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ABSTRACT 

Orbital debris will increase dramatically unless active debris removal methods are 

implemented. Tethered methods of active debris removal present an intriguing solution 

that should be investigated and the benefits compared to other researched methods of 

active debris removal. This study consists of applications of tethered space systems and 

active debris removal methods with a focus on tether-based momentum exchange 

systems in an effort to determine if a tethered propellantless debris removal solution is a 

viable one. The debris will be assumed to have been captured, with the tether attached to 

the center of mass of both the debris and the removal vehicle. The debris analyzed has 

simplified characteristics based on Hubble Space Telescope. The results of this study, 

conducted primarily using MATLAB and Simulink numerical integration methods, 

explore the dynamics of tethered satellite systems and compare the results of different 

removal methods, including the addition of a drag sail via a long tether, tethered 

momentum exchange orbital transfers, and propulsive orbital transfers. The 

momentum exchange model explores effects of tether length and spin rate on the 

momentum exchange orbital transfer. 
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CHAPTER 1:
Introduction

One of the major issues facing future operations in space is the rapidly increasing population
of orbital debris, or space junk inEarth’s orbit. Orbital debris is composed of defunct human-
made objects over a wide range of sizes; objects larger than about 10 cm are trackable and
cataloged in the U.S. Space Surveillance Catalog. Active Debris Removal (ADR) methods
have been proposed, and unless ADR is implemented, the space junk population will
increase dramatically, presenting hazards to current and future space missions. Tethered
methods of active debris removal present an intriguing solution that should be investigated
and the benefits compared to other methods of active debris removal.

This study consists of surveys of tethered space systems and active debris removal methods
with a focus on tethered space tugs and momentum-exchange systems. The debris is
assumed to have been captured, with the tether attached to the center of mass of both the
debris and the removal vehicle. The debris analyzed is an intact spacecraft with simplified
characteristics loosely based on Hubble Space Telescope (HST).

This study compares the results of different removal methods, including the addition of
a drag sail to the debris, the addition of a drag sail mounted on a spacecraft at a lower
orbit, connected via a long tether, tethered momentum-exchange orbital transfers, and
propulsive orbital transfers. The tethered-sail system model offers a parametric comparison
exploring how changes in tether length and orbital altitude differences affect deorbit time.
It is assumed that the drag sail area remains constant and the drag sail system is attitude-
controlled to utilize the maximum drag area. The momentum-exchange model explores
effects of tether length on the momentum-exchange orbital transfer. By comparison of
propellantless tethered deorbit solutions to more conventional propulsive methods, this
thesis determines that tethered ADR solutions are feasible and can be more economical than
other proposed ADR methods. This chapter begins by reviewing orbital debris mitigation
practices, followed by the current state of active debris removal. As this thesis is specifically
focused on investigation of tethered ADR systems, Section 1.2.1 also includes a survey of
tethered space systems.
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1.1 Orbital Debris
There are currently more than 20,000 known, monitored objects larger than 10 cm that
present debris hazards in the Low Earth Orbit (LEO) environment (up to 2000 km). The
debris includes non-operational spacecraft; derelict launch vehicle stages; mission-related
debris such as sensor covers, engine covers, straps, etc., which were typically considered
expendable parts in missions from the ’60s and ’70s; or fragmentation debris, which can be
due to anomalous events, explosions, or collisions [1]. The debris population fluctuates as
a function of solar flux (and thereby, atmospheric density) and of major debris generating
events, such as the 2007 Fengyun-1CChinese anti-satellite missile test and the 2009Cosmos
and Iridium collision. Atmospheric drag is a function of density, so as atmospheric density
fluctuates with solar activity, the atmospheric drag force increases, resulting in faster deorbit
rates.

Debris from events such as these increased the hazard to space assets and further endangers
human spaceflight missions. For example, the International Space Station (ISS) is required
tomaneuver if there is a debris collision risk greater than 1 in 100,000 andmission objectives
would not be compromised, requiring propellant usage. If the risk of collision is too great,
and ISS is unable to maneuver, the crew must board the Soyuz spacecraft to prepare to
undock [1]. These risks are currently manageable, but as the debris population increases,
so will the risk to space assets. Additionally, as the amount of debris grows, shielding
solutions will have to be implemented on future launches [1]. Moreover, constellations
of small satellites are rapidly becoming a popular option for aerospace companies, but as
these satellites become inoperable with age, they will add to the orbital debris pollution
problem in LEO. Large constellations will potentially add thousands of small satellites to
an already congested environment. In order to assess the impact to the LEO environment,
where we do most of our satellite business, a recent study on large constellations was
conducted by the National Aeronautics and Space Administration (NASA) Orbital Debris
Program Office (ODPO). The study showed that even with a best-case scenario of 99
percent success rate of post-mission disposal of constellation satellites within five years of
conclusion of their mission (in addition to post-mission disposal of normal LEO satellites),
the implementation of large constellations would still add to the debris population by 22
percent over the next 200 years [2].

Models have shown that the debris population in LEOwill continue to increase in a runaway
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nonlinear fashion, even if all future launches are stopped, due to collisions between orbiting
objects, a phenomenon known as the Kessler Syndrome, identified by NASA in 1978 [3].
This study utilized amodeling tool called the LEO-to-GEOEnvironmentDebris (LEGEND)
model to simulate and predict debris populations in LEO. This model uses a deterministic
approach to evaluate debris populations in a simulated environment based on historical data
and a comprehensive NASA ODPO internal database. The debris population projection,
shown in Figure 1.1 was based on the average results of 100 Monte Carlo simulations using
this tool, assuming no future launches [3].

Figure 1.1. 200-Year Projection of Debris Population. Source: [3].

As the debris population increases, the risk of collision increases, and further collisions
and explosions create new debris in an endless positive feedback loop. During a technical
seminar in 2011, NASA’s chief scientist for orbital debris, J.-C. Liou [4], reported that,
as the debris population increases, more frequent conjunction assessments will be needed;
more collision avoidancemaneuverswill need to bemade; more debris impact shieldswill be
needed, which adds more mass requirements to future systems and limits launch capability;
and the risk for potential critical failures due to collisions or explosions will increase.
Likewise, projections show that without post-mission disposal or other mitigation, over the
next 200 years, the number of debris objects in LEO experiences a 330 percent population
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increase with dramatic catastrophic collision potential [2].

A 2009 baseline study [2] by NASA’s ODPO determined that even if all future launches
were suspended, and even if post-mission disposal of re-entry within 25 years, in accordance
with debris mitigation policies, was 90 percent successful, the debris population would still
increase by 75 percent over the next 200 years. However, this same study determined that by
implementing an ADR program, the debris population is in fact manageable; by removing
at least five objects a year, the debris population can be held relatively constant. Currently,
though, ADR is not a commonly practiced solution because it is technically difficult and
expensive. Further complicating the issue is that international treaties prohibit the removal
of space objects by anyone other than their owner, so there are political factors such as
ownership and liability to consider [5].

1.1.1 Orbital Debris Mitigation
In an effort to limit future debris creation events, many policies have been implemented by
the spacefaring nations. The Inter-Agency Space Debris Coordination Committee (IADC)
is an international governmental forum for the worldwide coordination of activities related
to the issues of man-made and natural debris in space. Current IADC Orbital Debris
Mitigation Policy states that upon completion of its mission, a satellite either shall reenter
the atmosphere within 25 years, or shall be removed to a storage orbit during a process
called Post Mission Disposal (PMD). NASA refers to this policy as “design for demise”
whereby all current launches must include some end-of-life disposal methods to adhere
to this policy and reduce the risk of casualty [1]. Disposal methods include the use of
drag enhancement devices, or including the propellant required for propulsive deorbit, or
transfer to a graveyard orbit in the propellant budget. Drag enhancement involves increasing
the cross-sectional area of the system to exploit atmospheric drag to increase the rate of
orbital decay. The method of adding a drag enhancement device to a tethered system
will be investigated in Chapter 4. For satellites without maneuvering capabilities, mission
orbits are often simply chosen in which natural atmospheric drag will deorbit the object
within 25 years. This straightforward approach is popular with many of the newer CubeSat
experiments [6]. Additionally, passivation is required upon mission completion to deplete
all on-board sources of energy. This practice minimizes the impact of accidental collision
or reduces risk of explosions from stored fuel on-board spacecraft or upper stages [7].
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However, as discussed previously, PMD alone is insufficient to protect the space environ-
ment. Additional policy changes have been suggested to impose taxation to fund cleanup
efforts and limit future launches. There is, however, concern that this would limit the
accessibility of space and is unfair to smaller space agencies as most of debris is from
three major players (United States, Russia, and China) [1]. While PMD offers a solution to
future debris remediation, ADR methods can be applied to persistent non-compliant debris
that have been a high risk to further polluting the LEO environment for many years [6].
Due to the cost and complexities involved in ADR, the debris candidates for ADR must be
prioritized and selected carefully. The removal criterion is determined by debris mass and
its collision probability over time. Once an object has been selected for removal, it must be
removed quickly to mitigate its collision risk [3].

1.1.2 Active Debris Removal Concepts
In a 2013 internal report, NASA identified several major strategies for ADR methods for
large debris removal. In particular, they reviewed drag enhancement devices such as drag
sails and inflatables, lasers, Electro Dynamic Tether (EDT) space tugs, the Geosynchronous
Large Debris Deorbiter (GLiDeR) concept, Frozen mist, ballistic intercept, tungsten dust,
laser collision avoidance, and the ion beam shepherd [8].

In September 2018, Surrey Satellite’s RemoveDebris payload demonstrated successful de-
bris capture with its on-board net technology in the first successful demonstration of ADR
technology in human history [9]. This payload contains additional experiments for vision-
based navigation for non-cooperative rendezvous, a harpoon debris capture experiment with
a 25 m tether, and a drag sail demonstration [10].

Other upcoming ADR missions include ESA’s Clean Space initiative that, is developing
the e.deorbit satellite to remove a large piece of debris, and the CleanSat program, that
aims to develop technologies to ensure that future satellites are able to comply with debris
regulations [11]. E.deorbit is planned to launch in 2023. Its mission is to capture a large
piece of ESA-owned debris in the 800-1000 km altitude range, in a near polar orbit and
is considering net capture, or robotic arms with grippers to capture its target [12]. The
ultimate deorbit method considered resembles a space tug. Space tugs are debris removal
vehicles that rendezvous and grapple a debris object to relocate it into a disposal orbit,
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usually via propulsive means.

CleanSpaceOne is a proposed ADR technology demonstration to capture the Swiss-owned
SwissCube [11]. Challenges for this demonstration include detection and capture, due to
SwissCube’s small size and high tumble rate. As of this year, this project is still in the
funding consolidation phase [13].

The GLiDeR concept proposes using active charge emissions and directed charged particles
to increase the absolute electric potential of a debris object and deposit it into a graveyard
orbit. This method is unique in that debris objects can be moved into its disposal orbit
without requiring any physical contact between the GLiDeR and the debris [14].

Lasers are also being investigated as a debris removal method. A laser could potentially
vaporize a portion of the debris, generating a thrust which causes the debris to alter its
orbit [1]. There is, however concern that this method may generate small debris particles,
which would potentially interfere with operational satellites. Sweeper satellites could be
used in conjunction with this method to remove the small debris particles [6].

The NASA 2013 report [8] concluded that drag enhancement devices, space tugs, and
electrodynamic tethers were the most viable large debris removal concepts based onmission
suitability, technology readiness, schedule, risks and cost. This drives the motivation of this
study for investigation into these methods in particular [8]. A tethered ADR system would
reduce the fuel requirement for a deorbit system and can be completely passive. Tethered
space tug systems are being considered due to the advantages of being lightweight, flexible,
and with simple controller design. Several companies are developing electrodynamic
terminator tether tape technologies for SmallSats and CubeSats. A conductive tether
induces an electric potential generated by its motion through the earth’s magnetic field;
the resultant Lorentz force slowly deorbits the object [1]. Patents have been developed by
Researchers at the Universidad Carlos III de Madrid for power generation via tethers as
a satellite lowers in altitude, transforming orbital energy into electromagnetic energy via
passive exploitation of Lorentz drag to remove inactive satellites [15].

Additionally, momentum tethers are an option considered byNASA [1]. Momentum tethers
use the rotation of a debris removal vehicle to generate momentum and remove the object
to a lower orbit once the tether is severed on the principle of dynamic release. This method
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in particular will be investigated thoroughly in Chapter 5. A momentum tether scenario
proposed by NASA involves attaching a non-conductive tether to a piece of orbital debris,
generating momentum, then severing the tether to use the generated momentum to swing the
object out of orbit. This method may effectively deorbit large masses, which are the greatest
concern for collision risks [1]. Amomentum exchange tether system is also a solution worth
investigation because these systems can also be used for propellantless formation flight and
stationkeeping. The "TAMU sling sat sweeper" concept proposes using inelastic collisions
to capture debris and using a change in angular rate to appropriately expel the debris with
the desired conditions. Additionally, the momentum exchange from this maneuver can be
used to assist in orbital transfer to a subsequent debris for capture, minimizing the necessary
propellant used by the sweeper vehicle [16].

The most cost effective space tugs mission would be able to service multiple debris ob-
jects [6]. There are many technical challenges to this method. Rendezvousing with and
grappling a tumbling debris object requires very sophisticated guidance and control, and
the grappling mechanism must be robust enough to accommodate all sorts of extended
structures and odd shapes [6]. The European company Airbus is also developing a space
tug for on-orbit maintenance and debris removal. Airbus developed the debris capture net
that was demonstrated on the removeDebris mission, as well as the harpoon capture system,
and the visual based navigation system that will be demonstrated in the following stages of
the mission [9].

In 2017, Defense Advanced Research Projects Agency (DARPA) awarded Space Systems
Loral (SSL) the contract for their Robotic Servicing of Geosynchronous Satellites (RSGS)
program, which includes relocation and other orbital maneuvers. This program will also
develop many of the technologies and techniques that can be applied to ADR. SSL’s RSGS
payload is anticipated to launch in 2021 [17].

1.2 Tethered Spacecraft Systems
TetheredADRmethods are some of the primary researchedmethods bymajor space industry
players because the advantages of implementing tethers in space have been apparent since
before the dawn of the space program. Many applications of tethered space systems
have been studied and explored, including propellantless formation flying, momentum

7



exchange maneuvers, debris removal and towing, aerobraking for deorbiting maneuvers,
power generation or propulsion via electrodynamic tethers, generating microgravity for
on-orbit refueling, and, upper atmosphere exploration [18].

1.2.1 Review of Tethered Space Missions
The first concept of a tethered space system was developed in 1895 by Russian scientist
Konstantin Tsiolkovsky when he conceived the idea for a "space elevator" [19]. This was
followed by Yuri Artsutanov’s concept in 1960 of using a geostationary satellite as a base
to deploy a structure toward earth using a counterweight to maintain a stationary center
of gravity [20]. In 1966, Gemini-11 conducted a 30 m tethered experiment to generate
.0005g of artificial gravity via the spin between the capsule and the target vehicle [21]. The
following mission, Gemini-12, demonstrated tethered station-keeping with the Agena target
vehicle and gravity-gradient vertical stability [22].
The early 1980s produced several joint experiments between NASA and Institute of Space
and Astronautical Sciences (ISAS). TPE-1, TPE-2, Charge-1, Charge-2, were all suborbital
sounding rocket tests with electrodynamic tethers to study upper atmospheric conditions.
Charge-2 utilized control thrusters to maintain tether tension. OEDIPUS-A and C were
sounding rocket experiments with NASA and Canada to provide data about the iono-
sphere [22].

TSS-1 was a joint NASA/Italian Space Agency (ISA) mission launched in 1992 on STS-46
and deployed 268m above the orbiter, demonstrating the feasibility of a gravity gradient
stabilized system [23], TSS-1R was the follow-on mission flown on STS-75 in 1996.
The goal was a 20.7 km tether deployed from the Space Shuttle Columbia for space
plasma physics experiments [24]. The tether managed to deploy to 19.6 km, but severed
due to electric arcing within the tether, inadvertently demonstrating momentum exchange
on both the shuttle and the deployed satellite as both were moved into new, elliptical
orbits [22]. The Small Expendable Deployer System Missions (SEDS) used active braking
and feedback control for tether deployment and to limit residual swing and proved several
stability concepts [22]. The Plasma Motor Generator (PMG) in 1996 was a conducting
tether that proved that orbital energy could be converted into electrical energy and the
ability to use electrostatic tethers as an orbit boosting device, vice propellant. [20]. Tether
Physics and Survivability Spacecraft (TiPS) employed a larger diameter tether to ensure
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resilience to severing and studied long term tether dynamics and remained in orbit for over
10 years. [25]. Most of the failures for these missions are due to deployment problems, or
tether severing due to manufacturing faults, parent satellite safety considerations, or cut due
to impact. A summary of tethered missions is provided in Table 1.1.

1.2.2 Tethered Spacecraft Dynamics
In this thesis, the tethered debris removal system was modeled as a dumbbell spacecraft
system. The dumbbell spacecraft system consists of two satellites connected by a rigid,
massless tether. This system can be described as a rigid body, exhibiting a pendular
motion about the system’s center of mass. Coupling effects are studied by using the radial
motion, orbital motion, and in-plane libration motion [27]. Libration refers to the perceived
oscillation of orbiting bodies relative to each other (i.e., the oscillating motion about a point
of equilibrium [28]). The dynamics of this system will be explored in later chapters.

1.3 Research Objectives and Thesis Organization
The goal of this thesis is to develop a comparison of two tethered methods of ADR: a
space tug with the addition of a drag device, and a momentum exchange tethered system.
This will be done via parametric analyses and observation of the dynamical model of each
method. These methods will be compared to an optimized propulsive deorbit method.

This thesis is divided into seven chapters. Chapter 2 provides a review of applicable orbital
mechanics concepts, Chapter 3 offers a baseline analysis on the orbital lifetime of the debris
object candidate for ADR, Chapter 4 presents a derivation of the relative motion equations
of a tethered satellite system, Chapter 5 explores momentum exchange ADR methods, and
Chapter 6 explores optimization methods for propulsive deorbit. Both Chapters 5 and 6
utilize models developed in MATLAB and Simulink. Finally, Chapter 7 offers a summary,
conclusions, and recommendations for areas of future research into tethered ADR. The
analyses presented in these chapters show that propulsive deorbit methods can be effective
and reliable, but extremely costly and inefficient; therefore, a tethered, propellantless,
deorbit mission can not only feasibly attain the desired re-entry conditions, but can do so in
a more economical manner, across wider variety of debris objects, making it a potentially
preferred ADR solution.
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Table 1.1. Summary of Space Tether Missions. Adapted from [20] and [26].

Name Year Orbit Length Agency Comments
Gemini-11 1966 LEO 30 m NASA Spin stable 0.15 rpm
Gemini-12 1966 LEO 30 m NASA Local vertical, stable swing
TPE-1 1980 Suborbital 500 m NASA/ISAS EDT Partially deployed 38m
TPE-2 1981 Suborbital 500m NASA/ISAS Partially deployed 65 m
Charge-1 1983 Suborbital 418m NASA/ISAS Fully deployed
Charge-2 1984 Suborbital 426m NASA/ISAS Fully deployed
Oedipus-A 1989 Suborbital 958m CSA/NASA Spin stable @ 7 Hz, magnetic field

aligned
Charge-2B 1992 Suborbital 500m NASA Fully deployed
TSS-1 1992 LEO 260m NASA/ISA Partially deployed, retrieved
SEDS-1 1993 LEO 20 km NASA Downward fully deployed, swing,

and cut
PMG 1993 LEO 500m NASA Upward deployed
SEDS-2 1994 LEO 20km NASA Fully deployed, local vertical, stable
Oedipus-C 1995 Suborbital 1170 m CSA/NASA Spin stable @ 5 rpm, magnetic field

aligned
TSS-1R 1996 LEO 19.6 km NASA/ISA Close to full deployment, severed by

arcing
TiPS 1996 LEO 4 km NRO/NRL Long-life tether on-orbit (survived

12 years)
ATEx 1999 LEO 6 km NRL Partially deployed (22 m)
ProSEDS 1999 LEO 15 km NASA Hardware build but not flown
DTUsat-1 2003 LEO 450 m TUD Nano-Satellite failed to work in

space
MAST 2007 LEO 1 km NASA Tether failed to deploy
YES2 2007 LEO 30 km ESA Fully deployed
Cute-
1.7+APDII

2008 LEO 10 m Tokyo Tech, Japan Cube-Satellite worked, Tether failed
to deploy

STARS 2009 LEO 10 km Kagawa U, Japan Space tethered robot mission, tether
not fully deployed

T-Rex 2010 Suborbital 300 m JAXA Tether deployed, current not mea-
sured

STARS-II 2014 LEO 300 m JAXA Electrodynamic tether deployment
not confirmed

KITE 2016 LEO 700 m JAXA Deployment failure
STARS-C 2016 LEO 100 m JAXA Tether deployment not confirmed
removeDebris 2018 LEO 25 m ESA Harpoon debris capture demo
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CHAPTER 2:
Astrodynamics

To evaluate the viability of tethered ADR, it will be necessary to draw upon a number of
concepts in the field of orbital mechanics. This section provides an overview of several of
these concepts and offers a preliminary analysis of their applicability to tethered ADR.

2.1 Classical Orbital Elements
The Classical Orbital Elements, shown in Figure 2.1, are the parameters by which the orbit
of any spacecraft, such as an ADR system, is described, shown below [28].

œ= {a, e, i,Ω,ω, ν}
a is the semi-major axis of the elliptical orbital plane and describes the size of the orbit. The
eccentricity, e, describes the shape of the orbit and 0 ≤ e < 1 for all closed orbits. In vector
form, the eccentricity vector points from apogee to perigee. i is the inclination, or the angle
from the equatorial plane to the orbital plane. The right ascension of the ascending node,
Ω, refers to the angle from the geocentric axis pointing to the first point of Aries, shown
in Figure 2.1 as the X axis, to the node line, which is the intersection of the orbital plane
and the equatorial plane [29]. The ascending node is referred to as such because it is the
point on the orbit where the object moves north through the plane [30]. ω is the argument
of perigee and refers to the angle between the line pointing to the ascending node and the
perigee direction of the satellite motion. In this thesis, as all orbits described are Earth
orbits, the terms periapsis and perigee may be used interchangeably. The true anomaly ν
describes the position of the object along its orbital path described as the angle between
the direction of periapsis and the current position. The inertial position and velocity of a
spacecraft depend on time and the classical orbital elements.
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Figure 2.1. Classical Orbital Elements. Source: [29].

2.2 Two-Body Problem
To accurately describe the dynamics of a tethered ADR system, the motion of the system
as a whole must be considered in its orbit around Earth. This is given by the classical
Keplerian simplified two-body problem. The two-body problem states:

Ür =
−µ

r3 r (2.1)

for any satellite position r, where µ is the standard gravitational parameter used in celestial
mechanics, and r = [X,Y, Z]T , the satellite’s position vector in the Earth Centered Inertial
(ECI) frame. The gravitational parameter is equal to the product of Newton’s gravitational
constant, G, and the mass of the Earth [30], given by

µ = 3.98 ∗ 105 km3

s2

Using the orbital elements to determine the positional and velocity components of the
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system’s orbit, the Keplerian equations of motion can be numerically solved to determine
the motion of the system as a function of time. This depiction of the two-body equation of
motion is simplified by assuming a spherical earth and neglects tidal forces [28].

2.3 Coordinate Systems
To accurately describe the kinematics of a tethered system, reference frames must be
established to describe different coordinate systems. In this section, the applicable fixed
and rotating reference frames are defined.

2.3.1 Earth Centered Inertial - ECI
The ECI frame is a geocentric Cartesian coordinate system with its origin at the center of
the Earth with the unit vector X̂ towards the Vernal Equinox, the unit vector Ẑ normal to
the fundamental plane of the equator, and the unit vector Ŷ completing the set, as seen in
Figures 2.1 and 2.2. This reference frame remains fixed while the Earth rotates.

2.3.2 Perifocal
The perifocal coordinate system is a fixed reference frame centered at the focus of the orbit,
in this case Earth, with the orbital plane as the fundamental plane. This system is considered
the "natural frame" for an orbit [30]. The x̂ vector is in the plane in the direction of the
periapsis, i.e., along the eccentricity vector, and the ŷ vector is rotated 90◦ in the plane in
the direction of orbital motion. The ẑ vector is normal to the orbital plane in the direction
of the orbital angular momentum vector h. These unit vectors are also often described with
the notation p, q, and w, for x, y, and z, respectively [31].

Coordinate Transformation
Inertial differential equations are typically expressed in the perifocal frame but to understand
the inertial position represented here, a rotation matrix is required to transfer the coordinates
into the ECI frame. The transformation from the perifocal frame to the ECI frame can be
accomplished with a 3-1-3 rotation sequence as follows:

1. Rotate the frame by ω about the angular momentum vector h
2. Rotate by the frame by i about the vector in the direction of the ascending node I
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3. Rotate by the frame by Ω about the ECI’s z unit vector

The composite rotation from the perifocal to the ECI frame is

rECI = R3(Ω)R1(i)R3(ω) (2.2)

which gives the Direction Cosine Matrix (DCM) as described in [28] shown below:

C =


cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i

sinΩ sinω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i

 (2.3)

2.3.3 Local Vertical Local Horizontal - LVLH
The Local Vertical Local Horizontal (LVLH) coordinate system is a rotating frame centered
at the spacecraft. The fundamental plane is the orbital plane of the satellite, with the ẑ normal
to the plane, pointing in the direction of the orbital momentum vector h. The x̂ vector is
in the plane, pointing radially outward from the spacecraft, as seen in Figure 2.2. The ŷ
completes the set and points in along-track direction of instantaneous velocity. This frame
is also known as Hill’s frame [28]. In terms of formation flight, a deputy spacecraft is often
described in terms of the chief’s LVLH coordinates. This can be seen in Figure 2.2 where
the R vector points to the chief satellite, and sets the origin by which the deputy position r
is established. The LVLH unit vectors are derived from the position and velocity vectors in
the ECI frame as follows [32]:

x̂ =
r0
|r0 |

(2.4)

ẑ =
h
|h|
, where h = r0 × v0 (2.5)

ŷ = ẑ × x̂ (2.6)

The DCM to convert from ECI vectors to LVLH vectors is

[
ON

]
=


x̂T

ŷT

ẑT

 (2.7)
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Figure 2.2. Chief and Deputy Spacecraft Local Vertical-Local Horizontal
with ECI Frame

2.4 Satellite Relative Motion
Relative motion is the depiction of the movement of a satellite with respect to another
satellite. For convention, the debris removal satellite that will be used for reference will be
referred to throughout as the chief, and the object, or uncontrolled debris, whose motion is
described in terms of the chief, will be referred to as the deputy. The position of the chief
satellite is denoted by the vector R and the position of the deputy is denoted by the vector r.
The vector describing the displacement between the two satellites is denoted by the vector
ρ shown in Figure 2.2. The chief position vector in the LVLH frame is described by the
following equation:

R = Rî (2.8)

15



and the deputy relative position vector can be described as

r = R + ρ (2.9)

where
ρ = xî + y ĵ + zk̂,

and therefore
r = (R + x)î + y ĵ + zk̂ (2.10)

Using these relative positions, the nonlinear and linearized equations of relative motion
are derived in Chapter 4. Additionally, Appendix A contains an exploration of different
methods of propagating relativemotion using theClohessy-Wiltshire andTschauner-Hempel
equations [28]. The Clohessy-Wiltshire method provides a simplified technique to solve
the relative motion propagation of a circular orbit, but the Tschauner-Hempel equations
can provide a more general simplified solution for any orbit using what is known as the
Yamanaka-Ankersen method [33].
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CHAPTER 3:
Orbital Debris Lifetime Analysis

In order to assess how ADRmethods can impact a debris object, a baseline lifetime analysis
was conducted on the candidate debris. The lifetime is determined as a function of orbital
characteristics, spacecraft drag area, and atmospheric drag. The National Centre for Space
Studies (CNES) developed software Semi-analytic Tool for End of Life Analysis (STELA)
was used to conduct the lifetime analysis [34].

3.1 Debris Characteristics
The debris modeled throughout this study has the characteristics presented in Table 3.1
based loosely on those of Hubble Space Telescope [35]. For the purpose of maintaining a
simple model, the debris will be modeled as a sphere, as will any debris removal vehicle.
As the orbit represented here is circular, the terms altitude and semi-major axis are used
interchangeably.

Table 3.1. Debris Characteristics

Mass 10,000 kg
Sphere radius 5 m
Mean drag area 78.6 m2

Epoch August 15, 2018 21:40:27 UTC
Inclination 28.5◦
Semi-major axis 6878 km
Eccentricity 0
Right Ascension of the Ascending Node (RAAN) 80◦
Argument of perigee 65◦
Mean Anomaly 24◦
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Additionally, it is assumed that despite the relatively short predicted lifetime of the debris,
uncontrolled reentry is not an option due to the associated risks to humans on the ground.
A reentry survivability assessment of Hubble performed in 2005 predicts a reentry risk of
1:250, which well exceeds the acceptable risk of 1:10,000 [36], [37].

3.2 Debris Lifetime Analysis
To determine the effect of increasing drag area on the debris, STELA was used to iteratively
increase the drag area and determine the impact on orbital lifetime. Without drag area
augmentation, the debris will reenter the atmosphere approximately 4.45 years from the
start date epoch. While this is in compliance with DoDI 3100.12 section 6.4.1, the accepted
practice of decaying within 25 years upon completion of missions, it is assumed that an
uncontrolled entry is not an acceptable option due to reentry casualty risk, and therefore,
additional mitigation measures must be taken to facilitate reentry at a specific point. When
an additional 100 m2 are added to the debris, the debris decays in 3.44 years, as shown in
Figure 3.1. This suggests that this debris object is relatively insensitive to drag area augmen-
tation alone. The atmospheric model used to model atmospheric drag was NRLMSISE-00
and the solar activity was variable beginning from the epoch listed in Table 3.1.
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Figure 3.1. Effect of Increasing Drag Area on Orbital Lifetime

The data presented in Figure 3.2 shows the same analysis as the previous, but the starting
altitude was set 50 km lower than the baseline to represent a 50 km drag tether, represented
as the red line. This data shows that with an additional 100 m2, the orbital lifetime can be
reduced to 2.44 years. These lines display a near parallel trend, and the average difference
in lifetime as area increases is about one year. The red axis below the axis displaying total
drag area increase shows the total spherical radius of the object given by the increased drag
area.
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Figure 3.2. Effect of Increasing Drag Area on Orbital Lifetime - 50 km Tether
Comparison

To observe the effect of tether length over lifetime with the addition of a drag augmentation
system, i.e., a drag sail, a spherical object with a fixed radius of 10 m was assessed. The
mass remained constant at 10,000 kg as drag sails are relatively light and its mass addition
can be negligible. To simulate increasing tether length, the starting altitude of the object’s
orbit was iteratively decreased, and the lifetime for each discrete iteration was determined.
The data presented in Figure 3.3 suggests that with a 70 km tether, a spherical object with
a 10 m radius could reenter Earth’s atmosphere within a year.
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Figure 3.3. Effect of Increasing Tether Length on Orbital Lifetime - 10 m
Sphere Radius

21



THIS PAGE INTENTIONALLY LEFT BLANK

22



CHAPTER 4:
Derivation of Tethered Relative Motion Equations

To understand and manipulate the orbit of a tethered satellite system, a useful model of
a tethered system must be developed. In this chapter, first the non-linear and linearized
equations of relative motion for an un-tethered system of two satellites are derived. Subse-
quently the tether dynamics are considered to develop the relative equations of motion of a
tethered satellite system.

4.1 Relative Motion
The acceleration of the chief satellite is determined by the twice differentiation of Equation
(2.8)

ÛR = ÛRi + R Ûνj (4.1)

ÜR = ( ÜR − R Ûν2)i + (2 ÛR Ûν + R Üν)j (4.2)

Differentiation for deputy vehicle position in equation (2.10)

Ûr = ( ÛR + Ûx − Ûνy)i + ( ÛνR + Ûνx + Ûy)j + Ûzk (4.3)

Ür = ( ÜR − Ûν2R + Üx − Ûν2x − Üνy − 2 Ûν Ûy)i + ( ÜνR + 2 Ûν ÛR + Üνx + Üy + 2 Ûν Ûx − Ûν2y)j + Üzk (4.4)

To put the equations of motion in terms of the gravitational force, we employ the simplified
two-body problem described in Equation 2.1. For the chief satellite, this equates to

ÜR =
−µ

R3 R =
−µ

R2 i (4.5)

and for the deputy satellite

Ür =
−µ

r3 [(R + x)i + yj + zk] (4.6)
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The deputy equations of motion can be broken into its x, y, and z components as follows:

−µ

R2 + Üx − Üνy − 2 Ûνy − Ûν2x =
−µ

r3 (R + x) (4.7)

Üy + 2 Ûν Ûx + Üνx − Ûν2y =
−µ

r3 y (4.8)

Üz =
−µ

r3 z (4.9)

4.1.1 Linearized Equations of Motion
Equations (4.7) to (4.9) are the nonlinear forms of the equations of motion. To develop a
simpler model to analyze and understand dynamic motion of the system, the equations of
motion are linearized to approximate the 1

r3 term. To do this, we consider the magnitude of
the deputy position vector, as described in Equation (2.10).

|r| =
√
[(R + x)2 + y2 + z2] (4.10)

Expanded, this can be expressed as

|r| = (R2 + 2Rx + x2 + y2 + z2)
1
2 (4.11)

and further simplified as

|r| = R(1 +
2x
r
+

x2 + y2 + z2

R2 )
1
2 (4.12)

The third term can be eliminated due to the fact that |ρ | � |R| because the distance between
the chief and deputy is much smaller than the distance from the chief to the center of the
Earth. So the r3 term can be represented as

r3 = R3(1 +
2x
R
)

3
2 (4.13)

which finally results in the binomial form that can be used for the approximation via the
Taylor Series expansion

1
r3 =

1
R3 (1 +

2x
R
)
−3
2 (4.14)
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The Taylor series expansion for the binomial (1 + x)n is as follows:

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 + . . . (4.15)

This results in the approximation

1
r3 ≈

1
R3 [1 +

−3
2
(
2x
R
)] (4.16)

and simplified:
1
r3 ≈

1
R3 [1 +

3x
R
] (4.17)

The substitution of this approximation into the nonlinear equations of motion results in the
following linearized equations of motion.

Üx − 2 Ûνy − Üνy − Ûν2x − 2
µx
R3 = 0 (4.18)

Üy + 2 Ûν Ûx + Üνx − Ûν2y +
µ

R3 y = 0 (4.19)

Üz +
µ

R3 z = 0 (4.20)

When the chief satellite is in a circular orbit, these equations can be further simplified,
knowing that true anomaly and Mean anomaly are identical [30], so ν = nt, then Ûν = n, and
therefore Ûf 2 = n2 =

µ

R3 and Üν = 0 and result in the following equations:

Üx − 2ny − 3
µ

R3 x = 0 (4.21)

Üy − 2n Ûx = 0 (4.22)

Üz + n2z = 0 (4.23)

which are known as the Clohessy-Wiltshire equations [28]. These equations are often
used for propagations of orbits of multiple bodies in close proximity, applied for use in
rendezvous missions or formation flying [30]. They are, however, limited in that they only
provide solutions for a chief spacecraft in a circular orbit. An in-depth comparison of
relative motion propagation methods for formation flight is included in Appendix A, and
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includes arbitrarily elliptic orbits.

4.2 Tethered Relative Motion
As can be seen in Figure 4.1, the tethered satellite motion must include the restoring force
component from the tether tension.

Figure 4.1. Restoring Forces on TSS. Source: [25].

Therefore, a similar derivationmethod as in Section 4.1was completed, but with the addition
of the tether tension force. Here it is assumed that the tether is massless, rigid, and each
spacecraft in the tethered formation can be represented as a point mass. Again, by applying
the simplified two-body problem, the equation of motion for the deputy spacecraft is

mÜ®r = −m
µ®r
r3 + (

®Ft) (4.24)
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where ( ®Ft) is the tether tension between the deputy and chief elements. The chief equation
of motion is

mc
Ü®R = −mc

µ ®Rc

R3
c
+ ( ®Ft)c (4.25)

4.2.1 Tether Tension Force
The tether can be modeled as an elastic linear spring and the tether tension force can be
determined by applying Hooke’s law to the tether parameters. The tether tension force can
be described as

Ft =
E A
l0
[(|R − r) − l0] (4.26)

where E is the modulus of elasticity of the tether, A is the cross-sectional area of the tether,
and, l0 is the unstretched tether length [38].

4.2.2 Equations of Motion of a Spinning Spacecraft Tethered System
The relationship between the spin and LVLH axes can be described as a primary rotation
around the z axis. 

x

y

z

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1



xs

ys

zs

 (4.27)

This relationship can be broken into its radial, along-track, and cross-track components and
differentiated twice to substitute into the system of equations in Equations (4.18) to (4.20).
The radial relationship is as follows:

x = cos θxs − sin θys (4.28)

Ûx = − Ûθ sin θxs + cos θ Ûxs − Ûθ cos θys − sin θ Ûys (4.29)

Üx = (− Üθ sin θ− Ûθ2 cos θ)xs−2 Ûθ sin θ Ûxs+cos θ Üxs+(− Üθ cos θ+ Ûθ2sinθ)ys−2 Ûθ cos θ Ûys−sin θ Üys

(4.30)
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The along-track relationship between the spin and LVLH axes is:

y = sin θxs + cos θys (4.31)

Ûy = Ûθ cos θxs + sin θ Ûxs − Ûθ sin θys − cos θ Ûys (4.32)

Üy = cos θ Üys+sin θ Üxs+2 Ûθ Ûxs−2 Ûθ sin θ Ûys+( Üθ cos θ− Ûθ2 sin θ)xs+(− Üθ sin θ+ Ûθ2sinθ)ys (4.33)

And finally, the cross-track relationship and twice-differentiation

z = zs (4.34)

Ûz = Ûzs (4.35)

Üz = Üzs (4.36)

Todetermine the spinning tethered spacecraft relativemotion equations, the spin relationship
presented above was substituted into the linearized tethered equations of motion. As the
cross-track equations directly correlate, only the radial and along-track substitution will be
presented here. The radial component is

cos θ Üxs − sin θ Üys − 2 Ûθ sin θ Ûxs − 2 Ûθ cos θ Ûys − Üθ sin θxs − Ûθ
2 cos θxs − Üθ cos θys + Ûθ

2 sin θys

−2 Ûν Ûθ cos θxs −2 Ûν sin theta Ûxs +2 Ûν Ûθ sin θys −2 Ûν cos θ Ûys − Üν sin θxs − Üν cos θys −
Ûν2 cos θxs

+ Ûν2 sin θys − 2
Ûν2

1 + e cos ν
cos θxs + 2

Ûν2

1 + e cos ν
sin θys =

fx

m j
(4.37)

The along-track component is

cos θ Üys + sin θ Üxs − 2 Ûθ sin θ Ûys + 2 Ûθ cos θ Ûxs − Üθ cos θxs − Ûθ
2 sin θxs − Üθ sin θys + Ûθ

2 cos θys

− 2 Ûν Ûθ sin θxs + 2 Ûν cos theta Ûxs − 2 Ûν Ûθ cos θys − 2 Ûν sin θ Ûys + Üν cos θxs − Üν sin θys −
Ûν2 sin θxs

− Ûν2 cos θys + 2
Ûν2

1 + e cos ν
sin θxs + 2

Ûν2

1 + e cos ν
cos θys =

fy
m j

(4.38)

To simplify, the Üx and Üy terms must be isolated by taking advantage of the trigonometric
identity sin2 θ + cos2 θ = 1. To isolate Üx, the radial component of the equation of motion
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was multiplied by cos θ and the along-track component was multiplied by sin θ, and these
equations combined to result in the following.

Üxs − 2( Ûν + Ûθ) Ûys +

[
Ûν2

1 + e cos ν
(1 − 3 cos2 θ) − ( Ûν + Ûθ)2

]
xs − Üνys

+

(
3

Ûν2

1 + e cos ν
sin θ cos θ

)
ys = cos θ

fx

m j
+ sin θ

fy
m j

(4.39)

Similarly, the along-track component was found by isolating the Üy term by multiplying
the radial component by sin θ and the along-track component by cos θ and combining the
equations to result in the following

Üys + Üνxs + 2( Ûν + Ûθ) Ûxs + 3
Ûν2

1 + e cos ν
cos θ sin θxs + (

Ûν2

1 + e cos ν
(3 cos2 θ − 2)

− ( Ûν + Ûθ)2) = cos θ
fy

m j
− sin θ

fx

m j
(4.40)

The cross track component of the spinning tethered equations of motion is

Üzs +
Ûν2

1 + e cos ν
zs =

fz
m j

(4.41)

This derivation of tethered relative motion offers useful insight into how the Tethered Satel-
lite System (TSS) orbit propagates and each end-body interacts with the other. However,
due to the added complexity of tethered relative motion, and for consistency with the ma-
jority of current study, the system utilized in this thesis was ultimately modeled as a rigid
body dumbbell system with the orbital characteristics described from the system’s center
of mass. The dumbbell dynamics are described in the following chapter.
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CHAPTER 5:
Momentum Exchange Tethered Debris Removal

Typical studies of tethered momentum exchange systems involve a propellantless method
of orbital transfer. For a debris removal system, instead of transferring the object to a
higher orbit, the object would be transferred into either a decay orbit or an Earth-impacting
trajectory for targeted re-entry. As with the "TAMU sling sat sweeper," certain momentum
exchange orbital transfer methods use the capture velocity of the transferring payload to
begin themomentumexchange process [16], [25]. Additional applications include formation
stationkeeping via satellites exchanging momentum in the form of radiation or mass. An
attractive force from tethers between satellites creates an almost rigid formation, which
allows for several geometric configurations, applicable across a multitude of missions [39].
The method studied in this thesis explores a tether retrieval maneuver to increase the angular
velocity of the system, exploiting the principle of conservation of angular momentum.

The angular momentum of a rotating rigid body system is defined as

H = JωBN (5.1)

where H is the angular momentum of the system, J is the moment of inertia of the rigid
body, and ωBN is the angular velocity of the body frame relative to the inertial frame of the
system.

As the tether is retrieved, the moment of inertia, J, of the system decreases, and the angular
velocity of the system increases. At the desired ω , the tether is separated, imparting ∆V to
both satellites. While attached, the momentum of the system is conserved, but the act of
momentum exchange occurs when the end mass is released.

Hsys = H1 + H2 (5.2)

The librational motion of the TSS, caused by gravity, can dictate the speed of the debris
object’s release and can be controlled by changing the tether length [19]. A tethered debris
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removal system would use the retrieval of the tether to increase the angular velocity of the
system and then release the debris once the appropriate ∆V could be attained [40].

5.1 Debris Reentry Considerations
In order to determine the∆V required to be generated from themomentum exchange system,
the following equation was used to determine the ∆V required to drop a satellite from its
initial circular altitude hi to a reentry perigee altitude he of 120 km. [41] The final perigee
altitude is typically the standard reentry threshold for space vehicles. In order to deorbit
debris, the debris orbit perigee must intersect the Earth’s atmosphere upon release. [42] The
initial orbital elements used for this analysis are the same as those presented in Table 3.1.

∆Vdeorbit ≈ V

[
1 −

√
2(RE + he)

2RE + he + hi

]
(5.3)

where V is the initial debris velocity. As the debris for the model is in a circular orbit, the
orbital velocity is constant and can be found with the following:

vcircular =

√
µ

r
= 7.6127 km/s (5.4)

From this calculation, the required ∆Vdeorbit is 108.9 m/s. This is equal to the result from
a Hohmann transfer calculation. If the desired trajectory is impact with earth, the final
perigee altitude must be less than or equal to the radius of the earth. This would require
a ∆V of 145 m/s. Simply by extending the tether and decreasing the orbital radius of the
debris, it will experience a change in velocity when separated. The effects of tether length
on ∆V will be discussed in Section 5.4.

5.2 System Model
Due to the complexity of the equations of relative motion shown in Chapter 4, the system
was ultimately modeled as a rigid-body system with a rigid, massless, extensible tether in
a dumbbell configuration connecting the two spherical masses, the debris object and the
debris removal vehicle, at each object’s center of mass, as shown in Figures 5.1 and 5.2. It
is assumed that the tether can be extended or retracted with some form of reel mechanism
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at the debris removal vehicle.

Figure 5.1. Angular Momentum of Tethered Dumbbell System

The orbital motion of the system will be described from the system mass center, which
continues to orbit at the initial circular altitude of 6878 km. For simplicity, center of mass
and center of gravity will be considered to be the same position. Using the following center
of mass equation, the distance from the debris object to the center of mass is determined:

Ldebris to COM =
m1 ∗ l0
(m1 + m2)

(5.5)

where m1 is the mass of the debris Service Vehicle (SV), m2 is the mass of the debris, and
L0 is the total length of the tether.

The body fixed reference frame of the system is aligned with the principal axes of inertia.
Given the tether is assumed to be massless, the tether mass does not affect the inertia of
the system. Aligning the x axis of the body frame along the rigid tether as seen in Figure
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5.2, and calculating the moments of inertia for each spacecraft as a solid sphere, the inertia
tensor of the system in the body-fixed reference frame can be described as

J =


2
5m1r2

1 +
2
5m2r2

2 0 0
0 m2l2

2 + m1l2
1 0

0 0 m2l2
2 + m1l2

1

 (5.6)

where m1 is the mass of the SV, m2 is the mass of the debris, r1 is the radius of the SV, l1 is
the distance from the system center of mass to the SV center of mass, r2 is the radius of the
debris, l2 is the distance from the system center of mass to the debris center of mass. By
aligning the tether direction along the x axis, when the pitch angle (or libration angle, β) is
0, the body frame is aligned with the orbital LVLH frame.

Figure 5.2. Body Frame of Dumbbell Tethered System

This body fixed frame was chosen in order to utilize a diagonal inertia tensor as seen in
Equation (5.6).
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5.3 Tethered System Rigid Body Dynamics
If the dynamics of the two end bodies were considered individually, and both were modeled
in Keplerian circular orbits, it could be seen that the body in a higher altitude moves at
a slower speed than the lower mass. The addition of the tether causes the upper mass
to experience a greater centrifugal force than gravitational and the lower to accordingly
experience larger gravitational acceleration than centrifugal force creating the balanced
tether tension and the restoring librational motion [25]. A visualization of these forces is
shown in Figure 4.1. In this thesis, only in-plane librational motion will be considered.

The natural frequency of the in-plane libration can be defined as
√

3 ∗ n where n is the mean
orbital motion [25] [40]. This is due to the gravity gradient restoring torques experienced
naturally by the system.

5.3.1 Rotational Kinematics
The angular velocity of the LVLH orbital frame shown in Figure 2.2 relative to the inertial 
ECI frame can be described as

ωon = Ûνẑ (5.7)

where Ûν is the rate of change of true anomaly. For circular orbits, this is equal to n, the
mean motion of the orbit and can be defined as:

n =
√

µ

a3 (5.8)

and ẑ is the unit vector parallel to the orbit momentum vector in the LVLH frame, as
described in Section 2.3.3 [32].

As the Euler rotational equations of motion apply to the body frame of the system, the initial
angular velocity of the spacecraft relative to the inertial frame must be determined by the
following:

ωBN = ωBO + ωON

Following this definition, ω will refer to the body rotational velocity ωBN . To observe
the rotational dynamics of the rigid body tether system, the Euler Rotational Equations of
motion were solved for the spin rate of the body, Ûω using a Runge-Kutta method. Euler’s

35



rotational equations of motion are typically written as

J Ûω + ω × Jω = T = ÛH (5.9)

where M are the external moments (or torques) acting about the mass center. However,
the short form of Euler’s equations do not capture the entirety of this scenario, and the
rate of change of the inertia tensor of the system must be accounted for. Therefore, Euler’s
rotational equations of motion for a TSS with changing tether length can be expressed as

J Ûω + ÛJω + ω × Jω = T = ÛH (5.10)

The differential equation of the system dynamics (5.11) was numerically integrated to find
the angular velocity of the system. The system Simulink model is provided in

Ûω = −J−1 (
T − ÛJω − ω × Jω + T

)
(5.11)

5.3.2 Gravity Gradient
As the gravitational force does not vary linearly, the system experiences different gravita-
tional forces along its body. This condition is often used to stabilize nadir-pointing satellites,
e.g., the moon [32]. When the system is not aligned with local vertical, i.e., has an initial
pitch angle, β, the gravity gradient torque provides a restoring force to return the TSS to the
stable vertical condition [25]. When the system is in a stable in-plane spin, the restoring
gravity gradient torque behaves in an oscillatory manner, as seen in Figure 5.4.

The gravity gradient torque can be determined in terms of its body-frame components [43]

Tgg =
3µ
R3


(
Jz − Jy

)
c2c3

(Jx − Jz) c1c3(
Jy − Jx

)
c1c2

 (5.12)

where c1, c2, and c2 are the direction cosines of the local vertical relative to the body
triad [44].
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The system attitude can be described in terms of its quaternion, or Euler parameters. These
parameters describe the rotation of the body relative to the ECI frame in terms of the Euler
axis e and a rotation angle, β [43]. For this model, as the rotation occurs solely in the orbital
plane, and about the body ẑ axis, the quaternion can be described as in Equation (5.13).

qbn =


0
0

sin β
2

cos β
2


(5.13)

5.4 Momentum Exchange Simulation Results
Assuming the debris is released when the system is aligned with the local vertical, the
velocity of each end body at tether separation is determined in [40] as

V1 = R0ωn +
(m2

M

) (
ωn + Ûβ

)
(1 − ∆L/L)

L (5.14)

V2 = R0ωn −

(m1
M

) (
ωn + Ûβ

)
(1 − ∆L/L)

L (5.15)

To establish a baseline, themodel was evaluatedwith the tether fully extended and the system
librating at the natural libration rate of

√
3n. The debris experiences a ∆V of 13.7449 m/s,

which, as established in Section 5.1, is insufficient for a terminal orbit. Therefore, the
angular velocity of the TSS must be increased to attain the desired ∆V .

For observing in-plane motion, the pitch rate is the main body parameter of interest, as roll
and yaw components of the attitude will affect the out-of-plane angular velocity components
ωy and ωx , respectively. The pitch rate, Ûβ, therefore corresponds to the z-component of the
angular velocity of the body, ωz, and the terms Ûβ, ωz, and ω may be used interchangeably.
To ensure system rotation, the initial spin was set to 2ωn [40]. The initial conditions for the
simulation are provided in Table 5.1.
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Table 5.1. Initial Conditions for Momentum Exchange Maneuver
Parameter Value

Initial Tether Length L0 50 km
Initial Pitch Angle β0 0.01 rad

Orbit Angular Velocity ωn 0.0011 rad/s
Initial Spin Rate ω 2*ωn

System Mass m0 225000 kg
Tether Retrieval Rate δL 1.4 m/s
Simulation Time 5 Orbits 28,348 s

A summary of the simulation results is provided in Figures 5.3 to 5.8.

The rate of change of the system inertia was determined numerically. Figure 5.3 shows the
effect of decreasing tether length on total system inertia. As the inertia tensor is aligned
with the body, only the y and z components of the system inertia are effected.

Figure 5.3. Total System Inertia and Component Tether Length

Over the simulation, the tether length decreased from 50km to 18.21 km and the total system
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inertia decreased by 87 percent.

Figure 5.4 shows the gravity gradient torque on the TSS throughout the spin-up maneuver.
The direction of the torque oscillates as the tether retrieval begins and the TSS angular
velocity increases. As the tether length shortens, the torque decreases in magnitude, as
there is less of a gravity gradient between each end body.

Figure 5.4. Gravity Gradient Torque

Figure 5.5 shows the system attitude quaternion over the maneuver, confirming that the
system spin rate increases over time as the tether length decreases. Imparting the initial
spin over the first orbit places the TSS in a stable spinning configuration.
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Figure 5.5. Tethered System Attitude Quaternion

In order to conserve momentum, after the tether retrieval begins at the end of the first orbit,
the TSS angular velocity, ω must increase. Figure 5.6 shows the increase in pitch rate.
Additionally, as ω increases, the amplitude of its oscillation decreases.

Figure 5.6. Tethered System Angular Velocity

Equations (5.14) and (5.15) indicate that the velocity of each end body at the point of sepa-
ration (assuming the separation occurs along the local vertical and that β is instantaneously
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0), can be described as function of pitch rate, Ûβ and the changing tether length. Figure 5.7
displays the effect of increasing pitch rate on the separation velocity. From this, it can be
inferred that the SV will experience an orbital change to a much higher orbit, and as the
debris speed decreases, the debris object will transfer to a lower orbit, as intended.

Figure 5.7. Separation Velocities

By calculating the difference between the separation velocity of the debris and its initial
circular velocity, the ∆V of the debris can be determined, as shown in Figure 5.8. This
figure also compares the ∆V of the debris with the decreasing tether length. As is shown,
the debris can attain a ∆V of over 150 m/s over the course of five orbits.
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Figure 5.8. ∆V at Separation

If the debris were released at the end of the system’s fifth orbit, Figure 5.8 shows that the
debris would experience a ∆V of 171.3783 m/s, well in excess of the necessary 145 m/s.

Therefore, the spin-up momentum-exchange maneuver is a numerically feasible ADR
method. Releasing the debris when aligned with the local vertical on a forward spin,
imparts positive ∆V to the SV and negative ∆V to the debris, effectively sending the debris
on at reentry trajectory, without the use of propellant, save for the impulse required to
establish the initial spin rate. Additional simulations show that even with the initial pitch
rate of solely the natural frequency of libration, the debris can attain a ∆V of 108.9 m/s,
placing the debris into a terminal orbit, if natural orbital decay were permissible. In reentry
mission planning, the tether length could be controlled such that the maneuver will impart
a ∆V that will establish the preferred reentry trajectory.
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CHAPTER 6:
Optimization of Propulsive Deorbit

To compare the results of tethered ADR to more typical ADR methods, a scenario was
considered where a debris removal system conducted a propulsive-targeted reentry, in-
stead of a propellant-less tethered momentum exchange seen in Chapter 5. This method
sought to optimize a minimum time propulsive reentry of the debris to the "spacecraft
cemetery" region of the Pacific Ocean, also known as "Point Nemo" in the vicinity of
45o 52.6′ S 123o 23.6′ W . This region is known as the oceanic pole of inaccessibility and
has been the terminal destination for over 263 spacecraft since 1971 [45]. As with all other
analyses in this thesis, the debris is assumed to have already been captured. Figure 6.1
shows a diagram of this orbital transfer maneuver. The plane shown in the figure represents
the orbital plane.

Figure 6.1. Orbital Transfer to Terminal Orbit

This maneuver can be considered a typical Hohmann transfer, with the final orbit having a
perigee radius that intersects the surface of the earth, as with the calculations presented in
section 5.1. Two thruster configurations were considered for this scenario, a monopropellant
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hydrazine thruster, typically known as a Liquid Apogee Engine (LAE), which are often used
for orbital transfer maneuvers, and an ion-thruster known as Hall-Effect Thruster, which are
often used for orbital insertion and stationkeeping [46].

6.1 Optimization Problem Definition
The unscaled orbit-to-orbit optimal control problem can be described in polar coordinates
with the following:

X = [r, θ, vr, vt,m]T ∈ <5, u = [T, α] ∈ <2

P : 1



Minimize J =
[
x (·) ,u (·) , t f

]
= t f

Subject to: Ûr = vr
Ûθ = vt

r

Ûvr =
v2
t

r −
µ

r2

Ûvt = −
vr vt

r

Ûm = T
ve

t0 = 0

(r0, θ0, vr0, vt0,m0) =
(
r0,0,0,

√
µ
r0
,m0

)
(r f ) =

(
r f )

(6.1)

where the optimization variables are X, the state trajectory, u, the control trajectory, and
t f , the final clock time. The problem formulation in Equation (6.1) assumes that Earth is
spherical and effects due to oblateness can be neglected, the deorbiting spacecraft system
is a perfect sphere and attitude effects can be ignored, and the initial orbital plane and the
terminal orbital plane are co-planar.

6.2 Scaling
Due to the large units of the problem, e.g., thousands of kilometers and hundreds of newtons,
best practice suggests scaling and use of canonical units [47]. The scaled canonical units
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were determined as follows:

length unit LU = 6878, such that r0 = 1

mass unit MU = 10000, such that m f = 1

and by setting the scaled gravitational parameter µ̃ equal to 1, the following canonical units
can be derived

µ̃ =
TU2µ

DU3 and therefore, time unit TU = 903.4915

velocity unit VU =
LU
TU
= 7.6127 Force unit FU = MU

LU
TU2 = 84.2586

Table 6.1 contains the unscaled and scaled values for the known constants and boundary
conditions of Equation (6.1).

Table 6.1. Scaled Values for Constants and Known Boundary Conditions
Unit Unscaled Value Scaled Value

Orbit altitude r0 6878 km 1
r f 6378 km .9273

Velocity vt0 7.6127 km/s 1
ve 2.2563 km/s 0.2964

System Mass m0 225000 kg 2.25
m f 10000 kg 1

Thrust F 440 N 5.222
Gravitational Parameter µ 398601 km3/s2 1

After scaling, all units except for the angles are transformed into the tilde space. The orbit
angle and steering angle parameters do not need to be scaled because θ = θ̃ and α = α̃.

6.3 Problem Formulation
TheBoundaryValue Problem (BVP) for the scaled problemwas formulated using conditions
from Pontryagin’s Principle. The method for developing the BVP with these conditions is
defined in [48] and contains the following six steps:
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1. Construct the Hamiltonian. The Hamiltonian is defined as H (λ, x,u) = F(x,u) +

λT f (x,u), where F is the scalar running cost, λ refers to the system costate vector,
and f(x,u) refers to the system dynamics.

H (λ, x,u) = λrvr + λθ
vt

r
+ λvr

(
−
µ

r2 +
v2

t

r
+

T
m

sinα
)
+ λvt

(
−
vrvt

r
+

T
m

cosα
)

(6.2)

2. Minimize the Hamiltonian. For this scenario, both the thrust, T and the angle of thrust
α are control parameters, therefore the Hamiltonian must be globally minimized for
both. Since the Hamiltonian is a scalar function, the partial derivative with respect
to the control can be described as

u =

[
T

α

]
∂H
∂u

∆
=

[
∂H
∂u1
∂H
∂u2

]
(6.3)

∂H
∂T
= λvr

(
1
m

sinα
)
+ λvt

(
1
m

cosα
)
+ λm

1
ve
= 0 (6.4)

∂H
∂α
= λvr

(
T
m

)
cosα − λvt

(
T
m

)
sinα = 0 (6.5)

An expression for the control parameter thrust cannot be derived from minimizing 
the Hamiltonian from this calculation. The minimization must be done within the 
constraints of the system thruster via a switching function. An expression for the 
optimal thruster angle can, however, be derived as follows:

α = tan− 1
(
λvr
λvt

)
(6.6)

The Hamiltonian could be minimized on T with the inclusion of a switching structure
to create a complementary condition on which T is bounded, or these controls can be
bounded in the control search space for the DIDO software. For this reason, DIDO
was chosen as the preferred tool to develop this solution.
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3. Determine the adjoint equation and define the dynamics of the costates.

∂H
∂x
= − Ûλ (6.7)

Ûλr = λθ
vt

r2 − 2 ∗ λvr
µ

r3 + λvr
v2

t

r2 − λvt
vr ∗ vt

r2 (6.8)

Ûλθ = 0 (6.9)

Ûλvr = −λr + λvt
vt

r
(6.10)

Ûλvt = −
λθ
r
− 2 ∗ λvr

vt

r
+ λvr

vr
r

(6.11)

Ûλm = λvr
T sinα

m2 + λvt
T cosα

m2 (6.12)

4. By defining the system Endpoint Lagrangian, Ē , the terminal costates λ(tf) can be
determined by taking the gradient of the Endpoint Lagrangian function with respect
to the final states xf . This equation, (6.14), is also known as the terminal transversality
condition.

Ē = E + νTe (6.13)

∂E
∂xf
= λ(t f ) (6.14)

∂E
∂r f
= νr = λr(t f ) (6.15)

The endpoint condition for r offers no new information, however, the following
parameters are left as free parameters, and the final value of each costate can be
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determined as follows:

λθ(t f ) = 0 (6.16)

λvr (t f ) = 0 (6.17)

λvt (t f ) = 0 (6.18)

λm(t f ) = 0 (6.19)

(6.20)

5. The Hamiltonian Value Condition also provides insight into the unknown boundary
conditions. The gradient of the Endpoint Lagrangian with respect to the final time
indicates the final value of the Hamiltonian.

H[@t f ] = −
∂Ē
∂t f
= 1 (6.21)

−
∂Ē
∂t f
= 1→

∂Ē
∂t f
= −1 (6.22)

6. The Hamiltonian Evolution Equation indicates that the Hamiltonian does not depend
on time and the minimized Hamiltonian is equal to -1. The plot of the Hamiltonian
should be a constant value at -1.

dH
dt
=
∂H
∂t
= 0 (6.23)

6.4 Simulation Results
During troubleshooting efforts, θ f was released to be a free parameter out of concerns that
it was over-constraining the problem. With this in mind, as with the other free parameters,
the final costate should equal 0.

6.4.1 LAE Thruster Results
Figure 6.2 shows the unscaled states and costates of the solution using the LAE. As can be
seen by the costate plot, the final costates for λθ, λvr , λvt , and λm are all 0, which verifies the
transversality condition for these four free parameters.
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Figure 6.2. Unscaled States and Costates

Figure 6.3 shows the unscaled system trajectory and that the system deorbits from an initial
altitude of 500 km to a final altitude of 0, effectively impacting the Earth’s surface (not
accounting for drag effects).

Figure 6.3. System Trajectory
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(a) Total System Mass

(b) Propellant Used

Figure 6.4. System Mass and Propellant Used with LAE

The initial problem formulation only accounted for an additional 1000 kg of fuel to be added
to the 10,000 kg system. However, this did not result in a feasible solution. Much trial and
error resulted in ultimately increasing the initial mass of the system by 12,500 kg to find
a feasible solution. The feasibility of the solution was determined via feasibility analysis
and by observing the effects on the Hamiltonian evolution. The resulting initial mass for a
satisfyingly constant Hamiltonian was 22,500 kg. Figure 6.4 suggests that to perform this
minimum time deorbit maneuver, the system operates at a high thrust, expending all of its
fuel within the first 80 seconds.
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Figure 6.5 measures the control effort of the system and complements the propellant usage
plot. The system appears to operate at nearly constant maximum thrust until the propellant
is expended. Initially the bounds for thrust were between the maximum and minimum
capabilities of the thruster, 440N and 130N, respectively [46], which did not allow for the
thruster to not operate. Once the minimum bound for thrust was set to 0 N, indicating that
the thruster was off, a solution could be found. This control effort could be refined with a
switching control method allowing the system to operate between maximum and minimum
thrust, or to not operate.

Figure 6.5. System Control Effort - Thrust and Steering Angle
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Figure 6.6 shows a relatively constant Hamiltonian plot at -1, which verifies the Hamiltonian
Evolution of the problem formulation.

Figure 6.6. Hamiltonian Evolution

LAE Thruster Conclusion
The minimum time maneuver was completed and determined that a 10,000 kg spacecraft
orbiting at 500 km altitude can be deorbited in 310.2705 seconds with a Liquid Apogee
Engine thruster. However, to do so would require and additional 12,500 kg of fuel! To
develop a solution in DIDO, the search space needs to be sufficiently large to find the
solution. If the search space was too narrow, the result would be an infeasible solution.
Given the large size of the engineering units used to develop this problem, the search space
needed to have the necessary breadth.

6.4.2 Hall-Effect Thruster Results
Given the incredible impracticality of implementing the results using the LAE, an additional
simulation was run for Equation (6.1) using the control parameters of a Hall-Effect thruster.
Hall-Effect thrusters are commonly used ion thrusters that use an electric field to accelerate
their propellant (typically Xenon), instead of propellant ignition or cold gas expulsion
[46]. The thrust of a Hall-Effect thruster is therefore dependent on power output, electric
propellant, and can have exhaust speeds up to 20 km/s. The thruster chosen for thismaneuver
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has a maximum thrust of 311 mN and an Isp of 2000 s [46]. Figures 6.7 to 6.10 provide a
summary of the results with the Hall-Effect thruster.

Figure 6.7 shows the trajectory of the deorbit maneuver. Unlike the LAE solution, this
solution takes 9037 s (or 1.592 orbits) to reach its terminal conditions. This is a more
reasonable maneuver estimate.

Figure 6.7. System Trajectory Using Hall-Effect Thruster

Figure 6.8 shows the scaled states and costates of the solution. The solution to the BVP
presented in Equation (6.1) can be verified by ensuring that the endpoint costates are equal
to those defined in the problem formulation.
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Figure 6.8. Scaled States and Costates Using Hall-Effect Thruster

As shown in Figure 6.9, the Hall-Effect Thruster can complete the minimum time deorbit
with an additional 127.7431 kg of propellant.

Figure 6.9. Mass of Propellant Used in Maneuver Using Hall-Effect Thruster

Figure 6.10 shows that the system operates at nearly constant maximum thrust throughout
the entirety of its deorbit.
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Figure 6.10. Control Effort for Min-TimeManeuver with Hall-Effect Thruster

To develop a feasible solution for both methods, a small running cost had to be included,
imposing a penalty on steering angle α to eliminate chatter in the control effort. Were this
solution to be implemented on a system, the start point of the maneuver would have to be
chosen in the mission design to meet the final intended longitudinal position. The results
from the simulation using the Hall-effect thruster suggest that it offers a more realistic option
for a minimum time deorbit maneuver than the LAE. This solution could be further refined
by introducing a switching control method for the thrust control.
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CHAPTER 7:
Conclusion and Recommendations

7.1 Summary of Findings
This study investigated the need for active debris removal in order to preserve the utility
of the LEO Environment. Tethered systems offer a propellantless, reusable method for
ADR via a momentum exchange spin up maneuver. STELA was used to validate the debris
candidacy for removal, and the rigid body tether dumbbell model was evaluated for the
maneuver.

The results of the simulation, developed inMATLAB and Simulink, showed that by decreas-
ing the tether length, and spinning up the TSS, a ∆V could be reached to effectively send
the debris on a terminal trajectory. The tether retrieval rate can be controlled to ensure that
the system attains the desired deorbit velocity. Chapter 6 showed that a propulsive deorbit
method can be optimized for minimum time. Propulsive methods can be quick and reliable,
but require additional fuel and may only be practical for specific propulsive systems, which
limits the missions to which it may be applicable. Additionally, a propulsive deorbit system
would be single-use only and would be an incredibly expensive ADR method. A tethered
solution can be applicable across many mission as long as the debris is able to be captured.

7.2 Recommendations for Future Work
As the field of active debris removal is a relatively new area of application for space
technologies, there are many directions that future work could explore.

The momentum exchange maneuver presented in Chapter 5 can be expanded by developing
a more robust control law for the tether retrieval mechanism to account for librational
oscillations that may be caused during the retrieval. Additionally, a mission plan could be
developed to use SV’s ∆V to rendezvous with an additional debris to perform the deorbit
spin maneuver, to further the studies seen in [16] and [42]. In a physical system, it is more
likely that the tether will have elastic properties, which have been ignored here. The next
step for this comparison could be to conduct the same analyses but simulating an elastic
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tether instead of a rigid one, or to conduct the analysis along an elliptical orbit. The non-
rigid tether model will also vary based on the tether physical properties, which is subject to
material and structural analysis.

While the typical tethered configuration for a system is aligned for to librate around the local
vertical, as seen in Chapter 5, a towing system would typically experience a continuous
low force and have a closer alignment with the local horizontal. Due to this configuration,
the dynamics of this system and natural librational frequencies must be calculated differ-
ently [49]. A future application of this tethered research could be to evaluate the dynamics
of this configuration, and exploit the atmospheric drag force with a drag augmentation
device for another propellantless solution, instead of the typically studied propulsive space
tug.

Another future application of this work could be to take the optimized deorbit demonstrated
in Chapter 6 and include the tethered system dynamics or to refine the control method.
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APPENDIX A:
Comparison of Formation Flying Propagation

Methods

A.1 Relative Motion Models
This Appendix compares three different methods for propagating the relative motion be-
tween a chief and deputy satellite in proximity flight. This first is the state transition method
of solving the Clohessy-Wiltshire equations of motion which are applicable to a chief on a
circular orbit and a deputy that is circular, or slightly elliptical and inclined. The second
method is the Yamanaka-Ankersen method of solving the Tschauner-Hempel linearized
equations of relative motion for an arbitrarily elliptical orbit. The final method performs a
numerical integration method to solve the Kepler equations of motion for each orbit, then
determines the relative motion between them.

For each method, the orbital elements were defined as presented in Tables A.1 and A.2.

Table A.1. Orbital Elements with Chief on Circular Orbit
Orbital Elements Chief Deputy

a, semi-major axis [km] 8500 8500.1
e, eccentricity 0 0.01

i, inclination [deg] 15 15.5
Ω, RAAN [deg] 30 30

ω, argument of perigee [deg] 10 10
ν, true anomaly [deg] 0 0

Table A.2. Orbital Elements with Chief on Elliptical Orbit
Orbital Elements Chief Deputy

a, semi-major axis [km] 8500 8500.1
e, eccentricity 0.01 0.02

i, inclination [deg] 15 15.5
Ω, RAAN [deg] 30 30

ω, argument of perigee [deg] 10 10
ν, true anomaly [deg] 0 0
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A.1.1 Clohessy-Wiltshire Equations of Relative Motion
TheClohessy-Wiltshire (CW) equations presented in Equations (4.21) to (4.23) can describe
the relative motion relative motion when the chief satellite is in a circular orbit, the deputy is
only slightly elliptic and inclined compared to the chief orbit. The relative motion equations
are linearized about the origin of the chief-fixed LVLH frame. [28] The linear differential
equations can be represented in state-space formwhere the state vector is x = [x, y, z, Ûx, Ûy, Ûz]T

and the state-space representation assumes the form

Ûx(t) = Ax(t)

where A is the system matrix:

A =



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3n2 0 0 0 0 2n 0
0 0 0 0 −2n 0 0
0 0 0 −n2 1 0 0


(A.1)

The solutions to the relative position and velocity components are as follows:

x(t) = [4 − 3 cos(nt)]x(0) +
sin(nt)

n
Ûx(0) +

[
2
n
−

2 cos(nt)
n

]
Ûy(0) (A.2)

y(t) = [−6nt − 3 sin(nt)]x(0) + y(0) +
[
−

2
n
+

2 cos(nt)
n

]
Ûx(0)

[
4 sin(nt)

n
− 3t

]
Ûy(0) (A.3)

z(t) = cos(nt)z(0) +
sin(nt)

n
Ûz(0) (A.4)

Ûx(t) = 2n sin(nt)x(0) + cos(nt) Ûx(0) + 2 sin(nt) Ûy(0) (A.5)

Ûy(t) = [−6n − 3n cos(nt)]x(0) + −2 sin(nt) Ûx(0) + [−3 + 4 cos(nt)] Ûy(0) (A.6)

Ûz(t) = −n sin(nt)z(0) + cos(nt) Ûz(0) (A.7)
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where nt is the mean anomaly of the chief. The state-space model was solved using a
Runge-Kutta numerical integration method. The solution can be seen in Figure A.1.
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Figure A.1. Unbounded CW

The along-track or y-component of the solution shows the presence of linearly increasing
drift due to the 3t term in the y-component of the solution. This results in unstable in-plane
motion. A stable subspace can be found by defining the initial condition

Ûy(0) = −2nx(0)

and bounding the relative motion to first order [28]. The bounded solution of relative motion
is shown in Figure A.2. It is worth noting that stability in the context of CW is local only
and is applicable only in the small neighborhood of the chief, and not the relative motion
of the formation overall.
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Figure A.2. Bounded CW

A.1.2 Yamanaka-Ankersen method to solve Tschauner-Hempel Equa-
tions of Motion

In 2002, Yamanaka and Ankersen developed a state transition matrix for solving arbitrarily
elliptical orbits, using true anomaly as the independent variable. The equations of relative
motion with true anomaly as the independent vector are known as the Tschauner-Hempel
Equations:

x̃′′ =
3x̃
ρ(ν)

+ 2ỹ′ (A.8)

ỹ′′ = −2x̃′ (A.9)

z̃′′ = −z̃ (A.10)
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where ρ(ν) is 1 + e cos(ν). To solve these relative motion equations, the state vector must
be transformed into the tilde space using the following method presented [50].

[x̃, ỹ, z̃, x̃′, ỹ′, z̃′]T = A(ν)[x, y, z, Ûx, Ûy, Ûz]T (A.11)

A(ν) is the matrix:

A(ν) =

[
k ∗ ρ ∗ I3x3 03x3

−k ∗ e ∗ sin(ν) ∗ I3x3
1

k∗ρ ∗ I3x3

]
(A.12)

where k =
√

h
p2 . The complete solution to the Tschauner-Hempel equations using the

Yamanaka-Ankersen method is

x(t) = Φ(ν)Φ−1(ν(0))x(t0) (A.13)

where the solution matrix is

Φ =



s c 2 − 3esJ 0 0 0
c
(
1 + 1

ρ

)
−s

(
1 + 1

ρ

)
−3ρ2J 1 0 0

0 0 0 0 cos ν sin ν
s′ c′ −3es′J + s

ρ2 0 0 0
−2s e − 2c −3(1 − 2esJ) 0 0 0

0 0 0 0 − sin ν cosν


(A.14)

where c = ρ cos(ν), s = ρ sin(ν) and J is the integral term J = k2(t − t0). [33] The solution
to the relative position components are

x = c1k sin ν + c2ρ cos ν + c3(2 − 3eρJ sin ν) (A.15)

y = c4 + c1(1 + 1/ρ) cos ν − c2(1 + 1/ρ) sin ν − 3c3ρ
2J (A.16)

z = c5 cos ν + c6 sin ν (A.17)

When the eccentricity of the chief’s orbit is circular, the ρ(ν) is 1, and the solution is
identical to that of the CW propagation, as seen in Figure A.3.
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Figure A.3. In-Plane Motion for Chief in Circular Orbit

Similarly to Clohessy-Wiltshire, the Yamanaka-Ankersen propagation experiences linearly
increasing secular drift due to the presence of the time term in J in the solution. The YA
solution can be bounded by setting the appropriate integration constant, c3 to 0.

A.2 Comparison of Relative Motion Models
The numerical solution was found by integrating the Keplerian equations of motion for
both the chief and the deputy satellite using Runge-Kutta-Fehlberg numerical integration
methods. The resulting state vector of the deputy was then subtracted from the chief to find
the relative motion vector, and converted into the LVLH frame at each time step of the orbit.
The intention of including this method was to compare the CW and Yamanaka-Ankersen
approximations to the actual numerical solution.

The solution for both the chief and deputy’s Keplerian orbit is shown in Figure A.4. As can
be seen by the red line representing the deputy’s orbit, the deputy is slightly elliptical and
slightly inclined compared to the chief.
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Figure A.4. Numerical Solution Chief in Circular Orbit

Figure A.5 displays the propagation of each solution concurrently for comparison. As
previously stated, when the chief is circular, the CW and Yamanaka-Ankersen solutions are
identical. As can be seen by the plot, the two approximations can effectively approximate
the shape of the numerical relative motion plot, however not without some errors as the plot
appears to be shifted along the x direction.

Figure A.5. Unbound Solution Chief in Circular Orbit
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The numerical solution for both the chief and deputy’s Keplerian orbit, where the chief is
in a slightly elliptic orbit, is shown in Figure A.6. The deputy orbit eccentricity has also
been slightly increased to maintain a notable orbital separation.

Figure A.6. Numerical Solution Chief in Eccentric Orbit

In Figure A.7, the benefits of the Yamanaka-Ankersen method over the CW method can be
clearly seen. Even with slight eccentricity in the chief’s orbit, the CW approximation shows
significant errors as that solution matrix does not take account of the eccentricity element.
The Yamanaka-Ankersen solution degrades dramatically as the solution propagates, how-
ever, as with Figure A.5, the initial approximation matches that of the numerical solution,
albeit shifted.
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Figure A.7. Unbound Solution Chief in Eccentric Orbit

The CW equations and YA methods offer an approximation to the relative motion problem.
However, the accuracy of the solution degrades as the approximation propagates over
time [30]. Therefore, it can be reasonably seen why these methods are typically utilized for
short term rendezvous scenarios.
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