0 n+m=p

=
I I fl

nxA.Ax/[E.F] > I I fi

n
x A [E.Pu

m
[F]]

p_>0 n+m=p "
p_>0 n+m=p

> I I n
n
[E].^

m
[F] = ft*[E].Q*[P].

p_>0 n+m=p
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Theorem 3.5 : ^(CVX^,) = CVX
A[S]

.

Proof : The intersection of two closed classes is closed.

Corollary 3.5.1: (CVX
& [s]

) * C SUB^
[g]

£ CVX
A [s]

.

Proof : For ft e cvx
A r s i/ the P^oof of 3.2 shows that

ft*[E.F] _< fl*[E].fl*[F] and the lemma implies that this

is an equality. Hence ft* is a substitution, and by 3.3,

an operator in SU3
r

-, . The right hand inclusion follows

trivially. Note that the 'openness 1 of the operators is

needed for this result. For example, SUB* <^SUB. (Consider

the substitution (*
a
1

T
and then a

6
/ ft*[a

2
], a

6
eft* [a] . ft* [a] .

)

We now prove the main result for the open convex

operators.

Theorem 3.6 : For a class of operators n[S] over a

standard algebra S, let 3
j-

-, be the operator class

Ojften[S]}. Then

^ (CVXA[S]^ 8
<5>[S]>

CVX
A[S]

n3
(R[ S ]

'

in other words, the class of regulators whose duals are

open convex substitutions form a regular algebra of

regulators.
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Proof : We show that every operator in the regular closure

is a finite sum of CVX , , ( 1 3 ^ .. , operators. As 6< [S]

is closed under union and composition, 3.5 implies that

it suffices to consider the star of such an operator sum,

n, + .

open substitution (3.5.1 and the fact that SUB

closed under composition) and as

,-r + Q. say. Then («.,+ + Q. )* = (ft*. .. .fi *)* is an

WinSUB
A ro1 C\ 7 \ r\ ^>roi C 3
A[S] - L^JfJ 6^[S] ± d

(R[S] '

by 1.4 and 2.1, the result for star follows.

Corollary 3.6.1 ; 6{ ( 3pvy f) [(r] ) <= [^] .

Corollary 3.6.2 : ^ O SUB fi #"[S] ) <^ &[S], that is,
t

the dual class of increasing substitutions forms a regular

algebra of regulators

.

Proof : As SUB.g, C CVX
A |-

-./0 3 /^r s l'
it: suffices to

show that the operator classes SUB fi &[S] and SUB r.,

are equivalent, for then it follows that every regular

function of increasing substitutions is equivalent to

a finite sum of increasing substitutions.
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Given fleSUB r , , fi[l] _> 1 so that

0. = AxflxA>A [|]xA = A. Hence SUB^g, Q SUB
t
fi<5~[S]

Conversely, let y be an increasing substitution in

§" [S] . Then ¥ > A and Y = ¥ , both of which imply that

AxyxA > y =
( A+ ^)

t
> axwxa

and thus VeSUB r

Before concluding this section, we remark that

CVX properly contains CVX as the operator
[ J

+ A,

for some non-empty event A in a standard algebra S,

is a CVX operator which is not open.

The results above are schematically represented

in the diagram below.
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AlSl

c\/X
AI1S1

$($«&)

<ftsu&^ ^ U ft

CRLI}

CvX n c9
Z1T5] (RLSl

(k(cvK
/s rrn r\ <D
ALrr ^cit

£u^
6CS1

HO^

Hom
AL^l
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The Multiplier and Differential Calculus for Regular Events

Theorem 3.7 : For a standard algebra S, there exist

embeddings of S into ^\ [S] defined by

(1) I: E -> EA , where E
£
[F] = E.F and E

l
is said to be a

left multiplier,

(2) r: E -> E r , where E
r
[F] = F.E, the right multipliers ,

(3) 5^: E -> 6 , the left differential operators ,

E

(4) 5 : E -> 6 , the right differential operators .

Proof : Note that E^.F^ = (E.F)
£

and Er .F
r = (F.E )

r
so

that the maps of (2) and (3) are actually ' anti-embeddings

The proof of the theorem is immediate.

For a class of events X, , let T, (respectively

yj' , 6 , 6 ) denote the class of Y.
- left multipliers

obtained from the events in Y, as above (respectively,

the n/ -right multipliers, left differential operators,

right differential operators)

.
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Corollary 3.7.1 : For a class of events Y, in a standard

algebra S, the regular closure of the operator class ^
(respectively X- > 5

o /
5

r ) is t^*2 operator class

(^C7)T (respectively (Cl(%/)) r
/ 6 .,6 )

Corollary 3.7.2 : For a standard algebra S, the operator

classes (R
^

f) fr[S] , (^
rH C>[S] , 6 . H ^[S] , 5 fl fr[S]

form regular algebras of regulators for S.

Proof : As (R. ( (R ) ^ 6\ , the proof follows immediately from

the fact that regular events are closed under composition

and differentiation.

Lemma 3.8 : Let 'JC be a class of events in a standard

algebra S over a finite alphabet V such that ae JC for aeV.

Then JU and jLf' are subclasses of

are subclasses

<-/,! and 6 „ and 6

-«7-
Proof : For events E and F in S , let

S]-vH.[3-[a-v(?)-vK"v

x" ;t'
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[•£).„„ r%are /-/ and
L9^ I

operators respectively. Note that

we require as Y for asV to ensure that A is an
]
^ /

operator (or \' operator)

.

Corollary 3.8.1 : For a class of events % in a standard

algebra S,

3 n
=6 . and d =6

,

in other words, the dual class of %-left (respectively,

right) multipliers is the class of 'Y -left (respectively

,

right) differential operators.

Proof : Immediate from the form of the operators in 3.8.

Corollary 3.8.2 : Full AFL ' s are preserved under regular

left and right multiplication and regular left and right

differentiation

.

Proof : These are
j

a operations and the result follows

from 2.6.

The natural question to ask at this point is to what

extent the regulators of 3.7.2 may be combined and still

obtain a regular algebra of regulators. We examine the

pairwise closure of these classes and obtain the following
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results for a standard algebra S over an alphabet V,

Theorem 3.9 : If V has cardinality 1, then

If V consists of two or more letters, then

(R ((®/u(R r
)f) 5-[s]) <p (R[sj.

Theorem 3.10 : (£ ( ( 5 U&
) H (^ [S] ) C $ [S] .

Theorem 3.11 : d ( ( (R
£
U 6 . ) f] fr[S] ) C. (£[S] , and similarly,

(R((R
rU 6 ) &[S]) CL(SjS].

Theorem 3.12 : If V has cardinality 1, then

6{(l<k
l
<Jt )0(^[s])G(R[s].

If V has two or more letters, then

(R ((G^O 6 )fl <^[S]) £,#[S].

<R

Similarly for (3. (($ r U S ,]A&[S]).
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Proof of 3.9 : For an alphabet V of one letter, a say,

£ rwe have the operator identity a = a as S is a commutative

algebra. The result for the single letter case follows

from 3.7.2.

In the general case, let a,beV and then

(a br)*[l] = {a b |n>0} is a non-regular event and the

result follows. u, ( $ U(R,
r

) actually corresponds to

the regular algebra of Gruska [ $ ] over ordered pairs

of words <w,v> with the operations of union, composition

defined by <w,,v,>(P<w
;?
,v

?
> = <w,w„ , v_v, > , and star

defined by the iterated composition. By defining

<w,v>®[E] = w.E.v for an event E, Gruska has shown that

every linear language (over a finite alphabet) can be

obtained as the image of an event in his pair algebra

operating on the empty word and that context-free

languages are preserved under his <& operation.





Proof of 3.10 : We prove a stronger result, that is,

(R <<«
£o« ) fiats]) c- ^[s]

-3 -0

For all words w, vsV*, we have the operator identity

£ r r £
w v = v w , and hence for an operator ft in the above clas:

ft is of the form

I 6
o • 6

aeA E * F
r

a a

for some index set A, events E , F in S . As any regular
a a * '

event G has only finitely many left and right event

derivates, which themselves are regular events, there

are only finitely many events of the form 6 , . 6 [G]

E* F
r

for events E and F in S . Hence ft[G] is a regular event

and is a union of some of these finitely many double

derivates of G.

Corollary 3.10,1 : For a standard algebra S,

5\ ((5 Ufi. ) HD'ts]) 9-d^[S], that is, the differential

operators form a regular algebra of regulators.

Proof of 3.11 : Q. ( ( (\
l

(J 5 ) f\£r[S]) is an operator

algebra generated by the operator 'alphabet'

{a ,6 JaeV}, where V = {a-,,...,a } say, satisfying
a P
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the relations

(*) 6 . a.
£

= if i 5* j, and
a. 3

i

(**) = 1 if i = j.

(Similar relations hold for the right operators and

hence the proof for these operators is essentially the

same.

)

Let S ' be the free standard algebra generated by

the (disjoint) alphabet V = {b,,...,b } \J {c, , . . . ,c }.
± p x p

Now for an operator Q in the class above, there is a

regular function f such that

a = f(a
1 , , a , 6 ^,...,6 ^ ) and we let

p
a-, a
1 • p

E 1 = f(b,,...,b , c, ,...,c ) be the corresponding event

in S'. Let F' = c,b,+...+c b and then11 p p

(A ,
x |"

j

x a ,)*[l] = G' is an event in S ' . It is

clear that L
J
* = L

j , and that this is a regulator

as it is an 1 \\ operator. Then

K'=g(b .,b c ..,c )=fl •

(i')
+

[E1 P 1 P M
(b, + ..+b )*(c,+..+C )*

LJ
1 p 1 p
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is the regular event obtained from E 1 by imposing the

relations c.b. = if i 4 j and c . .b .
= 1 if i = j .

1 3 i 3
J

As these relations correspond to (*) and (**) above

respectively, it follows that

ft = g(a
x

,...,a , 6 ,...,6 ) .

^ a n a
1 P

Further, H 1 is a regular event in (b,+...+b )*(c,+...+c )± pi p

and hence is a finite sum of regular events of the form

B'.C where B* = L
± f) (b

±
+. . .+b )*, C 5 = R

±
f) (c^. . .+c )*,

L.R. one of the finitely many two term factorizations

of H 1

. So fl is a finite sum of operators of the form

¥.$ where ^ is a regular left multiplier and $ a regular

left differential operator, hence ft is a regulator.

Corollary 3.11.1 : Any 6\ ( §1 0& ) operator, over a

standard algebra S, can be put into a "normal form",

% I
E, .5 +...+E .6 , where the E. and F. are regular

F n F
1 n

events in S, neN.

Corollary 3.11.2 : For a standard algebra S, d is an

anti-isomorphism of (a (6\ 6 ) (respectively,

ft-





1.

(?\ (6\
r

6 )) mapping E . 6 to F . 6 (respectively

(R * £

E r .6 to F
r
.6 )

.

In view of 3.10.1, we conjecture that ^ ( (R U
6 ^ n )

is a regular algebra of regulators for a standard algebra

S. The method of proof in 3.11 fails in that we cannot

assert that H' is a regular function of the letters

b, ,...,b and suitable standard events, C\,...,C say.
-L p 1 p

Proof of 3.12 : The single letter case follows from 3.11

I r
as the commutivity of S implies the operator identity a = a

When the alphabet consists of two or more letters,

as in the proof of 2.3, the productions of a normal

system correspond to 6\ ( (X U & ) operators, and hence

this class of operators maps words in S to arbitrary

(coded) recursively enumerable sets. The similar result

holds for (R ( $/u 6 ) operators

Before concluding this section, we prove a result

which indicates to some extent that the algebras of

regulators which we have been considering may be combined

to form larger regular algebras of regulators.





82

Theorem 3.13 : Let Jd , denote the class of events

containing the empty word. For a standard algebra S,

V V SU3
f

Proof : We consider the dual class of operators of the

J£ Or
, and ^6 ,

operators commute, and for events E,F and a substitution

the operator identity

(*) ft.E
£
.F

r = (ft[E])
£

. (ft[F])
r

.ft

implies that it is sufficient to consider only the

regular closure of ( 2 -,
U SUB ) f) ^~[S]. We omit the

£
superscript for the multiplier operators.

Lemma : Let ft and ¥ be increasing substitutions and E an

^ , -class event in S. Then

(l) n.m e SU3WT

(2) ft* e SUB ,

(3) ^ ., operators are closed under regular functions

(4) (E.ft)* = ft* [E*] .ft*.
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Proof : (1) is immediate, (2) follows from 3.5.1, and

(3) from 3.7.1. We prove (4).

(E.ft)* = A + E.ft +...+ (E.ft)
n

+ ...

A + E.ft + . . .+ E.ft[E] .ft
2
[E] . .. . ft

R
[E] .ft

n
+. .

.

As A < 2, r" < 2. (ft
n

) so that

(E.ft)* _< A + fi[E].ft + ...+ fl

n
[E] .J2

n
[E] . .. . J2

n
[E].fl

n
+ ..

= A + ft[E].ft + ...+ fl

n
[E
n
].fl

n
+...

_< ft* [E*] .ft* .

Conversely, as the event E contains the empty word,

the operator E contains A so that E.ft _> E+ft and

(E.ft)* _> ft*.E* = ft*[E*].ft* as was to be shown.

We now assert that every operator in the class is a

finite sum of operators of the form E.ft, for S,ft as in the

lemma, and (1) , (2) , (3) , (*) imply that it suffices to

consider the star of such an operator. Let ft,,..., ft

be increasing substitutions, and E,,...,E

>, operators. ThenZ.
1





IK

(E
1

.fl
1
+...+E

n
.ft

il
)* = ((E

1
.ft

1
)*.(E

2
.n

2
)*. .. .(E

n
.fi

n
)*)*

= (n*[E*] .n*.n*[E*] .n*. .. .n*[E*] .fi*)*.

(1) / (2) and (*) imply that this operator is equivalent

to (F.T)* for an X -.-class event F and an increasing

substitution ¥ . Another use of the lemma proves our

assertion. Hence every operator in the dual class

*X (( 5 „ o(J 3 qtt^ ) D &[S]) is a finite sum of regulators

and hence a regulator.

The requirement that the differential operators

contain the identity operator appears to be artificial,

although no proof or counterexample of the result for

--o vice J% , has been found.

General Algebras of Regulators :

Our discussion above has been limited to specific

classes of operators and their effects on regular events.

In this section, we examine two operator classes which

can be inserted into any regular algebra of regulators.

The first to be considered is the class of total regulators,





Definition : For a standard algebra S, an operator ft in

^ [S] is said to be a total regulator (in the operator

class ^T
[S]) if, for any event E in S, fl[E] is a

regular event.

Lemma 3.14 : For a regular function of p+k variables

there exists a finite number of regular functions h,

f! , g. , such that for p+k letters b, , . . . ,b, ,a, , . . .

,

a

f (b 17 . . ,bk
,a

1
. . ,a )=h(a

1
, . . ,a^) +

k *j

+1 I q (alf .. f a ).b .g (b ,.. / bk ,a
1
,... / a ) .

3=1 i=l j
* J

j
*

Proof : Let E = f (b, , . . . ,b, , a, / . . . ,a ) and the aim is to
J_ K. i. p

decompose E into a finite sum of regular events of the

above form. As E is regular, there are finitely many

two term factorizations, L.R., such that E =
I L.R.,11

i=l
x x

and we consider the intersection of E with

(a, + .. + a )* + y (a
n
+ ..+a ) * .b . . (b, + . ,+b. +a n + . ,+a )*.

1 p - 1 p 3 1 k 1 p

Let h(a, ,...,a ) = E^(a, + ... + a )*, the regular subset
l p 1 p

of words of E in which no b. appears. For words of the
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form wb^v in E such that we(a,+...+a )*, there exisi

L.,R. such that wb.eL., veR. , and we let

fj _(ar ...,a ).b g (b
x

b
k ,a a ) =

L
± n (a-j + .-.+a )*b . R_.fi (b^. . ,+b^a^. . ,+a ) * .

Theorem 3. 15 : For a class of regulators n in a standard

algebra S such that Q\(n) is a regular algebra of regu-

lators, then

(R (n U(S(T
[s]) 5(R[S].

Proof : For a regular function of p+k variables, ft.,.., ft ,

operators in n and total regulators ¥,,..., ¥. , the lemma
J. K

implies that there exist regular functions h, f! , g. ,
X
3

X
3

such that

f(¥
1
,... / vk/

n
1
,... / n ) = h(olf ...,n ) +

k *j
+ X Z f

i.
(fi

i V-"j' gi-
( "i V«i V *

3=1 i.=i 3 ^ J
3

3y hypothesis, h(i2,,...,ft ) is a regulator, and for each

j = l,...,k, i.= l,...,g., and each regular event E,

f
i.

(v—y-v gi.
( *i

fk'°i y [E] =3^3
q ((^,..,0 ).¥ [g (V

1
,..,yk

,ft
1
,..,ft )[E]

]
= F, say,

3 ^ J
3
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and, as ¥ . is a total regulator, F is a regular event.

(Note that the proof also shows that for a function

f as above such that f (b,, . . ,b,, a-, , . . ,a )/^(a,+..+a )* = 0,

then f ( V, , . . . , V, , ft, , . . . , 0. ) is a total regulator as h is

then the empty function.)

In other words, we can enlarge any regular algebra

of regulators in such a way as to include the total

regulators. We now present a few examples of total

regulators

.

Definition : Let E be an event in a standard algebra S.

E
£

Er
We define the operators 6^ and 6 by

„A r r
6* [F] = 6 [E] and 6

h
[F] = 6 [E]

F
£

Fr

V Tf
for an event F in S . For a class of events ^ , let 6

/<"

e\ v r r
denote the operator class {6 lEeyL)/ and 6 A- the

E
r

r/
operator class {6^ |EeyC}.

Lemma 3.16 : In a standard algebra S, the operator classes

6
vv and 6

ux consist of finite valued total regulators,

that is, total regulators which assume only a finite

number of values over S.





Proof : Let E and F be events in S such that E is
£ r

regular. Then 6
E

[F] =5 [E] and 6^ [F] = 6 [z]

are regular events, and the regularity of E also

implies that the operators map events in S to the

finitely manv event derivates of E. Note also that

the operators are linear as 6 [F+G] = 6 [E] =

(F+Gr
,r

<5 [E] + 6 [E] for events F and G. (Similarly for 6 .)

r G

Corollary 3.16.1 : For a class of regulators n in a

standard algebra S such that 0\( n ) is a regular algebra

of regulators, then

G{ ((no 5& u 6^
r

) &[S]) C (R[S].

Another example, generalizing a result of Haines

US]/ of a large class of total regulators may be

obtained by introducing the concept of "divisibility"

for words.

Definition : Between words over a finite alphabet V, a

divisibility relation
| is a relation on V* such that

(i) l|l,
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(ii) w|v =^> w|av for aeV,

(iii) w|v==>awjav for aeV,

(iv) w|v, v|u =£> w|u.

We prove the following lemma about divisibility

relations

.

Lemma 3.17 : There is no infinite 'division free' sequence

Wq,w.. /W
2 , . . . , of words over a finite alphabet V such that

i < j implies that w
.
/w . .

Proof : Lexicographically order the words of V* first by

length and then by a trivial order on V. Among all such

infinite division free sequences, if they exist, there

will be one with a minimal first word, w say. Among all

such sequences beginning with w , there will be one with

a minimal second word, w, . Continuing in this fashion,

we obtain a minimal sequence t = w_, w, , w„ , . . . , . Now

as t is an infinite sequence and V is a finite alphabet,

there exists a £ V such that infinitely many words in t

begin with the letter a. Let {av.|jeN} be the subsequence

of t with this property, where av_ = w, is the first word

in t beginning with a. Then it is easy to see that

, _, , v , v,,..., is a division free sequence
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contradicting the minimality of t.

The lemma is equivalent to a result of G. Higman

[/(?] which states:

Theorem : If E is any set of words formed from a finite

alphabet, it is possible to find a finite subset E of

E such 'that, given a word weE, it is possible to find

w eE such that w |w.

However, the lemma as given enables us to prove a

result on "divisibility" operators. For a divisibility

relation
|
on V* and an event E in V* , let DIV[E] be

the event {w| w|v for some veE}, the set of divisors

of E.

Theorem 3.18 : DIV[E] is a regular event and hence DIV

is a total regulator for V* events

.

Proof : We prove that DIV[E] is regular by showing that

it has only finitely many word derivates. If w|v for

ve6 [DIV[E]], then (ii) implies that aw|av, so that aw
a

is in DIV[E]. Hence w is in 6 [DIV[E]], and the word
a

derivates of DIV[E] are divisor closed.
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Now if there are infinitely many word derivates of

DIV[E] , there is an infinite sequence of letters,

a ,b,c,..., in V such that

DIV[E], 5 [DIV[E]], 6 [DIV[E] ] , . . .

,

a (ab)

is an infinite sequence. of distinct events (and a

decreasing sequence as shown in the first part of the

proof) . But if we select

w
o£

DIV[E]\<5
£
[DIV[E]], Wl e6 ^ [DIV[E] ]\s [DIV [E] ] , . . . ,

a a (ab)

then w ,w, , . . . , is an infinite division free sequence,

a contradiction.

Corollary 3.18.1 : For a standard algebra S over a finite

alphabet V and for a linear operator Q in C/ [s] , let

y =(Y )

+
x «. Then y* is a total regulator. In

/v\*particular, / , / is a total regulator.

Proof: For [£] e ¥*, [*
V

J
4- [^j e ** for a;V, and

starring the operator supplies the transitivity and 1,1 eT

required for V* to be a divisibility relation.
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Before, concluding our discussion of total regulators,

we point out that, although there are only countably many

regular events in a standard algebra S, our results for

the total regulators are not dependent on the fact that

the operators take only countably many values over the

events in S

.

Let (j(.[S] be the class of countably-valued regulator;

where operators in G\ r
[S] take only countable many values

over events in S, and in addition, are linear regulators.

Clearly, $ [S] C. (P [S] , but an attempted generalization

of 3.15 fails for this class as shown by the following

example.

Let S be a standard algebra over a single letter a

P m f th
and let a = {a p the m— prime}. Then we define the

'
L m ^

operator ft by ft fa "] = a* , for a / a , and ft [a '] =

P s ,
th

{a
I

1 _< s _< m+1}, that is, ft takes the m— prime

exponent to the first m+1 prime exponents. Then ft is

trivially a linear regulator as it maps all regular sets

to a* or to a finite set, and similarly, ft is countably

P
valued as a is the only additional set in its range.

2 PHowever, ft* [a ] = a is a non-regular set so that ft cannot
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be inserted into any regular algebra of regulators.

Another class of regulators, the ^* operators

,

although not total regulators, can also be inserted

into any regular algebra of regulators.

Definition : For events E and F, let

•j-

E
[F] = E + F if F / 0, and

=0 if F = 0,

and for a class of events %, , let -J- denote the operator

class K-E |Ee)C}. ^
The condition that -f"p [0] = is necessary for the

linearity of the -]- operators. Observe that if we
.\

define v*-c[F] = E+F for events E and F, then -J-_ = 3~» /

T*E

and the +* operators are the linearized -f- operators.

Lerrma 3.19 : For a standard algebra S, an operator fi in

J^ [S] , and events E and F in S

,

(1) n.vE = +Q[E] -Q.

(2)+E .+ = -f"E F E+F
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(3) (+E
.fl)* = Q*.+

E = +
fl
*r Bl

-0* '

(4) (+E )* = +E
.

Proof: Immediate

Theorem 3.20 : For a class of regulators II in a standard

algebra S such that 6\ (n) is a regular algebra of regulators,

then (R(n U( i~ H &[S])) cl $[S].

Proof : As in the proof of 3.13, we show that every

operator in the class is an operator of the form ""}~
v .ft

for E a regular event and fie (R(H) .

For regular events E,F, operators fl,¥ in (R(n),

and an event X,

(+ E
-ft) + (+ F

.¥) [X] = fi[X]+F+^[X]+F = + E+p .(ft+y) [X] .

The similar result for (-J-_ .ft) . («•>%,• *) and (-fc-_.fi)*_ t _

follows from the lemma and the fact that (a (II) operators

are regulators. The proof of the theorem is now immediate.

Consideration of the intersection operators proves

more complex. For a regular event E, f\ _ is a linear
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operator, and we may also show the analogous results

of 3.19 (2) and (4), that is,

n E -n F - n E0F ,

<n E
)* = a + n E

= A ,

n E
+ n

F
= r,

E+F
.

However, the methods of 3.20 cannot be applied to

this operator class, for given a linear operator Si,

fl./°l
E
[F] = ft[FflE]

which need not be the same event as ft [F] ft ft [E]. By-

similar reasoning, (f)_.ft)* need not be equal to ft* . N ,

and the question remains open as to whether this operator

class can be inserted into any regular algebra of

regulators

.

Some Remarks on Context-Free Languages :

We conclude the chapter with an examination of the

effect of regulators on context-free events, and the

context-free preserving operators, C [S] for a standard

algebra S.
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[S]flC[ s ] is not closed under the biregular_? fQi r\ r>

operations of + t
x, and : Let V be the alphabet

rn

{a/b,c} and L the context-free event {wcw |we(a+b)*}.

The operator ft =
I |

1 is in £[S] as well as
ve (a+b) * . v J

0<js] , although it is not i

¥ = A, , x
f
c "1 x n, and then y[L] = {wcwjwe (a+b) *},

a non-context-free event as noted in the proof of 1.13

Observe that this example also shows that 0\ [ S j Cfc C [

S

]

.

II. A slight modification of the argument preceding 1.11

shows that 3/ p, 3 ^ rc -,\ operators do not preserve
iCVXA[s] (xlsj;

£ -class events: Let L, and L
2

be the context-free

languages defined in the example of Ginsburg and Spanier.

Then a = A , . ,,
'

U,b,c,d} , L2+1
x A ; , , , is an open

la,b, c,d) l

is not context-free as .C] ^ . 3 [L,"J yields the same non-

context-free event {a
n
jn=4.6

1
/ i_>0}. Similarly ft is an

increasing substitution whose dual does not preserve

.ass events.C-Clc
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III. Although (${ ,
0^"" , <$ ,6 , are operator

classes preserving £, -class events as they are f)X

operators, Q^( (&* &) and (R ( (£
r ^ <5^ . ) operators

do not preserve (f. -class events as the proof of 3.12

showed that these operator classes generate all (coded)

recursively enumerable sets.

The example of Ginsburg and Spanier may be used

again to show that

Q ((«
Q

6 Jfl Q [S]) <£ £[S]

Let L be the context-free language generated by the

productions

S -> aSb 2
S * bSa 3

S -> cSabc S + d

and let a =• ((6
£
.6 )+(fi .6 ) + (5

£
. 6 ))*,

a a b b c c

an ooerator in (£, ( 6 U5 ). Then Q [L] is not context-fre<

» n
a*- ( [al

+
[b] 4cl +

[ll>

+

-^ = (a"|n=4.6
i
,^0).

(R ( ( (^
£
U (^

r
) &ts]) C. Q [s] since this class of operators

corresponds to Gruska's algebra of word pairs as noted in
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the proof of 3.9. As C is closed under full substitution,

Gruska's result also implies that (2, (

(

& l C r
) (1 & [S] ) C.

C[s].

The normal form of 3.11.1 for (R ( (R. Uo ) operators

(similarly for Q ( Q r
U 5^ ) operators) shows that this

class of operators preserves k_ -class events. As

6 £,t£j i? C* ' tnis cannot be extended to ^ ( S { )

operators. The case for U<
( £ <J <5 „) operators is still

(X
opei

IV. The proofs of 3.15 and 3.19 show that (a [S] and

~~D ^ ^"[S] can ke included in any regular algebra of

operators preserving context-free languages. Indeed,

the same holds for O [s] and T% C\ ^[S] operators.

The example following 3.18.1 shows that the similar

result doesn't hold for $
C
[S] and £ [S] .

V. It can be shown that ooen convex members "- m
are closed under the regular operations





Chapter 4

The Algebra of Commutative Events

Before considering the theory of operators for

commutative events, we examine the algebra of regular

commutative events and the corresponding regular

expressions. Let S be a standard algebra with a

finite alphabet V in which the letters are allowed to

commute. For formal expressions E and F, let <E>, <F>

denote the events represented by E , F respectively.

As usual, an event in S is regular if it can be obtained

from a finite number of applications of the regular

operations + , ., and *, over 0, 1, and a finite number

of non-trivial words in V*. Let -4 denote the class

of commutative standard events and 0\ the class of

commutative regular events

.

In [17]/ Redko lists an axiom scheme for S ,

essentially the one below, but we have added CO and

CI for completeness (and then C12 and C13 are redundant)

.

For formal expressions E, F, G over V (events in S)

,
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CO : E + = E

CI : E.O =

C2:E+F=F+E
C3 : (E+F)+G = E+ (F+G)

C4 : E.F = F.E

C5 : (E.F) .G = E. (F.G)

C6 : (E+F) .G = S.G + F.G

C7 : E.l = E

C8 : 1* = 1

C9 : (E.F*) * = 1 + E.E*.F*

CIO: (E+F)* = (E.F)* (E*+F*)

Cll: E* = (E
k
)*(l+E+. ..+E

k-1
) , k=l,2,...

C12: E + E = E

C13: (E+F)* = E*.F*

3y relying on the theory of real vector cones and

a questionable induction step (see Theorem 5 [17])/ Redko

has deduced that, given two regular expressions E, F such

that <E> = <F>, the equality of the expressions is provable

from the axioms (written E = F) . Ginsburg [I?], by inter-

preting the words in V* as vectors over N, has shown that

0\ is closed under intersection and boolean difference
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(see the remark following the proof of 4.1 for the

equivalence of regular events and Ginsburg's "semi-

linear" events) , and that the result of these operations

was effectively calculable for arbitrary regular events.

Below, we show that the sufficiency of the axiom scheme

may be shown by a lengthy reduction process, and that

this process also proves the closure of the regular

events under intersection and difference.

Regular Expressions and the Normal Form :

In this section we examine the algebra of regular

expressions and (i) show that there is a normal form

for these expressions in which the starred words appear-

ing in any single term form a "linearly independent"

set, and (ii) prove that the axiom scheme suffices for

relationships between single terms in this normal form.

The following are easily deducible from C0-C13:

C14: 0* = 1

C15: E* = 1 + E.E*

C16: E* = 1 + E +...+ E
k_1

+ E
k
E* , k=l,2,..., and

k— 1 <k <0
we write 1+E+...+E asE , where E =0,
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C17: (E*)* = E*

C18: E*.E* = E*

C19: E*.F*.G* = (E
a

.

F

3
.

G

Y
) * . (E

<a
. F* . G*+E* .

F

< 3
. G*+E* . F*

.

g" Y
)

where a, 3, yeN such that a+S+y > 0.

Definition : E _< F 4=7* E + F = F.

C20: E _< F =^ E.G < F.G

C21: E _< F*.E

C22: E < F, F _< E <=^ E = F.

Definition : For words w. in V* , a regular expression of

the form w-, *w
2
* . . .w *w , or a finite sum of expressions

in this form, denoted Z w, *w^* . . .w *w , is said to be in

almost-normal form .

Lemma 4.1 : Any regular expression, E, can be expressed

in almost-normal form.

Proof : We show that the set of expressions in almost-

normal form is closed under the regular operations. A

finite sum of expressions in almost-normal form is already

in almost-normal form, and a finite product can be

rearranged by the commutivity and distributivity of S.
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We can then transform the star of an expression in

almost-normal form into almost-normal form by C13 and C9.

As all finite expressions, that is, finite sums of words,

are in almost-normal form, the lemma then follows by

induction on the complexity of the expression E.

It is clear that the commutative regular events

(expressed in almost-normal form) correspond exactly

to the semi-linear events where the word a.,
a
...a p

1 P

corresponds to the vector (&,...,$), a, 3eN.

Definition : A set of words (w, , . . . ,w } over the alphabet

V is said to be independent if

°1 a
n S

l
Sn

w
l •- wn

= w
l •••wn

for a, , . . . , a , 3-,, . . . , 3R
eN, then a^ = 3,, i = l,...,n.

An expression Z w-,*...w *w_ is said to be in^
f

1 nO
normal form if the starred words in each term of the

sum form an independent set.

Lemma 4.2 : Any regular expression, E, can be expressed

in normal form.
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Proof : In view of 4.1 it suffices to consider a single

expression of the form w *...w *w , n _> 2 . If the

starred words do not form an independent set, then

there exist a ..,..., a , 3,,...,3 eN such that

a, a 3, 3In In
w, . . .w -
1 n

and at least two pairs, (a., 3.), of exponents differ,

Without loss of generality, we assume that

a-, a 3
, t 3

1 s s+1 nv = w, . . .w = w
,

, . . .w
1 s s+1 n

such that

(i) 1 < s < n-1,

(ii) «1+ ...+.B
> 0, 8 s+1

+.-.+S
n

> 0.

A generalized form of C19 allows us to write

a, a <a
S < Ct sw,*..w * = (w n . .w ) * (w-, w *..w *+..+w,*..w *w )

1 n 1 s 1 2 s 1 s-1 s

3 -, 3 < 3 < 3

(w _,,
s+

. .w
n
)* (w J_ 1

S+
w ^*. .w *+. .+w *..w *w

n
)s+1 n s+1 s+2 n s+1 n-1 n

<a, <a
1 s

:v* (w, w_*..w * + . ,+w *..w _-,*w ) x

<3 , <3
(w ,, w*,„..w *+..+w* , . .w* ,w )s+1 s+2 n s+1 n-1 n
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which is a finite sum of normal terms with one less

starred word in each. If any of these expressions is

not in normal form, we repeat the above process for

that term, and observe that in a finite number of steps,

the process will terminate, leaving a finite number of

normal terms.

By convention, we call an expression which consists

of a finite sum of words sub-normal , and regular

expressions which consist solely of a sum of starred

disjunctions of words super-normal .

Theorem 4.3 : For an arbitrary regular expression F

and a single normal term E such that <F> C <E>, then

F < E.

We first prove the following lemmas

Lemma 4.4 : For a regular expression E such that we<E>

then w _< E.

Proof : It is sufficient to consider E a single normal

term, v-,*...v. *v_ say, and. if we<E>, then w = v,
a ..v y

' 1 m * 1 m

for some a,...,3eN. We can replace E by
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<V
a+ VV>"-<V B + v

n
6V>V

a finite sum of terms, one of which is v *..v *w.

C16 and C12 then imply that w < v *...v *w.c J — 1 n

Definition : Let
|
be the relation defined on V* by

ou a 0- S
1 pi p

a n . . .a £ a, ... a ^
1 p

|
1 p

if and only if a. _< 3. for each i.

Lemma 4.5 : Every set of pairwise incomparable words

in V* (with respect to |) is finite, and hence for any

event in V*, the set of minimal words is finite.

Proof : | is a divisibility relation on V* and the

result follows from 3.17.

Lemma 4.6: If <w,*...w *w>0<v,*...v *v> = <X> is an
1 n 1 m

infinite event, then

<w.*...w *>f)<v *..v *> ^ l.
i n 1 m

Proof : As <X> is infinite, there exist an infinite

number of identities of the form
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with a..,..., a , S-,...,8 eN. As the set of minimal

words with respect to
|

is finite, let u ' be a minimal

word in <X> of the form

a' a' S ', 6'
, 1 n 1 m

u ' = w, . . .w w
1 n

such that u 1 divides an infinite number of words in <X>

Then for ue<X> such that u'|u,u' ^ u,

a, -a' a -a' S-,-3' S -6'

u-" = w
n

1 1
...w

n n
= v

n

1 1 ...v
m mIn 1 m

is a non-trivial word in <w-,*...w *>H<v *...v *In 1 m

Lemma 4.7 : Such a u 1 ' can be effectively found.

Proof : By consideration of the system of the homogeneous

linear equations associated with w,*...w * and v,'

Lemma 4.8 : For arbitrary expressions t*X, t*Y

t*X t*Y <^=4> X t*Y .
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Proof : =^ : C21 and C12 . <£=• : C20 and C18.

Definition : For a regular expression F in normal form,

the dimension of F, denoted dim(F) , is the maximum number

of non-trivial words in the super-normal part of any of

its normal terms.

Proof of 4.3 : It is sufficient to consider F a single

normal term and the proof is by induction on dim(F)

.

If F is sub-normal, the result follows from 4.4.

Consider E = v *...v *v, F = w * . . .w ,
,*w, where we

1 m 1 n+1

assume the result for n. As <E> O <F>, 4.6 and 4.7

imply that there exists a common word, t say, in the

super-normal parts of the expressions. 3y C16, we may

replace F by an expression of the form I t* u *...u *u
f

i n

and as t*E = E, the result follows from 4.8.

Sufficiency of the Axiom Scheme :

We now show that we can effectively replace (by a

lengthy process of reduction) a regular expression E by

regular expressions corresponding to the intersection

and boolean difference of the event <E> with the regular
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event <X>, for a single normal term X. This enables us

to prove the sufficiency of the axiom scheme.

Lemma 4.9: For single normal terms X = x n *...x *x3 1 m

and E = v *...v *v such that v -,*... v * < x,*...x *,In 1 n p 1 m '

there exist regular expressions Y and Z such that

(1) E = Y + Z,

(2) <Y> C <X> and <Z> £ <e>\<X>.

Proof : By induction on dim(E) . For n = 0, the result
a
l

a
n

is trivial. Now if <E> D<X> 4 0/ let Y = v
i ...v v

be a word in the intersection and by C16, we may replace

<ct, a <a a

E by ( VjL + v
x

n
V
1
*)...(v

n
+ v

n
n

v
n
*)v =

v,*...v * y + H, where H is a finite sum of normal

terms of dimension _< n-1 (thus satisfying our induction

hypothesis) , and v-,*...v * y _< X.

Lemma 4.10: For a single normal term X = x *...x *x,
-a 1 m

and a regular expression E, there are regular expressions

Y and Z such that

(1) E = Y + Z,

(2) <Y> £• <X> and <Z> C <E>\<X>.
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Proof : It suffices to consider E a single normal term

of the form u *...u *u, and the proof is by induction

on dim(E). The case for n = is trivial and we proceed

by induction. The idea involved is to express the words

in <E> in terms of the words x, ,...,x with rational

(possibly negative) exponents and to decompose the

expression E with this dependence in mind. If the

words of <E> are not expressible in this form, we

"complete" the set {x, ,...,x } with words x ,.,... ,xr I'm m+ 1 ' p

such that x *...x *x
,
*...x * is normal (that is, the

1 m m+1 p

set {x, ,...,x } is independent), and such that, for a

word ve<E>, there exist rational r,,..-., r such that

r
l

r
v = x, ...x p (that is, {x,,...,x } is a "basis" for

the words in <E>)

.

We define the x

.

-index of a word v in <E>, ind (v)

,

i

as the exponent of x. in the expression for v in terms

of x ,,.../ x . Now for the word x., if there are u.,u,
1 p 1 j K.

in (u, ,...,u } such that ind (u.) < 0, ind (u,) > 0,
j. n x .

"J
x . K

then there exist positive integers p and q such that

ind (u.P u, ") = 0, and we may replace E by C19 in
x
i D K

terms of the word u.^ u, ^. It is clear that after a
3 k
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finite number of steps in this reduction process, we

will have replaced E by a finite number of normal

terms, each of which satisfies exactly one of the

following:

(1) each of the starred words has zero x. -index,

(2) the starred words have non-negative x. -index,

and at least one starred word has strictly

positive x . -index

,

(3) the starred words have non-positive x. -index,

and at least one starred word has strictly

negative x. -index.

Now repeating this process, in turn, for x.,x
2 , . . ,x

we observe that the reduction process for the word x.

does not affect the decomposition (1), (2), (3) above

for i •< j . Thus, in a finite number of steps, we have

replaced E by a finite sum of normal terms such that, if

(non-trivial) starred words appear in an expression, then

either they all have non-negative x. -index, i=l,...,p, or

they all have non-positive x. -index. By induction, we

need only consider those terms of dimension n. As a

starred word, v. say, in such a term is a word over

x,,...,x with rational coefficients, by Cll we may
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q . <q .

replace (v.)* by (v. ^ ) * v. ^ , where q. is the l.c.m.

of the (absolute value of) the divisors of the rational

exponents in the representation of v. over x. , . . . ,x .

Hence if v,*...v *v is such a term obtained from the
1 n

reduction process, we may assume that the v. are

integral combinations of the x. . . ,x .

Now for the case where the v. have non-positive

index, it is clear that we can find positive integers

S
l'**'' s

n
sufficientlY large such that, if we replace

<s, s, <s s

v *...v *v by (v, +v, v *)...(v n+v n
v *)v, then no

1 n * 1 1 1 nnn
s, s

word in <v,*...v *v, ...v n
v> is in <X>. As this is

1 n 1 n

the only term of dimension n in the expanded expression,

the result follows for the negative case by induction.

Similarly, for the positive case, if some v. has a

strictly positive x. -index for i = m+l,...,p, we may

<s . s .

replace v *..v *v bv v,*..v* , (v . ^+v.^ v.*)...v *vc 1 n -* 1 j-lj jj n

for a positive integer s . sufficiently large so that

s .

<v,*. . .v.*. . .v *v.-! v> has no word in <X> and again,
1 3 n j

y '

as this is the only term in the expansion of v *...v *v

of dimension n, the result follows by induction for

this case.
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Thus, to complete the proof, we must only consider

terms of the form v,*...v *v where each v. has x. -indexIn j 1

_> for i=l,...,p / and x . -index = 0, i=m+l,...,p.

The result for this case follows from 4.9.

Theorem 4.11 : For a regular expression E and F such

that <F> 5 <E>, then F _> E.

r

Proof : By induction on the number of terms in the ex-

pression F. For a single term, the result follows from

4.3. We assume the result for expressions F 1 with <q

terms. Then for an expression F of the form F'+x,*..x *x,

4.10 implies that E = Y + Z such that <Y> C <x *..x *x>^ pr — 1 m

and <Z> C <f'> and the induction step follows from

another use of 4.3.

The Boolean Operations for Regular Expressions :

Lemma 4.10 also implies that commutative regular

events are closed under intersection and boolean difference,

However, the reduction process in actually computing the

intersection and difference for two regular events is

lengthy and we provide here a shorter algorithm for this.
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Lemina 4.12 : For regular expressions t*G and t*H,

t*G H t*H = t*(t*GAH + G0t*H).

Proof :

t*G t*H = I (t
X
G f) t j H)

i/j

= I (t^G rt t
±+k

H) + I (t^
+k

G rtt^H)
i,k j,k

= J t^G t
k
H) + J t^(tkG^ H)

i,k j,k

= t*(G Ci t*H) + t*(t*G A H)

= t*((t*G n id + (g n t*H))

as was to be shown.

Lemma 4.13 : For single supernormal terms t*A, t*B such

that t*A > t*B and A > B, then

:*A\t*B = t* (A\B) .
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Proof :

OO 00

t*A\t*B = I t
1A\t*B = I t

1A\(t <1
+ t

it*)B
i i

= 1(0 (tV^B)) f] (t
iA\ti

t*B)
i 0_<k<i

= 1(0 tNt^AXBjjfl t
i (A\(t*BOA)).

i 0<k<i

As A _> B, then t*B A = B, and as 3 is a super-normal

expression,

i_k
A\B = t^AVlrtdB) = t

1_kA\0 - t
1"*;

for i > k. Then we have that

t*A\t*B = I ( H ^A) t
1 (A\B)

i 0<k<i

I t
i
(A A\B) = t*(A\B).

Theorem 4.14 : For each pair of regular events E and F,

E C\ F and E \^ F are regular events.

Proof : It suffices to consider E and F as single normal

terms. The result for intersection follows immediately

from 4.6, C19, and 4.12/ by induction on the dimension

of E and F.
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The proof for boolean difference is again by

induction on the dimension of E and F, and for

dim(E) + dim(F) = 0, the result follows trivially,

If F is a finite sum of words, the result follows

by repeated use of C16, so that it suffices to

consider E and F single normal terras of the form,

E = t*w *...w *w, F = t*v * ..v *v,In 1 m

such that E > F. In this case,

, a 1 n
.v = t w, . . .w w

for some a, a-,, . . . ,a eN, and then,

a-, a
(E\F) = w(t*w

1
*. . .wn

*\t*v
1
*. ..vm*t

a w
JL

. ..w ),

a, a

If z = t w, . . .w 7^ 1, then a+a,+...+a > 0, and by

C16, we may replace t*w,*...w * by,

<a, a-, <a a

(t
a

+ t
a
t*) (w,

X
+ W, W *) . .. (W

n
+ w n

w *) .

1 11 n n n

As this is a sum of normal terms, all of which have

dimension <n, with the exception of t*w*...w *z, by

induction the problem is reduced to consideration of
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t*w-,*...w * \ t*v,*...v *. Now as t*w-,*..w * > t*v *..v ;

1 n \ 1 m 1 n — 1 m

there exist a
(1

>
, a{« , . . ,

„™ . . , a
(m)

, a<
m)

, . . ,
«™ « N

such that

v
±

= t w
1

. . .w
n , 1=1/. • . /in,

(1) (1)
a
l

a
n

and we let u. = w, . . .w . Then, t*w-,

'

t*u,*...u * > t*v,*...v *, and
1 m — 1 m '

t*w *..w *\ t*v *..v * = t*w *..w A^u^.u *+t*u *..u *\
1 n x 1 m 1 n \ 1 m 1 m\

t*v
1
*..v *, = A + B say.

t*w *.w *\t*u *.u * satisfies the condition of 4.13
1 n \ 1 m

and then the induction hypothesis provides the result

for event A. Now if m < n, another use of the induction

hypothesis implies that B is regular, and if m = n, we

may replace t*u*...u * by repeated use of C12 to obtain

a finite sum of normal terms, all but one having an inter-

section with t*v *...v * of strictly smaller dimension
1 m u

(and hence satisfying the induction hypothesis) and the

exceptional term being t*v,*...y * itself, and so B is

also a regular event in this case.
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We add a note on the questionable proofs of both

Redko and Salomaa [|^]. These authors rely, as we do,

on the normal form for regular expressions and the

associated linear independence. The result for

expressions involving only single letters in the

super-normal parts of each term is proved by induction

as in 4.11. They then conclude that the general case

reduces to this special case.

However, we show that this reduction is not straight-

forward, even if the result might be proved in this

fashion.

It is clear that each regular tautology in S can

be proved if we can prove relations of the form.

F = I F. > E ,

j=l 3 pr

for E a single normal term of the form w •,*... w *w, and as

Xw _> Yw 4=^ X ^ Y

for a single word w, we can even assume that E is a super-

normal expression. Then by 4.9, this is equivalent to

showing that

F E > E ,
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and as F E is regular, there is a regular function f

such that Ffl E = f(w,,...,w ) and the expression

f(w,,...,w ) has the same number of normal terms as the

expression Ffl E. Hence the problem is reduced to

showing that

f(a1/ ...,an ) > a *...an
*

,

pr

where the a., i=l,...,n, are single letters (and we call

a,*... a * a universal event). As a-,*... a * _> g(a, ,...,a )

for any regular function g, it is clear that we are

required to prove tautologies in which only one of the

expressions has starred words consisting of single

letters, and in fact,

Proposition : 'Every regular tautology in S may be reduced

to a 'universal' tautology of the form

f (a, ,. . . ,a ) = a ,*. . . a * .

'

1 n pr 1 n

With this in mind, consider proving, for example,

(ab) *a*+ (ab) *b*+ (a
2b

3
) * (a

3b2 ) *a
12

b
16

+ (a
4b

2
) * (a

2b 3
) *a

14
b2

=a*l:

The expressions are obviously equivalent as the first

two terms in the left hand side are equivalent to a*b* , but
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any attempt to decompose a*b* by repeated use of CIO,

as suggested by Redko and Salomaa, to cater for the

remaining two terms, makes the problem considerably

more complex, and seemingly impossible.
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Chapter 5

Operators and Regular Commutative Events

In [^0] , Parikh has shown that the commutative image

of a context-free language is a semi-linear event— that is,

a regular event if considered as an event over a commutative

alphabet. This result has been described as "among the

most fundamental and subtly difficult to prove in the

theory (of context-free languages)" ( [2.0 ] -editorial foot-

note), and Parikh' s theorem relies on induction over

generation trees. However, because of the 'context-freeness
'

,

the commutative image of a context-free language generated

by a grammar r is the same as the event generated by the

'commutative' context-free grammar r', obtained from r

by allowing all letters in V„ U V to commute. In this

chapter, we first show that Parikh 's result follows easily

from a more general theorem concerning regular solutions

of regular equations and then show that the latter result

naturally leads to a theorem concerning the closure of a

class of regular substitutions. We conclude the chapter

with some conjectures about the closure of a large class

of regulators for the commutative events

.
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Commutative Regular Equations and Parikh ' s Theorem :

It is clear that the language generated by a grammar

is the minimal solution of a corresponding system of

equations. This is simplest seen in terms of an example

—

the language generated by the grammar

A + A33a A -> A3 2
a A * b

B -> AB 2 B -> a

with V = {A,B}, V = {a,b}, and A the initial letter, is

the smallest event X for which there is an event Y

satisfying:

X = X 3Ya + XY 2
a + b

Y = XY 2
+ a .

Parikh' s result then is a theorem about solutions

of finite equations over a commutative alphabet. It is

therefore a special consequence of the following theorem

on more general regular equations in variables representing

commutative events

.

Theorem 5.1 : A system of regular equations





X " f (X V X
r+ l V

123.

(1)

X
r " f

r
(X V X

r+ l V
in which the f. are regular functions of their arguments,

has a regular minimal solution (for any given events

X
r+ 1 V'

X = 9 (X
r+ l V

(2)

X
r = Sr (*r+1 V

(in which the g. are regular functions) in the sense that

the events X , . . . ,X defined by (2) satisfy (1) and any

sequence of events Y , . . . ,Y satisfying (1) has

Y. r> g. (X ,,,... ,X ) .

l — y i r+1' m

Proof : We first consider a single equation X = f (X ,X..,..,X )

Using C0-C13 and the techniques of Chapter 4, we can put

this equation into a form, X^ = E(X,,..,X ) +F (X-,X, , . . ,X ) .X_^ lm 1 m

(3), where E and F are regular functions—we abbreviate

this to

x
o " E + F(x

o'-
x
o

Now this implies
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X
Q ^ [F(E)]*.E = G*E, say,

where G = F(E). We now show that G*E is in fact a

solution of (3), and so is the required minimal solution.

If <j> (Xn ,X, , . . . ,X ) is any word in X ,X, , . . . ,X which

involves X , then using the relation Y*Y* = Y* and the

commutative law we have

*(Y*Z,X
1
,... /Xm ) = Y*.<J.(Z / X1/ ... /Xm ) .

Using this we derive

E + F(G*E).G*E = E + G*.F(E).E = E + G*.G.E = G*E,

proving our assertion.

To solve systems containing more than one equation

we use this as the induction step and the fact that

regular functions of regular events are regular to

eliminate the variables one by one.

As an example of the technique, we consider the system

of two equations which we discussed earlier where

(X
Q
,X

1
,X

2
,X

3
) = (Y,X,a,b)

:

X = X
3Ya + XY2

a + b

Y = XY2
+ a.
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The Y-equation in form (3) is Y = [a] + [XY]Y

and so has the solution Y = (Xa)*a. Substituting

this in the X-equation, we get X = X 3
(Xa) *a

2 + X(Xa)*a 3 + b,

or in the form of (3)

,

X = [b] + [(Xa)*X
2
a
2

+ (Xa)*a 3
]X

whose solution is

X = {(ba)*b 2
a
2

+ (ba)*a 3
}*b,

whence from Y = (Xa)*a we get

Y= [{(ba)*b 2
a
2

+ (ba) *a
3
}*ba] *a.

Expressed in normal form, these solutions may be written:

X = b + (ba)*(a 3
)*a

2b 3 + (ba) * (a
3

) *a
3
b

Y = a + (ba)*(a 3
)*a

2
b .

We now formalize the translation from grammars to

equations

.

Corollary 5.1.1 : Let r be a context-free grammar in

which V„ and V are considered as generating a commutative

semi-group. Then L is a regular event.
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Proof: To each A in V,,, we associate the formal

expression <j>, + ... +
<f>

where A -*- <}>,,... ,A -> <+> are the

productions in P with A as the left hand side. We

then consider the system of equations:

xo= f
o (V x

i V a
i V

x
P

= yv x
i v a

i v '

where (i) X , X,,...,X are events corresponding to

A ,A,,...,A , respectively, and

(ii) £. (Xq/X-,/ . . . ,X ,a,,...,a ) is the (trivially

regular) function obtained by replacing each

A. by X . in the formal expression associated

with A., i, j=0,l, . . . ,p.

It is clear that X. = Im (A.), i«0,l,...,p / is the

minimal solution of this system of equations, and from

Theorem 5.1 the minimal solution consists of regular

events. In particular, for the X. corresponding to the.

initial letter in V^, X. = L
r

is regular as was to be

shown.
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Hence, for the grammar considered earlier, we

have that L
p

= b + (ab) * (a
3

) *a
2
b
3

+ (ab) * (a
3

) *a
3
D,

and thus the following corollary.

Corollary 5.1.2 : (Parikh's Theorem). Let r be a

context-free grammar generating a language, L . Then

the commutative image of L is a regular (commutative)

event whose normal form can be found effectively from r.

Biregular Operators over 0\

A context-free grammar can be interpreted as an

operator of the form,

2 - n
v* •

(A
v * z

fw]
x V*'

(where V = V, UV„ and the sum is taken over all productions

A * w in P) operating on the initial symbol An of the

grammar. The theorem above then implies that 0. is a

regulator when V,, Uv_ is considered as a commutative

alphabet, and as 0, is the star of a biregular operator

(followed by an intersection operator) , it is natural

or J
operatorsto investigate the properties of the

for commutative events . In this section we examine

the analogous results of Chapter 2 for the biregular
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operators over commutative populations, and in particular,

show that the open regular substitutions are closed under

star. As the starred operator above is an operator of

this type, we extend the results of the previous section

and motivate the conjectures of the final section of the

chapter.

^, operators are defined as in the non-commutative

case for biregular operators; we observe immediately that

these operators over an alphabet of n letters correspond

to commutative regular events over an alphabet of 2n

letters

.

Lemma 5.2 : For a finite alphabet, V say,

(1) There exists a normal form for ^+ operators. In

r^i L J
other words, every event in $+ /

^ s °f tne form,

i
[:;]* {""]'[•}

where w, , . . . ,w ,w,v,,...,v , v are words in V*.

(2) All decision problems for vX correspond to decision

problems for 1 5L operators, and in particular, -

j
CR

f
i

has soluble equivalence, emptiness, and membership

decision problems.
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(3) ^ is closed under intersection and complement,

and hence forms a boolean algebra of operators.

Proof : As in the similar results for •G< of Chapter 4.

Lemma 5.3 : Let S be a commutative standard algebra.

Then for operators fl and ¥ in ©C [S ], and words u,v,w in

Proof: [»] «.[;;]*,- xiCF
1/3

00
.. -,

x i - *i+k °° - .xj+k _ ,x-i

1 /K J ,K

:1
. rvT** ? r„l

x
3

1/

K

J ,K

( [wl
means [w]

x
[w] as distinct from [w] • [l]
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Theorem 5.4:

Proof : As in the proof of 4.14 the result follows from

5.3 and induction on the 'dimension' of the operators.

Corollary 5.4.1 :

[
gH [ <R

+
] £ <R

+
and

J0
S^] £ « +m , that is, the gj

operators are regulators.

Proof : As in the similar proof for ran
UJ

operators

Corollary 5.4.2 : The commutative regular events are

closed under regular event differentiation, inverse

regular substitution, and regular substitution.

We are now in a position to consider the star of

the open regular substitutions, and we first prove some

necessary lemmas, the first of which is of further

interest in the final section of the chapter.

Lemma 5.5 : For a commutative standard algebra S and

operators n and V in c£ [S ] ,
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(1) Axft.Axy > AxflxT

(2) (Axfi)* = (AxQ + )*

Proof : (1) Let 1 _ , and I

f
be arbitrary word-pairs

in ft and ¥ respectively. Then Axflxy consists of word

pairs of the form
[™|!f]

and as
£™J

x [^] x

[

e
f

is in the operator product

Axfl.Axy, (l) follows.

(2) Trivially Axft
+

_> AxQ, so that (Axft
1")*

_> (Axfl)*.

The first part of the lemma implies that (Axfi)* _> Axfl

Lemma 5.6 : Let ftQ be the operator ( ) , that is to say

A x f^
J,

where A is a (commutative) regular event and

aeV. Then ft* [a] is a regular event.

Proof : As in the proof of 5.1, A may be considered as

an event of the form

f (w, , . . . ,w, / a) . a + E
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where (i) w,,..,w, are words in (V\a)*,

(ii) E is a regular event in (V\a)*, and

(iii) f is a regular function, which is a non-empty

function if aeA.

The minimal solution for equations of the form

X= f (w1# . . ,wk
,X) .X+E is (f (w

1
,..,wk

,E))*.E . Then as

fi

Q
*[a] > f (w 1/ .. / wk ,^ *[a]) .fl

Q
*[a] + (a+E)

,

we have that

ft

Q
*[a] = (f (w

1
,.. /wk , (a+E)) )*.(a+E), = a say,

is a regular event.

Corollary 5.6.1 : Q * is an open regular substitution.

Proof : 5.5(2) implies that (A x PI) * = (a xf^J
1")*

and as A * 1 jM is an open substitution, 3.5.1 implies

that its star is also. Hence 9. * = A

is an open regular substitution.

,V ta -

= <

a
)

T

a

Note that 5.6 and its corollary also hold for the

empty word in place of the letter a as (^)*[1] = E* is a

regular event if E is regular.
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Theorem 5.7 : v* is an open regular substitution if y is

Proof : Let 4^ = (^) +...+ (^) + (*) , and

<>[B]

for events A,B,...,D,E in V* and letters a,b,...,d in V.

Then for «
1

= A + fl = A + ft, we have

. (5) = (3) + (?)*(£) +
f

and hence,

n
X B

nln"[B]J
-1 ^•<b>

It then follows that fl, *. <j>,. 8,* = ^>
2
,n i*

by noting

(i) n
x
* = ( a+ (*) )* = (*)*

(ii) fl,* . 8,* = 8,* for the left hand inclusion [<) , and

b '

8
X
*[B]

(iii) ^* . (£) ^
b \

for the converse (>)
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Now let <j>
=

( ) + <}>, ,* then we have that

n

= I (4>
2

. (*)*
)

n
. (*)* .

By the first part of the proof, (p*.$
2

. (p* =
<i>

2 -(j^*'

and so <{>* =
<f> 2

*" (f ) * • Then by induction on the number

of letters in V, we may replace <j>* by the iterated

composition

r
1 \* (

d
)

^B ,;
* V

where B' = (*) * [B] • = (&
(«.) (g,)*.(J*[E]

Also <}>* = (<j> )* and as <j» is an open substitution, <$>*

is also. Hence, we may assume that <j>* is of the form

(*)

**[a]J U*[b]

d

4>*[d]J 4>*[U

The theorem now follows, for if ¥ is an increasing

regular substitution, then ¥ is of the form <j> , where the
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events A,B,...,D,E are regular, and 5.6.1 implies that

B ',..., D',E' are all regular events. Hence y* [a] , . . , V* [1]

are all regular events and as ¥* is of the form (*)

above, it is a regular substitution.

Corollary 5.7.1 : Parikh's Theorem (again J).

Proof : The operator—mentioned in our initial remarks

—

that corresponded to the grammar of a context-free

language was an open regular substitution.

Some Conjectures :

As in the non-commutative case for biregular operators

[~ is an example of an operator in *\ whose star is

not. However, we consider the stars of operators in a

special sub-class of «•
Definition : Let / $ \ denote the class of operators of

( &+

the form

a
v

x a

where Q is an ^ operator over a finite alphabet V.

[%1
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ft-

Analogous to the non-commutative case, we call

operators open .

Lemma 5.8 : (
<£+

J is closed under the operation . , as

well as +, x,

Proof : The proof of closure of [ yjv*-} under the biregular

operations is a straightforward result of the axioms for

&
+

. For Axy, Axy in f/L) i 5.4 implies that Axfl.Axv,

= <$> say, is in 2+ , and observe that <j> _< Ax<j>.. Then

for fj [e 4> , there is a word v in V* such that -
J

is in

A*ft and is in AxL Then for any word w,

[:fl - [z] " [f] • [:] * [v] is * the <*•»** p-duot

r+ )
*

It is clear that the grammars of (commutative)

context-free languages may be considered as / JX+ j
operators

and in fact, a grammar for any finite rewriting system,

that is, a finite list of rewriting rules of the form

w -> v, is an
[ ^+ J

operator. We now make the following

conjectures

.
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(«Conjecture A : For y e
[
^<

J
, y* is a regulator.

In view of 5.3.1, A is implied by:

(®+) '
^* £ \%) (thS °Pen capping

conjecture )

Conjecture B: For V e
,—J

[a*J

It is obvious from the proof of 5.3 that Y* = A*y*

and hence, if V* is in f^r , then ^* is an I 5+
J

operator. 5.8 also implies that B is equivalent to:

Conjecture B

'

: / ~/ \ is closed under +, ., and *.- 8?)

The following example shows that, in settling these

conjectures, we cannot hope to use all of the structure

theory for operators over a non-commutative population.

Lemma 5.9 : For a standard algebra S,

(1) <£ [S ] f\ ot [S ] is not closed under the biregular

operations

,

(2) p
+
JO &[S+ ] £ (3l

+
[S

+
].

Proof : Let 0. be the q+ \ operator, {[^ |p a prime},

and then for an event E, fi[E] = ft[a*OE]. As regular

events over a single letter are both (R - and & -events,
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PIthe fact that L (^ J is a class of regulators implies

that ft is in GV~[S ]. However,

ft *
[£J

[Ub)*] = {bp
| p a prime}

is a non-regular event, whence (1) and (2)

.

We now list our evidence in support of the conjectures.

I. Open regular substitutions are
(
^X+ ) operators and

the regular closure of this class is a subclass of
j
~jL

J
.

II. The single variable case:

First, we note that for words w and v in V* (V a

finite alphabet) , A *
j

j
corresponds to the operator

v6 of Chapter 3, but in this case we are consideringw

commutative differentiation. When V is a single letter,

a say,

a 1 *
(A x

). I
I)

ra 1

is an ( ^A operator, as it is in the regular closure

of the class of (right or left) differential operators

over a single letter, and the normal form for operators

of this type (3.11.1) provides the result.
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When we consider the general single variable

problem, that is, operators of the form,

we may no longer assert that this operator is a regular

function over the operators a and 6 . However
a

A x

l-,t

x. . . x m
w

\0 does correspond to a

context-free function over the operators a and 6 of
a

the following form:

iri-.q.. m q

a P^ a
1 ' 1 a

Hence y* above corresponds to a context-free

function f(a,6 ) = (Y L) * of a and 6 . Now for the
a ~ a

operators a and 6 , we have the relation 6 . a = A.
a a

It follows that y* corresponds to

^a*S •
(

V7 [ f < a < 5
a>
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in computing which we consider a and 6 as letters .

In Chapter 3 we noted that operators of the form

,
J

were <o I operators and hence regulators, but we

could say little of their properties for preserving

context-freeness. We suspect that operators of this

type do preserve context-freeness but are unable to

prove this at present. A positive answer to this

question would settle another open problem in the

theory of context-free languages which has arisen

from an investigation of the Dyck languages [M. Nivat,

private communication]

.

f
S
a'

a \*
If is an operator with this property, then

V 1 /

(*) would be a context-free event in a* 6 . , and by
a

Parikh's theorem, the commutative image of this event

would be a regular event of the form

i. i,

y (a
-1

6 . )*.. . (a
K

6 . )* a
1

5 . say, over the letters
f _

D 1 J k a J

a and 6 . It follows that
a
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A x 1
f

k,t

:

]

is an operator in / ^L j .

that

i

Note that we do not assert

^* = I (a
-1

6 . )*... (a
k

6 . )* a
1

6

holds as an operator equality.

III. The general case:

When we consider operators of the form,

(A x
I

w
nlt

;]>* -

as in II, we can interpret the operator as the star of

a finite sum of linear operator events, (J L) * say, over
r

the operator alphabet {a, 6
|
aeV}. However, if V has

a

more than a single letter, V = {a,b} say, then a typical

operator word might be 6 .b.a, and here we do not have
a

the commutivity of the single letter case. Thus, if we

were to parallel the above argument, operating on (J L) * with
f
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6
a
.a 4-

&h
.b

would not suffice as this operator

would have no effect on 6 . b.a . A satisfactory form

of an operator would be

/Av
x ^]*v[i]*vvM*v[i}\)

but unfortunately, this operator does not preserve

context-freeness as the example below illustrates.

Let V = (a, b,c,6 } and consider the context-free
a

event

= (b. (5 )
2 )* . I (ac)

n
. (ab)

n
.

n>0

Then ft
b * c*b* . fi[e] = J be b , a non-context free

m_>0
event.

However, the damage is not irreparable as we note

that in the intended interpretation e corresponds to an

( J+ I operator as does Q[0]. Hence 0. might be a suitable

form of operator, if we could prove a theorem asserting

that for a context-free event M and an operator of the

form n, the commutative image of n[M] is a regular
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event for regular E (although Q [M] may not be context-

free) . This appears as difficult as the basic conjecture.

As an alternative to the above approach, we conclude

the chapter with a possible 'zero— ' step in an induction

proof, that is, we examine (Axil)* when 0. is of the form

I
["] •

Definition : For a word w in V*, let V(w) be the finite

subset (of the alphabet V) {a| a is a letter in the word w)

Ler^a 5.10 : (A * [*]) * s^ J
.

Proof: AS A * [»] - A x [l]
. A * [{\ ,

<a*[»])* = u«B].«[i|)- = ™«M-(4iMs]>*-*"M •

By 5.8, the problem is then reduced to consideration

of (A x MjM . a x /)*. Nov; there exist subwords

w 1

, v 1 of w and v respectively such that

(i) V(w') f) V(v') = 0, and

(ii) w = w'x and v = v'x for some word x in V*.

Then for z, ueV*,
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u = yw 1 for some word y in V*

Hence (A *
[

W
^

X
] . A x [vlx])*

= (A x [^l])*, and

V(w«)0 V(v') = 0,

* - * - [r
+

as was to be shown

as

A x

which implies that (Ax
I |)* = /\x , , an operate

- (2.*)

Theorem 5.11 ; Let ft be an arbitrary (operator) event

over the operators a,b,...,6 ,6, , ..., and y = (ft + zu 6 )

u
for words z, u. Then y* = ft* . (zu6 )* . ft*, and if

/$-M u
ft* is an

vk3 + / operator, then 5.8 and 5.10 imply that

y* is an |(5s
J

operator.

Proof ; Let s and t be words in V*, and then for n, m, peN

such that p ^ 0, it is clear from elementary vector space

theory that

te(zuS ) .ft
iU

. (zu5 K[s] =^> tefl . (zu6 )

11Tp
[s].

u u u

It follows that any product of the terms ft, zu6 is
u
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equivalent to one of the form ft . (zu6 ) .ft^ for some

n,m,p N and the theorem is immediate.

Corollary 5.11.1 : For words w, v, z., u., x., y.,

i=l,...,n, j=l,...,m, in V*.

(v5 + z,U. 5 + + z u 6 + V, <S +...+ y 6

W U-, u„ Xi^i
1 ^m

HW
Proof: The dual result of 5.11 is that

3 u/*
= 3 t**^ U(S )** 3 o* • The corollary then follows

zu

from 5.8, 5.10 and induction on n+m.

We conclude the chapter with the remark that this

approach also doesn't appear very promising, since the

following type of (/o + J
operator shows that we cannot

hope for a 'formula' or 'standard expression' in decom-

posing the ( t\
j

operators.

T . _ , n-p , m+1 x n+1 . m *Let ft = (a ^ b <5 + a b <s ,

)

n,m,p v n,m ° n-p,m+l ;

where n,m,peN such that n _> p.
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(&)ft* is an
( ^ + J

operator (easily proved by

appealing to a geometric argument) but it is not as

'tame 1 as the operators of the type in 5.11.1. It

can be shown that

n , m-rl n-p ,m+l f , n+1, hk n-p.jia+l- >p r n, m-,
a b = a P b 6

nKm*
(a b 6

n-pKm+r
a b 6

n, m } [a b ]

a b a ^b a b

and that no other choice in the application of the

suboperators in ft would suffice. In other words.* n,m,p

when looking for a 'standard' form for these operators

as in 5.11, we might be forced to apply the sub-operators

in a certain pattern for an arbitrary number of times,

q say, before there would be a choice of which operator

to apply at the (q+1)— step in a derivation.

In conclusion, we summarize our evidence for the

conjecture:

(1) open regular substitutions obey the conjecture;
n

(2) the conjecture holds for operators of the form Il r \ ;

/ba\
f ^ a '

(3) if
[

* is an operator which preserves

context-free events, then the conjecture holds for all

one variable operators

;
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(4) operators of the form

(v6 + Z-,U,6 +...+Z U 6 + y 5 +...+y 5 )

u
l

u
n *!*! V.

satisfy the conjecture.

However,

(5) the class of linear regulator s is not closed under

the biregular operations;

(6) the operator arising naturally in a generalization

of (3) does not preserve context-freeness.

(5) and (6) show that some natural methods of proof

cannot succeed.





141

References

1. Kleene, S.C., Representation of events in nerve

nets and finite automata. Automata Studies ,

Princeton University Press, Princeton, N.J. (1956)

,

pp. 3-40.

2. Rabin, M.O., and D. Scott, Finite automata and

their decision problems. IBM J. Res. Develop. 3

(1959) , pp. 114-125.

3. Ginsburg, S., and S.A. Greibach, Abstract families

of languages. Amer. Math. Soc. Memoir 87 (1969),

pp. 1-32.

4. Conway, J.H., Regular Algebras and Finite Automata ,

Chapman-Hall, to be published.

5. Brzozowski, J., Derivatives of regular expressions.

J. Assoc. Comp. Mach. 11 (1964), pp. 481-494.

6. Hopcroft, J.E., and J.D. U11man, Formal Languages

and their Relation to Automata . Addison-Wesley

Publishing Company, Reading, Massachusetts (1969)

.





149.

7. Ginsburg, S., and E.H. Spanier, Quotients of

context-free languages. J. Assoc. Comp. Mach.

10 (1963) , pp. 487-492.

8. Gruska, J., Algebraic characterization of some

classes of context-free languages. Mimeographed

notes, University of Bratislava (1966).

9. Rosenberg, A., A machine realization of the linear

context-free languages. Inf. and Control 10 (1967),

pp. 175-188.

10. Chomsky, N., Formal properties of grammars.

Handbook of Math. Psych ., Volume 2, Wiley, New York

(1963) , pp. 323-418.

11. Davis, M., Computability and Unsolvability .

McGraw-Hill, New York (195 8)

.

12. Elgot, C.C., and J.E. Mezei, On relations defined

by generalized finite automata. IBM J. Res. Develop

9 (1965) , pp. 47-68.





150.

13. Fischer, P.C., and A. Rosenberg, Multi-tape one-way

nonwriting automata. J. Comp. and Sys. Sciences

2 (1968) , pp. 88-101.

14. Greibach, S., and J.E. Hopcroft, Independence of

AFL operations. Amer. Math. Soc. Memoir 87 (1969)

pp. 33-40.

15. Haines, L., On free monoids partially ordered by

embedding. J. Comb. Theory 6 (1969), pp. 94-98.

16. Higman, G., Ordering by divisibility in abstract

algebras. Proc. London Math. Soc. 3 (1952), pp. 326-336

17. Redko, V., On the determining totality of relations

of an algebra of regular events. Ukrain. Mat. Z.

16 (1964), pp. 120-126. (Russian)

18. Ginsburg, S., The Mathematical Theory of Context-Free

Languages . McGraw-Hill, New York (19 6 6)

.

19. Salomaa, A., Theory of Automata . Pergamon Press,

Oxford (1969) .

20. Parikh, R.J., On context-free languages. J. Assoc.

Comp. Mach. 13 (1966), pp. 570-581.









Thesis 119403
P542 Pilling,

The algebra of

operators for regular
events.




