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ABSTRACT 

 As autonomous ground robots fulfill greater roles within the military, there is a 

requirement for an operator to be able to quickly give minimal route-planning guidance 

in support of an autonomous mission. The objective of this thesis is to develop a 

route-planning algorithm that uses open-source satellite imagery to allow a user to plot a 

start point, a goal point, and identify large-scale obstacles within the robot’s operating 

area. In this thesis, we build on previous work that developed a potential field obstacle 

avoidance algorithm. We advance the development of the autonomous mission capability 

by creating a global path-planning algorithm. The algorithm uses the visibility graph and 

A* search method to produce the optimal path from the given start point to the goal. The 

navigation algorithm developed allows users to generate imagery-based obstacle maps in 

Google Earth Pro and successfully produces an optimal path in the form of global 

positioning satellite coordinates via extensive MATLAB code development. The method 

was evaluated on a ground robot navigating in an outdoor environment using the 

waypoints generated. The path-planning algorithm was successfully implemented, but 

due to difficulties encountered with the navigation node of the mobile robot, a complete 

verification was not possible. Improvements to the robot’s ability to traverse over rugged 

terrain will make this solution more viable for a wider range of outdoor environments. 
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I. INTRODUCTION 

A. PURPOSE AND GOALS OF THIS THESIS 

The purpose of this thesis is to develop the capability for an operator to generate 

missions for an unmanned ground vehicle while providing as little route-planning guidance 

as possible to the system. The tools used for this purpose should be as intuitive and non-

technical as possible so as to decrease training time and increase ease of use.  

The most common mission planning tools within the military are based on satellite 

imagery. Satellite imagery is easy to comprehend and more up to date than traditional paper 

maps. It is readily available and used within the military for training and operations. When 

a mission planner or operator is provided with a satellite imagery-based map of their area 

of responsibility, they generate a mission by determining a start point, an end goal, and 

intermediate waypoints. Areas that cannot be traversed, such as buildings, previously 

known obstacles, or areas that are off limits, are identified and removed from possible 

routes. This same method should be used when planning a mission for an autonomous 

ground vehicle. If an operator were provided an imagery-based map, he should be able to 

identify for the robot a start point, a goal, and known large-scale obstacles in the area of 

responsibility, and the robot should be able to plan its own route and successfully navigate 

to the goal.  

In this research, we seek to develop a platform-agnostic set of tools that are capable 

of identifying waypoints determined by an optimal route-planning algorithm that a robot 

can then use to navigate to its destination. A “global map” of a pre-determined area of 

responsibility containing large-scale fixed obstacles that are unlikely to change, such as 

buildings, unnavigable terrain, and areas that are off limits for autonomous vehicles should 

be simple and quick to generate. When paired with a route-planning algorithm and a local 

obstacle avoidance algorithm, this combination will provide a robust navigation capability 

for an autonomous mobile robot. The robot should be able to navigate the given mission in 

an unstructured outdoor environment by performing global path planning as well as local 
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obstacle avoidance. Possible use cases for this capability would be autonomous patrolling, 

logistical support, or missions in support of humanitarian aid/disaster relief type operations.  

B. MOTIVATION 

The future battlefield is increasingly autonomous. Increased technological 

capability, decreases in the cost of fielding autonomous systems, and an increasingly 

complex battlefield supports the transition of certain dangerous, dirty, or dull tasks from 

human to machine. Emphasis is being placed on this by the highest levels of the Marine 

Corps. The Marine Corps Operational Concept calls for leaders to “refine the concept of 

manned-unmanned teaming (MUM-T) to integrate robotic autonomous systems (RAS) 

with manned platforms and Marines” [1]. 

The predominance of unmanned ground vehicles (UGVs) has increased 

exponentially. Technology journalist P. W. Singer explains that, “When U.S. forces went 

into Iraq, the original invasion had zero robotic systems on the ground. By the end of 2004, 

the number was up to 150. By the end of 2005, it was up to 2,400. By the end of 2006, it 

had reached the 5,000 mark and growing. It was projected to reach as high as 12,000 by 

the end of 2008” [2]. These unmanned systems were primarily found in the most dangerous 

of tasks: countering improvised explosive devices (IED) and unexploded ordnance (UXO). 

These systems, however, lacked autonomous capabilities, and while a typical soldier refers 

to them as a “robot,” the engineers producing them ensured that the nomenclature attached 

was “remotely operated vehicle.”  

The Marine Corps is placing greater emphasis on autonomous ground platforms to 

get away from the “one operator, one robot” model to “one operator, many robots” in order 

to increase the lethality of the individual warfighter [3]. The 2018 Marine Corps Science 

and Technology Strategic Plan calls for the  

[development of] affordable technologies to enhance effective and efficient 
employment of ground robotics. Focus on improving capabilities while 
reducing training and operating requirements of user Marines. Fully 
autonomous vehicles are not necessarily the goal. Technologies that enable 
effective “supervised autonomy” by the Marine user, to include 
teleoperation, machine vision, perception, obstacle avoidance, convoy 
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following, and the ability to self-navigate pre-planned routes are desired 
capabilities. [4]

The tactical level Marine Corps is the target audience for manned-unmanned 

teaming, as can be seen the artist’s rendition in Figure 1. Autonomous systems are moving 

out of the peripheral roles of Explosive Ordnance Disposal (EOD) and route clearance 

support and into the building blocks of the Marine combat capability. The Marine Corps 

Warfighting Laboratory has conducted MUM-T tests with 3rd Battalion, 5th Marine 

Regiment with several autonomous platforms filling various roles within the infantry 

squad, a test of which can be seen in Figure 2 [5].  

Figure 1.  The Marine Corp’s Strategic Vision for Manned-Unmanned 
Teaming. Source: [4]. 
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Figure 2.  Marines with 3/5 Experiment with MUM-T. 
Source: [5]. 

C. PREVIOUS WORK 

This thesis research falls into a line of research conducted in the Naval Postgraduate 

School Electrical and Computer Engineering’s robotics laboratory. The ultimate goal is to 

produce a robot that can travel from any one location within an area of responsibility to 

another while traversing both indoor and outdoor environments. The Naval Postgraduate 

School campus serves as a testbed for experimentation and evaluation. An example of the 

desired navigation capability is a robot traveling from Building 436, the Police Service 

building, to the fourth floor of Spanagel Hall. In order for a robot to do this autonomously, 

it has to navigate a variety of environments. The work done in the course of this thesis 

builds directly off earlier research that developed an obstacle avoidance algorithm for this 

robotic platform [6]. The previously developed artificial potential field-based obstacle 

avoidance algorithm successfully navigates around local obstructions within the path of the 

robot. In this thesis, we extend the capability of the same robotic platform by providing a 

higher-level path-planning algorithm that advances the existing capabilities. 
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II. DESCRIPTION OF HARDWARE AND SOFTWARE SYSTEMS 

In the introduction of his benchmark book on robot motion planning, Stanford 

roboticist Jean-Claude Latombe describes a robot as “a mechanical device … equipped 

with actuators and sensors under the control of a computing system” [7]. By its very nature, 

a robot is a system that crosses the disciplines of mechanical engineering, electrical 

engineering, and computer science. What follows is a brief description of the robot’s 

hardware and software in order to describe the system’s capabilities. 

A. HARDWARE 

The hardware in this robotic system was selected based upon an ability to function 

in the outdoor environment. Such a system requires a rugged chassis; a light weight, low 

power computer; and appropriate sensors to navigate. The subsystems also require robust 

software support. 

1. Omron Adept MobileRobots Pioneer 3-All Terrain 

The mobile robot platform used in this research was the Pioneer 3-All Terrain, or 

P3-AT. The base platform is shown in Figure 3. Adept MobileRobots describes it as “a 

small four-wheel, four-motor skid-steer robot ideal for all-terrain or laboratory 

experimentation” [8]. The reinforced pneumatic tires give it the ability to traverse flooring, 

asphalt, sand, gravel, and dirt. The platform uses a skid steering drive style that gives a 

zero-turn radius and a swing radius of 34 cm. It is powered by up to three 12-V lead acid 

batteries that are hot-swappable to allow for continuous operation. The onboard 

microcontroller has three serial expansion ports that allow for additional sensors, 

processors, and computers to be added to the system to increase the robot’s capabilities. 

Also included are a sonar array consisting of 16 front and rear mounted sonar sensors, front 

and rear segmented bumper arrays, and an emergency stop button that disables the drive 

motors [9].  
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Figure 3.  The P3-AT Robot. Source: [6]. 

2. SlimPRO SP675P Mini PC 

The entirety of the processing on this mobile robot was done on the onboard 

SlimPRO Mini Personal Computer (PC) running the Ubuntu 14.04 Long Term Support 

(LTS) operating system. Details of the computer were sourced from the vendor’s website 

[10]. According to the site, the computer has a small form factor, just 14.6 × 25.4 × 4.2 cm, 

and ample processing power with an Intel Pentium Central Processing Unit (CPU). The 

computer runs off of 12-V direct current and has a low power consumption of 30 W at 

normal use. The computer has six universal serial bus (USB) 2.0 ports, as seen in Figure 4, 

that allow for peripheral sensors and interfaces to be added. These features make it ideal 

for mobile robotics applications. The SlimPRO PC also has Wi-Fi capabilities which 

allows for remote interfacing while testing. Typically, the SlimPRO’s command line 

interface was accessed by secure shell (SSH) with a remote laptop via a Wi-Fi router. 
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Figure 4.  The SlimPRO SP675P Mini PC. Source: [10]. 

3. Sensor Suite 

A thorough breakdown of the individual sensors installed on this robotic platform 

can be found in [6]. A brief survey of the specific hardware used in path planning and 

navigation follows.  

The primary sensor used in the obstacle avoidance algorithm is the Hokuyo UTM-

30LX Scanning Laser Rangefinder shown in Figure 5. This light imaging, detection, and 

ranging (LIDAR) module has a detection range from 0.1 to 30 m. The detection envelope 

is 270° with an angular resolution of 0.25° per step with a scan time of 25 ms per scan. 

This LIDAR module is a two-dimensional (2D) sensor. The LIDAR interfaces with the 

SlimPRO via USB2.0 [11].  
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Figure 5.  The Hokuyo UTM-30LX Scanning Laser Rangefinder. 
Source: [11]. 

The primary means of localization for the mobile robot is the LORD MicroStrain 

3DM-GX5-45 global navigation satellite system (GNSS) / inertial navigation system 

(INS). The MicroStrain GNSS/INS is detailed by its datasheet as a high-performance, 

industrial grade sensor that is capable of utilizing either the GPS, GLONASS, BeiDou, or 

Galileo navigation satellite constellations [12]. In addition to the high performance GNSS 

capability, the MicroStrain provides the robot with nine degrees-of-freedom (DOF) inertial 

measurements. It provides triaxial magnetometer, gyroscope, and accelerometer data that 

can be used by software aboard the robot to provide localization calculations. The 

MicroStrain, seen in Figure 6, has two on-board processors that run an Extended Kalman 

Filter (EKF) in order to automatically provide more accurate estimations of the system’s 

position, velocity, and attitude [12]. The outputs of the EKF are then transmitted to the 

onboard computer via USB serial interface.  
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Figure 6.  The LORD MicroStrain GNSS Aided INS. Source: [12]. 

The robot chassis has built-in sonar and collision detection bumpers. Also mounted 

on top of the chassis is a webcam used solely for the purposes of recording experiments. 

These sensors were not used in the implementation of the navigation algorithm. The entire 

ground robot system as used throughout this research can be seen in Figure 7.  

 

Figure 7.  P3-AT with Sensor Suite as Used in Experimentation. Source: [6]. 
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B. SOFTWARE 

When selecting the software tools to use, the primary goal was to choose non-

proprietary software in order to allow easer implementation of the code on other robot 

platforms. The second consideration was that any software used should be robust with a 

wide user base within the scientific and engineering community in order to ensure that the 

tools developed continue to function for years to come. 

The software piece of this mobile robot application seeks to use readily available 

software suites such as MATLAB, Robotics Operating System (ROS), and free to use 

global imagery data with embedded GPS coordinates with Google Earth Pro. 

1. MATLAB 

MATLAB is a programming platform whose primary users are engineers and 

scientists. It is a robust programming tool that is capable of data analysis, algorithm 

development, and creating mathematical models [13]. It has a multitude of developer 

toolboxes that allow it to interface with third-party software. MATLAB was chosen as the 

primary development tool for designing the route-planning algorithm because of its ease 

of use, ability to iteratively troubleshoot code before implementation aboard the robot, and 

its ability to interface with third-party software through toolkits.  

Throughout the course of this research the Robotic Systems Toolkit (RST) and the 

read_kml toolbox were used. The RST is a “system toolbox [that] provides an interface 

between MATLAB® and Simulink® and the Robot Operating System (ROS) that enables 

you to test and verify applications on ROS-enabled robots” [14]. It provides the interface 

between the route-planning algorithm and the obstacle avoidance algorithm developed in 

MATLAB and the Robot Operating System network which controls the sensors and 

actuators of the robot. The read_kml toolbox is a MATLAB script developed by Amy 

Farris of the United States Geological Survey. It reads in .kml files as a string and 

parses out the stored GPS coordinates [15].  



11 

2. Robot Operating System 

The Robot Operating System (ROS) is “a collection of tools, libraries, and 

conventions that aim to simplify the task of creating complex and robust robot behavior 

across a wide variety of robotic platforms” [16]. It is free to use and has a large amount of 

third-party support. Throughout the course of this research the version known as ROS 

Indigo was used. ROS functions as a type of conceptual plumbing for different pieces of 

code associated with different sensors and processing capabilities. ROS has a very specific 

nomenclature for its network. Nodes are processes within ROS that perform computations 

and communicate messages. A message is a data structure that is transmitted from a node 

to a topic. ROS topics are repositories for messages where nodes can either subscribe to 

receive information from the node or publish messages to it. A visual representation of an 

example ROS network can be seen in Figure 8. ROS topics are represented by green 

rectangles, ROS nodes are shown in blue ovals, and how the messages publish and 

subscribe to topics is shown by the direction of the arrows.  

 

Figure 8.  An Example ROS Network. Source: [17]. 



12 

ROS has several powerful data processing and visualization tools built in. A 

ROS .bag file stores the message data published to topics so that the data can be played 

back or analyzed at a later date [18].  

3. Google Earth Pro 

Google Earth Pro is a free repository of imagery that allows users to “to view and 

use a variety of content, including map and terrain data” [19]. It was selected as the primary 

source of mapping imagery for this research because of its embedded GPS coordinates and 

intuitive ability to draw polygons, waypoints, and save map data as a .kml file format. 

Google Earth Pro is also compatible with both ROS and MATLAB through one of several 

free third-party software toolkits. The exact release used in the course of this research was 

Google Earth Pro 7.1.8.3036 (32 bit). Most users are familiar with its interface. Google 

Earth Pro has the built-in ability for the user to create map overlays of polygons, lines, and 

waypoints with annotations and save them in the common .kml file format. This ability 

to create overlays can be leveraged to easily map obstacles and port them into another 

program for route planning. 

C. SUMMARY AND INTEGRATION  

All processing took place on the P3-AT’s onboard computer. In order to issue 

commands to the robot to run programs a secure shell script (SSH) was used. Access to the 

SlimPRO’s command line was accessed through a laptop via a shared Wi-Fi network, as 

shown in Figure 9.  
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Figure 9.  Robotic System Used in Experimentation 
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III. DESCRIPTION OF ROADMAP DEVELOPMENT 

Mobile robot navigation is broken down into two constituent parts: global path-

planning and local obstacle avoidance. Global path planning consists of identifying a clear 

path that allows the robot to reach the assigned goal. Local obstacle avoidance plays the 

role of modifying the path of the robot so as to avoid collisions [20]. While a priori map-

making is common with robots in structured lab environments and has a long history in 

mobile robotics research, it is an unrealistic assumption for a real-world environment that 

all obstacles will be known beforehand to make an accurate map. The environment that an 

outdoor robot operates in will be largely unstructured and changing. There are, however, 

some large-scale constants in an area that a robot will operate in. Buildings, terrain that is 

unnavigable due to the robot’s specific platform such as stairs, or off-limits areas, are 

unlikely to change on a day-to-day basis. By mapping these large obstacles a path-planning 

algorithm can provide a generalized optimal solution for a long distance path and rely on a 

local obstacle avoidance algorithm to navigate around small scale, moving, or unmapped 

obstacles. 

A. CONFIGURATION SPACE 

In order to express the relationship between a robot and its environment, a standard 

naming convention has been utilized to describe specific configurations and orientations 

of objects within a space. 

The standard notation for the configuration space is detailed in [7]. The 

representation for a robot is A . The environment that the robot operates in is called the 

workspace and is denoted by .W  The workspace W is a Euclidean space that in this 

instance of research is a two-dimensional space. Workspaces for air or undersea systems 

are generally three-dimensional spaces. The coordinate frame attached to W  is fixed and 

denoted as WF . The robot A  has attached to it a moving coordinate frame AF  that is used 

to describe the location of the robot within .W  Obstacles within the workspace are denoted 

and numbered as iB . The configuration q  of robot A  is a specific position ( ),x y  and 



16 

heading θ  within W and is written ( )A q . The configuration ( )A q  has a specific position 

and orientation of AF  within WF . The configuration space of robot A  is the space C  which 

contains all possible configurations of A . A visual representation of the workspace, 

coordinate frames, and a robot configuration is shown in Figure 10.  

 

Figure 10.  Representation of Workspace and the Configuration of Robot A   

As explained in [7], obstacles within the configuration space occupy regions in 

which the robot A  cannot occupy. The space occupied by the individual obstacles can be 

described as , 1, ,iB i n=   within the workspace W  by mapping them to the space C  to 

form a region 

 ( ){ }0 .i iCB q C A q B= ∈ ∩ ≠    (1) 
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The union of all the spaces in which an obstacle occupies is called the obstacleC  

region or an “obstacle field.” It is mathematically defined as 

 
1

.
n

obstacle i
i

C CB
=

=


  (2) 

The space within C  that is free of obstacles and is navigable by robot A  is called 

the free space. Free space is defined as 

 
1

.
n

free i
i

C C CB
=

= −


  (3) 

Any configuration of the robot within free space is called a free configuration [7].  

B. PATH-PLANNING APPROACHES 

Path planning is the task of finding a path τ  from an initial configuration initq  to a 

goal configuration goalq that is within freeC [7]. There are several methods for finding a path 

within a workspace W  in which obstacleC  is defined. The three most common path-planning 

algorithms are the visibility graph, Voroni diagrams, and cell decomposition. Each has 

their own strengths and weaknesses. 

The visibility graph is one of the earliest path-planning methods. In their 1979 

article detailing the visibility graph method, Lozano-Perez and Wesley attribute the method 

to the legendary roboticist and computer scientist Nils Nilsson [21]. An example of a 

visibility graph can be seen in Figure 11. The method consists of making a graph of nodes 

that consist of all vertices within obstacleC  as well as initq  and goalq . Any two nodes that have 

unobstructed paths between them that lie within freeC  are joined by a line called an edge.  
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Figure 11.  Visibility Graph Example. Source: [20]. 

Adjacent edges of an obstacle are unobstructed, so these are also considered edges 

within the visibility graph. The edges between the nodes constitute the shortest distance 

between those two points. As such, when a visibility graph is paired with an optimal path 

finding method, if a path is found between initq  and goalq , the resulting path is the most 

efficient. 

The drawback of the visibility graph method is that as more obstacles are introduced 

to the environment, the graph becomes more populated with edges. The path search 

method, therefore, becomes slower due to the increased computational effort required. 

Another more serious shortcoming of this method is that the planned paths, while efficient, 

take the robot very close to the obstacles in .W  A common workaround for this is to 

artificially increase the size of the obstacle by the largest radius of the robot. This method 

of artificial expansion is unnecessary if the mobile robot is capable of local obstacle 

avoidance.  

The second method, known as the Voroni diagram, takes the opposite approach of 

the visibility graph. It seeks to maximize the distance between the robot and the obstacles 

by finding nodes that are equidistant from all obstacles. The paths that are generated are 

either straight lines or parabolic in shape, as shown in Figure 12. Computing these 
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equidistant trajectories is more computationally intensive than visibility graphs. The 

tradeoff is that the robot minimizes chances of collision with an obstacle if all obstacles 

are known and plotted beforehand.  

 

Figure 12.  Voroni Diagram Example. Source: [21]. 

The third approach is known as cell decomposition. Cell decomposition consists of 

breaking the space freeC  into simple regions called cells and determining which cells are 

adjacent to one another [7]. Adjacent cells are linked to form a “connectivity graph,” which 

can be seen in Figure 13. A search method is then used to plan the path between the cells 

containing initq  and goalq . There are several methods used to determine how to build the 

cells, what points within the cells to connect, and how to construct the connectivity graph. 

The advantage of cell decomposition is that, if desired, they achieve coverage of the space 

freeC  in that a path can be planned so that a robot will pass through all the established 

sectors in the graph. Certain subtypes of cell decomposition, such as variable-size 

approximate cell decomposition, vary their complexity levels to match their environment 

[20]. 
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Figure 13.  Cell Decomposition and Connectivity Graph Example. Source: 
[21]. 

Of the three path-planning methods considered, the visibility graph method was 

selected for this research because of its ease of implementation. Additionally, it was well 

suited for integration with the existing obstacle avoidance algorithm developed previously 

for local maneuvering. This already established work paired with the efficiency and ease 

of implementation of the visibility graph led to that method being selected for the path-

planning algorithm. The Voroni diagram’s advantage of keeping a robot away from 

obstacles comes at the price of an inefficient, non-optimal path and provides a duplicate 

capability to the local obstacle avoidance algorithm. Cell decomposition’s advantage of 

providing absolute coverage of an area at the expense of providing a suboptimal path was 

not a requirement for this application.  

C. VISIBILITY GRAPH METHOD 

The visibility graph planning method consists of three steps. First, a visibility graph 

must be constructed from a provided field of obstacles, a initq , and a goalq . Next, a search 
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method must be used to find a path between initq  and a goalq . Last, if a path is not found, 

the algorithm must indicate a failure [7]. 

Obstacles within C  are represented as polygons [22]. Each polygon is represented 

by its vertices in the form of x and y coordinates, as shown in Figure 14.   

 

Figure 14.  Obstacles Represented as an Array of Vertices 

When each obstacle is described by an array of its vertices, two nodes 1n  and 2n  

are selected. These two nodes are checked to see if they are connectable by an edge that 

exists entirely within freeC . This is done by checking if the line segment between 1n and 2n

runs through the interior of any of the obstacles, as shown in Figure 15.  
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Figure 15.  Checking for Visibility Between 1n  and 2n   

If the line segment runs through the interior of any obstacle, 1n  and 2n  are not 

connected. The line segment between 1n  and 2n  is checked for intersection against every 

edge within the obstacle field obstacleC . When 1n  and 2n have been checked against every 

edge within obstacleC  and deemed that the edge between them is visible or not, 2n  is replaced 

with 3n  and the process is repeated. 

The method to mathematically determine the intersection between two line 

segments is explained in [22]. The two end points of each line are represented as two-

dimensional vectors, as shown in Figure 16.   



23 

 

Figure 16.  The Representation of Two Lines as Four Vectors 

The first line containing points a  and b is defined by the function  

 
( ) ( )

( ) ( )1 ,x xx

y yy

a bp s
P s s s

a bp s
     

= = − +     
       (4) 

where the parameter s  is 0 1s≤ ≤ . The line containing the points c  and d  is defined by 

the function  

 ( ) ( )
( ) ( )1 ,x xx

y yy

c dq t
Q t t t

c dq t
     

= = − +     
    

  (5) 

where the parameter t  is 0 1t≤ ≤ . The two line segments intersect if there are values of s  

and t  such that ( ) ( )P s Q t= ; i.e., 

 ( ) ( )1 1 .x x x x

y y y y

a b c d
s s t t

a b c d
       

− + = − +       
       

  (6) 

Equation (6) can be arranged such that 

 .x x x x x x

y y y y y y

b a c d c as
b a c d c at
− − −    

=    − − −    
  (7) 
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The matrix and vector in Equation (7) can be substituted with the symbols Φ  and 

φ , respectively, to give 

 .
s
t

φ
 

Φ = 
 

  (8) 

Solving Equation (8) for s  and t  will tell if an intersection exists if both s  and t  

are between 0 and 1.  

There exist special cases for this rule. If the matrix Φ  is singular, the line segments 

( )P s  and ( )Q s  are parallel [22]. An additional special case is that if the vector φ  is in the 

column space of Φ , meaning that { }spφ ∈ Φ , the two line segments belong to the same 

line, as shown in Figure 17. In cases like this, the returned values of s  and t  are infinity, 

which represents that the lines overlap at an infinite number of points.  

 

Figure 17.  Lines ( )P s  and ( )Q t  Overlap When φ  is in the Column Space of 
Φ   

The last of the special cases occurs if the vector φ   is not in the column space of 

Φ , or { }spφ ∉ Φ . This means two line segments are parallel without intersection, as shown 

in Figure 18. In cases like this, the calculated values of s  and t  are infinity despite the two 

lines not overlapping.  
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Figure 18.  Lines ( )P s  and ( )Q t  Are Parallel When φ  
Is Not Contained Within the Column Space of Φ   

The issue with this is that these lines do not intersect at any points, but 

mathematically the same results are returned as if they intersected at an infinite number of 

points. There must be an additional check within the code to verify if s  and t  are infinity, 

which of the two special cases the lines fall into. This is done by checking that column 

space of the vector φ   is not in the column space of Φ  [22]. Without this check, paths that 

are free of obstacles but are parallel with edges of obstacles elsewhere in the visibility 

graph are labeled as obstructed. A side-by-side comparison of a visibility matrix can be 

seen in Figure 19. The visibility graph on the left does not include this check of column 

spaces and leaves out several key edges. The visibility graph on the right includes this 

check and returns that these parallel paths are in fact free of obstacles. 
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Figure 19.  Visibility Graphs Without and With Checking for 
Column Space 

A visibility graph is a tool that is easily translatable by a human. This kind of 

representation, however, is not easily searchable or addressable by a computer. In order to 

represent a visibility graph in a searchable way a visibility matrix is created. A visibility 

matrix is a symmetric matrix in which each row and column index represent an individual 

node within the obstacle field obstacleC , as illustrated in Figure 20. Each space containing a 

“0” denotes that between the node in row m and column n there is no visibility. Conversely, 

a “1” in the space indicates that a clear path between row m and column n exists. The 

diagonal of the matrix is null values as it would relate a vertex of an obstacle to itself. A 

demonstration of how to read a visibility matrix is provided in Figure 21. Following the 

highlighted rows and columns of the matrix shows that node two is visible from nodes one, 

k, initq , and goalq . 
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Figure 20.  An Example of a Visibility Matrix 

 

Figure 21.  Reading a Visibility Matrix 

D.  A* SEARCH METHOD 

For all path-planning methods that produce roadmaps or decision trees for a robot 

to navigate, a way to determine which discrete path to take is needed. There are path-

planning methods that return a result quickly, but the result may or may not be optimal. 

There are search methods that are guaranteed to return the optimal path, but they do so by 

performing an exhaustive search which is time intensive [20]. The A* search method, 

however, returns an optimal path without performing an exhaustive search. It does so by 

assigning a cost to each node that considers both the distance needed to travel to a node 

and the distance remaining to the goal and prioritizing the search by the lowest cost path. 
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The A* search method was developed by Hart, Nilsson, and Raphael [23]. It 

produces a path by taking all the nodes within a roadmap and assigning them a value called 

a cost. This cost is calculated by a cost function ( )f q  and is used in determining the 

optimal path. Each node within an A* search has certain parameters. Each node has a list 

of neighbors called “successors,” a “parent node” that is the parent node with the lowest 

cost, a cost ( ) ,f q  a movement cost ( ) ,g q  and a heuristic cost ( )h q . An example roadmap 

is shown in Figure 22 with movement costs in blue and heuristic costs in red. 

The movement cost ( )g q  is associated with the path traveled to get from one node 

to another. It can be calculated by the length of the path, the difficulty of traveling it, or 

both. In the course of this research the distance from one node to another was used for the 

movement cost. The most commonly used heuristic cost ( )h q  is the straight line distance 

from the node to the goal. In this research, the straight line distance for testing ( ),x y  

coordinates was the Euclidean distance. When using latitude and longitudinal coordinates 

generated by GPS, the straight line distance was calculated using the haversine great circle 

distance. 

 

Figure 22.  Example Roadmap 
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Latombe explains the order of operations for an A* search in [7]. At the start of the 

search method all the nodes are organized into two lists. The open list stores all nodes prior 

to them being sorted and assigned a cost ( )f q . The closed list starts empty and is 

populated one node at a time at the end of each iteration of the search method.  

At the start of the function, initq  is assigned a cost of zero, all other nodes are 

assigned a cost of infinity, and all nodes are placed on the open list. At the top of each 

iteration, the open list is sorted in ascending order by cost value. On the first iteration this 

places initq  at the top. The node at the top of the open list is referred to as .q  At the end of 

each iteration q  is removed and placed onto the closed list. The function then repeats itself 

until goalq  is at the top of the open list. 

Each iteration of the A* search method starts with sorting the open list by the cost 

value assigned to each node. The top node on the list is .q  Each of 'q s  successors have 

their parent value set to .q  This parent value is used at the end of the search function to 

trace the shortest path from goalq  backwards to .initq  Then each of 'q s successors has its 

cost calculated. The cost function is  

 ( ) ( )( ) .f q g q h q= +   (9) 

The movement cost ( )g q  is calculated by summing the shortest total path cost from 

the start node to the successor. In the case of node e shown in Figure 22, the movement 

cost is three via node a and initq  instead of 11 via nodes b, a, and initq .  

When the cost functions for the successor nodes have been calculated, each 

successor is checked to see if it is already on the closed list. If the successor is on the closed 

list and the current calculated cost function is lower than the cost currently saved on the 

closed list, the closed list value is replaced with the lower cost function and corresponding 

parent node. This ensures that if a new, lower cost path is found to a node, the optimal path 

reflects this. Then each node is checked to see if it is on the open list. If the value the node 

holds on the open list is higher than the current iteration of the cost function, the node’s 

cost is changed to the lower calculation, and the parent node is changed to reflect the new 
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lower cost. This ensures that as the open list is sorted, the nodes with two possible paths 

leading to them only have the shortest path considered. 

After this is done for all of 'q s  successor nodes, the calculations are done for this 

iteration of the search. The current node q  is removed from the open list and placed on the 

closed list. The function starts again by sorting the open list in ascending order by cost 

value. The search function ends when goalq  is at the top of the open list. When the goal 

node has been reached, the fastest route is traced backwards from goalq  to initq  by following 

each node’s saved parent node.   

E. AN OVERVIEW OF THE OBSTACLE AVOIDANCE ALGORITHM 

The existing local obstacle avoidance capability for the P3-AT robot was developed 

in a previous thesis by LT Calvin Hargadine [6], which covers in depth the artificial 

potential-field function. A rudimentary knowledge of the function is helpful in 

understanding the navigation algorithm. The potential field function creates a gradient 

across the robot’s map. It treats the robot as a point under the influence of the gradient. The 

robot seeks to roll downhill, as depicted in Figure 23. The goal is placed at the lowest 

potential gradient on the map. All obstacles exhibit “repulsive forces” that appear as uphill 

gradients that force the robot away. 

 

Figure 23.  Example of an Artificial Potential Field with Obstacle. 
Source: [6]. 
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The mathematics used to establish the gradient is explained in [7]. The force acting 

on the robot at position ( ),q x y=  is ( )F q . The artificial potential field ( )U q  is related to 

( )F q  by 

 ( ) ( )F q U q= −∇   (10) 

with ( )U q∇  being the gradient vector at position q . The potential field ( )U q  is 

comprised of the attractive field of the goal ( )attU q  and the repulsive field of any obstacle 

present ( )repU q . The individual potential fields can be related to the forces by 

 ( ) ( ) ( ) ( ) ( )att rep att repF q F q F q U q U q= + = −∇ −∇ .  (11) 

The attractive potential field is a parabolic function that converges toward zero as 

the robot approaches the goal. It is modified by a gain attk  that can be adjusted to modify 

the robot’s performance. The attractive force is defined as 

 ( ) ( )att att att goalF U q k q q= −∇ = − − .  (12) 

The repulsive force should be a strong force when the robot is close to an obstacle 

but has no influence the robot’s trajectory if the obstacle is sufficiently far away. The 

repulsive field ( )repU q  has a minimum distance of influence 0ρ . Outside of the distance 

0ρ , the repulsive field drops to zero. The distance of the robot to the obstacle at point q  is 

denoted as ( )qρ . The repulsive field, like the attractive field, also has an adjustable gain 

repk . The repulsive force is defined as 

 ( ) ( ) ( ) ( ) ( ) ( )

( )
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0
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  (13) 

and is combined with the attractive force in order to generate the total force acting on the 

robot. 
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A significant limitation of the artificial potential-field function is the problem of 

local minimums that appear if obstacles have certain shapes [6]. A local minimum “traps” 

a robot in a position that is not the goal, as denoted by that asterisk at ( 1− , 6) in Figure 24.  

 

Figure 24.  An Artificial Potential Field with a Local Minima. Source: [6] 

LT Hargadine’s thesis involved a method to escape local minimum. When a local 

minimum was reached, but it was not the assigned goal position, the robot entered a wall 

following mode. The robot traced the outline of the obstacle until the local minima was 

escaped, and the robot continued to goalq . The algorithm that LT Hargadine produced also 

included two “emergency” modes. If an obstacle were to find its way within a pre-set safe 

distance, the robot stopped, waited five seconds, and then reversed. The four states of the 

robot are shown in Figure 25.  
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Figure 25.  State Diagram of Obstacle Avoidance Control Logic. 
Source: [6]. 

F. INTEGRATION OF THE OBSTACLE AVOIDANCE ALGORITHM AND 
PATH-PLANNING ALGORITHM 

The obstacle avoidance algorithm that LT Hargadine had developed for his thesis 

pulled pre-selected GPS waypoints from a text document. The user was prompted to select 

one of the ten preset waypoints, and the robot navigated to it before prompting the user to 

select another. This algorithm is in a stand-alone MATLAB script that runs through a single 

iteration before prompting the user for another waypoint to be selected.  

In this research, the A* search method outputs a list of nodes leading from initq  to 

.goalq  If the nodes are output in the same latitude, longitude format that the waypoints 

navigated to by LT Hargadine’s code, the obstacle avoidance algorithm can be looped 

while each new node in the optimal path is fed to it. To facilitate this the stand-alone 

obstacle avoidance script that ran through once was modified into a MATLAB function. 

This new function, potentialFieldToWaypoint.m , took the input of a GPS 

coordinate and navigated to it. The full code for the modified function is found in Appendix 
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F. With this newly reformatted code, the obstacle avoidance algorithm is treated as a stand-

alone “black box” that is looped while being fed desired coordinates.  

A flow diagram of the navigation algorithm is depicted in Figure 26. Following this 

flow chart, the “mission commands” box is the user generated obstacle map. The 

“cognition planning” is the path-planning algorithm that creates the visibility matrix and 

uses the A* search method to generate the optimal path in the form of GPS coordinates. 

The “path execution” box is the obstacle avoidance MATLAB function that generates the 

“actuator commands.” These come in the form of ROS messages published to the ROS 

ARIA node that controls the robot in the “acting” box. On the left-hand side, the 

“perception” group is the data read in by the LIDAR and GNSS/IMU that is fed back into 

the navigation algorithm to monitor progress to the next waypoint while avoiding obstacles. 

 

Figure 26.  Example Control Scheme for Autonomous Navigation. 
Adapted from [20]. 
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IV. MATLAB CLASS DEVELOPMENT 

During the execution of the path-planning algorithm, large numbers of uniform 

objects are created using MATLAB. Specific functions are performed on each one 

repeatedly. To facilitate this, custom MATLAB object classes were developed in order to 

create uniform instances of obstacles, obstacle fields, nodes, and A* searches. 

Object oriented programming has the advantage that it “encapsulates data and 

operations in objects that interact with each other via the object’s interface,” [24]. In a 

custom MATLAB class, an object can be created and assigned fixed properties, and the 

operations that will be performed can be stored under the methods. Full code for these 

functions can be found on the author’s GitHub page at [25]. The following material 

includes a brief discussion of each class, its development, and its main properties and 

methods, and how they interact. 

A. OBSTACLE AND OBSTACLE FIELD CLASSES 

The two main classes created for the visibility mapping part of the research are the 

obstacle and obstacleField classes. The obstacle class represents individual 

obstacles defined by the user and nests into the obstacleField class. The 

obstacleField class stores multiple obstacle objects and constructs the visibility 

graph and visibility matrix. 

The methods within the obstacle class are used to store characteristics of an 

obstacle object. The major properties and methods of the class can be seen in Figure 27. 

The obstacle avoidance function reads in GPS coordinates in the form of [latitude, 

longitude] arrays. Google Earth Pro .kml files store polygons as arrays of their vertices. 

This established that the MATLAB obstacle class stores the location of the obstacle in the 

form of an array of vertices. The coordinates of the vertices are stored in the property 

vertices. The numVertices is a quick reference of how many vertices are in an 

obstacle and is used in the obstacle field class. When a visibility graph is created, the lines 

that form ( )Q t  are taken from the edges of all other obstacles within the field. A quick 
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reference of numbering the individual obstacles makes pulling ( )Q t  from all other 

obstacles easier. As such, each obstacle is given the property of ObstacleNumber which 

is blank until a value is assigned by the obstacle field class.  

 

Figure 27.  Pseudocode Showing the Major Properties and 
Functions of the Obstacle Class 

The obstacle class nests into the obstacleField class, which contains the 

majority of the path-planning code. It is used to store and index obstacles, the initial point, 

and the goal point. The obstacleField class also creates the visibility graphs and 

matrices that are fed into the A* search method. Pseudocode showing the major properties 

and methods for the obstacleField class can be seen in Figure 28. The Field 

property stores the individual obstacle objects in an array. The initial and goal points are 

stored in the qinit and qgoal properties. When the visibility matrix is created, it is 

stored in a corresponding property VisibilityMatrix. The PointIndex is a three 

dimensional array. An example of the information it stores can be seen in Figure 29. The 

first layer stores the vertices of the obstacle of the field as well as qinit and qgoal. 

The second layer stores each point’s obstacle number and the number of which vertex 

within that obstacle that specific point is. These parameters are used heavily in the 

VisibilityMatrix function, which is the main function of the class. The other 

functions within the obstacleField class are constructor functions for both the class 
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and each property, plotting functions, and reference functions used within the creation of 

the visibility graph and plot. 

 

Figure 28.  Pseudocode Showing the Major Properties and 
Methods of the Obstacle Field Class 

 

Figure 29.  Example of the Information Stored in the Point Index Three 
Dimensional Array 



38 

The MATLAB script TestBed.m can be found in Appendix B and gives sample 

uses of calling all the methods within both classes. It is intended to provide users with the 

ability to follow and create their own obstacle field instances by hand.  

B. NODE AND A* SEARCH CLASSES 

The A* search method was created as its own separate class from the obstacle field. 

The primary reason was to facilitate the use of waypoints. Creating a new visibility graph 

for each waypoint is a time-consuming process. Instead of creating a new visibility graph 

for each new instance of a waypoint, one visibility graph can be used with multiple A* 

search instances. This is done by setting qgoal to waypoint 1 and finding the optimal path 

to this waypoint. When this is completed, waypoint 1 is set to qinit, waypoint 2 is set to 

qgoal, and a new A* search is run. This is repeated until the qgoal is reached. The 

optimal path from qinit to qgoal through all waypoints can now be identified by 

stringing together the optimal paths for each waypoint. 

The input of the AStarSearch class is an obstacleField object. The 

primary tool used in the AStarSearch class to generate an optimal path is the obstacle 

field’s visibility matrix. If the inputted obstacle field does not have a visibility matrix, the 

AStarSearch class generates one automatically. 

The building block for the AStarSearch class is the node object, much like the 

obstacle object is for the obstacleField. The node class creates objects with 

parameters that are either indexed or set by the AStarSearch class. Pseudocode for the 

node class can be seen in Figure 30. The main properties of the class are the location 

of the point that forms the node, the index, which directly correlates to the PointIndex 

of the obstacleField class, and the parameters f, g, and h, which are set by the 

AStarSearch class. Each node also has the neighbors parameter, which is filled by 

pulling from the visibility matrix. There are also initFlag and goalFlag Boolean 

variables, which are set to one (true) if the node is the initq  or goalq   and left as zero (false) 

otherwise. Last is the parameter cameFrom, which is set by the AStarSearch class’s 

optimalPath method. When performing the search method, each of 'q s   successors 
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have their parent value set to .q  The cameFrom parameter is where that information is 

stored. 

 

Figure 30.  Pseudocode Showing the Major Properties and 
Methods of the Node Class 

The AStarSearch class takes as an input an obstacleField object. 

Pseudocode for the class can be seen in Figure 31. When an instance of an AStarSearch 

object has an obstacleField loaded into it, the AStarSearch object stores the 

visibility matrix and automatically converts the vertices of the obstacles, the qinit, and 

qgoal of the obstacleField into node objects. Each node’s neighbors are auto 

populated by searching the visibility graph for instances of “1” between nodes. The 

AStarSearch class has a costFlag property. The cost between two nodes is 

calculated as a straight line distance. When obstacles are stored in an [x, y] coordinate 
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system, Euclidian distance is used and the costFlag is set to “0.” When obstacles are

stored in a [latitude, longitude] coordinate system, the distance is calculated by using the 

haversine great circle distance and the costFlag is set to “1.” The primary method in the

AStarSearch class is the findOptimalPath function. It performs the A* search in

the manner described in Chapter III.D. The open list, closed list, and optimal path are all 

saved in corresponding properties for later review by the user.  

The MATLAB script AStarTestBed.m can be found in Appendix E and gives

sample of calling all the methods within both node and AStarSearch classes. It is

intended to provide users with the ability to follow and create their own AStarSearch

instances by hand. 

Figure 31.  Pseudocode Showing the Major Properties and Methods of the 
AStarSearch Class 
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C. INTEGRATION WITH GOOGLE MAPS 

A conversion tool was needed to interface Google Earth Pro’s .kml files with 

MATLAB. Several .kml reading and writing toolkits were found using MATLAB’s built-

in toolkit locator. After examining several options, the read_kml toolbox by Amy Farris 

of the United States Geological Service was chosen [15]. The toolbox consists of a single 

script that reads in .kml files as a string data type and parses them into double arrays 

of [x,y,z] coordinates. Other toolboxes considered had robust abilities to read and write 

.kml files but provided numerous capabilities that were not needed for this research. In 

the read_kml script’s original format, the MATLAB function used to change the 

string to double data types truncates the decimal places at four digits. For regular 

mathematical purposes this suffices, but for reading GPS coordinates that are saved to the 

thirteenth decimal place, this represents a significant loss of fidelity. The exact loss varies 

with latitude, but at Monterey, California’s location this represented a 7.0-m difference in 

reading in the coordinates 36.5964472992381, −121.8764444525143 versus 36.5964,       

−121.8764. In order to fix this, code was added to keep the previously truncated decimal 

places. Exact changes in the code can be seen in Appendix G. 

The read_kml toolbox was the backbone for the three functions used to read the 

.kml files created by the user and convert them to the proper format for the obstacle, 

obstacleField, and AStarSearch classes. Each of the three user generated .kml 

file types got its own corresponding kmlTo- function. The goal point and initial points 

were read into MATLAB and converted using the kmlToGoal and kmlToInit 

functions, respectively. The obstacle map was read in by the kmlToObstacle function 

where the GPS coordinates for each polygon were converted to an obstacle, and then all 

the obstacles were loaded into an obstacleField type object. The .kml file interfacing 

functions are found in Appendix C. The MATLAB script Google_Earth_test.m can 

be found in Appendix D and gives sample uses of calling each of the kmlTo- functions. 

It is intended to provide users with the ability to follow and create their own obstacle field 

instances by hand.  
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D. GLOBAL NAVIGATION ALGORITHM SUMMARY 

What follows is a brief description of how the map making, MATLAB code, and 

robot navigation are all tied together. In Appendix A, the code DemoFile.m shows a 

demonstration of the navigation algorithm reading in .kml files, determining the optimal 

path, and navigating the robot to it. The full code, example .kml files for obstacle maps, 

start points, and end points, can be found on the author’s GitHub page at [25]. 

The user first opens Google Maps Pro. Using the “draw polygons” tool in the top 

tool bar, the user draws bounding boxes around large-scale obstacles within their area of 

operations. Buildings, terrain unnavigable by the robot, or off limits areas are included. 

Users do not need to include small, movable obstacles in the imagery such as cars, tables, 

or trees, as the local obstacle avoidance algorithm navigates the robot around these. When 

the obstacle field is complete, the user saves it as a .kml file. A start point is placed by 

using the “Add Placemark” tool, and it is saved as its own .kml file. The process is 

repeated for the goal point.  

The pseudocode laid out in Figure 32 shows the steps taken in the MATLAB 

DemoFile.m script. The code reads in the three .kml files, converts them to an 

obstacleField, builds the visibility matrix, feeds the obstacleField to an 

AStarSearch instance, and then determines the optimal path. The optimal path is 

plotted for the user to see. The coordinates from the optimal path are then given to the 

potentialFieldtoWaypoint function that navigates the robot to the waypoints. A 

video demonstration of this process can be found at [26]. 
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Figure 32.  Pseudocode for the Order of Operations in Using the Navigation 
Algorithm 
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V. EXPERIMENTS AND RESULTS 

With the completion and verification of the path-planning algorithm, which was 

implemented in MATLAB, it was time to evaluate the navigation algorithm’s ability to 

operate in a real-world environment. An obstacle map of NPS, seen in Figure 33, was 

created in Google Earth Pro. Bounding boxes were drawn around obstacles there are visible 

within the imagery that the robot cannot navigate through: buildings, stair cases, and 

obstacles that the 2D LIDAR is not able to detect such as curbs. The two main areas around 

which experiments occurred are labeled as Building 1 and Courtyard.  

 

Figure 33.  Obstacle Map of the Naval Postgraduate School Campus 
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This map was then given to the path-planning algorithm, which in turn produced 

the visibility graph seen in Figure 34. The visibility graph consists of 26 obstacles 

comprising 130 nodes. The polygons present in the visibility graph correspond to the 

bounding boxes drawn around the known obstacles in the map. The clear lines-of-sight in-

between nodes are shown by the dotted lines and indicate the 964 possible paths that the 

robot may travel. In the last step of the path-planning algorithm, the visibility graph is used 

by the AStarSearch class to find the optimal path between a user given qinit and 

qgoal. 

 

Figure 34.  Visibility Graph of the NPS Campus Generated by the 
Path-Planning Algorithm 
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A. EXPERIMENT 1: GPS WAYPOINT NAVIGATION USING THE PATH-
PLANNING ALGORITHM 

Experiment 1 was developed to assess the ability of the robot to navigate to GPS 

waypoints generated by the path-planning algorithm without deviating heavily from the 

desired path. The courtyard was selected to eliminate the problems of rough terrain and 

GPS loss due to proximity to buildings. A five-sided polygon was drawn in the courtyard, 

which is shown in Figure 35. The numbered pins in the figure correspond to the five 

waypoints that the robot will navigate to in the experiment. 

Figure 35.  Experiment 1’s Polygon and Numbered Waypoints 

The results are shown in Figure 36. The path traveled by the robot, shown in blue, 

shows that each waypoint generated by the path-planning algorithm was successfully 

navigated to. The trajectory of the robot does appear to deviate from the straight line path 

between the waypoints shown in green. This is due to the goal radius placed around each 

waypoint. A navigation waypoint for a robot is surrounded by a goal radius that artificially 
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increases the size of a goal to an acceptable tolerance. Without this goal radius surrounding 

a waypoint, the robot will most likely never reach the exact assigned goal despite being 

within an acceptable distance. In the robot’s configuration file, the parameter that 

corresponds to the distance for the goal radius was set to 2.0 m. When the robot enters this 

radius, it terminates navigation to the current waypoint. It then recalculates the path to the 

next waypoint from its current position rather than from the waypoint’s programmed 

position. This accounts for the deviations in the path. 

Figure 36.  Path Traveled by the P3-AT in Experiment 1 

The next test was an assessment of how the navigation algorithm performed when 

avoiding obstacles. The robot was run through the same course, and periodically an 

obstacle was placed in front of the robot’s path. The resulting trajectories can be seen in 
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Figure 37. The yellow pins indicate points-of-interest (POIs) that warrant discussion. At 

the indicated POIs an obstacle was placed in front of the robot. When the robot encountered 

an obstacle, the artificial potential field function performed its role obstacle avoidance role 

as desired. It is noted that when the robot was forced to deviate heavily from the straight 

line path, as seen at POI 4, it made no attempt to regain the straight-line path between 

points four and five but instead went straight to the waypoint. These results indicate that 

the path-planning algorithm was integrated successfully with the obstacle avoidance 

algorithm. 

Figure 37.  Evaluating Obstacle Avoidance While Navigating to Waypoints 

B. EXPERIMENT 2: MEDIUM DISTANCE NAVIGATION 

With the successes of the performance of the navigation algorithm on flat terrain, 

it was determined that a medium distance test over rugged terrain needed to be run. 
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Experiment 2 was developed to evaluate this capability. A start point on the west side of 

the courtyard was chosen as well as a goal north of Building 1, as seen in Figure 38. These 

new points and the previously made obstacle map there ran through the path-planning 

algorithm and an optimal path was produced. The optimal path generated is shown in 

Figure 39 and highlighted in green.   

Figure 38.  Start and Goal Points for Experiment 2 
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Figure 39.  The Optimal Path Generated by the Path-Planning 
Algorithm for Experiment 2 

The results of the experiment are shown in Figure 40. The robot moved from its 

starting position and picked up the first waypoint without issue. When moving to the next 

waypoint, the robot entered the loose terrain. At POI 1, shown by the yellow pin, the robot 

encountered bushes, and successfully navigated around them. As the robot continued to 

travel around the bushes it encountered larger piles of woodchips. At certain points the 

wheels slipped and on two occasions the chassis pushed through piles of woodchips. At 

POI 2, the robot found itself under tall trees and near Building 1. The navigation outputs 

indicated that the robot had lost GPS connectivity. In this condition, paired with the loose 

terrain and several small bushes it was attempting to navigate around, the robot’s odometry 

measurements became unusable. At this point, the robot was not traveling more than a 

meter in either direction as it had become mired in woodchips. The odometry 

measurements-based trajectory line, however, indicates that the robot traveled into 

Building 1 and further under the tress. This discrepancy demonstrates that the odometry 



52 

measurements were adversely affected by the terrain. After several minutes of the robot 

being unable to free itself the experiment was ended.  

 

Figure 40.  The Optimal Route and Route Traversed for Experiment 2 
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VI. CONCLUSIONS 

A. ASSESSMENT OF GOALS 

The purpose of this thesis was to facilitate the integration of unmanned ground 

vehicles into lower levels of the Marine Corps by providing operators non-technical tools 

to generate mission guidance for a robot. The goal of developing the capability for an 

operator to quickly generate an obstacle map and the robot to perform optimal path 

planning was successful. A path-planning algorithm was developed using the visibility 

graph and A* search methods. It was then successfully integrated with an existing obstacle 

avoidance algorithm. While the path-planning algorithm yielded the desired results, is was 

not completely integrated with the P3-AT because of the limitations with the capabilities 

of the robot. On several occasions the ability to navigate to waypoints was successful, but 

when the robot traveled over loose terrain, near buildings, and under trees, the robot lost 

the ability to localize itself.  

B. SYSTEM IMPROVEMENTS AND AREAS OF FUTURE WORK 

Further work could incorporate into the A* search’s cost function the ability to 

account for rough terrain. A bounding box could be drawn around loose terrain, and a 

penalty for any route traveling through it could be imposed via the movement cost. Using 

this method will still consider paths through rough terrain but favor paths less likely to 

cause issues with the chassis. 

It would be possible to use post processing of the LIDAR readings in order to 

update the obstacle map. The LIDAR returns obstacle positions as measurements of 

distance and bearing. These measurements could be used to plot detected obstacles and 

update the user-made obstacle map. Future missions could base the visibility graph on these 

more up-to-date, closer to ground truth maps. 

The capabilities of the sensor suite could be increased by using the onboard webcam 

for computer vision. Computer vision could be used for obstacle detection, classification, 

and navigation. When fused with the data from the LIDAR, the localization and navigation 

abilities of the robot will be greatly increased.   
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APPENDIX  A. DEMONSTRATION.M 

%% Demonstration File 
  
% This script takes the three test bed scripts-TestBed.m, 
% GoogleEarthToolboxTest.m, and AStarTestBed.m, and concatonates all  
% them into one script with a demonstration file. 
  
% Instructions: 
% Go Into GoogleEarth, pick a location, and create an obstacle field by 
% drawing squares around visible obstacles. Save is as 
‘demoObstacles.kml’ 
  
% Then pick a single point to be the initial position. Save it as 
% “demoInit.kml.” Do the same with a goal pos, save as “demoGoal.kml” 
  
% Then run this script in MATLAB. 
% Demonstration files can be found at https://github.com/MattAud/Thesis 
% A video demonstration can be watched at  
% https://www.youtube.com/watch?v=Y0Jkl2ozzEE 
  
% Matt Audette 
% 20180618 
  
clear all 
clc 
  
%% Load the .kml files: 
  
obstacleFieldName = ‘demoObstacles.kml’ 
initPointName = ‘demoInit.kml’ 
goalPointName = ‘demoGoal.kml’ 
  
%% Create the Obstacle field from the .kml: 
% initiate an empty field 
demoField = obstacleField(); 
% load it with our obstacles 
demoField = kmlToObstacleField(demoField, obstacleFieldName) 
  
%% Load in the initial and goal points: 
% And the start point: 
demoField = kmlToInit(demoField, initPointName); 
% And the goal point: 
demoField = kmlToGoal(demoField, goalPointName); 
  
%% Plot it: 
plotField(demoField) 
  
%% Build the Visibility Matrix: 
demoField = visibilityMatrix(demoField) 
plotVisibilityGraph(demoField) 
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%% Find and plot the Optimal Path: 
%First, create an AStarSearch Object: 
aStarDemo = AStarSearch(demoField) 
%Find and plot the optimal path: 
aStarDemo = findOptimalPath(aStarDemo) 
plotOptimalPath(aStarDemo) 
  
%% Produce the optimal path: 
coordinateList = coordsFromOptimalPath(aStarDemo.optimalPath) 
  
%% Loop the Robot Navigation Function: 
for i = 1:size(coordinateList, 1) 
    %Send the coordinate and waypoint #  
    %and wait for the robot to go to that point: 
    potentialFieldToWaypoint( coordinateList(i, :), i) 
     
end  
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APPENDIX  B. TESTBED.M 

%% Obstacle Field Test Bed 
% By Matt Audette 
% Last Update: 20180121 
% Remarks: This is a script that will be used to test the obstacle and 
% obstacle field classes. 
  
clc 
clear all 
close all 
format compact 
  
%% Create Obstacles: 
disp(‘ ---------- Create three obstacles ------- ‘) 
obstA = obstacle([2,1; 2,2; 3,2; 3,1]); 
obstB = obstacle([6,6; 7,6; 7,7]); 
obstC = obstacle([4,2; 5,2; 5,7; 4,7]); 
  
%% Create the obstacle fields: 
disp(‘ ----------Create Two Fields ------- ‘) 
emptyField = obstacleField() %an empty test field 
testField1 = obstacleField(obstA, obstB) %use the constructor and add 2  
% obstacles. Ensure that the NumObstacles goes up: 
  
% Now test the addObstacle function and ensure that the counts are  
% correct and do no overwrite one another: 
disp(‘ ---------- Expand the Fields ------- ‘) 
  
%Note: in this script, the call is: 
% emptyField = addObstacle(emptyField, obst1, obst2) 
% In the command window, it would be typed: 
% addObstacle(emptyField, obst1, obst2) 
% addObstacle(testField1, obst3) 
  
emptyField = addObstacle(emptyField, obstA, obstB) 
testField1 = addObstacle(testField1, obstC) 
  
disp(‘ ---------- Set an Init Point ------- ‘) 
testField1 = initPoint(testField1, [1,1]) 
% In the command window: initPoint(testField1, [1,1]) 
  
disp(‘----- Create a waypoint load it as a point ----’) 
qstart = Waypoint( [3,4], 0); 
qend = Waypoint( [8,8] ); 
qend = setClass(qend, 1); 
emptyField = initPoint(emptyField, qstart.Location) 
emptyField = goalPoint(emptyField, qend.Location) 
% In the command window: initPoint(testField1, [1,1]) 
  
disp(‘ ---------- Set a Goal Point ------- ‘) 
testField1 = goalPoint(testField1, [8,7]) 
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% In the command window: goalPoint(testField1, [8,7]) 
  
disp(‘ ---------- Plot the Field ------- ‘) 
plotField(testField1) 
% In the command window: goalPoint(testField1, [8,7]) 
  
% Test the function of the empty qinit and qgoal functions: 
plotField(emptyField) 
  
disp(‘ ---------- Test the Field Size Change ------- ‘) 
emptyField = setFieldSize(emptyField, 15, 1) 
plotField(emptyField) 
  
disp(‘ --------- Auto Size Feature ----------’) 
emptyField = autoFieldSize(emptyField) 
plotField(emptyField) 
  
disp(‘ --------- Built Point Index Feature----------’) 
% the point index array is a single array that will contain all the 
% points in each obstacle, the waypoints, and the qinit and goal. It 
% will be the primary way to index points in the visibility graph 
% and plot functions. 
  
% To access a point index number C, call the command 
% obstacleField.PointIndex(C,:) and it will return the point. 
testField1 = constructPointIndex(testField1) 
disp(‘ Test calling a singe point by its index:’) 
testField1.PointIndex(3,:, 1) %where ‘3’ is the index 
  
disp(‘ --------- Get Point From Index Feature----------’) 
% This fuction works backwards from the point index array: it is 
% fed an index number and returns the point. This will be used to 
% map the completed visibility matrix to the points in the field. 
pointTest = getPointFromIndex(testField1, 3)  
  
%This function will also check if the point index is empty, and if so, 
%build a point index. Test this with emptyField: 
pointTest2 = getPointFromIndex(emptyField, 3) 
  
disp(‘ --------- Get Obstacle Info From Index Feature----------’) 
% This function gives an index number from the PointIndex and returns 
the 
% second array’s infor. It will be in the form of [obstacle#, point#]. 
% Test is out for the same two points as before: 
obstacleTest = getObstacleFromIndex(testField1, 3) 
obstacleTest2 = getObstacleFromIndex(emptyField, 3) 
  
%% test the Index feature 
  
index = min( find(testField1.PointIndex(:,1,2) == 2)) 
testOutPoint = getObstacleFromIndex(testField1, index) 
  
%% Build the visibility Matrix: 
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testField1 = visibilityMatrix(testField1) %in the command prompt, use 
    % visibilityMatrix(testFeild1) 
%emptyField = visibilityMatrix(emptyField) 
  
% return the point from the point index: 
points1 = recallPointsFromMatrix(testField1, 1, 4) 
% This line below throws an error message to see if it works. 
%points2 = recallPointsFromMatrix(emptyField, 1, 4) 
  
disp(‘Outline how we will plot the visibility array:’) 
% call the plot function: 
plotVisibilityGraph(testField1) 
%plotVisibilityGraph(emptyField) 
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APPENDIX  C. KML TO OBSTACLE SCRIPTS 

%% KML to Init Point function 
% Matt Audette 
%  
% Reads in a .kml file and spits out an obstacle field term of “end  
% point” that can then be loaded into the Obstacle Field function.  
% Uses the modified read_kml function by Amy Farris available on the  
% Mathworks online app repository. 
  
function oField = kmlToInit(oField, fileNameString) 
    % Read in the .kml file, store it in an array 
    [stoX, stoY, stoZ] = read_kml(fileNameString) 
    point = [stoX, stoY];  
    % Load it: 
    oField = initPoint(oField, point); 
end 
 
 
%% KML to Goal function 
% Matt Audette 
%  
% Reads in a .kml file and spits out an obstacle field term of “end  
% point” that can then be loaded into the Obstacle Field function.  
% Uses the modified read_kml function by Amy Farris available on the  
% Mathworks online app repository. 
  
function oField = kmlToGoal(oField, fileNameString) 
    % read in the .kml file, store it in an array 
    [stoX, stoY, stoZ] = read_kml(fileNameString) 
    point = [stoX, stoY]; 
    % Load it: 
    oField = goalPoint(oField, point); 
end 
 
 
%% KML to Obstacle Field function 
% Matt Audette 
%  
% Reads in a .kml file and spits out in obstacle field.  
% Uses the modified read_kml function by Amy Farris available on the 
% Mathworks online app repository. 
  
function oField = kmlToObstacleField(oField, fileNameString) 
    % Read in the .kml file, store it in an array 
    [stoX, stoY, stoZ] = read_kml(fileNameString) 
    pointCounter = length(stoX) 
  
    %% Sort the coordinates into obstacles: 
    % The .kml file is just a series of points. If you look at the GPS 
    % coordinates, the stored points repeat the first/last point,  
    % square bounding box will read points 1, 2, 3, 4, 1, then the next 
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    % meaning the a coordinates. We will use that to identify where one  
    % obstacle begins and ends. 
    temp = []; 
    for i = 1:pointCounter 
        % We need to take the first coordinate to be loaded into the  
        % temporary holder so that we can use it as a reference to look  
        % for the repeat value. We’ll call the variable “checker.” 
        if length(temp) == 0 
            checker = stoX(i) 
        end 
        temp = [temp; [stoX(i), stoY(i)]]; 
  
        %if we check the first coordinate against itself, it’ll be 
        %true. So skip the first element. 
        if length(temp) > 2 
            %if the current value matches the checker reference value, 
            %trim the last coordinate off (it’s a repeat) and then  
            % clear the temporary storage matrix. 
            if stoX(i) == checker 
                %disp(‘FOUND A MATCH!’) 
                trimNumber = length(temp)-1; 
                %temp 
                holder = temp(1:trimNumber, :) 
                %The obstacleField class takes in obstacles, 
                %so turn holder into an obstacle: 
                holderObstacle = obstacle(holder); 
                oField = addObstacle(oField, holderObstacle); 
                temp = []; 
            end 
        end 
    end 
  
end 
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APPENDIX  D. GOOGLE_EARTH_TEST.M 

%% Matlab / Google Earth toolbox test kit: 
% Used the modified add on “read_kml” (a stand alone function) 
% to read .kml files. Tests the kmlTo____ functions 
  
% Matt Audette 
% 20180430 
  
%% Test Reading in a .kml file 
% In my Matlab main folder, I have a .kml file that I saved. 
% The read_kml produces an three matrices: [x, y, z]  
  
%[x, y, z] = read_kml(‘test_polygon.kml’) 
  
% Reading in from a specific file path 
readInStr = ‘C:\Users\audet\OneDrive\Documents\MATLAB\
multi_point_test.kml’; 
[A,B,C] = read_kml(readInStr) 
  
%% Test bed for the KML to obstacle function: 
  
%% Read in the .kml file: 
% Store it in an array 
[stoX, stoY, stoZ] = read_kml(readInStr) 
pointCounter = length(stoX) 
  
%% Sort the coordinates into obstacles: 
% The .kml file is just a series of points. If you look at the GPS 
% the a coordinates, the stored points repeat the first/last point,  
% meaning square bounding box will read points 1, 2, 3, 4, 1, then the  
% next coordinates. We will use that to identify where one obstacle and 
% begins at he ends. 
temp = []; 
for i = 1:pointCounter 
    % We need to take the first coordinate to be loaded into the  
    % temporary holder so that we can use it as a reference to look for  
    % the repeat value. We’ll call the variable “checker.” 
    if length(temp) == 0 
        checker = stoX(i) 
    end 
    temp = [temp; [stoX(i), stoY(i)]]; 
     
    %if we check the first coordinate against itself, it’ll be 
    %true. So skip the first element. 
    if length(temp) > 2 
        %if the current value matches the checker reference value, 
        %trim the last coordinate off (it’s a repeat) and then clear  
        % the temporary storage matrix. 
        if stoX(i) == checker 
            disp(‘FOUND A MATCH!’) 
            trimNumber = length(temp)-1; 
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            temp 
            holder = temp(1:trimNumber, :) 
            testObstacle = obstacle(holder) 
            temp = []; 
        end 
    end 
     
end 
  
%% Test out the kmlToObstacleField: 
testField2 = obstacleField(); 
testField2 = kmlToObstacleField(testField2, readInStr) 
  
% Load in the goal point: 
goalString = ‘EndPointTest.kml’; 
testField2 = kmlToGoal(testField2, goalString); 
  
% And the start point: 
initString = ‘StartPointTest.kml’; 
testField2 = kmlToInit(testField2, initString); 
  
%testField2 = autoFieldSize(testField2); 
plotField(testField2) 
testField2 = visibilityMatrix(testField2) 
plotVisibilityGraph(testField2) 
  
%% Look at a KML with points: 
fileNameStr3 = ‘testKmlWithPoints.kml’; 
[D,E,F] = read_kml(fileNameStr3); 
G = [D,E] 
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APPENDIX  E. ASTAR_TESTBED.M 

%% A* Search Test Bed 
% by Matt Audette 
% last update: 20180530 
  
% This is the test script for kicking the tires on my node/A* search  
% object class. 
  
% RUN THE SCRIPT TestBed BEFORE HAND!  
% RUN THE SCRIPT GoogleEarthToolboxTest BEFORE HAND, TOO!  
% This script will read in the obstacleField objects from both. 
clc 
clear all 
format compact 
  
TestBedMkI 
GoogleEarthToolboxTest 
  
% Build a test node: 
node1 = node([1,2]) 
  
% Fill out the other properties: 
% If you do this in the command line, it’s just ‘setIndex(node1, 1)’ 
node1 = setIndex(node1, 1) 
  
node1 = setF(node1, 0);  
% an f of ‘0’ indicates that it’s the start point, so we should set the 
% initFlag property to 1. And it is therefore NOT the goal node, so... 
node1 = setInitFlag(node1, 1); 
node1 = setGoalFlag(node1, 0); 
  
% And fill out the rest of the properties in order to test them: 
node1 = setG(node1, 0); 
node1 = setH(node1, 20); 
node1 = setNeighbors(node1, [2,3,4,5]) 
node1 = setCameFrom(node1, 7) 
  
%% This completes the node functions. Move into the A* Search Object: 
% Create an A* search object: 
aStarTest = AStarSearch(testField1) 
  
% Load of the node index: 
aStarTest = pointsToNodes(aStarTest) 
  
% Now do it with the GoogleMapsToolboxTest  
aStarFromKML = AStarSearch(testField2) 
%aStarFromKML = pointsToNodes(aStarFromKML) 
  
aStarTest = nodeIndextoCellArray(aStarTest) 
%aStarFromKML = nodeIndextoCellArray(aStarFromKML) 
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% set the cost function flagL 
aStarTest = setCostFlag(aStarTest, 0) 
aStarFromKML = setCostFlag(aStarFromKML, 1) 
  
% Testing the optimal path function: 
aStarTest = findOptimalPath(aStarTest) 
aStarFromKML = findOptimalPath(aStarFromKML) 
  
% Plot them: 
plotOptimalPath(aStarTest) 
plotOptimalPath(aStarFromKML) 
  
%% Test getting the coordinate list: 
coordList = coordsFromOptimalPath(aStarFromKML.optimalPath) 
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APPENDIX  F. POTENTIALFIELDTOWAYPOINT.M 

%% Potential Field to Waypoint Function 
% Matt Audette 
  
% This is a function based off of Calvin Hargadine’s thesis script,  
% ‘p3ATnavigation.m’. The goal of this is to treat his code like a  
% “black box”that mine feeds formatted GPS coordinates in to. 
  
% His code initiates the robot and takes in a single waypoint from a  
% user prompt. I’m going to make a change that the input comes from a  
% pair of points passed from this function. 
  
function potentialFieldToWaypoint( coordinates, goalnum ) 
%’coordinates’ is the [x,y] values that will be the goal. 
  
    % Pioneer 3-AT Localization and Navigation Script 
    % Incorporating Potential Field function for navigation and  
    % GPS/IMU through Kalman Filter for localization 
  
    %%%% ENSURE ROS MASTER NODE IS STARTED AND MATLAB NODE GENERATED  
    %%%% PRIOR TO RUNNING THIS SCRIPT -- USE rosinit 
  
    %% Setup and parameter initialization 
    % Create global variables for use in communicating with ROS system 
    global Pose 
    global Laser 
    global Goal 
    global NavStatus 
    global GPSFix 
  
    % Create ROS publishers, subscribers, and service client 
    poseSub = rossubscriber(‘/geonav_p3odom’,@p3atPoseCallback) 
    laserSub = rossubscriber(‘/scan’,@p3atLaserCallback) 
    cmdPub = rospublisher(‘/RosAria_Node/cmd_vel’,’geometry_msgs/
Twist’) 
    goalPub = rospublisher(‘/nav/goal_odom’,’nav_msgs/Odometry’) 
    casePub = rospublisher(‘/current_case’,’std_msgs/String’) 
    goalSub = rossubscriber(‘/geonav_goalodom’,@p3atGoalCallback) 
    navstatusSub = rossubscriber(‘/nav/status’,@p3atNavStatusCallback) 
    fixSub = rossubscriber(‘/gps/fix’,@p3atGPSFixCallback) 
    client = rossvcclient(‘/reset_kf’) 
  
    % Pause for publisher/subscriber registration 
    pause(2) 
  
    % Create empty messages for publication 
    caseMsg = rosmessage(casePub) 
    cmdMsg = rosmessage(cmdPub) 
    goalMsg = rosmessage(goalPub) 
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    % Get parameters and goal information the robot 
    [param, sto_goals] = robotConfigReader_multigoal; 
  
    % Ask user for desired goal number 
    %goalnum = input(‘Enter desired WP number (from 1 to 10):’); 
    %current_goal = goal(goalnum,:); 
    current_goal = coordinates; 
  
    % Publish initial goal message for ROS system transform 
    for k = 1:5 
        goalMsg.Pose.Pose.Position.X = current_goal(-5); 
        goalMsg.Pose.Pose.Position.Y = current_goal(2); 
        goalMsg.Pose.Pose.Orientation.X = 0; 
        goalMsg.Pose.Pose.Orientation.Y = 0; 
        goalMsg.Pose.Pose.Orientation.Z = 0; 
        goalMsg.Pose.Pose.Orientation.W = 1; 
        send(goalPub,goalMsg); 
        pause(0.1) 
    end 
  
    % Get current NavStatus message 
    navstatus = NavStatus.Data’; 
  
    % Ensure NavStatus is good (2) and if not, reset KF 
    if navstatus(1) ~= 2 
        call(client) 
    else 
    end 
  
    % Define parameters for navigation algorithm 
    K1 = param(3);              % forward velocity gain 
    K2 = param(2);              % turning velocity gain 
    maxvel = 3;                 % maximum velocity of robot 
    laser_max = 20;             % robot laser view horizon 
    goaldist = 0.5;             % distance metric for reaching goal 
    goali = 1;                  % current goal index 
    xi = param(5);              % attractive force gain 
    eta = param(4);             % repulsive force gain 
    d = param(1);               % distance above which robot velocity  

  % is constant 
    rho0 = param(6);            % offset from obstacle to ignore  

  % repulsive term 
    c = 1;                      % initial case variable 
    navrun = 0;                 % navigation fix status variable 
  
    % Define parameters for wall-following algorithm 
    angK = 1;                   % turning velocity gain for WF  

  % algorithm 
    linK = 1;                   % forward velocity gain for WF  

  % algorithm 
    g_dist = [];                % initialize goal distance 
    g_dist0 = [];               % initialize initial goal distance 
    Dcount = 0;                 % goal distance counter 
    N_Buffer = 20;              % number of measurements used to  
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  % average repulsive force 
    Frep_Buffer = zeros(N_Buffer,1);    % initialize repulsive force  

        % buffer 
  
    % Output velocity filter parameters 
    Kfilterold = 0.6;           % percentage of old velocity used 
    Kfilternew = 0.4;           % percentage of new velocity used 
    LinearVel_old = 0.0;        % initialize linear velocity 
    AngularVel_old = 0.0;       % initialize angular velocity 
  
    %% Potential Field Algorithm 
    while 1                     % Infinite loop until goal is reached 
        % publish goal coordinates 
        goalMsg.Pose.Pose.Position.X = current_goal(2); 
        goalMsg.Pose.Pose.Position.Y = current_goal(1); 
        goalMsg.Pose.Pose.Orientation.X = 0; 
        goalMsg.Pose.Pose.Orientation.Y = 0; 
        goalMsg.Pose.Pose.Orientation.Z = 0; 
        goalMsg.Pose.Pose.Orientation.W = 1; 
        send(goalPub,goalMsg); 
  
        % get the laser ranges 
        laser_range = Laser.Ranges; 
  
        % angular resolution vector 
        laser_angle = 
(Laser.AngleMin:Laser.AngleIncrement:Laser.AngleMax)’; 
  
        % get goal coordinates in XY world frame 
        q_goal = [Goal.Pose.Pose.Position.X, 
Goal.Pose.Pose.Position.Y]; 
  
        % get current GPS fix 
        gpsfix = [GPSFix.Status.Service,GPSFix.Status.Status] 
  
        % get current nav status 
        navstatus = NavStatus.Data’ 
  
        % if good nav status, set nav status variable 
        if navstatus(1) == 2 
            navrun = 1; 
        else 
        end 
  
        % if bad nav status with previous good fix and good GPS fix,  

  % reset KF 
        if navstatus(1) == 3 && navrun == 1 && gpsfix(2) == 30 
            call(client) 
            navrun = 0; 
        else 
        end 
  
        % switch/case for algorithm decision logic 
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        switch c 
            case 1              % Potential Field Algorithm 
                fprintf(‘Potential Field\n’) 
                caseMsg.Data = ‘Potential Field’;   % publish current  

% case to ROS 
                send(casePub,caseMsg) 
  
                % get X, Y and Theta 
                pose = Pose.Pose.Pose; 
                quat = pose.Orientation; 
                angles = quat2eul([quat.W quat.X quat.Y quat.Z]); 
                yaw = angles(1); 
                x = pose.Position.X; 
                y = pose.Position.Y; 
                th = yaw; 
  
                fprintf(‘X: %f, Y: %f, Theta: %f \n’,x,y,th); 
  
                % call the attractive force function 
                wp_x = q_goal(goali,1); 
                wp_y = q_goal(goali,2); 
                [dist, angvel, linvel] = attforcepot(x,y,th,wp_x,wp_y); 
  
                % evaluate what to do next based on the distance to the  

    % waypoint. 
                if (dist <= goaldist) 
                    % if you have reached the goal 
                    if (goali < size(q_goal,1)) 
                        % if there are multiple goals 
                        disp(‘Going to next waypoint!’); 
                        goali = goali+1; 
                    else 
                        % if there is a single goal 
                        fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                        cmdMsg.Linear.X = 0.0; 
                        cmdMsg.Angular.Z = 0.0; 
                        fprintf(‘Publishing cmd_vel with lin. vel: %f, 
ang. vel.: %f\n’, ... 
                            0.0,0.0); 
                        send(cmdPub,cmdMsg); 
                        disp(‘Done!’) 
                        break;      % exit while loop as final goal is  

% reached 
                    end 
                else 
                    % goal not yet reached 
                    fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                    if (dist <= d) 
                        goalvelx = linvel; 
                        goalvelw = angvel; 
                    else 
                        goalvelx = maxvel; 
                        goalvelw = angvel; 
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                    end 
                end 
  
                pause(0.1)          % pause for ROS system 
  
                Frept = [0;0];      % initialize repulsive force 
  
                for i = 1:1032 
                    if laser_range(i) <= laser_max 
                        % object position in the laser i coordinate in  

% meters 
                        p_laser = [laser_range(i) 0 0 1]’; 
                        Xobj = cos(laser_angle(i))*p_laser(1); 
                        Yobj = sin(laser_angle(i))*p_laser(1); 
                        rho = sqrt(Xobj^2+Yobj^2); 
                        if rho < rho0 
                            Frep = eta*(1/p_laser(1)-1/
rho0)*(1/(p_laser(1)^2))*[-cos(laser_angle(i)) -sin(laser_angle(i))]’; 
                        else 
                            Frep = [0;0]; 
                        end 
                        Frept = Frept+Frep; 
                    else 
                    end 
                end 
  
                Frep_Buffer = [Frept(2); Frep_Buffer(2:N_Buffer-1)]; 
                MeanBuffer = mean(Frep_Buffer); 
  
                % calculate total force and build velocity terms 
                Fatt = [goalvelx;goalvelw]; 
                Ftot = xi*Fatt + eta*Frept; 
                fprintf(‘\n\nNorm of Ftot: %f\n’,norm(Ftot)); 
                LinearVel = K1*Ftot(1); 
                AngularVel = K2*Ftot(2); 
  
                % determine which case to enter next 
                if min(laser_range) < 0.5 
                    c = 3; 
                elseif norm(Ftot) < 0.5 && dist > 1 
                    c = 2; 
                    g_dist0 = dist; 
                    g_dist = dist; 
                else 
                    c = 1; 
                end 
  
            case 2              % Wall-Following Algorithm 
                fprintf(‘\nWall Following\n\n’) 
                caseMsg.Data = ‘Wall Following’;    % publish current  

  % case to ROS 
                send(casePub,caseMsg) 
  
                % get X, Y and Theta 
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                pose = Pose.Pose.Pose; 
                quat = pose.Orientation; 
                angles = quat2eul([quat.W quat.X quat.Y quat.Z]); 
                yaw = angles(1); 
                x = pose.Position.X; 
                y = pose.Position.Y; 
                th = yaw; 
  
                fprintf(‘X: %f, Y: %f, Theta: %f \n’,x,y,th); 
  
                % call the attractive force function 
                wp_x = q_goal(goali,1); 
                wp_y = q_goal(goali,2); 
                [dist, angvel, linvel] = attforcepot(x,y,th,wp_x,wp_y); 
                pause(0.1) 
  
                % if closer to the goal than last time, increment DD 
                if dist < g_dist 
                    Dcount = Dcount + 1 
                else 
                end 
  
                g_dist = dist; 
  
                Frept = [0;0];      % initialize repulsive force 
  
                for i = 1:1032 
                    if laser_range(i) <= laser_max 
                        % object position in the laser i coordinate in  

% meters 
                        p_laser = [laser_range(i) 0 0 1]’; 
                        Xobj = cos(laser_angle(i))*p_laser(1); 
                        Yobj = sin(laser_angle(i))*p_laser(1); 
                        rho = sqrt(Xobj^2+Yobj^2); 
                        if rho < rho0 
                            Frep = eta*(1/p_laser(1)-1/
rho0)*(1/(p_laser(1)^2))*[-cos(laser_angle(i)) -sin(laser_angle(i))]’; 
                        else 
                            Frep = [0;0]; 
                        end 
                        Frept = Frept+Frep; 
                    else 
                    end 
                end 
  
                % determine angle to the repulsive force vector 
                objang = atan2(Frept(2),Frept(1)); 
                if objang < 0 
                    objang = objang + 2*pi; 
                else 
                end 
  
                objangdeg = objang*180/pi 
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                % determine which way to turn and keep repulsive force  
                % vector perpendicular with robot heading 
                if MeanBuffer > 0 
                    if objangdeg >= 100 
                        angvel = angK*0.4; 
                        linvel = linK*0.05; 
                    elseif objangdeg < 80 
                        angvel = -angK*0.4; 
                        linvel = linK*0.05; 
                    else 
                        angvel = 0.0; 
                        linvel = 0.3; 
                    end 
                elseif MeanBuffer < 0 
                    if objangdeg < 260 
                        angvel = -angK*0.4; 
                        linvel = linK*0.05; 
                    elseif objangdeg > 280 
                        angvel = angK*0.4; 
                        linvel = linK*0.05; 
                    else 
                        angvel = 0.0; 
                        linvel = 0.3; 
                    end 
                end 
  
                % develop output velocities 
                LinearVel = linvel; 
                AngularVel = angvel; 
  
                % determine which case to enter next 
                if min(laser_range) < 0.5 
                    c = 4; 
                elseif Dcount == 70 
                    c = 1; 
                    g_dist = []; 
                    Dcount = 0; 
                    Frep_Buffer = zeros(N_Buffer,1); 
                else 
                    c = 2; 
                end 
  
            case 3 % Emergency Avoidance Alg (From Potential Field) 
                ii = 0; 
                while ii < 5 
                    % stop immediately for 5 seconds 
                    fprintf(‘Emergency Avoidance\n’) 
                    caseMsg.Data = ‘Emergency Avoidance (PF)’; 
                    send(casePub,caseMsg) 
                    % populate the message 
                    fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                    cmdMsg.Linear.X = 0.0; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish message 
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                    fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n’, ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2) 
                    ii = ii + 0.2; 
                end 
                jj = 0; 
                while jj < 4 
                    % backup for 4 seconds to make enough room to  
                    % maneuver around obstacle 
                    caseMsg.Data = ‘Emergency Avoidance (PF)’; 
                    send(casePub,caseMsg) 
                    fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                    cmdMsg.Linear.X = -0.2; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish 
                    fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n’, ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2); 
                    jj = jj + 0.2; 
                end 
  
                % get the laser ranges 
                laser_range = Laser.Ranges; 
                % determine if obstacle is out of min range parameter 
                if min(laser_range) < 0.5 
                    c = 3; 
                else 
                    c = 1; 
                end 
  
            case 4 % Emergency Avoidance Alg (From Wall Following) 
                ii = 0; 
                while ii < 5 
                    % stop immediately for 5 seconds 
                    fprintf(‘Emergency Avoidance\n’) 
                    caseMsg.Data = ‘Emergency Avoidance (WF)’; 
                    send(casePub,caseMsg) 
                    % populate the twist message 
                    fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                    cmdMsg.Linear.X = 0.0; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish 
                    fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n’, ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2) 
                    ii = ii + 0.2; 
                end 
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                jj = 0; 
                while jj < 4 
                    % backup for 4 seconds to make enough room to  
                    % maneuver around obstacle 
                    caseMsg.Data = ‘Emergency Avoidance (WF)’; 
                    send(casePub,caseMsg) 
                    fprintf(‘WP #%d at x: %f, y: %f, Distance: %f\
n’,goalnum,wp_x,wp_y,dist); 
                    cmdMsg.Linear.X = -0.2; 
                    cmdMsg.Angular.Z = 0.0; 
                    % publish 
                    fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. 
vel.: %f\n’, ... 
                        0.0,0.0); 
                    send(cmdPub,cmdMsg); 
                    pause(0.2); 
                    jj = jj + 0.2; 
                end 
  
                % get the laser ranges 
                laser_range = Laser.Ranges; 
  
                % determine if obstacle is out of min range parameter 
                if min(laser_range) < 0.5 
                    c = 3; 
                else 
                    c = 2; 
                end 
  
            otherwise 
        end 
  
        % build filtered output velocity parameters 
        cmdMsg.Linear.X = Kfilternew*LinearVel + 
Kfilterold*LinearVel_old; 
        cmdMsg.Angular.Z = Kfilternew*AngularVel + 
Kfilterold*AngularVel_old; 
  
        % publish on cmd_vel topic 
        fprintf(‘Publishing cmd_vel with lin. vel: %f, ang. vel.: %f\
n’, ... 
            cmdMsg.Linear.X,cmdMsg.Angular.Z); 
        send(cmdPub,cmdMsg); 
  
        LinearVel_old = cmdMsg.Linear.X; 
        AngularVel_old = cmdMsg.Angular.Z; 
    End 
 
end 
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APPENDIX  G. MODIFIED READ_KML.M 

function [x,y,z] = read_kml(fileName) 
% READ_KML Reads in (x,y,z) from a GoogleEarth kml file. 
% 
%  I have tried to make this code as robust as possible, but it may  
%  crash or give unexpected resutls if the file is not formatted  
%  exactly as expected. 
% 
% Example: 
%   [x,y,z] = read_kml(‘test.kml’); 
% 
% where test.kml looks like: 
% <?xml version=“1.0” encoding=“UTF-8”?> 
% <kml xmlns=“http://earth.google.com/kml/2.1”> 
% <Placemark> 
%   <name>test_length</name> 
%   <description>junk</description> 
%   <LineString> 
%       <tessellate>1</tessellate> 
%       <coordinates> 
% -73.65138440596144,40.45517368645169,0 -
73.39056199144957,40.52146569128411,0 -
73.05890757388369,40.59561213913959,0 -
72.80519929505505,40.66961872411046,0 -
72.61180114704385,40.72997510603909,0 -
72.43718187249095,40.77509309196679,0 </coordinates> 
%   </LineString> 
% </Placemark> 
% </kml> 
% 
% afarris@usgs.gov 2016March09, now can read mulitple sets of  
% coordinates  
% afarris@usgs.gov 2006November 
  
%% open the data file and find the beginning of the data 
fid=fopen(fileName); 
if fid < 0 
    error(‘could not find file’) 
end 
  
% ADDED BY MATT AUDETTE: 
% Without this line, the str2double() function in the very last lines 
% truncates the incoming GPS coordinates to 4 decimal places, which 
% translates to 11.7 meters N/S and 7.8 meters E/W.  
format long 
% End Matt Audette’s modifications 
  
% This loop reads the data file one line at a time. If if finds the  
% word <coordinates>, it knows there is data until it reads the word 
% </coordinates>. After loading this data, it keeps reading the file, 
% looking for another instance of <coordinates> until it finds the word 
% </kml> which signals that the end of the file has been reached. 
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% Some files have all the data on one line, others have newline  
% characters in various points in the file. I hope this code that  
% works in all cases. 
  
done=0; 
endoffile = 0; 
ar = 1; 
  
while endoffile == 0 
    while done == 0 
        junk = fgetl(fid); 
        f = strfind(junk,’<coordinates>‘); 
        ff = strfind(junk,’</kml>‘); 
        if ~isempty(f) 
            done = 1; 
        elseif  ~isempty(ff) 
            endoffile = 1; 
            done = 1; 
        end 
    end 
    if endoffile 
        break 
    end 
    % ‘junk’ either ends with the word ‘<coordinates>‘ OR  
    % some data follows the word ‘<coordinates>‘   
    if (f + 13) >= length(junk)   
        % no data on this line 
        % done2 is set to zero so the next loop will read the data 
        done2 = 0; 
    else 
        % there is some data in this line following ‘<coordinates>‘ 
        clear f2 
        f2 = strfind(junk,’</coordinates>‘); 
        if ~isempty(f2)  
            %all data is on this line 
            % there may be multiple sets of data on this one line 
            % I read them all 
            for i = 1 : size(f2,2) 
                alldata{ar} = junk(f(i)+13:f2(i)-1); 
                % I add in whitespace b/c sometimes it is missing 
                alldata{ar+1} = ‘ ‘; 
                ar = ar+2; 
            end 
            % done2 is set to one because the next loop does not need  

% to run 
            done2 = 1; 
        else 
            % only some data is on this line 
            alldata{ar} = junk(f+13:end); 
            % I add in whitespace b/c sometimes it is missing 
            alldata{ar+1} = ‘ ‘; 
            ar = ar+2; 

% done2 is set to zero so the next loop will read the  
% rest of the data 

            done2 = 0; 
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        end 
        % check to see if at end of the file 
        ff = strfind(junk,’</kml>‘); 
        if  ~isempty(ff) 
            % no more data 
            endoffile = 1; 
            break 
        else 
            % need to keep looking for more data 
            done = 0; 
        end 
    end 
  
    % If not all the data was on the line with the word <coordiate>,  
    % read in the data 
    while done2 == 0 
        % read in line from data file 
        junk = fgetl(fid); 
        f = strfind(junk,’</coordinates>‘); 
        if isempty(f) == 1  
            % no ending signal, just add this data to the rest  
            alldata{ar} = junk; 
            ar = ar + 1; 
        else 
            % ending signal is present 
            done = 0; 
            if f < 20 
                % </coordinates> is in the begining of the line, ergo  
                % no data on this line; just end the loop 
                done2 = 1; 
            else  
                % the ending signal (</coordinates>) is present: remove  
                % it, add data to the rest and signal the end  

    % of the loop 
                f2 = strfind(junk,’</coordinates>‘); 
                alldata{ar} = junk(1:f2-1); 
                ar = ar + 1; 
                done2 = 1; 
                disp(‘done with line’) 
            end 
        end 
        % check to see if at end of the file 
        ff = strfind(junk,’</kml>‘); 
        if  ~isempty(ff) 
            % no more data 
            endoffile = 1; 
            break 
        else 
            % need to keep looking for more data 
            done = 0; 
        end 
    end 
end 
fclose(fid); 
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%% get the data into neat vectors 
%  I have to divide the string into X, Y and Z values.  
%   
% This is hard b/c there is no comma between points  
% (just commans between x and y, and between  
% y and z)  ie;  -70.0000,42.0000,0 -70.1000,40.10000,0 -70.2,.... 
% 
% I used to do this by finding commas and spaces, now I use  
% ‘strsplit’!  Thank you Matlab! 
  
% ‘alldata’ is one huge cell 
% turn alldata into regular vector so it is easier to work with 
data = cell2mat(alldata); 
% data is one huge string, split it so there is seperate element for 
each number 
C = strsplit(data,{‘,’,’ ‘}); 
% sometimes first and/or last element in C is empty, this causes 
problems 
len = size(C,2); 
if isempty(C{1}) && isempty(C{end}) 
    D = C(2:len-1); 
elseif isempty(C{1}) && ~isempty(C{end}) 
     D = C(2:end); 
elseif isempty(C{end}) && ~isempty(C{1}) 
     D = C(1:len-1); 
end 
  
% There has GOT to be a better way to split C into 3 variables! 
a = 1; 
for i = 1 : 3: length(D)-2 
    x(a,1) = str2double(D{i}); 
    a=a+1; 
end 
a=1; 
for i = 2 : 3: length(D)-1 
    y(a,1) = str2double(D{i}); 
    a=a+1; 
end 
a=1; 
for i = 3 : 3: length(D) 
    z(a,1) = str2double(D{i}); 
    a=a+1; 
end  
  
 

   



81 

LIST OF REFERENCES 

[1] Department of the Navy. “Marine Corps operating concept,” Washington, DC, 
USA, 2016. [Online]. Available: https://www.mccdc.marines.mil/MOC/ 

[2] P. W. Singer, Wired for War: The Robotics Revolution and Conflict in the 
Twenty-first Century. New York, NY USA: Penguin Press, 2009. 

[3] 2017 Marine Corps Warfighting Labs Futures Directorate Initiative Portfolio, 
Marine Corps Warfighting Lab Futures Directorate, Quantico, Virginia, 2016. 
[Online]. Available: https://www.mcwl.marines.mil/Portals/34/Documents/
Portfolio/2017_MCWL_FD_InitiativePortfolio_small.pdf 

[4] 2018 U.S. Marine Corps S&T Strategic Plan, Marine Corps Warfighting Lab 
Futures Directorate, Quantico, Virginia, 2016. [Online]. Available: 
https://www.onr.navy.mil/-/media/Files/About-ONR/2018-USMC-S-and-T-
StrategicPlan.ashx?la=en&hash=73B2574A13A8EC6AAE60CF4670E05C6F9730
9B8F 

[5] DVIDS. “Marines test new futuristic equipment, capabilities [Image 9 of 10],” 
July 13, 2016. [Online]. Available: https://www.dvidshub.net/image/2726228/
marines-test-new-futuristic-equipment-capabilities  

[6] C. S. Hargadine, “Mobile robot navigation and obstacle avoidance in unstructured 
outdoor environments,” M.S. thesis, Dept. of Electrical and Computer 
Engineering, NPS, Monterey, California, 2017. [Online]. Available: 
https://calhoun.nps.edu/handle/10945/56937 

[7] J.-C. Latombe, Robot motion planning, 2nd ed. Boston: Kluwer, 1991. 

[8] Omron Adept MobileRobots. “Pioneer 3-AT Specification Sheet,” 2011. [Online]. 
Available: http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-
P3AT-RevA.sflb.ashx 

[9] Omron Adept MobileRobots. “MobileRobots Research Mobile Robot Platforms 
Compare Technical Specifications,” Accessed July 8, 2018. [Online]. Available: 
http://www.mobilerobots.com/ResearchRobots/ResearchMatrix.aspx 

[10] CappuccinoPC.com. “SlimPRO SP675P Mini PC,” Accessed July 8 2018. 
[Online]. Available: http://www.cappuccinopc.com/slimpro-sp675p.asp 

[11] Hokuyo Automatic Co. “Scanning Rangefinder Distance Data Output/UTM-
30LX Product Details,” Accessed June 14 2018.   [Online]. Available: 
https://www.hokuyo-aut.jp/search/single.php?serial=169 



82 

[12] LORD Corporation, LORD MicroStrain 3DM-GX5-45 GNSS-Aided Inertial 
Navigation System Datasheet, 8400–0091, 2018. [Online]. Available: 
http://www.microstrain.com/sites/default/files/3dm-gx5-45_datasheet_8400-
0091.pdf 

[13] MathWorks. “What is MATLAB?” Accessed July 11, 2018. [Online]. Available: 
https://www.mathworks.com/discovery/what-is-matlab.html 

[14] MathWorks. “Robotics System Toolbox,” Accessed July 11, 2018. [Online]. 
Available: https://www.mathworks.com/products/robotics.html 

[15] A. Farris, United States Geological Service, 2016. read_kml, ver 2. [Online]. 
Available: www.mathworks.com/matlabcentral/fileexchange/13026-read_kml 

[16] Robot Operating System. “About ROS.” Accessed April 10, 2018. [Online]. 
Available: http://www.ros.org/about-ros/ 

[17] MathWorks. “Get Started with ROS - MATLAB & Simulink.” Accessed May 5, 
2018.  [Online]. Available: https://www.mathworks.com/help/robotics/examples/
get-started-with-ros.html 

[18] Robot Operating System. “Recording and playing back data.” Accessed April 15, 
2018. [Online]. Available: http://wiki.ros.org/ROS/Tutorials/
Recording%20and%20playing%20back%20data 

[19] Google. “Download Google Earth Pro.” Accessed July 11, 2018.  [Online]. 
Available: https://www.google.com/earth/download/gep/agree.html 

[20] R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous mobile robots. 
Cambridge, MA: MIT Press, 2004. 

[21] Tomas Lozand-Perez and M. A. Wesley, “An Algorithm for Planning Collision-
Free Paths Among Polyhedral Obstacles,” Communications of the ACM, vol. 22, 
no. 10, pp. 560–570, Oct. 1979. 

[22] “Establishing Connectivity in a Visibility Graph,” class notes for EC4310 
Fundamentals of Robotics, Dept. of Electrical and Computer Engineering, Naval 
Postgraduate School, Monterey, CA, USA, Winter 2018. . 

[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic 
Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, 
no. 2, pp. 100–107, Jul. 1968. 

[24] MathWorks. “Why Use Object-Oriented Design.” Accessed January 20, 2018. 
[Online]. Available: https://www.mathworks.com/help/matlab/matlab_oop/why-
use-object-oriented-design.html 



83 

[25] M. Audette, “GitHub Repository: Thesis,” GitHub, February 4, 2018. [Online]. 
Available: https://github.com/MattAud/Thesis 

[26] M. Audette, “Obstacle Map to Optimal Path,” YouTube, August 20, 2018. 
[Online]. Available: https://www.youtube.com/watch?v=Y0Jkl2ozzEE 

 

  



84 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



85 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	18Sep_Audette_Matthew_First8
	18Sep_Audette_Matthew
	I. Introduction
	A. purpose and goals of this thesis
	B. Motivation
	C. Previous Work

	II. description of hardware and software systems
	A. hardware
	1. Omron Adept MobileRobots Pioneer 3-All Terrain
	2. SlimPRO SP675P Mini PC
	3. Sensor Suite

	B. Software
	1. MATLAB
	2. Robot Operating System
	3. Google Earth Pro

	C. Summary and integration

	III. Description of roadmap development
	A. configuration space
	B. Path-planning approaches
	C. visibility graph method
	D.  A* Search method
	E. an overview of the obstacle avoidance algorithm
	F. integration of the obstacle avoidance algorithm and path-planning algorithm

	IV. MATLAB CLASS DEVELOPMENT
	A. Obstacle and obstacle field classes
	B. node and a* search classes
	C. integration with google maps
	D. Global navigation algorithm summary

	V. EXPERIMENTS AND results
	A. Experiment 1: GPS waypoint navigation using the path-planning alogrithm
	B. Experiement 2: Medium distance navigation

	VI. Conclusions
	A. assessment of goals
	B. system improvements and areas of future work

	Appendix  A. Demonstration.m
	Appendix  B. testbed.m
	Appendix  C. kml to obstacle scripts
	Appendix  D. google_earth_test.m
	Appendix  E. astar_testbed.m
	Appendix  F. potentialfieldtowaypoint.m
	Appendix  G. modified read_kml.m
	List of References
	initial distribution list




