
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-09

INTERACTIVE MAP MAKING FOR ROUTE

PLANNING AND OBSTACLE AVOIDANCE IN AN

UNSTRUCTURED OUTDOOR ENVIRONMENT

Audette, Matthew R.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/60406

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

INTERACTIVE MAP MAKING FOR ROUTE PLANNING
AND OBSTACLE AVOIDANCE IN AN UNSTRUCTURED

OUTDOOR ENVIRONMENT

by

Matthew R. Audette

September 2018

Thesis Advisor: Xiaoping Yun
Co-Advisor: James Calusdian

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2018 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
INTERACTIVE MAP MAKING FOR ROUTE PLANNING AND OBSTACLE
AVOIDANCE IN AN UNSTRUCTURED OUTDOOR ENVIRONMENT

 5. FUNDING NUMBERS

 6. AUTHOR(S) Matthew R. Audette

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 As autonomous ground robots fulfill greater roles within the military there is a requirement for an
operator to be able to quickly give minimal route-planning guidance in support of an autonomous mission.
The objective of this thesis is to develop a route-planning algorithm that uses open source satellite imagery
to allow a user to plot a start point, a goal point, and identify large-scale obstacles within the robot’s
operating area. In this thesis, we build on previous work that developed a potential field obstacle avoidance
algorithm. We advance the development of the autonomous mission capability by creating a global
path-planning algorithm. The algorithm uses the visibility graph and A* search method to produce the
optimal path from the given start point to the goal. The navigation algorithm developed allows users to
generate imagery-based obstacle maps in Google Earth Pro and successfully produces an optimal path in the
form of global positioning satellite coordinates via extensive MATLAB code development. The method was
evaluated on a ground robot navigating in an outdoor environment using the waypoints generated. The
path-planning algorithm was successfully implemented, but due to difficulties encountered with the
navigation node of the mobile robot, a complete verification was not possible. Improvements to the robot’s
ability to traverse over rugged terrain will make this solution more viable for a wider range of outdoor
environments.

 14. SUBJECT TERMS
visibility matrix, visibility graph, A*, optimal route, path planning, unmanned ground robot,
autonomous ground robot, autonomous ground vehicle, robot

 15. NUMBER OF
PAGES
 101
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

INTERACTIVE MAP MAKING FOR ROUTE PLANNING AND OBSTACLE
AVOIDANCE IN AN UNSTRUCTURED OUTDOOR ENVIRONMENT

Matthew R. Audette
Captain, United States Marine Corps

BS, Southern Polytechnic State University, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2018

Approved by: Xiaoping Yun
 Advisor

 James Calusdian
 Co-Advisor

 Clark Robertson
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 As autonomous ground robots fulfill greater roles within the military, there is a

requirement for an operator to be able to quickly give minimal route-planning guidance

in support of an autonomous mission. The objective of this thesis is to develop a

route-planning algorithm that uses open-source satellite imagery to allow a user to plot a

start point, a goal point, and identify large-scale obstacles within the robot’s operating

area. In this thesis, we build on previous work that developed a potential field obstacle

avoidance algorithm. We advance the development of the autonomous mission capability

by creating a global path-planning algorithm. The algorithm uses the visibility graph and

A* search method to produce the optimal path from the given start point to the goal. The

navigation algorithm developed allows users to generate imagery-based obstacle maps in

Google Earth Pro and successfully produces an optimal path in the form of global

positioning satellite coordinates via extensive MATLAB code development. The method

was evaluated on a ground robot navigating in an outdoor environment using the

waypoints generated. The path-planning algorithm was successfully implemented, but

due to difficulties encountered with the navigation node of the mobile robot, a complete

verification was not possible. Improvements to the robot’s ability to traverse over rugged

terrain will make this solution more viable for a wider range of outdoor environments.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE AND GOALS OF THIS THESIS ..1
B. MOTIVATION ..2
C. PREVIOUS WORK ...4

II. DESCRIPTION OF HARDWARE AND SOFTWARE SYSTEMS5
A. HARDWARE ...5

1. Omron Adept MobileRobots Pioneer 3-All Terrain5
2. SlimPRO SP675P Mini PC ..6
3. Sensor Suite ..7

B. SOFTWARE ...10
1. MATLAB ..10
2. Robot Operating System ...11
3. Google Earth Pro ...12

C. SUMMARY AND INTEGRATION ...12

III. DESCRIPTION OF ROADMAP DEVELOPMENT15
A. CONFIGURATION SPACE...15
B. PATH-PLANNING APPROACHES ...17
C. VISIBILITY GRAPH METHOD ...20
D. A* SEARCH METHOD ..27
E. AN OVERVIEW OF THE OBSTACLE AVOIDANCE

ALGORITHM ..30
F. INTEGRATION OF THE OBSTACLE AVOIDANCE

ALGORITHM AND PATH-PLANNING ALGORITHM...................33

IV. MATLAB CLASS DEVELOPMENT ..35
A. OBSTACLE AND OBSTACLE FIELD CLASSES35
B. NODE AND A* SEARCH CLASSES ..38
C. INTEGRATION WITH GOOGLE MAPS ...41
D. GLOBAL NAVIGATION ALGORITHM SUMMARY42

V. EXPERIMENTS AND RESULTS ...45
A. EXPERIMENT 1: GPS WAYPOINT NAVIGATION USING

THE PATH-PLANNING ALGORITHM..47
B. EXPERIMENT 2: MEDIUM DISTANCE NAVIGATION49

viii

VI. CONCLUSIONS ..53
A. ASSESSMENT OF GOALS ...53
B. SYSTEM IMPROVEMENTS AND AREAS OF FUTURE

WORK ..53

APPENDIX A. DEMONSTRATION.M ...55

APPENDIX B. TESTBED.M ...57

APPENDIX C. KML TO OBSTACLE SCRIPTS ...61

APPENDIX D. GOOGLE_EARTH_TEST.M ...63

APPENDIX E. ASTAR_TESTBED.M ...65

APPENDIX F. POTENTIALFIELDTOWAYPOINT.M ..67

APPENDIX G. MODIFIED READ_KML.M ..77

LIST OF REFERENCES ..81

INITIAL DISTRIBUTION LIST ...85

ix

LIST OF FIGURES

Figure 1. The Marine Corp’s Strategic Vision for Manned-Unmanned
Teaming. Source: [4]. ..3

Figure 2. Marines with 3/5 Experiment with MUM-T. Source: [5].4

Figure 3. The P3-AT Robot. Source: [6]. ..6

Figure 4. The SlimPRO SP675P Mini PC. Source: [10]. ..7

Figure 5. The Hokuyo UTM-30LX Scanning Laser Rangefinder. Source: [11].8

Figure 6. The LORD MicroStrain GNSS Aided INS. Source: [12].9

Figure 7. P3-AT with Sensor Suite as Used in Experimentation. Source: [6].9

Figure 8. An Example ROS Network. Source: [17]. ...11

Figure 9. Robotic System Used in Experimentation ...13

Figure 10. Representation of Workspace and the Configuration of Robot A 16

Figure 11. Visibility Graph Example. Source: [20]. ...18

Figure 12. Voroni Diagram Example. Source: [21]. ...19

Figure 13. Cell Decomposition and Connectivity Graph Example. Source: [21].20

Figure 14. Obstacles Represented as an Array of Vertices ...21

Figure 15. Checking for Visibility Between 1n and 2n ..22

Figure 16. The Representation of Two Lines as Four Vectors23

Figure 17. Lines ()P s and ()Q t Overlap When φ is in the Column Space of
Φ ...24

Figure 18. Lines ()P s and ()Q t Are Parallel When φ Is Not Contained
Within the Column Space of Φ ..25

Figure 19. Visibility Graphs Without and With Checking for Column Space............26

Figure 20. An Example of a Visibility Matrix ..27

x

Figure 21. Reading a Visibility Matrix ...27

Figure 22. Example Roadmap ...28

Figure 23. Example of an Artificial Potential Field with Obstacle. Source: [6].30

Figure 24. An Artificial Potential Field with a Local Minima. Source: [6]32

Figure 25. State Diagram of Obstacle Avoidance Control Logic. Source: [6].33

Figure 26. Example Control Scheme for Autonomous Navigation. Adapted
from [20]. ...34

Figure 27. Pseudocode Showing the Major Properties and Functions of the
Obstacle Class ..36

Figure 28. Pseudocode Showing the Major Properties and Methods of the
Obstacle Field Class ...37

Figure 29. Example of the Information Stored in the Point Index Three
Dimensional Array ...37

Figure 30. Pseudocode Showing the Major Properties and Methods of the Node
Class ...39

Figure 31. Pseudocode Showing the Major Properties and Methods of the
AStarSearch Class ..40

Figure 32. Pseudocode for the Order of Operations in Using the Navigation
Algorithm ...43

Figure 33. Obstacle Map of the Naval Postgraduate School Campus45

Figure 34. Visibility Graph of the NPS Campus Generated by the Path-Planning
Algorithm ...46

Figure 35. Experiment 1’s Polygon and Numbered Waypoints47

Figure 36. Path Traveled by the P3-AT in Experiment 1 ..48

Figure 37. Evaluating Obstacle Avoidance While Navigating to Waypoints49

Figure 38. Start and Goal Points for Experiment 2 ...50

Figure 39. The Optimal Path Generated by the Path-Planning Algorithm for
Experiment 2 ..51

Figure 40. The Optimal Route and Route Traversed for Experiment 252

xi

LIST OF ACRONYMS AND ABBREVIATIONS

2D two-dimensional
DOF degrees-of-freedom
EKF extended Kalman filter
EOD explosive ordnance disposal
GLONASS globalnaya navigatsionnaya sputnikovaya sistema (global

navigation satellite system)
GNSS global navigation satellite system
GPS global positioning system
IED improvised explosive device
INS inertial navigation system
LIDAR light direction and ranging
MUM-T manned-unmanned teaming
P3-AT pioneer 3-all terrain
PC personal computer
POI point-of-interest
RAS robotic autonomous systems
ROS robot operating system
RST robotics system toolbox
SSH secure shell
UGV unmanned ground vehicle
USB universal serial bus
UXO unexploded ordnance

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to first offer my thanks to Dr. Xiaoping Yun and Dr. James Calusdian.

Dr. Yun, thank you for your guidance in the research, theory, and applications used

throughout this thesis. Dr. Calusdian, thank you for all the assistance in the lab, during

experimentation, and troubleshooting. I appreciate you being a constant sounding board,

source of knowledge, and your unwavering enthusiasm for the work. Additionally, I would

like to thank Dr. Brian Bingham for the introduction to ROS, your mentorship, and

exposure to the broader Naval Postgraduate School robotics and autonomy community.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE AND GOALS OF THIS THESIS

The purpose of this thesis is to develop the capability for an operator to generate

missions for an unmanned ground vehicle while providing as little route-planning guidance

as possible to the system. The tools used for this purpose should be as intuitive and non-

technical as possible so as to decrease training time and increase ease of use.

The most common mission planning tools within the military are based on satellite

imagery. Satellite imagery is easy to comprehend and more up to date than traditional paper

maps. It is readily available and used within the military for training and operations. When

a mission planner or operator is provided with a satellite imagery-based map of their area

of responsibility, they generate a mission by determining a start point, an end goal, and

intermediate waypoints. Areas that cannot be traversed, such as buildings, previously

known obstacles, or areas that are off limits, are identified and removed from possible

routes. This same method should be used when planning a mission for an autonomous

ground vehicle. If an operator were provided an imagery-based map, he should be able to

identify for the robot a start point, a goal, and known large-scale obstacles in the area of

responsibility, and the robot should be able to plan its own route and successfully navigate

to the goal.

In this research, we seek to develop a platform-agnostic set of tools that are capable

of identifying waypoints determined by an optimal route-planning algorithm that a robot

can then use to navigate to its destination. A “global map” of a pre-determined area of

responsibility containing large-scale fixed obstacles that are unlikely to change, such as

buildings, unnavigable terrain, and areas that are off limits for autonomous vehicles should

be simple and quick to generate. When paired with a route-planning algorithm and a local

obstacle avoidance algorithm, this combination will provide a robust navigation capability

for an autonomous mobile robot. The robot should be able to navigate the given mission in

an unstructured outdoor environment by performing global path planning as well as local

2

obstacle avoidance. Possible use cases for this capability would be autonomous patrolling,

logistical support, or missions in support of humanitarian aid/disaster relief type operations.

B. MOTIVATION

The future battlefield is increasingly autonomous. Increased technological

capability, decreases in the cost of fielding autonomous systems, and an increasingly

complex battlefield supports the transition of certain dangerous, dirty, or dull tasks from

human to machine. Emphasis is being placed on this by the highest levels of the Marine

Corps. The Marine Corps Operational Concept calls for leaders to “refine the concept of

manned-unmanned teaming (MUM-T) to integrate robotic autonomous systems (RAS)

with manned platforms and Marines” [1].

The predominance of unmanned ground vehicles (UGVs) has increased

exponentially. Technology journalist P. W. Singer explains that, “When U.S. forces went

into Iraq, the original invasion had zero robotic systems on the ground. By the end of 2004,

the number was up to 150. By the end of 2005, it was up to 2,400. By the end of 2006, it

had reached the 5,000 mark and growing. It was projected to reach as high as 12,000 by

the end of 2008” [2]. These unmanned systems were primarily found in the most dangerous

of tasks: countering improvised explosive devices (IED) and unexploded ordnance (UXO).

These systems, however, lacked autonomous capabilities, and while a typical soldier refers

to them as a “robot,” the engineers producing them ensured that the nomenclature attached

was “remotely operated vehicle.”

The Marine Corps is placing greater emphasis on autonomous ground platforms to

get away from the “one operator, one robot” model to “one operator, many robots” in order

to increase the lethality of the individual warfighter [3]. The 2018 Marine Corps Science

and Technology Strategic Plan calls for the

[development of] affordable technologies to enhance effective and efficient
employment of ground robotics. Focus on improving capabilities while
reducing training and operating requirements of user Marines. Fully
autonomous vehicles are not necessarily the goal. Technologies that enable
effective “supervised autonomy” by the Marine user, to include
teleoperation, machine vision, perception, obstacle avoidance, convoy

3

following, and the ability to self-navigate pre-planned routes are desired
capabilities. [4]

The tactical level Marine Corps is the target audience for manned-unmanned

teaming, as can be seen the artist’s rendition in Figure 1. Autonomous systems are moving

out of the peripheral roles of Explosive Ordnance Disposal (EOD) and route clearance

support and into the building blocks of the Marine combat capability. The Marine Corps

Warfighting Laboratory has conducted MUM-T tests with 3rd Battalion, 5th Marine

Regiment with several autonomous platforms filling various roles within the infantry

squad, a test of which can be seen in Figure 2 [5].

Figure 1. The Marine Corp’s Strategic Vision for Manned-Unmanned
Teaming. Source: [4].

4

Figure 2. Marines with 3/5 Experiment with MUM-T.
Source: [5].

C. PREVIOUS WORK

This thesis research falls into a line of research conducted in the Naval Postgraduate

School Electrical and Computer Engineering’s robotics laboratory. The ultimate goal is to

produce a robot that can travel from any one location within an area of responsibility to

another while traversing both indoor and outdoor environments. The Naval Postgraduate

School campus serves as a testbed for experimentation and evaluation. An example of the

desired navigation capability is a robot traveling from Building 436, the Police Service

building, to the fourth floor of Spanagel Hall. In order for a robot to do this autonomously,

it has to navigate a variety of environments. The work done in the course of this thesis

builds directly off earlier research that developed an obstacle avoidance algorithm for this

robotic platform [6]. The previously developed artificial potential field-based obstacle

avoidance algorithm successfully navigates around local obstructions within the path of the

robot. In this thesis, we extend the capability of the same robotic platform by providing a

higher-level path-planning algorithm that advances the existing capabilities.

5

II. DESCRIPTION OF HARDWARE AND SOFTWARE SYSTEMS

In the introduction of his benchmark book on robot motion planning, Stanford

roboticist Jean-Claude Latombe describes a robot as “a mechanical device … equipped

with actuators and sensors under the control of a computing system” [7]. By its very nature,

a robot is a system that crosses the disciplines of mechanical engineering, electrical

engineering, and computer science. What follows is a brief description of the robot’s

hardware and software in order to describe the system’s capabilities.

A. HARDWARE

The hardware in this robotic system was selected based upon an ability to function

in the outdoor environment. Such a system requires a rugged chassis; a light weight, low

power computer; and appropriate sensors to navigate. The subsystems also require robust

software support.

1. Omron Adept MobileRobots Pioneer 3-All Terrain

The mobile robot platform used in this research was the Pioneer 3-All Terrain, or

P3-AT. The base platform is shown in Figure 3. Adept MobileRobots describes it as “a

small four-wheel, four-motor skid-steer robot ideal for all-terrain or laboratory

experimentation” [8]. The reinforced pneumatic tires give it the ability to traverse flooring,

asphalt, sand, gravel, and dirt. The platform uses a skid steering drive style that gives a

zero-turn radius and a swing radius of 34 cm. It is powered by up to three 12-V lead acid

batteries that are hot-swappable to allow for continuous operation. The onboard

microcontroller has three serial expansion ports that allow for additional sensors,

processors, and computers to be added to the system to increase the robot’s capabilities.

Also included are a sonar array consisting of 16 front and rear mounted sonar sensors, front

and rear segmented bumper arrays, and an emergency stop button that disables the drive

motors [9].

6

Figure 3. The P3-AT Robot. Source: [6].

2. SlimPRO SP675P Mini PC

The entirety of the processing on this mobile robot was done on the onboard

SlimPRO Mini Personal Computer (PC) running the Ubuntu 14.04 Long Term Support

(LTS) operating system. Details of the computer were sourced from the vendor’s website

[10]. According to the site, the computer has a small form factor, just 14.6 × 25.4 × 4.2 cm,

and ample processing power with an Intel Pentium Central Processing Unit (CPU). The

computer runs off of 12-V direct current and has a low power consumption of 30 W at

normal use. The computer has six universal serial bus (USB) 2.0 ports, as seen in Figure 4,

that allow for peripheral sensors and interfaces to be added. These features make it ideal

for mobile robotics applications. The SlimPRO PC also has Wi-Fi capabilities which

allows for remote interfacing while testing. Typically, the SlimPRO’s command line

interface was accessed by secure shell (SSH) with a remote laptop via a Wi-Fi router.

7

Figure 4. The SlimPRO SP675P Mini PC. Source: [10].

3. Sensor Suite

A thorough breakdown of the individual sensors installed on this robotic platform

can be found in [6]. A brief survey of the specific hardware used in path planning and

navigation follows.

The primary sensor used in the obstacle avoidance algorithm is the Hokuyo UTM-

30LX Scanning Laser Rangefinder shown in Figure 5. This light imaging, detection, and

ranging (LIDAR) module has a detection range from 0.1 to 30 m. The detection envelope

is 270° with an angular resolution of 0.25° per step with a scan time of 25 ms per scan.

This LIDAR module is a two-dimensional (2D) sensor. The LIDAR interfaces with the

SlimPRO via USB2.0 [11].

8

Figure 5. The Hokuyo UTM-30LX Scanning Laser Rangefinder.
Source: [11].

The primary means of localization for the mobile robot is the LORD MicroStrain

3DM-GX5-45 global navigation satellite system (GNSS) / inertial navigation system

(INS). The MicroStrain GNSS/INS is detailed by its datasheet as a high-performance,

industrial grade sensor that is capable of utilizing either the GPS, GLONASS, BeiDou, or

Galileo navigation satellite constellations [12]. In addition to the high performance GNSS

capability, the MicroStrain provides the robot with nine degrees-of-freedom (DOF) inertial

measurements. It provides triaxial magnetometer, gyroscope, and accelerometer data that

can be used by software aboard the robot to provide localization calculations. The

MicroStrain, seen in Figure 6, has two on-board processors that run an Extended Kalman

Filter (EKF) in order to automatically provide more accurate estimations of the system’s

position, velocity, and attitude [12]. The outputs of the EKF are then transmitted to the

onboard computer via USB serial interface.

9

Figure 6. The LORD MicroStrain GNSS Aided INS. Source: [12].

The robot chassis has built-in sonar and collision detection bumpers. Also mounted

on top of the chassis is a webcam used solely for the purposes of recording experiments.

These sensors were not used in the implementation of the navigation algorithm. The entire

ground robot system as used throughout this research can be seen in Figure 7.

Figure 7. P3-AT with Sensor Suite as Used in Experimentation. Source: [6].

10

B. SOFTWARE

When selecting the software tools to use, the primary goal was to choose non-

proprietary software in order to allow easer implementation of the code on other robot

platforms. The second consideration was that any software used should be robust with a

wide user base within the scientific and engineering community in order to ensure that the

tools developed continue to function for years to come.

The software piece of this mobile robot application seeks to use readily available

software suites such as MATLAB, Robotics Operating System (ROS), and free to use

global imagery data with embedded GPS coordinates with Google Earth Pro.

1. MATLAB

MATLAB is a programming platform whose primary users are engineers and

scientists. It is a robust programming tool that is capable of data analysis, algorithm

development, and creating mathematical models [13]. It has a multitude of developer

toolboxes that allow it to interface with third-party software. MATLAB was chosen as the

primary development tool for designing the route-planning algorithm because of its ease

of use, ability to iteratively troubleshoot code before implementation aboard the robot, and

its ability to interface with third-party software through toolkits.

Throughout the course of this research the Robotic Systems Toolkit (RST) and the

read_kml toolbox were used. The RST is a “system toolbox [that] provides an interface

between MATLAB® and Simulink® and the Robot Operating System (ROS) that enables

you to test and verify applications on ROS-enabled robots” [14]. It provides the interface

between the route-planning algorithm and the obstacle avoidance algorithm developed in

MATLAB and the Robot Operating System network which controls the sensors and

actuators of the robot. The read_kml toolbox is a MATLAB script developed by Amy

Farris of the United States Geological Survey. It reads in .kml files as a string and

parses out the stored GPS coordinates [15].

11

2. Robot Operating System

The Robot Operating System (ROS) is “a collection of tools, libraries, and

conventions that aim to simplify the task of creating complex and robust robot behavior

across a wide variety of robotic platforms” [16]. It is free to use and has a large amount of

third-party support. Throughout the course of this research the version known as ROS

Indigo was used. ROS functions as a type of conceptual plumbing for different pieces of

code associated with different sensors and processing capabilities. ROS has a very specific

nomenclature for its network. Nodes are processes within ROS that perform computations

and communicate messages. A message is a data structure that is transmitted from a node

to a topic. ROS topics are repositories for messages where nodes can either subscribe to

receive information from the node or publish messages to it. A visual representation of an

example ROS network can be seen in Figure 8. ROS topics are represented by green

rectangles, ROS nodes are shown in blue ovals, and how the messages publish and

subscribe to topics is shown by the direction of the arrows.

Figure 8. An Example ROS Network. Source: [17].

12

ROS has several powerful data processing and visualization tools built in. A

ROS .bag file stores the message data published to topics so that the data can be played

back or analyzed at a later date [18].

3. Google Earth Pro

Google Earth Pro is a free repository of imagery that allows users to “to view and

use a variety of content, including map and terrain data” [19]. It was selected as the primary

source of mapping imagery for this research because of its embedded GPS coordinates and

intuitive ability to draw polygons, waypoints, and save map data as a .kml file format.

Google Earth Pro is also compatible with both ROS and MATLAB through one of several

free third-party software toolkits. The exact release used in the course of this research was

Google Earth Pro 7.1.8.3036 (32 bit). Most users are familiar with its interface. Google

Earth Pro has the built-in ability for the user to create map overlays of polygons, lines, and

waypoints with annotations and save them in the common .kml file format. This ability

to create overlays can be leveraged to easily map obstacles and port them into another

program for route planning.

C. SUMMARY AND INTEGRATION

All processing took place on the P3-AT’s onboard computer. In order to issue

commands to the robot to run programs a secure shell script (SSH) was used. Access to the

SlimPRO’s command line was accessed through a laptop via a shared Wi-Fi network, as

shown in Figure 9.

13

Figure 9. Robotic System Used in Experimentation

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. DESCRIPTION OF ROADMAP DEVELOPMENT

Mobile robot navigation is broken down into two constituent parts: global path-

planning and local obstacle avoidance. Global path planning consists of identifying a clear

path that allows the robot to reach the assigned goal. Local obstacle avoidance plays the

role of modifying the path of the robot so as to avoid collisions [20]. While a priori map-

making is common with robots in structured lab environments and has a long history in

mobile robotics research, it is an unrealistic assumption for a real-world environment that

all obstacles will be known beforehand to make an accurate map. The environment that an

outdoor robot operates in will be largely unstructured and changing. There are, however,

some large-scale constants in an area that a robot will operate in. Buildings, terrain that is

unnavigable due to the robot’s specific platform such as stairs, or off-limits areas, are

unlikely to change on a day-to-day basis. By mapping these large obstacles a path-planning

algorithm can provide a generalized optimal solution for a long distance path and rely on a

local obstacle avoidance algorithm to navigate around small scale, moving, or unmapped

obstacles.

A. CONFIGURATION SPACE

In order to express the relationship between a robot and its environment, a standard

naming convention has been utilized to describe specific configurations and orientations

of objects within a space.

The standard notation for the configuration space is detailed in [7]. The

representation for a robot is A . The environment that the robot operates in is called the

workspace and is denoted by .W The workspace W is a Euclidean space that in this

instance of research is a two-dimensional space. Workspaces for air or undersea systems

are generally three-dimensional spaces. The coordinate frame attached to W is fixed and

denoted as WF . The robot A has attached to it a moving coordinate frame AF that is used

to describe the location of the robot within .W Obstacles within the workspace are denoted

and numbered as iB . The configuration q of robot A is a specific position (),x y and

16

heading θ within W and is written ()A q . The configuration ()A q has a specific position

and orientation of AF within WF . The configuration space of robot A is the space C which

contains all possible configurations of A . A visual representation of the workspace,

coordinate frames, and a robot configuration is shown in Figure 10.

Figure 10. Representation of Workspace and the Configuration of Robot A

As explained in [7], obstacles within the configuration space occupy regions in

which the robot A cannot occupy. The space occupied by the individual obstacles can be

described as , 1, ,iB i n= within the workspace W by mapping them to the space C to

form a region

 (){ }0 .i iCB q C A q B= ∈ ∩ ≠ (1)

17

The union of all the spaces in which an obstacle occupies is called the obstacleC

region or an “obstacle field.” It is mathematically defined as

1

.
n

obstacle i
i

C CB
=

=

 (2)

The space within C that is free of obstacles and is navigable by robot A is called

the free space. Free space is defined as

1

.
n

free i
i

C C CB
=

= −

 (3)

Any configuration of the robot within free space is called a free configuration [7].

B. PATH-PLANNING APPROACHES

Path planning is the task of finding a path τ from an initial configuration initq to a

goal configuration goalq that is within freeC [7]. There are several methods for finding a path

within a workspace W in which obstacleC is defined. The three most common path-planning

algorithms are the visibility graph, Voroni diagrams, and cell decomposition. Each has

their own strengths and weaknesses.

The visibility graph is one of the earliest path-planning methods. In their 1979

article detailing the visibility graph method, Lozano-Perez and Wesley attribute the method

to the legendary roboticist and computer scientist Nils Nilsson [21]. An example of a

visibility graph can be seen in Figure 11. The method consists of making a graph of nodes

that consist of all vertices within obstacleC as well as initq and goalq . Any two nodes that have

unobstructed paths between them that lie within freeC are joined by a line called an edge.

18

Figure 11. Visibility Graph Example. Source: [20].

Adjacent edges of an obstacle are unobstructed, so these are also considered edges

within the visibility graph. The edges between the nodes constitute the shortest distance

between those two points. As such, when a visibility graph is paired with an optimal path

finding method, if a path is found between initq and goalq , the resulting path is the most

efficient.

The drawback of the visibility graph method is that as more obstacles are introduced

to the environment, the graph becomes more populated with edges. The path search

method, therefore, becomes slower due to the increased computational effort required.

Another more serious shortcoming of this method is that the planned paths, while efficient,

take the robot very close to the obstacles in .W A common workaround for this is to

artificially increase the size of the obstacle by the largest radius of the robot. This method

of artificial expansion is unnecessary if the mobile robot is capable of local obstacle

avoidance.

The second method, known as the Voroni diagram, takes the opposite approach of

the visibility graph. It seeks to maximize the distance between the robot and the obstacles

by finding nodes that are equidistant from all obstacles. The paths that are generated are

either straight lines or parabolic in shape, as shown in Figure 12. Computing these

19

equidistant trajectories is more computationally intensive than visibility graphs. The

tradeoff is that the robot minimizes chances of collision with an obstacle if all obstacles

are known and plotted beforehand.

Figure 12. Voroni Diagram Example. Source: [21].

The third approach is known as cell decomposition. Cell decomposition consists of

breaking the space freeC into simple regions called cells and determining which cells are

adjacent to one another [7]. Adjacent cells are linked to form a “connectivity graph,” which

can be seen in Figure 13. A search method is then used to plan the path between the cells

containing initq and goalq . There are several methods used to determine how to build the

cells, what points within the cells to connect, and how to construct the connectivity graph.

The advantage of cell decomposition is that, if desired, they achieve coverage of the space

freeC in that a path can be planned so that a robot will pass through all the established

sectors in the graph. Certain subtypes of cell decomposition, such as variable-size

approximate cell decomposition, vary their complexity levels to match their environment

[20].

20

Figure 13. Cell Decomposition and Connectivity Graph Example. Source:
[21].

Of the three path-planning methods considered, the visibility graph method was

selected for this research because of its ease of implementation. Additionally, it was well

suited for integration with the existing obstacle avoidance algorithm developed previously

for local maneuvering. This already established work paired with the efficiency and ease

of implementation of the visibility graph led to that method being selected for the path-

planning algorithm. The Voroni diagram’s advantage of keeping a robot away from

obstacles comes at the price of an inefficient, non-optimal path and provides a duplicate

capability to the local obstacle avoidance algorithm. Cell decomposition’s advantage of

providing absolute coverage of an area at the expense of providing a suboptimal path was

not a requirement for this application.

C. VISIBILITY GRAPH METHOD

The visibility graph planning method consists of three steps. First, a visibility graph

must be constructed from a provided field of obstacles, a initq , and a goalq . Next, a search

21

method must be used to find a path between initq and a goalq . Last, if a path is not found,

the algorithm must indicate a failure [7].

Obstacles within C are represented as polygons [22]. Each polygon is represented

by its vertices in the form of x and y coordinates, as shown in Figure 14.

Figure 14. Obstacles Represented as an Array of Vertices

When each obstacle is described by an array of its vertices, two nodes 1n and 2n

are selected. These two nodes are checked to see if they are connectable by an edge that

exists entirely within freeC . This is done by checking if the line segment between 1n and 2n

runs through the interior of any of the obstacles, as shown in Figure 15.

22

Figure 15. Checking for Visibility Between 1n and 2n

If the line segment runs through the interior of any obstacle, 1n and 2n are not

connected. The line segment between 1n and 2n is checked for intersection against every

edge within the obstacle field obstacleC . When 1n and 2n have been checked against every

edge within obstacleC and deemed that the edge between them is visible or not, 2n is replaced

with 3n and the process is repeated.

The method to mathematically determine the intersection between two line

segments is explained in [22]. The two end points of each line are represented as two-

dimensional vectors, as shown in Figure 16.

23

Figure 16. The Representation of Two Lines as Four Vectors

The first line containing points a and b is defined by the function

() ()

() ()1 ,x xx

y yy

a bp s
P s s s

a bp s

= = − +
 (4)

where the parameter s is 0 1s≤ ≤ . The line containing the points c and d is defined by

the function

 () ()
() ()1 ,x xx

y yy

c dq t
Q t t t

c dq t

= = − +

 (5)

where the parameter t is 0 1t≤ ≤ . The two line segments intersect if there are values of s

and t such that () ()P s Q t= ; i.e.,

 () ()1 1 .x x x x

y y y y

a b c d
s s t t

a b c d

− + = − +

 (6)

Equation (6) can be arranged such that

 .x x x x x x

y y y y y y

b a c d c as
b a c d c at
− − −

= − − −
 (7)

24

The matrix and vector in Equation (7) can be substituted with the symbols Φ and

φ , respectively, to give

 .
s
t

φ

Φ =

 (8)

Solving Equation (8) for s and t will tell if an intersection exists if both s and t

are between 0 and 1.

There exist special cases for this rule. If the matrix Φ is singular, the line segments

()P s and ()Q s are parallel [22]. An additional special case is that if the vector φ is in the

column space of Φ , meaning that { }spφ ∈ Φ , the two line segments belong to the same

line, as shown in Figure 17. In cases like this, the returned values of s and t are infinity,

which represents that the lines overlap at an infinite number of points.

Figure 17. Lines ()P s and ()Q t Overlap When φ is in the Column Space of
Φ

The last of the special cases occurs if the vector φ is not in the column space of

Φ , or { }spφ ∉ Φ . This means two line segments are parallel without intersection, as shown

in Figure 18. In cases like this, the calculated values of s and t are infinity despite the two

lines not overlapping.

25

Figure 18. Lines ()P s and ()Q t Are Parallel When φ
Is Not Contained Within the Column Space of Φ

The issue with this is that these lines do not intersect at any points, but

mathematically the same results are returned as if they intersected at an infinite number of

points. There must be an additional check within the code to verify if s and t are infinity,

which of the two special cases the lines fall into. This is done by checking that column

space of the vector φ is not in the column space of Φ [22]. Without this check, paths that

are free of obstacles but are parallel with edges of obstacles elsewhere in the visibility

graph are labeled as obstructed. A side-by-side comparison of a visibility matrix can be

seen in Figure 19. The visibility graph on the left does not include this check of column

spaces and leaves out several key edges. The visibility graph on the right includes this

check and returns that these parallel paths are in fact free of obstacles.

26

Figure 19. Visibility Graphs Without and With Checking for
Column Space

A visibility graph is a tool that is easily translatable by a human. This kind of

representation, however, is not easily searchable or addressable by a computer. In order to

represent a visibility graph in a searchable way a visibility matrix is created. A visibility

matrix is a symmetric matrix in which each row and column index represent an individual

node within the obstacle field obstacleC , as illustrated in Figure 20. Each space containing a

“0” denotes that between the node in row m and column n there is no visibility. Conversely,

a “1” in the space indicates that a clear path between row m and column n exists. The

diagonal of the matrix is null values as it would relate a vertex of an obstacle to itself. A

demonstration of how to read a visibility matrix is provided in Figure 21. Following the

highlighted rows and columns of the matrix shows that node two is visible from nodes one,

k, initq , and goalq .

27

Figure 20. An Example of a Visibility Matrix

Figure 21. Reading a Visibility Matrix

D. A* SEARCH METHOD

For all path-planning methods that produce roadmaps or decision trees for a robot

to navigate, a way to determine which discrete path to take is needed. There are path-

planning methods that return a result quickly, but the result may or may not be optimal.

There are search methods that are guaranteed to return the optimal path, but they do so by

performing an exhaustive search which is time intensive [20]. The A* search method,

however, returns an optimal path without performing an exhaustive search. It does so by

assigning a cost to each node that considers both the distance needed to travel to a node

and the distance remaining to the goal and prioritizing the search by the lowest cost path.

28

The A* search method was developed by Hart, Nilsson, and Raphael [23]. It

produces a path by taking all the nodes within a roadmap and assigning them a value called

a cost. This cost is calculated by a cost function ()f q and is used in determining the

optimal path. Each node within an A* search has certain parameters. Each node has a list

of neighbors called “successors,” a “parent node” that is the parent node with the lowest

cost, a cost () ,f q a movement cost () ,g q and a heuristic cost ()h q . An example roadmap

is shown in Figure 22 with movement costs in blue and heuristic costs in red.

The movement cost ()g q is associated with the path traveled to get from one node

to another. It can be calculated by the length of the path, the difficulty of traveling it, or

both. In the course of this research the distance from one node to another was used for the

movement cost. The most commonly used heuristic cost ()h q is the straight line distance

from the node to the goal. In this research, the straight line distance for testing (),x y

coordinates was the Euclidean distance. When using latitude and longitudinal coordinates

generated by GPS, the straight line distance was calculated using the haversine great circle

distance.

Figure 22. Example Roadmap

29

Latombe explains the order of operations for an A* search in [7]. At the start of the

search method all the nodes are organized into two lists. The open list stores all nodes prior

to them being sorted and assigned a cost ()f q . The closed list starts empty and is

populated one node at a time at the end of each iteration of the search method.

At the start of the function, initq is assigned a cost of zero, all other nodes are

assigned a cost of infinity, and all nodes are placed on the open list. At the top of each

iteration, the open list is sorted in ascending order by cost value. On the first iteration this

places initq at the top. The node at the top of the open list is referred to as .q At the end of

each iteration q is removed and placed onto the closed list. The function then repeats itself

until goalq is at the top of the open list.

Each iteration of the A* search method starts with sorting the open list by the cost

value assigned to each node. The top node on the list is .q Each of 'q s successors have

their parent value set to .q This parent value is used at the end of the search function to

trace the shortest path from goalq backwards to .initq Then each of 'q s successors has its

cost calculated. The cost function is

 () ()() .f q g q h q= + (9)

The movement cost ()g q is calculated by summing the shortest total path cost from

the start node to the successor. In the case of node e shown in Figure 22, the movement

cost is three via node a and initq instead of 11 via nodes b, a, and initq .

When the cost functions for the successor nodes have been calculated, each

successor is checked to see if it is already on the closed list. If the successor is on the closed

list and the current calculated cost function is lower than the cost currently saved on the

closed list, the closed list value is replaced with the lower cost function and corresponding

parent node. This ensures that if a new, lower cost path is found to a node, the optimal path

reflects this. Then each node is checked to see if it is on the open list. If the value the node

holds on the open list is higher than the current iteration of the cost function, the node’s

cost is changed to the lower calculation, and the parent node is changed to reflect the new

30

lower cost. This ensures that as the open list is sorted, the nodes with two possible paths

leading to them only have the shortest path considered.

After this is done for all of 'q s successor nodes, the calculations are done for this

iteration of the search. The current node q is removed from the open list and placed on the

closed list. The function starts again by sorting the open list in ascending order by cost

value. The search function ends when goalq is at the top of the open list. When the goal

node has been reached, the fastest route is traced backwards from goalq to initq by following

each node’s saved parent node.

E. AN OVERVIEW OF THE OBSTACLE AVOIDANCE ALGORITHM

The existing local obstacle avoidance capability for the P3-AT robot was developed

in a previous thesis by LT Calvin Hargadine [6], which covers in depth the artificial

potential-field function. A rudimentary knowledge of the function is helpful in

understanding the navigation algorithm. The potential field function creates a gradient

across the robot’s map. It treats the robot as a point under the influence of the gradient. The

robot seeks to roll downhill, as depicted in Figure 23. The goal is placed at the lowest

potential gradient on the map. All obstacles exhibit “repulsive forces” that appear as uphill

gradients that force the robot away.

Figure 23. Example of an Artificial Potential Field with Obstacle.
Source: [6].

31

The mathematics used to establish the gradient is explained in [7]. The force acting

on the robot at position (),q x y= is ()F q . The artificial potential field ()U q is related to

()F q by

 () ()F q U q= −∇ (10)

with ()U q∇ being the gradient vector at position q . The potential field ()U q is

comprised of the attractive field of the goal ()attU q and the repulsive field of any obstacle

present ()repU q . The individual potential fields can be related to the forces by

 () () () () ()att rep att repF q F q F q U q U q= + = −∇ −∇ . (11)

The attractive potential field is a parabolic function that converges toward zero as

the robot approaches the goal. It is modified by a gain attk that can be adjusted to modify

the robot’s performance. The attractive force is defined as

 () ()att att att goalF U q k q q= −∇ = − − . (12)

The repulsive force should be a strong force when the robot is close to an obstacle

but has no influence the robot’s trajectory if the obstacle is sufficiently far away. The

repulsive field ()repU q has a minimum distance of influence 0ρ . Outside of the distance

0ρ , the repulsive field drops to zero. The distance of the robot to the obstacle at point q is

denoted as ()qρ . The repulsive field, like the attractive field, also has an adjustable gain

repk . The repulsive force is defined as

 () () () () () ()

()

02
0

0

1 1 1 if

0 if

obstalce
rep

rep rep

q qk q
q q qF q U q

q

ρ ρ
ρ ρ ρ ρ

ρ ρ

 −
− ≤ = −∇ =

 ≥

 (13)

and is combined with the attractive force in order to generate the total force acting on the

robot.

32

A significant limitation of the artificial potential-field function is the problem of

local minimums that appear if obstacles have certain shapes [6]. A local minimum “traps”

a robot in a position that is not the goal, as denoted by that asterisk at (1− , 6) in Figure 24.

Figure 24. An Artificial Potential Field with a Local Minima. Source: [6]

LT Hargadine’s thesis involved a method to escape local minimum. When a local

minimum was reached, but it was not the assigned goal position, the robot entered a wall

following mode. The robot traced the outline of the obstacle until the local minima was

escaped, and the robot continued to goalq . The algorithm that LT Hargadine produced also

included two “emergency” modes. If an obstacle were to find its way within a pre-set safe

distance, the robot stopped, waited five seconds, and then reversed. The four states of the

robot are shown in Figure 25.

33

Figure 25. State Diagram of Obstacle Avoidance Control Logic.
Source: [6].

F. INTEGRATION OF THE OBSTACLE AVOIDANCE ALGORITHM AND
PATH-PLANNING ALGORITHM

The obstacle avoidance algorithm that LT Hargadine had developed for his thesis

pulled pre-selected GPS waypoints from a text document. The user was prompted to select

one of the ten preset waypoints, and the robot navigated to it before prompting the user to

select another. This algorithm is in a stand-alone MATLAB script that runs through a single

iteration before prompting the user for another waypoint to be selected.

In this research, the A* search method outputs a list of nodes leading from initq to

.goalq If the nodes are output in the same latitude, longitude format that the waypoints

navigated to by LT Hargadine’s code, the obstacle avoidance algorithm can be looped

while each new node in the optimal path is fed to it. To facilitate this the stand-alone

obstacle avoidance script that ran through once was modified into a MATLAB function.

This new function, potentialFieldToWaypoint.m , took the input of a GPS

coordinate and navigated to it. The full code for the modified function is found in Appendix

34

F. With this newly reformatted code, the obstacle avoidance algorithm is treated as a stand-

alone “black box” that is looped while being fed desired coordinates.

A flow diagram of the navigation algorithm is depicted in Figure 26. Following this

flow chart, the “mission commands” box is the user generated obstacle map. The

“cognition planning” is the path-planning algorithm that creates the visibility matrix and

uses the A* search method to generate the optimal path in the form of GPS coordinates.

The “path execution” box is the obstacle avoidance MATLAB function that generates the

“actuator commands.” These come in the form of ROS messages published to the ROS

ARIA node that controls the robot in the “acting” box. On the left-hand side, the

“perception” group is the data read in by the LIDAR and GNSS/IMU that is fed back into

the navigation algorithm to monitor progress to the next waypoint while avoiding obstacles.

Figure 26. Example Control Scheme for Autonomous Navigation.
Adapted from [20].

35

IV. MATLAB CLASS DEVELOPMENT

During the execution of the path-planning algorithm, large numbers of uniform

objects are created using MATLAB. Specific functions are performed on each one

repeatedly. To facilitate this, custom MATLAB object classes were developed in order to

create uniform instances of obstacles, obstacle fields, nodes, and A* searches.

Object oriented programming has the advantage that it “encapsulates data and

operations in objects that interact with each other via the object’s interface,” [24]. In a

custom MATLAB class, an object can be created and assigned fixed properties, and the

operations that will be performed can be stored under the methods. Full code for these

functions can be found on the author’s GitHub page at [25]. The following material

includes a brief discussion of each class, its development, and its main properties and

methods, and how they interact.

A. OBSTACLE AND OBSTACLE FIELD CLASSES

The two main classes created for the visibility mapping part of the research are the

obstacle and obstacleField classes. The obstacle class represents individual

obstacles defined by the user and nests into the obstacleField class. The

obstacleField class stores multiple obstacle objects and constructs the visibility

graph and visibility matrix.

The methods within the obstacle class are used to store characteristics of an

obstacle object. The major properties and methods of the class can be seen in Figure 27.

The obstacle avoidance function reads in GPS coordinates in the form of [latitude,

longitude] arrays. Google Earth Pro .kml files store polygons as arrays of their vertices.

This established that the MATLAB obstacle class stores the location of the obstacle in the

form of an array of vertices. The coordinates of the vertices are stored in the property

vertices. The numVertices is a quick reference of how many vertices are in an

obstacle and is used in the obstacle field class. When a visibility graph is created, the lines

that form ()Q t are taken from the edges of all other obstacles within the field. A quick

36

reference of numbering the individual obstacles makes pulling ()Q t from all other

obstacles easier. As such, each obstacle is given the property of ObstacleNumber which

is blank until a value is assigned by the obstacle field class.

Figure 27. Pseudocode Showing the Major Properties and
Functions of the Obstacle Class

The obstacle class nests into the obstacleField class, which contains the

majority of the path-planning code. It is used to store and index obstacles, the initial point,

and the goal point. The obstacleField class also creates the visibility graphs and

matrices that are fed into the A* search method. Pseudocode showing the major properties

and methods for the obstacleField class can be seen in Figure 28. The Field

property stores the individual obstacle objects in an array. The initial and goal points are

stored in the qinit and qgoal properties. When the visibility matrix is created, it is

stored in a corresponding property VisibilityMatrix. The PointIndex is a three

dimensional array. An example of the information it stores can be seen in Figure 29. The

first layer stores the vertices of the obstacle of the field as well as qinit and qgoal.

The second layer stores each point’s obstacle number and the number of which vertex

within that obstacle that specific point is. These parameters are used heavily in the

VisibilityMatrix function, which is the main function of the class. The other

functions within the obstacleField class are constructor functions for both the class

37

and each property, plotting functions, and reference functions used within the creation of

the visibility graph and plot.

Figure 28. Pseudocode Showing the Major Properties and
Methods of the Obstacle Field Class

Figure 29. Example of the Information Stored in the Point Index Three
Dimensional Array

38

The MATLAB script TestBed.m can be found in Appendix B and gives sample

uses of calling all the methods within both classes. It is intended to provide users with the

ability to follow and create their own obstacle field instances by hand.

B. NODE AND A* SEARCH CLASSES

The A* search method was created as its own separate class from the obstacle field.

The primary reason was to facilitate the use of waypoints. Creating a new visibility graph

for each waypoint is a time-consuming process. Instead of creating a new visibility graph

for each new instance of a waypoint, one visibility graph can be used with multiple A*

search instances. This is done by setting qgoal to waypoint 1 and finding the optimal path

to this waypoint. When this is completed, waypoint 1 is set to qinit, waypoint 2 is set to

qgoal, and a new A* search is run. This is repeated until the qgoal is reached. The

optimal path from qinit to qgoal through all waypoints can now be identified by

stringing together the optimal paths for each waypoint.

The input of the AStarSearch class is an obstacleField object. The

primary tool used in the AStarSearch class to generate an optimal path is the obstacle

field’s visibility matrix. If the inputted obstacle field does not have a visibility matrix, the

AStarSearch class generates one automatically.

The building block for the AStarSearch class is the node object, much like the

obstacle object is for the obstacleField. The node class creates objects with

parameters that are either indexed or set by the AStarSearch class. Pseudocode for the

node class can be seen in Figure 30. The main properties of the class are the location

of the point that forms the node, the index, which directly correlates to the PointIndex

of the obstacleField class, and the parameters f, g, and h, which are set by the

AStarSearch class. Each node also has the neighbors parameter, which is filled by

pulling from the visibility matrix. There are also initFlag and goalFlag Boolean

variables, which are set to one (true) if the node is the initq or goalq and left as zero (false)

otherwise. Last is the parameter cameFrom, which is set by the AStarSearch class’s

optimalPath method. When performing the search method, each of 'q s successors

39

have their parent value set to .q The cameFrom parameter is where that information is

stored.

Figure 30. Pseudocode Showing the Major Properties and
Methods of the Node Class

The AStarSearch class takes as an input an obstacleField object.

Pseudocode for the class can be seen in Figure 31. When an instance of an AStarSearch

object has an obstacleField loaded into it, the AStarSearch object stores the

visibility matrix and automatically converts the vertices of the obstacles, the qinit, and

qgoal of the obstacleField into node objects. Each node’s neighbors are auto

populated by searching the visibility graph for instances of “1” between nodes. The

AStarSearch class has a costFlag property. The cost between two nodes is

calculated as a straight line distance. When obstacles are stored in an [x, y] coordinate

40

system, Euclidian distance is used and the costFlag is set to “0.” When obstacles are

stored in a [latitude, longitude] coordinate system, the distance is calculated by using the

haversine great circle distance and the costFlag is set to “1.” The primary method in the

AStarSearch class is the findOptimalPath function. It performs the A* search in

the manner described in Chapter III.D. The open list, closed list, and optimal path are all

saved in corresponding properties for later review by the user.

The MATLAB script AStarTestBed.m can be found in Appendix E and gives

sample of calling all the methods within both node and AStarSearch classes. It is

intended to provide users with the ability to follow and create their own AStarSearch

instances by hand.

Figure 31. Pseudocode Showing the Major Properties and Methods of the
AStarSearch Class

41

C. INTEGRATION WITH GOOGLE MAPS

A conversion tool was needed to interface Google Earth Pro’s .kml files with

MATLAB. Several .kml reading and writing toolkits were found using MATLAB’s built-

in toolkit locator. After examining several options, the read_kml toolbox by Amy Farris

of the United States Geological Service was chosen [15]. The toolbox consists of a single

script that reads in .kml files as a string data type and parses them into double arrays

of [x,y,z] coordinates. Other toolboxes considered had robust abilities to read and write

.kml files but provided numerous capabilities that were not needed for this research. In

the read_kml script’s original format, the MATLAB function used to change the

string to double data types truncates the decimal places at four digits. For regular

mathematical purposes this suffices, but for reading GPS coordinates that are saved to the

thirteenth decimal place, this represents a significant loss of fidelity. The exact loss varies

with latitude, but at Monterey, California’s location this represented a 7.0-m difference in

reading in the coordinates 36.5964472992381, −121.8764444525143 versus 36.5964,

−121.8764. In order to fix this, code was added to keep the previously truncated decimal

places. Exact changes in the code can be seen in Appendix G.

The read_kml toolbox was the backbone for the three functions used to read the

.kml files created by the user and convert them to the proper format for the obstacle,

obstacleField, and AStarSearch classes. Each of the three user generated .kml

file types got its own corresponding kmlTo- function. The goal point and initial points

were read into MATLAB and converted using the kmlToGoal and kmlToInit

functions, respectively. The obstacle map was read in by the kmlToObstacle function

where the GPS coordinates for each polygon were converted to an obstacle, and then all

the obstacles were loaded into an obstacleField type object. The .kml file interfacing

functions are found in Appendix C. The MATLAB script Google_Earth_test.m can

be found in Appendix D and gives sample uses of calling each of the kmlTo- functions.

It is intended to provide users with the ability to follow and create their own obstacle field

instances by hand.

42

D. GLOBAL NAVIGATION ALGORITHM SUMMARY

What follows is a brief description of how the map making, MATLAB code, and

robot navigation are all tied together. In Appendix A, the code DemoFile.m shows a

demonstration of the navigation algorithm reading in .kml files, determining the optimal

path, and navigating the robot to it. The full code, example .kml files for obstacle maps,

start points, and end points, can be found on the author’s GitHub page at [25].

The user first opens Google Maps Pro. Using the “draw polygons” tool in the top

tool bar, the user draws bounding boxes around large-scale obstacles within their area of

operations. Buildings, terrain unnavigable by the robot, or off limits areas are included.

Users do not need to include small, movable obstacles in the imagery such as cars, tables,

or trees, as the local obstacle avoidance algorithm navigates the robot around these. When

the obstacle field is complete, the user saves it as a .kml file. A start point is placed by

using the “Add Placemark” tool, and it is saved as its own .kml file. The process is

repeated for the goal point.

The pseudocode laid out in Figure 32 shows the steps taken in the MATLAB

DemoFile.m script. The code reads in the three .kml files, converts them to an

obstacleField, builds the visibility matrix, feeds the obstacleField to an

AStarSearch instance, and then determines the optimal path. The optimal path is

plotted for the user to see. The coordinates from the optimal path are then given to the

potentialFieldtoWaypoint function that navigates the robot to the waypoints. A

video demonstration of this process can be found at [26].

43

Figure 32. Pseudocode for the Order of Operations in Using the Navigation
Algorithm

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

V. EXPERIMENTS AND RESULTS

With the completion and verification of the path-planning algorithm, which was

implemented in MATLAB, it was time to evaluate the navigation algorithm’s ability to

operate in a real-world environment. An obstacle map of NPS, seen in Figure 33, was

created in Google Earth Pro. Bounding boxes were drawn around obstacles there are visible

within the imagery that the robot cannot navigate through: buildings, stair cases, and

obstacles that the 2D LIDAR is not able to detect such as curbs. The two main areas around

which experiments occurred are labeled as Building 1 and Courtyard.

Figure 33. Obstacle Map of the Naval Postgraduate School Campus

46

This map was then given to the path-planning algorithm, which in turn produced

the visibility graph seen in Figure 34. The visibility graph consists of 26 obstacles

comprising 130 nodes. The polygons present in the visibility graph correspond to the

bounding boxes drawn around the known obstacles in the map. The clear lines-of-sight in-

between nodes are shown by the dotted lines and indicate the 964 possible paths that the

robot may travel. In the last step of the path-planning algorithm, the visibility graph is used

by the AStarSearch class to find the optimal path between a user given qinit and

qgoal.

Figure 34. Visibility Graph of the NPS Campus Generated by the
Path-Planning Algorithm

47

A. EXPERIMENT 1: GPS WAYPOINT NAVIGATION USING THE PATH-
PLANNING ALGORITHM

Experiment 1 was developed to assess the ability of the robot to navigate to GPS

waypoints generated by the path-planning algorithm without deviating heavily from the

desired path. The courtyard was selected to eliminate the problems of rough terrain and

GPS loss due to proximity to buildings. A five-sided polygon was drawn in the courtyard,

which is shown in Figure 35. The numbered pins in the figure correspond to the five

waypoints that the robot will navigate to in the experiment.

Figure 35. Experiment 1’s Polygon and Numbered Waypoints

The results are shown in Figure 36. The path traveled by the robot, shown in blue,

shows that each waypoint generated by the path-planning algorithm was successfully

navigated to. The trajectory of the robot does appear to deviate from the straight line path

between the waypoints shown in green. This is due to the goal radius placed around each

waypoint. A navigation waypoint for a robot is surrounded by a goal radius that artificially

48

increases the size of a goal to an acceptable tolerance. Without this goal radius surrounding

a waypoint, the robot will most likely never reach the exact assigned goal despite being

within an acceptable distance. In the robot’s configuration file, the parameter that

corresponds to the distance for the goal radius was set to 2.0 m. When the robot enters this

radius, it terminates navigation to the current waypoint. It then recalculates the path to the

next waypoint from its current position rather than from the waypoint’s programmed

position. This accounts for the deviations in the path.

Figure 36. Path Traveled by the P3-AT in Experiment 1

The next test was an assessment of how the navigation algorithm performed when

avoiding obstacles. The robot was run through the same course, and periodically an

obstacle was placed in front of the robot’s path. The resulting trajectories can be seen in

49

Figure 37. The yellow pins indicate points-of-interest (POIs) that warrant discussion. At

the indicated POIs an obstacle was placed in front of the robot. When the robot encountered

an obstacle, the artificial potential field function performed its role obstacle avoidance role

as desired. It is noted that when the robot was forced to deviate heavily from the straight

line path, as seen at POI 4, it made no attempt to regain the straight-line path between

points four and five but instead went straight to the waypoint. These results indicate that

the path-planning algorithm was integrated successfully with the obstacle avoidance

algorithm.

Figure 37. Evaluating Obstacle Avoidance While Navigating to Waypoints

B. EXPERIMENT 2: MEDIUM DISTANCE NAVIGATION

With the successes of the performance of the navigation algorithm on flat terrain,

it was determined that a medium distance test over rugged terrain needed to be run.

50

Experiment 2 was developed to evaluate this capability. A start point on the west side of

the courtyard was chosen as well as a goal north of Building 1, as seen in Figure 38. These

new points and the previously made obstacle map there ran through the path-planning

algorithm and an optimal path was produced. The optimal path generated is shown in

Figure 39 and highlighted in green.

Figure 38. Start and Goal Points for Experiment 2

51

Figure 39. The Optimal Path Generated by the Path-Planning
Algorithm for Experiment 2

The results of the experiment are shown in Figure 40. The robot moved from its

starting position and picked up the first waypoint without issue. When moving to the next

waypoint, the robot entered the loose terrain. At POI 1, shown by the yellow pin, the robot

encountered bushes, and successfully navigated around them. As the robot continued to

travel around the bushes it encountered larger piles of woodchips. At certain points the

wheels slipped and on two occasions the chassis pushed through piles of woodchips. At

POI 2, the robot found itself under tall trees and near Building 1. The navigation outputs

indicated that the robot had lost GPS connectivity. In this condition, paired with the loose

terrain and several small bushes it was attempting to navigate around, the robot’s odometry

measurements became unusable. At this point, the robot was not traveling more than a

meter in either direction as it had become mired in woodchips. The odometry

measurements-based trajectory line, however, indicates that the robot traveled into

Building 1 and further under the tress. This discrepancy demonstrates that the odometry

52

measurements were adversely affected by the terrain. After several minutes of the robot

being unable to free itself the experiment was ended.

Figure 40. The Optimal Route and Route Traversed for Experiment 2

53

VI. CONCLUSIONS

A. ASSESSMENT OF GOALS

The purpose of this thesis was to facilitate the integration of unmanned ground

vehicles into lower levels of the Marine Corps by providing operators non-technical tools

to generate mission guidance for a robot. The goal of developing the capability for an

operator to quickly generate an obstacle map and the robot to perform optimal path

planning was successful. A path-planning algorithm was developed using the visibility

graph and A* search methods. It was then successfully integrated with an existing obstacle

avoidance algorithm. While the path-planning algorithm yielded the desired results, is was

not completely integrated with the P3-AT because of the limitations with the capabilities

of the robot. On several occasions the ability to navigate to waypoints was successful, but

when the robot traveled over loose terrain, near buildings, and under trees, the robot lost

the ability to localize itself.

B. SYSTEM IMPROVEMENTS AND AREAS OF FUTURE WORK

Further work could incorporate into the A* search’s cost function the ability to

account for rough terrain. A bounding box could be drawn around loose terrain, and a

penalty for any route traveling through it could be imposed via the movement cost. Using

this method will still consider paths through rough terrain but favor paths less likely to

cause issues with the chassis.

It would be possible to use post processing of the LIDAR readings in order to

update the obstacle map. The LIDAR returns obstacle positions as measurements of

distance and bearing. These measurements could be used to plot detected obstacles and

update the user-made obstacle map. Future missions could base the visibility graph on these

more up-to-date, closer to ground truth maps.

The capabilities of the sensor suite could be increased by using the onboard webcam

for computer vision. Computer vision could be used for obstacle detection, classification,

and navigation. When fused with the data from the LIDAR, the localization and navigation

abilities of the robot will be greatly increased.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX A. DEMONSTRATION.M

%% Demonstration File

% This script takes the three test bed scripts-TestBed.m,
% GoogleEarthToolboxTest.m, and AStarTestBed.m, and concatonates all
% them into one script with a demonstration file.

% Instructions:
% Go Into GoogleEarth, pick a location, and create an obstacle field by
% drawing squares around visible obstacles. Save is as
‘demoObstacles.kml’

% Then pick a single point to be the initial position. Save it as
% “demoInit.kml.” Do the same with a goal pos, save as “demoGoal.kml”

% Then run this script in MATLAB.
% Demonstration files can be found at https://github.com/MattAud/Thesis
% A video demonstration can be watched at
% https://www.youtube.com/watch?v=Y0Jkl2ozzEE

% Matt Audette
% 20180618

clear all
clc

%% Load the .kml files:

obstacleFieldName = ‘demoObstacles.kml’
initPointName = ‘demoInit.kml’
goalPointName = ‘demoGoal.kml’

%% Create the Obstacle field from the .kml:
% initiate an empty field
demoField = obstacleField();
% load it with our obstacles
demoField = kmlToObstacleField(demoField, obstacleFieldName)

%% Load in the initial and goal points:
% And the start point:
demoField = kmlToInit(demoField, initPointName);
% And the goal point:
demoField = kmlToGoal(demoField, goalPointName);

%% Plot it:
plotField(demoField)

%% Build the Visibility Matrix:
demoField = visibilityMatrix(demoField)
plotVisibilityGraph(demoField)

56

%% Find and plot the Optimal Path:
%First, create an AStarSearch Object:
aStarDemo = AStarSearch(demoField)
%Find and plot the optimal path:
aStarDemo = findOptimalPath(aStarDemo)
plotOptimalPath(aStarDemo)

%% Produce the optimal path:
coordinateList = coordsFromOptimalPath(aStarDemo.optimalPath)

%% Loop the Robot Navigation Function:
for i = 1:size(coordinateList, 1)
 %Send the coordinate and waypoint #
 %and wait for the robot to go to that point:
 potentialFieldToWaypoint(coordinateList(i, :), i)

end

57

APPENDIX B. TESTBED.M

%% Obstacle Field Test Bed
% By Matt Audette
% Last Update: 20180121
% Remarks: This is a script that will be used to test the obstacle and
% obstacle field classes.

clc
clear all
close all
format compact

%% Create Obstacles:
disp(‘ ---------- Create three obstacles ------- ‘)
obstA = obstacle([2,1; 2,2; 3,2; 3,1]);
obstB = obstacle([6,6; 7,6; 7,7]);
obstC = obstacle([4,2; 5,2; 5,7; 4,7]);

%% Create the obstacle fields:
disp(‘ ----------Create Two Fields ------- ‘)
emptyField = obstacleField() %an empty test field
testField1 = obstacleField(obstA, obstB) %use the constructor and add 2
% obstacles. Ensure that the NumObstacles goes up:

% Now test the addObstacle function and ensure that the counts are
% correct and do no overwrite one another:
disp(‘ ---------- Expand the Fields ------- ‘)

%Note: in this script, the call is:
% emptyField = addObstacle(emptyField, obst1, obst2)
% In the command window, it would be typed:
% addObstacle(emptyField, obst1, obst2)
% addObstacle(testField1, obst3)

emptyField = addObstacle(emptyField, obstA, obstB)
testField1 = addObstacle(testField1, obstC)

disp(‘ ---------- Set an Init Point ------- ‘)
testField1 = initPoint(testField1, [1,1])
% In the command window: initPoint(testField1, [1,1])

disp(‘----- Create a waypoint load it as a point ----’)
qstart = Waypoint([3,4], 0);
qend = Waypoint([8,8]);
qend = setClass(qend, 1);
emptyField = initPoint(emptyField, qstart.Location)
emptyField = goalPoint(emptyField, qend.Location)
% In the command window: initPoint(testField1, [1,1])

disp(‘ ---------- Set a Goal Point ------- ‘)
testField1 = goalPoint(testField1, [8,7])

58

% In the command window: goalPoint(testField1, [8,7])

disp(‘ ---------- Plot the Field ------- ‘)
plotField(testField1)
% In the command window: goalPoint(testField1, [8,7])

% Test the function of the empty qinit and qgoal functions:
plotField(emptyField)

disp(‘ ---------- Test the Field Size Change ------- ‘)
emptyField = setFieldSize(emptyField, 15, 1)
plotField(emptyField)

disp(‘ --------- Auto Size Feature ----------’)
emptyField = autoFieldSize(emptyField)
plotField(emptyField)

disp(‘ --------- Built Point Index Feature----------’)
% the point index array is a single array that will contain all the
% points in each obstacle, the waypoints, and the qinit and goal. It
% will be the primary way to index points in the visibility graph
% and plot functions.

% To access a point index number C, call the command
% obstacleField.PointIndex(C,:) and it will return the point.
testField1 = constructPointIndex(testField1)
disp(‘ Test calling a singe point by its index:’)
testField1.PointIndex(3,:, 1) %where ‘3’ is the index

disp(‘ --------- Get Point From Index Feature----------’)
% This fuction works backwards from the point index array: it is
% fed an index number and returns the point. This will be used to
% map the completed visibility matrix to the points in the field.
pointTest = getPointFromIndex(testField1, 3)

%This function will also check if the point index is empty, and if so,
%build a point index. Test this with emptyField:
pointTest2 = getPointFromIndex(emptyField, 3)

disp(‘ --------- Get Obstacle Info From Index Feature----------’)
% This function gives an index number from the PointIndex and returns
the
% second array’s infor. It will be in the form of [obstacle#, point#].
% Test is out for the same two points as before:
obstacleTest = getObstacleFromIndex(testField1, 3)
obstacleTest2 = getObstacleFromIndex(emptyField, 3)

%% test the Index feature

index = min(find(testField1.PointIndex(:,1,2) == 2))
testOutPoint = getObstacleFromIndex(testField1, index)

%% Build the visibility Matrix:

59

testField1 = visibilityMatrix(testField1) %in the command prompt, use
 % visibilityMatrix(testFeild1)
%emptyField = visibilityMatrix(emptyField)

% return the point from the point index:
points1 = recallPointsFromMatrix(testField1, 1, 4)
% This line below throws an error message to see if it works.
%points2 = recallPointsFromMatrix(emptyField, 1, 4)

disp(‘Outline how we will plot the visibility array:’)
% call the plot function:
plotVisibilityGraph(testField1)
%plotVisibilityGraph(emptyField)

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

APPENDIX C. KML TO OBSTACLE SCRIPTS

%% KML to Init Point function
% Matt Audette
%
% Reads in a .kml file and spits out an obstacle field term of “end
% point” that can then be loaded into the Obstacle Field function.
% Uses the modified read_kml function by Amy Farris available on the
% Mathworks online app repository.

function oField = kmlToInit(oField, fileNameString)
 % Read in the .kml file, store it in an array
 [stoX, stoY, stoZ] = read_kml(fileNameString)
 point = [stoX, stoY];
 % Load it:
 oField = initPoint(oField, point);
end

%% KML to Goal function
% Matt Audette
%
% Reads in a .kml file and spits out an obstacle field term of “end
% point” that can then be loaded into the Obstacle Field function.
% Uses the modified read_kml function by Amy Farris available on the
% Mathworks online app repository.

function oField = kmlToGoal(oField, fileNameString)
 % read in the .kml file, store it in an array
 [stoX, stoY, stoZ] = read_kml(fileNameString)
 point = [stoX, stoY];
 % Load it:
 oField = goalPoint(oField, point);
end

%% KML to Obstacle Field function
% Matt Audette
%
% Reads in a .kml file and spits out in obstacle field.
% Uses the modified read_kml function by Amy Farris available on the
% Mathworks online app repository.

function oField = kmlToObstacleField(oField, fileNameString)
 % Read in the .kml file, store it in an array
 [stoX, stoY, stoZ] = read_kml(fileNameString)
 pointCounter = length(stoX)

 %% Sort the coordinates into obstacles:
 % The .kml file is just a series of points. If you look at the GPS
 % coordinates, the stored points repeat the first/last point,
 % square bounding box will read points 1, 2, 3, 4, 1, then the next

62

 % meaning the a coordinates. We will use that to identify where one
 % obstacle begins and ends.
 temp = [];
 for i = 1:pointCounter
 % We need to take the first coordinate to be loaded into the
 % temporary holder so that we can use it as a reference to look
 % for the repeat value. We’ll call the variable “checker.”
 if length(temp) == 0
 checker = stoX(i)
 end
 temp = [temp; [stoX(i), stoY(i)]];

 %if we check the first coordinate against itself, it’ll be
 %true. So skip the first element.
 if length(temp) > 2
 %if the current value matches the checker reference value,
 %trim the last coordinate off (it’s a repeat) and then
 % clear the temporary storage matrix.
 if stoX(i) == checker
 %disp(‘FOUND A MATCH!’)
 trimNumber = length(temp)-1;
 %temp
 holder = temp(1:trimNumber, :)
 %The obstacleField class takes in obstacles,
 %so turn holder into an obstacle:
 holderObstacle = obstacle(holder);
 oField = addObstacle(oField, holderObstacle);
 temp = [];
 end
 end
 end

end

63

APPENDIX D. GOOGLE_EARTH_TEST.M

%% Matlab / Google Earth toolbox test kit:
% Used the modified add on “read_kml” (a stand alone function)
% to read .kml files. Tests the kmlTo____ functions

% Matt Audette
% 20180430

%% Test Reading in a .kml file
% In my Matlab main folder, I have a .kml file that I saved.
% The read_kml produces an three matrices: [x, y, z]

%[x, y, z] = read_kml(‘test_polygon.kml’)

% Reading in from a specific file path
readInStr = ‘C:\Users\audet\OneDrive\Documents\MATLAB\
multi_point_test.kml’;
[A,B,C] = read_kml(readInStr)

%% Test bed for the KML to obstacle function:

%% Read in the .kml file:
% Store it in an array
[stoX, stoY, stoZ] = read_kml(readInStr)
pointCounter = length(stoX)

%% Sort the coordinates into obstacles:
% The .kml file is just a series of points. If you look at the GPS
% the a coordinates, the stored points repeat the first/last point,
% meaning square bounding box will read points 1, 2, 3, 4, 1, then the
% next coordinates. We will use that to identify where one obstacle and
% begins at he ends.
temp = [];
for i = 1:pointCounter
 % We need to take the first coordinate to be loaded into the
 % temporary holder so that we can use it as a reference to look for
 % the repeat value. We’ll call the variable “checker.”
 if length(temp) == 0
 checker = stoX(i)
 end
 temp = [temp; [stoX(i), stoY(i)]];

 %if we check the first coordinate against itself, it’ll be
 %true. So skip the first element.
 if length(temp) > 2
 %if the current value matches the checker reference value,
 %trim the last coordinate off (it’s a repeat) and then clear
 % the temporary storage matrix.
 if stoX(i) == checker
 disp(‘FOUND A MATCH!’)
 trimNumber = length(temp)-1;

64

 temp
 holder = temp(1:trimNumber, :)
 testObstacle = obstacle(holder)
 temp = [];
 end
 end

end

%% Test out the kmlToObstacleField:
testField2 = obstacleField();
testField2 = kmlToObstacleField(testField2, readInStr)

% Load in the goal point:
goalString = ‘EndPointTest.kml’;
testField2 = kmlToGoal(testField2, goalString);

% And the start point:
initString = ‘StartPointTest.kml’;
testField2 = kmlToInit(testField2, initString);

%testField2 = autoFieldSize(testField2);
plotField(testField2)
testField2 = visibilityMatrix(testField2)
plotVisibilityGraph(testField2)

%% Look at a KML with points:
fileNameStr3 = ‘testKmlWithPoints.kml’;
[D,E,F] = read_kml(fileNameStr3);
G = [D,E]

65

APPENDIX E. ASTAR_TESTBED.M

%% A* Search Test Bed
% by Matt Audette
% last update: 20180530

% This is the test script for kicking the tires on my node/A* search
% object class.

% RUN THE SCRIPT TestBed BEFORE HAND!
% RUN THE SCRIPT GoogleEarthToolboxTest BEFORE HAND, TOO!
% This script will read in the obstacleField objects from both.
clc
clear all
format compact

TestBedMkI
GoogleEarthToolboxTest

% Build a test node:
node1 = node([1,2])

% Fill out the other properties:
% If you do this in the command line, it’s just ‘setIndex(node1, 1)’
node1 = setIndex(node1, 1)

node1 = setF(node1, 0);
% an f of ‘0’ indicates that it’s the start point, so we should set the
% initFlag property to 1. And it is therefore NOT the goal node, so...
node1 = setInitFlag(node1, 1);
node1 = setGoalFlag(node1, 0);

% And fill out the rest of the properties in order to test them:
node1 = setG(node1, 0);
node1 = setH(node1, 20);
node1 = setNeighbors(node1, [2,3,4,5])
node1 = setCameFrom(node1, 7)

%% This completes the node functions. Move into the A* Search Object:
% Create an A* search object:
aStarTest = AStarSearch(testField1)

% Load of the node index:
aStarTest = pointsToNodes(aStarTest)

% Now do it with the GoogleMapsToolboxTest
aStarFromKML = AStarSearch(testField2)
%aStarFromKML = pointsToNodes(aStarFromKML)

aStarTest = nodeIndextoCellArray(aStarTest)
%aStarFromKML = nodeIndextoCellArray(aStarFromKML)

66

% set the cost function flagL
aStarTest = setCostFlag(aStarTest, 0)
aStarFromKML = setCostFlag(aStarFromKML, 1)

% Testing the optimal path function:
aStarTest = findOptimalPath(aStarTest)
aStarFromKML = findOptimalPath(aStarFromKML)

% Plot them:
plotOptimalPath(aStarTest)
plotOptimalPath(aStarFromKML)

%% Test getting the coordinate list:
coordList = coordsFromOptimalPath(aStarFromKML.optimalPath)

67

APPENDIX F. POTENTIALFIELDTOWAYPOINT.M

%% Potential Field to Waypoint Function
% Matt Audette

% This is a function based off of Calvin Hargadine’s thesis script,
% ‘p3ATnavigation.m’. The goal of this is to treat his code like a
% “black box”that mine feeds formatted GPS coordinates in to.

% His code initiates the robot and takes in a single waypoint from a
% user prompt. I’m going to make a change that the input comes from a
% pair of points passed from this function.

function potentialFieldToWaypoint(coordinates, goalnum)
%’coordinates’ is the [x,y] values that will be the goal.

 % Pioneer 3-AT Localization and Navigation Script
 % Incorporating Potential Field function for navigation and
 % GPS/IMU through Kalman Filter for localization

 %%%% ENSURE ROS MASTER NODE IS STARTED AND MATLAB NODE GENERATED
 %%%% PRIOR TO RUNNING THIS SCRIPT -- USE rosinit

 %% Setup and parameter initialization
 % Create global variables for use in communicating with ROS system
 global Pose
 global Laser
 global Goal
 global NavStatus
 global GPSFix

 % Create ROS publishers, subscribers, and service client
 poseSub = rossubscriber(‘/geonav_p3odom’,@p3atPoseCallback)
 laserSub = rossubscriber(‘/scan’,@p3atLaserCallback)
 cmdPub = rospublisher(‘/RosAria_Node/cmd_vel’,’geometry_msgs/
Twist’)
 goalPub = rospublisher(‘/nav/goal_odom’,’nav_msgs/Odometry’)
 casePub = rospublisher(‘/current_case’,’std_msgs/String’)
 goalSub = rossubscriber(‘/geonav_goalodom’,@p3atGoalCallback)
 navstatusSub = rossubscriber(‘/nav/status’,@p3atNavStatusCallback)
 fixSub = rossubscriber(‘/gps/fix’,@p3atGPSFixCallback)
 client = rossvcclient(‘/reset_kf’)

 % Pause for publisher/subscriber registration
 pause(2)

 % Create empty messages for publication
 caseMsg = rosmessage(casePub)
 cmdMsg = rosmessage(cmdPub)
 goalMsg = rosmessage(goalPub)

68

 % Get parameters and goal information the robot
 [param, sto_goals] = robotConfigReader_multigoal;

 % Ask user for desired goal number
 %goalnum = input(‘Enter desired WP number (from 1 to 10):’);
 %current_goal = goal(goalnum,:);
 current_goal = coordinates;

 % Publish initial goal message for ROS system transform
 for k = 1:5
 goalMsg.Pose.Pose.Position.X = current_goal(-5);
 goalMsg.Pose.Pose.Position.Y = current_goal(2);
 goalMsg.Pose.Pose.Orientation.X = 0;
 goalMsg.Pose.Pose.Orientation.Y = 0;
 goalMsg.Pose.Pose.Orientation.Z = 0;
 goalMsg.Pose.Pose.Orientation.W = 1;
 send(goalPub,goalMsg);
 pause(0.1)
 end

 % Get current NavStatus message
 navstatus = NavStatus.Data’;

 % Ensure NavStatus is good (2) and if not, reset KF
 if navstatus(1) ~= 2
 call(client)
 else
 end

 % Define parameters for navigation algorithm
 K1 = param(3); % forward velocity gain
 K2 = param(2); % turning velocity gain
 maxvel = 3; % maximum velocity of robot
 laser_max = 20; % robot laser view horizon
 goaldist = 0.5; % distance metric for reaching goal
 goali = 1; % current goal index
 xi = param(5); % attractive force gain
 eta = param(4); % repulsive force gain
 d = param(1); % distance above which robot velocity

 % is constant
 rho0 = param(6); % offset from obstacle to ignore

 % repulsive term
 c = 1; % initial case variable
 navrun = 0; % navigation fix status variable

 % Define parameters for wall-following algorithm
 angK = 1; % turning velocity gain for WF

 % algorithm
 linK = 1; % forward velocity gain for WF

 % algorithm
 g_dist = []; % initialize goal distance
 g_dist0 = []; % initialize initial goal distance
 Dcount = 0; % goal distance counter
 N_Buffer = 20; % number of measurements used to

69

 % average repulsive force
 Frep_Buffer = zeros(N_Buffer,1); % initialize repulsive force

 % buffer

 % Output velocity filter parameters
 Kfilterold = 0.6; % percentage of old velocity used
 Kfilternew = 0.4; % percentage of new velocity used
 LinearVel_old = 0.0; % initialize linear velocity
 AngularVel_old = 0.0; % initialize angular velocity

 %% Potential Field Algorithm
 while 1 % Infinite loop until goal is reached
 % publish goal coordinates
 goalMsg.Pose.Pose.Position.X = current_goal(2);
 goalMsg.Pose.Pose.Position.Y = current_goal(1);
 goalMsg.Pose.Pose.Orientation.X = 0;
 goalMsg.Pose.Pose.Orientation.Y = 0;
 goalMsg.Pose.Pose.Orientation.Z = 0;
 goalMsg.Pose.Pose.Orientation.W = 1;
 send(goalPub,goalMsg);

 % get the laser ranges
 laser_range = Laser.Ranges;

 % angular resolution vector
 laser_angle =
(Laser.AngleMin:Laser.AngleIncrement:Laser.AngleMax)’;

 % get goal coordinates in XY world frame
 q_goal = [Goal.Pose.Pose.Position.X,
Goal.Pose.Pose.Position.Y];

 % get current GPS fix
 gpsfix = [GPSFix.Status.Service,GPSFix.Status.Status]

 % get current nav status
 navstatus = NavStatus.Data’

 % if good nav status, set nav status variable
 if navstatus(1) == 2
 navrun = 1;
 else
 end

 % if bad nav status with previous good fix and good GPS fix,

 % reset KF
 if navstatus(1) == 3 && navrun == 1 && gpsfix(2) == 30
 call(client)
 navrun = 0;
 else
 end

 % switch/case for algorithm decision logic

70

 switch c
 case 1 % Potential Field Algorithm
 fprintf(‘Potential Field\n’)
 caseMsg.Data = ‘Potential Field’; % publish current

% case to ROS
 send(casePub,caseMsg)

 % get X, Y and Theta
 pose = Pose.Pose.Pose;
 quat = pose.Orientation;
 angles = quat2eul([quat.W quat.X quat.Y quat.Z]);
 yaw = angles(1);
 x = pose.Position.X;
 y = pose.Position.Y;
 th = yaw;

 fprintf(‘X: %f, Y: %f, Theta: %f \n’,x,y,th);

 % call the attractive force function
 wp_x = q_goal(goali,1);
 wp_y = q_goal(goali,2);
 [dist, angvel, linvel] = attforcepot(x,y,th,wp_x,wp_y);

 % evaluate what to do next based on the distance to the

 % waypoint.
 if (dist <= goaldist)
 % if you have reached the goal
 if (goali < size(q_goal,1))
 % if there are multiple goals
 disp(‘Going to next waypoint!’);
 goali = goali+1;
 else
 % if there is a single goal
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = 0.0;
 cmdMsg.Angular.Z = 0.0;
 fprintf(‘Publishing cmd_vel with lin. vel: %f,
ang. vel.: %f\n’, ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 disp(‘Done!’)
 break; % exit while loop as final goal is

% reached
 end
 else
 % goal not yet reached
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 if (dist <= d)
 goalvelx = linvel;
 goalvelw = angvel;
 else
 goalvelx = maxvel;
 goalvelw = angvel;

71

 end
 end

 pause(0.1) % pause for ROS system

 Frept = [0;0]; % initialize repulsive force

 for i = 1:1032
 if laser_range(i) <= laser_max
 % object position in the laser i coordinate in

% meters
 p_laser = [laser_range(i) 0 0 1]’;
 Xobj = cos(laser_angle(i))*p_laser(1);
 Yobj = sin(laser_angle(i))*p_laser(1);
 rho = sqrt(Xobj^2+Yobj^2);
 if rho < rho0
 Frep = eta*(1/p_laser(1)-1/
rho0)*(1/(p_laser(1)^2))*[-cos(laser_angle(i)) -sin(laser_angle(i))]’;
 else
 Frep = [0;0];
 end
 Frept = Frept+Frep;
 else
 end
 end

 Frep_Buffer = [Frept(2); Frep_Buffer(2:N_Buffer-1)];
 MeanBuffer = mean(Frep_Buffer);

 % calculate total force and build velocity terms
 Fatt = [goalvelx;goalvelw];
 Ftot = xi*Fatt + eta*Frept;
 fprintf(‘\n\nNorm of Ftot: %f\n’,norm(Ftot));
 LinearVel = K1*Ftot(1);
 AngularVel = K2*Ftot(2);

 % determine which case to enter next
 if min(laser_range) < 0.5
 c = 3;
 elseif norm(Ftot) < 0.5 && dist > 1
 c = 2;
 g_dist0 = dist;
 g_dist = dist;
 else
 c = 1;
 end

 case 2 % Wall-Following Algorithm
 fprintf(‘\nWall Following\n\n’)
 caseMsg.Data = ‘Wall Following’; % publish current

 % case to ROS
 send(casePub,caseMsg)

 % get X, Y and Theta

72

 pose = Pose.Pose.Pose;
 quat = pose.Orientation;
 angles = quat2eul([quat.W quat.X quat.Y quat.Z]);
 yaw = angles(1);
 x = pose.Position.X;
 y = pose.Position.Y;
 th = yaw;

 fprintf(‘X: %f, Y: %f, Theta: %f \n’,x,y,th);

 % call the attractive force function
 wp_x = q_goal(goali,1);
 wp_y = q_goal(goali,2);
 [dist, angvel, linvel] = attforcepot(x,y,th,wp_x,wp_y);
 pause(0.1)

 % if closer to the goal than last time, increment DD
 if dist < g_dist
 Dcount = Dcount + 1
 else
 end

 g_dist = dist;

 Frept = [0;0]; % initialize repulsive force

 for i = 1:1032
 if laser_range(i) <= laser_max
 % object position in the laser i coordinate in

% meters
 p_laser = [laser_range(i) 0 0 1]’;
 Xobj = cos(laser_angle(i))*p_laser(1);
 Yobj = sin(laser_angle(i))*p_laser(1);
 rho = sqrt(Xobj^2+Yobj^2);
 if rho < rho0
 Frep = eta*(1/p_laser(1)-1/
rho0)*(1/(p_laser(1)^2))*[-cos(laser_angle(i)) -sin(laser_angle(i))]’;
 else
 Frep = [0;0];
 end
 Frept = Frept+Frep;
 else
 end
 end

 % determine angle to the repulsive force vector
 objang = atan2(Frept(2),Frept(1));
 if objang < 0
 objang = objang + 2*pi;
 else
 end

 objangdeg = objang*180/pi

73

 % determine which way to turn and keep repulsive force
 % vector perpendicular with robot heading
 if MeanBuffer > 0
 if objangdeg >= 100
 angvel = angK*0.4;
 linvel = linK*0.05;
 elseif objangdeg < 80
 angvel = -angK*0.4;
 linvel = linK*0.05;
 else
 angvel = 0.0;
 linvel = 0.3;
 end
 elseif MeanBuffer < 0
 if objangdeg < 260
 angvel = -angK*0.4;
 linvel = linK*0.05;
 elseif objangdeg > 280
 angvel = angK*0.4;
 linvel = linK*0.05;
 else
 angvel = 0.0;
 linvel = 0.3;
 end
 end

 % develop output velocities
 LinearVel = linvel;
 AngularVel = angvel;

 % determine which case to enter next
 if min(laser_range) < 0.5
 c = 4;
 elseif Dcount == 70
 c = 1;
 g_dist = [];
 Dcount = 0;
 Frep_Buffer = zeros(N_Buffer,1);
 else
 c = 2;
 end

 case 3 % Emergency Avoidance Alg (From Potential Field)
 ii = 0;
 while ii < 5
 % stop immediately for 5 seconds
 fprintf(‘Emergency Avoidance\n’)
 caseMsg.Data = ‘Emergency Avoidance (PF)’;
 send(casePub,caseMsg)
 % populate the message
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = 0.0;
 cmdMsg.Angular.Z = 0.0;
 % publish message

74

 fprintf(‘Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n’, ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2)
 ii = ii + 0.2;
 end
 jj = 0;
 while jj < 4
 % backup for 4 seconds to make enough room to
 % maneuver around obstacle
 caseMsg.Data = ‘Emergency Avoidance (PF)’;
 send(casePub,caseMsg)
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = -0.2;
 cmdMsg.Angular.Z = 0.0;
 % publish
 fprintf(‘Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n’, ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2);
 jj = jj + 0.2;
 end

 % get the laser ranges
 laser_range = Laser.Ranges;
 % determine if obstacle is out of min range parameter
 if min(laser_range) < 0.5
 c = 3;
 else
 c = 1;
 end

 case 4 % Emergency Avoidance Alg (From Wall Following)
 ii = 0;
 while ii < 5
 % stop immediately for 5 seconds
 fprintf(‘Emergency Avoidance\n’)
 caseMsg.Data = ‘Emergency Avoidance (WF)’;
 send(casePub,caseMsg)
 % populate the twist message
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = 0.0;
 cmdMsg.Angular.Z = 0.0;
 % publish
 fprintf(‘Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n’, ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2)
 ii = ii + 0.2;
 end

75

 jj = 0;
 while jj < 4
 % backup for 4 seconds to make enough room to
 % maneuver around obstacle
 caseMsg.Data = ‘Emergency Avoidance (WF)’;
 send(casePub,caseMsg)
 fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist);
 cmdMsg.Linear.X = -0.2;
 cmdMsg.Angular.Z = 0.0;
 % publish
 fprintf(‘Publishing cmd_vel with lin. vel: %f, ang.
vel.: %f\n’, ...
 0.0,0.0);
 send(cmdPub,cmdMsg);
 pause(0.2);
 jj = jj + 0.2;
 end

 % get the laser ranges
 laser_range = Laser.Ranges;

 % determine if obstacle is out of min range parameter
 if min(laser_range) < 0.5
 c = 3;
 else
 c = 2;
 end

 otherwise
 end

 % build filtered output velocity parameters
 cmdMsg.Linear.X = Kfilternew*LinearVel +
Kfilterold*LinearVel_old;
 cmdMsg.Angular.Z = Kfilternew*AngularVel +
Kfilterold*AngularVel_old;

 % publish on cmd_vel topic
 fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. vel.: %f\
n’, ...
 cmdMsg.Linear.X,cmdMsg.Angular.Z);
 send(cmdPub,cmdMsg);

 LinearVel_old = cmdMsg.Linear.X;
 AngularVel_old = cmdMsg.Angular.Z;
 End

end

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX G. MODIFIED READ_KML.M

function [x,y,z] = read_kml(fileName)
% READ_KML Reads in (x,y,z) from a GoogleEarth kml file.
%
% I have tried to make this code as robust as possible, but it may
% crash or give unexpected resutls if the file is not formatted
% exactly as expected.
%
% Example:
% [x,y,z] = read_kml(‘test.kml’);
%
% where test.kml looks like:
% <?xml version=“1.0” encoding=“UTF-8”?>
% <kml xmlns=“http://earth.google.com/kml/2.1”>
% <Placemark>
% <name>test_length</name>
% <description>junk</description>
% <LineString>
% <tessellate>1</tessellate>
% <coordinates>
% -73.65138440596144,40.45517368645169,0 -
73.39056199144957,40.52146569128411,0 -
73.05890757388369,40.59561213913959,0 -
72.80519929505505,40.66961872411046,0 -
72.61180114704385,40.72997510603909,0 -
72.43718187249095,40.77509309196679,0 </coordinates>
% </LineString>
% </Placemark>
% </kml>
%
% afarris@usgs.gov 2016March09, now can read mulitple sets of
% coordinates
% afarris@usgs.gov 2006November

%% open the data file and find the beginning of the data
fid=fopen(fileName);
if fid < 0
 error(‘could not find file’)
end

% ADDED BY MATT AUDETTE:
% Without this line, the str2double() function in the very last lines
% truncates the incoming GPS coordinates to 4 decimal places, which
% translates to 11.7 meters N/S and 7.8 meters E/W.
format long
% End Matt Audette’s modifications

% This loop reads the data file one line at a time. If if finds the
% word <coordinates>, it knows there is data until it reads the word
% </coordinates>. After loading this data, it keeps reading the file,
% looking for another instance of <coordinates> until it finds the word
% </kml> which signals that the end of the file has been reached.

78

% Some files have all the data on one line, others have newline
% characters in various points in the file. I hope this code that
% works in all cases.

done=0;
endoffile = 0;
ar = 1;

while endoffile == 0
 while done == 0
 junk = fgetl(fid);
 f = strfind(junk,’<coordinates>‘);
 ff = strfind(junk,’</kml>‘);
 if ~isempty(f)
 done = 1;
 elseif ~isempty(ff)
 endoffile = 1;
 done = 1;
 end
 end
 if endoffile
 break
 end
 % ‘junk’ either ends with the word ‘<coordinates>‘ OR
 % some data follows the word ‘<coordinates>‘
 if (f + 13) >= length(junk)
 % no data on this line
 % done2 is set to zero so the next loop will read the data
 done2 = 0;
 else
 % there is some data in this line following ‘<coordinates>‘
 clear f2
 f2 = strfind(junk,’</coordinates>‘);
 if ~isempty(f2)
 %all data is on this line
 % there may be multiple sets of data on this one line
 % I read them all
 for i = 1 : size(f2,2)
 alldata{ar} = junk(f(i)+13:f2(i)-1);
 % I add in whitespace b/c sometimes it is missing
 alldata{ar+1} = ‘ ‘;
 ar = ar+2;
 end
 % done2 is set to one because the next loop does not need

% to run
 done2 = 1;
 else
 % only some data is on this line
 alldata{ar} = junk(f+13:end);
 % I add in whitespace b/c sometimes it is missing
 alldata{ar+1} = ‘ ‘;
 ar = ar+2;

% done2 is set to zero so the next loop will read the
% rest of the data

 done2 = 0;

79

 end
 % check to see if at end of the file
 ff = strfind(junk,’</kml>‘);
 if ~isempty(ff)
 % no more data
 endoffile = 1;
 break
 else
 % need to keep looking for more data
 done = 0;
 end
 end

 % If not all the data was on the line with the word <coordiate>,
 % read in the data
 while done2 == 0
 % read in line from data file
 junk = fgetl(fid);
 f = strfind(junk,’</coordinates>‘);
 if isempty(f) == 1
 % no ending signal, just add this data to the rest
 alldata{ar} = junk;
 ar = ar + 1;
 else
 % ending signal is present
 done = 0;
 if f < 20
 % </coordinates> is in the begining of the line, ergo
 % no data on this line; just end the loop
 done2 = 1;
 else
 % the ending signal (</coordinates>) is present: remove
 % it, add data to the rest and signal the end

 % of the loop
 f2 = strfind(junk,’</coordinates>‘);
 alldata{ar} = junk(1:f2-1);
 ar = ar + 1;
 done2 = 1;
 disp(‘done with line’)
 end
 end
 % check to see if at end of the file
 ff = strfind(junk,’</kml>‘);
 if ~isempty(ff)
 % no more data
 endoffile = 1;
 break
 else
 % need to keep looking for more data
 done = 0;
 end
 end
end
fclose(fid);

80

%% get the data into neat vectors
% I have to divide the string into X, Y and Z values.
%
% This is hard b/c there is no comma between points
% (just commans between x and y, and between
% y and z) ie; -70.0000,42.0000,0 -70.1000,40.10000,0 -70.2,....
%
% I used to do this by finding commas and spaces, now I use
% ‘strsplit’! Thank you Matlab!

% ‘alldata’ is one huge cell
% turn alldata into regular vector so it is easier to work with
data = cell2mat(alldata);
% data is one huge string, split it so there is seperate element for
each number
C = strsplit(data,{‘,’,’ ‘});
% sometimes first and/or last element in C is empty, this causes
problems
len = size(C,2);
if isempty(C{1}) && isempty(C{end})
 D = C(2:len-1);
elseif isempty(C{1}) && ~isempty(C{end})
 D = C(2:end);
elseif isempty(C{end}) && ~isempty(C{1})
 D = C(1:len-1);
end

% There has GOT to be a better way to split C into 3 variables!
a = 1;
for i = 1 : 3: length(D)-2
 x(a,1) = str2double(D{i});
 a=a+1;
end
a=1;
for i = 2 : 3: length(D)-1
 y(a,1) = str2double(D{i});
 a=a+1;
end
a=1;
for i = 3 : 3: length(D)
 z(a,1) = str2double(D{i});
 a=a+1;
end

81

LIST OF REFERENCES

[1] Department of the Navy. “Marine Corps operating concept,” Washington, DC,
USA, 2016. [Online]. Available: https://www.mccdc.marines.mil/MOC/

[2] P. W. Singer, Wired for War: The Robotics Revolution and Conflict in the
Twenty-first Century. New York, NY USA: Penguin Press, 2009.

[3] 2017 Marine Corps Warfighting Labs Futures Directorate Initiative Portfolio,
Marine Corps Warfighting Lab Futures Directorate, Quantico, Virginia, 2016.
[Online]. Available: https://www.mcwl.marines.mil/Portals/34/Documents/
Portfolio/2017_MCWL_FD_InitiativePortfolio_small.pdf

[4] 2018 U.S. Marine Corps S&T Strategic Plan, Marine Corps Warfighting Lab
Futures Directorate, Quantico, Virginia, 2016. [Online]. Available:
https://www.onr.navy.mil/-/media/Files/About-ONR/2018-USMC-S-and-T-
StrategicPlan.ashx?la=en&hash=73B2574A13A8EC6AAE60CF4670E05C6F9730
9B8F

[5] DVIDS. “Marines test new futuristic equipment, capabilities [Image 9 of 10],”
July 13, 2016. [Online]. Available: https://www.dvidshub.net/image/2726228/
marines-test-new-futuristic-equipment-capabilities

[6] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured
outdoor environments,” M.S. thesis, Dept. of Electrical and Computer
Engineering, NPS, Monterey, California, 2017. [Online]. Available:
https://calhoun.nps.edu/handle/10945/56937

[7] J.-C. Latombe, Robot motion planning, 2nd ed. Boston: Kluwer, 1991.

[8] Omron Adept MobileRobots. “Pioneer 3-AT Specification Sheet,” 2011. [Online].
Available: http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-
P3AT-RevA.sflb.ashx

[9] Omron Adept MobileRobots. “MobileRobots Research Mobile Robot Platforms
Compare Technical Specifications,” Accessed July 8, 2018. [Online]. Available:
http://www.mobilerobots.com/ResearchRobots/ResearchMatrix.aspx

[10] CappuccinoPC.com. “SlimPRO SP675P Mini PC,” Accessed July 8 2018.
[Online]. Available: http://www.cappuccinopc.com/slimpro-sp675p.asp

[11] Hokuyo Automatic Co. “Scanning Rangefinder Distance Data Output/UTM-
30LX Product Details,” Accessed June 14 2018. [Online]. Available:
https://www.hokuyo-aut.jp/search/single.php?serial=169

82

[12] LORD Corporation, LORD MicroStrain 3DM-GX5-45 GNSS-Aided Inertial
Navigation System Datasheet, 8400–0091, 2018. [Online]. Available:
http://www.microstrain.com/sites/default/files/3dm-gx5-45_datasheet_8400-
0091.pdf

[13] MathWorks. “What is MATLAB?” Accessed July 11, 2018. [Online]. Available:
https://www.mathworks.com/discovery/what-is-matlab.html

[14] MathWorks. “Robotics System Toolbox,” Accessed July 11, 2018. [Online].
Available: https://www.mathworks.com/products/robotics.html

[15] A. Farris, United States Geological Service, 2016. read_kml, ver 2. [Online].
Available: www.mathworks.com/matlabcentral/fileexchange/13026-read_kml

[16] Robot Operating System. “About ROS.” Accessed April 10, 2018. [Online].
Available: http://www.ros.org/about-ros/

[17] MathWorks. “Get Started with ROS - MATLAB & Simulink.” Accessed May 5,
2018. [Online]. Available: https://www.mathworks.com/help/robotics/examples/
get-started-with-ros.html

[18] Robot Operating System. “Recording and playing back data.” Accessed April 15,
2018. [Online]. Available: http://wiki.ros.org/ROS/Tutorials/
Recording%20and%20playing%20back%20data

[19] Google. “Download Google Earth Pro.” Accessed July 11, 2018. [Online].
Available: https://www.google.com/earth/download/gep/agree.html

[20] R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous mobile robots.
Cambridge, MA: MIT Press, 2004.

[21] Tomas Lozand-Perez and M. A. Wesley, “An Algorithm for Planning Collision-
Free Paths Among Polyhedral Obstacles,” Communications of the ACM, vol. 22,
no. 10, pp. 560–570, Oct. 1979.

[22] “Establishing Connectivity in a Visibility Graph,” class notes for EC4310
Fundamentals of Robotics, Dept. of Electrical and Computer Engineering, Naval
Postgraduate School, Monterey, CA, USA, Winter 2018. .

[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4,
no. 2, pp. 100–107, Jul. 1968.

[24] MathWorks. “Why Use Object-Oriented Design.” Accessed January 20, 2018.
[Online]. Available: https://www.mathworks.com/help/matlab/matlab_oop/why-
use-object-oriented-design.html

83

[25] M. Audette, “GitHub Repository: Thesis,” GitHub, February 4, 2018. [Online].
Available: https://github.com/MattAud/Thesis

[26] M. Audette, “Obstacle Map to Optimal Path,” YouTube, August 20, 2018.
[Online]. Available: https://www.youtube.com/watch?v=Y0Jkl2ozzEE

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Sep_Audette_Matthew_First8
	18Sep_Audette_Matthew
	I. Introduction
	A. purpose and goals of this thesis
	B. Motivation
	C. Previous Work

	II. description of hardware and software systems
	A. hardware
	1. Omron Adept MobileRobots Pioneer 3-All Terrain
	2. SlimPRO SP675P Mini PC
	3. Sensor Suite

	B. Software
	1. MATLAB
	2. Robot Operating System
	3. Google Earth Pro

	C. Summary and integration

	III. Description of roadmap development
	A. configuration space
	B. Path-planning approaches
	C. visibility graph method
	D. A* Search method
	E. an overview of the obstacle avoidance algorithm
	F. integration of the obstacle avoidance algorithm and path-planning algorithm

	IV. MATLAB CLASS DEVELOPMENT
	A. Obstacle and obstacle field classes
	B. node and a* search classes
	C. integration with google maps
	D. Global navigation algorithm summary

	V. EXPERIMENTS AND results
	A. Experiment 1: GPS waypoint navigation using the path-planning alogrithm
	B. Experiement 2: Medium distance navigation

	VI. Conclusions
	A. assessment of goals
	B. system improvements and areas of future work

	Appendix A. Demonstration.m
	Appendix B. testbed.m
	Appendix C. kml to obstacle scripts
	Appendix D. google_earth_test.m
	Appendix E. astar_testbed.m
	Appendix F. potentialfieldtowaypoint.m
	Appendix G. modified read_kml.m
	List of References
	initial distribution list

