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The recently introduced generalized Hamiltonian–Real (GHR)
calculus comprises, for the first time, the product and chain
rules that makes it a powerful tool for quaternion-based
optimization and adaptive signal processing. In this paper,
we introduce novel dual relationships between the GHR
calculus and multivariate real calculus, in order to provide a
new, simpler proof of the GHR derivative rules. This further
reinforces the theoretical foundation of the GHR calculus and
provides a convenient methodology for generic extensions of
real- and complex-valued learning algorithms to the quaternion
domain.

1. Introduction
Quaternions were introduced by William Hamilton in 1843, as
an associative but not commutative algebra over reals, and have
been used in many fields, such as physics, computer graphics and
signal processing.

Because of the non-commutativity of quaternion product,
definitions of quaternion derivative are very different from
those for real and complex derivatives. For example, Sudbery
[1] establishes that only linear quaternion functions fulfil
the requirements of traditional derivative definition. However,
such a derivative is too stringent for practical optimization
problems, whereby the cost functions are often real-valued and
therefore non-analytic. In order to relax the derivative condition,
the recently introduced Hamiltonian–Real (HR) calculus [2]
deals with both analytic and non-analytic quaternion functions
within a unified framework. However, the HR calculus does
not comprise effective derivative rules (product, chain) for
dealing with complicated derivation operations in practical
problems. By exploiting quaternion rotation, the recently
introduced generalized HR (GHR) calculus embarks upon the

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.160211&domain=pdf&date_stamp=2016-09-14
mailto:dongpoxu@gmail.com
http://orcid.org/0000-0002-9663-9743


2

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160211

................................................
HR calculus to provide the powerful product and chain derivative rules that facilitate the calculation of
quaternion gradient and Hessian in quaternion optimization problems [3]. In particular, we note that the
product rule is a distinctive feature of the functional calculi. However, the original proof of the product
and chain rules for the GHR calculus is quite involved and difficult to understand for non-experts.

The aim of this paper is to further elucidate the main ideas of the GHR calculus, and to give simpler
proofs of the main results in [3]. The new proof is based on the duality between the GHR calculus
and multivariate real calculus. One of the advantages of such an approach is that it allows for a direct
treatment of quaternion-valued functions, without an intermediate transition to real functions. Based on
the so-introduced relationships, we illustrate the effectiveness of such an approach by providing a dual
version of the widely linear quaternion least mean square (WL-QLMS) adaptive learning algorithm [4,5],
and show that it produces the same output as the primal WL-QLMS, but with a reduced computational
complexity.

2. Preliminaries
In the following, we state some basic definitions of the GHR calculus [3,6,7].

Definition 2.1 (Quaternion rotation [8]). For any quaternion q, the quaternion rotation is defined as

qμ � μqμ−1, (2.1)

where μ is any non-zero quaternion.

Definition 2.2 (Real-differentiability [1]). A function f (q) = fa(q) + ifb(q) + jfc(q) + kfd(q) is called real
differentiable if its real-valued components fa(q), fb(q), fc(q) and fd(q) are differentiable functions with
respect to four real components qa, qb, qc and qd of a quaternion variable q = qa + iqb + jqc + kqd.

Definition 2.3 (The GHR derivatives [3]). If f : H → H is real-differentiable, then, the GHR derivatives
of the function f with respect to qμ and qμ∗ (μ �= 0, μ ∈ H) are defined as

∂f
∂qμ

= 1
4

(
∂f
∂qa

− ∂f
∂qb

iμ − ∂f
∂qc

jμ − ∂f
∂qd

kμ

)

and
∂f

∂qμ∗ = 1
4

(
∂f
∂qa

+ ∂f
∂qb

iμ + ∂f
∂qc

jμ + ∂f
∂qd

kμ

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2.2)

where q = qa + iqb + jqc + kqd, quaternion components qa, qb, qc, qd ∈ R, and ∂f/∂qa, ∂f/∂qb, ∂f/∂qc and
∂f/∂qd are the partial derivatives of f with respect to qa, qb, qc and qd, whereas the set {1, iμ, jμ, kμ} is
an orthogonal basis of H.

Lemma 2.4 (Duality of quaternions and real vectors [9,10]). For any quaternion q = qa + iqb + jqc + kqd,
where ql ∈ R, l ∈ {a, b, c, d}, the relationship between the augmented quaternion vector qa = (q, qi, qj, qk)T ∈ H

4 and
its quadrivariate real vector counterpart qr = (qa, qb, qc, qd)T ∈ R

4 is given by qa = Aqr, where

A =

⎛
⎜⎜⎜⎝

1 i j k
1 i −j −k
1 −i j −k
1 −i −j k

⎞
⎟⎟⎟⎠ , A−1 = 1

4
AH (2.3)

and (·)H denotes the quaternion conjugate transpose.

Lemma 2.5 (Duality of quaternion gradients and real gradient vectors [7]). For a real-
differentiable function f : H → R, the relation between the quadrivariate real gradient vector ∇r

qf =
(∂f/∂qa, ∂f/∂qb, ∂f/∂qc, ∂f/∂qd)T and the augmented quaternion gradient vector ∇a

q∗ f = (∂f/∂q∗, ∂f/∂qi∗, ∂f/∂qj∗,

∂f/∂qk∗)T is given by ∇r
qf = AH∇a

q∗ f .

Lemma 2.6 (Duality of quaternion and real Jacobian matrices). For a real-differentiable function
f : H → H, the relation between the quadrivariate real Jacobian matrix Jr

q(f ) and the augmented quaternion Jacobian
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matrix Ja

q( f ) is given by Jr
q( f ) = A−1Ja

qμ ( f )Aμ, where

Jr
q(f ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂fa
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∂fa
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∂fa
∂qd

∂fb
∂qa
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∂qb

∂fb
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∂fb
∂qd

∂fc
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∂fc
∂qb

∂fc
∂qc

∂fc
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∂fd
∂qa

∂fd
∂qb

∂fd
∂qc

∂fd
∂qd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Ja
qμ (f ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f
∂qμ

∂f
∂qμi

∂f

∂qμj

∂f
∂qμk

∂f i

∂qμ

∂f i

∂qμi
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∂qμj

∂f i

∂qμk

∂f j

∂qμ

∂f j

∂qμi

∂f j

∂qμj

∂f j

∂qμk

∂f k

∂qμ

∂f k

∂qμi

∂f k

∂qμj

∂f k

∂qμk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

with f (q) = fa(q) + ifb(q) + jfc(q) + kfd(q), q = qa + iqb + jqc + kqd and ql ∈ R, fl(q) ∈ R, l ∈ {a, b, c, d}.

Proof. The proof follows directly from definition 2.3. �

Lemma 2.7 (Duality of quaternion and real Hessian matrices [7]). For a real-differentiable function f :
H → R, the relation between the quadrivariate real Hessian matrix Hr

q(f ) and the augmented quaternion Hessian

matrix Ha
q(f ) is given by Hr

q(f ) = AHHa
q(f )A.

3. Main results
Theorem 3.1 (Chain rule of GHR derivatives). Let S ⊆ H and let g : S → H be real-differentiable at an

interior point q of the set S. Let T ⊆ H be such that g(q) ∈ T for all q ∈ S. Assume that f : T → H is real-differentiable
at an interior point g(q) ∈ T. Then, the composite function h(q) = f (g(q)) satisfies the following chain rule

∂h(q)
∂qμ

= ∂f
∂g

∂g
∂qμ

+ ∂f
∂gi

∂gi

∂qμ
+ ∂f

∂gj

∂gj

∂qμ
+ ∂f

∂gk

∂gk

∂qμ
, (3.1)

where μ ∈ H, μ �= 0, ∂f/∂gν = ∂f (g)/∂gν (ν = 1, i, j, k) are the GHR derivatives.

Proof. Using the chain rule of multivariate real calculus, we have

Jr
q(h) = Jr

g(h)Jr
q(g). (3.2)

Multiplying both sides of (3.2) by A and (Aμ)−1, we have

AJr
q(h)(Aμ)−1 = AJr

g(h) A−1AJr
q(g)(Aμ)−1. (3.3)

Using lemma 2.6 further yields

Ja
qμ (h) = Ja

g(h)Ja
qμ (g). (3.4)

Upon extracting the top left entry (i.e. (1,1)-entry) of the matrix equation (3.4), we arrive at

∂f (g(q))
∂qμ

= ∂f (g)
∂g

∂g(q)
∂qμ

+ ∂f (g)
∂gi

∂gi(q)
∂qμ

+ ∂f (g)
∂gj

∂gj(q)
∂qμ

+ ∂f (g)
∂gk

∂gk(q)
∂qμ

. (3.5)

This completes the proof of theorem 3.1. �

Theorem 3.2 (Product rule of GHR derivatives). If the functions f , g : H → H are real-differentiable, then
the derivative of their product fg satisfies the following product rule

∂(fg)
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qgμ

g, (3.6)

where μ ∈ H, μ �= 0, ∂f/∂qgμ can be obtained by replacing μ with gμ in definition 2.3.
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Proof. Denote h(q) = f (q)g(q), f = fa + ifb + jfc + kfd and g = ga + igb + jgc + kgd. Then,

hr =

⎛
⎜⎜⎜⎝

ha

hb
hc

hd

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

faga − fbgb − fcgc − fdgd
fagb + fbga + fcgd − fdgc

fagc − fbgd + fcga + fdgb
fagd + fbgc − fcgb + fdga

⎞
⎟⎟⎟⎠ . (3.7)

Using the product rule of real calculus yields

Jr
q(h) = FJr

q(g) + GJr
q(f ), (3.8)

where

F =

⎛
⎜⎜⎜⎝

fa −fb −fc −fd
fb fa −fd fc
fc fd fa −fb
fd −fc fb fa

⎞
⎟⎟⎟⎠ and G =

⎛
⎜⎜⎜⎝

ga −gb −gc −gd
gb ga gd −gc

gc −gd ga gb
gd gc −gb ga

⎞
⎟⎟⎟⎠ (3.9)

Upon multiplying both sides of (3.9) by A and (Aμ)−1 and using lemma 2.6, we have

Ja
qμ (h) = AJr

q(h)(Aμ)−1 = AFA−1AJr
q(g)(Aμ)−1 + AGJr

q(f )(Aμ)−1

= FaJa
qμ (g) + (ATGa)TJr

q(f )(Aμ)−1, (3.10)

where

Fa � AFA−1 =

⎛
⎜⎜⎜⎝

f 0 0 0
0 f i 0 0
0 0 f j 0
0 0 0 f k

⎞
⎟⎟⎟⎠ and Ga �

⎛
⎜⎜⎜⎝

g 0 0 0
0 gi 0 0
0 0 gj 0
0 0 0 gk

⎞
⎟⎟⎟⎠ (3.11)

Upon extracting the first row of the matrix equation (3.10), we arrive at

(Ja
qμ (h))1 = f (Ja

qμ (g))1 + (A)1gJr
q(f )(Aμ)−1 = f (Ja

qμ (g))1 + (A)1Jr
q(f )g(Aμ)−1

= f (Ja
qμ (g))1 + (A)1Jr

q(f )(Agμ)−1g = f (Ja
qμ (g))1 + (Ja

qgμ (f ))1g, (3.12)

where (X)1 denotes the first row of the matrix X. The first element of the above vector equation finally
yields

∂h
∂qμ

= f
∂g
∂qμ

+ ∂f
∂qgμ

g. (3.13)

This completes the proof of theorem 3.2. �

4. Application example
The WL-QLMS algorithm is based on the quaternion widely linear model y(n) = wT(n) q(n), where q(n) =
(xT(n), xiT(n), xjT(n), xkT(n))T ∈ H

4N is the augmented input vector and w(n) ∈ H
4N the associated weight

(parameter) vector. The cost function to be minimized is a real-valued function of quaternion variables,
given by

J(n) = |e(n)|2 = |d(n) − y(n)|2, (4.1)

where e(n) = d(n) − y(n) is the error between the desired signal d(n) and the filter output y(n). The weight
update of WL-QLMS is then given by [3]

w(n + 1) = w(n) + αe(n)q∗(n), (4.2)

where α > 0 is the step size. Similar to the scalar duality in lemma 2.4, the duality between the augmented
quaternion vector q(n) and its dual quadrivariate real vector r(n) = (xT

a (n), xT
b (n), xT

c (n), xT
d (n))T ∈ R

4N is
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Table 1. Computational complexity in terms of real operations per iteration (N is the filter length).

algorithm + ×
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

QLMS 32N 32N + 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WL-QLMS 128N 128N + 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D-WL-QLMS 32N 32N + 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

given by [7]

q(n) = Jr(n), qH(n) = rH(n)JH = rT(n)JH, (4.3)

where J = A ⊗ IN denotes the Kronecker product of A (cf. (2.3)) and the N × N identity matrix IN . The
filter output y(n) can now be rewritten as

y(n) = wT(n)q(n) = wT(n)Jr(n) = vT(n)r(n), (4.4)

where vT(n) = wT(n)J ∈ H
4N is an alternative augmented quaternion weight vector. Multiplying both

sides of (4.2) by J and noting that JHJ = 4I4N , we have

wT(n + 1)J = wT(n)J + αe(n)qH(n)J = wT(n)J + αe(n)rT(n)JHJ

= wT(n)J + 4αe(n)rT(n). (4.5)

Upon replacing wT(n)J with vT(n), the dual version of the WL-QLMS (D-WL-QLMS) algorithm becomes

v(n + 1) = v(n) + αe(n)r(n), (4.6)

where the constant 4 in (4.5) is absorbed into the step size α.

Remark 4.1. From (4.4), we can see that the D-WL-QLMS and WL-QLMS have the same filter output.
Therefore, the D-WL-QLMS has the same performance as the WL-QLMS, which is better than the strictly
linear QLMS and the real LMS (RLMS) [5,11], when dealing with non-circular inputs. Table 1 shows that
D-WL-QLMS also has a lower computational complexity than the WL-QLMS, owing to the use of real-
valued input vector r(n) in the calculations. This is similar to the operation of the RLMS; however, the
weight vector v(n) of the D-WL-QLMS is quaternion-valued, which is different from the RLMS.

Remark 4.2. Note that if we start from y(n) = wH(n)q(n), then an alternative form of the WL-QLMS is
given by w(n + 1) = w(n) + α q(n)e∗(n) [3]. Denote vT(n) = wH(n)J, then the filter output becomes y(n) =
wH(n)J r(n) = vT(n)r(n), that is, the same as in (4.4). Finally, the proposed D-WL-QLMS keeps the same
form of update rule in (4.6), and has the same computational complexity as that shown in table 1.

5. Conclusion
We have provided a new proof for the GHR calculus through the duality relationships between the
GHR calculus and multivariate real calculus. These results complement the original proof given in [3],
are easier to understand and are physically meaningful, and thus provide additional insights into the
operation of the GHR calculus. An application example in adaptive learning theory demonstrates the
advantages of the proposed approach.
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